WO2020203144A1 - Quartz oscillating element manufacturing method - Google Patents
Quartz oscillating element manufacturing method Download PDFInfo
- Publication number
- WO2020203144A1 WO2020203144A1 PCT/JP2020/010832 JP2020010832W WO2020203144A1 WO 2020203144 A1 WO2020203144 A1 WO 2020203144A1 JP 2020010832 W JP2020010832 W JP 2020010832W WO 2020203144 A1 WO2020203144 A1 WO 2020203144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axis
- crystal
- main surface
- crosspiece
- crystal piece
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000010453 quartz Substances 0.000 title abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title abstract description 15
- 239000013078 crystal Substances 0.000 claims abstract description 282
- 239000000758 substrate Substances 0.000 claims abstract description 88
- 238000001259 photo etching Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 31
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 3
- 238000005530 etching Methods 0.000 description 19
- 229920002120 photoresistant polymer Polymers 0.000 description 19
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000011651 chromium Substances 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 238000004904 shortening Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/19—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
Definitions
- the present invention relates to a method for manufacturing a crystal vibrating element.
- a plurality of crystal pieces are formed on a collective substrate (wafer) by etching or the like, and an excitation electrode or the like is provided collectively on the plurality of crystal pieces. Then, a plurality of crystal oscillators are manufactured by separating each piezoelectric piece provided with the excitation electrode or the like from the assembly substrate.
- Reference 1 describes a step of processing a crystal element piece having an outer shape of a crystal vibrating piece, a support frame portion of a quartz plate, and a connecting portion for connecting the crystal element piece to the support frame portion, and a step of cutting off the connecting portion to form a crystal. It has a step of separating the vibrating piece, and the connecting portion extends along the horizontal side extending in the Z'direction of the crystal element piece and along each of the vertically opposed vertical sides extending in the X direction. It is processed so as to form a bottomed groove along the outline of.
- a method for processing a crystal vibrating piece in which the groove on the + Z'side is arranged on the main surface on the + Y'side of the connecting portion, and the groove on the ⁇ Z'side is arranged on the main surface on the ⁇ Y'side.
- connection portion between the support frame portion and the connecting portion may not be sufficiently etched, and undissolved residue may occur.
- the length of the connecting portion is shortened in order to increase the ease of breaking the crystal piece and the number of crystal pieces taken per crystal substrate, the undissolved portion burrs on the crystal vibrating element after the crystal piece is broken. It sometimes remained as a (protrusion).
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a crystal vibrating element capable of suppressing the generation of burrs remaining on the crystal vibrating element.
- the crystal axis of the crystal is defined as the X-axis, the Y-axis, and the Z-axis, and the Y-axis and the Z-axis are rotated by a predetermined angle counterclockwise around the X-axis.
- the support portion In the step of forming a crystal piece, a crosspiece, and a support portion for supporting the crystal piece on the crosspiece by etching, when the main surface is viewed in a plan view, the support portion is supported by the support portion.
- a bottomed groove is formed along the boundary between the portion and the crystal piece, and the bottomed groove is formed on the negative side of the Z'axis on the main surface on the positive side of the Y'axis and on the Y'axis. It is arranged on at least one of the positive side of the Z'axis on the main surface on the negative side.
- the crystal axis of the crystal is defined as the X-axis, the Y-axis, and the Z-axis, and the Y-axis and the Z-axis are counterclockwise at a predetermined angle around the X-axis.
- An AT-cut crystal substrate that is rotated to form the Y'axis and Z'axis, and the surface parallel to the surface including the Z'axis and the X axis is cut out as the main surface on the positive and negative sides of the Y'axis.
- the crosspiece and the crosspiece are attached to the crosspiece.
- a bottomed groove is formed along the boundary line of the above, and the bottomed groove is the main surface on the positive side of the Y'axis on the negative side of the Z'axis and the main surface on the negative side of the Y'axis. It is located on at least one of the faces on the positive side of the Z'axis.
- FIG. 1 is a flowchart showing a method S100 for manufacturing a crystal vibrating element according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing the crystal piece forming step shown in FIG.
- FIG. 3 is an enlarged view of a main part of the crystal substrate after the crystal piece forming step shown in FIG. 1 as viewed from the normal direction of one main surface.
- FIG. 4 is a cross-sectional view schematically showing a cross section taken along the line IV-IV shown in FIG.
- FIG. 5 is a side view of the crystal substrate after the completion of the crystal piece forming step shown in FIG. 1 as viewed from one side.
- FIG. 1 is a flowchart showing a method S100 for manufacturing a crystal vibrating element according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing the crystal piece forming step shown in FIG.
- FIG. 3 is an enlarged view of a main part of the crystal substrate after the crystal piece forming step shown in FIG. 1 as viewed
- FIG. 6 is an enlarged view of a crosspiece, a support portion, and a main part of the crystal piece formed on the crystal substrate after the completion of the virtual crystal piece forming step.
- FIG. 7 is a cross-sectional view schematically showing a cross section along the line VII-VII shown in FIG.
- FIG. 8 is an enlarged view of a main part showing an example of the first modification of the crystal substrate shown in FIG.
- FIG. 9 is an enlarged view of a main part showing another example of the first modification of the crystal substrate shown in FIG.
- FIG. 10 is an enlarged view of a main part showing a second modification of the crystal substrate shown in FIG.
- FIG. 11 is an enlarged view of a main part showing a third modification of the crystal substrate shown in FIG.
- FIG. 1 is a flowchart showing a method S100 for manufacturing a crystal vibrating element according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing the crystal piece forming step shown in FIG.
- a method S100 for manufacturing a crystal vibrating element includes a crystal piece forming step S10, an electrode forming step S20, and a crystal piece separating step S30.
- an AT-cut crystal substrate 101 is prepared.
- the AT-cut crystal substrate 101 has a Y-axis and a Z-axis around the X-axis among the X-axis, Y-axis, and Z-axis which are the crystal axes (Crystallogic Axes) of an artificial crystal (Synthetic Quartz Crystal).
- crystallogic Axes Crystallogic Axes
- the axes rotated in the direction of the axis by 35 degrees 15 minutes ⁇ 1 minute 30 seconds are the Y'axis and the Z'axis, respectively, the planes specified by the X and Z'axises (hereinafter referred to as "XZ'planes").
- the plane parallel to the plane is cut out as the main plane.
- both main surfaces of the crystal substrate 101 are surfaces perpendicular to the Y'axis, and may be referred to as a main surface on the positive direction side of the Y'axis and a main surface on the negative direction side of the Y'axis, respectively. it can.
- the main surface on the positive direction side of the Y'axis is referred to as the first main surface of the crystal substrate 101
- the main surface on the negative direction side of the Y'axis is referred to as the second main surface of the crystal substrate 101.
- a crystal piece (Quartz Crystal Element) is formed on the AT-cut crystal substrate 101 by photoetching.
- metal layers are formed on both main surfaces of the crystal substrate 101 (S11).
- the metal layer functions as a corrosion resistant film against an etching solution used when etching quartz, for example, ammonium fluoride or buffered hydrofluoric acid.
- a corrosion-resistant film for example, a multilayer film containing a chromium (Cr) layer and a gold (Au) layer is used.
- the metal layer is formed by a vapor deposition method or a sputtering method.
- the chromium (Cr) layer is located closer to the crystal substrate 101 than the gold (Au) layer, and the gold (Au) layer is located closer to the crystal substrate 101 than the chromium (Cr) layer.
- the chromium (Cr) layer enhances the adhesion to the crystal substrate 101, and the gold (Au) layer enhances the corrosion resistance.
- a photoresist layer is formed on the metal layer (S12).
- the photoresist layer is formed by applying a photoresist solution on a metal layer and volatilizing the solvent by heating.
- the photoresist solution is applied, for example, by a spray method or a spin coating method.
- the photoresist layer is exposed and developed to form an outer pattern of the crystal piece 130 (S13).
- a positive photosensitive resin for the photoresist layer, which removes the exposed portion by dissolution.
- the photoresist layer is exposed in a state where the region corresponding to the crystal piece 130 is shielded from light by a photomask, and then an unnecessary portion is washed away by a developing solution. That is, the shape of the photomask is transferred to the photoresist layer. As a result, the photoresist layer remaining on the metal layer forms the outer pattern of the quartz piece 130.
- the crystal substrate 101 is removed according to the outer shape pattern (S14).
- a plurality of crystal pieces 130 are formed in the crystal substrate 101 by an etching process using the outer shape pattern of the photoresist layer formed in the previous step.
- each crystal piece 130 is connected to each other by a crosspiece 110 without being individualized.
- the outer shapes of the crosspiece 110 and the crystal piece 130 will be described later.
- the metal layer is removed by etching according to the outer shape pattern of the photoresist layer.
- the crystal substrate 101 is removed by etching.
- the etching treatment is not particularly limited, and is, for example, general wet etching. An iodine-based etching solution is used for the metal layer, and a hydrofluoric acid-based etching solution is used for the quartz.
- the photoresist layer and the metal layer are removed (S15).
- the photoresist layer and the metal layer adhering to the crystal substrate 101 are removed.
- step S15 when the crystal piece 130 has a mesa-shaped structure, the crystal piece 130 is processed into a mesa-shaped structure (S16).
- the processing into the mesa-shaped structure can be carried out by repeating the same processing as in steps S11 to S15.
- the difference between steps S11 and S14 in step S16 is that the shape of the photoresist layer in the step corresponding to step S13 covers the vibrating portion of the crystal piece 130 and exposes the portion other than the vibrating portion. It is a structural pattern, and the etching of the crystal substrate 101 in the step corresponding to step S14 is half etching.
- the outer shape of the crystal piece 130 is formed on the crystal substrate 101.
- FIG. 2 shows an example in which the crystal piece 130 has a mesa-shaped structure, but the present invention is not limited to this.
- the crystal piece may have a so-called single mesa type structure in which the vibrating portion is larger than the other portion on one surface. Further, the crystal piece may have an inverted mesa structure in which the vibrating portion is thinner than the other portions. Further, the crystal piece may have a convex shape or a bevel shape in which the change in thickness (step) between the vibrating portion and the other portion continuously changes, or a flat plate shape having no or little change in thickness (step). It may be in shape. In the following, for the sake of simplification of the description, the crystal piece 130 will be described as having a flat plate shape.
- the electrode forming step S20 shown in FIG. 1 is the same process as the steps S11 to S15 of the crystal piece forming step S10 described above, the illustration and detailed description thereof will be omitted.
- metal layers are formed on both main surfaces of the crystal substrate 101, and a photoresist layer is formed on the metal layers.
- the photoresist layer is exposed and developed to form an electrode pattern.
- the electrode pattern covers, for example, a region such as an excitation electrode formed in a vibrating portion of a crystal piece, an extraction electrode for drawing out from the excitation electrode, and a connection electrode.
- the photoresist layer in the region other than the electrode pattern is removed.
- the metal layer is removed according to the electrode pattern to form each electrode, and then the photoresist layer is removed.
- the photoresist layer to be removed corresponds to the electrode pattern.
- electrodes such as excitation electrodes, extraction electrodes, and connection electrodes are formed on the crystal substrate 101.
- the crystal piece 130 is separated from the support portion 120. Specifically, for example, the crystal piece 130 is broken off from the support portion 120 by applying a force from one main surface side of the crystal substrate 101. As a result, the crystal piece 130 is separated into individual pieces. The separated crystal piece is used as a crystal vibrating element. In this way, the crystal vibrating element is manufactured.
- FIG. 3 is an enlarged view of a main part of the crystal substrate 101 after the completion of the crystal piece forming step S10 shown in FIG. 1 as viewed from the normal direction of one main surface.
- FIG. 4 is a cross-sectional view schematically showing a cross section taken along the line IV-IV shown in FIG.
- FIG. 5 is a side view of the crystal substrate 101 after the completion of the crystal piece forming step S10 shown in FIG. 1 as viewed from one side.
- the crystal substrate 101 is formed with a crosspiece 110, a support 120, and a crystal piece 130.
- the crystal substrate 101 includes a plurality of crosspieces 110, a support portion 120, and a crystal piece 130.
- the plurality of crosspieces 110 are arranged in the positive direction of the X-axis at predetermined intervals.
- the plurality of crystal pieces 130 are arranged in the positive direction of the X-axis at predetermined intervals, and are arranged in the negative direction of the Z'axis at predetermined intervals. That is, the crosspiece 110 and the crystal piece 130 are alternately arranged in the positive direction of the X-axis and separated from each other.
- the crosspiece 110 extends in the Z'axis direction.
- the support portion 120 supports the crystal piece 130 on the crosspiece 110.
- the support portion 120 is located between the crosspiece 110 and the crystal piece 130 in the X-axis direction.
- the support portion 120 has an opening 121 penetrating from the first main surface to the second main surface of the crystal substrate 101.
- the opening 121 has a rectangular shape.
- the first main surface of the crystal substrate 101 is parallel to or substantially parallel to the first main surface 130a of the crystal piece 130, and the second main surface of the crystal substrate 101 is parallel to the second main surface 130b of the crystal piece 130. Or it is almost parallel.
- the crystal piece 130 has a rectangular shape including a short side parallel to the Z'axis direction and a long side parallel to the X axis direction. Further, the crystal piece 130 is connected to the crosspiece 110 via the support portion 120 on the positive direction side of the X axis, that is, on the short side on the base end portion 130c side. A gap (space) is formed around the crystal piece 130 by removing the crystal substrate 101 by etching except for the connection portion with the support portion 120.
- the crystal piece 130 is provided so as to be separated from the crosspiece 110 in the X-axis direction by being supported by the support portion 120.
- the first main surface 130a of the crystal piece 130 that is, the first main surface of the crystal substrate 101 is viewed in a plan view (hereinafter, also simply referred to as “planar view”)
- the space between the crystal piece 130 and the crosspiece 110 is The length of the support portion 120 in the X-axis direction, that is, the distance D1 is separated.
- the crystal piece 130 is supported by the two support portions 120A and 120B because the support portion 120 has the opening 121.
- the support portion 120A and the support portion 120B are provided so as to be separated from each other in the Z'axis direction.
- the support portions 120 have a plurality of support portions 120A and 120B separated from each other by having an opening 121 penetrating from the main surface on the positive direction side of the Y'axis to the main surface on the negative direction side of the Y'axis. Can be easily formed.
- FIG. 3 shows an example in which the support portion 120 has one opening 121, but the present invention is not limited to this.
- a plurality of openings may be formed in the support portion 120.
- the shape of the opening 121 is not limited to the case where it is rectangular in a plan view, and may be another shape.
- a bottomed groove 140A is formed in the support portion 120A along the boundary line between the support portion 120A and the short side of the crystal piece 130 on the base end portion 130c side. ing.
- the groove 140A is arranged on the second main surface of the crystal piece 130, that is, on the positive side of the Z'axis on the main surface on the negative side of the Y'axis.
- the shape of the groove 140A is a rectangular shape having a bottom, and the groove 140A has a predetermined depth.
- a bottomed groove 140B is formed in the support portion 120B along the boundary line between the support portion 120B and the short side of the crystal piece 130 on the base end portion 130c side.
- the groove 140B is arranged on the first main surface of the crystal piece 130, that is, on the negative direction side of the Z'axis on the main surface on the positive direction side of the Y'axis.
- the shape of the groove 140B is a rectangular shape having a bottom, and the groove 140B has a predetermined depth.
- the widths (lengths) of the grooves 140A and 140B in the X-axis direction are set to a sufficiently small value as compared with the gap between the crystal substrate 101 and the crystal piece 130.
- FIG. 6 is an enlarged view of a main part of the crosspiece 210, the support 220, and the crystal piece 230 formed on the crystal substrate after the completion of the virtual crystal piece forming step.
- FIG. 7 is a cross-sectional view schematically showing a cross section along the line VII-VII shown in FIG.
- the crosspiece 210, the support portion 220, and the crystal piece 230 shown in FIGS. 6 and 7 have substantially the same configuration as the crosspiece 110, the support portion 120, and the crystal piece 130 shown in FIGS. 3 to 5. , The same parts will be omitted as appropriate, and the different parts will be mainly described.
- the support portion 220 supports the crystal piece 230 on the crosspiece 210. Further, since the support portion 220 has the opening 221 the crystal piece 230 is supported by the two support portions 220A and 220B.
- the support portion 220A has a bottomed groove 240A formed on the main surface on the positive direction side of the Y'axis, and the support portion 220B has the Y'axis.
- a bottomed groove 240B is formed on the negative side of the.
- the protrusion PR1 remains on the positive direction side of the Z'axis on the main surface on the negative direction side of the Y'axis in which the groove 240A is not formed.
- the protrusion PR2 remains on the negative direction side of the Z'axis on the main surface on the positive direction side of the Y'axis in which the groove 240B is not formed.
- the distance D1 which is the length of the support portion 220A and the support portion 220B in the X-axis direction
- the crystal piece 230 is separated from the crosspiece 210, the protrusions PR1 and the protrusions PR2 are separated from the crystal piece 230. It may remain as a burr. If burrs are present on the crystal piece 230, for example, the crystal piece 230 tends to collide with the side wall of the package, and as a result of the collision, the vibration characteristics of the crystal piece 230 are adversely affected.
- the bottomed groove 140A shown in FIGS. 3 to 5 is formed on the main surface of the support portion 120A on the negative direction side of the Y'axis.
- the protrusion PR1 on the positive direction side of the Z'axis of the main surface on the negative direction side of the Y'axis shown in FIG. 7 is removed or suppressed by the inflow (entry) of the etching solution through the groove 140A. ..
- the bottomed groove 140B shown in FIGS. 3 to 5 is formed on the main surface of the support portion 120B on the positive direction side of the Y'axis.
- the protrusion PR2 on the negative direction side of the Z'axis of the main surface on the positive direction side of the Y'axis shown in FIG. 7 is removed or suppressed by the inflow (entry) of the etching solution through the groove 140B. .. Therefore, it is possible to suppress the generation of burrs that may remain in the crystal vibrating element, which is the crystal piece 130 separated from the crosspiece 110.
- the bottomed groove 140A is a plan view of the main surface of the crystal substrate 101
- the bottomed groove 140B is a plan view of the main surface of the crystal substrate 101 over the entire width of the support portion 120A in the Z'axis direction. It is preferable that the support portion 120B is formed over the entire width in the Z'axis direction.
- the example of the crystal substrate 101 on which the crosspiece 110, the support portion 120, and the crystal piece 130 are formed is shown in FIGS. 3 to 5, but the crystal substrate 101 after the completion of the crystal piece forming step S10 is shown. Is not limited to this example.
- FIG. 8 is an enlarged view of a main part showing an example of a first modification of the crystal substrate 101 shown in FIG.
- FIG. 9 is an enlarged view of a main part showing another example of the first modification of the crystal substrate 101 shown in FIG.
- the same configurations as those of the crystal substrate 101 shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
- similar actions and effects with the same configuration will not be mentioned sequentially.
- a support portion 120 including two support portions 120C and 120D is formed on the crystal substrate 101A, and the crystal piece 130 is supported by the support portion 120C and the support portion 120D.
- the length in the X-axis direction is the distance D2 between the crystal piece 130 and the crosspiece 110.
- This distance D2 is set to a value smaller than the distance D1 shown in FIG. 3 (distance D2 ⁇ distance D1).
- the distance D2 is preferably larger than 0 times and 1.5 times or less with respect to the thickness (length in the Y'axis direction) of the crystal substrate 101A.
- the distance D2 between the crystal piece 130 and the crosspiece 110 as compared with the conventional distance D1
- the number of crystal vibrating elements obtained from the crystal substrate 101A can be increased and the crystal piece can be increased.
- the separation step S30 the crystal piece 130 can be stably broken off.
- the distance D2 is preferably larger than 0 and 50 ⁇ m or less. As described above, by shortening the distance D2 between the crystal piece 130 and the crosspiece 110 as compared with the conventional distance D1, the number of crystal vibrating elements obtained from the crystal substrate 101A can be increased and the crystal piece can be increased. In the separation step S30, the crystal piece 130 can be stably broken off.
- the distance D2 between the crystal piece 130 and the crosspiece 110 may be the same as the width of the bottomed groove 140A and the bottomed groove 140B in the X-axis direction.
- FIG. 10 is an enlarged view of a main part showing a second modification of the crystal substrate 101 shown in FIG.
- the same configurations as those of the crystal substrate 101 shown in FIG. 3 and the crystal substrate 101A shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
- similar actions and effects with the same configuration will not be mentioned sequentially.
- the crystal substrate 101B is formed with a support portion 120 including two support portions 120C and 120D.
- a bottomed groove 140C is formed on the main surface on the negative direction side of the Y'axis.
- the groove 140C is partially provided along the Z'axis direction of the support portion 120C in a plan view, that is, along the boundary line between the support portion 120C and the short side of the crystal piece 130 on the base end portion 130c side. Has been done.
- a bottomed groove 140D is formed on the main surface on the positive direction side of the Y'axis.
- the groove 140D is partially along the width of the support portion 120C in the Z'axis direction in a plan view, that is, along the boundary line between the support portion 120C and the short side of the crystal piece 130 on the base end portion 130c side. It is provided in.
- the bottomed grooves 140C and 140D are partially formed along the width of the support portions 120C and 120D in the Z'axis direction when the main surface of the crystal substrate 101B is viewed in a plan view. Compared with the case where the bottom grooves 140C and 140D are formed over the entire width of the support portions 120C and 120D in the Z'axis direction, the crystal piece 130 can be easily broken off while ensuring the strength of the support portions 120C and 120D. it can.
- FIG. 11 is an enlarged view of a main part showing a third modification of the crystal substrate 101 shown in FIG.
- the same configurations as those of the crystal substrate 101 shown in FIG. 3, the crystal substrate 101A shown in FIG. 9, and the crystal substrate 101B shown in FIG. 10 are designated by the same reference numerals. The description will be omitted as appropriate.
- similar actions and effects with the same configuration will not be mentioned sequentially.
- the crystal piece 130 and the crosspiece 110 are formed on the crystal substrate 101C, but the support portion 120 shown in FIG. 3 is not formed. That is, the crystal piece 130 is directly supported by the crosspiece 110.
- the crosspiece 110 is formed with a bottomed groove 140A and a groove 140B along the boundary line between the crosspiece 110 and the short side of the crystal piece 130 on the base end 130c side in a plan view.
- the groove 140A is arranged on the positive side of the Z'axis on the main surface on the negative side of the Y'axis.
- the groove 140B is arranged on the negative direction side of the Z'axis on the main surface on the positive direction side of the Y'axis.
- the crosspiece 110 has a bottomed groove 140A and a groove along the boundary line between the crosspiece 110 and the crystal piece 130. 140B is formed, and the bottomed groove is the negative direction of the Z'axis on the main surface on the positive side of the Y'axis and the positive direction of the Z'axis on the main surface on the negative side of the Y'axis.
- the same effect as that of the crystal substrate 101 on which the crosspiece 110, the support 120, and the crystal piece 130 are formed as shown in FIGS. 3 to 5 described above can be obtained. Since the support portion 120 is not formed on the crystal substrate 101C, the number of crystal vibrating elements obtained from the crystal substrate 101C can be increased.
- the crosspiece 110 is formed with an opening 111 penetrating from the first main surface to the second main surface of the crystal substrate 101C. Since the crosspiece 110 has the opening 111, the crystal piece 130 is supported by the crosspiece 110 at two places. Further, the groove 140A and the groove 140B are provided so as to be separated from each other in the Z'axis direction.
- the support portion is along the boundary line between the support portion and the crystal piece.
- a bottomed groove is formed, and the bottomed groove is formed on the negative side of the Z'axis on the main surface on the positive side of the Y'axis and the Z'axis on the main surface on the negative side of the Y'axis. It is placed on at least one of the positive sides of the.
- At least one of the protrusions of the above is removed or suppressed by the inflow (entry) of the etching solution through the groove. Therefore, it is possible to suppress the generation of burrs that may remain in the crystal vibrating element, which is a crystal piece separated from the crosspiece.
- a step of separating the crystal piece from the crosspiece to form a crystal vibrating element by breaking the crystal piece is further included. As a result, it is possible to easily manufacture a crystal vibrating element in which the generation of burrs is suppressed.
- the distance between the crystal piece and the crosspiece when the main surface of the crystal substrate is viewed in a plane is larger than 0 times the thickness of the crystal substrate, and It is 1.5 times or less. In this way, by shortening the distance between the crystal piece and the crosspiece as compared with the conventional distance, the number of crystal vibrating elements obtained from the crystal substrate can be increased, and in the crystal piece separation step, the crystal One piece can be broken off stably.
- the distance between the crystal piece and the crosspiece when the main surface of the crystal substrate is viewed in a plane is greater than 0 and 50 ⁇ m or less. In this way, by shortening the distance between the crystal piece and the crosspiece as compared with the conventional distance, the number of crystal vibrating elements obtained from the crystal substrate can be increased, and in the crystal piece separation step, the crystal One piece can be broken off stably.
- a bottomed groove is formed over the entire width of the support portion in the Z'axis direction when the main surface of the crystal substrate is viewed in a plan view.
- a bottomed groove is partially formed along the width in the Z'axis direction of the support portion when the main surface of the crystal substrate is viewed in a plan view. ..
- the crystal piece can be easily broken while ensuring the strength of the support portion as compared with the case where the bottomed groove is formed over the entire width of the support portion in the Z'axis direction.
- the support portion has an opening penetrating from the main surface on the positive direction side of the Y'axis to the main surface on the negative direction side of the Y'axis.
- the crosspiece portion in the crystal piece forming step, when the main surface of the crystal substrate is viewed in a plane, the crosspiece portion has a boundary line between the crosspiece portion and the crystal piece.
- a bottomed groove is formed along the above, and the bottomed groove is formed on the negative side of the Z'axis on the main surface on the positive side of the Y'axis and Z on the main surface on the negative side of the Y'axis. 'Placed on at least one of the positive sides of the axis.
- each of the embodiments described above is for facilitating the understanding of the present invention, and is not for limiting and interpreting the present invention.
- the present invention can be modified / improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof. That is, those skilled in the art with appropriate design changes to each embodiment are also included in the scope of the present invention as long as they have the features of the present invention.
- each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be appropriately changed.
- each embodiment is an example, and it goes without saying that the configurations shown in different embodiments can be partially replaced or combined, and these are also included in the scope of the present invention as long as the features of the present invention are included. ..
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
The present invention suppresses the occurrence of a burr remaining on a quartz oscillating element. This quartz oscillating element manufacturing method includes a step S in which a quartz piece 130, a crosspiece section 110, and a support section 120 that supports the quartz piece 130 on the crosspiece section 110 are formed by photoetching in an AT cut quartz substrate 101, which has been cut out such that the crystal axes of the quartz serve as an X axis, a Y axis, and a Z axis, the results of rotating the Y axis and the Z axis by a prescribed angle in a counterclockwise direction around the X axis serve as a Y' axis and a Z' axis, and surfaces that are parallel to a plane including the Z' axis and the X axis serve as main surfaces on the positive direction side and the negative direction side of the Y' axis. In this forming step, when a main surface is viewed in planar view, bottomed grooves 140A, 140B that are along a boundary line between the support section 120 and the quartz piece 130 are formed in the support section 120, and these bottomed grooves 140A, 140B are positioned on the Z' axis negative direction side of the main surface on the Y' axis positive direction side, and/or on the Z' axis positive direction side of the main surface on the Y' axis negative direction side.
Description
本発明は、水晶振動素子の製造方法に関する。
The present invention relates to a method for manufacturing a crystal vibrating element.
水晶振動素子は、例えば、集合基板(ウエハ)にエッチングなどで複数の水晶片を形成し、当該複数の水晶片に一括して励振電極等を設ける。そして、励振電極等が設けられた各圧電片を集合基板から分離することによって、複数の水晶振動子が製造される。
For the crystal vibrating element, for example, a plurality of crystal pieces are formed on a collective substrate (wafer) by etching or the like, and an excitation electrode or the like is provided collectively on the plurality of crystal pieces. Then, a plurality of crystal oscillators are manufactured by separating each piezoelectric piece provided with the excitation electrode or the like from the assembly substrate.
引用文献1には、水晶振動片の外形を有する水晶素子片と水晶板の支持枠部と水晶素子片を支持枠部に結合する連結部とを加工する工程と、連結部を折り取って水晶振動片を切り離す工程とを有し、連結部は、水晶素子片のZ’方向に延長する横辺に、X方向に延長する互いに対向する各縦辺に沿って延長するように、水晶素子片の外形線に沿って有底の溝を形成するように加工される。+Z’側の溝は連結部の+Y’側の主面に、-Z’側の溝は-Y’側の主面に配置される水晶振動片の加工方法が開示されている。
Reference 1 describes a step of processing a crystal element piece having an outer shape of a crystal vibrating piece, a support frame portion of a quartz plate, and a connecting portion for connecting the crystal element piece to the support frame portion, and a step of cutting off the connecting portion to form a crystal. It has a step of separating the vibrating piece, and the connecting portion extends along the horizontal side extending in the Z'direction of the crystal element piece and along each of the vertically opposed vertical sides extending in the X direction. It is processed so as to form a bottomed groove along the outline of. A method for processing a crystal vibrating piece is disclosed, in which the groove on the + Z'side is arranged on the main surface on the + Y'side of the connecting portion, and the groove on the −Z'side is arranged on the main surface on the −Y'side.
しかしながら、特許文献1に記載された位置に溝を配置すると、支持枠部と連結部との接続箇所が十分にエッチングされずに、溶け残りが発生することがあった。水晶片の折り取りの容易さ及び水晶基板あたりの水晶片の取り個数を増加させるために、連結部の長さを短くすると、溶け残り部分が水晶片を折り取った後の水晶振動素子にバリ(突起)として残ることがあった。
However, when the groove is arranged at the position described in Patent Document 1, the connection portion between the support frame portion and the connecting portion may not be sufficiently etched, and undissolved residue may occur. When the length of the connecting portion is shortened in order to increase the ease of breaking the crystal piece and the number of crystal pieces taken per crystal substrate, the undissolved portion burrs on the crystal vibrating element after the crystal piece is broken. It sometimes remained as a (protrusion).
本発明はこのような事情に鑑みてなされたものであり、水晶振動素子に残るバリの発生を抑制することのできる水晶振動素子の製造方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a crystal vibrating element capable of suppressing the generation of burrs remaining on the crystal vibrating element.
本発明の一側面に係る水晶振動素子の製造方法は、水晶の結晶軸をX軸、Y軸、Z軸として、Y軸及びZ軸をX軸の回りに反時計方向に所定の角度回転させてY’軸及びZ’軸とし、Z’軸とX軸とを含む面と平行な面をY’軸の正方向側及び負方向側の主面として切り出したATカットの水晶基板に、フォトエッチングによって、水晶片と、桟部と、水晶片を桟部に支持する支持部とを形成する工程を、含み、形成する工程において、主面を平面視したときに、支持部に、当該支持部と水晶片との境界線に沿う有底の溝が形成され、当該有底の溝は、Y’軸の正方向側の主面におけるZ’軸の負方向側、及び、Y’軸の負方向側の主面におけるZ’軸の正方向側の少なくとも一方に配置される。
In the method for manufacturing a crystal vibrating element according to one aspect of the present invention, the crystal axis of the crystal is defined as the X-axis, the Y-axis, and the Z-axis, and the Y-axis and the Z-axis are rotated by a predetermined angle counterclockwise around the X-axis. On an AT-cut crystal substrate cut out as the Y'axis and the Z'axis, and the plane parallel to the plane including the Z'axis and the X axis as the main plane on the positive and negative sides of the Y'axis. In the step of forming a crystal piece, a crosspiece, and a support portion for supporting the crystal piece on the crosspiece by etching, when the main surface is viewed in a plan view, the support portion is supported by the support portion. A bottomed groove is formed along the boundary between the portion and the crystal piece, and the bottomed groove is formed on the negative side of the Z'axis on the main surface on the positive side of the Y'axis and on the Y'axis. It is arranged on at least one of the positive side of the Z'axis on the main surface on the negative side.
本発明の他の一側面に係る水晶振動素子の製造方法は、水晶の結晶軸をX軸、Y軸、Z軸として、Y軸及びZ軸をX軸の回りに反時計方向に所定の角度回転させてY’軸及びZ’軸とし、Z’軸とX軸とを含む面と平行な面をY’軸の正方向側及び負方向側の主面として切り出したATカットの水晶基板に、フォトエッチングによって、水晶片と、水晶片を支持する桟部とを形成する工程を、含み、形成する工程において、主面を平面視したときに、桟部に、当該桟部と水晶片との境界線に沿う有底の溝が形成され、当該有底の溝は、Y’軸の正方向側の主面におけるZ’軸の負方向側、及び、Y’軸の負方向側の主面におけるZ’軸の正方向側の少なくとも一方に配置される。
In the method for manufacturing a crystal vibrating element according to another aspect of the present invention, the crystal axis of the crystal is defined as the X-axis, the Y-axis, and the Z-axis, and the Y-axis and the Z-axis are counterclockwise at a predetermined angle around the X-axis. An AT-cut crystal substrate that is rotated to form the Y'axis and Z'axis, and the surface parallel to the surface including the Z'axis and the X axis is cut out as the main surface on the positive and negative sides of the Y'axis. In the step of forming the crystal piece and the crosspiece supporting the crystal piece by photoetching, when the main surface is viewed in a plan view, the crosspiece and the crosspiece are attached to the crosspiece. A bottomed groove is formed along the boundary line of the above, and the bottomed groove is the main surface on the positive side of the Y'axis on the negative side of the Z'axis and the main surface on the negative side of the Y'axis. It is located on at least one of the faces on the positive side of the Z'axis.
本発明によれば、水晶振動素子に残るバリの発生を抑制することが可能となる。
According to the present invention, it is possible to suppress the generation of burrs remaining on the crystal vibrating element.
以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の構成要素は同一又は類似の符号で表している。図面は例示であり、各部の寸法や形状は模式的なものであり、本発明の技術的範囲を当該実施形態に限定して解するべきではない。
An embodiment of the present invention will be described below. In the description of the drawings below, the same or similar components are represented by the same or similar reference numerals. The drawings are examples, and the dimensions and shapes of the respective parts are schematic, and the technical scope of the present invention should not be limited to the embodiment.
<実施形態>
まず、図1から図2を参照しつつ、本発明の実施形態に係る水晶振動素子の製造方法について説明する。図1は、本発明の実施形態に係る水晶振動素子の製造方法S100を示すフローチャートである。図2は、図1に示した水晶片形成工程を示すフローチャートである。 <Embodiment>
First, a method for manufacturing a crystal vibrating element according to an embodiment of the present invention will be described with reference to FIGS. 1 to 2. FIG. 1 is a flowchart showing a method S100 for manufacturing a crystal vibrating element according to an embodiment of the present invention. FIG. 2 is a flowchart showing the crystal piece forming step shown in FIG.
まず、図1から図2を参照しつつ、本発明の実施形態に係る水晶振動素子の製造方法について説明する。図1は、本発明の実施形態に係る水晶振動素子の製造方法S100を示すフローチャートである。図2は、図1に示した水晶片形成工程を示すフローチャートである。 <Embodiment>
First, a method for manufacturing a crystal vibrating element according to an embodiment of the present invention will be described with reference to FIGS. 1 to 2. FIG. 1 is a flowchart showing a method S100 for manufacturing a crystal vibrating element according to an embodiment of the present invention. FIG. 2 is a flowchart showing the crystal piece forming step shown in FIG.
図1に示すように、水晶振動素子(Quartz Crystal Resonator)の製造方法S100は、水晶片形成工程S10と、電極形成工程S20と、水晶片分離工程S30と、を含んで構成される。
As shown in FIG. 1, a method S100 for manufacturing a crystal vibrating element (Quartz Crystal Resonarator) includes a crystal piece forming step S10, an electrode forming step S20, and a crystal piece separating step S30.
水晶片形成工程S10を開始する前に、ATカットされた水晶基板101を準備する。ATカットの水晶基板101は、人工水晶(Synthetic Quartz Crystal)の結晶軸(Crystallographic Axes)であるX軸、Y軸、Z軸のうち、Y軸及びZ軸をX軸の周りにY軸からZ軸の方向に35度15分±1分30秒回転させた軸をそれぞれY’軸及びZ’軸とした場合、X軸及びZ’軸によって特定される面(以下、「XZ’面」と呼ぶ。他の軸によって特定される面についても同様である。)と平行な面を主面として切り出されたものである。
Before starting the crystal piece forming step S10, an AT-cut crystal substrate 101 is prepared. The AT-cut crystal substrate 101 has a Y-axis and a Z-axis around the X-axis among the X-axis, Y-axis, and Z-axis which are the crystal axes (Crystallogic Axes) of an artificial crystal (Synthetic Quartz Crystal). When the axes rotated in the direction of the axis by 35 degrees 15 minutes ± 1 minute 30 seconds are the Y'axis and the Z'axis, respectively, the planes specified by the X and Z'axises (hereinafter referred to as "XZ'planes"). The same applies to the planes specified by other axes.) The plane parallel to the plane is cut out as the main plane.
このため、水晶基板101の両主面は、ともにY’軸に垂直な面であり、それぞれ、Y’軸の正方向側の主面、Y’軸の負方向側の主面と呼ぶことができる。以下の説明において、Y’軸の正方向側の主面を水晶基板101の第1主面、Y’軸の負方向側の主面を水晶基板101の第2主面という。
For this reason, both main surfaces of the crystal substrate 101 are surfaces perpendicular to the Y'axis, and may be referred to as a main surface on the positive direction side of the Y'axis and a main surface on the negative direction side of the Y'axis, respectively. it can. In the following description, the main surface on the positive direction side of the Y'axis is referred to as the first main surface of the crystal substrate 101, and the main surface on the negative direction side of the Y'axis is referred to as the second main surface of the crystal substrate 101.
水晶片形成工程S10は、ATカットの水晶基板101に、フォトエッチングによって水晶片(Quartz Crystal Element)を形成する。
In the crystal piece forming step S10, a crystal piece (Quartz Crystal Element) is formed on the AT-cut crystal substrate 101 by photoetching.
すなわち、水晶片形成工程S10は、図2に示すように、最初に、水晶基板101の両主面に金属層を形成する(S11)。金属層は、水晶をエッチングする際に用いられるエッチング液、例えば、フッ化アンモニウムあるいは緩衝フッ酸に対する耐蝕膜として機能する。このような耐蝕膜としては、例えば、クロム(Cr)層と金(Au)層とを含む多層膜が用いられる。金属層は蒸着法やスパッタ法によって形成される。クロム(Cr)層は金(Au)層より水晶基板101に近い側に位置し、金(Au)層はクロム(Cr)層より水晶基板101から遠い側に位置する。クロム(Cr)層は水晶基板101との密着力を高め、金(Au)層は耐蝕性を高める。
That is, in the crystal piece forming step S10, as shown in FIG. 2, first, metal layers are formed on both main surfaces of the crystal substrate 101 (S11). The metal layer functions as a corrosion resistant film against an etching solution used when etching quartz, for example, ammonium fluoride or buffered hydrofluoric acid. As such a corrosion-resistant film, for example, a multilayer film containing a chromium (Cr) layer and a gold (Au) layer is used. The metal layer is formed by a vapor deposition method or a sputtering method. The chromium (Cr) layer is located closer to the crystal substrate 101 than the gold (Au) layer, and the gold (Au) layer is located closer to the crystal substrate 101 than the chromium (Cr) layer. The chromium (Cr) layer enhances the adhesion to the crystal substrate 101, and the gold (Au) layer enhances the corrosion resistance.
次に、金属層の上にフォトレジスト層を形成する(S12)。フォトレジスト層は、フォトレジスト溶液を金属層の上に塗布し、加熱により溶媒を揮発させることで成膜される。フォトレジスト溶液は、例えば、スプレー法やスピンコート法によって塗布される。
Next, a photoresist layer is formed on the metal layer (S12). The photoresist layer is formed by applying a photoresist solution on a metal layer and volatilizing the solvent by heating. The photoresist solution is applied, for example, by a spray method or a spin coating method.
次に、フォトレジスト層を露光・現像し、水晶片130の外形パターンを形成する(S13)。フォトレジスト層は、微細加工への適応性の観点から、露光された部分を溶解によって除去するポジ型の感光性樹脂を用いることが望ましい。ポジ型の感光性樹脂を使用する場合、フォトレジスト層は、水晶片130に相当する領域をフォトマスクで遮光された状態で露光され、その後、現像液によって不要な部分が洗い流される。すなわち、フォトマスクの形状はフォトレジスト層に転写される。その結果、金属層の上に残ったフォトレジスト層は、水晶片130の外形パターンを形成する。
Next, the photoresist layer is exposed and developed to form an outer pattern of the crystal piece 130 (S13). From the viewpoint of adaptability to microfabrication, it is desirable to use a positive photosensitive resin for the photoresist layer, which removes the exposed portion by dissolution. When a positive photosensitive resin is used, the photoresist layer is exposed in a state where the region corresponding to the crystal piece 130 is shielded from light by a photomask, and then an unnecessary portion is washed away by a developing solution. That is, the shape of the photomask is transferred to the photoresist layer. As a result, the photoresist layer remaining on the metal layer forms the outer pattern of the quartz piece 130.
次に、水晶基板101を外形パターンに従って除去する(S14)。このとき、前工程で形成したフォトレジスト層の外形パターンを利用し、エッチング処理によって水晶基板101の中に複数の水晶片130を形成する。なお、各水晶片130は、個片化されずに桟部110によって互いに連結されている。桟部110及び水晶片130の外形については、後述する。本工程では、フォトレジスト層の外形パターンに従って金属層をエッチングによって除去する。次いで、水晶基板101をエッチングによって除去する。エッチング処理は、特に限定されるものではなく、例えば一般的なウエットエッチングであり、金属層に対してはヨウ素系のエッチング溶液を用い、水晶に対してはフッ酸系のエッチング溶液を用いる。
Next, the crystal substrate 101 is removed according to the outer shape pattern (S14). At this time, a plurality of crystal pieces 130 are formed in the crystal substrate 101 by an etching process using the outer shape pattern of the photoresist layer formed in the previous step. In addition, each crystal piece 130 is connected to each other by a crosspiece 110 without being individualized. The outer shapes of the crosspiece 110 and the crystal piece 130 will be described later. In this step, the metal layer is removed by etching according to the outer shape pattern of the photoresist layer. Next, the crystal substrate 101 is removed by etching. The etching treatment is not particularly limited, and is, for example, general wet etching. An iodine-based etching solution is used for the metal layer, and a hydrofluoric acid-based etching solution is used for the quartz.
次に、フォトレジスト層及び金属層を除去する(S15)。ここで、一旦、水晶基板101に付着しているフォトレジスト層及び金属層を全て除去する。
Next, the photoresist layer and the metal layer are removed (S15). Here, once, all the photoresist layer and the metal layer adhering to the crystal substrate 101 are removed.
工程S15の後、水晶片130がメサ型構造を有する場合、水晶片130をメサ型構造に加工する(S16)。メサ型構造への加工は、工程S11から工程S15と同様の処理を繰り返すことで実施可能である。このような工程S16における工程S11から工程S14との相違点は、工程S13に相当する工程におけるフォトレジスト層の形状が、水晶片130の振動部を覆って振動部以外の部分を露出するメサ型構造パターンであることと、工程S14に相当する工程における水晶基板101のエッチングがハーフエッチングであること、である。
After step S15, when the crystal piece 130 has a mesa-shaped structure, the crystal piece 130 is processed into a mesa-shaped structure (S16). The processing into the mesa-shaped structure can be carried out by repeating the same processing as in steps S11 to S15. The difference between steps S11 and S14 in step S16 is that the shape of the photoresist layer in the step corresponding to step S13 covers the vibrating portion of the crystal piece 130 and exposes the portion other than the vibrating portion. It is a structural pattern, and the etching of the crystal substrate 101 in the step corresponding to step S14 is half etching.
このようにして、水晶基板101に水晶片130の外形が形成される。
In this way, the outer shape of the crystal piece 130 is formed on the crystal substrate 101.
本実施形態では、図2において、水晶片130がメサ型構造を有する例を示したが、これに限定されるものではない。水晶片は、一方の面において、振動部がその他の部分より大きい、いわゆる片メサ型構造であってもよい。また、水晶片は、振動部がその他の部分よりも薄い逆メサ構造であってもよい。さらに、水晶片は、振動部とその他の部分の厚みの変化(段差)が連続的に変化するコンベックス形状又はベベル形状であってもよいし、厚みの変化(段差)がない又は少ない平板状の形状であってもよい。なお、以下において、説明の簡略化のため、水晶片130は平板状の形状であるものとして説明する。
In the present embodiment, FIG. 2 shows an example in which the crystal piece 130 has a mesa-shaped structure, but the present invention is not limited to this. The crystal piece may have a so-called single mesa type structure in which the vibrating portion is larger than the other portion on one surface. Further, the crystal piece may have an inverted mesa structure in which the vibrating portion is thinner than the other portions. Further, the crystal piece may have a convex shape or a bevel shape in which the change in thickness (step) between the vibrating portion and the other portion continuously changes, or a flat plate shape having no or little change in thickness (step). It may be in shape. In the following, for the sake of simplification of the description, the crystal piece 130 will be described as having a flat plate shape.
図1に示す電極形成工程S20は、前述した水晶片形成工程S10の工程S11から工程S15と同様の処理であるため、図示及びその詳細な説明を省略する。
Since the electrode forming step S20 shown in FIG. 1 is the same process as the steps S11 to S15 of the crystal piece forming step S10 described above, the illustration and detailed description thereof will be omitted.
電極形成工程S20では、水晶基板101の両主面に金属層を形成し、金属層の上にフォトレジスト層を形成する。
In the electrode forming step S20, metal layers are formed on both main surfaces of the crystal substrate 101, and a photoresist layer is formed on the metal layers.
次に、フォトレジスト層を露光・現像し、電極パターンを形成する。電極パターンは、例えば、水晶片に振動部に形成される励振電極、励振電極から引き出すための引出電極、接続電極等となる領域を覆う。電極パターン以外の領域のフォトレジスト層は除去される。
Next, the photoresist layer is exposed and developed to form an electrode pattern. The electrode pattern covers, for example, a region such as an excitation electrode formed in a vibrating portion of a crystal piece, an extraction electrode for drawing out from the excitation electrode, and a connection electrode. The photoresist layer in the region other than the electrode pattern is removed.
次に、金属層を電極パターンに従って除去して各電極を形成し、その後、フォトレジスト層を除去する。除去されるフォトレジスト層は、電極パターンに相当する。
Next, the metal layer is removed according to the electrode pattern to form each electrode, and then the photoresist layer is removed. The photoresist layer to be removed corresponds to the electrode pattern.
このようにして、水晶基板101に励振電極、引出電極、接続電極等の電極が形成される。
In this way, electrodes such as excitation electrodes, extraction electrodes, and connection electrodes are formed on the crystal substrate 101.
図1に示す水晶片分離工程S30では、水晶片130を支持部120から分離する。具体的には、例えば水晶基板101の一方の主面側から力を加えることによって、水晶片130を支持部120から折り取る。これにより、水晶片130は、個片化され、分離される。分離された水晶片は、水晶振動素子として使用される。このようにして、水晶振動素子が製造される。
In the crystal piece separation step S30 shown in FIG. 1, the crystal piece 130 is separated from the support portion 120. Specifically, for example, the crystal piece 130 is broken off from the support portion 120 by applying a force from one main surface side of the crystal substrate 101. As a result, the crystal piece 130 is separated into individual pieces. The separated crystal piece is used as a crystal vibrating element. In this way, the crystal vibrating element is manufactured.
次に、図3から図5を参照しつつ、水晶片形成工程S10を経て水晶片が形成された水晶基板101について説明する。図3は、図1に示した水晶片形成工程S10の終了後の水晶基板101を一方の主面の法線方向から視た要部拡大図である。図4は、図3に示したIV-IV線に沿った断面を概略的に示す断面図である。図5は、図1に示した水晶片形成工程S10の終了後の水晶基板101を一方の側方から視た側面図である。
Next, the crystal substrate 101 on which the crystal piece is formed through the crystal piece forming step S10 will be described with reference to FIGS. 3 to 5. FIG. 3 is an enlarged view of a main part of the crystal substrate 101 after the completion of the crystal piece forming step S10 shown in FIG. 1 as viewed from the normal direction of one main surface. FIG. 4 is a cross-sectional view schematically showing a cross section taken along the line IV-IV shown in FIG. FIG. 5 is a side view of the crystal substrate 101 after the completion of the crystal piece forming step S10 shown in FIG. 1 as viewed from one side.
図3に示すように、水晶基板101には、桟部110と、支持部120と、水晶片130と、が形成されている。図示を省略するが、水晶基板101は、桟部110、支持部120、及び水晶片130のそれぞれを、複数含んでいる。例えば、複数の桟部110は、それぞれ、所定の間隔でX軸の正方向に並んでいる。複数の水晶片130は、それぞれ、所定の間隔でX軸の正方向に並んでいて、かつ、所定の間隔でZ’軸の負方向に並んでいる。すなわち、桟部110と水晶片130とは、X軸の正方向において交互に配列され、かつ、互いに離れている。
As shown in FIG. 3, the crystal substrate 101 is formed with a crosspiece 110, a support 120, and a crystal piece 130. Although not shown, the crystal substrate 101 includes a plurality of crosspieces 110, a support portion 120, and a crystal piece 130. For example, the plurality of crosspieces 110 are arranged in the positive direction of the X-axis at predetermined intervals. The plurality of crystal pieces 130 are arranged in the positive direction of the X-axis at predetermined intervals, and are arranged in the negative direction of the Z'axis at predetermined intervals. That is, the crosspiece 110 and the crystal piece 130 are alternately arranged in the positive direction of the X-axis and separated from each other.
桟部110は、Z’軸方向に延在している。支持部120は、水晶片130を桟部110に支持している。支持部120は、X軸方向において、桟部110と水晶片130との間に位置する。支持部120は、水晶基板101の第1主面から第2主面まで貫通する開口121を有する。図3及び図4に示す例では、開口121は矩形状を有する。なお、水晶基板101の第1主面は、水晶片130の第1主面130aと平行又は略平行であり、水晶基板101の第2主面は、水晶片130の第2主面130bと平行又は略平行である。
The crosspiece 110 extends in the Z'axis direction. The support portion 120 supports the crystal piece 130 on the crosspiece 110. The support portion 120 is located between the crosspiece 110 and the crystal piece 130 in the X-axis direction. The support portion 120 has an opening 121 penetrating from the first main surface to the second main surface of the crystal substrate 101. In the examples shown in FIGS. 3 and 4, the opening 121 has a rectangular shape. The first main surface of the crystal substrate 101 is parallel to or substantially parallel to the first main surface 130a of the crystal piece 130, and the second main surface of the crystal substrate 101 is parallel to the second main surface 130b of the crystal piece 130. Or it is almost parallel.
また、図3に示す例では、水晶片130は、Z’軸方向に平行な短辺と、X軸方向に平行な長辺と、を含む矩形状を有する。また、水晶片130は、X軸の正方向側、つまり、基端部130c側の短辺において、支持部120を介して桟部110に接続されている。水晶片130の周囲には、支持部120との接続部分を除き、エッチングによって水晶基板101が除去されたことで間隙(スペース)が形成されている。
Further, in the example shown in FIG. 3, the crystal piece 130 has a rectangular shape including a short side parallel to the Z'axis direction and a long side parallel to the X axis direction. Further, the crystal piece 130 is connected to the crosspiece 110 via the support portion 120 on the positive direction side of the X axis, that is, on the short side on the base end portion 130c side. A gap (space) is formed around the crystal piece 130 by removing the crystal substrate 101 by etching except for the connection portion with the support portion 120.
水晶片130は、支持部120によって支持されることにより、桟部110からX軸方向に離間して設けられている。水晶片130の第1主面130a、つまり、水晶基板101の第1主面の平面視したとき(以下、単に「平面視」ともいう)において、水晶片130と桟部110との間は、支持部120のX軸方向における長さ、つまり、距離D1だけ離れている。
The crystal piece 130 is provided so as to be separated from the crosspiece 110 in the X-axis direction by being supported by the support portion 120. When the first main surface 130a of the crystal piece 130, that is, the first main surface of the crystal substrate 101 is viewed in a plan view (hereinafter, also simply referred to as “planar view”), the space between the crystal piece 130 and the crosspiece 110 is The length of the support portion 120 in the X-axis direction, that is, the distance D1 is separated.
さらに、図3に示す例では、支持部120が開口121を有することにより、水晶片130は、2つの支持部120A,120Bに支持されている。支持部120A及び支持部120Bは、Z’軸方向に互いに離間して設けられている。このように、支持部120は、Y’軸の正方向側の主面からY’軸の負方向側の主面まで貫通する開口121を有することにより、互いに離間した複数の支持部120A,120Bを容易に形成することができる。
Further, in the example shown in FIG. 3, the crystal piece 130 is supported by the two support portions 120A and 120B because the support portion 120 has the opening 121. The support portion 120A and the support portion 120B are provided so as to be separated from each other in the Z'axis direction. As described above, the support portions 120 have a plurality of support portions 120A and 120B separated from each other by having an opening 121 penetrating from the main surface on the positive direction side of the Y'axis to the main surface on the negative direction side of the Y'axis. Can be easily formed.
本実施形態では、図3において、支持部120が1つの開口121を有する例を示したが、これに限定されるものではない。例えば、複数の開口が支持部120に形成されていてもよい。また、開口121の形状は、平面視において矩形である場合に限定されず、他の形状であってもよい。
In the present embodiment, FIG. 3 shows an example in which the support portion 120 has one opening 121, but the present invention is not limited to this. For example, a plurality of openings may be formed in the support portion 120. Further, the shape of the opening 121 is not limited to the case where it is rectangular in a plan view, and may be another shape.
図3から図5に示すように、平面視において、支持部120Aに、当該支持部120Aと水晶片130の基端部130c側の短辺との境界線に沿う有底の溝140Aが形成されている。溝140Aは、水晶片130の第2主面、つまり、Y’軸の負方向側の主面におけるZ’軸の正方向側に配置されている。また、図4及び図5に示すように、溝140Aの形状は、底を有する矩形状であり、当該溝140Aは所定の深さを有している。
As shown in FIGS. 3 to 5, in a plan view, a bottomed groove 140A is formed in the support portion 120A along the boundary line between the support portion 120A and the short side of the crystal piece 130 on the base end portion 130c side. ing. The groove 140A is arranged on the second main surface of the crystal piece 130, that is, on the positive side of the Z'axis on the main surface on the negative side of the Y'axis. Further, as shown in FIGS. 4 and 5, the shape of the groove 140A is a rectangular shape having a bottom, and the groove 140A has a predetermined depth.
同様に、平面視において、支持部120Bに、当該支持部120Bと水晶片130の基端部130c側の短辺との境界線に沿う有底の溝140Bが形成されている。溝140Bは、水晶片130の第1主面、つまり、Y’軸の正方向側の主面におけるZ’軸の負方向側に配置されている。また、図4及び図5に示すように、溝140Bの形状は、底を有する矩形状であり、当該溝140Bは所定の深さを有している。
Similarly, in a plan view, a bottomed groove 140B is formed in the support portion 120B along the boundary line between the support portion 120B and the short side of the crystal piece 130 on the base end portion 130c side. The groove 140B is arranged on the first main surface of the crystal piece 130, that is, on the negative direction side of the Z'axis on the main surface on the positive direction side of the Y'axis. Further, as shown in FIGS. 4 and 5, the shape of the groove 140B is a rectangular shape having a bottom, and the groove 140B has a predetermined depth.
なお、平面視において、溝140A,140BのX軸方向の幅(長さ)は、水晶基板101と水晶片130との間の間隙と比較し、十分に小さい値に設定されている。
In a plan view, the widths (lengths) of the grooves 140A and 140B in the X-axis direction are set to a sufficiently small value as compared with the gap between the crystal substrate 101 and the crystal piece 130.
ここで、図6及び図7を参照しつつ、仮想的な水晶片形成工程を経て水晶基板から形成される桟部、支持部、及び水晶片について説明する。図6は、仮想的な水晶片形成工程の終了後の水晶基板に形成された桟部210、支持部220、及び水晶片230の要部拡大図である。図7は、図6に示したVII-VII線に沿った断面を概略的に示す断面図である。なお、図6及び図7に示す桟部210、支持部220、及び水晶片230は、図3から図5に示した桟部110、支持部120、及び水晶片130と略同一の構成であり、同様の部分については説明を適宜省略し、主に異なる部分について説明する。
Here, with reference to FIGS. 6 and 7, a crosspiece, a support portion, and a crystal piece formed from the crystal substrate through a virtual crystal piece forming step will be described. FIG. 6 is an enlarged view of a main part of the crosspiece 210, the support 220, and the crystal piece 230 formed on the crystal substrate after the completion of the virtual crystal piece forming step. FIG. 7 is a cross-sectional view schematically showing a cross section along the line VII-VII shown in FIG. The crosspiece 210, the support portion 220, and the crystal piece 230 shown in FIGS. 6 and 7 have substantially the same configuration as the crosspiece 110, the support portion 120, and the crystal piece 130 shown in FIGS. 3 to 5. , The same parts will be omitted as appropriate, and the different parts will be mainly described.
図6に示すように、支持部220は、水晶片230を桟部210に支持している。また、支持部220が開口221を有することにより、水晶片230は、2つの支持部220A,220Bに支持されている。
As shown in FIG. 6, the support portion 220 supports the crystal piece 230 on the crosspiece 210. Further, since the support portion 220 has the opening 221 the crystal piece 230 is supported by the two support portions 220A and 220B.
図3から図5に示した溝140A及び溝140Bとは異なり、支持部220AにはY’軸の正方向側の主面に有底の溝240Aが形成され、支持部220BにはY’軸の負方向側に有底の溝240Bが形成されている。
Unlike the grooves 140A and 140B shown in FIGS. 3 to 5, the support portion 220A has a bottomed groove 240A formed on the main surface on the positive direction side of the Y'axis, and the support portion 220B has the Y'axis. A bottomed groove 240B is formed on the negative side of the.
このため、支持部220Aと桟部210との接続箇所、及び、支持部220Bと桟部210との接続箇所において、エッチングが進まずに水晶基板が溶け残ることがあった。図6及び図7に示すように、支持部220Aにおいて、溝240Aが形成されていないY’軸の負方向側の主面におけるZ’軸の正方向側に、突起PR1が残っている。同様に、支持部220Bにおいて、溝240Bが形成されていないY’軸の正方向側の主面におけるZ’軸の負方向側に、突起PR2が残っている。
For this reason, at the connection points between the support portion 220A and the crosspiece 210 and the connection points between the support portion 220B and the crosspiece 210, etching may not proceed and the crystal substrate may remain undissolved. As shown in FIGS. 6 and 7, in the support portion 220A, the protrusion PR1 remains on the positive direction side of the Z'axis on the main surface on the negative direction side of the Y'axis in which the groove 240A is not formed. Similarly, in the support portion 220B, the protrusion PR2 remains on the negative direction side of the Z'axis on the main surface on the positive direction side of the Y'axis in which the groove 240B is not formed.
支持部220A及び支持部220BのX軸方向の長さである距離D1が短い場合、水晶片230を桟部210から分離するときに、これらの突起PR1及び突起PR2は、分離された水晶片230にバリとして残ってしまうことがある。水晶片230にバリが存在すると、例えば水晶片230がそのパッケージとの側壁に衝突しやすくなり、衝突の結果、水晶片230の振動特性が変化してしまう等の悪影響がある。
When the distance D1, which is the length of the support portion 220A and the support portion 220B in the X-axis direction, is short, when the crystal piece 230 is separated from the crosspiece 210, the protrusions PR1 and the protrusions PR2 are separated from the crystal piece 230. It may remain as a burr. If burrs are present on the crystal piece 230, for example, the crystal piece 230 tends to collide with the side wall of the package, and as a result of the collision, the vibration characteristics of the crystal piece 230 are adversely affected.
これに対し、図3から図5に示した有底の溝140Aは、支持部120AにおいてY’軸の負方向側の主面に形成されている。これにより、図7に示すY’軸の負方向側の主面のZ’軸の正方向側の突起PR1は、溝140Aによるエッチング液の流れ込み(入り込み)によって、除去され又は発生が抑制される。また、図3から図5に示した有底の溝140Bは、支持部120BにおいてY’軸の正方向側の主面に形成されている。これにより、図7に示すY’軸の正方向側の主面のZ’軸の負方向側の突起PR2は、溝140Bによるエッチング液の流れ込み(入り込み)によって、除去され又は発生が抑制される。従って、桟部110から分離された水晶片130である水晶振動素子に残り得るバリの発生を抑制することができる。
On the other hand, the bottomed groove 140A shown in FIGS. 3 to 5 is formed on the main surface of the support portion 120A on the negative direction side of the Y'axis. As a result, the protrusion PR1 on the positive direction side of the Z'axis of the main surface on the negative direction side of the Y'axis shown in FIG. 7 is removed or suppressed by the inflow (entry) of the etching solution through the groove 140A. .. Further, the bottomed groove 140B shown in FIGS. 3 to 5 is formed on the main surface of the support portion 120B on the positive direction side of the Y'axis. As a result, the protrusion PR2 on the negative direction side of the Z'axis of the main surface on the positive direction side of the Y'axis shown in FIG. 7 is removed or suppressed by the inflow (entry) of the etching solution through the groove 140B. .. Therefore, it is possible to suppress the generation of burrs that may remain in the crystal vibrating element, which is the crystal piece 130 separated from the crosspiece 110.
また、有底の溝140Aは、水晶基板101の主面を平面視したときの支持部120AのZ’軸方向の全幅にわたって、有底の溝140Bは、水晶基板101の主面を平面視したときの支持部120BのZ’軸方向の全幅にわたって、それぞれ、形成されることが好ましい。これにより、溝140A及び溝140Bに沿うエッチング液の流れ込み(入り込み)が促進され、溶け残りによる突起PR1、PR2はさらに除去され又はさらに抑制される。
Further, the bottomed groove 140A is a plan view of the main surface of the crystal substrate 101, and the bottomed groove 140B is a plan view of the main surface of the crystal substrate 101 over the entire width of the support portion 120A in the Z'axis direction. It is preferable that the support portion 120B is formed over the entire width in the Z'axis direction. As a result, the flow (entry) of the etching solution along the grooves 140A and 140B is promoted, and the protrusions PR1 and PR2 due to the undissolved residue are further removed or further suppressed.
本実施形態では、図3から図5において、桟部110、支持部120、及び水晶片130が形成された水晶基板101の例を示したが、水晶片形成工程S10の終了後の水晶基板101は、この例に限定されるものではない。
In the present embodiment, the example of the crystal substrate 101 on which the crosspiece 110, the support portion 120, and the crystal piece 130 are formed is shown in FIGS. 3 to 5, but the crystal substrate 101 after the completion of the crystal piece forming step S10 is shown. Is not limited to this example.
(第1変形例)
図8は、図3に示した水晶基板101の第1変形例の一例を示す要部拡大図である。図9は、図3に示した水晶基板101の第1変形例の他の例を示す要部拡大図である。なお、第1変形例において、図3に示した水晶基板101と同一の構成については、同一の符号を付し、その説明を適宜省略する。また、同様の構成による同様の作用効果については、逐次言及しない。 (First modification)
FIG. 8 is an enlarged view of a main part showing an example of a first modification of thecrystal substrate 101 shown in FIG. FIG. 9 is an enlarged view of a main part showing another example of the first modification of the crystal substrate 101 shown in FIG. In the first modification, the same configurations as those of the crystal substrate 101 shown in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted as appropriate. In addition, similar actions and effects with the same configuration will not be mentioned sequentially.
図8は、図3に示した水晶基板101の第1変形例の一例を示す要部拡大図である。図9は、図3に示した水晶基板101の第1変形例の他の例を示す要部拡大図である。なお、第1変形例において、図3に示した水晶基板101と同一の構成については、同一の符号を付し、その説明を適宜省略する。また、同様の構成による同様の作用効果については、逐次言及しない。 (First modification)
FIG. 8 is an enlarged view of a main part showing an example of a first modification of the
図8に示すように、水晶基板101Aには、2つの支持部120C,120Dを含む支持部120が形成され、水晶片130は、支持部120C及び支持部120Dに支持されている。
As shown in FIG. 8, a support portion 120 including two support portions 120C and 120D is formed on the crystal substrate 101A, and the crystal piece 130 is supported by the support portion 120C and the support portion 120D.
支持部120C及び支持部120Dにおいて、X軸方向の長さは、水晶片130と桟部110との距離D2である。この距離D2は、図3に示した距離D1より小さい値に設定されている(距離D2<距離D1)。
In the support portion 120C and the support portion 120D, the length in the X-axis direction is the distance D2 between the crystal piece 130 and the crosspiece 110. This distance D2 is set to a value smaller than the distance D1 shown in FIG. 3 (distance D2 <distance D1).
より詳細には、距離D2は、水晶基板101Aの厚み(Y’軸方向の長さ)に対し、0倍より大きく、かつ、1.5倍以下であることが好ましい。このように、従来の距離D1と比較して、水晶片130と桟部110との距離D2を短くすることで、水晶基板101Aから得られる水晶振動素子の個数を増やすことができるとともに、水晶片分離工程S30において、水晶片130を安定的に折り取ることができる。
More specifically, the distance D2 is preferably larger than 0 times and 1.5 times or less with respect to the thickness (length in the Y'axis direction) of the crystal substrate 101A. As described above, by shortening the distance D2 between the crystal piece 130 and the crosspiece 110 as compared with the conventional distance D1, the number of crystal vibrating elements obtained from the crystal substrate 101A can be increased and the crystal piece can be increased. In the separation step S30, the crystal piece 130 can be stably broken off.
具体的には、距離D2は、0より大きく、かつ、50μm以下であることが好ましい。このように、従来の距離D1と比較して、水晶片130と桟部110との距離D2を短くすることで、水晶基板101Aから得られる水晶振動素子の個数を増やすことができるとともに、水晶片分離工程S30において、水晶片130を安定的に折り取ることができる。
Specifically, the distance D2 is preferably larger than 0 and 50 μm or less. As described above, by shortening the distance D2 between the crystal piece 130 and the crosspiece 110 as compared with the conventional distance D1, the number of crystal vibrating elements obtained from the crystal substrate 101A can be increased and the crystal piece can be increased. In the separation step S30, the crystal piece 130 can be stably broken off.
なお、図9に示すように、水晶片130と桟部110との距離D2は、有底の溝140A及び有底の溝140BのX軸方向の幅と同一であってもよい。
As shown in FIG. 9, the distance D2 between the crystal piece 130 and the crosspiece 110 may be the same as the width of the bottomed groove 140A and the bottomed groove 140B in the X-axis direction.
(第2変形例)
図10は、図3に示した水晶基板101の第2変形例を示す要部拡大図である。なお、第2変形例において、図3に示した水晶基板101及び図9に示した水晶基板101Aと同一の構成については、同一の符号を付し、その説明を適宜省略する。また、同様の構成による同様の作用効果については、逐次言及しない。 (Second modification)
FIG. 10 is an enlarged view of a main part showing a second modification of thecrystal substrate 101 shown in FIG. In the second modification, the same configurations as those of the crystal substrate 101 shown in FIG. 3 and the crystal substrate 101A shown in FIG. 9 are designated by the same reference numerals, and the description thereof will be omitted as appropriate. In addition, similar actions and effects with the same configuration will not be mentioned sequentially.
図10は、図3に示した水晶基板101の第2変形例を示す要部拡大図である。なお、第2変形例において、図3に示した水晶基板101及び図9に示した水晶基板101Aと同一の構成については、同一の符号を付し、その説明を適宜省略する。また、同様の構成による同様の作用効果については、逐次言及しない。 (Second modification)
FIG. 10 is an enlarged view of a main part showing a second modification of the
図10に示すように、水晶基板101Bには、2つの支持部120C,120Dを含む支持部120が形成されている。支持部120Cにおいて、Y’軸の負方向側の主面に、有底の溝140Cが形成されている。溝140Cは、平面視において、支持部120CのZ’軸方向に沿って、つまり、支持部120Cと水晶片130の基端部130c側の短辺との境界線に沿って、部分的に設けられている。また、支持部120Dにおいて、Y’軸の正方向側の主面に、有底の溝140Dが形成されている。溝140Dは、平面視において、支持部120CのZ’軸方向の幅に沿って、つまり、支持部120Cと水晶片130の基端部130c側の短辺との境界線に沿って、部分的に設けられている。
As shown in FIG. 10, the crystal substrate 101B is formed with a support portion 120 including two support portions 120C and 120D. In the support portion 120C, a bottomed groove 140C is formed on the main surface on the negative direction side of the Y'axis. The groove 140C is partially provided along the Z'axis direction of the support portion 120C in a plan view, that is, along the boundary line between the support portion 120C and the short side of the crystal piece 130 on the base end portion 130c side. Has been done. Further, in the support portion 120D, a bottomed groove 140D is formed on the main surface on the positive direction side of the Y'axis. The groove 140D is partially along the width of the support portion 120C in the Z'axis direction in a plan view, that is, along the boundary line between the support portion 120C and the short side of the crystal piece 130 on the base end portion 130c side. It is provided in.
このように、有底の溝140C,140Dが水晶基板101Bの主面を平面視したときの支持部120C、120DのZ’軸方向の幅に沿って、部分的に形成されることにより、有底の溝140C,140Dを支持部120C、120DのZ’軸方向の全幅にわたって形成する場合と比較して、支持部120C、120Dの強度を確保しつつ、水晶片130を容易に折り取ることができる。
As described above, the bottomed grooves 140C and 140D are partially formed along the width of the support portions 120C and 120D in the Z'axis direction when the main surface of the crystal substrate 101B is viewed in a plan view. Compared with the case where the bottom grooves 140C and 140D are formed over the entire width of the support portions 120C and 120D in the Z'axis direction, the crystal piece 130 can be easily broken off while ensuring the strength of the support portions 120C and 120D. it can.
(第3変形例)
図11は、図3に示した水晶基板101の第3変形例を示す要部拡大図である。なお、第3変形例において、図3に示した水晶基板101、図9に示した水晶基板101A、及び図10に示した水晶基板101Bと同一の構成については、同一の符号を付し、その説明を適宜省略する。また、同様の構成による同様の作用効果については、逐次言及しない。 (Third modification example)
FIG. 11 is an enlarged view of a main part showing a third modification of thecrystal substrate 101 shown in FIG. In the third modification, the same configurations as those of the crystal substrate 101 shown in FIG. 3, the crystal substrate 101A shown in FIG. 9, and the crystal substrate 101B shown in FIG. 10 are designated by the same reference numerals. The description will be omitted as appropriate. In addition, similar actions and effects with the same configuration will not be mentioned sequentially.
図11は、図3に示した水晶基板101の第3変形例を示す要部拡大図である。なお、第3変形例において、図3に示した水晶基板101、図9に示した水晶基板101A、及び図10に示した水晶基板101Bと同一の構成については、同一の符号を付し、その説明を適宜省略する。また、同様の構成による同様の作用効果については、逐次言及しない。 (Third modification example)
FIG. 11 is an enlarged view of a main part showing a third modification of the
図11に示すように、水晶基板101Cには、水晶片130と、桟部110とが形成されている一方、図3に示した支持部120が形成されていない。すなわち、水晶片130は、桟部110に直接支持されている。
As shown in FIG. 11, the crystal piece 130 and the crosspiece 110 are formed on the crystal substrate 101C, but the support portion 120 shown in FIG. 3 is not formed. That is, the crystal piece 130 is directly supported by the crosspiece 110.
桟部110には、平面視において、桟部110と水晶片130の基端部130c側の短辺との境界線に沿う有底の溝140A及び溝140Bが形成されいている。溝140Aは、Y’軸の負方向側の主面におけるZ’軸の正方向側に、配置されている。また、溝140Bは、Y’軸の正方向側の主面におけるZ’軸の負方向側に、配置されている。
The crosspiece 110 is formed with a bottomed groove 140A and a groove 140B along the boundary line between the crosspiece 110 and the short side of the crystal piece 130 on the base end 130c side in a plan view. The groove 140A is arranged on the positive side of the Z'axis on the main surface on the negative side of the Y'axis. Further, the groove 140B is arranged on the negative direction side of the Z'axis on the main surface on the positive direction side of the Y'axis.
このように、水晶片形成工程S10において、水晶基板101Cの主面を平面視したときに、桟部110に、当該桟部110と水晶片130との境界線に沿う有底の溝140A及び溝140Bが形成され、当該有底の溝は、Y’軸の正方向側の主面におけるZ’軸の負方向側、及び、Y’軸の負方向側の主面におけるZ’軸の正方向側の少なくとも一方に配置されることにより、前述の図3から図5に示した、桟部110、支持部120、及び水晶片130が形成された水晶基板101と同様の効果を得られるとともに、水晶基板101Cには支持部120が形成されないので、当該水晶基板101Cから得られる水晶振動素子の個数を増やすことができる。
As described above, in the crystal piece forming step S10, when the main surface of the crystal substrate 101C is viewed in a plan view, the crosspiece 110 has a bottomed groove 140A and a groove along the boundary line between the crosspiece 110 and the crystal piece 130. 140B is formed, and the bottomed groove is the negative direction of the Z'axis on the main surface on the positive side of the Y'axis and the positive direction of the Z'axis on the main surface on the negative side of the Y'axis. By arranging it on at least one of the sides, the same effect as that of the crystal substrate 101 on which the crosspiece 110, the support 120, and the crystal piece 130 are formed as shown in FIGS. 3 to 5 described above can be obtained. Since the support portion 120 is not formed on the crystal substrate 101C, the number of crystal vibrating elements obtained from the crystal substrate 101C can be increased.
さらに、桟部110には、水晶基板101Cの第1主面から第2主面まで貫通する開口111が形成されている。桟部110が開口111を有することにより、水晶片130は、2カ所で桟部110に支持されている。また、溝140A及び溝140Bは、Z’軸方向に互いに離間して設けられている。
Further, the crosspiece 110 is formed with an opening 111 penetrating from the first main surface to the second main surface of the crystal substrate 101C. Since the crosspiece 110 has the opening 111, the crystal piece 130 is supported by the crosspiece 110 at two places. Further, the groove 140A and the groove 140B are provided so as to be separated from each other in the Z'axis direction.
以上、本発明の例示的な実施形態について説明した。本発明の一実施形態に係る水晶振動素子の製造方法は、水晶片形成工程において、水晶基板の主面を平面視したときに、支持部に、当該支持部と水晶片との境界線に沿う有底の溝が形成され、当該有底の溝は、Y’軸の正方向側の主面におけるZ’軸の負方向側、及び、Y’軸の負方向側の主面におけるZ’軸の正方向側の少なくとも一方に配置される。これにより、図7に示すY’軸の負方向側の主面のZ’軸の正方向側の突起及び図7に示すY’軸の正方向側の主面のZ’軸の負方向側の突起の少なくとも一方は、溝によるエッチング液の流れ込み(入り込み)によって、除去され又は発生が抑制される。従って、桟部から分離された水晶片である水晶振動素子に残り得るバリの発生を抑制することができる。
The exemplary embodiments of the present invention have been described above. In the method for manufacturing a crystal vibrating element according to an embodiment of the present invention, when the main surface of the crystal substrate is viewed in a plan view in the crystal piece forming step, the support portion is along the boundary line between the support portion and the crystal piece. A bottomed groove is formed, and the bottomed groove is formed on the negative side of the Z'axis on the main surface on the positive side of the Y'axis and the Z'axis on the main surface on the negative side of the Y'axis. It is placed on at least one of the positive sides of the. As a result, the protrusion on the positive direction side of the Z'axis of the main surface on the negative direction side of the Y'axis shown in FIG. 7 and the negative direction side of the Z'axis of the main surface on the positive direction side of the Y'axis shown in FIG. At least one of the protrusions of the above is removed or suppressed by the inflow (entry) of the etching solution through the groove. Therefore, it is possible to suppress the generation of burrs that may remain in the crystal vibrating element, which is a crystal piece separated from the crosspiece.
また、前述した水晶振動素子の製造方法において、水晶片を折り取ることによって、当該水晶片を桟部から分離して水晶振動素子とする工程をさらに含む。これにより、バリの発生が抑制された水晶振動素子を容易に製造することができる。
Further, in the method for manufacturing a crystal vibrating element described above, a step of separating the crystal piece from the crosspiece to form a crystal vibrating element by breaking the crystal piece is further included. As a result, it is possible to easily manufacture a crystal vibrating element in which the generation of burrs is suppressed.
また、前述した水晶振動素子の製造方法における水晶片形成工程において、水晶基板の主面を平面視したときの水晶片と桟部との距離が、水晶基板の厚みの0倍より大きく、かつ、1.5倍以下である。このように、従来の距離と比較して、水晶片と桟部との距離を短くすることで、水晶基板から得られる水晶振動素子の個数を増やすことができるとともに、水晶片分離工程において、水晶片を安定的に折り取ることができる。
Further, in the crystal piece forming step in the method for manufacturing a crystal vibrating element described above, the distance between the crystal piece and the crosspiece when the main surface of the crystal substrate is viewed in a plane is larger than 0 times the thickness of the crystal substrate, and It is 1.5 times or less. In this way, by shortening the distance between the crystal piece and the crosspiece as compared with the conventional distance, the number of crystal vibrating elements obtained from the crystal substrate can be increased, and in the crystal piece separation step, the crystal One piece can be broken off stably.
また、前述した水晶振動素子の製造方法における水晶片形成工程において、水晶基板の主面を平面視したときの水晶片と桟部との距離が、0より大きく、かつ、50μm以下である。このように、従来の距離と比較して、水晶片と桟部との距離を短くすることで、水晶基板から得られる水晶振動素子の個数を増やすことができるとともに、水晶片分離工程において、水晶片を安定的に折り取ることができる。
Further, in the crystal piece forming step in the method for manufacturing a crystal vibrating element described above, the distance between the crystal piece and the crosspiece when the main surface of the crystal substrate is viewed in a plane is greater than 0 and 50 μm or less. In this way, by shortening the distance between the crystal piece and the crosspiece as compared with the conventional distance, the number of crystal vibrating elements obtained from the crystal substrate can be increased, and in the crystal piece separation step, the crystal One piece can be broken off stably.
また、前述した水晶振動素子の製造方法における水晶片形成工程において、水晶基板の主面を平面視したときの支持部のZ’軸方向の全幅にわたって有底の溝を形成する。これにより、溝に沿うエッチング液の流れ込み(入り込み)が促進され、溶け残りによる突起はさらに除去され又はさらに抑制される。
Further, in the crystal piece forming step in the method for manufacturing a crystal vibrating element described above, a bottomed groove is formed over the entire width of the support portion in the Z'axis direction when the main surface of the crystal substrate is viewed in a plan view. As a result, the flow (entry) of the etching solution along the groove is promoted, and the protrusions due to the undissolved residue are further removed or further suppressed.
また、前述した水晶振動素子の製造方法における水晶片形成工程において、水晶基板の主面を平面視したときの支持部のZ’軸方向の幅に沿って有底の溝を部分的に形成する。これにより、有底の溝を支持部のZ’軸方向の全幅にわたって形成する場合と比較して、支持部の強度を確保しつつ、水晶片を容易に折り取ることができる。
Further, in the crystal piece forming step in the method for manufacturing a crystal vibrating element described above, a bottomed groove is partially formed along the width in the Z'axis direction of the support portion when the main surface of the crystal substrate is viewed in a plan view. .. As a result, the crystal piece can be easily broken while ensuring the strength of the support portion as compared with the case where the bottomed groove is formed over the entire width of the support portion in the Z'axis direction.
また、前述した水晶振動素子の製造方法において、支持部は、Y’軸の正方向側の主面からY’軸の負方向側の主面まで貫通する開口を有する。これにより、互いに離間した複数の支持部を容易に形成することができる。
Further, in the method for manufacturing a crystal vibrating element described above, the support portion has an opening penetrating from the main surface on the positive direction side of the Y'axis to the main surface on the negative direction side of the Y'axis. Thereby, a plurality of support portions separated from each other can be easily formed.
また、本発明の一実施形態に係る水晶振動素子の製造方法は、水晶片形成工程において、水晶基板の主面を平面視したときに、桟部に、当該桟部と水晶片との境界線に沿う有底の溝が形成され、当該有底の溝は、Y’軸の正方向側の主面におけるZ’軸の負方向側、及び、Y’軸の負方向側の主面におけるZ’軸の正方向側の少なくとも一方に配置される。これにより、前述の図3から図5に示した、桟部、支持部、及び水晶片が形成された水晶基板と同様の効果を得られるとともに、水晶基板には支持部が形成されないので、当該水晶基板から得られる水晶振動素子の個数を増やすことができる。
Further, in the method for manufacturing a crystal vibrating element according to an embodiment of the present invention, in the crystal piece forming step, when the main surface of the crystal substrate is viewed in a plane, the crosspiece portion has a boundary line between the crosspiece portion and the crystal piece. A bottomed groove is formed along the above, and the bottomed groove is formed on the negative side of the Z'axis on the main surface on the positive side of the Y'axis and Z on the main surface on the negative side of the Y'axis. 'Placed on at least one of the positive sides of the axis. As a result, the same effect as that of the crystal substrate on which the crosspiece, the support portion, and the crystal piece are formed as shown in FIGS. 3 to 5 described above can be obtained, and the support portion is not formed on the crystal substrate. The number of crystal vibrating elements obtained from the crystal substrate can be increased.
なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。即ち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素及びその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
It should be noted that each of the embodiments described above is for facilitating the understanding of the present invention, and is not for limiting and interpreting the present invention. The present invention can be modified / improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof. That is, those skilled in the art with appropriate design changes to each embodiment are also included in the scope of the present invention as long as they have the features of the present invention. For example, each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be appropriately changed. In addition, each embodiment is an example, and it goes without saying that the configurations shown in different embodiments can be partially replaced or combined, and these are also included in the scope of the present invention as long as the features of the present invention are included. ..
101,101A,101B,101C…水晶基板、110…桟部、111…開口、120,120A,120B,120C,120D…支持部、121…開口、130…水晶片、130a…第1主面、130b…第2主面、130c…基端部、140A,140B,140C,140D…溝、210…桟部、220…支持部、220A、220B…支持部、221…開口、230…水晶片、240A,240B…溝、D1,D2…距離、PR1,PR2…突起、S10…水晶片形成工程、S20…電極形成工程、S30…水晶片分離工程、S100…水晶振動素子の製造方法。
101, 101A, 101B, 101C ... Crystal substrate, 110 ... Crosspiece, 111 ... Opening, 120, 120A, 120B, 120C, 120D ... Supporting part, 121 ... Opening, 130 ... Crystal piece, 130a ... First main surface, 130b ... second main surface, 130c ... base end, 140A, 140B, 140C, 140D ... groove, 210 ... crosspiece, 220 ... support, 220A, 220B ... support, 221 ... opening, 230 ... crystal piece, 240A, 240B ... groove, D1, D2 ... distance, PR1, PR2 ... protrusion, S10 ... crystal piece forming step, S20 ... electrode forming step, S30 ... crystal piece separating step, S100 ... manufacturing method of crystal vibrating element.
Claims (8)
- 水晶の結晶軸をX軸、Y軸、Z軸として、Y軸及びZ軸をX軸の回りに反時計方向に所定の角度回転させてY’軸及びZ’軸とし、Z’軸とX軸とを含む面と平行な面をY’軸の正方向側及び負方向側の主面として切り出したATカットの水晶基板に、フォトエッチングによって、水晶片と、桟部と、前記水晶片を前記桟部に支持する支持部とを形成する工程を、含み、
前記形成する工程において、前記主面を平面視したときに、前記支持部に、該支持部と前記水晶片との境界線に沿う有底の溝が形成され、
該有底の溝は、Y’軸の正方向側の主面におけるZ’軸の負方向側、及び、Y’軸の負方向側の主面におけるZ’軸の正方向側の少なくとも一方に配置される、
水晶振動素子の製造方法。 The crystal axis of the crystal is the X-axis, Y-axis, and Z-axis, and the Y-axis and Z-axis are rotated counterclockwise by predetermined angles around the X-axis to form the Y'axis and Z'axis, and the Z'axis and X. A crystal piece, a crosspiece, and the crystal piece are formed by photoetching on an AT-cut crystal substrate cut out with a surface parallel to the surface including the axis as the main surface on the positive and negative directions of the Y'axis. A step of forming a support portion to be supported on the crosspiece portion is included.
In the forming step, when the main surface is viewed in a plan view, a bottomed groove along the boundary line between the support portion and the crystal piece is formed in the support portion.
The bottomed groove is formed on at least one of the negative side of the Z'axis on the main surface on the positive side of the Y'axis and the positive side of the Z'axis on the main surface on the negative side of the Y'axis. Be placed,
A method for manufacturing a crystal vibrating element. - 前記水晶片を折り取ることによって、該水晶片を前記桟部から分離して前記水晶振動素子とする工程をさらに含む、
請求項1に記載の水晶振動素子の製造方法。 A step of separating the crystal piece from the crosspiece to form the crystal vibrating element by breaking off the crystal piece is further included.
The method for manufacturing a crystal vibrating element according to claim 1. - 前記形成する工程において、前記主面を平面視したときの前記水晶片と前記桟部との距離が、前記水晶基板の厚みの0倍より大きく、かつ、1.5倍以下である、
請求項1又は2に記載の水晶振動素子の製造方法。 In the forming step, the distance between the crystal piece and the crosspiece when the main surface is viewed in a plan view is greater than 0 times the thickness of the crystal substrate and 1.5 times or less.
The method for manufacturing a crystal vibrating element according to claim 1 or 2. - 前記形成する工程において、前記主面を平面視したときの前記水晶片と前記桟部との距離が、0より大きく、かつ、50μm以下である、
請求項1又は2に記載の水晶振動素子の製造方法。 In the forming step, the distance between the crystal piece and the crosspiece when the main surface is viewed in a plan view is greater than 0 and 50 μm or less.
The method for manufacturing a crystal vibrating element according to claim 1 or 2. - 前記形成する工程において、前記主面を平面視したときの前記支持部のZ’軸方向の全幅にわたって前記有底の溝を形成する、
請求項1から4のいずれか一項に記載の水晶振動素子の製造方法。 In the forming step, the bottomed groove is formed over the entire width of the support portion in the Z'axis direction when the main surface is viewed in a plan view.
The method for manufacturing a crystal vibrating element according to any one of claims 1 to 4. - 前記形成する工程において、前記主面を平面視したときの前記支持部のZ’軸方向の幅に沿って前記有底の溝を部分的に形成する、
請求項1から4のいずれか一項に記載の水晶振動素子の製造方法。 In the forming step, the bottomed groove is partially formed along the width in the Z'axis direction of the support portion when the main surface is viewed in a plan view.
The method for manufacturing a crystal vibrating element according to any one of claims 1 to 4. - 前記支持部は、Y’軸の正方向側の主面からY’軸の負方向側の主面まで貫通する開口を有する、
請求項1から6のいずれか一項に記載の水晶振動素子の製造方法。 The support portion has an opening penetrating from the main surface on the positive side of the Y'axis to the main surface on the negative side of the Y'axis.
The method for manufacturing a crystal vibrating element according to any one of claims 1 to 6. - 水晶の結晶軸をX軸、Y軸、Z軸として、Y軸及びZ軸をX軸の回りに反時計方向に所定の角度回転させてY’軸及びZ’軸とし、Z’軸とX軸とを含む面と平行な面をY’軸の正方向側及び負方向側の主面として切り出したATカットの水晶基板に、フォトエッチングによって、水晶片と、前記水晶片を支持する桟部とを形成する工程を、含み、
前記形成する工程において、前記主面を平面視したときに、前記桟部に、該桟部と前記水晶片との境界線に沿う有底の溝が形成され、
該有底の溝は、Y’軸の正方向側の主面におけるZ’軸の負方向側、及び、Y’軸の負方向側の主面におけるZ’軸の正方向側の少なくとも一方に配置される、
水晶振動素子の製造方法。 The crystal axis of the crystal is the X-axis, Y-axis, and Z-axis, and the Y-axis and Z-axis are rotated counterclockwise by predetermined angles around the X-axis to form the Y'axis and Z'axis, and the Z'axis and X. An AT-cut crystal substrate cut out with a surface parallel to the surface including the axis as the main surface on the positive and negative directions of the Y'axis, by photoetching, the crystal piece and the crosspiece supporting the crystal piece. Including the process of forming and
In the step of forming, when the main surface is viewed in a plan view, a bottomed groove along the boundary line between the crosspiece and the crystal piece is formed in the crosspiece.
The bottomed groove is formed on at least one of the negative side of the Z'axis on the main surface on the positive side of the Y'axis and the positive side of the Z'axis on the main surface on the negative side of the Y'axis. Be placed,
A method for manufacturing a crystal vibrating element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021511350A JP7114027B2 (en) | 2019-03-29 | 2020-03-12 | Manufacturing method of crystal oscillator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019066588 | 2019-03-29 | ||
JP2019-066588 | 2019-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020203144A1 true WO2020203144A1 (en) | 2020-10-08 |
Family
ID=72668714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/010832 WO2020203144A1 (en) | 2019-03-29 | 2020-03-12 | Quartz oscillating element manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7114027B2 (en) |
WO (1) | WO2020203144A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006186847A (en) * | 2004-12-28 | 2006-07-13 | Epson Toyocom Corp | Crystal piece aggregate, its manufacturing method, photomask, and crystal oscillator |
JP2007142526A (en) * | 2005-11-15 | 2007-06-07 | Epson Toyocom Corp | Piezoelectric wafer and piezoelectric device |
JP2010178320A (en) * | 2009-02-02 | 2010-08-12 | Epson Toyocom Corp | Method of machining crystal vibrating reed |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018143006A1 (en) * | 2017-02-03 | 2018-08-09 | 株式会社大真空 | Quartz oscillation plate wafer and quartz oscillation plate thereof |
-
2020
- 2020-03-12 JP JP2021511350A patent/JP7114027B2/en active Active
- 2020-03-12 WO PCT/JP2020/010832 patent/WO2020203144A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006186847A (en) * | 2004-12-28 | 2006-07-13 | Epson Toyocom Corp | Crystal piece aggregate, its manufacturing method, photomask, and crystal oscillator |
JP2007142526A (en) * | 2005-11-15 | 2007-06-07 | Epson Toyocom Corp | Piezoelectric wafer and piezoelectric device |
JP2010178320A (en) * | 2009-02-02 | 2010-08-12 | Epson Toyocom Corp | Method of machining crystal vibrating reed |
Also Published As
Publication number | Publication date |
---|---|
JP7114027B2 (en) | 2022-08-08 |
JPWO2020203144A1 (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3811226B2 (en) | Quartz crystal resonator and manufacturing method thereof | |
JP4778548B2 (en) | Piezoelectric frame, piezoelectric device, and method of manufacturing piezoelectric frame | |
JP4908614B2 (en) | Manufacturing method of crystal unit | |
JP6392532B2 (en) | Piezoelectric vibrating piece, piezoelectric vibrator, and method of manufacturing piezoelectric vibrating piece | |
WO2020203144A1 (en) | Quartz oscillating element manufacturing method | |
JP2010109526A (en) | Crystal vibration piece, and method of manufacturing the same | |
JP6570388B2 (en) | Piezoelectric vibrator element and piezoelectric vibrator | |
JP2008085631A (en) | Manufacturing method of vibration reed, vibration reed, and vibrator | |
JP2016174328A (en) | Wafer manufacturing method and wafer | |
JP5534217B2 (en) | Piezoelectric substrate, method for manufacturing the same, and method for manufacturing a piezoelectric vibrating piece | |
JP6055294B2 (en) | Method for manufacturing piezoelectric element | |
JP6611534B2 (en) | Piezoelectric vibrator element and piezoelectric vibrator | |
JP6043588B2 (en) | Quartz vibrating element and method for manufacturing the same | |
JP2008252826A (en) | Method of manufacturing piezoelectric vibrating reed | |
JP2006108825A (en) | Process for fabricating crystal oscillator | |
JP6386298B2 (en) | Manufacturing method of crystal element | |
JP2006214779A (en) | Manufacturing method of vibrator | |
JP2007208675A (en) | Substrate | |
JP2010010955A (en) | Method for manufacturing piezoelectric vibrator, and piezoelectric vibrator | |
JP2008236335A (en) | Piezoelectric vibration chip and method of manufacturing the same | |
JP2017169081A (en) | Quartz resonator and manufacturing method of the same | |
JP2007266027A (en) | Machining method and holder of sheet wafer | |
JP6279386B2 (en) | Quartz vibrating element and method for manufacturing the same | |
JP6163404B2 (en) | Method for manufacturing piezoelectric element | |
JP6457199B2 (en) | Quartz vibrating element and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20784851 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021511350 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20784851 Country of ref document: EP Kind code of ref document: A1 |