WO2020261559A1 - 発電システム及び発電方法 - Google Patents
発電システム及び発電方法 Download PDFInfo
- Publication number
- WO2020261559A1 WO2020261559A1 PCT/JP2019/025925 JP2019025925W WO2020261559A1 WO 2020261559 A1 WO2020261559 A1 WO 2020261559A1 JP 2019025925 W JP2019025925 W JP 2019025925W WO 2020261559 A1 WO2020261559 A1 WO 2020261559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- power generation
- supply line
- liquid
- generation system
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 140
- 238000000034 method Methods 0.000 title claims description 9
- 239000007788 liquid Substances 0.000 claims abstract description 98
- 230000008016 vaporization Effects 0.000 claims abstract description 23
- 238000009834 vaporization Methods 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims description 38
- 239000003949 liquefied natural gas Substances 0.000 claims description 31
- 239000006200 vaporizer Substances 0.000 claims description 19
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 239000003345 natural gas Substances 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 239000000446 fuel Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract 1
- 238000005057 refrigeration Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000011084 recovery Methods 0.000 description 7
- 230000005611 electricity Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 241000272525 Anas platyrhynchos Species 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BNOODXBBXFZASF-UHFFFAOYSA-N [Na].[S] Chemical compound [Na].[S] BNOODXBBXFZASF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/14—Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
- F02C6/16—Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
- F25J1/0251—Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/90—Hot gas waste turbine of an indirect heated gas for power generation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Definitions
- the present invention relates to a power generation system and a power generation method using stored liquid air.
- a storage battery for the purpose of securing the adjustment allowance for the amount of power generation. That is, when the amount of power generated by renewable energy becomes surplus, a storage battery for storing the surplus power is provided, and when the demand for power increases and the amount of power generated by thermal power generation or the like cannot be covered, the storage battery is provided. It is conceivable to respond by discharging from.
- many of them including NaS (sodium-sulfur) batteries, have various problems such as safety concerns, practical concerns, location restrictions, high cost, and short life. Is a concern.
- LAES Liquid Air Energy Storage
- Patent Document 1 describes this LAES system, and shows that when necessary, liquid air is released from a storage tank in the system to drive a turbine to discharge.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique relating to a power generation system capable of reliably supplying electric power in response to an electric power demand.
- the power generation system of the present invention includes a liquid air generator that compresses and cools air to generate liquid air.
- the storage unit that stores the liquid air and A vaporization unit that vaporizes the liquid air supplied from the storage unit to generate compressed air,
- An expander that expands the compressed air supplied from the vaporization unit,
- a first generator driven by the expansion of air in the expander,
- the first in a power plant including a gas turbine generator which is a second generator and a first air supply line for supplying air to the gas turbine generator by expanding and cooling the air in the expander.
- a second air supply line connecting the first air supply line and the expander in order to lower the temperature of the air supplied to the air supply line of the gas turbine generator and taken in by the gas turbine generator.
- the compressed air obtained by vaporizing the stored liquid air is expanded to generate electricity by the first generator, and the air cooled by the power generation is used by the second generator.
- the gas turbine generator By supplying the gas turbine generator, the amount of power generated by the gas turbine generator is increased. Therefore, a large amount of power generation can be obtained from the power generation system of the present invention, and the amount of power generation can be changed significantly, so that power supply can be performed with high certainty in response to a change in power demand.
- FIG. Figure 1 shows an overview of the system configuration, the flow of natural gas (NG: Natural Gas) generated from liquefied natural gas (LNG: Liquefied Natural Gas), and the flow of air (including liquid air) used for power generation.
- NG Natural Gas
- LNG Liquefied Natural Gas
- air including liquid air
- normal temperature air is 20 ° C to 30 ° C air
- ultra-low temperature air is -160 ° C to -100 ° C air
- low temperature air is -100 ° C to 5 ° C air
- cold air is assumed that the air is at 5 ° C to 25 ° C.
- the power generation system 1 includes a thermal power plant 2 having an LNG receiving terminal and performing a GTCC (gas turbine combined cycle). Therefore, the thermal power plant 2 includes an LNG vaporizer 21 and a power generation facility that generates power using the natural gas generated by the LNG vaporizer 21, and the gas turbine generator 3 is provided as the power generation facility. included. Further, the power generation system 1 includes a LAES plant facility 4, a cold heat recovery facility 5, and a power generation facility 6 using room temperature air. In the present specification, LAES is assumed to be a system including components for generating liquid air, storing liquid air, and taking out liquid air stored from a storage facility for power generation, and obtains electric power from the liquid air. It is shown separately from the cold heat recovery facility 5 composed of the power generation facility 6 and the heat exchanger provided for the purpose.
- the LAES plant facility 4 is configured as a liquid air storage battery, and includes an air rectification facility 41 and a liquid air storage facility 42 composed of a tank, a pump, and the like.
- the air rectification facility 41 is a facility that takes in the outside air of the LAES plant facility 4 as room temperature air for producing liquid air, rectifies the taken-in air and pressurizes it to make compressed air, and supplies it to the above-mentioned LNG vaporizer 21. is there.
- the cold heat recovery facility 5 recovers the cold heat of the air flowing through the power generation system 1 and heats and cools the air (including liquid air) at various places in the system.
- the compressed air supplied to the LNG vaporizer 21 as described above is cooled by heat exchange with the LNG in the LNG vaporizer 21 to become cryogenic air, and then further cooled by the cold heat recovery facility 5. It becomes liquid air, is supplied to the storage facility 42, and is stored.
- the power generation facility 6 is provided with an expander (expansion turbine) including a turbine, and the compressed air generated by vaporizing liquid air is adiabatically expanded to rotate the turbine to form a turbine. Electricity is obtained by driving a connected generator. Further, the power generation facility 6 is configured such that the cryogenic air generated from the compressed air by this power generation is transported (supplied) to the thermal power plant 2 as described later.
- the flow of air (including liquid air) from the storage facility 42 will be described in order.
- the liquid air in the storage facility 42 is heated by the cold heat recovery facility 5 and supplied to the power generation facility 6 in a state of being compressed air at room temperature.
- ultra-low temperature air is generated from the compressed air at room temperature.
- This cryogenic air mixes with the outside air (normal temperature air) of the thermal power plant 2 and lowers the temperature of the normal temperature air.
- the cold air is cooled by the cold heat recovery facility 5 and becomes cold air in the gas turbine. It is supplied to the generator 3.
- the power generation system 1 power is generated using room temperature air generated from liquid air, and the temperature of the air taken into the gas turbine generator 3 is lowered by the ultra-low temperature air generated by this power generation.
- the density of air supplied to the gas turbine generator 3 is increased, the mass of air per unit volume is increased, the combustibility of natural gas as a fuel is enhanced, and the output of the gas turbine generator 3 is increased. Is raised, and the amount of power generation is greatly increased.
- FIG. 2 shows a more detailed configuration of the power generation system 1.
- the thermal power plant 2, 31, 32, 33, and 34 in the figure are air compressors, combustors, turbines, and generators that each constitute a gas turbine generator 3 (second generator), and generate power.
- the machine 34 is driven by the rotation of the turbine 33.
- 35 is a line for supplying natural gas, which is a fuel for the gas turbine generator 3, from the LNG vaporizer 21 to the combustor 32.
- Reference numeral 36 denotes a duct (first air supply line) provided in the thermal power plant 2, and a heat exchanger 37 (first heat exchanger) is interposed.
- the downstream side of the duct 36 is connected to the gas turbine generator 3, and the room temperature air, which is the outside air of the thermal power plant 2 taken in from the upstream side, is taken into the air compressor 31.
- the thermal power plant 2 performs GTCC, but the display of the equipment for performing steam power generation is omitted.
- the single-point chain line arrow extending from the heat exchanger 37 indicates a discharge path for moisture in the air that condenses and liquefies around the heat exchanger 37 by supplying ultra-low temperature air to the duct 36. ..
- the LAES plant facility 4 includes an air rectification facility 41 and a liquid air storage facility (including a pumping facility) 42 as described above.
- the storage facility 42 includes a tank 40 and a refrigeration pump 43.
- the air rectification facility 41 includes a compressor for boosting the air pressure to obtain compressed air.
- the rectification performed by the air rectification facility 41 specifically includes, for example, removal of CO 2 (carbon dioxide) and water.
- the above-mentioned renewable energy can be used for the operation of each device such as the compressor in the LAES plant facility 4.
- the compressed air supplied to the LNG vaporizer 21 is cooled by heat exchange with the LNG as described above to become cryogenic air.
- the heat exchange between LNG and air in the LNG vaporizer 21 is performed, for example, via an intermediate heat medium. That is, heat exchange is performed between LNG and the intermediate heat medium, and heat exchange is performed between the intermediate heat medium and air.
- the cryogenic air generated in the LNG vaporizer 21 is cooled by the heat exchanger 51 (fourth heat exchanger) to become liquid air, which is supplied to the tank 40 (storage unit) of the LAES plant equipment 4 for storage. Will be done.
- the air line from the air rectification facility 41 to the tank 40 via the LNG vaporizer 21 and the heat exchanger 51 is shown as 44.
- the air flowing through the air supply line 44 and the air supply line 45 described later is liquid air depending on the circulation location. That is, it is assumed that the air flowing through the air supply line includes liquid air.
- the liquid air stored in the tank 40 is sucked into the refrigeration pump 43, pressurized, and pumped to the subsequent stage.
- the liquid air is warmed by the influence of the outside air of the power generation system 1 and vaporized to become cryogenic air, which is supplied to the heat exchanger 51.
- the cryogenic air is heated by the heat exchanger 51 and its temperature rises.
- the cryogenic air whose temperature has risen is supplied to the heat exchanger 55 (second heat exchanger) and further heated.
- An air supply line 45 is provided which connects the tank 40 and the power generation facility 6 and is provided with a refrigeration pump 43 and heat exchangers 51 and 52.
- the power generation facility 6 includes an expander and a generator (first generator), respectively, and is shown in FIG. 2 as 61 and 62, respectively.
- the above air supply line 45 is connected to the inflator 61.
- the expander 61 is connected to the upstream end of the cryogenic air supply line (second air supply line) 63.
- the downstream end of the cryogenic air supply line 63 is connected to the duct 36 described above.
- the compressed air at room temperature supplied to the expander 61 is lowered and stepped down to drive the generator 62 and generate ultra-low temperature air.
- the extremely low temperature air generated by the expander 61 is, for example, large.
- the heat exchanger 51 is interposed in the air supply lines 44 and 45 as described above, and in the heat exchanger 51, the extremely low temperature air cooled by the LNG vaporizer 21 and heading for the tank 40 and the refrigeration pump. Heat exchange is performed with the extremely low temperature air supplied from 43 to the subsequent stage. Further, a circulation in which the heat medium is moved by the pump 53 between the heat exchanger 37 at the end of the duct 36 through which the normal temperature air is guided and the heat exchanger 52 at the air (including liquid air) supply line 45. A line 54 (first fluid circulation line) is provided.
- the cold heat recovery facility 5 described with reference to FIG. 1 is composed of the heat exchangers 51, 52, and 37 described above.
- An antifreeze solution such as ethylene glycol is used as the heat medium (fluid for heat exchange) of each heat exchanger, and the heat exchanger 52 has an appropriate configuration in order to prevent the flow from being stopped due to freezing of the heat medium.
- a known heat exchanger called a shell and tube type can be used.
- the air rectification facility 41, the LNG vaporizer 21, and the heat exchanger 51 of the LAES plant facility 4 form a liquid air generating section, and the heat exchangers 51 and 52 form a vaporizing section. Therefore, the heat exchanger 51 is shared by the liquid air generating section and the vaporizing section.
- the duck curve is a graph in which the horizontal axis is the time of day and the vertical axis is the power demand in a specific area, and the transition of the power demand is shown in a duck-shaped curve. Is.
- the problem of this duck curve is that the amount of solar power generation peaks in the daytime, while the demand for electricity is in a time zone (dawn and evening) that deviates significantly from this daytime time zone. It reaches its peak. For example, it has peaks from 6:00 to 8:00 at dawn and from 18:00 to 21:00 in the evening. Due to this, there is a concern about power shortage during these times.
- the power generation system 1 can be operated so as to solve the problem of the duck curve.
- an operation example of the power generation system 1 after noon will be described.
- the power generation system 1 is in a state where liquid air power generation (power generation by the power generation facility 6) and ultra-low temperature air are not supplied to the gas turbine generator 3.
- the time zone approaches the evening, the amount of power generated by photovoltaic power generation drops sharply due to the decrease in the amount of sunshine, while the demand for power peaks as described above, so it is necessary to secure a large amount of power generation.
- the temperature of the outside air of the thermal power plant 2 is relatively high.
- the output of the gas turbine generator 3 is affected by the temperature of the intake air. Therefore, when only this outside air is used, the output of the gas turbine generator 3 cannot be sufficiently improved. There is a fear.
- liquid air power generation is started, and at the same time, ultra-low temperature air is supplied to the duct 36 connected to the gas turbine generator 3, and the amount of power generated from the thermal power plant 2 increases. To do.
- the amount of power generated from the power generation system 1 in this way, power is supplied so as to correspond to the peak of power demand in the evening, and the supply and demand of power is balanced.
- the liquid air power generation and the supply of cryogenic air will be stopped in response to the decrease in the demand for electric power.
- the power generation system 1 can be operated to accommodate the peak of dawn when people's behavior becomes active.
- liquid air power generation and cryogenic air supply are performed so as to avoid daytime when the amount of power generated by photovoltaic power generation is large, but liquid air power generation and cryogenic air supply during the daytime are prohibited. It's not something. While the liquid air power generation is performed at an arbitrary timing according to the demand in this way, the generation of the liquid air by the LAES plant equipment 4 and the supply of the generated liquid air to the tank 40 are, for example, the time when the liquid air power generation is not performed. Do it with a belt.
- the amount of power generation in the thermal power plant 2 in addition to performing liquid air power generation, the amount of power generation in the thermal power plant 2 can be increased.
- the amount of power generated by the thermal power plant 2 that has decreased due to the temperature of the outside air is restored, and the amount of power generated is high so that the influence of the temperature of the outside air can be suppressed. Will be obtained. Since the amount of power generated by the thermal power plant 2 can be increased at the same time as the liquid air power generation is performed in this way, the power generation system 1 can obtain a high amount of power generation at an arbitrary timing and the amount of power generation is relatively rapid. Can be raised and lowered.
- the power generation system 1 power generation can be performed so as to respond with high certainty to changes in the amount of power demand.
- the power generation system 1 is located in an area where there is a need for power storage due to a surplus of power generated using renewable energy, the air temperature is high, and GTCC power generation cannot produce the rated output. It is effective to provide.
- the power generation system 1 includes the LAES plant equipment 4, but it is generally considered that the plant equipment has a relatively long service life of 40 years. That is, since the power generation system 1 is expected to be able to be operated for a relatively long time after construction, it is advantageous as compared with the case of using a storage battery having a short life such as a NaS battery. Further, since the power generation system 1 uses air, there is an advantage that it is a clean system that does not need to use chemical substances that affect the environment.
- the compressed air for generating the liquid air is cooled by heat exchange with the LNG in the LNG vaporizer 21, so that the power required for generating the liquid air can be reduced. It is advantageous.
- a heat exchanger that cools the compressed air using liquid nitrogen as a heat medium may be provided in the power generation system 1 to generate liquid air.
- the heat exchanger 37 is provided in the duct 36 in which the ultra-low temperature air and the normal temperature air are mixed, so that the temperature of the air supplied to the gas turbine generator 3 becomes lower. Therefore, the amount of power generated at the thermal power plant 2 can be set to a higher value.
- the power generation system 1 has a configuration in which a heat medium is distributed between the heat exchanger 37 and the heat exchanger 52. That is, the heat transfer when cooling the air in the duct 36 and the heat transfer when vaporizing the liquid air are mutually used. Therefore, the energy required for cooling the air in the duct 36 and vaporizing the liquid air is exchanged, so that the operating cost and power of the power generation system 1 can be reduced.
- the power generation system 1 heat exchange is performed between liquid air and air in the heat exchanger 51. Therefore, the heat transfer for vaporizing the liquid air and the heat transfer for generating the liquid air from the air are mutually utilized. As a result, in the power generation system 1, the energy required for the generation of liquid air and the vaporization of liquid air is exchanged, so that the operating cost and power of the system can be reduced.
- the configuration of the air and liquid air lines is not limited to the above-described example.
- the liquid air supplied from the refrigeration pump 43 is supplied to the heat exchanger 52 without passing through the heat exchanger 51. It may be.
- the cryogenic air from the LNG vaporizer 21 to the tank 40 may be liquefied air using a heat exchanger that uses liquid nitrogen or the like as a heat medium.
- the heat exchangers 51 and 52 are supplied with the ultra-low temperature air vaporized from the liquid air, the liquid air before vaporization is supplied and the heat exchanger 51 or the heat exchanger 52 liquids. The air may be vaporized.
- the power generation system 7 of the second embodiment of the present invention will be described with reference to FIG. 3, focusing on the differences from the power generation system 1 of the first embodiment.
- the power generation system 7 is not provided with the heat exchanger 37 and the pump 53 for the heat medium.
- an exhaust flow having a relatively high temperature is supplied to the heat exchanger 52 from the thermal power plant 2, and the extremely low temperature air is heated by heat exchange between the exhaust flow and the extremely low temperature air. It becomes normal temperature air and is supplied to the expander 61.
- the duct 36 may be configured so that the heat exchanger 37 is not provided.
- the outside air is defined as room temperature air taken in from the upstream side of the duct 36 and flowing through the duct 36.
- the extremely low temperature air discharged from the expander 61 can be sufficiently mixed with the outside air to sufficiently lower the temperature of the air supplied to the gas turbine generator 3.
- a mixing portion is provided in order to mix the cryogenic air flowing in the duct 36 with high certainty.
- the mixing portion is composed of, for example, an annular body 71.
- the arrow of the chain line extending from the annular body 71 in FIG. 3 indicates a water discharge path like the arrow extending from the heat exchanger 37 of FIG. 1, and is generated by cooling the air around the annular body 71. Remove the water.
- FIGS. 4 and 5 are a longitudinal side view and a cross-sectional plan view of the annular body 71, respectively.
- a through hole 72 is formed in the central portion of the annular body 71 when viewed in the direction of the flow path of the duct 36, and the through hole 72 forms a flow path for the outside air.
- a plurality of discharge ports 73 are provided on the front surface of the annular body 71 toward the downstream side of the duct 36 at equal intervals along the circumferential direction of the annular body 71. That is, the discharge ports 73 are opened at different positions in the circumferential direction.
- the downstream side of the cryogenic air supply line 63 is branched and connected to the annular body 71 so that the cryogenic air can be supplied to each discharge port 73.
- cryogenic air is discharged toward the downstream side of the duct 36 and toward the central portion of the plan view annular body 71.
- the mixing portion for reliably mixing the above-mentioned cryogenic air flowing in the duct 36 is not limited to the above configuration, and as shown in FIG. 6, the nozzle 81 is inside the duct 36 as the mixing portion. May be provided.
- the nozzle 81 is, for example, a porous nozzle, that is, a nozzle having a large number of discharge ports.
- the upstream side of the nozzle 81 is connected to the cryogenic air supply line 63. Then, the nozzle 81 sprays the ultra-low temperature air supplied from the supply line 63 toward the downstream side of the flow path in the duct 36 so as to radiate from the nozzle 81 along the flow path direction.
- the ultra-low temperature air is highly mixed with the outside air, that is, the ultra-low temperature air is configured to be uniformly dispersed with respect to the outside air.
- the cryogenic air is ejected from the discharge port of the nozzle 81 and the discharge port 73 of the annular body 71, respectively, due to the pressure of the nozzle 81 and the annular body 71.
- the moisture generated by cooling the air around the annular body 71 can be removed by a plurality of corrugated plates 74 provided in the duct 36 as shown in FIG. 6, and water droplets hit the corrugated plate 74. It is possible to remove water efficiently. That is, although FIG. 6 shows an example in which a corrugated plate 74 is provided as a moisture removing portion on the downstream side of the nozzle 81 in the duct 36, the annular body is also provided in the duct 36 provided with the annular body 71 in FIG. A corrugated plate 74 is provided on the downstream side of the 71, and water droplets accompanying the air hit the corrugated plate 74 and fall to be discharged from the inside of the duct 36 to the outside of the duct 36. The reason for removing the water droplets in this way is to prevent the impeller of the air compressor built in the gas turbine generator 3 from being worn by being hit by a large amount of water droplets.
- the power generation system 82 of the third embodiment of the present invention will be described with reference to FIG. 7, focusing on the differences from the power generation system 1.
- a heat exchanger 83 (third heat exchanger) is interposed in the cryogenic air supply line 63.
- a heat medium circulation line 84 (second fluid circulation line) is provided, which is partly in common with the heat medium circulation line 54 and in which heat exchangers 37 and 83 are interposed.
- the portion of the circulation line 54 on the downstream side of the pump 53 that sends the heat medium from the heat exchanger 37 to the heat exchanger 52 branches.
- a heat exchanger 83 is interposed in this branched line, and the end of the branched line is a portion of the circulation line 54 where the heat medium flows from the heat exchanger 52 to the heat exchanger 37. It is connected.
- This branched line constitutes the circulation line 84.
- the heat exchanger 83 warms the cryogenic air to, for example, cold air before it is supplied to the duct 36.
- the temperature of the extremely low temperature air is too low, so that the outside air flowing through the duct 36 (taken in from the upstream of the duct 36) at the connection portion of the duct 36 with the supply line 63 of the extremely low temperature air. This is to prevent the (normal temperature air) from freezing and preventing the extremely low temperature air from being sufficiently mixed with the outside air.
- FIG. 8 shows a modified example of the power generation system 1 described above.
- a valve 85 is interposed between the heat exchanger 51 and the refrigeration pump 43 in the air supply line 45, and one end of the liquid air recirculation line 86 is connected between the valve 85 and the refrigeration pump 43. ing.
- the other end of the reflux line 86 is connected to the liquid air tank 40 via a valve 87.
- the refrigerating pump 43 always operates to supply liquid air from the tank 40 toward the rear stage side of the supply line 63.
- valve 85 When liquid air power generation is not performed, the valve 85 is slightly opened and the valve 87 is opened, the liquid air is returned to the tank 40, and the delivery system (heat exchangers 51 and 52, and thus the heat exchangers 51 and 52) is sent as a cold insulation circulation. It is sent to the inflator 61).
- the valve 85 When performing liquid air power generation, the valve 85 is opened and the valve 87 is closed, and the liquid air is not sent to the tank 40 but is supplied to the heat exchanger 51 and the expander 61. Therefore, the valves 85 and 87 form a switching unit that switches the main supply destination of the liquid air between the heat exchanger 51 and the tank 40.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
【課題】電力の需要に対応した電力供給を確実に行うことができる発電システムに関する技術を提供すること 【解決手段】空気の圧縮及び冷却を行い、液体空気を生成する液体空気生成部と、前記液体空気を貯蔵する貯蔵部と、前記貯蔵部から供給された前記液体空気を気化させて圧縮空気を生成する気化部と、前記気化部から供給された圧縮空気を膨張させる膨張機と、前記膨張機における空気の膨張により駆動する第1の発電機と、前記膨張機において膨張して冷却された空気を、第2の発電機であるガスタービン発電機と前記ガスタービン発電機に空気を供給する第1の空気供給ラインとを備える発電所における前記第1の空気供給ラインに供給して前記ガスタービン発電機が吸気する空気の温度を低下させるために、当該第1の空気供給ラインと前記膨張機とを接続する第2の空気供給ラインと、を備えるように発電システムを構成する。
Description
本発明は、貯蔵した液体空気を用いる発電システム及び発電方法に関する。
温室効果ガスを排出しない利点が有ることから、太陽光、風力、地熱などの再生可能エネルギーを用いる発電が有望視され、その導入が進められている。しかし再生可能エネルギーによる発電のうちで主要な太陽光発電、風力発電については気象条件により、その発電量が左右されてしまう。この問題についてより具体的に述べると、電力系統から安定した周波数で電気を利用者に供給するためには、電力の需給のバランスをとることが求められる。言い換えれば、電力の需給バランスをとることで、供給される電気の周波数の調整がなされている。再生可能エネルギーによる発電と併用される他の発電による発電量、特に火力発電による発電量を調整することによって、この需給バランスを取ることが図られている。
しかし、上記のように気象条件の影響を受けるので、太陽光発電及び風力発電の発電量の調整は困難である。従って、これら太陽光発電及び風力発電を中心とする再生可能エネルギーを用いた発電システムの電力系統への導入が進むと、当該再生可能エネルギーによる発電量が大きくなるときには上記の他の発電による発電量を低下させたとしても、電力系統の電力の供給量が電力の需要量を超えて、余剰電力が生じてしまう懸念が有る。
また、再生可能エネルギーを用いた発電システムの導入が進んだ電力系統においては1日のうちの特定の時間帯で、当該再生可能エネルギーによる発電量が急激に、大きく変動してしまう。そのため、このような再生可能エネルギーの発電量の変動に対して、火力発電などの他の発電による発電量の変動が追従しきれず、上記の電力の需給バランスが保てなくなる懸念が有る。このような懸念が生じる背景には、火力発電の発電量が気温の影響を受けてしまうことで、再生可能エネルギーの発電量が低下したときに、当該火力発電からは高い発電量が得られない場合が有るというという理由も存在する。
そこで、発電量の調整代を確保する目的で、蓄電池を設けることが考えられる。即ち、再生可能エネルギーによる発電量が余剰となるときに、その余剰の電力を蓄電する蓄電池を設け、電力の需要が増加して火力発電等による発電量の増加でまかないきれないときに、当該蓄電池からの放電によって対応することが考えられる。ただし、各種の蓄電池のうちNaS(ナトリウム・硫黄)電池をはじめとして、その多くは、安全性の不安、実用上の不安、立地上の制約、高コスト、低寿命などの各種の問題が有ることが懸念されている。
上記した各種の問題が解消された蓄電池として、LAES(Liquid Air Energy Storage)と呼ばれる、液体空気を生成して貯蔵する設備を含むシステムが期待される。特許文献1には、このLAESのシステムについて記載されており、必要時に当該システムにおける貯蔵タンクから液体空気を開放し、タービンを駆動して放電させることが示されている。しかし、上記の再生可能エネルギーの変動に関わらず、電力の需要に確実に対応して電力を供給するためには、そのようにして得られる電力よりも、より多くの電力が得られるシステムが望まれる。
本発明はこのような事情に鑑みてなされたものであり、その課題は、電力の需要に対応した電力供給を確実に行うことができる発電システムに関する技術を提供することを目的とする。
本発明の発電システムは、空気の圧縮及び冷却を行い、液体空気を生成する液体空気生成部と、
前記液体空気を貯蔵する貯蔵部と、
前記貯蔵部から供給された前記液体空気を気化させて圧縮空気を生成する気化部と、
前記気化部から供給された圧縮空気を膨張させる膨張機と、
前記膨張機における空気の膨張により駆動する第1の発電機と、
前記膨張機において膨張して冷却された空気を、第2の発電機であるガスタービン発電機と前記ガスタービン発電機に空気を供給する第1の空気供給ラインとを備える発電所における前記第1の空気供給ラインに供給して前記ガスタービン発電機が吸気する空気の温度を低下させるために、当該第1の空気供給ラインと前記膨張機とを接続する第2の空気供給ラインと、
を備える発電システム
前記液体空気を貯蔵する貯蔵部と、
前記貯蔵部から供給された前記液体空気を気化させて圧縮空気を生成する気化部と、
前記気化部から供給された圧縮空気を膨張させる膨張機と、
前記膨張機における空気の膨張により駆動する第1の発電機と、
前記膨張機において膨張して冷却された空気を、第2の発電機であるガスタービン発電機と前記ガスタービン発電機に空気を供給する第1の空気供給ラインとを備える発電所における前記第1の空気供給ラインに供給して前記ガスタービン発電機が吸気する空気の温度を低下させるために、当該第1の空気供給ラインと前記膨張機とを接続する第2の空気供給ラインと、
を備える発電システム
本発明によれば、貯蔵した液体空気を気化させて得た圧縮空気を膨張させることで第1の発電機による発電を行い、さらにその発電に用いられて降温された空気を第2の発電機であるガスタービン発電機に供給することで、当該ガスタービン発電機による発電量を増加させる。従って、本発明の発電システムからは大きな発電量を得ることができると共に、その発電量を大きく変化させることができるため、電力の需要の変化に対応した電力供給を確実性高く行うことができる。
本発明の第1の実施形態に係る発電システム1の概略構成について、図1を参照しながら説明する。この図1はシステムの構成の概要と、液化天然ガス(LNG:Liquefied Natural Gas)から生じる天然ガス(NG:Natural Gas)の流れと、発電に用いるための空気(液体空気も含む)の流れと、を示すブロックフロー図である。なお以下の説明で、常温空気とは20℃~30℃の空気、極低温空気とは-160℃~-100℃の空気、低温空気とは-100℃~5℃の空気、冷空気とは5℃~25℃の空気であるものとする。
発電システム1は、LNGの受け入れ基地を備えると共にGTCC(ガスタービンコンバインドサイクル)を行う火力発電所2を含む。従って、この火力発電所2としては、LNG気化器21と、LNG気化器21で生じた天然ガスを用いて発電を行う発電設備と、を備えており、この発電設備としてガスタービン発電機3が含まれる。また発電システム1は、LAESプラント設備4、冷熱回収設備5及び常温空気を用いる発電設備6を備えている。なお、本明細書ではLAESは、液体空気の生成、液体空気の貯蔵、発電のために貯蔵設備から貯蔵された液体空気を取り出す各構成要素を含むシステムであるものとし、液体空気から電力を得るために設けられる発電設備6及び熱交換器から構成される冷熱回収設備5とは区別して示している。
LAESプラント設備4は液体空気の蓄電池として構成されており、空気精留設備41と、タンク及びポンプなどにより構成される液体空気の貯蔵設備42とを備えている。空気精留設備41は、液体空気製造用の常温空気としてLAESプラント設備4の外気を取り込み、取り込んだ空気を精留すると共に昇圧させて圧縮空気とし、上記のLNG気化器21に供給する設備である。
冷熱回収設備5は、この発電システム1中を流通する空気の冷熱を回収し、システム中の各所で当該空気(液体空気も含む)の加熱及び冷却を行う。上記のようにLNG気化器21に供給された圧縮空気は、LNG気化器21におけるLNGとの間の熱交換により冷却されて、極低温空気となった後に、冷熱回収設備5でさらに冷却されて液体空気となり、貯蔵設備42に供給されて貯蔵される。
そして、発電システム1においては所望のタイミングにおいて、貯蔵設備42に貯蔵された液体空気を用いた、上記の常温空気を用いる発電設備6による発電(放電)が行われる。この発電設備6について述べると、発電設備6は、タービンを含む膨張機(膨張タービン)を備えており、液体空気が気化されて生成する圧縮空気を断熱膨張させて当該タービンを回転させ、タービンに接続される発電機を駆動させることにより電力が得られる。また発電設備6は、後述のようにこの発電によって圧縮空気から生じた極低温空気が、火力発電所2へ輸送(供給)されるように構成されている。
貯蔵設備42からの空気(液体空気を含む)の流れを順に述べると、貯蔵設備42の液体空気は冷熱回収設備5により加熱されて、常温の圧縮空気となった状態で発電設備6に供給される。上記のように断熱膨張されること及び仕事(タービンの回転)を行い、エネルギーを電力に変換する過程で降圧されることで、上記の常温の圧縮空気から極低温空気が生じる。この極低温空気が、火力発電所2の外気(常温空気)に混ざり、この常温空気の温度を低下させる。そして、温度が低下した常温空気(極低温空気と火力発電所2の外気との混合空気)がガスタービン発電機3に向かう途中、冷熱回収設備5によって冷却されて、冷空気となってガスタービン発電機3に供給される。
このように発電システム1においては、液体空気から生じた常温空気を用いて発電を行うと共に、この発電によって生じた極低温空気により、ガスタービン発電機3に吸気される空気の温度を低下させる。それにより、ガスタービン発電機3に供給される空気の密度を高くし、単位体積あたりの空気の質量を増加させ、燃料である天然ガスの燃焼性を高めて、当該ガスタービン発電機3の出力を高くし、その発電量を大幅に大きくしている。
図2は発電システム1について、より詳細な構成を示している。火力発電所2について説明すると、図中31、32、33、34は、夫々ガスタービン発電機3(第2の発電機)を構成する空気圧縮機、燃焼器、タービン、発電機であり、発電機34は、タービン33の回転によって駆動する。図中35は、LNG気化器21からガスタービン発電機3の燃料である天然ガスを、燃焼器32に供給するラインである。36は火力発電所2に設けられるダクト(第1の空気供給ライン)であり、熱交換器37(第1の熱交換器)が介設されている。このダクト36の下流側はガスタービン発電機3に接続され、上流側から取り込んだ火力発電所2の外気である常温空気が、空気圧縮機31に吸気される。なお、上記したように火力発電所2はGTCCを行うが、汽力発電を行うための設備の表示は省略している。なお、熱交換器37から伸びる一点鎖線の矢印は、極低温空気がダクト36に供給されることで、熱交換器37の周囲にて凝縮、液化する空気中の水分の排出路を示している。
続いて、LAESプラント設備4について説明する。LAESプラント設備4は、上記したように空気精留設備41及び液体空気の貯蔵設備(圧送設備を含む)42を備えている。貯蔵設備42は、タンク40と、冷凍ポンプ43とを備えている。上記のように液体空気による発電を行う際には、当該冷凍ポンプ43が駆動して、後段に液体空気を圧送して発電が行われる。また、空気精留設備41について補足して説明すると、当該空気精留設備41は、空気を昇圧させて圧縮空気とするための圧縮機を含む。また、空気精留設備41で行われる精留としては、具体的には例えばCO2(二酸化炭素)及び水の除去が含まれる。LAESプラント設備4における、上記の圧縮器などの各機器の動作には、例えば既述の再生可能エネルギーを用いることができる。
LNG気化器21に供給された圧縮空気は、上記のようにLNGとの熱交換により冷却されて、極低温空気となる。このLNG気化器21におけるLNGと空気との熱交換は、例えば中間熱媒体を介して行われる。つまり、LNGと中間熱媒体との間で熱交換が行われ、中間熱媒体と空気との間で熱交換が行われる。このLNG気化器21において生じた極低温空気が、熱交換器51(第4の熱交換器)にて冷却されて液体空気となり、LAESプラント設備4のタンク40(貯蔵部)に供給されて貯蔵される。なお、図中では空気精留設備41からLNG気化器21、熱交換器51を順に介してタンク40に至る空気のラインを44として示している。この空気の供給ライン44及び後述の空気の供給ライン45を流通する空気は、その流通する箇所によっては液体空気となっている。つまり、空気の供給ラインを流通する空気としては、液体空気も含むものとする。
そして上記の発電設備6による発電を行うにあたり、タンク40に貯蔵された液体空気は、冷凍ポンプ43に吸引され加圧されて、後段に圧送される。この冷凍ポンプ43による圧送中に液体空気は発電システム1の外気の影響により暖められて、気化して極低温空気となって熱交換器51に供給される。そして、この極低温空気は、当該熱交換器51にて加熱されてその温度が上昇する。温度が上昇した極低温空気は、熱交換器55(第2の熱交換器)に供給されてさらに加熱される。このように冷凍ポンプによる圧送と熱交換器51、52による加熱とによって、液体空気は常温の圧縮空気となって、発電設備6に供給される。タンク40と発電設備6とを接続すると共に、冷凍ポンプ43、熱交換器51、52が介設された空気の供給ライン45が設けられている。
続いて発電設備6について述べる。既述したように発電設備6は、膨張機、発電機(第1の発電機)を夫々含んでおり、夫々61、62として図2中に示している。膨張機61に上記の空気の供給ライン45が接続されている。また、膨張機61には、極低温空気の供給ライン(第2の空気供給ライン)63の上流端が接続されている。そして、この極低温空気の供給ライン63の下流端は、既述のダクト36に接続されている。既述したように膨張機61に供給される常温の圧縮空気が降温、降圧されて発電機62が駆動すると共に極低温空気が生じるが、この膨張機61にて生じた極低温空気は例えば大気圧よりも高い残圧を有しており、その残圧により供給ライン63を流れて上記のダクト36へ流通し、図1で説明したように当該ダクト36を上流側から流れる常温空気と共にガスタービン発電機3に供給される。
発電システム1に設けられる各熱交換器について述べる。熱交換器51は、上記のように空気の供給ライン44、45に共に介設され、当該熱交換器51においては、LNG気化器21で冷却されてタンク40に向かう極低温空気と、冷凍ポンプ43から後段に供給される極低温空気との間で熱交換が行われる。また、常温空気が導かれるダクト36の先にある熱交換器37と、空気(液体空気を含む)の供給ライン45にある熱交換器52との間で、ポンプ53により熱媒体が移動する循環ライン54(第1の流体循環ライン)が設けられている。そして、熱交換器37においての常温空気の冷却、熱交換器52においての極低温空気の加熱が、循環する当該熱媒体により夫々行われる。図1で説明した冷熱回収設備5は、以上に述べた熱交換器51、52、37により構成される。
なお、各熱交換器の熱媒体(熱交換用の流体)としては例えばエチレングリコールなどの不凍液が用いられ、熱交換器52については熱媒体の氷結による流通の停止を防ぐために、適切な構成なもの(例えば公知のシェルアンドチューブタイプと呼ばれる熱交換器)を用いることができる。また、LAESプラント設備4の空気精留設備41、LNG気化器21、熱交換器51は液体空気生成部を構成し、熱交換器51、52は気化部を構成する。従って、熱交換器51は液体空気生成部、気化部に共有される。
ところで近年、太陽光発電システムの普及に伴い、ダックカーブと言われる明け方と夕方の電力不足が問題となりつつある。ダックカーブとは、横軸に1日の時間、縦軸に特定の地域における電力の需要量を夫々設定したグラフにおいて、アヒルの形のカーブを描くように電力の需要量の推移が示されることである。そして、このダックカーブの問題とは具体的には、太陽光発電量が昼間にピークを迎えることに対して、電力需要はこの昼間の時間帯から大幅にずれた時間帯(明け方と夕方)にピークを迎える。例えば、明け方として6時~8時、夕方として18時~21時に夫々ピークを持つ。このことにより、これらの時間帯の電力不足が懸念される。
上記の発電システム1は、上記のダックカーブの問題が解消されるように動作することができる。以下、昼以降の発電システム1の動作例を説明する。電力需要が少ない昼頃には発電システム1において、液体空気発電(発電設備6による発電)及びガスタービン発電機3への極低温空気の供給が行われていない状態となっている。そして、時間帯が夕方に向かうにつれ、日照量の低下により太陽光発電による発電量は急激に低下する一方で、既述のように電力の需要はピークを迎えるため、大きな発電量を確保する必要が有る。しかし、日中であるため火力発電所2の外気の温度は比較的高い。既述したようにガスタービン発電機3の出力は吸気される空気の温度に影響されるので、この外気のみを用いた場合には、ガスタービン発電機3の出力を十分に向上させることができない恐れが有る。
そこで、上記の発電システム1において、液体空気発電が開始されると共に、ガスタービン発電機3に接続されるダクト36への極低温空気の供給が行われ、火力発電所2からの発電量が増大する。このように発電システム1からの発電量が増加する結果として、夕方の電力の需要のピークに対応するように電力が供給され、電力の需給バランスが取られる。その後は電力の需要の低下に対応して、この液体空気発電及び極低温空気の供給が停止する。同様に、人々の行動が活発になる明け方のピークに対応するように、発電システム1を動作することができる。
上述の例では、太陽光発電による発電量が多くなる昼間を避けるように液体空気発電及び極低温空気の供給を行うように示したが、昼間における液体空気発電及び極低温空気の供給が禁止されるものではない。このように需要に応じた任意のタイミングで液体空気発電を行う一方で、LAESプラント設備4による液体空気の生成及び生成した液体空気のタンク40への供給は、例えば液体空気発電を行っていない時間帯で行う。
このように発電システム1においては液体空気発電を行うことに加えて、火力発電所2における発電量を増加させることができる。上記の作用例のように外気の温度が比較的高いときには、その外気の温度によって低下している火力発電所2の発電量を回復させ、この外気の温度の影響が抑えられるように高い発電量が得られることになる。このように液体空気発電を行うと同時に、火力発電所2の発電量を増加させることができるため、この発電システム1においては任意のタイミングにおいて高い発電量を得ること、及び発電量を比較的急激に上昇、下降させることができる。従って、発電システム1によれば、電力の需要量の変化に確実性高く対応するように発電を行うことができる。特に、再生可能エネルギーを用いた発電電力が余剰となるような状況が生じて電力貯蔵の必要性が有り、空気温度が高く、GTCC発電が定格の出力を出せないような地域に当該発電システム1を設けることが有効である。
なお、火力発電所2における外気の温度が高いときに極低温空気がダクト36に供給される例を示したが、そのように火力発電所2の外気の温度が高いときのみならず、外気の温度が低いときにも極低温空気のダクト36への供給により、ガスタービン発電機3に供給される空気の温度を低下させて、ガスタービン発電機3の出力を高めることができる。つまり、火力発電所2の外気の温度が高いときのみに限られることなく、既述した発電システム1の効果が得られる。
また、発電システム1はLAESプラント設備4を含むが、一般にプラント設備については耐用年数が40年と、比較的長いものと考えられている。つまり発電システム1は建設後、比較的長く運用することができることが見込まれるので、NaS電池などの寿命が短い蓄電池を用いる場合に比べて、有利である。さらに、この発電システム1は空気を用いるため、環境に影響を与える化学物質を使用する必要が無いクリーンなシステムであるという利点も有る。
また、発電システム1によれば、液体空気を生成するための圧縮空気の冷却を、LNG気化器21においてLNGとの熱交換により行うので、この液体空気の生成に必要な電力を削減できるため、有利である。ただしこのようなLNGの冷熱によらず、例えば液体窒素などを熱媒体として圧縮空気の冷却を行う熱交換器を発電システム1に設けて、液体空気を生成してもよい。
さらに発電システム1によれば、極低温空気と常温空気とが混合されるダクト36に熱交換器37が設けられることで、ガスタービン発電機3に供給される空気の温度がより低い温度となるので、火力発電所2における発電量をより高い値とすることができる。また、発電システム1に関しては、上記の熱交換器37と熱交換器52との間で熱媒体が流通する構成としている。つまり、ダクト36における空気の冷却を行うときの熱移動と、液体空気の気化を行うときの熱移動とが相互に利用される。従って、ダクト36における空気の冷却と、液体空気の気化との夫々に要するエネルギーが交換されるので、発電システム1の運用コストや用力を削減することができる。
また、発電システム1においては、熱交換器51において液体空気と、空気との間で熱交換を行っている。従って、液体空気を気化するための熱移動と、空気から液体空気を生成させるための熱移動とが相互に利用される。それにより、発電システム1においては液体空気の生成と、液体空気の気化との夫々に要するエネルギーが交換されるので、当該システムの運用コストや用力を削減することができる。
なお、空気、液体空気のラインの構成としては既述した例には限られず、例えば冷凍ポンプ43から供給された液体空気が熱交換器51を通過せずに熱交換器52に供給される構成であってもよい。その場合は、LNG気化器21からタンク40に向かう極低温空気は液体窒素などを熱媒体として用いる熱交換器を利用して液化空気とすればよい。また、熱交換器51、52には、液体空気から気化した極低温空気が供給されるものとして説明したが、気化前の液体空気が供給され、当該熱交換器51または熱交換器52で液体空気が気化されてもよい。
続いて、本発明の第2の実施形態の発電システム7について、図3を参照して、第1の実施形態の発電システム1との差異点を中心に説明する。発電システム7においては、発電システム1と異なり、熱交換器37、熱媒体用のポンプ53が設けられていない。そして、熱交換器52には、例えば火力発電所2から比較的高い温度の排気流が供給され、この排気流と極低温空気との間で熱交換されることにより、極低温空気が加熱されて常温空気となり、膨張機61に供給される。このようにダクト36において熱交換器37が設けられない構成とされてもよい。
以下の説明では特に記載無い限り、外気とはダクト36の上流側から取込まれ、当該ダクト36内を流れる常温空気のことであるものとする。膨張機61から放出される極低温空気は、外気と十分に混ざることで、ガスタービン発電機3に供給される空気の温度を十分に低下させることができる。この発電システム7のダクト36においては、当該ダクト36内を流れる外気に極低温空気を確実性高く混合させるために、混合部が介設されている。その混合部は、例えば環状体71により構成されている。なお、図3中の環状体71から伸びる鎖線の矢印は、図1の熱交換器37から伸びる矢印と同様に水の排出路を示しており、環状体71の周囲の空気が冷却されて生じた水分を除去する。
環状体71の縦断側面図、横断平面図である図4、図5を夫々参照しながら説明を続ける。ダクト36の流路方向に見て、環状体71の中央部には貫通孔72が形成されており、当該貫通孔72は、外気の流路をなす。環状体71におけるダクト36の下流側に向かう正面には、当該環状体71の周方向に沿って等間隔を空けて複数の吐出口73が設けられている。つまり、当該周方向の互いに異なる位置に各吐出口73が開口している。極低温空気の供給ライン63は、各吐出口73に極低温空気を供給できるようにその下流側が分岐して環状体71に接続されている。例えば各吐出口73から、ダクト36の下流側且つ平面視環状体71の中央部に向かうように極低温空気が吐出される。このように貫通孔72を通過する外気に互いに離れた位置から極低温空気が供給されることで、極低温空気の外気への混合性を高くすることができる。
ところで、ダクト36内を流れる外気に上記の極低温空気を確実に混合させるための混合部としては上記の構成には限られず、図6に示すように、当該混合部としてダクト36内にノズル81が設けられていてもよい。このノズル81は例えば多孔式ノズル、即ち吐出口を多数備えるノズルである。ノズル81の上流側は、極低温空気の供給ライン63に接続されている。そしてノズル81は、供給ライン63から供給された極低温空気を、ダクト36内の流路の下流側に向かって、流路方向に沿って当該ノズル81から放射状に拡散するようにスプレーすることで、極低温空気の外気への混合性が高くなる、即ち極低温空気が外気に対して均一に分散するように構成されている。なお、ノズル81及び上記の環状体71において、極低温空気はそれ自体が持つ圧力により、ノズル81の吐出口、環状体71の吐出口73から夫々噴出する。
さらに、環状体71の周囲の空気が冷却されて生じた水分は、図6に示すようにダクト36に設けられた複数の波板74により除去することができ、波板74に水滴が当ることで効率的に水分を取り除くことが可能となる。つまり、図6においてダクト36内のノズル81の下流側に、水分の除去部として波板74を設けた例を示しているが、図4の環状体71を設けたダクト36内においても環状体71の下流側に波板74を設け、空気に随伴する水滴が波板74に当り、落下することでダクト36内からダクト36外へ排出されるようにすることができる。このように水滴を除去するのは、ガスタービン発電機3に内蔵されるエアコンプレッサのインペラが、多量の水滴が当ることによって摩耗することを防ぐためである。
続いて、本発明の第3の実施形態の発電システム82について、発電システム1との差異点を中心に、図7を参照して説明する。なお、発電システム82において、発電システム1と同様に構成されている箇所のうちの一部については、図示を省略している。この発電システム82においては、極低温空気の供給ライン63に熱交換器83(第3の熱交換器)が介設されている。そして、熱媒体の循環ライン54と一部が共通であると共に、熱交換器37、83が介設される熱媒体の循環ライン84(第2の流体循環ライン)が設けられる。より詳しく循環ライン54、84の構成を説明すると、循環ライン54における熱交換器37から熱交換器52へ熱媒体を送るポンプ53の下流側の部位が分岐する。この分岐したラインには熱交換器83が介設されており、当該分岐したラインの端部は、循環ライン54のうち熱交換器52から熱交換器37へ向けて熱媒体が流通する部位に接続されている。この分岐したラインが循環ライン84を構成する。
発電システム82の構成では、熱交換器83により、ダクト36に供給される前に極低温空気が例えば低温空気になるように暖められる。このような構成とするのは、極低温空気の温度が低すぎることにより、ダクト36における極低温空気の供給ライン63との接続部で、ダクト36を流れる外気(ダクト36の上流から取り込まれた常温空気)が氷結し、極低温空気と外気とが十分に混ざらなくなることを確実に防ぐためである。
また、図8は、既述の発電システム1の変形例を示している。空気の供給ライン45において熱交換器51と冷凍ポンプ43との間にバルブ85が介設されており、バルブ85と冷凍ポンプ43との間には液体空気の還流用ライン86の一端が接続されている。還流用ライン86の他端はバルブ87を介して、液体空気のタンク40に接続されている。冷凍ポンプ43は常時動作して、タンク40から液体空気を供給ライン63の後段側へ向けて供給する。
液体空気発電を行わないときは、バルブ85を微開にすると共にバルブ87が開かれた状態となり、液体空気はタンク40に還流されると共に、保冷循環として送出系統(熱交換器51、52ひいては膨張機61)へ送られる。液体空気発電を行うときは、バルブ85が開かれると共にバルブ87が閉じられた状態となり、液体空気はタンク40へは送られず、熱交換器51及び膨張機61へ供給される。従って、バルブ85、87は、液体空気の主な供給先を熱交換器51とタンク40との間で切り替える切り替え部を構成する。このような構成とするのは、冷凍ポンプ43、熱交換器51、52、膨張機61及び機器回りの配管に常時少量の液体空気が送られるようにすることで、当該機器及び配管の温度を低温に維持するためである。それにより、これらの機器及び配管の温度変化による動作性能の変動を確実に防ぐことができる。
なお、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の各実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更、組み合わせが行われてもよい。
1 発電システム
2 火力発電所
21 LNG気化器
3 ガスタービン発電機
36 ダクト
37 熱交換器
4 LAESプラント設備
61 膨張機
63 極低温空気の供給ライン
2 火力発電所
21 LNG気化器
3 ガスタービン発電機
36 ダクト
37 熱交換器
4 LAESプラント設備
61 膨張機
63 極低温空気の供給ライン
Claims (10)
- 空気の圧縮及び冷却を行い、液体空気を生成する液体空気生成部と、
前記液体空気を貯蔵する貯蔵部と、
前記貯蔵部から供給された前記液体空気を気化させて圧縮空気を生成する気化部と、
前記気化部から供給された圧縮空気を膨張させる膨張機と、
前記膨張機における空気の膨張により駆動する第1の発電機と、
前記膨張機において膨張して冷却された空気を、第2の発電機であるガスタービン発電機と前記ガスタービン発電機に空気を供給する第1の空気供給ラインとを備える発電所における前記第1の空気供給ラインに供給して前記ガスタービン発電機が吸気する空気の温度を低下させるために、当該第1の空気供給ラインと前記膨張機とを接続する第2の空気供給ラインと、
を備える発電システム。 - 前記第1の空気供給ラインには前記ガスタービン発電機へ供給される空気の温度を低下させるための第1の熱交換器が設けられ、
前記気化部は、前記液体空気または当該液体空気から生成した空気を加熱するための第2の熱交換器を備え、
当該第1の熱交換器に供給される空気、当該第2の熱交換器に供給される液体空気または空気の各々と熱交換するための熱交換用の流体が、前記第1の熱交換器と前記第2の熱交換器との間で移動するように、当該流体を循環させる第1の流体循環ラインが設けられる請求項1記載の発電システム。 - 前記第2の空気供給ラインにおいて、前記膨張機から供給される空気の温度を上昇させるための第3の熱交換器が設けられ、
前記第1の熱交換器と当該第3の熱交換器との間で前記熱交換用の流体が移動するように、当該流体を循環させる第2の流体循環ラインが設けられる請求項2記載の発電システム。 - 前記第1の空気供給ラインにおける空気流に、前記第2の空気供給ラインから供給される空気を混合させるための混合部が設けられる請求項1記載の発電システム。
- 前記混合部は、当該第1の空気供給ラインの空気流に、前記第2の空気供給ラインから供給された空気をスプレーするノズルである請求項4記載の発電システム。
- 前記混合部は、前記第1の空気供給ラインの流路方向に見て、中央に上流側から供給された空気を下流側に供給する貫通孔を備えた環状体として構成され、
当該環状体の周方向の互いに異なる位置に前記第2の空気供給ラインから供給される空気を各々吐出する吐出口が設けられる請求項5記載の発電システム。 - 前記液体空気生成部は、空気を圧縮して圧縮空気を生成する圧縮機と、
燃料として天然ガスを前記ガスタービン発電機に供給するために、液化天然ガスを加熱して気化させる液化天然ガス気化器と、を含み、
前記液化天然ガス気化器における前記液化天然ガスと、前記圧縮機により生成した圧縮空気との間における熱交換により、当該液化天然ガスの加熱と、当該圧縮空気の冷却とが行われる請求項1記載の発電システム。 - 前記液体空気生成部及び前記気化部は、共通する第4の熱交換器を備え、
前記液化天然ガス気化器により冷却された圧縮空気と、前記貯蔵部から前記膨張機へ向けて供給される液体空気または当該液体空気から生成した空気との間で熱交換が行われることで、前記圧縮空気の冷却と前記液体空気または前記空気の加熱とが行われる請求項7記載の発電システム。 - 前記貯蔵部と前記気化部とを接続する液体空気の供給ラインに設けられ、前記気化部へ液体空気を供給するためのポンプと、
前記ポンプの下流側で前記液体空気の供給ラインから分岐して設けられ、前記貯蔵部へ当該液体空気を還流させる還流ラインと、
前記気化部と前記貯蔵部との間で、前記ポンプによる前記液体空気の供給先を切り替える切り替え部と、
が設けられる請求項1記載の発電システム。 - 空気の圧縮及び冷却を行い、液体空気を生成する工程と、
前記液体空気を貯蔵部に貯蔵する工程と、
前記貯蔵部から供給された前記液体空気を気化部により気化させて圧縮空気を生成する工程と、
前記気化部から供給された圧縮空気を膨張機により膨張させる工程と、
前記膨張機における空気の膨張によって第1の発電機を駆動する工程と、
第2の発電機であるガスタービン発電機と前記ガスタービン発電機に空気を供給する第1の空気供給ラインとを備える発電所における前記ガスタービン発電機が吸気する空気の温度を低下させるために、前記膨張機において膨張して冷却された空気を前記第1の空気供給ラインと前記膨張機とを接続する第2の空気供給ラインに供給する工程と、
を備える発電方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021527296A JP7375014B2 (ja) | 2019-06-28 | 2019-06-28 | 発電システム及び発電方法 |
PCT/JP2019/025925 WO2020261559A1 (ja) | 2019-06-28 | 2019-06-28 | 発電システム及び発電方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/025925 WO2020261559A1 (ja) | 2019-06-28 | 2019-06-28 | 発電システム及び発電方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020261559A1 true WO2020261559A1 (ja) | 2020-12-30 |
Family
ID=74061559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025925 WO2020261559A1 (ja) | 2019-06-28 | 2019-06-28 | 発電システム及び発電方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7375014B2 (ja) |
WO (1) | WO2020261559A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04127850A (ja) * | 1990-09-19 | 1992-04-28 | Central Res Inst Of Electric Power Ind | 液体空気貯蔵発電システム |
JPH08312374A (ja) * | 1995-05-22 | 1996-11-26 | Mitsubishi Heavy Ind Ltd | ガスタービンの吸気冷却装置 |
JPH10238366A (ja) * | 1996-12-24 | 1998-09-08 | Hitachi Ltd | エネルギー貯蔵型ガスタービン発電システム |
JP2001193483A (ja) * | 2000-01-12 | 2001-07-17 | Hitachi Ltd | ガスタービンシステム |
US20170058768A1 (en) * | 2014-04-11 | 2017-03-02 | Mitsubishi Hitachi Power Systems Europe Gmbh | Method And Device For Storing And Recovering Energy |
-
2019
- 2019-06-28 WO PCT/JP2019/025925 patent/WO2020261559A1/ja active Application Filing
- 2019-06-28 JP JP2021527296A patent/JP7375014B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04127850A (ja) * | 1990-09-19 | 1992-04-28 | Central Res Inst Of Electric Power Ind | 液体空気貯蔵発電システム |
JPH08312374A (ja) * | 1995-05-22 | 1996-11-26 | Mitsubishi Heavy Ind Ltd | ガスタービンの吸気冷却装置 |
JPH10238366A (ja) * | 1996-12-24 | 1998-09-08 | Hitachi Ltd | エネルギー貯蔵型ガスタービン発電システム |
JP2001193483A (ja) * | 2000-01-12 | 2001-07-17 | Hitachi Ltd | ガスタービンシステム |
US20170058768A1 (en) * | 2014-04-11 | 2017-03-02 | Mitsubishi Hitachi Power Systems Europe Gmbh | Method And Device For Storing And Recovering Energy |
Also Published As
Publication number | Publication date |
---|---|
JP7375014B2 (ja) | 2023-11-07 |
JPWO2020261559A1 (ja) | 2020-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2264288B1 (en) | System for efficient fluid depressurisation | |
US6981360B2 (en) | Gas turbine power generator having humidifying and cooling means | |
EP0683847B1 (en) | An improved liquefied natural gas fueled combined cycle power plant | |
CN111648833B (zh) | 一种利用气体缓冲装置提升调频性能的液化空气储能系统 | |
US20010000091A1 (en) | Method of operating a combustion turbine power plant at full power at high ambient temperature or at low air density using supplemental compressed air | |
US7398642B2 (en) | Gas turbine system including vaporization of liquefied natural gas | |
JP2009047170A (ja) | 燃焼タービンの冷却媒体供給方法 | |
US11293593B2 (en) | System to recover negative energy from liquefied natural gas | |
CN110171553B (zh) | 一种氢燃料电池动力船余热综合利用系统 | |
US11773754B2 (en) | Cryogenic energy system for cooling and powering an indoor environment | |
US20180283275A1 (en) | Compressed air energy storage power generation apparatus and compressed air energy storage power generation method | |
US20090313995A1 (en) | Power generation system | |
US20210104912A1 (en) | Compressed air energy storage power generation device | |
JPH09250360A (ja) | エネルギー貯蔵型ガスタービン発電システム | |
JP2018200047A (ja) | 蓄熱システムを備えた中間冷却式タービン | |
CN115654768A (zh) | 一种利用压缩热的冷热电三联产储能系统 | |
CN114856725A (zh) | 透平膨胀机的进气压力调节系统及透平膨胀机 | |
WO2020261559A1 (ja) | 発電システム及び発電方法 | |
CN114370391A (zh) | 一种超临界压缩空气储能系统 | |
JPH0688538A (ja) | ガスタービンプラント | |
JPH0797933A (ja) | ガスタービンの吸気冷却装置 | |
US11092075B2 (en) | High-capacity electric energy storage system for gas turbine based power plants | |
CN115111804A (zh) | 冷热电联供系统 | |
JPH11159342A (ja) | エネルギー貯蔵型ガスタービン発電システム | |
US20240339636A1 (en) | Heat exchanger cooling systems and auxiliary power generation on liquid hydrogen-fueled aircrafts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19934546 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021527296 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19934546 Country of ref document: EP Kind code of ref document: A1 |