WO2020256319A1 - 이미지를 이용한 비접촉 산소포화도 측정 시스템 및 그 구동 방법 - Google Patents
이미지를 이용한 비접촉 산소포화도 측정 시스템 및 그 구동 방법 Download PDFInfo
- Publication number
- WO2020256319A1 WO2020256319A1 PCT/KR2020/007295 KR2020007295W WO2020256319A1 WO 2020256319 A1 WO2020256319 A1 WO 2020256319A1 KR 2020007295 W KR2020007295 W KR 2020007295W WO 2020256319 A1 WO2020256319 A1 WO 2020256319A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxygen saturation
- image
- measurement system
- optical signal
- user
- Prior art date
Links
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 173
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 173
- 239000001301 oxygen Substances 0.000 title claims abstract description 173
- 238000005259 measurement Methods 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 62
- 230000003287 optical effect Effects 0.000 claims description 80
- 102000001554 Hemoglobins Human genes 0.000 claims description 27
- 108010054147 Hemoglobins Proteins 0.000 claims description 27
- 238000001514 detection method Methods 0.000 claims description 27
- 238000000513 principal component analysis Methods 0.000 claims description 27
- 230000001678 irradiating effect Effects 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 6
- 230000031700 light absorption Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 14
- 239000008280 blood Substances 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 230000008859 change Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 208000018875 hypoxemia Diseases 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000002106 pulse oximetry Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
Definitions
- the present invention relates to a non-contact oxygen saturation measurement system and a driving method thereof, and more particularly, to a non-contact oxygen saturation measurement system using an image and a driving method thereof.
- FIG. 1 is a diagram showing a conventional non-invasive oxygen saturation measuring apparatus. As shown in Fig. 1, in order to measure oxygen saturation, a pulse oximeter is worn on the tip of a finger to read oxygen in the blood.
- the pulse oximeter uses the property that oxygen hemoglobin and reduced hemoglobin that does not contain oxygen absorb light of different wavelengths, and oxygen hemoglobin and reduced hemoglobin are in the red region (650-750 nm). Since the absorption characteristics are changed in the and far-infrared region (850 to 1000 nm), a red light emitting device (Red LED) and an infrared light emitting device (Infrared LED) are used. Two wavelength LEDs are irradiated to the skin with a parallax, and then the optical signal reflected back from the LED signals of each wavelength is measured, and oxygen hemoglobin and reduced hemoglobin are calculated, and oxygen saturation is calculated from this.
- Red LED red light emitting device
- Infrared LED infrared light emitting device
- the process of calculating oxygen saturation using a conventional pulse oximeter is: (1) irradiation with RED LED, (2) reading with a photodiode, (3) turning off RED LED, and (4) irradiating with IR LED , (5) measurement with a photodiode (read) and (6) measurement with a photodiode (read) in the order of the body contact type, so the measurement method was limited. Therefore, there is a need for a non-invasive method for measuring oxygen saturation that compensates for the shortcomings of such a method for measuring oxygen saturation.
- Korean Patent Registration No. 10-1142126 name of the invention: oxygen saturation sensor with improved signal quality of the oxygen saturation measurement device, announcement date: May 09, 2012, etc. It has been disclosed.
- the present invention has been proposed to solve the above problems of the previously proposed methods, and since the conventional body-wearable device mainly used for measuring oxygen saturation is not used, the subject of oxygen saturation measurement must wear the device.
- the oxygen saturation level can be measured by simply standing in front of the camera for a while, and the oxygen saturation level can be measured very easily and conveniently in an unrestrained state.
- An object thereof is to provide a non-contact oxygen saturation measurement system using an image and a driving method thereof, which can reduce the hassle and can simply and continuously measure the oxygen saturation.
- the present invention uses a light emitting device arranged so that a plurality of LEDs having a wavelength of 765 nm and a plurality of LEDs having a wavelength of 880 nm are alternately positioned, and irradiating light of a constant intensity to a subject for measuring oxygen saturation It is possible to reduce the error that may occur when measuring the oxygen saturation due to the change in the intensity of and detect the user's face position in the image by using the Eigen face (face common shape information) formed using PCA (Principal Component Analysis). Another object of the present invention is to provide a non-contact oxygen saturation measurement system using an image and a driving method thereof that can measure oxygen saturation more accurately and quickly.
- a light-emitting unit that alternately irradiates two lights having different wavelengths on a skin area of a user that requires oxygen saturation measurement
- a camera unit for capturing an image including the user's skin area
- It is characterized in that it comprises a central processing unit for calculating the oxygen saturation of the user in real time by detecting the optical signals of light of different wavelengths irradiated by the light emitting unit from the image photographed by the camera unit.
- the light emitting unit Preferably, the light emitting unit, the light emitting unit, and
- the camera unit Preferably, the camera unit, the camera unit, and
- a processing unit that filters noise from the optical signal output from the light-emitting unit and amplifies it to a preset gain value for processing
- An image may be photographed according to pulses alternately irradiated by light having a wavelength of 765 nm and light having a wavelength of 880 nm processed by the processing unit.
- the central processing unit Preferably, the central processing unit, the central processing unit, and
- An image separation unit for separating an image photographed by the camera unit into an even-numbered image and an odd-numbered image according to the pulses alternately irradiated by the light emitting unit;
- a target region selection unit for selecting a target region of the user's skin to detect an optical signal from the even-numbered and odd-numbered images separated by the image separation unit;
- An optical signal detector configured to detect an optical signal in the target region selected by the target region selector
- the optical signal detection unit may include an oxygen saturation calculation unit that digitizes and derives the user’s oxygen saturation from the detection signal.
- the target area selection unit More preferably, the target area selection unit,
- a face position detector configured to detect a user's face position in the image photographed by the camera unit
- It may be configured to include a target region determining unit for selecting the target region to detect the optical signal within the user's face position detected by the face position detection unit.
- the face position detection unit Even more preferably, the face position detection unit,
- optical signal detection unit More preferably, the optical signal detection unit,
- Each even-numbered or odd-numbered image captured by the camera unit may detect each optical signal data value separated for each color channel.
- optical signal detection unit Even more preferably, the optical signal detection unit,
- the optical signal data values in the green (G) channel which is the wavelength having the highest light absorption rate of hemoglobin and hemoglobin oxide, can be detected.
- the processing unit More preferably, the processing unit,
- Noise may be filtered from the optical signal using a Butterworth bandpass filter of 0.5 to 3 Hz.
- It may be configured to further include a display unit for displaying the user's oxygen saturation degree calculated by the central processing unit so that the user can know.
- step (3) a step of calculating the user's oxygen saturation in real time by detecting optical signals of lights of different wavelengths irradiated by the light emitting unit from the image photographed in step (2).
- the light emitting part in step (1) is the light emitting part in step (1).
- step (2) the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
- An image may be photographed according to a pulse alternately irradiated by light having a wavelength of 765 nm and light having a wavelength of 880 nm in the light emitting unit.
- step (3) (3-1) separating the image captured in step (2) into even-numbered images and odd-numbered images according to the pulses alternately irradiated in step (1);
- step (3-1) selecting a target region of the user's skin to detect an optical signal from the even-numbered and odd-numbered images separated in step (3-1);
- step (3-4) filtering noise from the optical signal detected in step (3-3), amplifying it to a preset gain value, and processing it;
- step (3-5) It may be implemented including the step of deriving and quantifying the user's oxygen saturation from the optical signal processed in step (3-4).
- step (3-2) More preferably, the step (3-2),
- step (3-2-2) It may be implemented including the step of selecting the target region to detect the optical signal within the position of the user's face detected in step (3-2-1).
- Each of the even-numbered or odd-numbered images captured in step (2) may detect each optical signal data value separated for each color channel.
- the optical signal data values in the green (G) channel which is the wavelength having the highest light absorption rate of hemoglobin and hemoglobin oxide, can be detected.
- step (3-4) More preferably, in the step (3-4),
- Noise may be filtered from the optical signal using a Butterworth bandpass filter of 0.5 to 3 Hz.
- step (3) The step of displaying the user's oxygen saturation calculated in step (3) so that the user can know it may be implemented.
- the non-contact oxygen saturation measurement system and its driving method using an image proposed in the present invention since a body-wearable device mainly used for measuring oxygen saturation in the prior art is not used, the subject of oxygen saturation measurement must wear the device.
- the oxygen saturation level can be measured by simply standing in front of the camera for a while, and the oxygen saturation level can be measured very easily and conveniently in an unrestrained state. The hassle can be reduced, and oxygen saturation can be measured simply and continuously.
- a light emitting device arranged so that a plurality of LEDs with a wavelength of 765 nm and a plurality of LEDs with a wavelength of 880 nm are alternately positioned is used.
- PCA Principal Component Analysis
- FIG. 1 is a view showing a conventional non-invasive oxygen saturation measuring apparatus.
- FIG. 2 is a view showing the principle of a conventional non-invasive oxygen saturation measuring apparatus.
- FIG. 3 is a diagram showing an oxygen saturation curve and a factor that affects the oxygen saturation degree.
- FIG. 4 is a diagram showing the configuration of a non-contact oxygen saturation measurement system using an image according to an embodiment of the present invention as a functional block.
- FIG. 5 is a view showing the configuration of a light emitting unit and a camera unit of a non-contact oxygen saturation measurement system using an image according to an embodiment of the present invention.
- FIG. 6 is a diagram showing a configuration of a central processing unit of a non-contact oxygen saturation measurement system using an image according to an embodiment of the present invention as a functional block.
- FIG. 7 is a diagram showing a configuration of a target area selection unit in a non-contact oxygen saturation measurement system using an image according to an embodiment of the present invention as a functional block.
- FIG. 8 is a diagram illustrating a process of forming an Eigen face in a face position detection unit of a non-contact oxygen saturation measurement system using an image according to an embodiment of the present invention.
- PCA principal component analysis
- FIG. 10 is a view showing a method of detecting a face position in a non-contact oxygen saturation measurement system face position detector using an image according to an embodiment of the present invention.
- FIG. 11 is a view showing a flow of a driving method of a non-contact oxygen saturation measurement system using an image according to an embodiment of the present invention.
- FIG. 12 is a view showing a flow of a method of calculating an oxygen saturation degree of a non-contact oxygen saturation measurement system using an image according to an embodiment of the present invention.
- step S310 Separating the image taken in step S200 into even-numbered images and odd-numbered images according to the pulses alternately irradiated in step S100
- step S350 Step of deriving and quantifying the user's oxygen saturation from the optical signal processed in step S340
- Oxygen saturation refers to a measure of the degree of binding of oxygen hemoglobin, which is the volume ratio of oxygen hemoglobin to effective hemoglobin, and broadly refers to the percentage of the oxygen content in the sample blood and the maximum oxygen content in the blood. That is, if the oxygen saturation is 100%, it means that hemoglobin is completely saturated with oxygen, and if the oxygen saturation is 50%, it means that only 50% of the hemoglobin is saturated with oxygen. In the case of a normal person, the degree of oxygen-saturation of hemoglobin in the blood is about 97 to 100%, if it is less than 95%, it means hypoxemia, and if it is less than 75%, it means a life-threatening situation.
- oxygen saturation is one of the vital indexes that are required to be measured in order to check human health.
- 3 is a diagram showing an oxygen saturation curve and a factor that affects the oxygen saturation degree.
- the oxygen dissociation curve is a graph showing the relationship between the oxygen partial pressure and the ratio of oxygen hemoglobin in hemoglobin, and is data for understanding how blood transmits and releases oxygen to tissues. Since hemoglobin is composed of proteins, like other proteins, it is affected by temperature, pH, properties and concentration of coexisting ions, and carbon dioxide concentration that affect the structure of proteins.
- FIG. 4 is a diagram showing the configuration of a non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention as a functional block.
- the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention alternately transmits two lights having different wavelengths to the skin area of the user requiring oxygen saturation measurement.
- the light-emitting unit 100 that alternately irradiates, the camera unit 200 for capturing an image including the user's skin area, and the optical signal of light of different wavelengths irradiated by the light-emitting unit from the image captured by the camera unit 200
- It may be configured to include a central processing unit 300 that detects and calculates the user's oxygen saturation in real time, and may further include a display unit 400.
- the light-emitting unit 100 is a device capable of irradiating two lights having different wavelengths, and by using the light-emitting unit 100, light of different wavelengths is alternately transmitted to the skin area of the user requiring oxygen saturation measurement. You can investigate alternately. More specifically, oxygen hemoglobin has a property of absorbing light with a wavelength of about 880 nm, and reduced hemoglobin that does not contain oxygen has a property of absorbing light with a wavelength of about 765 nm. 100 can be arranged so that a plurality of LEDs having a wavelength of 765 nm and a plurality of LEDs having a wavelength of 880 nm are alternately positioned.
- the light emitting unit 100 of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention includes a plurality of LEDs having a wavelength of 765 nm and a plurality of LEDs having a wavelength of 880 nm. LEDs can be arranged alternately in a 6 ⁇ 6 array, and by using a device arranged so that two types of LEDs are alternately placed in a 6 ⁇ 6 array, the light of each wavelength irradiated to the user's skin area It can be adjusted so that the irradiation intensity of
- the camera unit 200 is a device that photographs an image including a user's skin area. More specifically, the camera unit 200 can take an image according to the pulses alternately irradiated by light having a wavelength of 765 nm and light having a wavelength of 880 nm from the light emitting unit 100, so that the light emitting unit is It is possible to match the operation of 100 and the camera unit 200.
- FIG. 6 is a diagram showing the configuration of the central processing unit 300 of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention as a functional block.
- the central processing unit 300 of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention the camera unit according to the pulses alternately irradiated from the light emitting unit 100
- the image separation unit 310 for separating the image taken at 200 into an even-numbered image and an odd-numbered image, and the user's skin to detect an optical signal from the even-numbered and odd-numbered images separated by the image separation unit 310
- the image separating unit 310 may separate an image photographed by the camera unit 200 into an even-numbered image and an odd-numbered image in accordance with the pulses alternately irradiated by the light emitting unit 100. That is, the images photographed by the camera unit 200 may be separated into an even-numbered image taken when light having a wavelength of 765 nm is irradiated and an odd-numbered image taken when light having a wavelength of 880 nm is irradiated.
- the target region selection unit 320 includes a face position detecting unit 321 for detecting a user's face position in an image captured by the camera unit 200, and a face position detecting unit 321 It may be configured to include a target region determining unit 322 for selecting a target region to detect the optical signal within the position of the user's face detected in.
- the face position detection unit 321 can detect the position of the user's face in the image captured by the camera unit 200. By forming an Eigen face (common face shape information) using a principal component analysis (PCA) , The part that has a shape similar to the formed Eigen face can be detected as a human face.
- PCA principal component analysis
- FIG. 8 is a diagram illustrating a process of forming an Eigen face in the face position detection unit 321 of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention.
- the face position detection unit 321 of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention transmits multidimensional data having a correlation between variables in a low-dimensional manner.
- the Eigen face can be formed using PCA, a method of summarizing data. More specifically, Eigen face refers to a set of facial components necessary for recognizing a human face with a computer.
- an Eigen face is created in advance, and a coefficient of a certain value or more among the images input through the camera unit 200 is measured using the Eigen face coefficient.
- FIG. 9 is a diagram illustrating a principle of a principal component analysis (PCA) in the face position detection unit 321 of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention.
- PCA is one of methods for efficiently summarizing multidimensional data having correlations between variables into low-dimensional data.
- the biological system has a control relationship between components, and they show a strong correlation. Knowing the value of one component can estimate the values of other components that have a strong correlation with it. It is the concept of dimension reduction in PCA that you can explore the components of.
- FIG. 10 is a diagram illustrating a method of detecting a face position in a face position detection unit 321 of a non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention.
- the face position detection unit 321 of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention uses an Eigen face (face common shape information) After forming, the part of the input image that has a similar shape is designated as a human face and traced.
- PCA is a second-order statistical technique that uses statistical properties up to the mean and variance, and finds a set of orthogonally normalized series of axes pointing in each direction of the greatest covariance for the input data.
- the target region determiner 322 may select a target region to detect the optical signal within the user's face position detected by the face position detector 321 using the PCA principle. More specifically, the target region selected by the target region determiner 322 may be a portion within the user's face region that receives light of different wavelengths irradiated from the light emitting unit 100.
- the optical signal detector 330 may detect each optical signal data value separated for each color channel for every even-numbered or odd-numbered image captured by the camera unit 200. That is, the optical signal detection unit 330 of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention calculates an average value of a 40 ⁇ 40 pixel area in each of the even-numbered and odd-numbered images. In the case of the RGB colorimetric system, an average value of an optical signal in a 40 ⁇ 40 pixel area can be obtained for each red (R) component channel, green (G) component channel, and blue (B) component channel in the captured image.
- the optical signal detector 330 may detect optical signal data of a green (G) component channel. That is, by using the green (G) component channel, which is the wavelength having the highest light absorption rate of hemoglobin and oxidized hemoglobin, which are coloring elements, it is easier to measure the optical signal in the target area of the user's face.
- G green
- the processing unit 340 may filter noise from the optical signal detected by the optical signal detection unit 330 and amplify it to a preset gain value for processing. More specifically, a change in the face position, a change in the direction of the face, or a change in a facial expression may affect the measured optical signal due to changes in the environment, such as the movement of the face or the light shining on the target area of the user's face. Noise can interfere with oxygen saturation measurements. Therefore, it is preferable to remove or reduce the noise component, and the processing unit 340 may determine the frequency range of the output optical signal by using a filter and extract an accurate optical signal from which the noise component is removed. . More preferably, noise may be filtered from the optical signal using a Butterworth bandpass filter of 0.5 to 3 Hz. In addition, by using a variable resistor, the amplification factor can be adjusted according to the optical signal of various waveforms obtained for each person. In the case of a person with a small waveform, the optical signal can be amplified with an appropriate gain value.
- the oxygen saturation degree calculating unit 350 may derive the user's oxygen saturation degree from the optical signal processed by the processing unit 340 and convert it into a numerical value. More specifically, R V is the minimum point of the optical signal detected in the even-numbered image taken when light of 765 nm wavelength is irradiated, and R P is the minimum point of the even-numbered image taken when light of 765 nm wavelength is irradiated. It is called the maximum point of the optical signal, and IR V is the minimum point of the optical signal detected in the odd-numbered image taken when light of 880 nm wavelength is irradiated, and the IR P is the odd-numbered image taken when light of 880 nm wavelength is irradiated. Assuming the maximum point of the optical signal detected at, R OS can be obtained through Equation 1 below.
- the oxygen saturation calculation unit 350 the OS R value calculated from the above equation can be calculated in real time, the user's oxygen saturation by matching with the actual oxygen saturation by using a function.
- the display unit 400 may display the user's oxygen saturation degree calculated by the central processing unit 300 so that the user can know. That is, the display unit 400 may be any device that shows the user's own oxygen saturation level.
- the display unit 400 may be a liquid crystal display of a television, a liquid crystal display of a computer, or a liquid crystal display of a mobile phone. .
- FIG. 11 is a view showing a flow of a driving method of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention
- FIG. 12 is a non-contact oxygen saturation measurement using an image according to an embodiment of the present invention It is a diagram showing the flow of a method for calculating the oxygen saturation of the system 10. 11 to 12, the driving method of the non-contact oxygen saturation measurement system 10 using an image according to an embodiment of the present invention includes (1) two light emitting units having different wavelengths.
- step (3) From the image captured by the light emitting unit to detect optical signals of light of different wavelengths irradiated by the light emitting unit and calculate the user's oxygen saturation in real time (S300), and (4) in step (3)
- the operation of displaying the calculated oxygen saturation degree of the user so that the user can know (S400) may be further included.
- the non-contact oxygen saturation measurement system 10 and its driving method using an image according to an embodiment of the present invention since a body-worn device mainly used for measuring oxygen saturation in the related art is not used, Oxygen saturation can be measured very easily and conveniently in an unconstrained state, and oxygen saturation can be measured simply by standing in front of the camera for a while. Therefore, it is possible to reduce the hassle in using the oxygen saturation measurement system, and it is possible to measure the oxygen saturation level simply and continuously.
- the subject of the oxygen saturation measurement is irradiated with light of a certain intensity, thereby changing the intensity of the irradiated light.
- the Eigen face face common shape information
- PCA Principal Component Analysis
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
Claims (20)
- 이미지를 이용한 비접촉 산소포화도 측정 시스템(10)으로서,서로 다른 파장을 가지는 두 개의 광들을 산소포화도 측정이 요구되는 사용자의 피부 영역에 교대로 번갈아 조사하는 발광부(100);상기 사용자의 피부 영역을 포함하는 이미지를 촬영하는 카메라부(200); 및상기 카메라부(200)에서 촬영된 이미지로부터 상기 발광부에서 조사한 서로 다른 파장의 광들의 광신호를 검출하여 상기 사용자의 산소포화도를 실시간으로 연산하는 중앙처리부(300)를 포함하여 구성되는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 제1항에 있어서, 상기 발광부(100)는,파장이 765㎚인 복수의 LED와 파장이 880㎚인 복수의 LED가 번갈아 위치하도록 배치된 장치로서, 파장이 각각 765㎚와 880㎚인 빛이 교대로 발광하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 제1항에 있어서, 상기 카메라부(200)는,상기 발광부(100)에서 파장이 765㎚인 빛과 파장이 880㎚인 빛이 교대로 조사하는 펄스에 맞춰 이미지를 촬영하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 제1항에 있어서, 상기 중앙처리부(300)는,상기 발광부(100)에서 교대로 조사되는 펄스에 맞춰 상기 카메라부(200)에서 촬영된 이미지를 짝수 번째 이미지와 홀수 번째 이미지로 분리하는 이미지 분리부(310);상기 이미지 분리부(310)에서 분리된 짝수 번째 및 홀수 번째 이미지에서 광신호를 검출할 상기 사용자 피부의 대상영역을 선택하는 대상영역 선택부(320);상기 대상영역 선택부(320)에서 선택된 상기 대상영역에서 광신호를 검출하는 광신호 검출부(330);상기 광신호 검출부(330)에서 검출된 광신호에서 노이즈를 필터링하고, 기설정된 이득 값으로 증폭시켜 가공하는 가공부(340); 및상기 가공부(340)에서 가공된 광신호로부터 사용자의 산소포화도를 도출하여 수치화하는 산소포화도 연산부(350)를 포함하여 구성되는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 제4항에 있어서, 상기 대상영역 선택부(320)는,상기 카메라부(200)에서 촬영된 이미지에서 사용자의 얼굴 위치를 감지하는 얼굴 위치 감지부(321); 및상기 얼굴 위치 감지부(321)에서 감지된 사용자의 얼굴 위치 내에서 광신호를 검출할 상기 대상영역을 선택하는 대상영역 결정부(322)를 포함하여 구성되는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 제5항에 있어서, 상기 얼굴 위치 감지부(321)는,PCA(Principal Component analysis)를 이용하여 Eigen face(얼굴 공통의 형태 정보)를 형성함으로써, 형성된 Eigen face와 유사한 형태를 가지고 있는 부분을 사람의 얼굴이라 감지하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 제4항에 있어서, 상기 광신호 검출부(330)는,상기 카메라부(200)에서 촬영된 짝수 번째 또는 홀수 번째 이미지마다 색상 채널별 분리된 각각의 광신호 데이터값을 검출하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 제7항에 있어서, 상기 광신호 검출부(330)는,헤모글로빈과 산화 헤모글로빈의 빛 흡수율이 가장 높은 파장인 녹색(G) 채널에서의 광신호 데이터값을 검출하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 제4항에 있어서, 상기 가공부(340)는,0.5 내지 3 ㎐의 버터워스 밴드패스 필터를 이용하여 상기 광신호로부터 노이즈를 필터링하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 제1항에 있어서,상기 중앙처리부(300)에서 연산된 사용자의 산소포화도를 사용자가 알 수 있도록 표시하는 디스플레이부(400)를 더 포함하여 구성되는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템(10).
- 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법으로서,(1) 발광부(100)에서 서로 다른 파장을 가지는 두 개의 광들을 산소포화도 측정이 요구되는 사용자의 피부 영역에 교대로 번갈아 조사하는 단계;(2) 상기 사용자의 피부 영역을 포함하는 이미지를 촬영하는 단계; 및(3) 상기 단계 (2)에서 촬영된 이미지로부터 상기 발광부에서 조사한 서로 다른 파장의 광들의 광신호를 검출하여 상기 사용자의 산소포화도를 실시간으로 연산하는 단계를 포함하여 구현되는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
- 제11항에 있어서, 상기 단계 (1)에서 발광부(100)는,파장이 765㎚인 복수의 LED와 파장이 880㎚인 복수의 LED가 번갈아 위치하도록 배치된 장치로서, 파장이 각각 765㎚와 880㎚인 빛이 교대로 발광하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
- 제11항에 있어서, 상기 단계 (2)에서는,상기 발광부(100)에서 파장이 765㎚인 빛과 파장이 880㎚인 빛이 교대로 조사하는 펄스에 맞춰 이미지를 촬영하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
- 제11항에 있어서, 상기 단계 (3)은,(3-1) 상기 단계(1)에서 교대로 조사되는 펄스에 맞춰 상기 단계 (2)에서 촬영된 이미지를 짝수 번째 이미지와 홀수 번째 이미지로 분리하는 단계;(3-2) 상기 단계 (3-1)에서 분리된 짝수 번째 및 홀수 번째 이미지에서 광신호를 검출할 상기 사용자 피부의 대상영역을 선택하는 단계;(3-3) 상기 단계 (3-2)에서 선택된 상기 대상영역에서 광신호를 검출하는 단계;(3-4) 상기 단계 (3-3)에서 검출된 광신호에서 노이즈를 필터링하고, 기설정된 이득 값으로 증폭시켜 가공하는 단계; 및(3-5) 상기 단계 (3-4)에서 가공된 광신호로부터 사용자의 산소포화도를 도출하여 수치화하는 단계를 포함하여 구현되는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
- 제14항에 있어서, 상기 단계 (3-2)는,(3-2-1) 상기 단계 (2)에서 촬영된 이미지에서 사용자의 얼굴 위치를 감지하는 단계; 및(3-2-2) 상기 단계 (3-2-1)에서 감지된 사용자의 얼굴 위치 내에서 광신호를 검출할 상기 대상영역을 선택하는 단계를 포함하여 구현되는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
- 제15항에 있어서, 상기 단계 (3-2-1)에서는,PCA(Principal Component analysis)를 이용하여 Eigen face(얼굴 공통의 형태 정보)를 형성함으로써, 형성된 Eigen face와 유사한 형태를 가지고 있는 부분을 사람의 얼굴이라 감지하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
- 제14항에 있어서, 상기 단계 (3-3)에서는,상기 단계 (2)에서 촬영된 짝수 번째 또는 홀수 번째 이미지마다 색상 채널별 분리된 각각의 광신호 데이터값을 검출하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
- 제17항에 있어서, 상기 단계 (3-3)에서는,헤모글로빈과 산화 헤모글로빈의 빛 흡수율이 가장 높은 파장인 녹색(G) 채널에서의 광신호 데이터값을 검출하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
- 제14항에 있어서, 상기 단계 (3-4)에서는,0.5 내지 3 ㎐의 버터워스 밴드패스 필터를 이용하여 상기 광신호로부터 노이즈를 필터링하는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
- 제11항에 있어서,(4) 상기 단계 (3)에서 연산된 사용자의 산소포화도를 사용자가 알 수 있도록 표시하는 단계를 더 포함하여 구현되는 것을 특징으로 하는, 이미지를 이용한 비접촉 산소포화도 측정 시스템 구동 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0073094 | 2019-06-19 | ||
KR1020190073094A KR102242293B1 (ko) | 2019-06-19 | 2019-06-19 | 이미지를 이용한 비접촉 산소포화도 측정 시스템 및 그 구동 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020256319A1 true WO2020256319A1 (ko) | 2020-12-24 |
Family
ID=74037284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/007295 WO2020256319A1 (ko) | 2019-06-19 | 2020-06-04 | 이미지를 이용한 비접촉 산소포화도 측정 시스템 및 그 구동 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102242293B1 (ko) |
WO (1) | WO2020256319A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102597139B1 (ko) * | 2021-11-17 | 2023-11-02 | 계명대학교 산학협력단 | Perfusion Imaging 기반 비접촉 자율신경계 반응 다차원 바이오신호 측정 시스템 및 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101348063B1 (ko) * | 2012-03-07 | 2014-01-03 | 진우현 | 산소포화도에 따른 적외선 흡수율 차이를 활용한 인체의 정맥을 찾는 시스템 |
JP2016514992A (ja) * | 2013-03-13 | 2016-05-26 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 被験者の血中酸素飽和度を決定するデバイス及び方法 |
KR101752560B1 (ko) * | 2015-09-02 | 2017-06-30 | 성균관대학교산학협력단 | 영상을 이용한 산소포화도 측정 방법 및 영상을 이용한 산소포화도 측정 방법을 기록한 컴퓨터로 읽을 수 있는 기록 매체 |
KR101783713B1 (ko) * | 2016-04-05 | 2017-10-10 | 계명대학교 산학협력단 | 안면인식을 통해 사용자 인증 및 비접촉 맥박 측정을 동시에 할 수 있는 시스템 및 방법 |
KR20180029319A (ko) * | 2016-09-12 | 2018-03-21 | 현대자동차일본기술연구소 | 자동차용 혈중 산소 측정 장치 및 방법 |
-
2019
- 2019-06-19 KR KR1020190073094A patent/KR102242293B1/ko active IP Right Grant
-
2020
- 2020-06-04 WO PCT/KR2020/007295 patent/WO2020256319A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101348063B1 (ko) * | 2012-03-07 | 2014-01-03 | 진우현 | 산소포화도에 따른 적외선 흡수율 차이를 활용한 인체의 정맥을 찾는 시스템 |
JP2016514992A (ja) * | 2013-03-13 | 2016-05-26 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 被験者の血中酸素飽和度を決定するデバイス及び方法 |
KR101752560B1 (ko) * | 2015-09-02 | 2017-06-30 | 성균관대학교산학협력단 | 영상을 이용한 산소포화도 측정 방법 및 영상을 이용한 산소포화도 측정 방법을 기록한 컴퓨터로 읽을 수 있는 기록 매체 |
KR101783713B1 (ko) * | 2016-04-05 | 2017-10-10 | 계명대학교 산학협력단 | 안면인식을 통해 사용자 인증 및 비접촉 맥박 측정을 동시에 할 수 있는 시스템 및 방법 |
KR20180029319A (ko) * | 2016-09-12 | 2018-03-21 | 현대자동차일본기술연구소 | 자동차용 혈중 산소 측정 장치 및 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR102242293B1 (ko) | 2021-04-20 |
KR20200144893A (ko) | 2020-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016159523A1 (ko) | 생체 정보 획득 방법 및 이를 위한 장치 | |
WO2020246758A1 (ko) | 카메라를 이용한 비접촉 ppg 신호 측정 시스템 및 그 구동 방법 | |
WO2019103187A1 (ko) | 뇌파를 통한 뇌 인지기능 평가 플랫폼 및 방법 | |
WO2012067422A9 (ko) | 적외선 어레이 센서를 이용한 온도측정장치 및 온도측정방법 | |
WO2015041451A1 (ko) | 촉각 영상 및 근적외선 영상의 정합을 이용한 유방촬영용 영상진단기기 및 유방조직 영상획득방법 | |
KR20170050936A (ko) | 흑체를 이용한 듀얼 카메라 기반 체온 감시 시스템 | |
WO2019172570A1 (ko) | 혈당 측정방법 및 이를 이용한 인체착용형 혈당 측정장치 | |
WO2020256319A1 (ko) | 이미지를 이용한 비접촉 산소포화도 측정 시스템 및 그 구동 방법 | |
WO2004012576A3 (en) | A method for detecting a functional signal in retinal images | |
WO2020101380A1 (ko) | 광학식 피부질환 진단장치 | |
WO2020184763A1 (ko) | 지문 센서를 포함하는 디바이스의 안티-스푸핑 방법 및 시스템 | |
WO2013062345A1 (ko) | 비전시스템의 이미지 품질 향상을 위한 컬러조명 제어방법 | |
WO2022005121A1 (ko) | 인체 감지용 열화상 카메라의 온도 정확도 개선장치 | |
WO2013141419A1 (ko) | 양손을 이용한 혈관 및 심폐기능 평가를 위한 생체 계측 시스템 | |
JP2000020684A (ja) | 指紋像入力装置 | |
WO2016153132A1 (ko) | 피부 측정기기 및 그 제어방법 | |
WO2019203554A1 (en) | Electronic device and method of controlling electronic device | |
WO2020242254A1 (en) | Electronic device obtaining skin image and method of controlling the same | |
WO2021187884A1 (ko) | 생체 정보를 감지하는 웨어러블 전자 장치 | |
WO2020242087A1 (ko) | 적어도 하나의 센서를 이용하여 측정된 전자 장치와 사용자 간 거리에 기반하여 생체 데이터를 보정하는 전자 장치 및 방법 | |
WO2020009496A1 (ko) | 생체 정보 측정 장치 및 방법 | |
JP2009125154A (ja) | 瞬目計測装置 | |
WO2017135710A1 (ko) | 다중 광원을 이용한 표면측정장치 및 표면측정방법 | |
WO2021132862A1 (ko) | 모션 기반 심폐 기능 지표 측정기, 노쇠 정도 예측 장치 및 방법 | |
WO2024196128A1 (ko) | 광학 접근법을 통해 재구성한 광반사 특성 재현 영상을 이용하여 피부 분석모델을 최적화하기 위한 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20825691 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20825691 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 21.04.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20825691 Country of ref document: EP Kind code of ref document: A1 |