WO2020255446A1 - Operation sound diagnosis system, operation sound diagnosis method, and machine learning device for operation sound diagnosis system - Google Patents
Operation sound diagnosis system, operation sound diagnosis method, and machine learning device for operation sound diagnosis system Download PDFInfo
- Publication number
- WO2020255446A1 WO2020255446A1 PCT/JP2019/047278 JP2019047278W WO2020255446A1 WO 2020255446 A1 WO2020255446 A1 WO 2020255446A1 JP 2019047278 W JP2019047278 W JP 2019047278W WO 2020255446 A1 WO2020255446 A1 WO 2020255446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sound
- time
- data
- driving
- feature point
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0087—Devices facilitating maintenance, repair or inspection tasks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the present invention relates to an actuator or a drive sound diagnostic system for diagnosing the drive sound of a driven machine driven by the actuator, a drive sound diagnosis method, and a machine learning device for the drive sound diagnosis system.
- the drive sound of the power source or the machine to which the power source is driven contains a lot of information about the power source and the state of the drive target. There is. For example, when some abnormality occurs in the power source or the driving target, a sound or vibration different from the normal state is generated. Therefore, a diagnostic device for diagnosing whether or not sound or vibration is abnormal is known. However, when the device is moved for the first time, or when the device is driven immediately after the mechanical configuration and drive pattern of the device are changed, it is difficult to immediately determine whether the drive sound is normal or not.
- Patent Document 1 discloses a technique of measuring the sound or vibration generated by a device including a rotating device and identifying the presence or absence of an abnormality or the cause of the abnormality of the device.
- the power source when abnormal noise is generated and the set of frequency and time characteristics of the sound emitted by the driven machine, which is the machine driven by the power source are acquired in advance for each abnormality cause. I will do it.
- the characteristic of the frequency is the frequency at which the apex is generated from the time change of the spectrum obtained by performing a short-time Fourier transform or the like on the time series data of the measured driving sound.
- the time feature is the time interval that produces vertices for each frequency feature.
- the presence / absence and the cause of the abnormality are identified by comparing the characteristics related to the frequency and time acquired during the actual operation by the same method with the characteristics related to the frequency and time acquired in advance. ..
- the present invention has been made in view of the above, and an object of the present invention is to obtain a driving sound diagnostic system capable of identifying the cause of an abnormality depending on the position or speed of an actuator or a driven machine.
- the drive sound diagnosis system includes a drive sound detection unit, an operating state detection unit, a sound vibration time series spectrum acquisition unit, and a feature point extraction unit. , A factor determination unit, and so on.
- the drive sound detection unit detects a drive sound that is a sound or mechanical vibration generated by an actuator or a driven machine driven by the actuator.
- the operation state detection unit acquires the drive position, drive speed, or force generated by the drive of the actuator in time series.
- the sound vibration time series spectrum acquisition unit calculates a frequency spectrum corresponding to each time of the sound vibration data which is the time series data of the detected driving sound, and sets the power of the calculated frequency spectrum in association with the frequency and the time.
- the feature point extraction unit extracts points as feature points whose waveforms with respect to the power frequency and time of the time series spectrum satisfy the specified conditions, and the actuator at the frequency, time, feature point waveform, and feature point time of the feature point.
- Outputs feature point data that is a set of operation data that is the drive position, drive speed, or force generated by the drive.
- the factor determination unit includes at least one frequency and time including the feature points that occur with the phenomenon, and the driving position of the actuator at that time. Detected by comparing the driving speed or the operation data, which is the force generated by driving, with the factor judgment condition that defines the first numerical range when the combination is multidimensional data, and the numerical value of the feature point data. Determine the cause of the driving noise.
- the drive sound diagnostic system has an effect of being able to identify the cause of an abnormality depending on the position or speed of the actuator or the driven machine.
- FIG. 1 A block diagram schematically showing an example of the functional configuration of the server device according to the second embodiment.
- Block diagram showing an example of hardware configuration of server device and user terminal A block diagram showing an example of the functional configuration of the factor determination unit in the drive sound diagnosis system according to the third embodiment.
- FIG. 1 is a block diagram showing an example of the functional configuration of the drive sound diagnosis system according to the first embodiment.
- the drive sound diagnosis system 10 includes a drive sound detection unit 11, an operation state detection unit 12, a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, and a feature point extraction unit 16.
- a driving vibration extraction unit 17 and a factor determination unit 18 are provided.
- the drive sound detection unit 11 detects the sound or vibration generated by the actuator and the driven machine, which is a machine driven by the actuator. In the following, the sound or vibration generated by the actuator and the driven machine will be referred to as the driving sound.
- the drive sound detection unit 11 is a sensor that detects sound or vibration.
- a vibration sensor such as a microphone or an acceleration sensor that detects sound is an example of the drive sound detection unit 11.
- the drive sound detection unit 11 may detect the sound emitted by the drive device that drives the actuator.
- the operation state detection unit 12 acquires the operation state of the actuator connected to the drive device in chronological order.
- the operating state of the actuator includes the drive position, drive speed or force generated by the drive of the actuator.
- the motor is an example of an actuator.
- the encoder that detects the rotation angle of the motor, the linear scale that detects the position of the linear motor, the position sensor, the displacement meter, the distance sensor, the speed detector, the current detector, the acceleration sensor, the gyro sensor, and the force sensor detect the operating state. This is an example of part 12.
- the time synchronization unit 13 is composed of sound vibration data, which is time-series data of the drive sound detected by the drive sound detection unit 11, and operation data, which is time-series data of the operation state detected by the operation state detection unit 12. Synchronize the time. In one example, the time synchronization unit 13 obtains the difference between the reference times of the sound vibration data and the operation data, corrects the time of the sound vibration data or the operation data using this difference, and among the sound vibration data and the operation data. Synchronized sound vibration data and operation data are acquired by extracting the data between the commonly acquired times.
- An example of operation data is time series data of current, generated torque, position, and speed.
- the operation data may be information on the driving device or may be an estimated value based on some detectable data.
- the drive device of the motor stores the position command, speed command, torque command, current command, and voltage command of the motor, and the drive sound diagnosis system 10 may acquire these from the drive device of the motor and use them as operation data as they are, or detect them.
- the operation data may be obtained by a comparison operation with possible data or an estimation operation including filtering.
- the operation data is not limited to analog signals.
- the binary data that is turned on when the speed reaches the command speed is an example of operation data.
- the operation data does not have to be a set of time and value.
- the function that takes the time as an argument, which represents the speed pattern of each time, is an example of operation data.
- the operation mode extraction unit 14 divides the operation state into two or more sections separated by time based on the operation data detected by the operation state detection unit 12. Specifically, the operation mode extraction unit 14 determines the type of the operating state of the actuator by analyzing the operation data, and extracts the interval of the time when the operating state of the specific type of actuator is set as the operation mode. In the operation mode, the operation state may be determined from the operation data after synchronization with the sound vibration data by the time synchronization unit 13, or the operation may be performed from the operation data before synchronization with the sound vibration data by the time synchronization unit 13. The state may be determined.
- the sound vibration time series spectrum acquisition unit 15 acquires a time series spectrum obtained by frequency-converting the sound vibration data synchronized by the time synchronization unit 13 and obtaining the spectrum of the sound vibration data corresponding to each time. ..
- the time series spectrum is a set in which the power of the calculated frequency spectrum is associated with the frequency and the time.
- the sound vibration time series spectrum acquisition unit 15 selects the time at which frequency conversion is performed by frequency-converting only the section of a specific operation mode from the extraction results of the operation mode extraction unit 14. You may.
- the operation mode in which the actuator, which is unlikely to measure the driving sound, is stopped can be excluded from the target of frequency conversion. In this case, since the amount of data to be subjected to frequency conversion processing is reduced, it is possible to reduce the memory used during calculation and the processing time.
- the feature point extraction unit 16 extracts the point as a feature point when the waveform with respect to the power frequency and time of the time series spectrum obtained by the sound vibration time series spectrum acquisition unit 15 satisfies a predetermined condition.
- the feature point extraction unit 16 sets the frequency, time, power, waveform of the feature point, and operation data at the time of the feature point as feature point data.
- the operation vibration extraction unit 17 extracts vibration components from the time-synchronized operation data and acquires vibration data including the frequency or amplitude thereof.
- the factor determination unit 18 determines the factor determination condition, which is a numerical range including the feature points generated in association with the phenomenon determined for each phenomenon that occurs as a factor of the driving sound, and the feature extracted by the feature point extraction unit 16.
- the cause of the driving sound is determined by comparing with the point data.
- the factor determination condition may include a numerical range including vibration data generated in association with the phenomenon that is predetermined for each phenomenon that is a factor of the driving sound.
- the factor determination unit 18 compares the factor determination condition with the feature point data extracted by the feature point extraction unit 16 and the vibration data extracted by the driving vibration extraction unit 17 to obtain the driving sound. Estimate the cause.
- the range of the numerical values including the feature points according to the cause of the abnormality of the device must be obtained for all types of driven machines. It doesn't become. Further, even when the configuration of the driven machine is changed, it is necessary to obtain the range of numerical values including the feature points for each cause of abnormality of the device. Since there are many types of driven machines and there are many variations of changes in the configuration of the driven machines, it is a reality to find the numerical range that includes the characteristic points for each cause of abnormality of the device for all of them. Not the target.
- the numerical range including the feature points is defined not for each abnormality of the device but for each phenomenon that occurs as a factor of the driving sound. That is, the feature amount is not defined by a specific drive pattern such as the value of the rotation speed of the motor, but is expressed by a conditional expression that does not depend on the drive pattern, for example, a conditional expression that uses the rotation speed of the motor as a variable. Therefore, even if the driven machine is different or the configuration of the driven machine is changed, if the factors of the driving sound are the same, the phenomenon that occurs is the same, regardless of the type or configuration of the driven machine. The same factor determination conditions can be used. As a result, the time required for preparation for diagnosis can be shortened as compared with the case where the range of numerical values including the feature points is specified for each abnormality of the device, and the diagnosis of the driving sound can be performed for general purposes. Can be done.
- the feature point data is a set of the frequency, time, power of the feature point, the waveform of the feature point, and the operation data at the time of the feature point. Therefore, it includes not only information about sound or vibration, but also information about the position or speed of the actuator or driven machine. That is, since the factor determination unit 18 also determines the position or speed of the actuator or the driven machine when determining the factor of the generation of the driving sound, it depends on the position or speed of the actuator or the driven machine. It is possible to easily identify the cause of the abnormality.
- the time synchronization unit 13, the operation mode extraction unit 14, and the operation vibration extraction unit 17 may be appropriately included in the drive sound diagnosis system 10 or driven depending on the performance or device configuration required for diagnosis. It may be removed from the sound diagnostic system 10.
- the acquired data is synchronized by using AD (Analog to Digital) converters with the same acquisition timing. be able to. That is, the sound vibration data and the operation data can be synchronized without providing the time synchronization unit 13.
- AD Analog to Digital
- FIG. 2 is a diagram showing an example of a hardware configuration when the drive sound diagnosis system according to the first embodiment is applied to an elevator.
- the diagnosis target 100 includes a motor 110 which is an actuator, a driven machine 120, and a drive device 130 for driving the motor 110. Further, the diagnosis target 100 is provided with a drive sound diagnosis system 10A including a drive sound detection unit 11, an operating state detection unit 12, and an arithmetic processing unit 140.
- the motor 110 is a servomotor that controls the current of the armature winding based on the difference between the drive command and the rotation information.
- the motor 110 may be an actuator that generates power by receiving energy or an electric signal from the device that drives the motor 110.
- the motor 110 is controlled by the drive device 130.
- the state quantity of the motor 110 controlled by the drive device 130 is not limited to the current. Hydraulic pressure, pneumatic pressure, heat, and ultrasonic waves are examples of the state quantities of the motor 110 controlled by the drive device 130.
- the motor 110 is not limited to one that generates a rotational force, and may be a linear motor that drives in the translation direction.
- the driven machine 120 is an elevator that conveys a drive target in the vertical direction according to the rotation of the motor 110.
- the driven machine 120 converts the rotation of the motor 110 into vertical motion, the bracket 121 for fixing the motor 110 to the gantry, the gearbox 122 for amplifying the rotational force generated by the motor 110 and transmitting it to the ball screw 123.
- the ball screw 123 and the coupling 124 connecting the gearbox 122 and the ball screw 123 are provided.
- the lifting machine has a slider 125 driven in the vertical direction by the rotation of the ball screw 123, a stage 126 fixed to the slider 125 on which the workpiece is mounted, and a linear guide for slidably guiding the movement of the slider 125 in the vertical direction.
- a guide 127 and a bracket 128 for rotatably fixing the ball screw 123 to the linear guide 127 via a bearing are provided.
- the driven machine 120 is an elevator having a ball screw 123
- the driven machine 120 may be a machine that generates sound or vibration according to the rotation of the motor 110.
- a machine with screws, belts, gears, cams, linkages, bearings or seals, or a combination of these elements is an example of a driven machine 120.
- the drive device 130 is connected to the motor 110 via a cable 151.
- the drive device 130 includes a motor drive 131, a motor control device 132, and a display 133.
- the motor drive 131 supplies the power for driving the motor 110 to the motor 110. Further, the motor drive 131 drives the motor 110 in accordance with a drive command transmitted from the motor control device 132.
- the motor control device 132 controls the amount and timing of the current supplied by the motor drive 131 to the motor 110 by sending an electric signal such as a command position or a command speed to the motor drive 131.
- the display 133 displays various states of the entire system including the drive sound diagnosis system 10A and the diagnosis target 100, and notifies the user.
- the motor drive 131 is connected to the drive sound detection unit 11 and the operation state detection unit 12, and relays communication between the drive sound detection unit 11 and the operation state detection unit 12 and the motor control device 132.
- the motor control device 132 is a controller that gives a drive command to the motor drive 131 including the position or speed pattern of the motor 110.
- the motor control device 132 is a control device including a PLC (Programmable Logic Controller), a motor driving CPU (Central Processing Unit), a DSP (Digital Signal Processor), a pulse generator, and the like.
- the display 133 acquires the state of the entire system including the drive sound diagnosis system 10A from at least one of the motor drive 131, the motor control device 132, or the arithmetic processing unit 140 by communication, and displays it in a format that is easy for the user to see. I do.
- the display 133 may have a built-in liquid crystal display.
- the drive device 130 may be a device that drives at least one motor 110, and may be configured by combining a part or a plurality of the present embodiments.
- the arithmetic processing unit 140 is a processing device capable of executing diagnostic processing of the drive sound diagnostic system 10A described later as software.
- the CPU of the microcomputer built in the motor control device 132 realizes the function of the arithmetic processing unit 140.
- FIG. 3 is a block diagram showing an example of the hardware configuration of the arithmetic processing unit according to the first embodiment.
- the arithmetic processing unit 140 includes a processor 141 and a memory 142.
- the processor 141 and the memory 142 are connected via the bus line 143.
- the CPU and GPU Graphics Processing Units
- FIG. 4 is a block diagram schematically showing an example of the functional configuration of the arithmetic processing unit of FIG. 2 according to the first embodiment.
- the arithmetic processing unit 140 includes a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, a feature point extraction unit 16, an operation vibration extraction unit 17, and a factor determination unit 18. , Provided as software executed by the CPU of a microcomputer.
- the same components as those in FIGS. 1 and 2 are designated by the same reference numerals, and the description thereof is omitted.
- FIG. 2 shows a configuration in which the arithmetic processing unit 140 is built in the motor control device 132, but the embodiment is not limited to this configuration.
- the arithmetic processing unit 140 may be built in the motor drive 131, which is another device of the drive device 130, or may be built in the display 133. Further, another microcomputer may be attached to the motor control device 132 to serve as the arithmetic processing unit 140. Furthermore, it may be connected as a separate device independent of the drive device 130.
- the drive sound detection unit 11 is a microphone that detects the drive sound emitted by the diagnosis target 100.
- the detected drive sound is transmitted to the arithmetic processing unit 140 via the cable 152 and the drive device 130.
- the drive sound detection unit 11 is fixed to the elevator.
- the drive sound detection unit 11 only needs to be able to detect the drive sound of the diagnosis target 100, and the installation method is not limited to being fixed to the driven machine 120.
- the drive sound detection unit 11 may be fixed to the motor 110, or may be installed away from the driven machine 120 at a distance such that the drive sound can be detected.
- the sound can be collected within the range or sound can be collected by arranging the microphone adjacent to the sounding location or by using a directional microphone.
- the range may be limited. By limiting the sound collection, it is possible to reduce ambient noise that interferes with the diagnosis and reduce misdiagnosis.
- a plurality of microphones can be used as the drive sound detection unit 11. By collecting the same sound or vibration with multiple microphones, false diagnosis due to noise can be reduced.
- a recorder may be used to record the driving sound emitted by the diagnosis target 100 in time series as sound vibration data.
- a smartphone or voice recorder is an example of a recorder.
- a moving image may be taken with a camera or the like, and only the sound part may be extracted and used as sound vibration data.
- the drive sound detection unit 11 may be provided with a storage unit that stores the drive sound emitted in time series as sound vibration data, and may transmit the stored sound vibration data to a higher-level arithmetic unit as needed.
- a storage unit that stores the drive sound emitted in time series as sound vibration data
- the drive sound diagnosis is not performed, communication between the drive sound detection unit 11 and the arithmetic processing unit 140 is not performed, and the time series stored by the drive sound detection unit 11 when the drive sound diagnosis is performed is performed. Sound vibration data is transmitted together.
- the operating state detection unit 12 is an encoder attached to the motor 110 to detect the rotation angle of the motor 110.
- the rotation angle data detected by the encoder is transmitted to the arithmetic processing unit 140 via the cable 153 and the drive device 130 as an operating state.
- the installation location of the operating state detection unit 12 is not limited to the case where it is fixed to the motor 110.
- the operating state detection unit 12 may be fixed to the drive unit of the driven machine 120, which is the machine driven by the motor 110. Similar to the drive sound detection unit 11, the operation state detection unit 12 is provided with a storage unit that stores the detected time-series operation state as operation data, and transmits the stored operation data to a higher-level arithmetic unit as needed. It may be a method.
- the arithmetic processing unit 140 receives the drive sound detected by the drive sound detection unit 11 and the operation state detected by the operation state detection unit 12 via the cables 152 and 153, and diagnoses the cause of the drive sound.
- the arithmetic processing unit 140 is connected to the drive sound detection unit 11 and the operation state detection unit 12 in a high-speed network without data delay in order to exchange appropriate data between the drive sound detection unit 11 and the operation state detection unit 12.
- the environment is desirable.
- the user of the elevator of the driven machine 120 inputs a drive command of the motor 110 to the motor control device 132 in order to convey a work (not shown) by the elevator.
- the motor control device 132 transmits a drive command to the motor drive 131 based on the information including the drive pattern and the operation timing input by the user.
- the motor drive 131 controls the motor drive current and drives the motor 110 in accordance with the received drive command.
- the ball screw 123 rotates as the motor 110, which is a power source, rotates, and the slider 125 connected to the ball screw 123 and the stage 126 connected to the slider 125 move up and down.
- the user of the elevator mounts the work on the stage 126 when the position of the stage 126 is moving vertically downward of the linear guide 127 by the above operation.
- the stage 126 moves vertically upward of the linear guide 127 as the motor 110 rotates.
- the elevator conveys the work mounted on the stage 126.
- the diagnosis target 100 emits a driving sound when it is driven by the motor 110.
- the diagnosis target 100 includes the torque pulsation of the motor 110, the translational and torsional rigidity of the ball screw 123, the connection rigidity of the coupling 124, the meshing rigidity of the gear, the movement, deformation or collision of the machine, and the linear guide 127.
- a driving sound is emitted due to sliding friction between the screw and the slider 125.
- the drive sound emitted by the diagnosis target 100 is detected by the drive sound detection unit 11, the rotation angle of the motor 110 is detected by the operation state detection unit 12, and the motor drive 131, the motor control device 132, and the calculation are performed via the cables 152 and 153. It is transmitted to the processing unit 140.
- the transmission method does not necessarily have to be wired, and may be wireless or via a recording medium.
- the display 133 appropriately communicates with the motor control device 132, and requires a user including the rotation angle of the motor 110 detected by the operation state detection unit 12 and the presence or absence of an abnormality in the entire system including the diagnosis target 100. Various information to be displayed is displayed on the display 133.
- the time synchronization unit 13, the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15, the feature point extraction unit 16, the operation vibration extraction unit 17, and the factor determination unit 18 are one piece of hardware. Although it is configured on the processing unit 140, it may be divided into separate hardware. As an example, the time synchronization unit 13 can be separated from the arithmetic processing unit 140 and configured as software on the microcomputer of the motor drive 131. In this case, the motor drive 131, which performs control processing at a higher speed than the motor control device 132, performs time synchronization processing with strict time requirements, and the arithmetic processing unit 140 of the motor control device 132 is relatively time-constrained.
- the processing of the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15, the feature point extraction unit 16, the operation vibration extraction unit 17, and the factor determination unit 18 is performed.
- the required performance of the arithmetic processing unit 140 can be reduced, and it is possible to diagnose the cause of the driving sound even in a device having a low arithmetic processing capacity.
- each function is not limited to the realization by software on the CPU of the microcomputer, and uses electronic circuits such as ASIC (Application Specific Integrated Circuits), FPGA (Field Programmable Gate Array) or CPLD (Complex Programmable Logic Device). You may.
- ASIC Application Specific Integrated Circuits
- FPGA Field Programmable Gate Array
- CPLD Complex Programmable Logic Device
- FIG. 5 is a flowchart showing an example of the processing procedure of the driving sound diagnosis method according to the first embodiment.
- the driven machine 120 is driven by the drive of the motor 110, a driving noise is generated due to the movement, deformation, collision, rigidity, friction, etc. of the machine.
- the drive sound differs in the magnitude and frequency of the sound pressure depending on the drive method of the motor 110. Therefore, in the first embodiment, a method of diagnosing the driving sound generated by the driven machine 120 will be described.
- the drive sound detection unit 11 of the drive sound diagnosis system 10A detects the drive sound (step S11), and the operation state detection unit 12 detects the operation state of the motor 110 (step S12).
- the time synchronization unit 13 captures the drive sound from the drive sound detection unit 11 as time-series sound vibration data (step S13).
- FIG. 6 is a diagram showing an example of sound vibration data according to the first embodiment. In this figure, the horizontal axis represents time and the vertical axis represents amplitude.
- FIG. 7 is a diagram showing an example of operation data according to the first embodiment.
- the horizontal axis represents time
- the vertical axis represents rotation angle, rotation speed, and current.
- the rotation angle Po of the motor 110, the rotation speed w of the motor 110, and the motor current i from the reference point of the ball screw 123 are shown as operation data.
- the acquisition time of the data to be captured may be different as long as it is between the same time, or the acquisition time of some data may be different from the same time interval.
- the thinning process can reduce the amount of memory used and the processing time.
- the frequency conversion of the sound vibration data is performed in the process after the processes of the drive sound detection unit 11 and the operating state detection unit 12, so it is desirable that the filter process is performed by the noise removal filter.
- the low-pass filter, high-pass filter, band-pass filter, notch filter, and band-eliminate filter are examples of noise reduction filters.
- the noise removal filter one or more of the illustrated filters may be applied. By doing so, the effect of reducing aliasing noise due to thinning can be expected.
- FIG. 8 is a flowchart showing an example of a procedure for synchronous processing of sound vibration data and operation data according to the first embodiment.
- the difference between the reference times of the sound vibration data and the operation data is acquired (step S31).
- the reference time is a time set to time 0 in each data.
- the timing of setting the time 0 of each data is set individually, so even if the data acquisition time is the same, the actual acquisition timing may be different. is there. Therefore, the time of each data is corrected by obtaining the difference between the actual times of the timings at which the time is set to 0 in each data.
- the timing of acquiring data is designed to be a constant time difference in advance and the constant time difference is used as the difference in the reference time.
- Another method is to access a common master clock in advance so that the acquisition timing of each data is the same and the difference in the reference time is zero.
- the time in a common master clock at the timing of starting data acquisition is stored as a time stamp, and the difference between the time stamps of the sound vibration data and the operation data is used as the difference in the reference time.
- FIG. 9 is a diagram for explaining a procedure for synchronizing the sound vibration data and the operation data according to the first embodiment.
- the time 0 of the sound vibration data Da is the data acquisition time and the time 0 of the operation data Do is the data acquisition time.
- the time 0 of the sound vibration data Da is t1 at the reference time
- the time 0 of the operation data Do is t2 at the reference time.
- the difference ⁇ t of the reference time is t2-t1.
- the acquisition time of each data is corrected based on the difference in the obtained reference time (step S32). Specifically, among the sound vibration data and the operation data, the difference between the obtained reference times is added as a correction to the acquisition time of each data of the data for which the acquisition is started earlier.
- the data that started to be acquired first is the sound vibration data Da. Therefore, the reference time t2 of the operation data is obtained by adding the difference ⁇ t of the reference time to the acquisition time t1 of the sound vibration data Da.
- the time interval acquired by the sound vibration data and the operation data in common is calculated (step S33).
- An example of a specific calculation method is common from the acquisition start time of the data that was started to be acquired later in the above process to the acquisition time of the earlier timing of the last acquisition time of the sound vibration data and the operation data. This is the method of setting the time between the acquired times.
- from the acquisition start time t2 of the operation data Do to the last acquisition time t3 of the sound vibration data Da is the time interval ⁇ ct that is commonly acquired.
- step S34 the data at the non-common time that is not between the calculated common and acquired times is discarded.
- the sound vibration data Da before the time t2 and the operation data Do after the time t3 are discarded.
- the sound vibration data and the operation data can be synchronized, and the synchronization process of the sound vibration data and the operation data is completed.
- the operation mode extraction unit 14 estimates the operation state of the driven machine 120 based on the time-synchronized operation data, and extracts the operation mode (step S16).
- the operation mode of the driven machine 120 is divided into three, which are stopped, constant speed operation, and acceleration / deceleration.
- the section in which the rotation of the motor 110 is stopped is defined as being stopped.
- the fact that the rotation of the motor 110 is stopped means that the sum of the changes in the rotation angle data of the motor 110 detected by the operating state detection unit 12 falls within a specific threshold value for a certain period of time.
- a section in which the sum of the changes in the rotation angle data is within a specific threshold value is defined as a section in which the position is stopped.
- the fixed time included in the condition may be determined according to the average value of the detection cycles of the sound vibration data and the operation data.
- a section in which the rotation speed of the motor 110 is constant and is not stopped is defined as constant speed operation.
- the constant speed means that the sum of the changes in the speed data falls within a specific threshold value for a certain period of time as in the case of stopping.
- a section in which the sum of the changes in the speed data is within a specific threshold value is defined as a section in which the velocity is constant and longer than a predetermined time.
- FIG. 10 is a diagram showing an example in which the operation data of FIG. 7 is divided by the operation mode.
- acceleration / deceleration is in progress from time 0 to t11
- constant speed operation is in progress from time t11 to t12
- acceleration / deceleration is in progress from time t12 to t13
- after time t13 Is stopped.
- the sound vibration time series spectrum acquisition unit 15 performs frequency conversion on the sound vibration data for which the time synchronization unit 13 has time-synchronized, and calculates the spectrum of the sound vibration data at each time (step S17). ).
- the spectrum of the sound vibration data is time-series spectrum data in which the power of the calculated frequency spectrum is paired with the frequency and time.
- a filter for extracting the frequency component in the band predicted before the frequency conversion is applied to the sound vibration data. You may. By applying the filter, it becomes possible to diagnose the driving sound more accurately.
- the sound vibration time series spectrum acquisition unit 15 frequency only the sound vibration data corresponding to the period during constant speed operation extracted by the operation mode extraction unit 14 among the time-synchronized sound vibration data. Converts and discards data for other periods.
- FIG. 11 is a diagram showing an example of time-series spectrum data obtained by frequency-converting the sound vibration data of FIG. 6 in a three-dimensional graph with three axes of time, frequency, and power.
- the vertical axis represents power and the two orthogonal axes in the plane perpendicular to the vertical axis represent time and frequency.
- the feature point extraction unit 16 determines the frequency and time of the power of the spectrum of the sound vibration data represented by the time series data obtained by the sound vibration time series spectrum acquisition unit 15.
- the feature points that are the conditions are extracted (step S18).
- the feature point extraction unit 16 generates feature point data for the extracted feature points (step S19).
- the feature point data is a set of operation data at the frequency, time, power, waveform, and time of the feature point.
- An example of the conditions used when the feature point extraction unit 16 extracts the feature point is a vertex, a peak, a ridgeline, and a saddle point. The case of acquiring vertices as feature points will be described.
- a low-pass filter is applied to the time axis and frequency axis.
- the time constant of the low-pass filter is determined by the sampling period of the sound vibration data and the frequency conversion resolution.
- a Hilbert transform may be applied to the spectrum of the time series.
- the power threshold value is determined and divided into a region where the power is larger than the threshold value and a region where the power is smaller than the threshold value.
- the median spectrum of the time series is an example of a power threshold.
- t x, f x, p x, the time at each point x represents the frequency and power.
- the powers of a total of five points which are the above four points x1, x2, x3, x4 plus the original point x, are compared.
- the point x has a higher power than the other four points among the five points, that is, the point x surrounded by the other four points x1, x2, x3, x4 among the five points has the maximum power.
- the point x is a candidate for the vertex.
- a point x, two points adjacent to the time axis direction and two points adjacent to the frequency axis direction around the point x are used to extract the point having the maximum power.
- the embodiment is not limited to this.
- the point x any method may be used as long as the method is used to extract the point with the maximum power.
- the candidate vertices are arranged in descending order of power, and a certain number of points are extracted as the maximum from the largest.
- the candidate points may be arranged in descending order of power, and a certain number of points obtained from the largest may be used as vertices, or all candidate points whose power exceeds a predetermined threshold value may be used as vertices. Good. Moreover, you may combine these methods.
- the feature point can be used by using the operation data of the time closest to the time of the feature point, or based on the operation data of multiple times before and after the time of the feature point. By interpolating the operation data at the time of, the operation data at the time of the feature point can be determined.
- FIG. 12 is a three-dimensional graph with three axes of time, frequency, and power, showing an example of sound vertices extracted from the time-series spectrum data of FIG. This figure shows the vertices 1, 2, and 3 extracted by the method described above.
- the operation vibration extraction unit 17 extracts vibration components from the time-synchronized operation data and acquires the vibration data (step S20).
- the frequency, amplitude or phase of the vibration component is an example of vibration data. This process may be performed independently of the sound vibration time series spectrum acquisition process in step S17.
- An example of the vibration component extraction method is a method of finding the time from the top of a wave peak to the top of the next peak in the operation data during constant speed operation.
- the factor determination unit 18 compares the feature point data generated in step S19 and the vibration data acquired in step S20 with the factor determination conditions registered for each factor of the drive sound to generate the drive sound.
- the factor is determined (step S21).
- each factor determination condition registered for each factor of the driving sound is a feature that occurs in association with each phenomenon that occurs in the motor 110 or the driven machine 120 that is the factor of the driving sound for the feature point data.
- Numerical range when the combination of at least one of the frequency and time including the points and the driving position, driving speed, or driving data of the force generated by the driving of the motor 110, which is the actuator at the above time, is regarded as multidimensional data. Is defined.
- the vibration data for each phenomenon that occurs in the motor 110 or the driven machine 120 as a factor of the driving sound, a numerical range including a vibration component generated in association with this phenomenon is defined.
- the factor determination unit 18 determines the cause of the sound vibration data by comparing the acquired feature point data with the numerical range for each factor. Further, regarding the vibration data, the factor determination unit 18 compares the acquired vibration data with the numerical range for each factor, that is, compares the vibration component of the operation data with the peak of the sound to generate the vibration data. Determine the factors.
- the scraping noise generated is within a specific position section of the slider 125. Occurs only when it is in. Therefore, when the positions of the motor 110 at the time when the feature points are generated are concentrated in a specific position or a section P having a certain width, the diagnosis target 100 determines that sound is generated in the section P. 18 determines.
- the width of the section P can be determined by the ratio to the difference between the maximum value and the minimum value of the position data in the time series operation data.
- the factor determination condition may be a condition in which it is possible to inspect that the distribution of the positions of the motor 110 at the time of the feature points is concentrated on a specific position. For example, the number or ratio of feature points deviating from the section P of a certain width, the average and variance of the positions of the feature points at the time, or the correlation coefficient of the frequency and position at the feature points are calculated, and the calculated value is calculated in advance. It may be inspected that it is within the specified range.
- the rotation speed of the coupling 124 is calculated by multiplying the speed of the motor 110 in the operation data at the time when the feature point is generated by the conversion ratio of the gearbox 122, and the calculated rotation speed and the frequency of the feature point are 2.
- the factor determination unit 18 determines that the centers of the two axes connected by the coupling 124 are deviated when the relationship is in direct proportion to the fold. At this time, instead of the speed of the motor 110, the current of the motor 110 may be acquired as operation data and the values may be accumulated to substitute for the speed.
- the machine when the machine resonates mechanically by driving the motor 110, a resonance sound having a specific resonance frequency f is generated at a specific speed v that excites the mechanical resonance. Therefore, the rotation speed of the motor 110 at the time when the feature point is generated is concentrated in a specific speed or a section V having a certain width, and the frequency of the feature point is concentrated in a specific frequency or a section F having a certain width. Occasionally, the factor determination unit 18 determines that the diagnosis target 100 is generating a sound having a frequency f due to mechanical resonance at a rotation speed v.
- the rotation of the motor 110 causes the motor 110 to operate at regular intervals.
- the factor determination unit 18 determines that the vibration component excites mechanical resonance. That is, by comparing the vibration component of the operation data with the peak of the sound, the factor determination unit 18 determines the phenomenon that the mechanical resonance is periodically excited by the vibration component of the drive and the resonance is excited.
- the factor determination unit 18 uses the registered factor determination conditions for the feature point data extracted by the feature point extraction unit 16, or the feature point data and the vibration data extracted by the operation vibration extraction unit 17.
- the factor determination conditions to be registered similar conditions may be arranged in advance and inspected as a binary tree search. By doing so, the number of conditions to be inspected in determining the factor can be reduced, and the discrimination time can be shortened. This completes the process of the drive sound diagnosis method.
- the drive sound diagnosis systems 10 and 10A synchronize the time-series sound vibration data of the drive sound emitted by the actuator or the driven machine 120 with the time-series operation data of the operating state of the actuator. , Extract the operation mode.
- feature points were extracted from the spectrum of time-series sound vibration data obtained by analyzing the sound vibration data over time, and the operation data at the frequency, time, power, waveform, and time of the feature points were combined. Generate feature point data. Then, the cause of the driving sound was discriminated by comparing the feature point data with the factor discriminating condition prepared in advance.
- the cause of the driving sound is diagnosed based on the sound vibration data and the operation data, the location where the driving sound is generated due to the adhesion of foreign matter to the driven machine 120 can be specified, and the actuator or the driven machine can be identified.
- the cause of the abnormality depending on the position or speed of 120 can be easily determined. Further, it is possible to determine the cause of the frequency of the generated sound changing according to the speed of the actuator or the driven machine 120. Furthermore, even when the entire device is vibrating, it is possible to determine whether the sound vibration is due to driving.
- the drive sound diagnosis systems 10 and 10A diagnose the cause of sound or vibration based on the sound vibration data and operation data of the feature points and their generation time. Therefore, even if there is a device that emits a loud operating noise next to the diagnosis target, erroneous diagnosis can be suppressed from the causal relationship between the occurrence time and the operation data.
- the drive sound diagnosis systems 10 and 10A diagnose the sound generation factor by combining the frequency spectrum of the sound vibration data and the operation data
- the operation pattern changes when determining the change of the sound vibration data spectrum.
- the influence of the change in the spectrum of the sound vibration data due to the above can be removed.
- the influence of the sound vibration data on the spectrum can be removed by the operation data, so that the drive sound diagnosis systems 10 and 10A perform appropriate diagnosis. be able to.
- the drive sound diagnosis systems 10 and 10A diagnose the cause of the drive sound by substituting the feature amount obtained by time-frequency analysis of the sound vibration data into a conditional expression that does not depend on the drive pattern. Therefore, it is not necessary to prepare operation data at the time of normal or abnormal time in advance. Therefore, even if the configuration of the drive device or the machine is changed, it is possible to perform a general-purpose and immediate diagnosis of the drive sound.
- the peak frequency which is a feature amount of the sound generated by the deviation of the coupling 124, is represented by the following equation (3).
- Peak frequency frequency of rotation speed x conversion ratio of gearbox 122 x 2 ⁇ error [Hz] ... (3)
- the peak frequency of the sound generated by the deviation of the coupling 124 including the equations (1) and (2) is expressed by a conditional expression with the rotation speed of the motor 110 as a variable, and for each drive pattern, in this case. It is not necessary to prepare a conditional expression in advance for each rotation speed of the motor 110. Since the frequency of the rotation speed can be obtained from the acquired operation data, it is possible to determine the deviation of the coupling 124 in any operation pattern by using the equation (3). .. That is, the frequency, which is a feature amount of sound, is determined by substituting it into a conditional expression that does not depend on the drive pattern.
- the cause is diagnosed based on the driving sound emitted by the driven machine 120.
- diagnosing using the driving sound it is possible to make a diagnosis regardless of the machine even when the mechanical rigidity is low.
- the drive sound diagnosis systems 10 and 10A diagnose the cause of sound or vibration by using the result of time-frequency analysis of the sound vibration data. By performing time-frequency analysis, it is possible to reduce erroneous sensor detection or factor diagnosis error due to noise.
- the drive sound diagnosis systems 10 and 10A diagnose the cause of the drive sound based on the feature amount obtained by analyzing the sound vibration data over time and frequency. As a result, the data to be diagnosed can be reduced and the processing time can be reduced. Further, by using the frequency, it is possible to estimate the cause of the driving sound.
- the operation mode extraction unit 14 estimates the operation state of the device based on the operation data and extracts the operation mode. Then, frequency conversion can be performed only on the sound vibration data corresponding to the period during constant speed operation, and the sound vibration data during acceleration / deceleration in which the actuator drive is difficult to stabilize can be discarded. Therefore, compared to the case where the sound vibration data during acceleration / deceleration is also used, the accuracy of the diagnosis is improved, and the sound vibration data unsuitable for the diagnosis is discarded to increase the amount of memory and the processing time used in the arithmetic processing. Can be reduced.
- the drive sound diagnostic systems 10 and 10A determine the period during which the driven machine 120 is not operating based on the operation data, and omit the sound vibration data during the period when the driven machine 120 is not operating, so that the sound is not driven. It is possible to prevent false detection due to. Further, the processing cost can be reduced by omitting the frequency conversion in the state where the driven machine 120 is not operating.
- the influence of the driving sound due to other phenomena can be eliminated by specifying the operation mode including the driving sound to be investigated.
- the operation mode including the driving sound to be investigated when a plurality of actuators are provided, it is possible to estimate the actuator that causes the driving noise.
- the drive sound diagnosis systems 10 and 10A determine that the operation mode extraction unit 14 is in constant speed operation for a certain period of time when the sum of the changes in the speed data, which is the operation data, falls within a specific threshold value. By doing so, when the speed of the actuator is within a certain width, the driving sound generated by the driven machine 120 is stable and tends to be in a homogeneous state, so that the factor of the sound can be determined more accurately. .. Further, since the sound in a stable state can be extracted without specifying the speed, the same factor diagnosis can be performed even if the drive pattern is different during constant speed operation. Further, it is possible to extract the sound when the actuator or the driven machine 120 stabilizes at a plurality of speeds, which is desirable for factor estimation.
- the driving sound diagnosis systems 10 and 10A include a driving vibration extraction unit 17 that extracts a vibration component from the driving data, the factor determination unit 18 can compare the vibration component with the occurrence time of the feature point. As a result, it is possible to determine the phenomenon in which mechanical resonance is periodically excited by the vibration component of the drive and the resonance is excited.
- the drive sound diagnostic systems 10 and 10A detect that the distribution of the positions of the motor 110 at the feature points and the time of the feature points is concentrated at a specific position. By doing so, it is possible to determine whether or not the detected feature point is a feature point generated by a factor that depends on the operation data.
- the drive sound diagnostic systems 10 and 10A extract the feature points as the feature points where the power of the time-series spectrum is the apex of the waveform with respect to the frequency and time.
- the processing performed by the factor determination unit 18 can be reduced.
- By calculating the correlation coefficient between the vertices of the spectrum and the operation data it is possible to determine whether or not the detected vertices are caused by a factor that depends on the operation data.
- the drive sound diagnosis systems 10 and 10A determine the cause of the drive sound emitted by the driven machine 120, and notify the user of the elevator through the display 133. By doing so, the user of the elevator can detect that there is a problem in the driving sound of the driven machine 120 and take an appropriate action based on the diagnosis result.
- FIG. 13 is a diagram showing an example of a hardware configuration when the drive sound diagnosis system according to the second embodiment is applied to the picking unit.
- the diagnosis target 200 is a picking unit that transfers the work 291 flowing on the belt conveyor 225 to another belt conveyor 226.
- the diagnosis target 200 includes a plurality of motors 211,212,213,214, actuators 215, a driven machine 220, and a driving device 230.
- the drive sound diagnosis system 10B is provided on the diagnosis target 200.
- the drive sound diagnosis system 10B includes a drive sound detection unit 11, an operating state detection unit 12, a wireless network device 240, a server device 250, a user terminal 260, and a network device 270.
- the server device 250 and the user terminal 260 are connected via a communication line 280.
- the vertical direction is the Z direction
- the extending direction of the belt conveyors 225 and 226 is the Y direction
- the directions perpendicular to the Y direction and the Z direction are the X directions in the plane perpendicular to the Z direction.
- the driven machine 220 is a picking unit.
- the driven machine 220 includes a linear rail 221, a ball screw 222, a linear guide 223, a head 224, and two belt conveyors 225 and 226.
- the linear rail 221 is a rail that fixes the drive direction of the motor 212, which is a linear motor.
- the linear rail 221 is arranged so as to extend in the Y direction on the upper portions of the two belt conveyors 225 and 226 arranged in parallel.
- a head 224 is connected to the linear rail 221 via a motor 212, a ball screw 222, and a linear guide 223.
- the movable direction of the motor 212 when the motor 212 is driven is limited to the extending direction of the linear rail 221. In the example of FIG. 13, the movable direction of the motor 212 is limited to the X direction.
- the ball screw 222 is connected to the motor 211, and the rotation of the motor 211 drives the head 224 in the Z direction.
- the linear guide 223 is a guide that limits the driving direction of the ball screw 222 to the Z direction.
- the linear guide 223 is fastened to the motor 211 and the ball screw 222, and is fixed to the movable portion of the motor 212. As a result, the ball screw 222 is driven along the linear rail 221 by the drive of the motor 212.
- the head 224 is a stage driven in the Z direction by the drive of the ball screw 222.
- the head 224 has an actuator 215 having a shape extending in the Y direction and having a mechanism for holding the work 291 at the lower portion.
- the actuator 215 is a vacuum pad that holds the work 291 by a vacuum suction mechanism.
- the work 291 held by the actuator 215 can be moved up and down by the ball screw 222.
- the work 291 is a picking target of the picking unit.
- the belt conveyor 225 is a feeder that supplies the work 291 from the positive side to the negative side in the Y direction.
- a motor 213 is connected to the belt conveyor 225.
- the work 291 on the belt is transported by driving the built-in belt by the rotation of the motor 213.
- the belt conveyor 226 is an unloader that transports the work 291 from the positive side to the negative side in the Y direction.
- a motor 214 is connected to the belt conveyor 226. The work 291 on the belt is transported by driving the built-in belt by the rotation of the motor 214.
- the motor 211 is connected to the ball screw 222.
- the motor 211 is a servomotor that receives the current controlled by the drive device 230 and rotates the shaft.
- the motor 212 is connected to the linear rail 221.
- the motor 212 is a linear servomotor that receives the current controlled by the drive device 230 and drives the motor 212 in the X direction.
- the motor 213 is connected to the belt conveyor 225, and the motor 214 is connected to the belt conveyor 226.
- the motors 213 and 214 are stepping motors that receive a pulsed electric signal from the drive device 230 and rotate the shaft.
- the actuator 215 is a plurality of vacuum pads that receive an electric signal from the drive device 230 and attract or detach the work 291.
- the work 291 to be picked is held or released by the action of suction or desorption.
- the drive device 230 has a plurality of motor drives 231, 232, 233 and a motor control device 234.
- the motor drive 231 is connected to the motor 211 with a cable, and supplies power to drive the motor 211 while referring to the rotation angle of the motor 211.
- the motor drive 232 is connected to the motor 212 with a cable, and supplies power to drive the motor 212 while referring to the position of the motor 212.
- the motor drive 233 is connected to the motors 213 and 214 with a cable, and transmits a pulse-like command to the motors 213 and 214.
- the motor control device 234 controls the motor drives 231,232,233 and controls the drive of each motor 211,212,213,214.
- the motor drives 231, 232, 233 and the motor control device 234 are connected by a cable, and information can be exchanged with each other by communication. Further, the motor control device 234 is connected to the actuator 215 by a cable (not shown), and the suction and attachment / detachment of the work 291 by the actuator 215 are controlled by an electric signal.
- the vacuum pump is an example of the actuator 215 because it attaches or detaches to the work 291. When the vacuum pump operates, the work 291 is sucked, and when the vacuum pump does not operate, the work 291 is attached and detached.
- the drive sound detection unit 11 is a microphone that is arranged adjacent to the driven machine 220 and detects the sound emitted by the diagnosis target 200.
- the drive sound detection unit 11 is provided with a communication unit 241A.
- An example of the communication unit 241A is a wireless communication device.
- the drive sound detection unit 11 sets the detected drive sound with a time stamp which is the time when the sound is detected, and transmits the detected drive sound to the server device 250 via the communication unit 241A.
- the operating state detection unit 12 is a logger that is connected to the driving device 230 via a cable and acquires information on the driving device 230 as an operating state.
- the operation state detection unit 12 appropriately communicates with the drive device 230 to acquire and record various data including the operation state.
- the operation state detection unit 12 acquires the speed command of the motors 211, 212, 213, 214 and the suction state of the actuator 215 as the operation state of the diagnosis target 200, and outputs the speed command to the time synchronization unit 13.
- the binary data of adsorption or desorption is an example of the adsorption state.
- the operation state detection unit 12 is provided with a communication unit 241B.
- An example of the communication unit 241B is a wireless communication device.
- the operation state detection unit 12 sets the acquired operation state with a time stamp which is the time when the operation state is acquired, and transmits the acquired operation state to the server device 250 via the communication unit 241B.
- FIG. 13 shows a case where one drive sound detection unit 11 and one operation state detection unit 12 are provided for the multi-axis motors 211, 212, 213, 214 and the actuator 215.
- a plurality of drive sound detection units 11 or a plurality of operation state detection units 12 may be provided.
- the driving sound detecting unit 11 is provided for each of the motors 211, 212, 213, 214 and the actuator 215. By providing it, more accurate diagnosis can be expected.
- the wireless network device 240 is a device that performs wireless communication with the communication units 241A and 241B.
- the wireless network device 240 has a communication unit 241C.
- a wireless LAN Local Area Network
- the wireless network device 240 also has a role of a router at the same time, and relays communication between each terminal and the network by the communication line 280.
- the communication units 241A, 241B, 241C and the wireless network device 240 synchronize the time between the wireless devices including the communication units 241A, 241B, 241C and the wireless network device 240, if necessary. This is because the time used by the drive sound detection unit 11 and the operating state detection unit 12 is set to an accurate time.
- the function processing unit for determining the factor using the sound vibration data and the operation data is distributed to the server device 250 and the user terminal 260.
- the server device 250 and the user terminal 260 are connected via a communication line 280.
- the server device 250 receives sound vibration data and operation which are time-series data of the driving sound acquired from the driven machine 220.
- a process of generating device data including feature point data is performed using operation data which is time-series data of states.
- FIG. 14 is a block diagram schematically showing an example of the functional configuration of the server device according to the second embodiment.
- the server device 250 is an information processing device installed on the network by the communication line 280.
- the server device 250 has the functions of a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, and a feature point extraction unit 16. That is, the server device 250 includes a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, and a feature point extraction unit 16 as applications on the server device 250.
- the configuration in which the operating vibration extraction unit 17 is omitted is illustrated.
- the server device 250 includes a communication unit 251 that communicates between the drive sound detection unit 11 and the operation state detection unit 12 and between the user terminal 260.
- the server device 250 includes a device data storage unit 252.
- the device data storage unit 252 is a database such as RDBMS (Relational Database Management System) or Not only SQL.
- the server device 250 collects device data including the drive sound and the operation state sent to the network from the drive sound detection unit 11 and the operation state detection unit 12 in a database, processes the device data as necessary, and then stores the data.
- the sound vibration data and the operation data are synchronized, the time-series spectrum data of the sound vibration data is acquired, and the feature points are extracted from the spectrum data to obtain the feature points.
- the device data storage unit 252 stores device data including feature point data, which is a set of operation data at frequency, time, power, waveform, and time of feature points.
- FIG. 15 is a diagram showing an example of a record of device data according to the second embodiment.
- One record of device data includes a registration time, an operation mode, feature point data, and operation data.
- the user terminal 260 instructs the server device 250 to determine the cause of the driving sound of the driven machine 220, performs the factor determination process using the device data received from the server device 250, and displays the result.
- the user terminal 260 is an information processing device possessed by the user of the driven machine 220.
- An example of a user terminal 260 is a laptop or desktop personal computer.
- FIG. 16 is a block diagram schematically showing an example of the functional configuration of the user terminal according to the second embodiment.
- the user terminal 260 has the function of the factor determination unit 18 described in the first embodiment. That is, the user terminal 260 includes a factor determination unit 18 as an application on the user terminal 260.
- the user terminal 260 includes a communication unit 261, an input unit 262, and a display unit 263.
- the communication unit 261 communicates with the server device 250 via the communication line 280.
- an instruction to execute a factor determination process input from the input unit 262 by the user is transmitted to the server device 250, and various information including device data is received from the server device 250.
- the communication unit 261 can be connected to the drive sound detection unit 11 and the operation state detection unit 12 to acquire sound vibration data in which the drive sound is converted into time series data and operation data in which the operation state is converted into time series data. ..
- the input unit 262 is an input interface with the user.
- the keyboard or mouse is an example of the input unit 262.
- the input unit 262 inputs an instruction to execute the factor determination process of the driven machine 220.
- the display unit 263 displays information necessary for executing the factor determination process of the driven machine 220.
- the liquid crystal display is an example of the display unit 263.
- the display unit 263 displays the result of factor determination or device data acquired via the network.
- the network device 270 is a communication device that relays communication between the drive sound detection unit 11, the operating state detection unit 12, the server device 250, and the user terminal 260 provided in the driven machine 220.
- the router is an example of the network device 270.
- the drive sound diagnosis system 10B via the network, the drive sound can be diagnosed even in a remote place different from the factory where the driven machine 220 is installed. ..
- FIG. 17 is a block diagram showing an example of the hardware configuration of the server device and the user terminal.
- the server device 250 and the user terminal 260 include an arithmetic unit 401, a memory 402, a storage device 403, a communication device 404, an input device 405, and a display device 406.
- the arithmetic unit 401, the memory 402, the storage device 403, the communication device 404, the input device 405, and the display device 406 are connected via the bus line 407.
- the arithmetic unit 401 is a processor including a CPU that performs arithmetic processing.
- the memory 402 functions as a work area for storing data used by the arithmetic unit 401 in the middle of arithmetic processing.
- the storage device 403 stores computer programs, information, and the like.
- the communication device 404 has a communication function with other devices connected to the network.
- the input device 405 receives an input from the operator.
- the input device 405 is a keyboard, a mouse, or the like.
- the display device 406 outputs a display screen.
- the display device 406 is a monitor, a display, or the like. A touch panel in which the input device 405 and the display device 406 are integrated may be used.
- the functions of the time synchronization unit 13, the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15, and the feature point extraction unit 16 shown in FIG. 14 are such that the arithmetic unit 401 reads out the computer program stored in the storage device 403. It is realized by executing.
- the function of the factor determination unit 18 shown in FIG. 16 is realized by the arithmetic unit 401 reading and executing the computer program stored in the storage device 403.
- the user of the picking unit inputs the drive commands of the motors 211,212,213,214 and the actuator 215 to the motor control device 234 in order to convey the work 291 by the picking unit.
- the user inputs a command from the user terminal 260 to the motor control device 234.
- a command is transmitted to the motor control device 234 via the network device 270, the communication line 280, the server device 250, the wireless network device 240, the communication unit 241C, and the communication unit 241B.
- the motor control device 234 generates and transmits a drive command to the motor drives 231, 232, 233 according to the input command.
- the motor drives 231,232,233 control the motor drive current according to the received drive command to drive the motors 211,212,213,214 and the actuator 215.
- the belt conveyor 225 rotates, and the work 291 on the belt conveyor 225 moves from the positive side to the negative side in the Y direction.
- the motor 214 is driven, the belt conveyor 226 rotates, and the work 291 on the belt conveyor 226 moves from the positive side to the negative side in the Y direction.
- the actuator 215 holds the work 291 by attracting the work 291 moving on the belt conveyor 225 at the timing of contacting directly under the actuator 215. As a result, even when the actuator 215 is moved upward by driving the motor 211 after suction, the work 291 can be kept in contact with the actuator 215.
- the motor 211 rotates to move the actuator 215 upward.
- the work 291 since the work 291 is attracted to the actuator 215, the work 291 also rises as the actuator 215 rises, and is separated from the belt conveyor 225.
- the work 291 moves directly above the belt conveyor 226. After that, the work 291 is placed on the belt conveyor 226 by rotating the motor 211 again.
- the actuator 215 puts the work 291 on the belt conveyor 226 by releasing the work 291 at the timing when the held work 291 comes into contact with the belt conveyor 226.
- the motor 211 and the motor 212 are driven to return the actuator 215 to the starting position.
- the work 291 is carried out toward the negative side in the Y direction of the belt conveyor 226.
- the diagnosis target 200 emits a driving sound when it is driven.
- the drive sound generated by the diagnosis target 200 and the rotation angles of the motors 211, 212, 213, and 214 are recorded and acquired by the drive sound detection unit 11 and the operating state detection unit 12, and are recorded and acquired by the server device 250 by wireless communication. Will be sent.
- the server device 250 communicates with the drive sound detection unit 11 and the operation state detection unit 12 through the wireless network device 240 at any time to acquire various information about the diagnosis target 200 including the drive sound and the operation state, and the device data storage unit 252.
- the time synchronization unit 13, the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15 and the feature point extraction unit 16 are used to obtain sound vibration data and operation of the time series data.
- the device data storage unit 252 includes the feature point data calculated by the time synchronization unit 13, the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15, and the feature point extraction unit 16, and the time-synchronized operation data of the feature points. And other necessary information about the diagnosis target 200 is stored.
- the user terminal 260 acquires various information of the system required by the user, such as the presence or absence of an abnormality in the system, through the server device 250, and displays it on the display unit 263 of the user terminal 260.
- the user can perform the analysis necessary for the maintenance and operation of the diagnosis target 200 and the drive sound diagnosis system 10B by using the database stored in the device data storage unit 252 of the server device 250.
- the time synchronization unit 13 of the server device 250 synchronizes the sound vibration data with the operation data by using the time stamps set by the drive sound detection unit 11 and the operation state detection unit 12. This makes it possible to synchronize the sound vibration data and the operation data even when the real-time performance of the communication cannot be ensured due to poor communication quality or the like.
- the operation mode extraction unit 14 of the server device 250 or the like requires data between specific times, it is assumed that the data having the time stamps between the times specified by the time stamps is extracted. By extracting by this method, it is possible to perform analysis as synchronized data even if the acquisition cycles of sound vibration data and operation data are different.
- the data is thinned out after filtering so that the cycles are the same, or conversely, the data between them is linearly interpolated.
- a method of interpolation can be considered.
- the operation mode extraction unit 14 sets the operation mode by dividing the process according to which of the plurality of motors 211,212,213,214 and the actuator 215 is mainly operated. Specifically, the operation mode extraction unit 14 is based on the operation data, and based on the speed command of the motors 211,212,213,214 and the data of the crimping state of the actuator 215, which motor 211,212,213,214 or It is determined whether the actuator 215 is operating, and the operation mode is determined.
- the motor 213 mainly operates while the work is being carried in
- the motors 211 and 212 mainly operate while the work is being lifted
- the motor 214 is mainly operated while the work is being carried out
- the actuator 215 is mainly operated during the pump operation. Works on. Therefore, in one example, the operation mode extraction unit 14 divides the operation mode during the work loading, the work lifting, the work unloading, and the pump operation.
- the factor determination unit 18 of the user terminal 260 compares the feature point data with the numerical range generated by the server device 250, which is the factor determination condition, and determines the cause of the driving sound.
- a numerical range may be generated based on a parameter estimated to be a factor based on knowledge, or a numerical range may be generated by machine learning based on operation data and sound vibration data. It may be generated.
- the server device 250 may dynamically generate the factor determination condition immediately before the factor determination unit 18 determines the condition. In this case, since factor diagnosis based on a more urgent case can be performed, more accurate diagnosis can be performed.
- the driving vibration extraction unit 17 is not provided. Therefore, the factor determination unit 18 determines the factor by using the feature point data without using the vibration data.
- the drive sound diagnosis system 10B is driven by comparing the feature point data obtained by time-frequency analysis of the sound vibration data and the operation data with the numerical range generated by the server device 250 for each operation mode. Diagnose the cause of sound. Therefore, it is not necessary to prepare operation data in a normal state or an abnormal state in advance, and even if the configuration of the drive device or the machine is changed, the general-purpose and immediate diagnosis of the drive sound can be performed.
- the drive sound diagnosis system 10B it is possible to immediately determine the cause of the drive sound generated by the driven machine 220 driven by the plurality of motors 211,212,213,214 and the actuator 215. it can. In particular, it becomes easy to determine which motor drives the cause. As a result, when there is a problem in the driving sound of the driven machine 220, the user can take an appropriate countermeasure from the factor and can shorten the time required for the countermeasure.
- FIG. 18 is a block diagram showing an example of the functional configuration of the factor determination unit in the drive sound diagnosis system according to the third embodiment.
- the drive sound diagnosis system according to the third embodiment uses the factor determination unit 18 of the arithmetic processing unit 140 in the first embodiment to determine the cause of the drive sound by using a learner that has already learned about the factor determination of the drive sound. It is replaced with the part 18A.
- the same components as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the parts different from those in the first embodiment will be described.
- the factor determination unit 18A includes a learning result storage unit 31 and a factor inference unit 32.
- the learning result storage unit 31 stores the learning result obtained by performing machine learning in advance for estimating the factor of the driving sound with respect to the feature point data extracted by the feature point extraction unit 16.
- the factor inference unit 32 executes arithmetic processing based on the learning result of the learning result storage unit 31.
- the factor determination unit 18A receives the feature point data extracted by the feature point extraction unit 16 as an input, and performs arithmetic processing based on the learning result of the learning result storage unit 31 in the factor inference unit 32 to cause the driving sound. Make a judgment.
- the learning result saved in the learning result storage unit 31 may be the result of machine learning using all of the feature point data, or the result of machine learning using a part of the feature point data. You may. Further, the factor inference unit 32 extracts the input data according to the feature point data used at the time of learning of the learning result storage unit 31, and performs arithmetic processing.
- examples of the machine learning learning model for deriving the learning result stored in the learning result storage unit 31 include the K-nearest neighbor method, a decision tree, a support vector machine, and a kernel approximation. Further, deep learning may be used as a learning model.
- the factor determination unit 18A in the third embodiment determines the factor determination of the driving sound using a learned learner. Thereby, it is possible to provide more accurate factor determination of the driving sound. Further, since the factor determination unit 18A uses a learner that performs machine learning using the same data as the factor determination unit 18, it is possible to perform determination that does not depend on the drive pattern. From this, the learning result stored in the learning result storage unit 31 can be applied to various driving devices.
- FIG. 19 is a block diagram showing an example of the functional configuration of the machine learning device of the drive sound diagnosis system according to the fourth embodiment.
- the machine learning device 50 is a server device 250 and a user terminal 260 having a function processing unit that discriminates factors using sound vibration data and operation data according to the second embodiment, and is provided with a machine learning function.
- the same components as those of the first and second embodiments are designated by the same reference numerals, the description thereof will be omitted, and the parts different from those of the first and second embodiments will be described.
- the machine learning device 50 learns from a drive sound detection unit 11, an operating state detection unit 12, a sound vibration time series spectrum acquisition unit 15, a feature point extraction unit 16, a factor acquisition unit 51, a factor learning unit 52, and so on.
- a result storage unit 53 is provided.
- the factor acquisition unit 51 acquires data related to the factors that generate the driving sound.
- the factor acquisition unit 51 may, for example, acquire data relating to the factors that generate the measured driving sound input by the operation of the designer or the user.
- the factor acquisition unit 51 may acquire the diagnosis result of the driving sound generation factor according to the first embodiment or the second embodiment, or the diagnosis result of the driving sound generation factor in another driving sound diagnosis system. It may be the one to acquire.
- the factor learning unit 52 follows a training data set created based on a combination of the feature point data extracted by the feature point extraction unit 16 and the data related to the generation factor of the driving sound acquired by the factor acquisition unit 51. Learn the factors that generate driving noise.
- the learning model used in the factor learning unit 52 the learning model mentioned in the third embodiment can be used.
- the diagnostic data used in the training data set those of a plurality of driven machines 220 may be used. In one example, more accurate diagnosis can be made by connecting to a plurality of driven machines 220 via a communication line 280 or the like and collecting diagnostic data.
- the learning result storage unit 53 stores the learning result by the factor learning unit 52.
- FIG. 20 is a block diagram schematically showing an example of the functional configuration of the server device according to the fourth embodiment.
- the server device 250A is an information processing device installed on the network by the communication line 280.
- the server device 250A includes a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, a feature point extraction unit 16, a factor learning unit 52, a learning result storage unit 53, and a communication unit. 251 and.
- the server device 250A processes the device data including the drive sound and the operation state sent from the drive sound detection unit 11 and the operation state detection unit 12 to the communication line 280 as necessary, and then learns and stores the device data.
- the feature point data which is a set of operation data at the frequency, time, power, waveform, and time of the feature point
- the factor learning unit 52 learns the factors that generate the driving sound using the training data set, and stores the result in the learning result storage unit 53.
- FIG. 21 is a block diagram schematically showing an example of the functional configuration of the user terminal according to the fourth embodiment.
- the user terminal 260A includes a communication unit 261, an input unit 262A, a display unit 263, a factor determination unit 18, and a factor acquisition unit 51.
- the factor acquisition unit 51 acquires data on the factors that generate the driving sound from, for example, the user.
- the acquired data regarding the cause of the driving sound is transmitted to the server device 250A via the communication unit 261.
- the input unit 262A is an input interface with the user.
- the input unit 262A is an interface when the user inputs an instruction to execute a factor determination process of the driven machine 220, and when the user inputs data related to a driving sound generation factor acquired by the factor acquisition unit 51. It becomes.
- the drive sound diagnosis system has both a machine learning function for the factors of the drive sound and a factor discrimination function using the result of the machine learning function. As a result, it is possible to improve the accuracy of the factor diagnosis by advancing the learning while using the factor diagnosis of the driving sound.
- the drive sound diagnosis system has both a machine learning function for the factors of the drive sound and a factor discrimination function using the result of the machine learning function, but the machine learning device 50 of the drive sound diagnosis system is independently configured. Therefore, factor determination using the learning result may be a function of another device.
- An example of the factor discriminating device using the learning result has the configuration shown in FIG. 18 of the third embodiment.
- the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
- 10, 10A, 10B drive sound diagnosis system 11 drive sound detection unit, 12 operation state detection unit, 13 time synchronization unit, 14 operation mode extraction unit, 15 sound vibration time series spectrum acquisition unit, 16 feature point extraction unit, 17 operation Vibration extraction unit, 18,18A factor determination unit, 31,53 learning result storage unit, 32 factor reasoning unit, 50 machine learning device, 51 factor acquisition unit, 52 factor learning unit, 100,200 diagnosis target, 110, 211,212 , 213,214 motor, 120,220 driven machine, 130,230 drive device, 131,231,232,233 motor drive, 132,234 motor control equipment, 133 display, 140 arithmetic processing unit, 215 actuator, 250, 250A server device, 251,261 communication unit, 252 device data storage unit, 260, 260A user terminal, 270 network equipment, 280 communication line.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
This operation sound diagnosis system (10) comprises: an operation sound detection unit (11) for detecting the operation sound of an actuator or driven machine, an operation state detection unit (12) for acquiring a time series of the driving position or driving speed of the actuator or the force produced by the driving, a sound-vibration-time-series-spectrum acquisition unit (15), a feature point extraction unit (16), and a cause determination unit (18). The sound-vibration-time-series-spectrum acquisition unit outputs a time series spectrum associating frequency and time with the power of a frequency spectrum calculated from operation sound time series data. The feature point extraction unit outputs feature point data for feature points on the time series spectrum in sets comprising the frequencies and times at the feature points, as well as the driving position or driving speed of the actuator at those times or the force produced by the driving at those times. The cause determination unit determines the cause of the operation sound by comparing the values of the feature point data with numerical ranges for each phenomenon using the combination of the frequencies or times for the feature points for that phenomenon and the operation data during those times as multidimensional data.
Description
本発明は、アクチュエータまたはアクチュエータによって駆動される被駆動機械の駆動音を診断する駆動音診断システム、駆動音診断方法および駆動音診断システムの機械学習装置に関する。
The present invention relates to an actuator or a drive sound diagnostic system for diagnosing the drive sound of a driven machine driven by the actuator, a drive sound diagnosis method, and a machine learning device for the drive sound diagnosis system.
一般に、モータなどの動力源を備える装置において、動力源または動力源の駆動対象である機械の駆動音には、動力源および駆動対象の状態に関する多くの情報が含まれていることが知られている。例えば、動力源または駆動対象に何らかの異常が発生した場合、正常時とは異なる音または振動が発生する。このため、音または振動が異常であるか否かを診断する診断装置が知られている。しかし、装置を、初めて動かす場合、あるいは装置の機械構成および駆動パターンを変更した直後に駆動する場合には、駆動音が正常であるかどうかを即座に判断することは困難である。そのため、装置が発する音または振動である駆動音をセンサで取得し、駆動音の発生要因を容易に特定する技術が求められている。特に、装置の機械構成および設定を限定せずに、より手軽にかつ汎用的に駆動音を用いた診断を行う技術が求められている。
In general, in a device having a power source such as a motor, it is known that the drive sound of the power source or the machine to which the power source is driven contains a lot of information about the power source and the state of the drive target. There is. For example, when some abnormality occurs in the power source or the driving target, a sound or vibration different from the normal state is generated. Therefore, a diagnostic device for diagnosing whether or not sound or vibration is abnormal is known. However, when the device is moved for the first time, or when the device is driven immediately after the mechanical configuration and drive pattern of the device are changed, it is difficult to immediately determine whether the drive sound is normal or not. Therefore, there is a need for a technique for easily identifying the cause of the driving sound by acquiring the driving sound, which is the sound or vibration generated by the device, with a sensor. In particular, there is a demand for a technique for performing diagnosis using a driving sound more easily and versatilely without limiting the mechanical configuration and settings of the device.
特許文献1には、回転機器を備える装置の発する音または振動を計測し、装置の異常の有無または異常原因を特定する技術が開示されている。この技術によれば、まず装置の実稼働前に異音発生時の動力源および動力源によって駆動される機械である被駆動機械の発する音について周波数および時間に関する特徴の組を予め異常原因別に取得しておく。周波数に関する特徴は、計測した駆動音の時系列データに対し短時間フーリエ変換等を施して求めたスペクトルの時間変化から頂点を生じる周波数である。時間に関する特徴は、周波数特徴量ごとに頂点を生じる時間間隔である。そして、装置の実稼働時に、同様の手法で実稼働中に取得した周波数および時間に関する特徴と、予め取得した周波数および時間に関する特徴と、を比較することによって、異常の有無および原因が特定される。
Patent Document 1 discloses a technique of measuring the sound or vibration generated by a device including a rotating device and identifying the presence or absence of an abnormality or the cause of the abnormality of the device. According to this technology, first, before the actual operation of the device, the power source when abnormal noise is generated and the set of frequency and time characteristics of the sound emitted by the driven machine, which is the machine driven by the power source, are acquired in advance for each abnormality cause. I will do it. The characteristic of the frequency is the frequency at which the apex is generated from the time change of the spectrum obtained by performing a short-time Fourier transform or the like on the time series data of the measured driving sound. The time feature is the time interval that produces vertices for each frequency feature. Then, during the actual operation of the device, the presence / absence and the cause of the abnormality are identified by comparing the characteristics related to the frequency and time acquired during the actual operation by the same method with the characteristics related to the frequency and time acquired in advance. ..
しかしながら、特許文献1に記載の技術では、アクチュエータまたは被駆動機械が発する駆動音を計測したデータのみから装置の異常の有無および原因を特定している。そのため、アクチュエータもしくは被駆動機械の位置または速度に依存する異常の原因を特定することが難しいという問題があった。
However, in the technique described in Patent Document 1, the presence or absence and the cause of the abnormality of the device are specified only from the data obtained by measuring the driving sound generated by the actuator or the driven machine. Therefore, there is a problem that it is difficult to identify the cause of the abnormality depending on the position or speed of the actuator or the driven machine.
本発明は、上記に鑑みてなされたものであって、アクチュエータもしくは被駆動機械の位置または速度に依存する異常の原因を特定することができる駆動音診断システムを得ることを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to obtain a driving sound diagnostic system capable of identifying the cause of an abnormality depending on the position or speed of an actuator or a driven machine.
上述した課題を解決し、目的を達成するために、本発明に係る駆動音診断システムは、駆動音検出部と、運転状態検出部と、音振動時系列スペクトル取得部と、特徴点抽出部と、要因判定部と、を備える。駆動音検出部は、アクチュエータまたはアクチュエータによって駆動される被駆動機械で発生する音または機械的振動である駆動音を検出する。運転状態検出部は、アクチュエータの駆動位置、駆動速度または駆動により発生する力を時系列で取得する。音振動時系列スペクトル取得部は、検出された駆動音の時系列データである音振動データの各時刻に対応する周波数スペクトルを算出し、算出した周波数スペクトルのパワーを周波数および時刻と対応付けて組にした時系列スペクトルを出力する。特徴点抽出部は、時系列スペクトルのパワーの周波数および時刻に対する波形が定められた条件を満たす点を特徴点として抽出し、特徴点の周波数、時刻、特徴点の波形および特徴点の時刻におけるアクチュエータの駆動位置、駆動速度または駆動により発生する力である運転データを組にした特徴点データを出力する。要因判定部は、駆動音の要因であるアクチュエータまたは被駆動機械に発生する現象毎に、現象に伴って発生する特徴点の含まれる周波数および時刻の少なくとも1つと、その時刻におけるアクチュエータの駆動位置、駆動速度または駆動により発生する力である運転データと、の組み合わせを多次元データとしたときの第1数値範囲を定めた要因判定条件と、特徴点データの数値と、を比較することで検出された駆動音の発生要因を判定する。
In order to solve the above-mentioned problems and achieve the object, the drive sound diagnosis system according to the present invention includes a drive sound detection unit, an operating state detection unit, a sound vibration time series spectrum acquisition unit, and a feature point extraction unit. , A factor determination unit, and so on. The drive sound detection unit detects a drive sound that is a sound or mechanical vibration generated by an actuator or a driven machine driven by the actuator. The operation state detection unit acquires the drive position, drive speed, or force generated by the drive of the actuator in time series. The sound vibration time series spectrum acquisition unit calculates a frequency spectrum corresponding to each time of the sound vibration data which is the time series data of the detected driving sound, and sets the power of the calculated frequency spectrum in association with the frequency and the time. Outputs the time series spectrum set to. The feature point extraction unit extracts points as feature points whose waveforms with respect to the power frequency and time of the time series spectrum satisfy the specified conditions, and the actuator at the frequency, time, feature point waveform, and feature point time of the feature point. Outputs feature point data that is a set of operation data that is the drive position, drive speed, or force generated by the drive. For each phenomenon that occurs in the actuator or the driven machine that is the cause of the driving sound, the factor determination unit includes at least one frequency and time including the feature points that occur with the phenomenon, and the driving position of the actuator at that time. Detected by comparing the driving speed or the operation data, which is the force generated by driving, with the factor judgment condition that defines the first numerical range when the combination is multidimensional data, and the numerical value of the feature point data. Determine the cause of the driving noise.
本発明に係る駆動音診断システムは、アクチュエータもしくは被駆動機械の位置または速度に依存する異常の原因を特定することができるという効果を奏する。
The drive sound diagnostic system according to the present invention has an effect of being able to identify the cause of an abnormality depending on the position or speed of the actuator or the driven machine.
以下に、本発明の実施の形態に係る駆動音診断システム、駆動音診断方法および駆動音診断システムの機械学習装置を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
The drive sound diagnosis system, the drive sound diagnosis method, and the machine learning device of the drive sound diagnosis system according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to these embodiments.
実施の形態1.
図1は、実施の形態1に係る駆動音診断システムの機能構成の一例を示すブロック図である。駆動音診断システム10は、駆動音検出部11と、運転状態検出部12と、時刻同期部13と、運転モード抽出部14と、音振動時系列スペクトル取得部15と、特徴点抽出部16と、運転振動抽出部17と、要因判定部18と、を備える。Embodiment 1.
FIG. 1 is a block diagram showing an example of the functional configuration of the drive sound diagnosis system according to the first embodiment. The drivesound diagnosis system 10 includes a drive sound detection unit 11, an operation state detection unit 12, a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, and a feature point extraction unit 16. A driving vibration extraction unit 17 and a factor determination unit 18 are provided.
図1は、実施の形態1に係る駆動音診断システムの機能構成の一例を示すブロック図である。駆動音診断システム10は、駆動音検出部11と、運転状態検出部12と、時刻同期部13と、運転モード抽出部14と、音振動時系列スペクトル取得部15と、特徴点抽出部16と、運転振動抽出部17と、要因判定部18と、を備える。
FIG. 1 is a block diagram showing an example of the functional configuration of the drive sound diagnosis system according to the first embodiment. The drive
駆動音検出部11は、アクチュエータおよびアクチュエータによって駆動される機械である被駆動機械が発する音または振動を検出する。以下では、アクチュエータおよび被駆動機械が発する音または振動を駆動音というものとする。駆動音検出部11は、音または振動を検出するセンサである。音を検出するマイクロフォン、加速度センサなどの振動センサは駆動音検出部11の一例である。駆動音検出部11は、アクチュエータを駆動する駆動機器が発する音を検出してもよい。
The drive sound detection unit 11 detects the sound or vibration generated by the actuator and the driven machine, which is a machine driven by the actuator. In the following, the sound or vibration generated by the actuator and the driven machine will be referred to as the driving sound. The drive sound detection unit 11 is a sensor that detects sound or vibration. A vibration sensor such as a microphone or an acceleration sensor that detects sound is an example of the drive sound detection unit 11. The drive sound detection unit 11 may detect the sound emitted by the drive device that drives the actuator.
運転状態検出部12は、駆動機器に接続されたアクチュエータの運転状態を時系列で取得する。アクチュエータの運転状態は、アクチュエータの駆動位置、駆動速度または駆動によって発生する力を含む。モータは、アクチュエータの一例である。モータの回転角度を検出するエンコーダ、リニアモータの位置を検出するリニアスケール、位置センサ、変位計、距離センサ、速度検出器、電流検出器、加速度センサ、ジャイロセンサ、力覚センサは、運転状態検出部12の一例である。
The operation state detection unit 12 acquires the operation state of the actuator connected to the drive device in chronological order. The operating state of the actuator includes the drive position, drive speed or force generated by the drive of the actuator. The motor is an example of an actuator. The encoder that detects the rotation angle of the motor, the linear scale that detects the position of the linear motor, the position sensor, the displacement meter, the distance sensor, the speed detector, the current detector, the acceleration sensor, the gyro sensor, and the force sensor detect the operating state. This is an example of part 12.
時刻同期部13は、駆動音検出部11で検出された駆動音の時系列データである音振動データと、運転状態検出部12で検出された運転状態の時系列データである運転データと、の時刻の同期を行う。一例では、時刻同期部13は、音振動データおよび運転データの基準となる時刻の差を求め、この差を用いて音振動データまたは運転データの時刻を補正し、音振動データおよび運転データのうち共通して取得された時刻間のデータを抽出することで、同期した音振動データおよび運転データを取得する。
The time synchronization unit 13 is composed of sound vibration data, which is time-series data of the drive sound detected by the drive sound detection unit 11, and operation data, which is time-series data of the operation state detected by the operation state detection unit 12. Synchronize the time. In one example, the time synchronization unit 13 obtains the difference between the reference times of the sound vibration data and the operation data, corrects the time of the sound vibration data or the operation data using this difference, and among the sound vibration data and the operation data. Synchronized sound vibration data and operation data are acquired by extracting the data between the commonly acquired times.
運転データの一例は、電流、発生トルク、位置、速度の時系列データである。運転データは、駆動機器の情報であってもよいし、一部の検出可能なデータに基づく推定値であってもよい。モータの位置指令、速度指令、トルク指令、電流指令、電圧指令をモータの駆動装置が記憶し、駆動音診断システム10がモータの駆動装置からこれらを取得してそのまま運転データとしてもよいし、検出可能なデータとの比較演算またはフィルタ処理を含む推定演算によって運転データが求められてもよい。
An example of operation data is time series data of current, generated torque, position, and speed. The operation data may be information on the driving device or may be an estimated value based on some detectable data. The drive device of the motor stores the position command, speed command, torque command, current command, and voltage command of the motor, and the drive sound diagnosis system 10 may acquire these from the drive device of the motor and use them as operation data as they are, or detect them. The operation data may be obtained by a comparison operation with possible data or an estimation operation including filtering.
また、運転データは、アナログ信号に限定されない。速度が指令の速度に達した時にオンとなる二値のデータは運転データの一例である。この他、運転データは、時刻と値の組である必要はない。各時刻の速度パターンを表す時刻を引数とする関数は運転データの一例である。
Also, the operation data is not limited to analog signals. The binary data that is turned on when the speed reaches the command speed is an example of operation data. In addition, the operation data does not have to be a set of time and value. The function that takes the time as an argument, which represents the speed pattern of each time, is an example of operation data.
運転モード抽出部14は、運転状態を運転状態検出部12で検出された運転データに基づいて時刻で区切られた2つ以上の区間に区分する。具体的には、運転モード抽出部14は、運転データを解析することによって、アクチュエータの運転状態の種別を判別し、運転モードとして特定の種類のアクチュエータの運転状態となる時刻の区間を抽出する。運転モードは、時刻同期部13で音振動データと同期を行った後の運転データから運転状態を判別してもよいし、時刻同期部13で音振動データと同期を行う前の運転データから運転状態を判別してもよい。
The operation mode extraction unit 14 divides the operation state into two or more sections separated by time based on the operation data detected by the operation state detection unit 12. Specifically, the operation mode extraction unit 14 determines the type of the operating state of the actuator by analyzing the operation data, and extracts the interval of the time when the operating state of the specific type of actuator is set as the operation mode. In the operation mode, the operation state may be determined from the operation data after synchronization with the sound vibration data by the time synchronization unit 13, or the operation may be performed from the operation data before synchronization with the sound vibration data by the time synchronization unit 13. The state may be determined.
音振動時系列スペクトル取得部15は、時刻同期部13で時刻同期を行った音振動データに対して、周波数変換を行い各時刻に対応する音振動データのスペクトルを求めた時系列スペクトルを取得する。時系列スペクトルは、算出した周波数スペクトルのパワーを周波数および時刻と対応付けて組にしたものである。音振動時系列スペクトル取得部15は、周波数変換を行う際に、運転モード抽出部14の抽出結果のうち、特定の運転モードの区間のみを周波数変換することによって、周波数変換を行う時刻を選択してもよい。一例として、駆動音が測定される可能性の低いアクチュエータが停止している状態の運転モードを周波数変換の対象から外すことができる。この場合、周波数変換処理を行うデータの量が削減されるため、演算時に使用するメモリの削減と処理時間の短縮が望める。
The sound vibration time series spectrum acquisition unit 15 acquires a time series spectrum obtained by frequency-converting the sound vibration data synchronized by the time synchronization unit 13 and obtaining the spectrum of the sound vibration data corresponding to each time. .. The time series spectrum is a set in which the power of the calculated frequency spectrum is associated with the frequency and the time. When performing frequency conversion, the sound vibration time series spectrum acquisition unit 15 selects the time at which frequency conversion is performed by frequency-converting only the section of a specific operation mode from the extraction results of the operation mode extraction unit 14. You may. As an example, the operation mode in which the actuator, which is unlikely to measure the driving sound, is stopped can be excluded from the target of frequency conversion. In this case, since the amount of data to be subjected to frequency conversion processing is reduced, it is possible to reduce the memory used during calculation and the processing time.
特徴点抽出部16は、音振動時系列スペクトル取得部15で求めた時系列スペクトルのパワーの周波数および時刻に対する波形が、定められた条件を満たすときに、その点を特徴点として抽出する。特徴点抽出部16は、特徴点の周波数、時刻、パワー、特徴点の波形、特徴点の時刻における運転データを特徴点データとして組にする。
The feature point extraction unit 16 extracts the point as a feature point when the waveform with respect to the power frequency and time of the time series spectrum obtained by the sound vibration time series spectrum acquisition unit 15 satisfies a predetermined condition. The feature point extraction unit 16 sets the frequency, time, power, waveform of the feature point, and operation data at the time of the feature point as feature point data.
運転振動抽出部17は、時刻同期を行った運転データから振動成分を抽出し、その周波数または振幅を含む振動データを取得する。
The operation vibration extraction unit 17 extracts vibration components from the time-synchronized operation data and acquires vibration data including the frequency or amplitude thereof.
要因判定部18は、駆動音の要因として発生する現象毎に定められたその現象に伴って発生する特徴点の含まれる数値範囲である要因判定条件と、特徴点抽出部16で抽出された特徴点データと、を比較することによって駆動音の発生要因を判定する。このとき、要因判定条件は、駆動音の要因である発生する現象毎に予め定められたその現象に伴って発生する振動データの含まれる数値範囲を含むものであってもよい。この場合には、要因判定部18は、要因判定条件と、特徴点抽出部16で抽出された特徴点データおよび運転振動抽出部17で抽出された振動データと、を比較することによって駆動音の発生要因を推定する。
The factor determination unit 18 determines the factor determination condition, which is a numerical range including the feature points generated in association with the phenomenon determined for each phenomenon that occurs as a factor of the driving sound, and the feature extracted by the feature point extraction unit 16. The cause of the driving sound is determined by comparing with the point data. At this time, the factor determination condition may include a numerical range including vibration data generated in association with the phenomenon that is predetermined for each phenomenon that is a factor of the driving sound. In this case, the factor determination unit 18 compares the factor determination condition with the feature point data extracted by the feature point extraction unit 16 and the vibration data extracted by the driving vibration extraction unit 17 to obtain the driving sound. Estimate the cause.
なお、装置の異常毎に特徴点の含まれる数値範囲を規定した場合には、被駆動機械のすべての種類に対して、装置の異常原因別の特徴点の含まれる数値の範囲を求めなければならない。また、被駆動機械の構成を変更した場合にも同様に、装置の異常原因別の特徴点の含まれる数値の範囲を求めなければならない。多種類の被駆動機械が存在し、また被駆動機械の構成も多種類の変更のバリエーションが存在するので、これらのすべてについて装置の異常原因別の特徴点の含まれる数値範囲を求めるのは現実的ではない。
If the numerical range including the feature points is specified for each abnormality of the device, the range of the numerical values including the feature points according to the cause of the abnormality of the device must be obtained for all types of driven machines. It doesn't become. Further, even when the configuration of the driven machine is changed, it is necessary to obtain the range of numerical values including the feature points for each cause of abnormality of the device. Since there are many types of driven machines and there are many variations of changes in the configuration of the driven machines, it is a reality to find the numerical range that includes the characteristic points for each cause of abnormality of the device for all of them. Not the target.
しかし、実施の形態1では、装置の異常毎ではなく、駆動音の要因として発生する現象毎に、特徴点の含まれる数値範囲を定めている。つまり、特徴量を、モータの回転速度の値などの特定の駆動パターンで規定するのではなく、駆動パターンに依らない条件式、例えばモータの回転速度を変数とした条件式で表現している。そのため、被駆動機械が異なる場合、あるいは被駆動機械の構成を変更した場合でも、駆動音の要因が同じであれば、発生する現象も同じであり、被駆動機械の種類または構成に依らずに同じ要因判定条件を使用することができる。その結果、装置の異常毎に特徴点の含まれる数値の範囲を規定する場合に比して、診断の準備に要する時間を短くすることができ、また汎用的に駆動音の診断を実施することができる。
However, in the first embodiment, the numerical range including the feature points is defined not for each abnormality of the device but for each phenomenon that occurs as a factor of the driving sound. That is, the feature amount is not defined by a specific drive pattern such as the value of the rotation speed of the motor, but is expressed by a conditional expression that does not depend on the drive pattern, for example, a conditional expression that uses the rotation speed of the motor as a variable. Therefore, even if the driven machine is different or the configuration of the driven machine is changed, if the factors of the driving sound are the same, the phenomenon that occurs is the same, regardless of the type or configuration of the driven machine. The same factor determination conditions can be used. As a result, the time required for preparation for diagnosis can be shortened as compared with the case where the range of numerical values including the feature points is specified for each abnormality of the device, and the diagnosis of the driving sound can be performed for general purposes. Can be done.
特徴点データは、特徴点の周波数、時刻、パワー、特徴点の波形、および特徴点の時刻における運転データを組にしたものである。そのため、音または振動についての情報だけではなく、アクチュエータもしくは被駆動機械の位置または速度についての情報が含まれる。つまり、要因判定部18では、駆動音の発生の要因を判定する際に、アクチュエータもしくは被駆動機械の位置または速度も含めて判定することになるので、アクチュエータもしくは被駆動機械の位置または速度に依存する異常の要因を容易に特定することが可能となる。
The feature point data is a set of the frequency, time, power of the feature point, the waveform of the feature point, and the operation data at the time of the feature point. Therefore, it includes not only information about sound or vibration, but also information about the position or speed of the actuator or driven machine. That is, since the factor determination unit 18 also determines the position or speed of the actuator or the driven machine when determining the factor of the generation of the driving sound, it depends on the position or speed of the actuator or the driven machine. It is possible to easily identify the cause of the abnormality.
また、図1において、時刻同期部13、運転モード抽出部14および運転振動抽出部17は、診断が必要とする性能または装置構成によって、適宜、駆動音診断システム10に含めてもよいし、駆動音診断システム10から除去してもよい。一例では、音振動データと運転データとを同一の計測器またはデバイスで取得する場合に、取得するタイミングが同一のAD(Analog to Digital)変換器を使用することで、取得するデータの同期をとることができる。つまり、時刻同期部13を設けることなく音振動データと運転データとの同期を行うことができる。この場合、時刻同期部13を除去することによって、駆動音診断システム10で使用するメモリの削減と処理時間の短縮が望める。
Further, in FIG. 1, the time synchronization unit 13, the operation mode extraction unit 14, and the operation vibration extraction unit 17 may be appropriately included in the drive sound diagnosis system 10 or driven depending on the performance or device configuration required for diagnosis. It may be removed from the sound diagnostic system 10. In one example, when sound vibration data and operation data are acquired by the same measuring instrument or device, the acquired data is synchronized by using AD (Analog to Digital) converters with the same acquisition timing. be able to. That is, the sound vibration data and the operation data can be synchronized without providing the time synchronization unit 13. In this case, by removing the time synchronization unit 13, it is possible to reduce the memory used in the drive sound diagnosis system 10 and the processing time.
図2は、実施の形態1に係る駆動音診断システムを昇降機に適用した場合のハードウェア構成の一例を示す図である。図2に示されるように、診断対象100は、アクチュエータであるモータ110と、被駆動機械120と、モータ110を駆動する駆動装置130と、を備える。また、この診断対象100に、駆動音検出部11、運転状態検出部12および演算処理部140を備える駆動音診断システム10Aが設けられる。
FIG. 2 is a diagram showing an example of a hardware configuration when the drive sound diagnosis system according to the first embodiment is applied to an elevator. As shown in FIG. 2, the diagnosis target 100 includes a motor 110 which is an actuator, a driven machine 120, and a drive device 130 for driving the motor 110. Further, the diagnosis target 100 is provided with a drive sound diagnosis system 10A including a drive sound detection unit 11, an operating state detection unit 12, and an arithmetic processing unit 140.
モータ110は、駆動指令と回転情報との差分に基づき電機子巻線の電流を制御するサーボモータである。モータ110は、モータ110を駆動する機器からエネルギまたは電気信号を受け取ることによって動力を発生させるアクチュエータであればよい。この例では、モータ110は、駆動装置130によって制御される。ただし、駆動装置130によって制御されるモータ110の状態量は、電流に限定されない。油圧、空圧、熱、超音波は、駆動装置130により制御されるモータ110の状態量の一例である。また、モータ110は、回転力を発生させるものに限定されず、並進方向に駆動させるリニアモータでもよい。
The motor 110 is a servomotor that controls the current of the armature winding based on the difference between the drive command and the rotation information. The motor 110 may be an actuator that generates power by receiving energy or an electric signal from the device that drives the motor 110. In this example, the motor 110 is controlled by the drive device 130. However, the state quantity of the motor 110 controlled by the drive device 130 is not limited to the current. Hydraulic pressure, pneumatic pressure, heat, and ultrasonic waves are examples of the state quantities of the motor 110 controlled by the drive device 130. Further, the motor 110 is not limited to one that generates a rotational force, and may be a linear motor that drives in the translation direction.
被駆動機械120は、モータ110の回転に応じて上下方向に駆動対象を搬送する昇降機である。被駆動機械120は、モータ110を架台に固定するブラケット121と、モータ110で発生した回転力を増幅してボールねじ123に伝達するギアボックス122と、モータ110の回転を上下方向の運動に変換するボールねじ123と、ギアボックス122とボールねじ123とを接続するカップリング124と、を備える。
The driven machine 120 is an elevator that conveys a drive target in the vertical direction according to the rotation of the motor 110. The driven machine 120 converts the rotation of the motor 110 into vertical motion, the bracket 121 for fixing the motor 110 to the gantry, the gearbox 122 for amplifying the rotational force generated by the motor 110 and transmitting it to the ball screw 123. The ball screw 123 and the coupling 124 connecting the gearbox 122 and the ball screw 123 are provided.
また、昇降機は、ボールねじ123の回転により上下方向に駆動されるスライダ125と、スライダ125に固定され、ワークを搭載するステージ126と、スライダ125の運動を摺動自在に上下方向に案内するリニアガイド127と、ベアリングを介してボールねじ123を回転自在にリニアガイド127に固定するブラケット128と、を備える。
Further, the lifting machine has a slider 125 driven in the vertical direction by the rotation of the ball screw 123, a stage 126 fixed to the slider 125 on which the workpiece is mounted, and a linear guide for slidably guiding the movement of the slider 125 in the vertical direction. A guide 127 and a bracket 128 for rotatably fixing the ball screw 123 to the linear guide 127 via a bearing are provided.
ここでは、被駆動機械120がボールねじ123を有する昇降機である場合を例示したが、被駆動機械120は、モータ110の回転に応じて、音または振動が発生する機械であればよい。ねじ、ベルト、ギア、カム、リンク機構、ベアリングもしくはシール、またはこれらの要素を組み合わせた機械は、被駆動機械120の一例である。
Here, the case where the driven machine 120 is an elevator having a ball screw 123 is illustrated, but the driven machine 120 may be a machine that generates sound or vibration according to the rotation of the motor 110. A machine with screws, belts, gears, cams, linkages, bearings or seals, or a combination of these elements is an example of a driven machine 120.
駆動装置130は、モータ110にケーブル151を介して接続される。駆動装置130は、モータドライブ131と、モータ制御機器132と、表示器133と、を備える。モータドライブ131は、モータ110を駆動する動力をモータ110に供給する。また、モータドライブ131は、モータ制御機器132から伝送された駆動指令に従い、モータ110を駆動する。
The drive device 130 is connected to the motor 110 via a cable 151. The drive device 130 includes a motor drive 131, a motor control device 132, and a display 133. The motor drive 131 supplies the power for driving the motor 110 to the motor 110. Further, the motor drive 131 drives the motor 110 in accordance with a drive command transmitted from the motor control device 132.
モータ制御機器132は、モータドライブ131に指令位置または指令速度などの電気信号を送ることによって、モータドライブ131がモータ110へ供給する電流の量およびタイミングを制御する。表示器133は、駆動音診断システム10Aおよび診断対象100を含むシステム全体の各種状態を表示し、使用者に通知する。
The motor control device 132 controls the amount and timing of the current supplied by the motor drive 131 to the motor 110 by sending an electric signal such as a command position or a command speed to the motor drive 131. The display 133 displays various states of the entire system including the drive sound diagnosis system 10A and the diagnosis target 100, and notifies the user.
実施の形態1において、モータドライブ131は、駆動音検出部11と運転状態検出部12とに接続され、駆動音検出部11および運転状態検出部12とモータ制御機器132との間の通信を中継する機能を有する。
In the first embodiment, the motor drive 131 is connected to the drive sound detection unit 11 and the operation state detection unit 12, and relays communication between the drive sound detection unit 11 and the operation state detection unit 12 and the motor control device 132. Has the function of
また、モータ制御機器132は、モータドライブ131にモータ110の位置または速度のパターンなどを含む駆動指令を与えるコントローラである。モータ制御機器132は、PLC(Programmable Logic Controller)、モータ駆動用CPU(Central Processing Unit)、DSP(Digital Signal Processor)、パルス発生器などを備える制御機器である。
Further, the motor control device 132 is a controller that gives a drive command to the motor drive 131 including the position or speed pattern of the motor 110. The motor control device 132 is a control device including a PLC (Programmable Logic Controller), a motor driving CPU (Central Processing Unit), a DSP (Digital Signal Processor), a pulse generator, and the like.
さらに、表示器133は、駆動音診断システム10Aを含むシステム全体の状態をモータドライブ131、モータ制御機器132、または演算処理部140の少なくとも一つから通信で取得し、使用者に見やすい形式で表示を行う。表示器133は、液晶ディスプレイを内蔵していてもよい。表示器133をシステムに含めることによって、演算処理部140で駆動音の診断を実行した後、通信を介して駆動音の診断の結果を表示器133に表示し、使用者に分かりやすく通知することができる。
Further, the display 133 acquires the state of the entire system including the drive sound diagnosis system 10A from at least one of the motor drive 131, the motor control device 132, or the arithmetic processing unit 140 by communication, and displays it in a format that is easy for the user to see. I do. The display 133 may have a built-in liquid crystal display. By including the display 133 in the system, after the arithmetic processing unit 140 executes the diagnosis of the driving sound, the result of the diagnosis of the driving sound is displayed on the display 133 via communication, and the user is notified in an easy-to-understand manner. Can be done.
駆動装置130は、少なくとも一つのモータ110を駆動する装置であればよく、本実施の形態の一部または複数を組み合わせて構成してもよい。
The drive device 130 may be a device that drives at least one motor 110, and may be configured by combining a part or a plurality of the present embodiments.
演算処理部140は、ソフトウェアとして後述の駆動音診断システム10Aの診断処理を実行することのできる処理装置である。実施の形態1では、モータ制御機器132に内蔵されるマイクロコンピュータのCPUが演算処理部140の機能を実現する。図3は、実施の形態1による演算処理部のハードウェア構成の一例を示すブロック図である。演算処理部140は、プロセッサ141と、メモリ142と、を有する。プロセッサ141とメモリ142とは、バスライン143を介して接続される。CPU、GPU(Graphics Processing Units)はプロセッサ141の一例である。
The arithmetic processing unit 140 is a processing device capable of executing diagnostic processing of the drive sound diagnostic system 10A described later as software. In the first embodiment, the CPU of the microcomputer built in the motor control device 132 realizes the function of the arithmetic processing unit 140. FIG. 3 is a block diagram showing an example of the hardware configuration of the arithmetic processing unit according to the first embodiment. The arithmetic processing unit 140 includes a processor 141 and a memory 142. The processor 141 and the memory 142 are connected via the bus line 143. The CPU and GPU (Graphics Processing Units) are examples of the processor 141.
図4は、実施の形態1による図2の演算処理部の機能構成の一例を模式的に示すブロック図である。演算処理部140は、時刻同期部13と、運転モード抽出部14と、音振動時系列スペクトル取得部15と、特徴点抽出部16と、運転振動抽出部17と、要因判定部18と、を、マイクロコンピュータのCPUが実行するソフトウェアとして備える。なお、図1および図2と同一の構成要素には同一の符号を付して、その説明を省略している。
FIG. 4 is a block diagram schematically showing an example of the functional configuration of the arithmetic processing unit of FIG. 2 according to the first embodiment. The arithmetic processing unit 140 includes a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, a feature point extraction unit 16, an operation vibration extraction unit 17, and a factor determination unit 18. , Provided as software executed by the CPU of a microcomputer. The same components as those in FIGS. 1 and 2 are designated by the same reference numerals, and the description thereof is omitted.
図2では、演算処理部140は、モータ制御機器132に内蔵される構成が示されているが、実施の形態はこの構成に限定されない。演算処理部140が、駆動装置130の他の機器であるモータドライブ131に内蔵されてもよいし、表示器133に内蔵されてもよい。また、モータ制御機器132に別のマイクロコンピュータを取りつけて演算処理部140としてもよい。さらには、駆動装置130と独立した別の機器として接続されていてもよい。
FIG. 2 shows a configuration in which the arithmetic processing unit 140 is built in the motor control device 132, but the embodiment is not limited to this configuration. The arithmetic processing unit 140 may be built in the motor drive 131, which is another device of the drive device 130, or may be built in the display 133. Further, another microcomputer may be attached to the motor control device 132 to serve as the arithmetic processing unit 140. Furthermore, it may be connected as a separate device independent of the drive device 130.
駆動音検出部11は、診断対象100の発する駆動音を検出するマイクロフォンである。検出した駆動音は、ケーブル152および駆動装置130を経由して、演算処理部140に送信される。図2の例では、駆動音検出部11は昇降機に固定されている。しかし、駆動音検出部11は、診断対象100の駆動音を検出できればよく、設置方法は、被駆動機械120に固定されることに限定されない。駆動音検出部11は、モータ110に固定されてもよいし、駆動音を検出できる程度の距離で被駆動機械120から離して設置されてもよい。
The drive sound detection unit 11 is a microphone that detects the drive sound emitted by the diagnosis target 100. The detected drive sound is transmitted to the arithmetic processing unit 140 via the cable 152 and the drive device 130. In the example of FIG. 2, the drive sound detection unit 11 is fixed to the elevator. However, the drive sound detection unit 11 only needs to be able to detect the drive sound of the diagnosis target 100, and the installation method is not limited to being fixed to the driven machine 120. The drive sound detection unit 11 may be fixed to the motor 110, or may be installed away from the driven machine 120 at a distance such that the drive sound can be detected.
診断の対象とする現象の発音場所が限定されている場合、マイクロフォンを発音場所に隣接させて配置する、あるいは指向性のマイクロフォンを使用するなどの手段で、集音対象となる範囲または集音可能な範囲を限定してもよい。集音を限定することによって、診断を妨げる周囲の雑音を減らし誤診断を減少させることができる。
If the sounding location of the phenomenon to be diagnosed is limited, the sound can be collected within the range or sound can be collected by arranging the microphone adjacent to the sounding location or by using a directional microphone. The range may be limited. By limiting the sound collection, it is possible to reduce ambient noise that interferes with the diagnosis and reduce misdiagnosis.
また、駆動音検出部11として、複数のマイクロフォンを用いることもできる。複数のマイクロフォンで同一の音または振動を集音することにより、雑音による誤診断を減らすことができる。
Further, a plurality of microphones can be used as the drive sound detection unit 11. By collecting the same sound or vibration with multiple microphones, false diagnosis due to noise can be reduced.
さらに、録音機を使用して、診断対象100が時系列に発する駆動音を音振動データとして記録してもよい。スマートフォンまたはボイスレコーダは録音機の一例である。この他、カメラなどで動画を撮影し、音部分のみ取り出して音振動データとしてもよい。
Further, a recorder may be used to record the driving sound emitted by the diagnosis target 100 in time series as sound vibration data. A smartphone or voice recorder is an example of a recorder. In addition, a moving image may be taken with a camera or the like, and only the sound part may be extracted and used as sound vibration data.
また、駆動音検出部11に時系列に発せられる駆動音を音振動データとして記憶する記憶部を設け、必要に応じて上位の演算装置へ記憶した音振動データを送信する方式としてもよい。この場合、駆動音診断を行わないときには、駆動音検出部11と演算処理部140との間の通信が行われず、駆動音診断を実施するときに、駆動音検出部11が記憶した時系列の音振動データがまとめて送信される。このような構成とすることで、駆動音検出部11と演算処理部140との間の通信に係る処理を削減することができる。
Alternatively, the drive sound detection unit 11 may be provided with a storage unit that stores the drive sound emitted in time series as sound vibration data, and may transmit the stored sound vibration data to a higher-level arithmetic unit as needed. In this case, when the drive sound diagnosis is not performed, communication between the drive sound detection unit 11 and the arithmetic processing unit 140 is not performed, and the time series stored by the drive sound detection unit 11 when the drive sound diagnosis is performed is performed. Sound vibration data is transmitted together. With such a configuration, it is possible to reduce the processing related to the communication between the drive sound detection unit 11 and the arithmetic processing unit 140.
運転状態検出部12は、モータ110に取りつけられ、モータ110の回転角度を検出するエンコーダである。エンコーダが検出した回転角度のデータは、運転状態としてケーブル153および駆動装置130を経由して演算処理部140に送信される。
The operating state detection unit 12 is an encoder attached to the motor 110 to detect the rotation angle of the motor 110. The rotation angle data detected by the encoder is transmitted to the arithmetic processing unit 140 via the cable 153 and the drive device 130 as an operating state.
運転状態検出部12の設置個所は、モータ110に固定される場合に限定されない。運転状態検出部12は、モータ110が駆動する機械である被駆動機械120の駆動部に固定されてもよい。駆動音検出部11と同様に、運転状態検出部12に検出した時系列の運転状態を運転データとして記憶する記憶部を設け、必要に応じて、上位の演算装置へ記憶した運転データを送信する方式としてもよい。
The installation location of the operating state detection unit 12 is not limited to the case where it is fixed to the motor 110. The operating state detection unit 12 may be fixed to the drive unit of the driven machine 120, which is the machine driven by the motor 110. Similar to the drive sound detection unit 11, the operation state detection unit 12 is provided with a storage unit that stores the detected time-series operation state as operation data, and transmits the stored operation data to a higher-level arithmetic unit as needed. It may be a method.
演算処理部140は、ケーブル152,153を介して駆動音検出部11が検出した駆動音と、運転状態検出部12が検出した運転状態と、を受け取り、駆動音の要因を診断する。
The arithmetic processing unit 140 receives the drive sound detected by the drive sound detection unit 11 and the operation state detected by the operation state detection unit 12 via the cables 152 and 153, and diagnoses the cause of the drive sound.
演算処理部140は、駆動音検出部11と運転状態検出部12と相応のデータのやりとりを行うため、データ遅延のない高速のネットワークで駆動音検出部11および運転状態検出部12と接続されている環境が望ましい。
The arithmetic processing unit 140 is connected to the drive sound detection unit 11 and the operation state detection unit 12 in a high-speed network without data delay in order to exchange appropriate data between the drive sound detection unit 11 and the operation state detection unit 12. The environment is desirable.
次に、診断対象100の動作を説明する。被駆動機械120の昇降機の使用者は、昇降機で図示しないワークを搬送するため、モータ110の駆動指令をモータ制御機器132に入力する。モータ制御機器132は、使用者が入力した駆動パターンおよび動作タイミングを含む情報に基づき、モータドライブ131へ駆動指令を送信する。モータドライブ131は、受信した駆動指令に従い、モータ駆動電流を制御し、モータ110を駆動する。昇降機は、動力源であるモータ110が回転することで、ボールねじ123が回転し、ボールねじ123に接続されたスライダ125、およびスライダ125に接続されたステージ126が上下に移動する。
Next, the operation of the diagnosis target 100 will be described. The user of the elevator of the driven machine 120 inputs a drive command of the motor 110 to the motor control device 132 in order to convey a work (not shown) by the elevator. The motor control device 132 transmits a drive command to the motor drive 131 based on the information including the drive pattern and the operation timing input by the user. The motor drive 131 controls the motor drive current and drives the motor 110 in accordance with the received drive command. In the elevator, the ball screw 123 rotates as the motor 110, which is a power source, rotates, and the slider 125 connected to the ball screw 123 and the stage 126 connected to the slider 125 move up and down.
一例では、昇降機の使用者は、上述の動作によって、ステージ126の位置がリニアガイド127の鉛直下方に移動しているときに、ワークをステージ126に搭載する。ステージ126は、モータ110が回転することで、リニアガイド127の鉛直上方へ移動する。この移動に伴い、昇降機はステージ126に搭載したワークを搬送する。
In one example, the user of the elevator mounts the work on the stage 126 when the position of the stage 126 is moving vertically downward of the linear guide 127 by the above operation. The stage 126 moves vertically upward of the linear guide 127 as the motor 110 rotates. Along with this movement, the elevator conveys the work mounted on the stage 126.
診断対象100は、モータ110によって駆動される際に駆動音を発する。具体的には、診断対象100は、モータ110のトルク脈動、ボールねじ123の並進および捩じり剛性、カップリング124の接続剛性、ギアの噛み合い剛性、機械の移動、変形または衝突、リニアガイド127とスライダ125との間の摺動摩擦などに起因した駆動音を発する。診断対象100が発した駆動音は駆動音検出部11で検出され、モータ110の回転角度は運転状態検出部12で検出され、ケーブル152,153を介してモータドライブ131、モータ制御機器132および演算処理部140に送信される。ただし、送信方法は必ずしも有線である必要はなく、無線または記録媒体を介してもよい。
The diagnosis target 100 emits a driving sound when it is driven by the motor 110. Specifically, the diagnosis target 100 includes the torque pulsation of the motor 110, the translational and torsional rigidity of the ball screw 123, the connection rigidity of the coupling 124, the meshing rigidity of the gear, the movement, deformation or collision of the machine, and the linear guide 127. A driving sound is emitted due to sliding friction between the screw and the slider 125. The drive sound emitted by the diagnosis target 100 is detected by the drive sound detection unit 11, the rotation angle of the motor 110 is detected by the operation state detection unit 12, and the motor drive 131, the motor control device 132, and the calculation are performed via the cables 152 and 153. It is transmitted to the processing unit 140. However, the transmission method does not necessarily have to be wired, and may be wireless or via a recording medium.
表示器133は、適宜モータ制御機器132との間で通信を行い、運転状態検出部12が検出したモータ110の回転角度、診断対象100を含むシステム全体の異常の有無を含む使用者が必要とする各種情報を表示器133に表示する。
The display 133 appropriately communicates with the motor control device 132, and requires a user including the rotation angle of the motor 110 detected by the operation state detection unit 12 and the presence or absence of an abnormality in the entire system including the diagnosis target 100. Various information to be displayed is displayed on the display 133.
実施の形態1では、時刻同期部13、運転モード抽出部14、音振動時系列スペクトル取得部15、特徴点抽出部16、運転振動抽出部17および要因判定部18は一つのハードウェアである演算処理部140上に構成されているが、別々のハードウェアに分割して構成されるようにしてもよい。一例として、時刻同期部13を演算処理部140から分離し、モータドライブ131のマイクロコンピュータ上のソフトウェアとして構成することができる。この場合、モータ制御機器132と比べて高速で制御処理を行うモータドライブ131で時間的要求の厳しい時刻同期の処理が行われ、モータ制御機器132の演算処理部140で相対的に時間的制約の少ない運転モード抽出部14、音振動時系列スペクトル取得部15、特徴点抽出部16、運転振動抽出部17および要因判定部18の処理が行われる。これによって、演算処理部140の必要とされる性能を低減することができ、演算処理能力の低いデバイスでも駆動音の要因の診断を実現することが可能となる。
In the first embodiment, the time synchronization unit 13, the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15, the feature point extraction unit 16, the operation vibration extraction unit 17, and the factor determination unit 18 are one piece of hardware. Although it is configured on the processing unit 140, it may be divided into separate hardware. As an example, the time synchronization unit 13 can be separated from the arithmetic processing unit 140 and configured as software on the microcomputer of the motor drive 131. In this case, the motor drive 131, which performs control processing at a higher speed than the motor control device 132, performs time synchronization processing with strict time requirements, and the arithmetic processing unit 140 of the motor control device 132 is relatively time-constrained. The processing of the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15, the feature point extraction unit 16, the operation vibration extraction unit 17, and the factor determination unit 18 is performed. As a result, the required performance of the arithmetic processing unit 140 can be reduced, and it is possible to diagnose the cause of the driving sound even in a device having a low arithmetic processing capacity.
また、各機能の実現はマイクロコンピュータのCPU上のソフトウェアによる実現に限定されず、ASIC(Application Specific Integrated Circuits)、FPGA(Field Programmable Gate Array)またはCPLD(Complex Programmable Logic Device)などの電子回路を用いてもよい。
In addition, the realization of each function is not limited to the realization by software on the CPU of the microcomputer, and uses electronic circuits such as ASIC (Application Specific Integrated Circuits), FPGA (Field Programmable Gate Array) or CPLD (Complex Programmable Logic Device). You may.
次に、診断対象100の発する音または振動を対象にした駆動音診断システム10Aでの駆動音の診断手順について説明する。図5は、実施の形態1に係る駆動音診断方法の処理手順の一例を示すフローチャートである。実施の形態1では、上述のとおり、モータ110の駆動により被駆動機械120を駆動したときに、機械の移動、変形、衝突、剛性、摩擦等に起因して駆動音が発生する。また、駆動音は、モータ110の駆動方法によって音圧の大小および周波数が異なる。そこで、実施の形態1では、被駆動機械120が発する駆動音の診断方法を説明する。
Next, the procedure for diagnosing the driving sound in the driving sound diagnosis system 10A targeting the sound or vibration emitted by the diagnosis target 100 will be described. FIG. 5 is a flowchart showing an example of the processing procedure of the driving sound diagnosis method according to the first embodiment. In the first embodiment, as described above, when the driven machine 120 is driven by the drive of the motor 110, a driving noise is generated due to the movement, deformation, collision, rigidity, friction, etc. of the machine. Further, the drive sound differs in the magnitude and frequency of the sound pressure depending on the drive method of the motor 110. Therefore, in the first embodiment, a method of diagnosing the driving sound generated by the driven machine 120 will be described.
駆動音診断システム10Aの駆動音検出部11は、駆動音を検出し(ステップS11)、運転状態検出部12は、モータ110の運転状態を検出する(ステップS12)。
The drive sound detection unit 11 of the drive sound diagnosis system 10A detects the drive sound (step S11), and the operation state detection unit 12 detects the operation state of the motor 110 (step S12).
時刻同期部13は、駆動音検出部11からの駆動音を時系列の音振動データとして取り込む(ステップS13)。図6は、実施の形態1による音振動データの一例を示す図である。この図において、横軸は、時刻を表し、縦軸は振幅を表している。
The time synchronization unit 13 captures the drive sound from the drive sound detection unit 11 as time-series sound vibration data (step S13). FIG. 6 is a diagram showing an example of sound vibration data according to the first embodiment. In this figure, the horizontal axis represents time and the vertical axis represents amplitude.
また、時刻同期部13は、運転状態検出部12からの運転状態を時系列の運転データとして取り込む(ステップS14)。図7は、実施の形態1による運転データの一例を示す図である。この図において、横軸は、時刻を示し、縦軸は、回転角度、回転速度、電流を示している。図7では、運転データとして、ボールねじ123の基準となる箇所からのモータ110の回転角度Po、モータ110の回転速度wおよびモータ電流iが示されている。
Further, the time synchronization unit 13 captures the operation state from the operation state detection unit 12 as time-series operation data (step S14). FIG. 7 is a diagram showing an example of operation data according to the first embodiment. In this figure, the horizontal axis represents time, and the vertical axis represents rotation angle, rotation speed, and current. In FIG. 7, the rotation angle Po of the motor 110, the rotation speed w of the motor 110, and the motor current i from the reference point of the ball screw 123 are shown as operation data.
ここで、音振動データの取得と運転データの取得とは同一の時刻間のデータを取り込む必要がある。ただし、同一の時刻間であれば取り込むデータの取得時刻が異なってもよいし、一部データの取得した時刻が同一の時刻間とは異なってもよい。
Here, it is necessary to take in the data between the same time for the acquisition of the sound vibration data and the acquisition of the operation data. However, the acquisition time of the data to be captured may be different as long as it is between the same time, or the acquisition time of some data may be different from the same time interval.
また、診断対象100の発する音または振動の周波数について、その帯域が何らかの知見により予見される場合には、対象の周波数帯域まで音振動データおよび運転データのサンプリングを間引くことが望ましい。間引き処理によって、使用するメモリ量および処理時間を削減することができる。間引き処理を行う場合、駆動音検出部11および運転状態検出部12の処理よりも後の処理で音振動データの周波数変換が行われるため、ノイズ除去フィルタによるフィルタ処理が行われることが望ましい。ローパスフィルタ、ハイパスフィルタ、バンドパスフィルタ、ノッチフィルタ、バンドエリミネイトフィルタは、ノイズ除去フィルタの一例である。また、ノイズ除去フィルタとして、例示したフィルタを単独または複数適用してもよい。このようにすることで、間引きによる折り返し雑音を低減する効果が期待できる。
Further, regarding the frequency of sound or vibration emitted by the diagnosis target 100, if the band is predicted by some knowledge, it is desirable to thin out the sampling of the sound vibration data and the operation data to the target frequency band. The thinning process can reduce the amount of memory used and the processing time. When the thinning process is performed, the frequency conversion of the sound vibration data is performed in the process after the processes of the drive sound detection unit 11 and the operating state detection unit 12, so it is desirable that the filter process is performed by the noise removal filter. The low-pass filter, high-pass filter, band-pass filter, notch filter, and band-eliminate filter are examples of noise reduction filters. Further, as the noise removal filter, one or more of the illustrated filters may be applied. By doing so, the effect of reducing aliasing noise due to thinning can be expected.
ついで、時刻同期部13は、音振動データおよび運転データの同期処理を行う(ステップS15)。図8は、実施の形態1による音振動データおよび運転データの同期処理の手順の一例を示すフローチャートである。
Next, the time synchronization unit 13 performs synchronization processing of sound vibration data and operation data (step S15). FIG. 8 is a flowchart showing an example of a procedure for synchronous processing of sound vibration data and operation data according to the first embodiment.
最初に、音振動データおよび運転データのそれぞれの基準時刻の差を取得する(ステップS31)。ここで基準時刻とは、各データで時刻0とする時刻である。音振動データと運転データとが同期されていない場合、各データの時刻0とするタイミングは個別に設定されることから、データの取得時刻が同一であっても実際に取得したタイミングが異なる場合がある。そこで、各データにおいて時刻0とするタイミングの実際の時刻の差を求めることで、各データの時刻を補正する。
First, the difference between the reference times of the sound vibration data and the operation data is acquired (step S31). Here, the reference time is a time set to time 0 in each data. When the sound vibration data and the operation data are not synchronized, the timing of setting the time 0 of each data is set individually, so even if the data acquisition time is the same, the actual acquisition timing may be different. is there. Therefore, the time of each data is corrected by obtaining the difference between the actual times of the timings at which the time is set to 0 in each data.
基準時刻の差を求める方法としては、予めデータを取得するタイミングを一定の時刻差になるよう設計し、その一定の時刻差を基準時刻の差とする方法が挙げられる。また、共通のマスタクロックに事前にアクセスして各データの取得タイミングを同一とし、基準時刻の差を0とする方法も挙げられる。または、データの取得を開始するタイミングの共通のマスタクロックにおける時刻をタイムスタンプとして記憶し、音振動データおよび運転データのタイムスタンプの差を基準時刻の差とする方法も挙げられる。
As a method of obtaining the difference in the reference time, there is a method in which the timing of acquiring data is designed to be a constant time difference in advance and the constant time difference is used as the difference in the reference time. Another method is to access a common master clock in advance so that the acquisition timing of each data is the same and the difference in the reference time is zero. Alternatively, there is also a method in which the time in a common master clock at the timing of starting data acquisition is stored as a time stamp, and the difference between the time stamps of the sound vibration data and the operation data is used as the difference in the reference time.
図9は、実施の形態1による音振動データと運転データとを同期させる手順を説明するための図である。図9の例では、音振動データDaの時刻0はデータの取得時刻であり、運転データDoの時刻0はデータの取得時刻であるものとする。音振動データDaの時刻0は、基準時刻でのt1であるとし、運転データDoの時刻0は、基準時刻でのt2とする。この場合、基準時刻の差Δtはt2-t1である。
FIG. 9 is a diagram for explaining a procedure for synchronizing the sound vibration data and the operation data according to the first embodiment. In the example of FIG. 9, it is assumed that the time 0 of the sound vibration data Da is the data acquisition time and the time 0 of the operation data Do is the data acquisition time. It is assumed that the time 0 of the sound vibration data Da is t1 at the reference time, and the time 0 of the operation data Do is t2 at the reference time. In this case, the difference Δt of the reference time is t2-t1.
ついで、求めた基準時刻の差を基に各データの取得時刻を補正する(ステップS32)。具体的には、音振動データおよび運転データのうち、先に取得を開始したデータの各データの取得時刻に、求めた基準時刻の差を補正として加える。
Then, the acquisition time of each data is corrected based on the difference in the obtained reference time (step S32). Specifically, among the sound vibration data and the operation data, the difference between the obtained reference times is added as a correction to the acquisition time of each data of the data for which the acquisition is started earlier.
図9の例では、先に取得を開始したデータは、音振動データDaである。そのため、音振動データDaの取得時刻t1に基準時刻の差Δtを加えたものが運転データの基準時刻t2となる。
In the example of FIG. 9, the data that started to be acquired first is the sound vibration data Da. Therefore, the reference time t2 of the operation data is obtained by adding the difference Δt of the reference time to the acquisition time t1 of the sound vibration data Da.
図8に戻り、音振動データと運転データとが共通して取得した時刻間を算出する(ステップS33)。具体的な算出方法の一例は、前述の処理で後から取得を開始したデータの取得開始時刻から、音振動データおよび運転データの最後の取得時刻のうち早いタイミングの取得時刻までを、共通して取得した時刻間とする方法である。図9の例では、運転データDoの取得開始時刻t2から、音振動データDaの最後の取得時刻t3まで、が共通して取得した時刻間Δtcになる。
Returning to FIG. 8, the time interval acquired by the sound vibration data and the operation data in common is calculated (step S33). An example of a specific calculation method is common from the acquisition start time of the data that was started to be acquired later in the above process to the acquisition time of the earlier timing of the last acquisition time of the sound vibration data and the operation data. This is the method of setting the time between the acquired times. In the example of FIG. 9, from the acquisition start time t2 of the operation data Do to the last acquisition time t3 of the sound vibration data Da is the time interval Δct that is commonly acquired.
そして、算出した共通で取得した時刻間でない、共通していない時刻のデータを破棄する(ステップS34)。図9の例では、時刻t2よりも前の音振動データDaと時刻t3よりも後の運転データDoとを破棄する。以上によって、音振動データと運転データとを同期させることができ、音振動データおよび運転データの同期処理が終了する。
Then, the data at the non-common time that is not between the calculated common and acquired times is discarded (step S34). In the example of FIG. 9, the sound vibration data Da before the time t2 and the operation data Do after the time t3 are discarded. As described above, the sound vibration data and the operation data can be synchronized, and the synchronization process of the sound vibration data and the operation data is completed.
図5に戻り、運転モード抽出部14は、時刻同期を行った運転データに基づき被駆動機械120の運転状態を推定し、運転モードを抽出する(ステップS16)。実施の形態1では、被駆動機械120の運転モードを、停止中、定速運転中または加減速中の3つに分割する。
Returning to FIG. 5, the operation mode extraction unit 14 estimates the operation state of the driven machine 120 based on the time-synchronized operation data, and extracts the operation mode (step S16). In the first embodiment, the operation mode of the driven machine 120 is divided into three, which are stopped, constant speed operation, and acceleration / deceleration.
<停止中>
モータ110の回転が停止している区間を停止中と定める。ここで、モータ110の回転が停止しているとは、一定の時間、運転状態検出部12で検出するモータ110の回転角度のデータの変化量の和が特定の閾値に収まることをいう。このとき、回転角度のデータの変化量の和が特定の閾値に収まっている区間を位置が停止している区間として定める。条件に含まれる一定の時間は、音振動データおよび運転データの検出周期の平均値に応じて定めればよい。 <Stopped>
The section in which the rotation of themotor 110 is stopped is defined as being stopped. Here, the fact that the rotation of the motor 110 is stopped means that the sum of the changes in the rotation angle data of the motor 110 detected by the operating state detection unit 12 falls within a specific threshold value for a certain period of time. At this time, a section in which the sum of the changes in the rotation angle data is within a specific threshold value is defined as a section in which the position is stopped. The fixed time included in the condition may be determined according to the average value of the detection cycles of the sound vibration data and the operation data.
モータ110の回転が停止している区間を停止中と定める。ここで、モータ110の回転が停止しているとは、一定の時間、運転状態検出部12で検出するモータ110の回転角度のデータの変化量の和が特定の閾値に収まることをいう。このとき、回転角度のデータの変化量の和が特定の閾値に収まっている区間を位置が停止している区間として定める。条件に含まれる一定の時間は、音振動データおよび運転データの検出周期の平均値に応じて定めればよい。 <Stopped>
The section in which the rotation of the
<定速運転中>
モータ110の回転速度が一定となり、かつ、停止中でない区間を定速運転中と定める。ここで、速度が一定であるとは、停止中と同様に一定の時間、速度のデータの変化量の和が特定の閾値に収まることをいう。このとき、速度のデータの変化量の和が特定の閾値に収まっている区間を速度が一定である、予め定められた時間よりも長い時間を区間として定める。 <During constant speed operation>
A section in which the rotation speed of themotor 110 is constant and is not stopped is defined as constant speed operation. Here, the constant speed means that the sum of the changes in the speed data falls within a specific threshold value for a certain period of time as in the case of stopping. At this time, a section in which the sum of the changes in the speed data is within a specific threshold value is defined as a section in which the velocity is constant and longer than a predetermined time.
モータ110の回転速度が一定となり、かつ、停止中でない区間を定速運転中と定める。ここで、速度が一定であるとは、停止中と同様に一定の時間、速度のデータの変化量の和が特定の閾値に収まることをいう。このとき、速度のデータの変化量の和が特定の閾値に収まっている区間を速度が一定である、予め定められた時間よりも長い時間を区間として定める。 <During constant speed operation>
A section in which the rotation speed of the
<加減速中>
停止中でも定速運転中でもない区間を加減速中として定める。駆動方向に対して、加速度が正のときを加速中、加速度が負のときを減速中と区別してもよい。図10は、図7の運転データを運転モードで分割した一例を示す図である。この例では、運転モードは、時刻0からt11までの間が加減速中であり、時刻t11からt12までが定速運転中であり、時刻t12からt13までが加減速中であり、時刻t13以降が停止中である。 <During acceleration / deceleration>
The section that is neither stopped nor constant speed operation is defined as being accelerated or decelerated. With respect to the driving direction, when the acceleration is positive, it may be distinguished from accelerating, and when the acceleration is negative, it may be distinguished from decelerating. FIG. 10 is a diagram showing an example in which the operation data of FIG. 7 is divided by the operation mode. In this example, in the operation mode, acceleration / deceleration is in progress fromtime 0 to t11, constant speed operation is in progress from time t11 to t12, acceleration / deceleration is in progress from time t12 to t13, and after time t13. Is stopped.
停止中でも定速運転中でもない区間を加減速中として定める。駆動方向に対して、加速度が正のときを加速中、加速度が負のときを減速中と区別してもよい。図10は、図7の運転データを運転モードで分割した一例を示す図である。この例では、運転モードは、時刻0からt11までの間が加減速中であり、時刻t11からt12までが定速運転中であり、時刻t12からt13までが加減速中であり、時刻t13以降が停止中である。 <During acceleration / deceleration>
The section that is neither stopped nor constant speed operation is defined as being accelerated or decelerated. With respect to the driving direction, when the acceleration is positive, it may be distinguished from accelerating, and when the acceleration is negative, it may be distinguished from decelerating. FIG. 10 is a diagram showing an example in which the operation data of FIG. 7 is divided by the operation mode. In this example, in the operation mode, acceleration / deceleration is in progress from
図5に戻り、音振動時系列スペクトル取得部15は、時刻同期部13が時刻同期を行った音振動データに対して、周波数変換を行い各時刻における音振動データのスペクトルを算出する(ステップS17)。音振動データのスペクトルは、算出した周波数スペクトルのパワーを周波数および時刻と対応付けて組にした時系列のスペクトルデータである。
Returning to FIG. 5, the sound vibration time series spectrum acquisition unit 15 performs frequency conversion on the sound vibration data for which the time synchronization unit 13 has time-synchronized, and calculates the spectrum of the sound vibration data at each time (step S17). ). The spectrum of the sound vibration data is time-series spectrum data in which the power of the calculated frequency spectrum is paired with the frequency and time.
周波数変換は、短時間フーリエ変換(Short-Time Fourier Transform:STFT)またはウェーブレット変換により行うことが望ましい。これらの手法によって時系列スペクトルを求めるために、フィルタ設計などの手間および処理を軽減することができる。
It is desirable to perform frequency conversion by short-time Fourier transform (STFT) or wavelet transform. Since the time series spectrum is obtained by these methods, it is possible to reduce the labor and processing such as filter design.
ここで診断対象100の発する駆動音の周波数について、その帯域が、何らかの知見により予見される場合は、周波数変換の前に予見される帯域内の周波数成分を抽出するフィルタを音振動データに適用してもよい。フィルタの適用によって、より正確に駆動音の診断を行うことが可能となる。
Here, regarding the frequency of the driving sound emitted by the diagnosis target 100, if the band is predicted by some knowledge, a filter for extracting the frequency component in the band predicted before the frequency conversion is applied to the sound vibration data. You may. By applying the filter, it becomes possible to diagnose the driving sound more accurately.
実施の形態1では、音振動時系列スペクトル取得部15は、時刻同期を行った音振動データのうち、運転モード抽出部14が抽出した定速運転中の期間に対応する音振動データのみに周波数変換を行い、他の期間のデータは破棄する。
In the first embodiment, the sound vibration time series spectrum acquisition unit 15 frequency only the sound vibration data corresponding to the period during constant speed operation extracted by the operation mode extraction unit 14 among the time-synchronized sound vibration data. Converts and discards data for other periods.
図11は、時刻、周波数およびパワーの3軸による3次元グラフにて、図6の音振動データを周波数変換した時系列のスペクトルデータの一例を示す図である。この図で、縦軸はパワーを示し、縦軸に垂直な面内における2つの直交する軸は時刻および周波数を示している。
FIG. 11 is a diagram showing an example of time-series spectrum data obtained by frequency-converting the sound vibration data of FIG. 6 in a three-dimensional graph with three axes of time, frequency, and power. In this figure, the vertical axis represents power and the two orthogonal axes in the plane perpendicular to the vertical axis represent time and frequency.
図5に戻り、特徴点抽出部16は、音振動時系列スペクトル取得部15で求めた時系列データで表現される音振動データのスペクトルに対して、そのスペクトルのパワーの周波数および時刻が定められた条件となる特徴点を抽出する(ステップS18)。また、特徴点抽出部16は、この抽出した特徴点についての特徴点データを生成する(ステップS19)。特徴点データは、特徴点の周波数、時刻、パワー、波形および特徴点の時刻における運転データを組にしたものである。
Returning to FIG. 5, the feature point extraction unit 16 determines the frequency and time of the power of the spectrum of the sound vibration data represented by the time series data obtained by the sound vibration time series spectrum acquisition unit 15. The feature points that are the conditions are extracted (step S18). In addition, the feature point extraction unit 16 generates feature point data for the extracted feature points (step S19). The feature point data is a set of operation data at the frequency, time, power, waveform, and time of the feature point.
特徴点抽出部16で特徴点を抽出する際に使用される条件の一例は、頂点、峰、稜線、鞍点である。特徴点として頂点を取得する場合について説明する。
An example of the conditions used when the feature point extraction unit 16 extracts the feature point is a vertex, a peak, a ridgeline, and a saddle point. The case of acquiring vertices as feature points will be described.
まず、時系列の音振動データのスペクトルはノイズを含むことから、時刻軸と周波数軸に対してローパスフィルタを適用する。ローパスフィルタの時定数は、音振動データのサンプリング周期と周波数変換分解能により決定される。また、ローパスフィルタを適用する代わりに、時系列のスペクトルにヒルベルト変換を適用してもよい。
First, since the spectrum of time-series sound vibration data contains noise, a low-pass filter is applied to the time axis and frequency axis. The time constant of the low-pass filter is determined by the sampling period of the sound vibration data and the frequency conversion resolution. Alternatively, instead of applying a low-pass filter, a Hilbert transform may be applied to the spectrum of the time series.
次に、ローパスフィルタを適用した後の時系列のスペクトルについて、パワーの閾値を決定し、閾値よりパワーが大きい領域と、閾値よりパワーが小さい領域と、に分ける。時系列のスペクトルの中央値はパワーの閾値の一例である。
Next, for the time-series spectrum after applying the low-pass filter, the power threshold value is determined and divided into a region where the power is larger than the threshold value and a region where the power is smaller than the threshold value. The median spectrum of the time series is an example of a power threshold.
その後、閾値よりパワーが大きい点x=(tx,fx,px)の中から、次の4つの点を取得する。ここで、tx,fx,pxは、それぞれ点xでの時刻、周波数およびパワーを示している。
(1)周波数がfxで、取得時刻がtxの次の時刻tx+1の点x1(tx+1,fx,p1)
(2)周波数がfxで、取得時刻がtxの一つ前の時刻tx-1の点x2(tx-1,fx,p2)
(3)取得時刻がtxで、周波数がfxの次の周波数fx+1の点x3(tx,fx+1,p3)
(4)取得時刻がtxで、周波数がfxの一つ前の周波数fx-1の点x4(tx,fx-1,p4) Then, the point power is greater than the threshold value x = (t x, f x , p x) from among, to get the next four points. Here, t x, f x, p x, the time at each point x, represents the frequency and power.
(1) Point x1 (t x + 1 , f x , p 1 ) at the time t x + 1 next to the acquisition time t x when the frequency is f x
(2) at a frequency f x, the previous one acquisition time t x the time t x-1 of the point x2 (t x-1, f x, p 2)
(3) at the acquisition time t x, the next frequency f x + 1 of point x3 frequencies f x (t x, f x + 1, p 3)
(4) at the acquisition time t x, the frequency of the previous one f x frequency f x-1 of thepoint x4 (t x, f x- 1, p 4)
(1)周波数がfxで、取得時刻がtxの次の時刻tx+1の点x1(tx+1,fx,p1)
(2)周波数がfxで、取得時刻がtxの一つ前の時刻tx-1の点x2(tx-1,fx,p2)
(3)取得時刻がtxで、周波数がfxの次の周波数fx+1の点x3(tx,fx+1,p3)
(4)取得時刻がtxで、周波数がfxの一つ前の周波数fx-1の点x4(tx,fx-1,p4) Then, the point power is greater than the threshold value x = (t x, f x , p x) from among, to get the next four points. Here, t x, f x, p x, the time at each point x, represents the frequency and power.
(1) Point x1 (t x + 1 , f x , p 1 ) at the time t x + 1 next to the acquisition time t x when the frequency is f x
(2) at a frequency f x, the previous one acquisition time t x the time t x-1 of the point x2 (t x-1, f x, p 2)
(3) at the acquisition time t x, the next frequency f x + 1 of point x3 frequencies f x (t x, f x + 1, p 3)
(4) at the acquisition time t x, the frequency of the previous one f x frequency f x-1 of the
次に、上記4つの点x1,x2,x3,x4に元の点xを加えた計5つの点のパワーを比較する。5つの点の中で点xが他の4つの点よりもパワーが大きいとき、すなわち5つの点の中で他の4つの点x1,x2,x3,x4に囲まれる点xがパワー最大の点となるとき、点xを頂点の候補とする。なお、この例では、点xと、点xを中心として、時刻軸方向に隣接する2つの点および周波数軸方向に隣接する2つの点と、を用いてパワーが最大となる点を抽出する場合を示したが、実施の形態がこれに限定されるものではない。すなわち、時刻軸および周波数軸によって形成される平面上で点xを囲む複数の点と、点xと、を用いて、複数の点に囲まれる点xのパワーが最大となる場合に、点xをパワーが最大の点として抽出する方法であればよい。
Next, the powers of a total of five points, which are the above four points x1, x2, x3, x4 plus the original point x, are compared. When the point x has a higher power than the other four points among the five points, that is, the point x surrounded by the other four points x1, x2, x3, x4 among the five points has the maximum power. When, the point x is a candidate for the vertex. In this example, a point x, two points adjacent to the time axis direction and two points adjacent to the frequency axis direction around the point x are used to extract the point having the maximum power. However, the embodiment is not limited to this. That is, when a plurality of points surrounding the point x on the plane formed by the time axis and the frequency axis and the point x are used and the power of the point x surrounded by the plurality of points is maximized, the point x Any method may be used as long as the method is used to extract the point with the maximum power.
最後に、頂点の候補をパワーが大きい順に並べ、大きい方から一定の数の点を極大として抽出する。
Finally, the candidate vertices are arranged in descending order of power, and a certain number of points are extracted as the maximum from the largest.
ここで、候補となる点をパワーの大きい順に並べ、大きい方から一定の数だけ取得したものを頂点としてもよいし、パワーが予め定められた閾値を超える全ての候補となる点を頂点としてもよい。また、これらの手法を組み合わせてもよい。
Here, the candidate points may be arranged in descending order of power, and a certain number of points obtained from the largest may be used as vertices, or all candidate points whose power exceeds a predetermined threshold value may be used as vertices. Good. Moreover, you may combine these methods.
このように時系列のスペクトルのパワーの周波数および時刻に対する波形の頂点を特徴点として取得することにより、処理量の少ない手法で後述の要因診断による計算量を軽減することができる。
By acquiring the vertices of the waveform with respect to the frequency and time of the power of the time-series spectrum as feature points in this way, it is possible to reduce the amount of calculation by the factor diagnosis described later by a method with a small amount of processing.
特徴点の時刻で運転データを取得していない場合には、特徴点の時刻に最も近い時刻の運転データを用いることによって、あるいは特徴点の時刻前後の複数の時刻の運転データを基に特徴点の時刻の運転データを補間することによって、特徴点の時刻の運転データを定めることができる。
If the operation data is not acquired at the time of the feature point, the feature point can be used by using the operation data of the time closest to the time of the feature point, or based on the operation data of multiple times before and after the time of the feature point. By interpolating the operation data at the time of, the operation data at the time of the feature point can be determined.
図12は、時刻、周波数およびパワーの3軸による3次元グラフにて、図11の時系列のスペクトルデータから抽出した音の頂点の一例を示す図である。この図には、上記で説明した方法によって抽出された頂点1,2,3が示されている。
FIG. 12 is a three-dimensional graph with three axes of time, frequency, and power, showing an example of sound vertices extracted from the time-series spectrum data of FIG. This figure shows the vertices 1, 2, and 3 extracted by the method described above.
図5に戻り、運転振動抽出部17は、時刻同期を行った運転データから振動成分を抽出し、振動データを取得する(ステップS20)。振動成分の周波数、振幅または位相は、振動データの一例である。この処理は、ステップS17の音振動時系列スペクトル取得処理と独立に実施してもよい。
Returning to FIG. 5, the operation vibration extraction unit 17 extracts vibration components from the time-synchronized operation data and acquires the vibration data (step S20). The frequency, amplitude or phase of the vibration component is an example of vibration data. This process may be performed independently of the sound vibration time series spectrum acquisition process in step S17.
振動成分の抽出手法の一例は、定速運転中の運転データの波の山の頂点から次の山の頂点までの時間を求める方法である。
An example of the vibration component extraction method is a method of finding the time from the top of a wave peak to the top of the next peak in the operation data during constant speed operation.
次に、要因判定部18は、ステップS19で生成された特徴点データおよびステップS20で取得された振動データを、駆動音の要因毎に登録した要因判定条件と比較することによって、駆動音の発生要因を判定する(ステップS21)。ここで駆動音の要因毎に登録する各要因判定条件は、特徴点データについては、駆動音の要因であるモータ110または被駆動機械120に発生する現象毎に、この現象に伴って発生する特徴点の含まれる周波数および時刻の少なくとも1つと、上記時刻におけるアクチュエータであるモータ110の駆動位置、駆動速度または駆動により発生する力である運転データと、の組み合わせを多次元データとしたときの数値範囲を定めたものである。振動データについては、駆動音の要因としてモータ110または被駆動機械120に発生する現象毎に、この現象に伴って発生する振動成分が含まれる数値範囲を定めたものである。
Next, the factor determination unit 18 compares the feature point data generated in step S19 and the vibration data acquired in step S20 with the factor determination conditions registered for each factor of the drive sound to generate the drive sound. The factor is determined (step S21). Here, each factor determination condition registered for each factor of the driving sound is a feature that occurs in association with each phenomenon that occurs in the motor 110 or the driven machine 120 that is the factor of the driving sound for the feature point data. Numerical range when the combination of at least one of the frequency and time including the points and the driving position, driving speed, or driving data of the force generated by the driving of the motor 110, which is the actuator at the above time, is regarded as multidimensional data. Is defined. Regarding the vibration data, for each phenomenon that occurs in the motor 110 or the driven machine 120 as a factor of the driving sound, a numerical range including a vibration component generated in association with this phenomenon is defined.
要因判定部18は、特徴点データについては、取得した特徴点データを要因毎の数値範囲と比較することで、音振動データの発生要因を決定する。また、要因判定部18は、振動データについては、取得した振動データを要因毎の数値範囲と比較すること、つまり、運転データの振動成分と音の頂点とを比較することで、振動データの発生要因を決定する。
For the feature point data, the factor determination unit 18 determines the cause of the sound vibration data by comparing the acquired feature point data with the numerical range for each factor. Further, regarding the vibration data, the factor determination unit 18 compares the acquired vibration data with the numerical range for each factor, that is, compares the vibration component of the operation data with the peak of the sound to generate the vibration data. Determine the factors.
一例として、リニアガイド127に汚れが付着し、スライダ125とリニアガイド127との間の摩擦が増加して擦過音が発生する場合には、発生する擦過音は、スライダ125が特定の位置区間内にあるときのみ発生する。そこで、特徴点の発生する時刻におけるモータ110の位置が特定の位置、または一定の幅の区間P内に集中する場合に、診断対象100は、区間Pで音が発生していると要因判定部18は判定する。ここで区間Pの幅は、時系列の運転データにおける位置のデータの最大値と最小値との差に対する割合により決定することができる。また、この要因判定条件は、特徴点の時刻におけるモータ110の位置の分布具合が、特定の位置に集中することが検査可能な条件であればよい。例えば、一定の幅の区間Pより外れた特徴点の数もしくはその割合、特徴点の時刻における位置の平均と分散、または特徴点における周波数と位置の相関係数を算出し、算出した値が予め定められた範囲内となることを検査すればよい。
As an example, when dirt adheres to the linear guide 127 and the friction between the slider 125 and the linear guide 127 increases to generate a scraping noise, the scraping noise generated is within a specific position section of the slider 125. Occurs only when it is in. Therefore, when the positions of the motor 110 at the time when the feature points are generated are concentrated in a specific position or a section P having a certain width, the diagnosis target 100 determines that sound is generated in the section P. 18 determines. Here, the width of the section P can be determined by the ratio to the difference between the maximum value and the minimum value of the position data in the time series operation data. Further, the factor determination condition may be a condition in which it is possible to inspect that the distribution of the positions of the motor 110 at the time of the feature points is concentrated on a specific position. For example, the number or ratio of feature points deviating from the section P of a certain width, the average and variance of the positions of the feature points at the time, or the correlation coefficient of the frequency and position at the feature points are calculated, and the calculated value is calculated in advance. It may be inspected that it is within the specified range.
また、他の例として、カップリング124で接続する二軸の中心がずれている場合には、カップリング124の回転数の2倍の周波数に特徴的な音が発生することが知られている。そこで、特徴点の発生した時刻における運転データのモータ110の速度から、ギアボックス122の変換比を乗ずることによって、カップリング124の回転速度を算出し、算出した回転速度と特徴点の周波数が2倍の正比例の関係にあるときに、カップリング124で接続する二軸の中心がずれていると要因判定部18は判定する。このとき、モータ110の速度の代わりに、運転データとしてモータ110の電流を取得し、値を累積することで、速度の代替としてもよい。
Further, as another example, it is known that when the centers of the two axes connected by the coupling 124 are deviated, a characteristic sound is generated at a frequency twice the rotation speed of the coupling 124. .. Therefore, the rotation speed of the coupling 124 is calculated by multiplying the speed of the motor 110 in the operation data at the time when the feature point is generated by the conversion ratio of the gearbox 122, and the calculated rotation speed and the frequency of the feature point are 2. The factor determination unit 18 determines that the centers of the two axes connected by the coupling 124 are deviated when the relationship is in direct proportion to the fold. At this time, instead of the speed of the motor 110, the current of the motor 110 may be acquired as operation data and the values may be accumulated to substitute for the speed.
さらに他の条件の例として、機械がモータ110の駆動により機械共振する場合には、機械共振を励起する特定の速度vで、特定の共振周波数fの共振音が発生する。そこで、特徴点の発生する時刻におけるモータ110の回転速度が特定の速度、または一定の幅の区間Vに集中し、かつ特徴点の周波数が特定の周波数、または一定の幅の区間Fに集中するときに、診断対象100は、回転速度vで機械共振による周波数fの音が発生していると要因判定部18は判定する。
As an example of yet another condition, when the machine resonates mechanically by driving the motor 110, a resonance sound having a specific resonance frequency f is generated at a specific speed v that excites the mechanical resonance. Therefore, the rotation speed of the motor 110 at the time when the feature point is generated is concentrated in a specific speed or a section V having a certain width, and the frequency of the feature point is concentrated in a specific frequency or a section F having a certain width. Occasionally, the factor determination unit 18 determines that the diagnosis target 100 is generating a sound having a frequency f due to mechanical resonance at a rotation speed v.
さらには、運転振動抽出部17で取得した振動の周波数と機械共振による周波数fが発生する特徴点の時刻の周期が同一である場合には、モータ110の回転によって、一定の間隔でモータ110の振動成分が機械共振を励起していると要因判定部18は判定する。つまり、運転データの振動成分と、音の頂点とを比較することで、駆動の振動成分によって機械共振が定期的に加振され、共振が励起される現象が要因判定部18によって判定される。
Further, when the frequency of the vibration acquired by the operating vibration extraction unit 17 and the time period of the feature point where the frequency f due to mechanical resonance is generated are the same, the rotation of the motor 110 causes the motor 110 to operate at regular intervals. The factor determination unit 18 determines that the vibration component excites mechanical resonance. That is, by comparing the vibration component of the operation data with the peak of the sound, the factor determination unit 18 determines the phenomenon that the mechanical resonance is periodically excited by the vibration component of the drive and the resonance is excited.
このように要因判定部18は、登録された要因判別条件を用いて、特徴点抽出部16で抽出された特徴点データに対して、あるいは特徴点データおよび運転振動抽出部17が抽出した振動データに対して、検査をすることで、アクチュエータもしくは被駆動機械120の位置または速度に依存する駆動音の要因を判別する。登録する要因判別条件は、あらかじめ類似する条件を整理して二分木探索として検査をしてもよい。このようにすることで、要因の判別で検査する条件の数を減らし、判別時間の短縮が図れる。以上で、駆動音診断方法の処理が終了する。
In this way, the factor determination unit 18 uses the registered factor determination conditions for the feature point data extracted by the feature point extraction unit 16, or the feature point data and the vibration data extracted by the operation vibration extraction unit 17. On the other hand, by inspecting, the factor of the driving sound depending on the position or speed of the actuator or the driven machine 120 is determined. As for the factor determination conditions to be registered, similar conditions may be arranged in advance and inspected as a binary tree search. By doing so, the number of conditions to be inspected in determining the factor can be reduced, and the discrimination time can be shortened. This completes the process of the drive sound diagnosis method.
実施の形態1による駆動音診断システム10,10Aは、アクチュエータもしくは被駆動機械120が発する駆動音についての時系列の音振動データと、アクチュエータの運転状態についての時系列の運転データと、を同期させ、運転モードを抽出する。また、音振動データを時間周波数解析して得られる時系列の音振動データのスペクトルから特徴点を抽出し、特徴点の周波数、時刻、パワー、波形および特徴点の時刻における運転データを組にした特徴点データを生成する。そして、特徴点データを予め用意した要因判別条件と比較することによって、駆動音の発生要因を判別した。このように、音振動データと運転データに基づき駆動音の発生要因を診断するので、被駆動機械120への異物の付着などによる駆動音の発生箇所を特定することができ、アクチュエータもしくは被駆動機械120の位置または速度に依存する異常原因を容易に判定することができる。さらに、アクチュエータまたは被駆動機械120の速度に応じて発生する音の周波数が変化する原因を判別することもできる。さらには、装置全体が振動しているような場合でも、音振動が運転によるものであるかを判別することができる。
The drive sound diagnosis systems 10 and 10A according to the first embodiment synchronize the time-series sound vibration data of the drive sound emitted by the actuator or the driven machine 120 with the time-series operation data of the operating state of the actuator. , Extract the operation mode. In addition, feature points were extracted from the spectrum of time-series sound vibration data obtained by analyzing the sound vibration data over time, and the operation data at the frequency, time, power, waveform, and time of the feature points were combined. Generate feature point data. Then, the cause of the driving sound was discriminated by comparing the feature point data with the factor discriminating condition prepared in advance. In this way, since the cause of the driving sound is diagnosed based on the sound vibration data and the operation data, the location where the driving sound is generated due to the adhesion of foreign matter to the driven machine 120 can be specified, and the actuator or the driven machine can be identified. The cause of the abnormality depending on the position or speed of 120 can be easily determined. Further, it is possible to determine the cause of the frequency of the generated sound changing according to the speed of the actuator or the driven machine 120. Furthermore, even when the entire device is vibrating, it is possible to determine whether the sound vibration is due to driving.
また、駆動音診断システム10,10Aは、特徴点の音振動データと運転データとその発生時刻に基づき音または振動の発生要因を診断する。そのため、診断対象の隣で大きな稼働音を発する装置が存在する場合であっても発生時刻と運転データとの因果関係から誤診断を抑制することができる。
In addition, the drive sound diagnosis systems 10 and 10A diagnose the cause of sound or vibration based on the sound vibration data and operation data of the feature points and their generation time. Therefore, even if there is a device that emits a loud operating noise next to the diagnosis target, erroneous diagnosis can be suppressed from the causal relationship between the occurrence time and the operation data.
さらに、駆動音診断システム10,10Aは、音振動データの周波数スペクトルと運転データとを組み合わせて音の発生要因を診断するので、音振動データのスペクトルの変化を判定する際に、運転パターンの変化による音振動データのスペクトルの変化の影響を除去することができる。特に、ワークの条件により運転パターンが変化する場合であっても、音振動データのスペクトルへの影響を運転データによって除去することができるため、駆動音診断システム10,10Aは適切な診断を実施することができる。
Further, since the drive sound diagnosis systems 10 and 10A diagnose the sound generation factor by combining the frequency spectrum of the sound vibration data and the operation data, the operation pattern changes when determining the change of the sound vibration data spectrum. The influence of the change in the spectrum of the sound vibration data due to the above can be removed. In particular, even when the operation pattern changes depending on the work conditions, the influence of the sound vibration data on the spectrum can be removed by the operation data, so that the drive sound diagnosis systems 10 and 10A perform appropriate diagnosis. be able to.
また、駆動音診断システム10,10Aは、音振動データを時間周波数解析して求めた特徴量を、駆動パターンに依らない条件式に代入することで、駆動音の発生要因を診断する。このため、正常時または異常時の運転データを予め用意する必要がない。従って、駆動機器または機械の構成を変更した場合でも、汎用的かつ即座に駆動音の診断を実施することができる。
Further, the drive sound diagnosis systems 10 and 10A diagnose the cause of the drive sound by substituting the feature amount obtained by time-frequency analysis of the sound vibration data into a conditional expression that does not depend on the drive pattern. Therefore, it is not necessary to prepare operation data at the time of normal or abnormal time in advance. Therefore, even if the configuration of the drive device or the machine is changed, it is possible to perform a general-purpose and immediate diagnosis of the drive sound.
カップリング124で接続する二軸の中心がずれている場合を例に挙げて説明する。この音は、カップリング124の回転速度の周波数の2倍の周波数に特徴的な音が発生することが知られている。機械の使用方法の変更によって、駆動パターンが、毎秒10回転のモータ110の回転速度から毎秒20回転のモータ110の回転速度へと変わったものとする。特許文献1に記載の技術では、異常を検知する場合の音のピーク周波数の閾値を、駆動パターンごとに設定しなければならない。ピーク周波数の閾値の一例は、駆動パターンの変更前の場合は次式(1)で示され、駆動パターンの変更後の場合は次式(2)で示される。
変更前のピーク周波数=10×ギアボックス122の変換比×2±誤差[Hz] ・・・(1)
変更後のピーク周波数=20×ギアボックス122の変換比×2±誤差[Hz] ・・・(2) A case where the centers of the two axes connected by thecoupling 124 are deviated will be described as an example. It is known that this sound is characteristic of a frequency twice the frequency of the rotation speed of the coupling 124. It is assumed that the drive pattern is changed from the rotation speed of the motor 110 at 10 rotations per second to the rotation speed of the motor 110 at 20 rotations per second due to the change in the usage of the machine. In the technique described in Patent Document 1, the threshold value of the peak frequency of sound when detecting an abnormality must be set for each drive pattern. An example of the peak frequency threshold value is represented by the following equation (1) before the drive pattern is changed and by the following equation (2) after the drive pattern is changed.
Peak frequency before change = 10 x conversion ratio of gearbox 122 x 2 ± error [Hz] ... (1)
Peak frequency after change = 20 x conversion ratio of gearbox 122 x 2 ± error [Hz] ... (2)
変更前のピーク周波数=10×ギアボックス122の変換比×2±誤差[Hz] ・・・(1)
変更後のピーク周波数=20×ギアボックス122の変換比×2±誤差[Hz] ・・・(2) A case where the centers of the two axes connected by the
Peak frequency before change = 10 x conversion ratio of gearbox 122 x 2 ± error [Hz] ... (1)
Peak frequency after change = 20 x conversion ratio of gearbox 122 x 2 ± error [Hz] ... (2)
一方、本実施の形態では、カップリング124のずれで発生する音の特徴量であるピーク周波数は、次式(3)で示される。
ピーク周波数=回転速度の周波数×ギアボックス122の変換比×2±誤差[Hz] ・・・(3) On the other hand, in the present embodiment, the peak frequency, which is a feature amount of the sound generated by the deviation of thecoupling 124, is represented by the following equation (3).
Peak frequency = frequency of rotation speed x conversion ratio of gearbox 122 x 2 ± error [Hz] ... (3)
ピーク周波数=回転速度の周波数×ギアボックス122の変換比×2±誤差[Hz] ・・・(3) On the other hand, in the present embodiment, the peak frequency, which is a feature amount of the sound generated by the deviation of the
Peak frequency = frequency of rotation speed x conversion ratio of gearbox 122 x 2 ± error [Hz] ... (3)
つまり、(1)式および(2)式を含むカップリング124のずれで発生する音のピーク周波数を、モータ110の回転速度を変数とした条件式で表現しており、駆動パターン毎、この場合にはモータ110の回転速度毎に条件式を予め用意しておく必要がない。そして、回転速度の周波数は、取得した運転データから求めることができるので、(3)式を使用することで、どのような運転パターンの場合でもカップリング124のずれを判定することが可能になる。すなわち、音の特徴量である周波数が駆動パターンに依らない条件式に代入して判別されることになる。なお、ここでは、カップリング124で接続する二軸の中心がずれている場合に発生する音について説明したが、他の要因についても同様に、振動データを時間周波数解析して求めた特徴量を、駆動パターンに依らない条件式に代入することで、駆動音の発生要因を診断することができる。
That is, the peak frequency of the sound generated by the deviation of the coupling 124 including the equations (1) and (2) is expressed by a conditional expression with the rotation speed of the motor 110 as a variable, and for each drive pattern, in this case. It is not necessary to prepare a conditional expression in advance for each rotation speed of the motor 110. Since the frequency of the rotation speed can be obtained from the acquired operation data, it is possible to determine the deviation of the coupling 124 in any operation pattern by using the equation (3). .. That is, the frequency, which is a feature amount of sound, is determined by substituting it into a conditional expression that does not depend on the drive pattern. Here, the sound generated when the centers of the two axes connected by the coupling 124 are deviated has been described, but similarly, for other factors, the feature amount obtained by analyzing the vibration data over time and frequency is obtained. By substituting into a conditional expression that does not depend on the drive pattern, the cause of the drive sound can be diagnosed.
さらに、被駆動機械120の発する駆動音を基にその要因を診断する。駆動音を用いて診断することによって、機械剛性の低い場合などでも機械を選ばずに診断することができる。
Furthermore, the cause is diagnosed based on the driving sound emitted by the driven machine 120. By diagnosing using the driving sound, it is possible to make a diagnosis regardless of the machine even when the mechanical rigidity is low.
また、駆動音診断システム10,10Aは、音振動データを時間周波数解析した結果を用いて、音または振動の要因を診断する。時間周波数解析を行うことによって、センサの誤検知またはノイズによる要因診断の誤りを減らすことができる。
Further, the drive sound diagnosis systems 10 and 10A diagnose the cause of sound or vibration by using the result of time-frequency analysis of the sound vibration data. By performing time-frequency analysis, it is possible to reduce erroneous sensor detection or factor diagnosis error due to noise.
さらに、駆動音診断システム10,10Aは、音振動データを時間周波数解析して求めた特徴量を基に駆動音の要因を診断する。これによって、診断の対象となるデータを削減し、処理時間を軽減することができる。また、周波数を用いることによって、駆動音の原因の推定が可能となる。
Further, the drive sound diagnosis systems 10 and 10A diagnose the cause of the drive sound based on the feature amount obtained by analyzing the sound vibration data over time and frequency. As a result, the data to be diagnosed can be reduced and the processing time can be reduced. Further, by using the frequency, it is possible to estimate the cause of the driving sound.
また、駆動音診断システム10,10Aは、運転データに基づき運転モード抽出部14が機器の運転状態を推定し、運転モードを抽出する。そして、定速運転中の期間に対応する音振動データのみに周波数変換を行い、アクチュエータの駆動が安定し難い加減速中の音振動データを破棄することができる。したがって、加減速中の音振動データも使用する場合に比して、診断の精度を改善するとともに、診断に適さない音振動データを破棄することで、演算処理で使用するメモリ量と処理時間とを削減することができる。
Further, in the drive sound diagnosis systems 10 and 10A, the operation mode extraction unit 14 estimates the operation state of the device based on the operation data and extracts the operation mode. Then, frequency conversion can be performed only on the sound vibration data corresponding to the period during constant speed operation, and the sound vibration data during acceleration / deceleration in which the actuator drive is difficult to stabilize can be discarded. Therefore, compared to the case where the sound vibration data during acceleration / deceleration is also used, the accuracy of the diagnosis is improved, and the sound vibration data unsuitable for the diagnosis is discarded to increase the amount of memory and the processing time used in the arithmetic processing. Can be reduced.
さらに、駆動音診断システム10,10Aは、運転データに基づき、被駆動機械120が動作していない期間などを判定し、動作していない期間の音振動データを省くことで、駆動によらない音による誤検知を防ぐことができる。さらに、被駆動機械120が動作していない状態の周波数変換を省略することにより処理コストを軽減することができる。
Further, the drive sound diagnostic systems 10 and 10A determine the period during which the driven machine 120 is not operating based on the operation data, and omit the sound vibration data during the period when the driven machine 120 is not operating, so that the sound is not driven. It is possible to prevent false detection due to. Further, the processing cost can be reduced by omitting the frequency conversion in the state where the driven machine 120 is not operating.
さらにまた、駆動音の原因を調査する場合に、調査したい駆動音が含まれる運転モードを特定することで、他の現象による駆動音の影響を排除することができる。特に、複数のアクチュエータが設けられる場合に駆動音の原因となるアクチュエータを推定することができる。
Furthermore, when investigating the cause of the driving sound, the influence of the driving sound due to other phenomena can be eliminated by specifying the operation mode including the driving sound to be investigated. In particular, when a plurality of actuators are provided, it is possible to estimate the actuator that causes the driving noise.
また、駆動音診断システム10,10Aは、運転モード抽出部14が一定の時間、運転データである速度のデータの変化量の和が特定の閾値に収まるときに定速運転中であると定める。このようにすることで、アクチュエータの速度が一定の幅に収まる状態では、被駆動機械120の発する駆動音が安定し、均質の状態となり易いので、より正確に音の要因を判定することができる。また、速度を特定せずに安定した状態の音を抽出することができるため、駆動パターンが異なった場合でも定速運転中であれば同じ要因診断をすることができる。さらに、要因推定のために望ましい、アクチュエータまたは被駆動機械120の複数の速度で安定したときの音を抽出することができる。
Further, the drive sound diagnosis systems 10 and 10A determine that the operation mode extraction unit 14 is in constant speed operation for a certain period of time when the sum of the changes in the speed data, which is the operation data, falls within a specific threshold value. By doing so, when the speed of the actuator is within a certain width, the driving sound generated by the driven machine 120 is stable and tends to be in a homogeneous state, so that the factor of the sound can be determined more accurately. .. Further, since the sound in a stable state can be extracted without specifying the speed, the same factor diagnosis can be performed even if the drive pattern is different during constant speed operation. Further, it is possible to extract the sound when the actuator or the driven machine 120 stabilizes at a plurality of speeds, which is desirable for factor estimation.
また、駆動音診断システム10,10Aは、運転データから振動成分を抽出する運転振動抽出部17を備えるので、要因判定部18は振動成分と特徴点の発生時刻とを比較することができる。これによって、駆動の振動成分により機械共振が定期的に加振され、共振が励起される現象を判定することができる。
Further, since the driving sound diagnosis systems 10 and 10A include a driving vibration extraction unit 17 that extracts a vibration component from the driving data, the factor determination unit 18 can compare the vibration component with the occurrence time of the feature point. As a result, it is possible to determine the phenomenon in which mechanical resonance is periodically excited by the vibration component of the drive and the resonance is excited.
また、駆動音診断システム10,10Aは、特徴点と特徴点の時刻におけるモータ110の位置の分布具合が、特定の位置に集中することを検出する。このようにすることで、検出された特徴点が運転データに依存する要因で発生した特徴点であるか否かを判定することができる。
Further, the drive sound diagnostic systems 10 and 10A detect that the distribution of the positions of the motor 110 at the feature points and the time of the feature points is concentrated at a specific position. By doing so, it is possible to determine whether or not the detected feature point is a feature point generated by a factor that depends on the operation data.
また、駆動音診断システム10,10Aは、特徴点を時系列スペクトルのパワーが周波数と時刻に対する波形について頂点となる点を特徴点として抽出する。抽出によって診断を行う点数を減らすことで、要因判定部18で行う処理を軽減することができる。スペクトルの頂点と運転データとの相関係数を計算することにより、検出された頂点が運転データに依存する要因で発生したものであるか否かを判別することができる。
Further, the drive sound diagnostic systems 10 and 10A extract the feature points as the feature points where the power of the time-series spectrum is the apex of the waveform with respect to the frequency and time. By reducing the number of points for diagnosis by extraction, the processing performed by the factor determination unit 18 can be reduced. By calculating the correlation coefficient between the vertices of the spectrum and the operation data, it is possible to determine whether or not the detected vertices are caused by a factor that depends on the operation data.
また、駆動音診断システム10,10Aは、被駆動機械120が発した駆動音の要因を判定し、表示器133を通じて昇降機の使用者に通知する。このようにすることで、昇降機の使用者は、被駆動機械120の駆動音に問題があることを検知し、診断結果を基に適切な対応をとることができる。
Further, the drive sound diagnosis systems 10 and 10A determine the cause of the drive sound emitted by the driven machine 120, and notify the user of the elevator through the display 133. By doing so, the user of the elevator can detect that there is a problem in the driving sound of the driven machine 120 and take an appropriate action based on the diagnosis result.
実施の形態2.
図13は、実施の形態2に係る駆動音診断システムをピッキングユニットに適用した場合のハードウェア構成の一例を示す図である。この例では、診断対象200は、ベルトコンベア225上を流れるワーク291を別のベルトコンベア226へ移し替えるピッキングユニットである。Embodiment 2.
FIG. 13 is a diagram showing an example of a hardware configuration when the drive sound diagnosis system according to the second embodiment is applied to the picking unit. In this example, thediagnosis target 200 is a picking unit that transfers the work 291 flowing on the belt conveyor 225 to another belt conveyor 226.
図13は、実施の形態2に係る駆動音診断システムをピッキングユニットに適用した場合のハードウェア構成の一例を示す図である。この例では、診断対象200は、ベルトコンベア225上を流れるワーク291を別のベルトコンベア226へ移し替えるピッキングユニットである。
FIG. 13 is a diagram showing an example of a hardware configuration when the drive sound diagnosis system according to the second embodiment is applied to the picking unit. In this example, the
図13に示されるように、診断対象200は、複数のモータ211,212,213,214およびアクチュエータ215と、被駆動機械220と、駆動装置230と、を備える。この診断対象200に、駆動音診断システム10Bが設けられる。駆動音診断システム10Bは、駆動音検出部11と、運転状態検出部12と、無線ネットワーク機器240と、サーバ装置250と、ユーザ端末260と、ネットワーク機器270と、を備える。サーバ装置250とユーザ端末260との間は、通信回線280を介して接続される。なお、被駆動機械220において、上下方向をZ方向とし、Z方向に垂直な面内で、ベルトコンベア225,226の延在方向をY方向とし、Y方向およびZ方向に垂直な方向をX方向とする。
As shown in FIG. 13, the diagnosis target 200 includes a plurality of motors 211,212,213,214, actuators 215, a driven machine 220, and a driving device 230. The drive sound diagnosis system 10B is provided on the diagnosis target 200. The drive sound diagnosis system 10B includes a drive sound detection unit 11, an operating state detection unit 12, a wireless network device 240, a server device 250, a user terminal 260, and a network device 270. The server device 250 and the user terminal 260 are connected via a communication line 280. In the driven machine 220, the vertical direction is the Z direction, the extending direction of the belt conveyors 225 and 226 is the Y direction, and the directions perpendicular to the Y direction and the Z direction are the X directions in the plane perpendicular to the Z direction. And.
被駆動機械220は、ピッキングユニットである。被駆動機械220は、リニアレール221と、ボールねじ222と、リニアガイド223と、ヘッド224と、2つのベルトコンベア225,226と、を備える。
The driven machine 220 is a picking unit. The driven machine 220 includes a linear rail 221, a ball screw 222, a linear guide 223, a head 224, and two belt conveyors 225 and 226.
リニアレール221は、リニアモータであるモータ212の駆動方向を固定するレールである。この例では、リニアレール221は、並行して配置される2つのベルトコンベア225,226の上部に、Y方向に延在して配置される。リニアレール221には、モータ212、ボールねじ222およびリニアガイド223を介してヘッド224が接続される。モータ212を駆動したときのモータ212の可動方向は、リニアレール221の延在方向に限定される。図13の例では、モータ212の可動方向は、X方向に限定される。
The linear rail 221 is a rail that fixes the drive direction of the motor 212, which is a linear motor. In this example, the linear rail 221 is arranged so as to extend in the Y direction on the upper portions of the two belt conveyors 225 and 226 arranged in parallel. A head 224 is connected to the linear rail 221 via a motor 212, a ball screw 222, and a linear guide 223. The movable direction of the motor 212 when the motor 212 is driven is limited to the extending direction of the linear rail 221. In the example of FIG. 13, the movable direction of the motor 212 is limited to the X direction.
ボールねじ222は、モータ211に接続され、モータ211の回転によってZ方向にヘッド224を駆動させる。リニアガイド223は、ボールねじ222の駆動方向をZ方向に限定するガイドである。リニアガイド223は、モータ211およびボールねじ222と締結され、モータ212の可動部に固定される。これによって、ボールねじ222はモータ212の駆動によってリニアレール221に沿って駆動される。
The ball screw 222 is connected to the motor 211, and the rotation of the motor 211 drives the head 224 in the Z direction. The linear guide 223 is a guide that limits the driving direction of the ball screw 222 to the Z direction. The linear guide 223 is fastened to the motor 211 and the ball screw 222, and is fixed to the movable portion of the motor 212. As a result, the ball screw 222 is driven along the linear rail 221 by the drive of the motor 212.
ヘッド224は、ボールねじ222の駆動によって、Z方向に駆動されるステージである。ヘッド224は、Y方向に延在した形状を有し、下部にワーク291を保持する機構を有するアクチュエータ215を有する。アクチュエータ215は、真空吸着機構によってワーク291を保持する真空パッドである。アクチュエータ215で保持したワーク291は、ボールねじ222によって上下に移動が可能となる。ワーク291は、ピッキングユニットのピッキング対象である。
The head 224 is a stage driven in the Z direction by the drive of the ball screw 222. The head 224 has an actuator 215 having a shape extending in the Y direction and having a mechanism for holding the work 291 at the lower portion. The actuator 215 is a vacuum pad that holds the work 291 by a vacuum suction mechanism. The work 291 held by the actuator 215 can be moved up and down by the ball screw 222. The work 291 is a picking target of the picking unit.
ベルトコンベア225は、Y方向の正側から負側にワーク291を供給するフィーダである。ベルトコンベア225には、モータ213が接続される。モータ213の回転によって内蔵されたベルトが駆動されることによって、ベルト上のワーク291が運搬される。
The belt conveyor 225 is a feeder that supplies the work 291 from the positive side to the negative side in the Y direction. A motor 213 is connected to the belt conveyor 225. The work 291 on the belt is transported by driving the built-in belt by the rotation of the motor 213.
ベルトコンベア226は、Y方向の正側から負側にワーク291を運搬するアンローダである。ベルトコンベア226には、モータ214が接続される。モータ214の回転によって内蔵されたベルトが駆動されることによって、ベルト上のワーク291が運搬される。
The belt conveyor 226 is an unloader that transports the work 291 from the positive side to the negative side in the Y direction. A motor 214 is connected to the belt conveyor 226. The work 291 on the belt is transported by driving the built-in belt by the rotation of the motor 214.
モータ211は、ボールねじ222に接続される。モータ211は、駆動装置230によって制御された電流を受け取り、軸を回転させるサーボモータである。
The motor 211 is connected to the ball screw 222. The motor 211 is a servomotor that receives the current controlled by the drive device 230 and rotates the shaft.
モータ212は、リニアレール221に接続される。モータ212は、駆動装置230によって制御された電流を受け取り、X方向にモータ212を駆動するリニアサーボモータである。
The motor 212 is connected to the linear rail 221. The motor 212 is a linear servomotor that receives the current controlled by the drive device 230 and drives the motor 212 in the X direction.
モータ213は、ベルトコンベア225に接続され、モータ214は、ベルトコンベア226に接続される。モータ213,214は、駆動装置230からパルス状の電気信号を受け取り、軸を回転させるステッピングモータである。
The motor 213 is connected to the belt conveyor 225, and the motor 214 is connected to the belt conveyor 226. The motors 213 and 214 are stepping motors that receive a pulsed electric signal from the drive device 230 and rotate the shaft.
アクチュエータ215は、駆動装置230から電気信号を受け取り、ワーク291の吸着または脱着を行う複数の真空パッドである。吸着または脱着の動作によって、ピッキングを行うワーク291を保持または解放する。
The actuator 215 is a plurality of vacuum pads that receive an electric signal from the drive device 230 and attract or detach the work 291. The work 291 to be picked is held or released by the action of suction or desorption.
駆動装置230は、複数のモータドライブ231,232,233と、モータ制御機器234と、を有する。
The drive device 230 has a plurality of motor drives 231, 232, 233 and a motor control device 234.
モータドライブ231は、モータ211にケーブルで接続され、モータ211の回転角度を参照しながら駆動する動力をモータ211に供給する。モータドライブ232は、モータ212にケーブルで接続され、モータ212の位置を参照しながら駆動する動力をモータ212に供給する。モータドライブ233は、モータ213,214にケーブルで接続され、パルス状の指令をモータ213,214に送信する。
The motor drive 231 is connected to the motor 211 with a cable, and supplies power to drive the motor 211 while referring to the rotation angle of the motor 211. The motor drive 232 is connected to the motor 212 with a cable, and supplies power to drive the motor 212 while referring to the position of the motor 212. The motor drive 233 is connected to the motors 213 and 214 with a cable, and transmits a pulse-like command to the motors 213 and 214.
モータ制御機器234は、モータドライブ231,232,233を統括し、各モータ211,212,213,214の駆動を制御する。モータドライブ231,232,233およびモータ制御機器234はケーブルによって接続され、通信によって相互の情報を交換することができる。また、モータ制御機器234は、アクチュエータ215と図示しないケーブルによって接続され、アクチュエータ215によるワーク291に対する吸着、脱着を電気信号によって制御する。ワーク291に対する吸着または脱着を行うので、真空ポンプはアクチュエータ215の一例である。真空ポンプが動作することで、ワーク291に対する吸着が行われ、真空ポンプが動作しないことで、ワーク291に対する脱着が行われる。
The motor control device 234 controls the motor drives 231,232,233 and controls the drive of each motor 211,212,213,214. The motor drives 231, 232, 233 and the motor control device 234 are connected by a cable, and information can be exchanged with each other by communication. Further, the motor control device 234 is connected to the actuator 215 by a cable (not shown), and the suction and attachment / detachment of the work 291 by the actuator 215 are controlled by an electric signal. The vacuum pump is an example of the actuator 215 because it attaches or detaches to the work 291. When the vacuum pump operates, the work 291 is sucked, and when the vacuum pump does not operate, the work 291 is attached and detached.
駆動音検出部11は、被駆動機械220に隣接して配置され、診断対象200が発する音を検出するマイクロフォンである。駆動音検出部11には、通信部241Aが設けられる。通信部241Aの一例は、無線通信装置である。駆動音検出部11は、検出した駆動音を、音を検出した時刻であるタイムスタンプと組にして、通信部241Aを介してサーバ装置250に送信する。
The drive sound detection unit 11 is a microphone that is arranged adjacent to the driven machine 220 and detects the sound emitted by the diagnosis target 200. The drive sound detection unit 11 is provided with a communication unit 241A. An example of the communication unit 241A is a wireless communication device. The drive sound detection unit 11 sets the detected drive sound with a time stamp which is the time when the sound is detected, and transmits the detected drive sound to the server device 250 via the communication unit 241A.
運転状態検出部12は、駆動装置230にケーブルを介して接続され、駆動装置230の情報を運転状態として取得するロガーである。運転状態検出部12は、駆動装置230と適宜通信を行い、運転状態を含む各種データを取得し、記録する。運転状態検出部12は、診断対象200の運転状態として、モータ211,212,213,214の速度指令、およびアクチュエータ215の吸着状態を取得し、時刻同期部13に出力する。吸着または脱着の2値データは、吸着状態の一例である。
The operating state detection unit 12 is a logger that is connected to the driving device 230 via a cable and acquires information on the driving device 230 as an operating state. The operation state detection unit 12 appropriately communicates with the drive device 230 to acquire and record various data including the operation state. The operation state detection unit 12 acquires the speed command of the motors 211, 212, 213, 214 and the suction state of the actuator 215 as the operation state of the diagnosis target 200, and outputs the speed command to the time synchronization unit 13. The binary data of adsorption or desorption is an example of the adsorption state.
運転状態検出部12には、通信部241Bが設けられる。通信部241Bの一例は、無線通信装置である。運転状態検出部12は、取得した運転状態を、運転状態を取得した時刻であるタイムスタンプと組にして、通信部241Bを介してサーバ装置250に送信する。
The operation state detection unit 12 is provided with a communication unit 241B. An example of the communication unit 241B is a wireless communication device. The operation state detection unit 12 sets the acquired operation state with a time stamp which is the time when the operation state is acquired, and transmits the acquired operation state to the server device 250 via the communication unit 241B.
図13では、複数軸のモータ211,212,213,214およびアクチュエータ215に対して、1台の駆動音検出部11および1台の運転状態検出部12が設けられる場合が示されているが、複数の駆動音検出部11または複数の運転状態検出部12が設けられる構成としてもよい。特に、遮蔽などによって他のモータの駆動音による干渉を排除する構成を有する被駆動機械220の場合には、それぞれのモータ211,212,213,214およびアクチュエータ215に対して駆動音検出部11を設けることで、より正確な診断が期待できる。
FIG. 13 shows a case where one drive sound detection unit 11 and one operation state detection unit 12 are provided for the multi-axis motors 211, 212, 213, 214 and the actuator 215. A plurality of drive sound detection units 11 or a plurality of operation state detection units 12 may be provided. In particular, in the case of the driven machine 220 having a configuration for eliminating interference due to the driving sound of other motors by shielding or the like, the driving sound detecting unit 11 is provided for each of the motors 211, 212, 213, 214 and the actuator 215. By providing it, more accurate diagnosis can be expected.
無線ネットワーク機器240は、通信部241A,241Bとの間で無線通信を行う装置である。無線ネットワーク機器240は、通信部241Cを有する。無線ネットワーク機器240および通信部241A,241B,241Cによって、無線LAN(Local Area Network)が構築され、無線ネットワーク機器240は、通信部241A,241B,241Cのアクセスポイントとなる。また、無線ネットワーク機器240は、同時にルータの役割も有し、各端末と通信回線280によるネットワークとの通信を中継している。なお、通信部241A,241B,241Cおよび無線ネットワーク機器240は、必要に応じて、通信部241A,241B,241Cおよび無線ネットワーク機器240を含む無線設備間の時刻の同期を行う。これは駆動音検出部11および運転状態検出部12で使用する時刻を正確な時刻とするためである。
The wireless network device 240 is a device that performs wireless communication with the communication units 241A and 241B. The wireless network device 240 has a communication unit 241C. A wireless LAN (Local Area Network) is constructed by the wireless network device 240 and the communication units 241A, 241B, 241C, and the wireless network device 240 serves as an access point for the communication units 241A, 241B, 241C. The wireless network device 240 also has a role of a router at the same time, and relays communication between each terminal and the network by the communication line 280. The communication units 241A, 241B, 241C and the wireless network device 240 synchronize the time between the wireless devices including the communication units 241A, 241B, 241C and the wireless network device 240, if necessary. This is because the time used by the drive sound detection unit 11 and the operating state detection unit 12 is set to an accurate time.
実施の形態2では、音振動データおよび運転データを用いて要因判別を行う機能処理部は、サーバ装置250と、ユーザ端末260と、に分散して設けられる。サーバ装置250とユーザ端末260とは通信回線280を介して接続される。
In the second embodiment, the function processing unit for determining the factor using the sound vibration data and the operation data is distributed to the server device 250 and the user terminal 260. The server device 250 and the user terminal 260 are connected via a communication line 280.
サーバ装置250は、被駆動機械220について駆動音についての要因判別の処理の実行をユーザ端末260から指示されると、被駆動機械220から取得した駆動音の時系列データである音振動データおよび運転状態の時系列データである運転データを用いて特徴点データを含む装置データを生成する処理を行う。
When the user terminal 260 instructs the server device 250 to execute a factor determination process for the driving sound of the driven machine 220, the server device 250 receives sound vibration data and operation which are time-series data of the driving sound acquired from the driven machine 220. A process of generating device data including feature point data is performed using operation data which is time-series data of states.
図14は、実施の形態2によるサーバ装置の機能構成の一例を模式的に示すブロック図である。サーバ装置250は、通信回線280によるネットワーク上に設置された情報処理装置である。サーバ装置250は、時刻同期部13、運転モード抽出部14、音振動時系列スペクトル取得部15および特徴点抽出部16の機能を有する。すなわち、サーバ装置250は、サーバ装置250上のアプリケーションとして、時刻同期部13と、運転モード抽出部14と、音振動時系列スペクトル取得部15と、特徴点抽出部16と、を備える。なお、実施の形態2では、運転振動抽出部17が省略される構成を例示している。
FIG. 14 is a block diagram schematically showing an example of the functional configuration of the server device according to the second embodiment. The server device 250 is an information processing device installed on the network by the communication line 280. The server device 250 has the functions of a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, and a feature point extraction unit 16. That is, the server device 250 includes a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, and a feature point extraction unit 16 as applications on the server device 250. In the second embodiment, the configuration in which the operating vibration extraction unit 17 is omitted is illustrated.
また、サーバ装置250は、駆動音検出部11と運転状態検出部12との間、およびユーザ端末260との間で通信を行う通信部251を備える。
Further, the server device 250 includes a communication unit 251 that communicates between the drive sound detection unit 11 and the operation state detection unit 12 and between the user terminal 260.
さらに、サーバ装置250は、装置データ記憶部252を備える。装置データ記憶部252は、RDBMS(Relational Database Management System)またはNot only SQLなどのデータベースである。サーバ装置250は、駆動音検出部11および運転状態検出部12からネットワークに送られた駆動音および運転状態を含む装置データをデータベースに収集し、必要に応じて加工した後、記憶する。一例として、実施の形態1で説明したように、音振動データおよび運転データの同期を取り、音振動データについて時系列のスペクトルデータを取得し、このスペクトルデータから特徴点を抽出し、特徴点の周波数、時刻、パワー、波形および特徴点の時刻における運転データを組にした特徴点データを含む装置データが装置データ記憶部252に記憶される。
Further, the server device 250 includes a device data storage unit 252. The device data storage unit 252 is a database such as RDBMS (Relational Database Management System) or Not only SQL. The server device 250 collects device data including the drive sound and the operation state sent to the network from the drive sound detection unit 11 and the operation state detection unit 12 in a database, processes the device data as necessary, and then stores the data. As an example, as described in the first embodiment, the sound vibration data and the operation data are synchronized, the time-series spectrum data of the sound vibration data is acquired, and the feature points are extracted from the spectrum data to obtain the feature points. The device data storage unit 252 stores device data including feature point data, which is a set of operation data at frequency, time, power, waveform, and time of feature points.
図15は、実施の形態2による装置データのレコードの一例を示す図である。装置データの1つのレコードは、登録時刻と、運転モードと、特徴点データと、運転データと、を含む。なお、サーバ装置250に収集されたデータをディープラーニングなどによって分析することにより、より精度の高い要因の判別を行うことができる。
FIG. 15 is a diagram showing an example of a record of device data according to the second embodiment. One record of device data includes a registration time, an operation mode, feature point data, and operation data. By analyzing the data collected in the server device 250 by deep learning or the like, it is possible to determine the factors with higher accuracy.
ユーザ端末260は、被駆動機械220の駆動音についての要因判別をサーバ装置250に指示し、サーバ装置250から受け取った装置データを用いて要因判別の処理を行い、その結果を表示する。ユーザ端末260は、被駆動機械220の使用者が所持する情報処理装置である。ユーザ端末260の一例は、ラップトップ型またはデスクトップ型でのパーソナルコンピュータである。
The user terminal 260 instructs the server device 250 to determine the cause of the driving sound of the driven machine 220, performs the factor determination process using the device data received from the server device 250, and displays the result. The user terminal 260 is an information processing device possessed by the user of the driven machine 220. An example of a user terminal 260 is a laptop or desktop personal computer.
図16は、実施の形態2によるユーザ端末の機能構成の一例を模式的に示すブロック図である。ユーザ端末260は、実施の形態1で説明した要因判定部18の機能を有する。すなわち、ユーザ端末260は、ユーザ端末260上のアプリケーションとして、要因判定部18を備える。
FIG. 16 is a block diagram schematically showing an example of the functional configuration of the user terminal according to the second embodiment. The user terminal 260 has the function of the factor determination unit 18 described in the first embodiment. That is, the user terminal 260 includes a factor determination unit 18 as an application on the user terminal 260.
また、ユーザ端末260は、通信部261と、入力部262と、表示部263と、を備える。通信部261は、通信回線280を介してサーバ装置250との間で通信を行う。一例として、使用者によって入力部262から入力された要因判別の処理の実行の指示をサーバ装置250に送信し、サーバ装置250から装置データを含む種々の情報を受信する。また、通信部261は、駆動音検出部11および運転状態検出部12に接続し、駆動音を時系列データにした音振動データおよび運転状態を時系列データにした運転データを取得することもできる。
Further, the user terminal 260 includes a communication unit 261, an input unit 262, and a display unit 263. The communication unit 261 communicates with the server device 250 via the communication line 280. As an example, an instruction to execute a factor determination process input from the input unit 262 by the user is transmitted to the server device 250, and various information including device data is received from the server device 250. Further, the communication unit 261 can be connected to the drive sound detection unit 11 and the operation state detection unit 12 to acquire sound vibration data in which the drive sound is converted into time series data and operation data in which the operation state is converted into time series data. ..
入力部262は、使用者との間の入力インタフェースである。キーボードまたはマウスは入力部262の一例である。入力部262から被駆動機械220の要因判別の処理の実行の指示の入力などが行われる。
The input unit 262 is an input interface with the user. The keyboard or mouse is an example of the input unit 262. The input unit 262 inputs an instruction to execute the factor determination process of the driven machine 220.
表示部263は、被駆動機械220の要因判別の処理の実行の際に必要な情報を表示する。液晶ディスプレイは表示部263の一例である。表示部263には、要因判別の結果またはネットワークを介して取得した装置データなどが表示される。
The display unit 263 displays information necessary for executing the factor determination process of the driven machine 220. The liquid crystal display is an example of the display unit 263. The display unit 263 displays the result of factor determination or device data acquired via the network.
ネットワーク機器270は、被駆動機械220に設けられる駆動音検出部11および運転状態検出部12、サーバ装置250およびユーザ端末260の間の通信を中継する通信装置である。ルータはネットワーク機器270の一例である。
The network device 270 is a communication device that relays communication between the drive sound detection unit 11, the operating state detection unit 12, the server device 250, and the user terminal 260 provided in the driven machine 220. The router is an example of the network device 270.
図13に示されるように、ネットワークを介して駆動音診断システム10Bを構成することで、被駆動機械220が設置される工場とは異なる遠隔地であっても駆動音の診断を行うことができる。
As shown in FIG. 13, by configuring the drive sound diagnosis system 10B via the network, the drive sound can be diagnosed even in a remote place different from the factory where the driven machine 220 is installed. ..
駆動音の診断を行うサーバ装置250およびユーザ端末260は、上記したように情報処理装置によって実現される。図17は、サーバ装置およびユーザ端末のハードウェア構成の一例を示すブロック図である。サーバ装置250およびユーザ端末260は、演算装置401と、メモリ402と、記憶装置403と、通信装置404と、入力装置405と、表示装置406とを有する。演算装置401と、メモリ402と、記憶装置403と、通信装置404と、入力装置405と、表示装置406とは、バスライン407を介して接続される。
The server device 250 and the user terminal 260 for diagnosing the driving sound are realized by the information processing device as described above. FIG. 17 is a block diagram showing an example of the hardware configuration of the server device and the user terminal. The server device 250 and the user terminal 260 include an arithmetic unit 401, a memory 402, a storage device 403, a communication device 404, an input device 405, and a display device 406. The arithmetic unit 401, the memory 402, the storage device 403, the communication device 404, the input device 405, and the display device 406 are connected via the bus line 407.
演算装置401は、演算処理を行うCPUをはじめとしたプロセッサである。メモリ402は、演算装置401が演算処理の途中で使用するデータを格納するワークエリアとして機能する。記憶装置403は、コンピュータプログラム、情報などを記憶する。通信装置404は、ネットワークに接続される他の装置との間の通信機能を有する。入力装置405は、操作者からの入力を受け付ける。入力装置405は、キーボード、マウスなどである。表示装置406は、表示画面を出力する。表示装置406は、モニタ、ディスプレイなどである。なお、入力装置405と表示装置406とが一体化されたタッチパネルが用いられてもよい。
The arithmetic unit 401 is a processor including a CPU that performs arithmetic processing. The memory 402 functions as a work area for storing data used by the arithmetic unit 401 in the middle of arithmetic processing. The storage device 403 stores computer programs, information, and the like. The communication device 404 has a communication function with other devices connected to the network. The input device 405 receives an input from the operator. The input device 405 is a keyboard, a mouse, or the like. The display device 406 outputs a display screen. The display device 406 is a monitor, a display, or the like. A touch panel in which the input device 405 and the display device 406 are integrated may be used.
図14に示される時刻同期部13、運転モード抽出部14、音振動時系列スペクトル取得部15および特徴点抽出部16の機能は、演算装置401が記憶装置403に格納されたコンピュータプログラムを読み出して実行することにより実現される。
The functions of the time synchronization unit 13, the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15, and the feature point extraction unit 16 shown in FIG. 14 are such that the arithmetic unit 401 reads out the computer program stored in the storage device 403. It is realized by executing.
また、図16に示される要因判定部18の機能は、演算装置401が記憶装置403に格納されたコンピュータプログラムを読み出して実行することにより実現される。
Further, the function of the factor determination unit 18 shown in FIG. 16 is realized by the arithmetic unit 401 reading and executing the computer program stored in the storage device 403.
次に、診断対象200の動作を説明する。ピッキングユニットの使用者は、ピッキングユニットでワーク291を搬送するため、モータ211,212,213,214およびアクチュエータ215の駆動指令をモータ制御機器234に入力する。一例として、使用者は、ユーザ端末260からモータ制御機器234に対する指令を入力する。そして、ネットワーク機器270、通信回線280、サーバ装置250、無線ネットワーク機器240、通信部241C、通信部241Bを介して、モータ制御機器234に指令が送信される。モータ制御機器234は、入力された指令に従い、モータドライブ231,232,233に対して、駆動指令を生成し、送信する。
Next, the operation of the diagnosis target 200 will be described. The user of the picking unit inputs the drive commands of the motors 211,212,213,214 and the actuator 215 to the motor control device 234 in order to convey the work 291 by the picking unit. As an example, the user inputs a command from the user terminal 260 to the motor control device 234. Then, a command is transmitted to the motor control device 234 via the network device 270, the communication line 280, the server device 250, the wireless network device 240, the communication unit 241C, and the communication unit 241B. The motor control device 234 generates and transmits a drive command to the motor drives 231, 232, 233 according to the input command.
モータドライブ231,232,233は、受信した駆動指令に従い、モータ駆動電流を制御し、モータ211,212,213,214およびアクチュエータ215を駆動させる。
The motor drives 231,232,233 control the motor drive current according to the received drive command to drive the motors 211,212,213,214 and the actuator 215.
モータ211が駆動することで、モータ211に接続されたボールねじ222が回転し、ボールねじ222に接続されたヘッド224およびアクチュエータ215がZ方向に移動する。
When the motor 211 is driven, the ball screw 222 connected to the motor 211 rotates, and the head 224 and the actuator 215 connected to the ball screw 222 move in the Z direction.
モータ212が駆動することで、モータ212に接続されたリニアガイド223と、モータ211と、モータ211に接続された機器が、X方向に移動する。
When the motor 212 is driven, the linear guide 223 connected to the motor 212, the motor 211, and the device connected to the motor 211 move in the X direction.
モータ213が駆動することで、ベルトコンベア225が回転し、ベルトコンベア225上のワーク291がY方向の正側から負側に向かって移動する。同様に、モータ214が駆動することで、ベルトコンベア226が回転し、ベルトコンベア226上のワーク291がY方向の正側から負側に向かって移動する。
By driving the motor 213, the belt conveyor 225 rotates, and the work 291 on the belt conveyor 225 moves from the positive side to the negative side in the Y direction. Similarly, when the motor 214 is driven, the belt conveyor 226 rotates, and the work 291 on the belt conveyor 226 moves from the positive side to the negative side in the Y direction.
アクチュエータ215は、ベルトコンベア225の上を移動するワーク291を、アクチュエータ215の直下に接触するタイミングで吸着することにより、ワーク291を保持する。これによって、吸着後のモータ211の駆動によりアクチュエータ215が上方向に移動したときも、ワーク291がアクチュエータ215に接触した状態を保持することができる。
The actuator 215 holds the work 291 by attracting the work 291 moving on the belt conveyor 225 at the timing of contacting directly under the actuator 215. As a result, even when the actuator 215 is moved upward by driving the motor 211 after suction, the work 291 can be kept in contact with the actuator 215.
その後、モータ211が回転することにより、アクチュエータ215を上方向に移動する。このとき、ワーク291はアクチュエータ215に吸着されているため、アクチュエータ215の上昇とともにワーク291も上昇し、ベルトコンベア225から離れた状態となる。
After that, the motor 211 rotates to move the actuator 215 upward. At this time, since the work 291 is attracted to the actuator 215, the work 291 also rises as the actuator 215 rises, and is separated from the belt conveyor 225.
次に、モータ212をY方向の正側に駆動することにより、ワーク291はベルトコンベア226の直上へ移動する。その後、再びモータ211を回転することにより、ワーク291をベルトコンベア226に載せる。アクチュエータ215は、保持したワーク291がベルトコンベア226上に接触するタイミングでワーク291を解放することにより、ワーク291をベルトコンベア226上に載せる。アクチュエータ215を解放した後、モータ211およびモータ212を駆動させ、アクチュエータ215を開始時の位置に戻す。最後にモータ214を回転させることにより、ベルトコンベア226のY方向負側に向かってワーク291を搬出する。
Next, by driving the motor 212 on the positive side in the Y direction, the work 291 moves directly above the belt conveyor 226. After that, the work 291 is placed on the belt conveyor 226 by rotating the motor 211 again. The actuator 215 puts the work 291 on the belt conveyor 226 by releasing the work 291 at the timing when the held work 291 comes into contact with the belt conveyor 226. After releasing the actuator 215, the motor 211 and the motor 212 are driven to return the actuator 215 to the starting position. Finally, by rotating the motor 214, the work 291 is carried out toward the negative side in the Y direction of the belt conveyor 226.
以上説明した動作の過程で、診断対象200は駆動する際に駆動音を発する。診断対象200が発生した駆動音およびモータ211,212,213,214の回転角度のそれぞれは、駆動音検出部11および運転状態検出部12にて収録および取得され、無線通信によって、サーバ装置250に送信される。
In the process of the operation described above, the diagnosis target 200 emits a driving sound when it is driven. The drive sound generated by the diagnosis target 200 and the rotation angles of the motors 211, 212, 213, and 214 are recorded and acquired by the drive sound detection unit 11 and the operating state detection unit 12, and are recorded and acquired by the server device 250 by wireless communication. Will be sent.
サーバ装置250は、随時無線ネットワーク機器240を通じて、駆動音検出部11および運転状態検出部12と通信を行い、駆動音および運転状態を含む診断対象200に関する各種情報を取得し、装置データ記憶部252に情報を格納する。装置データ記憶部252に格納する前処理として、時刻同期部13、運転モード抽出部14、音振動時系列スペクトル取得部15および特徴点抽出部16は、取得した時系列データの音振動データおよび運転データに対して処理を実行し、運転モードと特徴点データを算出する。装置データ記憶部252は、時刻同期部13、運転モード抽出部14、音振動時系列スペクトル取得部15および特徴点抽出部16により算出した特徴点データと、特徴点の時刻の同期された運転データと、その他診断対象200に関する必要な情報を格納する。
The server device 250 communicates with the drive sound detection unit 11 and the operation state detection unit 12 through the wireless network device 240 at any time to acquire various information about the diagnosis target 200 including the drive sound and the operation state, and the device data storage unit 252. Store information in. As preprocessing stored in the device data storage unit 252, the time synchronization unit 13, the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15 and the feature point extraction unit 16 are used to obtain sound vibration data and operation of the time series data. Process the data and calculate the operation mode and feature point data. The device data storage unit 252 includes the feature point data calculated by the time synchronization unit 13, the operation mode extraction unit 14, the sound vibration time series spectrum acquisition unit 15, and the feature point extraction unit 16, and the time-synchronized operation data of the feature points. And other necessary information about the diagnosis target 200 is stored.
ユーザ端末260は、使用者の求めに応じて、システムの異常の有無など、使用者が必要とするシステムの各種情報を、サーバ装置250を通じて取得し、ユーザ端末260の表示部263に表示する。また、使用者は、サーバ装置250の装置データ記憶部252に記憶されたデータベースを用いて、診断対象200および駆動音診断システム10Bの保守、運用に必要な分析を行うことができる。
At the request of the user, the user terminal 260 acquires various information of the system required by the user, such as the presence or absence of an abnormality in the system, through the server device 250, and displays it on the display unit 263 of the user terminal 260. In addition, the user can perform the analysis necessary for the maintenance and operation of the diagnosis target 200 and the drive sound diagnosis system 10B by using the database stored in the device data storage unit 252 of the server device 250.
次に、実施の形態2おける駆動音診断システム10Bにおける駆動音の診断手順について説明する。なお、基本的な駆動音の診断手順については実施の形態1の場合とほぼ同様であるが、以下では、実施の形態1との相違点を中心に説明する。
Next, the drive sound diagnosis procedure in the drive sound diagnosis system 10B in the second embodiment will be described. The basic procedure for diagnosing the driving sound is almost the same as that of the first embodiment, but the differences from the first embodiment will be mainly described below.
実施の形態2では、サーバ装置250の時刻同期部13は、駆動音検出部11および運転状態検出部12で組とされたタイムスタンプを用いて、音振動データと運転データとの同期を行う。これにより通信の品質が悪いなどの理由で通信のリアルタイム性が確保できない場合においても、音振動データおよび運転データの同期を行うことが可能となる。
In the second embodiment, the time synchronization unit 13 of the server device 250 synchronizes the sound vibration data with the operation data by using the time stamps set by the drive sound detection unit 11 and the operation state detection unit 12. This makes it possible to synchronize the sound vibration data and the operation data even when the real-time performance of the communication cannot be ensured due to poor communication quality or the like.
また、サーバ装置250の運転モード抽出部14などにおいて特定の時刻間のデータを必要とする場合に、タイムスタンプにより指定された時刻間のタイムスタンプをもつデータが抽出されるものとする。この方式で抽出することにより、音振動データおよび運転データの取得周期が異なる場合でも、同期されたデータとして解析を行うことが可能となる。
Further, when the operation mode extraction unit 14 of the server device 250 or the like requires data between specific times, it is assumed that the data having the time stamps between the times specified by the time stamps is extracted. By extracting by this method, it is possible to perform analysis as synchronized data even if the acquisition cycles of sound vibration data and operation data are different.
音振動データおよび運転データの検出周期が異なる場合の他の手法としては、同一の周期となるようフィルタ処理を行った後に、データを間引く方法、あるいは逆に間のデータを線形補間などの手法によって補間する方法が考えられる。
As another method when the detection cycles of sound vibration data and operation data are different, the data is thinned out after filtering so that the cycles are the same, or conversely, the data between them is linearly interpolated. A method of interpolation can be considered.
また、運転モード抽出部14は、複数のモータ211,212,213,214およびアクチュエータ215のうちどのモータが主で動作するのかによって工程を分割して運転モードを設定する。具体的には、運転モード抽出部14は、運転データを基に、モータ211,212,213,214の速度指令とアクチュエータ215の圧着状態のデータとから、どのモータ211,212,213,214またはアクチュエータ215が動作しているのかを判別し、運転モードを決定する。一例では、ワーク搬入中ではモータ213が主に動作し、ワーク吊上中ではモータ211,212が主に動作し、ワーク搬出中では主にモータ214が動作し、ポンプ操作中ではアクチュエータ215が主に動作する。そこで、一例では、運転モード抽出部14は、ワーク搬入中、ワーク吊上中、ワーク搬出中、およびポンプ操作中に運転モードを分割する。
Further, the operation mode extraction unit 14 sets the operation mode by dividing the process according to which of the plurality of motors 211,212,213,214 and the actuator 215 is mainly operated. Specifically, the operation mode extraction unit 14 is based on the operation data, and based on the speed command of the motors 211,212,213,214 and the data of the crimping state of the actuator 215, which motor 211,212,213,214 or It is determined whether the actuator 215 is operating, and the operation mode is determined. In one example, the motor 213 mainly operates while the work is being carried in, the motors 211 and 212 mainly operate while the work is being lifted, the motor 214 is mainly operated while the work is being carried out, and the actuator 215 is mainly operated during the pump operation. Works on. Therefore, in one example, the operation mode extraction unit 14 divides the operation mode during the work loading, the work lifting, the work unloading, and the pump operation.
ユーザ端末260の要因判定部18は、特徴点データを、要因判定条件であるサーバ装置250で生成された数値範囲と比較し、駆動音の要因を判別する。サーバ装置250における数値範囲の生成方法としては、知見により要因と推定されるパラメータを基に数値範囲を生成してもよいし、運転データおよび音振動データを基にした機械学習などによって数値範囲を生成してもよい。また、要因判定条件を要因判定部18で判別する直前にサーバ装置250で動的に生成してもよい。この場合には、より喫緊の事例を基にした要因診断が行えるため、より精度の高い診断を実行することができる。
The factor determination unit 18 of the user terminal 260 compares the feature point data with the numerical range generated by the server device 250, which is the factor determination condition, and determines the cause of the driving sound. As a method of generating a numerical range in the server device 250, a numerical range may be generated based on a parameter estimated to be a factor based on knowledge, or a numerical range may be generated by machine learning based on operation data and sound vibration data. It may be generated. Further, the server device 250 may dynamically generate the factor determination condition immediately before the factor determination unit 18 determines the condition. In this case, since factor diagnosis based on a more urgent case can be performed, more accurate diagnosis can be performed.
なお、実施の形態2では、図1のように、運転振動抽出部17が設けられない構成となっている。そのため、要因判定部18は、振動データを用いず、特徴点データを用いて要因の判別を行う。
Note that, in the second embodiment, as shown in FIG. 1, the driving vibration extraction unit 17 is not provided. Therefore, the factor determination unit 18 determines the factor by using the feature point data without using the vibration data.
実施の形態2による駆動音診断システム10Bは、音振動データおよび運転データを時間周波数解析して求めた特徴点データを、運転モード毎にサーバ装置250で生成した数値範囲と比較することで、駆動音の発生要因を診断する。このため、正常時または異常時の運転データを予め用意する必要がなく、駆動機器または機械の構成を変更した場合でも、汎用的かつ即座に駆動音の診断を実施することができる。
The drive sound diagnosis system 10B according to the second embodiment is driven by comparing the feature point data obtained by time-frequency analysis of the sound vibration data and the operation data with the numerical range generated by the server device 250 for each operation mode. Diagnose the cause of sound. Therefore, it is not necessary to prepare operation data in a normal state or an abnormal state in advance, and even if the configuration of the drive device or the machine is changed, the general-purpose and immediate diagnosis of the drive sound can be performed.
また、実施の形態2による駆動音診断システム10Bによれば、複数のモータ211,212,213,214およびアクチュエータ215によって駆動される被駆動機械220が発する駆動音の要因を即座に判定することができる。特にどのモータにより駆動される部分に原因があるかの判別が容易となる。これによって、被駆動機械220の駆動音に問題がある場合、使用者は、その要因から適切な対処をとることができ、その対処に要する時間を短縮することができる。
Further, according to the drive sound diagnosis system 10B according to the second embodiment, it is possible to immediately determine the cause of the drive sound generated by the driven machine 220 driven by the plurality of motors 211,212,213,214 and the actuator 215. it can. In particular, it becomes easy to determine which motor drives the cause. As a result, when there is a problem in the driving sound of the driven machine 220, the user can take an appropriate countermeasure from the factor and can shorten the time required for the countermeasure.
実施の形態3.
図18は、実施の形態3に係る駆動音診断システムにおける要因判定部の機能構成の一例を示すブロック図である。実施の形態3による駆動音診断システムは、実施の形態1における演算処理部140の要因判定部18を、駆動音の要因判定について学習済みの学習器を用いて駆動音の要因を判別する要因判定部18Aへと換えたものである。なお、以下では、実施の形態1と同一の構成要素には、同一の符号を付してその説明を省略し、実施の形態1と異なる部分について説明する。 Embodiment 3.
FIG. 18 is a block diagram showing an example of the functional configuration of the factor determination unit in the drive sound diagnosis system according to the third embodiment. The drive sound diagnosis system according to the third embodiment uses the factor determination unit 18 of thearithmetic processing unit 140 in the first embodiment to determine the cause of the drive sound by using a learner that has already learned about the factor determination of the drive sound. It is replaced with the part 18A. In the following, the same components as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the parts different from those in the first embodiment will be described.
図18は、実施の形態3に係る駆動音診断システムにおける要因判定部の機能構成の一例を示すブロック図である。実施の形態3による駆動音診断システムは、実施の形態1における演算処理部140の要因判定部18を、駆動音の要因判定について学習済みの学習器を用いて駆動音の要因を判別する要因判定部18Aへと換えたものである。なお、以下では、実施の形態1と同一の構成要素には、同一の符号を付してその説明を省略し、実施の形態1と異なる部分について説明する。 Embodiment 3.
FIG. 18 is a block diagram showing an example of the functional configuration of the factor determination unit in the drive sound diagnosis system according to the third embodiment. The drive sound diagnosis system according to the third embodiment uses the factor determination unit 18 of the
要因判定部18Aは、学習結果保存部31と、要因推論部32と、を備える。学習結果保存部31は、特徴点抽出部16によって抽出された特徴点データに対する駆動音の要因を推定するための機械学習を予め行った学習結果を保存する。要因推論部32は、学習結果保存部31の学習結果に基づいた演算処理を実行する。
The factor determination unit 18A includes a learning result storage unit 31 and a factor inference unit 32. The learning result storage unit 31 stores the learning result obtained by performing machine learning in advance for estimating the factor of the driving sound with respect to the feature point data extracted by the feature point extraction unit 16. The factor inference unit 32 executes arithmetic processing based on the learning result of the learning result storage unit 31.
要因判定部18Aは、特徴点抽出部16によって抽出された特徴点データを入力とし、学習結果保存部31の学習結果に基づいた演算処理を要因推論部32にて行うことによって、駆動音の要因判別を行う。
The factor determination unit 18A receives the feature point data extracted by the feature point extraction unit 16 as an input, and performs arithmetic processing based on the learning result of the learning result storage unit 31 in the factor inference unit 32 to cause the driving sound. Make a judgment.
このとき、学習結果保存部31で保存される学習結果は、特徴点データの全てを用いて機械学習した結果であってもよいし、特徴点データの一部を用いて機械学習した結果であってもよい。また、要因推論部32は、学習結果保存部31の学習時に用いた特徴点データに応じて、入力データを抽出して演算処理を行う。
At this time, the learning result saved in the learning result storage unit 31 may be the result of machine learning using all of the feature point data, or the result of machine learning using a part of the feature point data. You may. Further, the factor inference unit 32 extracts the input data according to the feature point data used at the time of learning of the learning result storage unit 31, and performs arithmetic processing.
また、学習結果保存部31に保存される学習結果を導く機械学習の学習モデルとしては、K近傍法、決定木、サポートベクターマシーン、カーネル近似が挙げられる。また、学習モデルとして、ディープラーニングが用いられてもよい。
Further, examples of the machine learning learning model for deriving the learning result stored in the learning result storage unit 31 include the K-nearest neighbor method, a decision tree, a support vector machine, and a kernel approximation. Further, deep learning may be used as a learning model.
実施の形態3における要因判定部18Aは、駆動音の要因判定を学習済みの学習器を用いて判別する。これによって、より精度の高い駆動音の要因判定を提供することができる。また、要因判定部18Aは、要因判定部18と同じデータを用いて機械学習を行った学習器を用いるので、駆動パターンに依らない判別を行うことができる。このことから学習結果保存部31に保存される学習結果は、多様な駆動装置に適用することができる。
The factor determination unit 18A in the third embodiment determines the factor determination of the driving sound using a learned learner. Thereby, it is possible to provide more accurate factor determination of the driving sound. Further, since the factor determination unit 18A uses a learner that performs machine learning using the same data as the factor determination unit 18, it is possible to perform determination that does not depend on the drive pattern. From this, the learning result stored in the learning result storage unit 31 can be applied to various driving devices.
実施の形態4.
図19は、実施の形態4に係る駆動音診断システムの機械学習装置の機能構成の一例を示すブロック図である。機械学習装置50は、実施の形態2における音振動データおよび運転データを用いて要因判別を行う機能処理部を有するサーバ装置250およびユーザ端末260に、機械学習する機能を持たせたものである。なお、以下では、実施の形態1,2と同一の構成要素には、同一の符号を付してその説明を省略し、実施の形態1,2と異なる部分について説明する。 Embodiment 4.
FIG. 19 is a block diagram showing an example of the functional configuration of the machine learning device of the drive sound diagnosis system according to the fourth embodiment. Themachine learning device 50 is a server device 250 and a user terminal 260 having a function processing unit that discriminates factors using sound vibration data and operation data according to the second embodiment, and is provided with a machine learning function. In the following, the same components as those of the first and second embodiments are designated by the same reference numerals, the description thereof will be omitted, and the parts different from those of the first and second embodiments will be described.
図19は、実施の形態4に係る駆動音診断システムの機械学習装置の機能構成の一例を示すブロック図である。機械学習装置50は、実施の形態2における音振動データおよび運転データを用いて要因判別を行う機能処理部を有するサーバ装置250およびユーザ端末260に、機械学習する機能を持たせたものである。なお、以下では、実施の形態1,2と同一の構成要素には、同一の符号を付してその説明を省略し、実施の形態1,2と異なる部分について説明する。 Embodiment 4.
FIG. 19 is a block diagram showing an example of the functional configuration of the machine learning device of the drive sound diagnosis system according to the fourth embodiment. The
機械学習装置50は、駆動音検出部11と、運転状態検出部12と、音振動時系列スペクトル取得部15と、特徴点抽出部16と、要因取得部51と、要因学習部52と、学習結果保存部53と、を備える。
The machine learning device 50 learns from a drive sound detection unit 11, an operating state detection unit 12, a sound vibration time series spectrum acquisition unit 15, a feature point extraction unit 16, a factor acquisition unit 51, a factor learning unit 52, and so on. A result storage unit 53 is provided.
要因取得部51は、駆動音の発生要因に関するデータを取得する。要因取得部51は、例えば、設計者または利用者の操作によって入力された計測した駆動音の発生要因に関するデータを取得するものでもよい。あるいは、要因取得部51は、実施の形態1または実施の形態2に係る駆動音の発生要因の診断結果を取得するものでもよいし、他の駆動音診断システムにおける駆動音の発生要因の診断結果を取得するものでもよい。
The factor acquisition unit 51 acquires data related to the factors that generate the driving sound. The factor acquisition unit 51 may, for example, acquire data relating to the factors that generate the measured driving sound input by the operation of the designer or the user. Alternatively, the factor acquisition unit 51 may acquire the diagnosis result of the driving sound generation factor according to the first embodiment or the second embodiment, or the diagnosis result of the driving sound generation factor in another driving sound diagnosis system. It may be the one to acquire.
要因学習部52は、特徴点抽出部16によって抽出された特徴点データと、要因取得部51によって取得された駆動音の発生要因に関するデータと、の組み合わせに基づいて作成される訓練データセットに従って、駆動音の発生要因を学習する。要因学習部52で用いる学習モデルは、実施の形態3で挙げられた学習モデルなどを用いることができる。訓練データセットに用いる診断データは、複数の被駆動機械220のものを用いてもよい。一例では、通信回線280等によって複数の被駆動機械220に接続して診断データを収集することによって、より正確な診断とすることができる。学習結果保存部53は、要因学習部52による学習結果を保存する。
The factor learning unit 52 follows a training data set created based on a combination of the feature point data extracted by the feature point extraction unit 16 and the data related to the generation factor of the driving sound acquired by the factor acquisition unit 51. Learn the factors that generate driving noise. As the learning model used in the factor learning unit 52, the learning model mentioned in the third embodiment can be used. As the diagnostic data used in the training data set, those of a plurality of driven machines 220 may be used. In one example, more accurate diagnosis can be made by connecting to a plurality of driven machines 220 via a communication line 280 or the like and collecting diagnostic data. The learning result storage unit 53 stores the learning result by the factor learning unit 52.
図20は、実施の形態4によるサーバ装置の機能構成の一例を模式的に示すブロック図である。サーバ装置250Aは、通信回線280によるネットワーク上に設置された情報処理装置である。サーバ装置250Aは、時刻同期部13と、運転モード抽出部14と、音振動時系列スペクトル取得部15と、特徴点抽出部16と、要因学習部52と、学習結果保存部53と、通信部251と、を備える。
FIG. 20 is a block diagram schematically showing an example of the functional configuration of the server device according to the fourth embodiment. The server device 250A is an information processing device installed on the network by the communication line 280. The server device 250A includes a time synchronization unit 13, an operation mode extraction unit 14, a sound vibration time series spectrum acquisition unit 15, a feature point extraction unit 16, a factor learning unit 52, a learning result storage unit 53, and a communication unit. 251 and.
サーバ装置250Aは、駆動音検出部11および運転状態検出部12から通信回線280に送られた駆動音および運転状態を含む装置データを、必要に応じて加工した後、学習し、保存する。一例として、まず、実施の形態2のように、特徴点の周波数、時刻、パワー、波形および特徴点の時刻における運転データを組にした特徴点データの全部または一部が要因学習部52に入力される。次に、ユーザ端末260から通信回線280および通信部251を介して、駆動音の発生要因を取得し、組み合わせて訓練データセットとする。最後に、訓練データセットを用いて要因学習部52は駆動音の発生要因を学習し、その結果を学習結果保存部53に保存する。
The server device 250A processes the device data including the drive sound and the operation state sent from the drive sound detection unit 11 and the operation state detection unit 12 to the communication line 280 as necessary, and then learns and stores the device data. As an example, first, as in the second embodiment, all or part of the feature point data, which is a set of operation data at the frequency, time, power, waveform, and time of the feature point, is input to the factor learning unit 52. Will be done. Next, the factors that generate the driving sound are acquired from the user terminal 260 via the communication line 280 and the communication unit 251 and combined to form a training data set. Finally, the factor learning unit 52 learns the factors that generate the driving sound using the training data set, and stores the result in the learning result storage unit 53.
図21は、実施の形態4によるユーザ端末の機能構成の一例を模式的に示すブロック図である。ユーザ端末260Aは、通信部261と、入力部262Aと、表示部263と、要因判定部18と、要因取得部51と、を備える。
FIG. 21 is a block diagram schematically showing an example of the functional configuration of the user terminal according to the fourth embodiment. The user terminal 260A includes a communication unit 261, an input unit 262A, a display unit 263, a factor determination unit 18, and a factor acquisition unit 51.
要因取得部51は、駆動音の発生要因に関するデータを、例えば、使用者より取得する。取得した駆動音の発生要因に関するデータは、通信部261を介してサーバ装置250Aに送信される。
The factor acquisition unit 51 acquires data on the factors that generate the driving sound from, for example, the user. The acquired data regarding the cause of the driving sound is transmitted to the server device 250A via the communication unit 261.
入力部262Aは、使用者との間の入力インタフェースである。入力部262Aは、被駆動機械220の要因判別の処理の実行の指示を使用者が入力する際、また要因取得部51で取得する駆動音の発生要因に関するデータを使用者が入力する際のインタフェースとなる。
The input unit 262A is an input interface with the user. The input unit 262A is an interface when the user inputs an instruction to execute a factor determination process of the driven machine 220, and when the user inputs data related to a driving sound generation factor acquired by the factor acquisition unit 51. It becomes.
実施の形態4に係る駆動音診断システムでは、駆動音の要因の機械学習機能と機械学習機能の結果を用いた要因判別機能の両方を併せ持つ。これにより、駆動音の要因診断を利用しつつ、学習を進めることによって要因診断の精度を高めていくことが可能となる。
The drive sound diagnosis system according to the fourth embodiment has both a machine learning function for the factors of the drive sound and a factor discrimination function using the result of the machine learning function. As a result, it is possible to improve the accuracy of the factor diagnosis by advancing the learning while using the factor diagnosis of the driving sound.
また、通信回線280を介して複数の被駆動機械220またはユーザ端末260Aと接続することによって、より精度の高い要因診断を被駆動機械220の設置個所に依らず複数の場所で利用することができる。その結果、汎用性の高い診断を学習することが可能となる。
Further, by connecting to a plurality of driven machines 220 or user terminals 260A via a communication line 280, more accurate factor diagnosis can be used at a plurality of locations regardless of the installation location of the driven machine 220. .. As a result, it becomes possible to learn a highly versatile diagnosis.
実施の形態4に係る駆動音診断システムでは駆動音の要因の機械学習機能と機械学習機能の結果を用いた要因判別機能の両方を併せ持つが、駆動音診断システムの機械学習装置50が単独で構成され、学習結果を用いる要因判別は他の装置の機能としてもよい。学習結果を用いる要因判別装置の例は実施の形態3の図18に示した構成のものである。
The drive sound diagnosis system according to the fourth embodiment has both a machine learning function for the factors of the drive sound and a factor discrimination function using the result of the machine learning function, but the machine learning device 50 of the drive sound diagnosis system is independently configured. Therefore, factor determination using the learning result may be a function of another device. An example of the factor discriminating device using the learning result has the configuration shown in FIG. 18 of the third embodiment.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
10,10A,10B 駆動音診断システム、11 駆動音検出部、12 運転状態検出部、13 時刻同期部、14 運転モード抽出部、15 音振動時系列スペクトル取得部、16 特徴点抽出部、17 運転振動抽出部、18,18A 要因判定部、31,53 学習結果保存部、32 要因推論部、50 機械学習装置、51 要因取得部、52 要因学習部、100,200 診断対象、110,211,212,213,214 モータ、120,220 被駆動機械、130,230 駆動装置、131,231,232,233 モータドライブ、132,234 モータ制御機器、133 表示器、140 演算処理部、215 アクチュエータ、250,250A サーバ装置、251,261 通信部、252 装置データ記憶部、260,260A ユーザ端末、270 ネットワーク機器、280 通信回線。
10, 10A, 10B drive sound diagnosis system, 11 drive sound detection unit, 12 operation state detection unit, 13 time synchronization unit, 14 operation mode extraction unit, 15 sound vibration time series spectrum acquisition unit, 16 feature point extraction unit, 17 operation Vibration extraction unit, 18,18A factor determination unit, 31,53 learning result storage unit, 32 factor reasoning unit, 50 machine learning device, 51 factor acquisition unit, 52 factor learning unit, 100,200 diagnosis target, 110, 211,212 , 213,214 motor, 120,220 driven machine, 130,230 drive device, 131,231,232,233 motor drive, 132,234 motor control equipment, 133 display, 140 arithmetic processing unit, 215 actuator, 250, 250A server device, 251,261 communication unit, 252 device data storage unit, 260, 260A user terminal, 270 network equipment, 280 communication line.
Claims (8)
- アクチュエータまたはアクチュエータによって駆動される被駆動機械で発生する音または機械的振動である駆動音を検出する駆動音検出部と、
前記アクチュエータの駆動位置、駆動速度または駆動により発生する力を時系列で取得する運転状態検出部と、
検出された前記駆動音の時系列データである音振動データの各時刻に対応する周波数スペクトルを算出し、算出した前記周波数スペクトルのパワーを周波数および前記時刻と対応付けて組にした時系列スペクトルを出力する音振動時系列スペクトル取得部と、
前記時系列スペクトルの前記パワーの前記周波数および前記時刻に対する波形が定められた条件を満たす点を特徴点として抽出し、前記特徴点の前記周波数、前記時刻、前記特徴点の前記波形および前記特徴点の前記時刻における前記アクチュエータの駆動位置、駆動速度または駆動により発生する力である運転データを組にした特徴点データを出力する特徴点抽出部と、
前記駆動音の要因である前記アクチュエータまたは前記被駆動機械に発生する現象毎に、前記現象に伴って発生する前記特徴点の含まれる前記周波数および前記時刻の少なくとも1つと、前記時刻における前記アクチュエータの駆動位置、駆動速度または駆動により発生する力である前記運転データと、の組み合わせを多次元データとしたときの第1数値範囲を定めた要因判定条件と、前記特徴点データの数値と、を比較することで検出された前記駆動音の発生要因を判定する要因判定部と、
を備えることを特徴とする駆動音診断システム。 A drive sound detector that detects an actuator or a drive sound that is a mechanical vibration or a sound generated by a driven machine driven by the actuator.
An operating state detection unit that acquires the driving position, driving speed, or force generated by driving the actuator in time series, and
A frequency spectrum corresponding to each time of the sound vibration data, which is the time-series data of the detected driving sound, is calculated, and the calculated power of the frequency spectrum is associated with the frequency and the time to form a set of time-series spectra. The output sound vibration time series spectrum acquisition unit and
A point in which the frequency of the power of the time series spectrum and the waveform with respect to the time satisfy a predetermined condition is extracted as a feature point, and the frequency of the feature point, the time, the waveform of the feature point, and the feature point are extracted. A feature point extraction unit that outputs feature point data that is a set of operation data that is the drive position, drive speed, or force generated by the actuator at the time mentioned above.
For each phenomenon that occurs in the actuator or the driven machine that is the cause of the driving sound, at least one of the frequency and the time including the feature point generated in association with the phenomenon, and the actuator at the time. Comparing the factor determination condition that defines the first numerical range when the combination of the driving position, the driving speed, or the driving force generated by the driving is taken as multidimensional data, and the numerical value of the feature point data. A factor determination unit that determines the cause of the driving sound detected by the operation,
A driving sound diagnostic system characterized by being equipped with. - 前記被駆動機械の運転状態を、前記運転データに基づいて時刻で区切られた2つ以上の区間に区分する運転モード抽出部をさらに備え、
前記音振動時系列スペクトル取得部は、前記区間の開始時刻と終了時刻との間に検出した少なくとも一点の前記音振動データを用いて前記周波数スペクトルを算出することを特徴とする請求項1に記載の駆動音診断システム。 Further provided with an operation mode extraction unit that divides the operating state of the driven machine into two or more sections separated by time based on the operating data.
The first aspect of claim 1, wherein the sound vibration time series spectrum acquisition unit calculates the frequency spectrum using at least one point of the sound vibration data detected between the start time and the end time of the section. Driving sound diagnostic system. - 前記運転モード抽出部は、予め定められた時間よりも長い時間、前記アクチュエータの速度が一定の幅に収まる状態である区間を抽出することを特徴とする請求項2に記載の駆動音診断システム。 The driving sound diagnosis system according to claim 2, wherein the operation mode extraction unit extracts a section in which the speed of the actuator is within a certain width for a time longer than a predetermined time.
- 前記運転データから振動成分を抽出する運転振動抽出部をさらに備え、
前記要因判定部は、前記特徴点データの数値と前記第1数値範囲との比較に加え、前記振動成分と、前記現象毎に、前記現象に伴って発生する前記振動成分が含まれる第2数値範囲と、を比較することで検出された前記駆動音の発生要因を判定することを特徴とする請求項1から3のいずれか1つに記載の駆動音診断システム。 Further equipped with an operation vibration extraction unit that extracts vibration components from the operation data,
In addition to comparing the numerical value of the feature point data with the first numerical value range, the factor determination unit includes the vibration component and the vibration component generated in association with the phenomenon for each phenomenon. The driving sound diagnostic system according to any one of claims 1 to 3, wherein the cause of the driving sound detected is determined by comparing the range with the range. - 前記特徴点抽出部が検査する特徴点は、前記時系列スペクトルの前記パワーの前記周波数および前記時刻に対する波形が頂点となる点であることを特徴とする請求項1から4のいずれか1つに記載の駆動音診断システム。 The feature point to be inspected by the feature point extraction unit is any one of claims 1 to 4, characterized in that the waveform of the power of the time series spectrum with respect to the frequency and the time is the apex. The drive sound diagnostic system described.
- 前記要因判定部は、
前記特徴点データと、前記運転データに対する音の要因と、を推定するための機械学習を行った学習結果を保存する学習結果保存部と、
前記多次元データを入力とし、前記学習結果保存部に保存された前記学習結果に基づいた演算処理を実行し、前記駆動音の発生要因を判定する要因推論部と、
を有することを特徴とする請求項1から5のいずれか1つに記載の駆動音診断システム。 The factor determination unit
A learning result storage unit that stores learning results obtained by performing machine learning for estimating the feature point data and sound factors with respect to the driving data.
A factor inference unit that receives the multidimensional data as an input, executes arithmetic processing based on the learning result stored in the learning result storage unit, and determines the cause of the driving sound.
The driving sound diagnostic system according to any one of claims 1 to 5, wherein the driving sound diagnostic system is characterized by having. - アクチュエータまたはアクチュエータによって駆動される被駆動機械で発生する音または機械的振動である駆動音を検出する工程と、
前記アクチュエータの駆動位置、駆動速度または駆動により発生する力を時系列で取得する工程と、
検出された前記駆動音の時系列データである音振動データの各時刻に対応する周波数スペクトルを算出し、算出した前記周波数スペクトルのパワーを周波数および前記時刻と対応付けて組にした時系列スペクトルを出力する工程と、
前記時系列スペクトルの前記パワーの前記周波数および前記時刻に対する波形が定められた条件を満たす点を特徴点として抽出し、前記特徴点の前記周波数、前記時刻、前記特徴点の前記波形および前記特徴点の前記時刻における前記アクチュエータの駆動位置、駆動速度または駆動により発生する力である運転データを組にした特徴点データを出力する工程と、
前記駆動音の要因である前記アクチュエータまたは前記被駆動機械に発生する現象毎に、前記現象に伴って発生する前記特徴点の含まれる前記周波数および前記時刻の少なくとも1つと、前記時刻における前記アクチュエータの駆動位置、駆動速度または駆動により発生する力である前記運転データと、の組み合わせを多次元データとしたときの数値範囲を定めた要因判定条件と、前記特徴点データの数値と、を比較することで検出された前記駆動音の発生要因を判定する工程と、
を含むことを特徴とする駆動音診断方法。 The process of detecting the actuator or the driving sound that is the mechanical vibration or the sound generated by the driven machine driven by the actuator, and
The process of acquiring the drive position, drive speed, or force generated by the drive of the actuator in time series, and
A frequency spectrum corresponding to each time of the sound vibration data, which is the time-series data of the detected driving sound, is calculated, and the calculated power of the frequency spectrum is associated with the frequency and the time to form a set of time-series spectra. Output process and
A point in which the frequency of the power of the time series spectrum and the waveform with respect to the time satisfy a predetermined condition is extracted as a feature point, and the frequency of the feature point, the time, the waveform of the feature point, and the feature point are extracted. A step of outputting feature point data that is a set of operation data that is a drive position, a drive speed, or a force generated by the drive at the time mentioned above.
For each phenomenon that occurs in the actuator or the driven machine that is the cause of the driving sound, at least one of the frequency and the time including the feature point generated in association with the phenomenon, and the actuator at the time. Comparing the factor determination condition that defines the numerical range when the combination of the driving position, the driving speed, or the driving data, which is the force generated by the driving, is regarded as multidimensional data, and the numerical value of the feature point data. The step of determining the cause of the driving sound detected in
A driving sound diagnostic method characterized by including. - アクチュエータまたはアクチュエータによって駆動される被駆動機械で発生する音または機械的振動である駆動音を検出する駆動音検出部と、
前記アクチュエータの駆動位置、駆動速度、または、駆動により発生する力を時系列で取得する運転状態検出部と、
検出された前記駆動音の時系列データである音振動データの各時刻に対応する周波数スペクトルを算出し、算出した前記周波数スペクトルのパワーを周波数および前記時刻と対応付けて組にした時系列スペクトルを出力する音振動時系列スペクトル取得部と、
前記時系列スペクトルの前記パワーの前記周波数および前記時刻に対する波形が定められた条件を満たす点を特徴点として抽出し、前記特徴点の前記周波数、前記時刻、前記特徴点の前記波形および前記特徴点の前記時刻における前記アクチュエータの駆動位置、駆動速度、または駆動により発生する力である運転データを組にした特徴点データを出力する特徴点抽出部と、
前記駆動音の要因である前記アクチュエータまたは前記被駆動機械に発生する現象毎に、前記現象に伴って発生する前記特徴点の含まれる前記周波数および前記時刻の少なくとも1つと、前記時刻における前記アクチュエータの駆動位置、駆動速度または駆動により発生する力である前記運転データと、の組み合わせを多次元データとし、前記多次元データに基づいて前記駆動音の発生要因を学習する要因学習部と、
前記要因学習部で学習した学習結果を保存する学習結果保存部と、
前記要因学習部に与える前記駆動音の発生要因を取得する要因取得部と
を備えることを特徴とする駆動音診断システムの機械学習装置。 A drive sound detector that detects an actuator or a drive sound that is a mechanical vibration or a sound generated by a driven machine driven by the actuator.
An operating state detection unit that acquires the drive position, drive speed, or force generated by the actuator in chronological order.
A frequency spectrum corresponding to each time of the sound vibration data, which is the time-series data of the detected driving sound, is calculated, and the calculated power of the frequency spectrum is associated with the frequency and the time to form a set of time-series spectra. The output sound vibration time series spectrum acquisition unit and
A point in which the frequency of the power of the time series spectrum and the waveform with respect to the time satisfy a predetermined condition is extracted as a feature point, and the frequency of the feature point, the time, the waveform of the feature point, and the feature point are extracted. A feature point extraction unit that outputs feature point data that is a set of operation data that is the drive position, drive speed, or force generated by the actuator at the time mentioned above.
For each phenomenon that occurs in the actuator or the driven machine that is the cause of the driving sound, at least one of the frequency and the time including the feature point generated in association with the phenomenon, and the actuator at the time. A factor learning unit that learns the factors that generate the driving sound based on the combination of the driving position, the driving speed, or the driving data, which is the force generated by the driving, as multidimensional data.
A learning result storage unit that stores the learning results learned in the factor learning unit,
A machine learning device for a driving sound diagnosis system, which comprises a factor acquisition unit for acquiring a factor for generating the driving sound given to the factor learning unit.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020516934A JP6742563B1 (en) | 2019-06-17 | 2019-12-03 | Driving sound diagnosis system, driving sound diagnosis method, and machine learning device for driving sound diagnosis system |
DE112019007464.4T DE112019007464T5 (en) | 2019-06-17 | 2019-12-03 | ENGINE NOISE DIAGNOSTIC SYSTEM, ENGINE NOISE DIAGNOSTIC METHOD, MACHINE LEARNING DEVICE FOR ENGINE NOISE DIAGNOSTIC SYSTEM, PROGRAM, RECORDING MEDIA AND MEMORY |
CN201980097381.0A CN113950615A (en) | 2019-06-17 | 2019-12-03 | Driving sound diagnosis system, driving sound diagnosis method, and machine learning device for driving sound diagnosis system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2019/023894 | 2019-06-17 | ||
PCT/JP2019/023894 WO2020255206A1 (en) | 2019-06-17 | 2019-06-17 | Drive noise diagnosis system and drive noise diagnosis method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020255446A1 true WO2020255446A1 (en) | 2020-12-24 |
Family
ID=74037646
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/023894 WO2020255206A1 (en) | 2019-06-17 | 2019-06-17 | Drive noise diagnosis system and drive noise diagnosis method |
PCT/JP2019/047278 WO2020255446A1 (en) | 2019-06-17 | 2019-12-03 | Operation sound diagnosis system, operation sound diagnosis method, and machine learning device for operation sound diagnosis system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/023894 WO2020255206A1 (en) | 2019-06-17 | 2019-06-17 | Drive noise diagnosis system and drive noise diagnosis method |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2020255206A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114414038A (en) * | 2022-01-26 | 2022-04-29 | 歌尔科技有限公司 | Method, device, equipment and medium for detecting abnormal rotation sound of motor module |
KR20220096915A (en) * | 2020-12-31 | 2022-07-07 | 주식회사 포스코아이씨티 | Sensor Module for Sensing Frequency of Vibration and Sound and System for Monitoring Condition of Equipment Including the same |
KR20230036363A (en) * | 2021-09-07 | 2023-03-14 | 주식회사 메카시스 | Fault signal detection apparatus and probing apparatus including the same |
US20230182788A1 (en) * | 2020-05-12 | 2023-06-15 | Murata Machinery, Ltd. | Rail-guided cart system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022219711A1 (en) | 2021-04-13 | 2022-10-20 | 日本精工株式会社 | State monitoring device and state monitoring method for linear guide |
WO2024224684A1 (en) * | 2023-04-24 | 2024-10-31 | 三菱電機株式会社 | Abnormality diagnosing device and abnormality diagnosing method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002268728A (en) * | 2001-03-08 | 2002-09-20 | Yamatake Sangyo Systems Co Ltd | Synchronization diagnosing and monitoring system and its device and its program |
JP2008033532A (en) * | 2006-07-27 | 2008-02-14 | Denso Corp | Method and apparatus for detecting abnormality in equipment provided with movable part |
US20160103038A1 (en) * | 2013-05-17 | 2016-04-14 | Snecma | Method and system for the vibration analysis of an engine |
JP2017032488A (en) * | 2015-08-05 | 2017-02-09 | 株式会社リコー | Information processing device, diagnosis method, and program |
JP2017192990A (en) * | 2016-04-18 | 2017-10-26 | トヨタ自動車株式会社 | Abnormality determination device and abnormality determination method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5780870B2 (en) * | 2011-07-28 | 2015-09-16 | 株式会社東芝 | Rotating equipment soundness diagnosis apparatus, method and program |
JP2015078884A (en) * | 2013-10-16 | 2015-04-23 | 富士通株式会社 | Monitoring device, monitoring program, and monitoring method |
-
2019
- 2019-06-17 WO PCT/JP2019/023894 patent/WO2020255206A1/en active Application Filing
- 2019-12-03 WO PCT/JP2019/047278 patent/WO2020255446A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002268728A (en) * | 2001-03-08 | 2002-09-20 | Yamatake Sangyo Systems Co Ltd | Synchronization diagnosing and monitoring system and its device and its program |
JP2008033532A (en) * | 2006-07-27 | 2008-02-14 | Denso Corp | Method and apparatus for detecting abnormality in equipment provided with movable part |
US20160103038A1 (en) * | 2013-05-17 | 2016-04-14 | Snecma | Method and system for the vibration analysis of an engine |
JP2017032488A (en) * | 2015-08-05 | 2017-02-09 | 株式会社リコー | Information processing device, diagnosis method, and program |
JP2017192990A (en) * | 2016-04-18 | 2017-10-26 | トヨタ自動車株式会社 | Abnormality determination device and abnormality determination method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230182788A1 (en) * | 2020-05-12 | 2023-06-15 | Murata Machinery, Ltd. | Rail-guided cart system |
KR20220096915A (en) * | 2020-12-31 | 2022-07-07 | 주식회사 포스코아이씨티 | Sensor Module for Sensing Frequency of Vibration and Sound and System for Monitoring Condition of Equipment Including the same |
KR102469614B1 (en) | 2020-12-31 | 2022-11-21 | 주식회사 포스코아이씨티 | Sensor Module for Sensing Frequency of Vibration and Sound and System for Monitoring Condition of Equipment Including the same |
KR20230036363A (en) * | 2021-09-07 | 2023-03-14 | 주식회사 메카시스 | Fault signal detection apparatus and probing apparatus including the same |
KR102630440B1 (en) * | 2021-09-07 | 2024-01-29 | 주식회사 메카시스 | Fault signal detection apparatus and probing apparatus including the same |
CN114414038A (en) * | 2022-01-26 | 2022-04-29 | 歌尔科技有限公司 | Method, device, equipment and medium for detecting abnormal rotation sound of motor module |
Also Published As
Publication number | Publication date |
---|---|
WO2020255206A1 (en) | 2020-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020255446A1 (en) | Operation sound diagnosis system, operation sound diagnosis method, and machine learning device for operation sound diagnosis system | |
JP6742563B1 (en) | Driving sound diagnosis system, driving sound diagnosis method, and machine learning device for driving sound diagnosis system | |
CN103502827B (en) | For the situation method and apparatus of monitoring machine electric system | |
CA2875071C (en) | Method and system for testing operational integrity of a drilling rig | |
JP2019132865A (en) | Vibration analysis system and method | |
JP6120720B2 (en) | Frequency analysis method and diagnostic method for rotating equipment using this frequency analysis method | |
Li et al. | Gear fault location detection for split torque gearbox using AE sensors | |
JP2002268728A (en) | Synchronization diagnosing and monitoring system and its device and its program | |
KR20190067441A (en) | Fault Diagnosis System and Method For Rotating Device Using Deep Learning and Wavelet Transform | |
JP2009291065A (en) | Method of driving electric machine by driving apparatus, and driving apparatus for electric machine | |
US20110307093A1 (en) | Early-warning apparatus for health detection of servo motor and method for operating the same | |
CN103827683A (en) | A method of determining stationary signals for the diagnostics of an electromechanical system | |
CN209372414U (en) | A kind of planetary gear fault diagnosis system | |
JP5765881B2 (en) | Equipment diagnostic equipment | |
JP2020041849A (en) | Abnormality diagnosis method, abnormality diagnosis device and abnormality diagnosis program for rolling bearing | |
JP3759881B2 (en) | Process diagnosis monitoring system | |
CN114401206B (en) | Motor state monitoring method and device, electronic equipment and storage medium | |
WO2013091766A1 (en) | A method of assessing the technical condition of a rotating shaft | |
Afshar et al. | Generalized roughness bearing fault diagnosis using time series analysis and gradient boosted tree | |
JPH07311082A (en) | Failure diagnostic device of rotating equipment | |
JP7181162B2 (en) | Diagnostic device, diagnostic system and diagnostic method | |
CN108549026A (en) | Method, device and system for detecting synchronization performance of multi-axis control system | |
TW202229828A (en) | Intelligent vibration and temperature sensing device especially providing internet of things and artificial intelligence analysis in advance for a vibrating machine | |
JP5647439B2 (en) | Servo motor health warning device and calculation method thereof | |
JP6283591B2 (en) | Automatic vibration diagnostic equipment for rotating machinery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020516934 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19934100 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19934100 Country of ref document: EP Kind code of ref document: A1 |