Nothing Special   »   [go: up one dir, main page]

WO2020253286A1 - 增压型发动机 - Google Patents

增压型发动机 Download PDF

Info

Publication number
WO2020253286A1
WO2020253286A1 PCT/CN2020/079783 CN2020079783W WO2020253286A1 WO 2020253286 A1 WO2020253286 A1 WO 2020253286A1 CN 2020079783 W CN2020079783 W CN 2020079783W WO 2020253286 A1 WO2020253286 A1 WO 2020253286A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
engine
intake
resonant cavity
pipe
Prior art date
Application number
PCT/CN2020/079783
Other languages
English (en)
French (fr)
Inventor
张斌
钟德妹
李国卿
陈永燕
陈翔
Original Assignee
重庆隆鑫通航发动机制造有限公司
隆鑫通用动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910535894.7A external-priority patent/CN110159417A/zh
Priority claimed from CN201920932165.0U external-priority patent/CN210422761U/zh
Application filed by 重庆隆鑫通航发动机制造有限公司, 隆鑫通用动力股份有限公司 filed Critical 重庆隆鑫通航发动机制造有限公司
Publication of WO2020253286A1 publication Critical patent/WO2020253286A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of engines, in particular to an engine that uses a supercharging system to increase power.
  • the turbocharging system in the prior art mainly includes a supercharging device, an intercooler and other equipment.
  • the supercharging device includes a turbine assembly installed in the exhaust system and a supercharger (air compressor assembly) installed in the intake system.
  • the exhaust pressure drives the turbine assembly to drive the supercharger to increase the intake pressure, thereby increasing the power of the engine.
  • the purpose of the present invention is to provide a supercharged engine, which can effectively reduce the volatility caused by the frequency characteristics of exhaust, avoid the problem that the supercharging effect cannot be reflected due to the negative pump power, and improve the engine Power, simple structure, reduce engine energy consumption, and will not increase the cost of the supercharging system.
  • the supercharged engine of the present invention includes an engine body, an intake system, an exhaust system, and a supercharging system.
  • the exhaust system includes an exhaust pipe connected between an exhaust port of the engine and a muffler.
  • the pipeline is provided with an exhaust resonance cavity, which is located between the engine exhaust port and the supercharging system;
  • the intake system includes components such as an air filter and an intake pipe, and the exhaust system includes exhaust Pipes and mufflers and other components, and the engine body also includes some necessary components, which belong to the prior art, and will not be repeated here;
  • the supercharging system includes a turbo component driven by the exhaust system and a supercharging component driven by the turbine component ( Compressor) and intercooler and other components belong to the prior art and will not be repeated here;
  • an exhaust resonant cavity is arranged in front of the turbine component, and the buffer resonance effect of the exhaust resonant cavity is used to reduce the frequency caused by the exhaust Fluctuations, of course, some resonant baffles and
  • the exhaust pipe is provided with a bypass which is connected between the front exhaust pipe section of the supercharging system and the rear exhaust pipe section of the supercharging system, and the bypass is provided with control bypass opening and closing and opening.
  • Control valve with a high degree of control; due to the effect of exhaust pressure, when the exhaust pressure is high, the turbo component driving the supercharger component will greatly increase the intake pressure. Excessive intake pressure will cause the overall intake to be unstable. Therefore, the control valve is used to control the opening of the bypass so that part of the exhaust gas is directly discharged through the bypass without passing through the turbine assembly. At the same time, the bypass combined with the exhaust resonant cavity can effectively reduce the volatility of the gas entering the turbine assembly.
  • the opening and closing of the control valve and the degree of opening and closing are controlled by the engine intake pressure interlock; the intake pressure interlock is used to control the exhaust gas entering the turbine assembly, and the rotation speed of the turbine assembly is directly adjusted to control the intake pressure.
  • the pressure sensor can be used to detect the intake pressure and the opening and closing of the electronic control valve can be used.
  • the source of the intake pressure of this interlock control can be after the supercharger or before the supercharger, preferably after the supercharger, because the intake pressure in the pipe after the supercharger has a timely At the same time, it is the pressure after the supercharger is supercharged.
  • the increase in pressure and fluctuation are more obvious, which is more conducive to the control of intake pressure.
  • the air intake system includes an air intake pipe, the air intake pipe is provided with an air intake resonance cavity, and the air intake resonance cavity is located between the supercharging system and the engine air intake; as shown in the figure, the air intake resonance The cavity is installed between the intercooler and the supercharger, and is combined with the exhaust resonance cavity to eliminate the frequency characteristics of the intake air from the source and from the output, thereby helping to maintain the stable operation of the engine.
  • the intake pipe is connected with a pressure control branch line, and the pressure control branch line is connected to a control valve for delivering intake pressure to the control valve for controlling the opening and closing of the control valve and the degree of opening and closing; in this structure, use
  • the pressure control branch line leads out of the air inlet and connects to the control port of the pneumatic control valve. It has the characteristic of directness, so as to quickly control the intake pressure and booster components; the control valve is a pneumatic spring control valve, which uses the intake pressure to control the control valve.
  • the operation principle and control method of the pneumatic spring control valve belong to the prior art and will not be repeated here. Compared with the electronic control valve, it has the characteristics of simple structure, low failure rate and low cost.
  • the engine is a single-cylinder engine; the volume of the exhaust resonant cavity is 1.5-9 times the engine displacement, and the exhaust resonant cavity in this volume range has the characteristics of better elimination of volatility, as shown in the figure It shows that for a single-cylinder engine, the engine power can be greatly improved, that is, the present invention is particularly suitable for single-cylinder engines.
  • the volume of the intake resonant cavity is greater than 1.5 times the engine displacement, and the intake resonant cavity of this volume, combined with the exhaust resonant cavity, greatly increases the stability in the near future and has a superimposed effect of improving engine power.
  • the volume of the intake resonant cavity is 1.5 times the engine displacement, and the volume of the exhaust resonant cavity is 6 times the engine displacement.
  • the preferred intake and exhaust resonant cavity volumes can greatly increase the engine power and increase to achieve the desired effect of turbocharging, especially for single-cylinder engines, while ensuring stable intake and improving engine efficiency; as shown in the figure, under the optimal intake and exhaust cavity volume conditions, the engine power The highest, higher than preferred and lower than preferred power all have a certain degree of reduction.
  • the length of the pipe section of the exhaust pipe between the engine exhaust port and the exhaust resonant cavity is 100-400mm; this length range is combined with the volume parameter of the exhaust resonant cavity to facilitate the formation of resonance and buffer, thereby ensuring the entry into the turbine
  • the smoothness of the exhaust of the components, combined with the bypass setting, can more ensure the smoothness of the exhaust, so that the supercharging system can run smoothly and realize effective control in the near future.
  • the pressure control branch line is connected to the rear pipe section of the supercharging system of the intake pipe, which can directly reflect the pressure of the engine intake, thereby realizing effective control, ensuring smooth operation of the engine, improving power and combustion efficiency, and ultimately ensuring engine performance Emissions and reduce energy consumption.
  • the beneficial effect of the invention is that the supercharged engine of the present invention can effectively reduce the volatility caused by the frequency characteristics of the exhaust gas used to drive the turbine assembly by setting the exhaust gas resonance cavity on the exhaust pipe, and avoid the pumping load.
  • Figure 1 is a schematic diagram of the structural principle of the present invention
  • Figure 2 is a diagram showing the influence of only connecting the intake resonant cavity on engine power (different volumes);
  • Figure 3 is a diagram showing the influence of only connecting the exhaust resonant cavity on the engine power (different volumes);
  • Figure 4 is a diagram showing the influence of the length of the exhaust pipe section between the engine exhaust port and the exhaust resonance cavity on the engine power;
  • Figure 5 is a graph showing the influence of the improved intake and exhaust system on engine power.
  • the engine of the present invention includes an engine body 1, an air intake system, an exhaust system, and a supercharging system.
  • the exhaust system includes an exhaust pipe 3 connected between the exhaust port of the engine and a muffler.
  • the exhaust pipe 3 is provided with an exhaust resonant cavity 2 which is located between the exhaust port of the engine and the supercharging system; for the engine, the intake system includes an air filter 8 and an intake pipe 9
  • the exhaust system includes the exhaust pipe 3 and the muffler 7, and the engine body 1 also includes some necessary components, such as the cylinder block, the piston assembly, the connecting rod crankshaft, etc., which belong to the prior art and will not be omitted here.
  • the supercharging system includes a turbine assembly 14 driven by the exhaust system, a supercharging assembly (compressor) 12 driven by the turbine assembly, and an intercooler 11 and other components, which belong to the prior art and will not be repeated here;
  • an exhaust resonant cavity 2 is arranged in front of the turbine assembly 14 to use the buffer resonance effect of the exhaust resonant cavity 2 to reduce the fluctuation caused by the exhaust frequency.
  • the exhaust resonant cavity is connected to the exhaust pipe, that is, the air inlet of the exhaust resonant cavity 14 is connected to the exhaust port of the engine, and the air outlet is connected to the air inlet of the turbine assembly, which will not be repeated here.
  • the exhaust pipe 3 is provided with a bypass 5, and the bypass connection 5 is connected between the front exhaust pipe section of the supercharging system and the rear exhaust pipe section of the supercharging system.
  • the front refers to the turbine assembly 14
  • the direction of the intake air that is, the direction of the exhaust port of the engine; and the bypass 5 is provided with a control valve 4 that controls the opening and closing and opening of the bypass; due to the effect of the exhaust pressure, the turbine assembly Driving the supercharger component will greatly increase the intake pressure. Excessive intake pressure will cause the overall intake to be unstable. Therefore, the control valve is used to control the opening of the bypass, so that part of the exhaust gas is directly discharged through the bypass. After passing through the turbine assembly 14, at the same time, the bypass 5 combined with the exhaust resonant cavity 2 can effectively reduce the volatility of the gas entering the turbine assembly.
  • the opening and closing of the control valve 4 and the degree of opening and closing are controlled by the engine intake pressure interlock; the intake pressure interlock is used to control the exhaust gas entering the turbine assembly 14, and the rotation speed of the turbine assembly is directly adjusted to control the intake
  • the air pressure has a direct regulating effect; this kind of interlocking control method and structure has many kinds.
  • the pressure sensor can be used to detect the intake pressure and the opening and closing of the electronic control valve can be used. It can also be controlled by a pneumatic structure. Your existing control technology will not be repeated here; the source of the intake pressure of this interlock control can be after the supercharger or before the supercharger, preferably after the supercharger, because of the The intake pressure is timely and is the pressure after the supercharger is pressurized. The pressure increase and fluctuation are more obvious, which is more conducive to the control of the intake pressure.
  • the air intake system includes an air intake pipe 9 provided with an air intake resonance cavity 10, and the air intake resonance cavity 10 is located between the supercharging system and the engine air inlet; As shown in the figure, the intake resonant cavity is installed between the intercooler 11 and the supercharger 12. As shown in the figure, the intake resonant cavity 10 is connected to the intake pipe, that is, the intake port of the intake resonant cavity 10 is connected At the outlet of the supercharger, the outlet is connected to the inlet of the intercooler, which will not be repeated here; the intake resonant cavity 10 and the exhaust resonant cavity 14 are combined to eliminate the intake from the source and from the output. The frequency characteristics of the engine are beneficial to maintain the stable operation of the engine.
  • the intake pipe 9 is connected with a pressure control branch line 6, and the pressure control branch line 6 is connected to the control valve 4 for delivering intake pressure to the control valve for controlling the opening and closing of the control valve.
  • the pressure control branch line 6 is used to lead the intake pressure of the intake port, and is connected to the control port of the pneumatic control valve, and the opening and closing of the pneumatic control valve is controlled by the intake pressure, which has the characteristics of directness and thus rapid The use of intake pressure to control the power output of the booster component, and finally control the intake pressure, so as to achieve a closed loop of intake pressure control
  • the control valve is a pneumatic spring control valve, which uses the intake pressure to control the opening and closing of the control valve, and the pneumatic spring controls
  • the operating principle of the valve is to use the pressure control branch 6 to draw intake air, which directly enters the intake end of the pneumatic spring control valve, and when the set pressure is reached, the intake air compresses the spring of the pneumatic spring control valve, causing the valve core to open ,
  • the engine is a single-cylinder engine; the volume of the exhaust resonant cavity 2 is 1.5-9 times the engine displacement.
  • the exhaust resonant cavity in this volume range has the characteristics of better elimination of volatility
  • the engine power can be greatly improved, that is, the present invention is particularly suitable for single-cylinder engines.
  • the volume of the intake resonant cavity 10 is greater than 1.5 times the displacement of the engine.
  • the intake resonant cavity 10 of this volume combined with the exhaust resonant cavity, greatly increases the stability in the near future, and has superposition Engine power improvement effect.
  • the volume of the intake resonant cavity 10 is 1.5 times the engine displacement, and the volume of the exhaust resonant cavity 2 is 6 times the engine displacement.
  • the preferred intake and exhaust resonant cavity volumes can be greatly improved.
  • Increasing the engine power has the desired effect of turbocharging, especially for single-cylinder engines, ensuring stable intake while improving engine efficiency; as shown in the figure, in the optimal intake and exhaust cavity volume Under the conditions, the engine power is the highest, and both higher than the optimal power and lower than the optimal power have a certain degree of decline.
  • the length of the pipe section 13 of the exhaust pipe 3 between the engine exhaust port and the exhaust resonant cavity is 100-400mm; preferably 300mm. This length range is combined with the volume parameter of the exhaust resonant cavity to facilitate resonance formation. And buffering, so as to help ensure the stability of the exhaust gas entering the turbine assembly, combined with the bypass setting, can more ensure the stability of the exhaust gas, so as to make the supercharging system run smoothly and realize effective control in the near future.
  • the single-cylinder engine with a displacement of 650ml for the test of this embodiment that is, 0.65L
  • a 1L intake resonance cavity which can effectively increase the power of the engine and continue to increase the volume of the resonance cavity.
  • the power has a downward trend, as shown in Figure 2, using 0.5L, 1L, 1.5L and 2L intake resonant cavities for comparison, the 1L intake resonant cavity has the best relative effect, and the ratio at this time is about 1.5 times;
  • the exhaust system is directly added with a turbocharging system, which cannot achieve the supercharging effect.
  • Introducing a certain volume of exhaust resonant cavity before the turbocharger system can greatly increase the engine power, but after the volume reaches 4L, continue to increase the volume, the further increase in engine power is not obvious, 4000m altitude, 2.1 pressure ratio .
  • the 4L volume resonant cavity scheme increases the engine power by 78% compared to the original machine; as shown in Figure 3, the 1L, 2L, 4L and 6L exhaust resonant cavities are used for comparison.
  • the 6L exhaust resonant cavity is compared with the 4L Although the power of the exhaust resonant cavity has increased, the increase is small, but the volume is larger.
  • the comprehensive cost performance is that the 4L exhaust resonant cavity is better, and the 4L exhaust resonant cavity is 6 of the 0.65L engine displacement.
  • the length of the exhaust pipe connecting the exhaust port and the resonance cavity is in the range of 100mm-400mm, and the power gradually increases as the length of the exhaust pipe increases.
  • the engine power will have The downward trend, as shown in Figure 4, the exhaust pipe length is 100, 200, 300 and 400mm. 300mm has the highest efficiency.
  • the power drops to a little higher than 100mm. Therefore, the preferred length is 300mm.
  • the engine power is higher than the original engine at an altitude of 4000m and a pressure ratio of 2.1 85%, see Figure 5.
  • the pressure control branch 6 is connected to the rear pipe section of the supercharging system (supercharger 12) of the intake pipe 9, which can directly reflect the pressure of the engine intake, thereby realizing effective control and ensuring the smooth operation of the engine. Conducive to improving power and combustion efficiency, and ultimately ensuring engine emissions and reducing energy consumption.
  • the communication between the exhaust resonant cavity, the intake resonant cavity and the exhaust pipe and the intake pipe can all adopt existing mechanical connection methods, such as welding into one, detachable connection, etc., which will not be repeated here.
  • the supercharging system includes a turbo component, a supercharging component and an intercooler, and the connection and cooperation relationship with the intake and exhaust system also belongs to the prior art, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

一种增压型发动机,包括发动机本体(1)、进气系统、排气系统和增压系统,排气系统包括连通于发动机排气口与消声器之间的排气管道(3),排气管道(3)设有排气谐振腔(2),排气谐振腔(2)位于发动机排气口与增压系统之间。通过在排气管道上设置排气谐振腔,能够有效减少用于驱动涡轮组件的排气的频率特征导致的波动性,避免由于泵气负功原因导致的增压效果无法体现的问题,提高发动机功率,且结构简单,降低发动机能耗及排放,并不会增加增压系统的成本。

Description

增压型发动机 技术领域
本发明涉及发动机领域,具体涉及一种利用增压系统提高功率的发动机。
背景技术
涡轮增压的主要作用就是提高发动机进气量,从而提高发动机的功率和扭矩。现有技术中涡轮增压系统主要包括增压装置以及中冷器等设备,增压装置包括一个安装于排气系统的涡轮组件和安装于进气系统的增压器(空气压缩机组件),通过排气压力驱动涡轮组件带动增压器增加进气压力,从而提高发动机的功率。
现有技术中,由于发动机排气具有一定的频率,因而对于被驱动的涡轮组件的驱动也具有波动性。特别是对于单缸发动机来说这种波动性尤为严重,利用传统的排气结构会导致非常大的泵气负功使增压效果无法体现,同时增压器的工作稳定性也会受到影响。因此,采用传统的增压系统结构难以规避上述问题,使得增压结构的优势无法完全体现,特别是在单缸发动机,增压系统的效力无法完全体现。
因此,需要对现有技术的增压系统进行改进,能够有效减少由于排气的频率特征导致的波动性,避免由于泵气负功原因导致的增压效果无法体现的问题,提高发动机功率,且结构简单,降低发动机能耗,并不会增加增压系统的成本。
发明内容
有鉴于此,本发明的目的是提供一种增压型发动机,能够有效减少由于排气的频率特征导致的波动性,避免由于泵气负功原因导致的增压效果无法体现的问题,提高发动机功率,且结构简单,降低发动机能耗,并不会增加增压系统的成本。
本发明的增压型发动机,包括发动机本体、进气系统、排气系统和增压系统,在所述排气系统包括连通于发动机排气口与消声器之间的排气管道,所述 排气管道设有排气谐振腔,所述排气谐振腔位于发动机排气口与增压系统之间;对于发动机来说,进气系统包括空滤器、进气管道等部件,排气系统包括排气管道和消声器等部件,而发动机本体还包括一些必要的部件,属于现有技术,在此不再赘述;而增压系统包括由排气系统驱动的涡轮组件、由涡轮组件驱动的增压组件(压缩机)以及中冷器等组件,属于现有技术,在此不再赘述;本发明在涡轮组件前设置排气谐振腔,利用排气谐振腔的缓冲谐振作用,降低由于排气频率引起的波动,当然,谐振腔内还可设置一些谐振挡板之类的部件。
进一步,所述排气管道设置有旁路,所述旁路连通于增压系统前排气管段和增压系统后排气管段之间,且所述旁路设置有控制旁路启闭以及开度的控制阀;由于排气压力的作用,在排气较大压力时,涡轮组件驱动增压组件会较大的增加进气压力,过大的进气压力会导致整体进气的不平稳,因此,利用控制阀控制旁路的开度,使得部分废气直接通过旁路排出而不经过涡轮组件,同时,该旁路结合排气谐振腔还能有效降低进入涡轮组件的气体的波动性。
进一步,所述控制阀的启闭以及启闭程度通过发动机进气压力联锁控制;利用进气压力联锁控制进入涡轮组件的排气,直接调整涡轮组件的转速从而控制进气压力,具有直接的调节效果;这种联锁控制的方法及结构具有多种,可采用压力传感器检测进气压力并通过电控控制阀的开闭,还可以采用气动结构进行控制,均属于你现有的控制技术,在此不再赘述;这种联锁控制的进气压力的来源可以在增压器后或者增压器前,优选增压器后,因增压器后管道内的进气压力具有及时性的同时而且是增压器增压后的压力,压力的提高以及波动性较为明显,更利于进气压力的控制。
进一步,所述进气系统包括进气管道,所述进气管道设有进气谐振腔,所述进气谐振腔位于增压系统与发动机进气口之间;如图所示,进气谐振腔安装于中冷器与增压器之间,并与排气谐振腔相结合,从源头上和从输出上共同消除进气的频动特性,从而利于保持发动机的稳定运行。
进一步,所述进气管道连通设置有压力控制支线,所述压力控制支线连接控制阀用于将进气压力输送至控制阀用于控制控制阀的启闭及启闭程度;该结 构中,利用压力控制支线引出进气道,并连接于气动控制阀的控制端口,具有直接性的特点,从而迅速控制进气压力和增压组件;控制阀为气动弹簧控制阀,利用进气压力控制控制阀的开闭,气动弹簧控制阀的动作原理以及控制方法属于现有技术,在此不再赘述;相对于电控阀来说,具有结构简单,故障率低且成本低的特点。
进一步,所述发动机为单缸发动机;所述排气谐振腔的容积为发动机排量的1.5-9倍,该容积范围的排气谐振腔,具有较好的消除波动性的特点,如图所示,对于单缸发动机来说,可大大提高发动机功率,即本发明特别适合于单缸发动机使用。
进一步,所述进气谐振腔的容积大于发动机排量的1.5倍,该容积的进气谐振腔,与排气谐振腔相结合,大大增加近期的平稳性,具有叠加性的发动机功率提高效果。
进一步,所述进气谐振腔的容积为1.5倍的发动机排量,排气谐振腔的容积为发动机排量的6倍,优选的进气以及排气谐振腔容积,可大大增加发动机功率,起到了涡轮增压应有的效果,特别是对于单缸发动机来说,保证进气平稳的同时,提高发动机效率;如图所示,在优选的进气以及排气谐振腔容积条件下,发动机功率最高,高于优选和低于优选功率均具有一定程度的下降。
进一步,所述排气管道位于发动机排气口与排气谐振腔之间的管段长度为100-400mm;该长度范围结合排气谐振腔的容积参数,利于形成谐振以及缓冲,从而利于保证进入涡轮组件的排气的平稳性,结合旁路的设置,更能保证排气的平稳,从而使得增压系统平稳运行,实现对近期的有效控制。
进一步,所述压力控制支线连通于进气管道的增压系统后管段,能够直接体现发动机进气的压力,从而实现有效控制,保证发动机的平稳运行,利于提高功率以及燃烧效率,最终保证发动机的排放以及降低能耗。
发明的有益效果是:本发明的增压型发动机,通过在排气管道上设置排气谐振腔,能够有效减少用于驱动涡轮组件由于排气的频率特征导致的波动性,避免由于泵气负功原因导致的增压效果无法体现的问题,提高发动机功率,且 结构简单,降低发动机能耗及排放,并不会增加增压系统的成本。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1为本发明结构原理示意图;
图2为仅接入进气谐振腔对发动机功率影响图(不同容积);
图3为仅接入排气谐振腔对发动机功率影响图(不同容积);
图4为发动机排气口与排气谐振腔之间排气管段的长度对发动机功率的影响图;
图5为改进后的进排气系统对发动机功率影响图。
具体实施方式
如图所示,本发明的发动机,包括发动机本体1、进气系统、排气系统和增压系统,在所述排气系统包括连通于发动机排气口与消声器之间的排气管道3,所述排气管道3设有排气谐振腔2,所述排气谐振腔2位于发动机排气口与增压系统之间;对于发动机来说,进气系统包括空滤器8、进气管道9等部件,排气系统包括排气管道3和消声器7等部件,而发动机本体1还包括一些必要的部件,比如缸体、活塞组件、连杆曲轴等等,属于现有技术,在此不再赘述;而增压系统包括由排气系统驱动的涡轮组件14、由涡轮组件驱动的增压组件(压缩机)12以及中冷器11等组件,属于现有技术,在此不再赘述;本发明在涡轮组件14前设置排气谐振腔2,利用排气谐振腔2的缓冲谐振作用,降低由于排气频率引起的波动,当然,谐振腔内还可设置一些谐振挡板之类的部件;如图所示,排气谐振腔连通于排气管道上,即排气谐振腔14的进气口连通于发动机排气口,出气口连通于涡轮组件的进气口,在此不再赘述。
本实施例中,所述排气管道3设置有旁路5,所述旁路连5通于增压系统前排气管段和增压系统后排气管段之间,前指的是涡轮组件14进气来向,即发动机排气口方向;且所述旁路5设置有控制旁路启闭以及开度的控制阀4;由于排气压力的作用,在排气较大压力时,涡轮组件驱动增压组件会较大的增加进气压 力,过大的进气压力会导致整体进气的不平稳,因此,利用控制阀控制旁路的开度,使得部分废气直接通过旁路排出而不经过涡轮组件14,同时,该旁路5结合排气谐振腔2还能有效降低进入涡轮组件的气体的波动性。
本实施例中,所述控制阀4的启闭以及启闭程度通过发动机进气压力联锁控制;利用进气压力联锁控制进入涡轮组件14的排气,直接调整涡轮组件的转速从而控制进气压力,具有直接的调节效果;这种联锁控制的方法及结构具有多种,可采用压力传感器检测进气压力并通过电控控制阀的开闭,还可以采用气动结构进行控制,均属于你现有的控制技术,在此不再赘述;这种联锁控制的进气压力的来源可以在增压器后或者增压器前,优选增压器后,因增压器后管道内的进气压力具有及时性的同时而且是增压器增压后的压力,压力的提高以及波动性较为明显,更利于进气压力的控制。
本实施例中,所述进气系统包括进气管道9,所述进气管道9设有进气谐振腔10,所述进气谐振腔10位于增压系统与发动机进气口之间;如图所示,进气谐振腔安装于中冷器11与增压器12之间,如图所示,进气谐振腔10连通于进气管道上,即进气谐振腔10的进气口连通于增压器出气口,出气口连通于中冷器的进气口,在此不再赘述;进气谐振腔10与排气谐振腔14相结合,从源头上和从输出上共同消除进气的频动特性,从而利于保持发动机的稳定运行。
本实施例中,所述进气管道9连通设置有压力控制支线6,所述压力控制支线6连接控制阀4用于将进气压力输送至控制阀用于控制控制阀的启闭及启闭程度;该结构中,利用压力控制支线6引出进气道的进气压力,并连接于气动控制阀的控制端口,通过进气压力控制气动控制阀的启闭,具有直接性的特点,从而迅速的利用进气压力控制增压组件的动力输出,最终控制进气压力,从而实现进气压力控制的闭环;控制阀为气动弹簧控制阀,利用进气压力控制控制阀的开闭,气动弹簧控制阀的动作原理为利用压力控制支线6引来进气气体,该进气气体直接进入气动弹簧控制阀的进气端,达到设定压力后进气压缩气动弹簧控制阀的弹簧,使得阀芯开启,旁路开通,使得排气部分通过旁路直接排放,减少对涡轮的驱动,气动弹簧控制阀的原理以及控制方法属于现有技术,在此 不再赘述;相对于电控阀来说,具有结构简单,故障率低且成本低的特点。
本实施例中,所述发动机为单缸发动机;所述排气谐振腔2的容积为发动机排量的1.5-9倍,该容积范围的排气谐振腔,具有较好的消除波动性的特点,如图所示,对于单缸发动机来说,可大大提高发动机功率,即本发明特别适合于单缸发动机使用。
本实施例中,所述进气谐振腔10的容积大于发动机排量的1.5倍,该容积的进气谐振腔10,与排气谐振腔相结合,大大增加近期的平稳性,具有叠加性的发动机功率提高效果。
本实施例中,所述进气谐振腔10的容积为发动机排量的1.5倍,排气谐振腔2的容积为发动机排量的6倍,优选的进气以及排气谐振腔容积,可大大增加发动机功率,起到了涡轮增压应有的效果,特别是对于单缸发动机来说,保证进气平稳的同时,提高发动机效率;如图所示,在优选的进气以及排气谐振腔容积条件下,发动机功率最高,高于优选和低于优选功率均具有一定程度的下降。
本实施例中,所述排气管道3位于发动机排气口与排气谐振腔之间的管段13长度为100-400mm;优选300mm,该长度范围结合排气谐振腔的容积参数,利于形成谐振以及缓冲,从而利于保证进入涡轮组件的排气的平稳性,结合旁路的设置,更能保证排气的平稳,从而使得增压系统平稳运行,实现对近期的有效控制。
如图所示,本实施例的试验用发动机排量为650ml的单缸发动机,即0.65L,接入1L进气谐振腔,能够使发动机的功率得到有效提升,继续增加该谐振腔容积,发动机功率反而呈下降趋势,见图2,采用0.5L、1L、1.5L和2L的进气谐振腔进行对比,1L的进气谐振腔相对效果最好,此时的比例为1.5倍左右;
排气系统直接加涡轮增压系统,无法达到增压效果。在涡轮增压系统前引入一定容积的排气谐振腔,可以使发动机功率得到大幅度提升,但容积达到4L后,继续增加容积,发动机功率进一步提升幅度并不明显,4000m海拔,2.1压比下,4L容积的谐振腔方案使发动机功率较原机提升了78%;如图3所示,采用1L、2L、4L和6L的排气谐振腔进行对比,6L的排气谐振腔相对于4L的排气谐振 腔虽然功率有所增加,但增加幅度较小,而体积却较大,综合性价比则采用4L的排气谐振腔较优,同时4L的排气谐振腔是0.65L发动机排量的6倍左右;
连接排气口和谐振腔的排气管管长在100mm-400mm范围内,功率随着该排气管的长度增加而逐渐提升,当该排气管长度增加到400mm时,发动机功率随之具有下降的趋势,如图4所示,排气管管长在100、200、300和400mm,300mm效率最高,当接到400mm时,功率下降到比100mm稍高,因此,优选长度为300mm。
接入1L进气谐振腔,4L排气谐振腔,且在排气口和排气谐振腔之间接入管长为300mm的排气管后,发动机功率在4000m海拔,2.1压比下较原机提升了85%,见图5。
图2-图5中,横坐标均为增压比,纵坐标为功率。
本实施例中,所述压力控制支线6连通于进气管道9的增压系统(增压器12)后管段,能够直接体现发动机进气的压力,从而实现有效控制,保证发动机的平稳运行,利于提高功率以及燃烧效率,最终保证发动机的排放以及降低能耗。
本发明中,排气谐振腔、进气谐振腔与排气管道以及进气管道的连通均可采用现有的机械连接方式,比如焊接成一体、可拆卸式连接等方式,在此不再赘述;增压系统包括涡轮组件、增压组件和中冷器,与进排气系统的连接配合关系也属于现有技术,在此不再赘述。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种增压型发动机,其特征在于:包括发动机本体、进气系统、排气系统和增压系统,在所述排气系统包括连通于发动机排气口与消声器之间的排气管道,所述排气管道设有排气谐振腔,所述排气谐振腔位于发动机排气口与增压系统之间。
  2. 根据权利要求1所述的增压型发动机,其特征在于:所述排气管道设置有旁路,所述旁路连通于增压系统前排气管段和增压系统后排气管段之间,且所述旁路设置有控制旁路启闭以及开度的控制阀。
  3. 根据权利要求2所述的增压型发动机,其特征在于:所述控制阀的启闭以及启闭程度通过发动机进气压力联锁控制。
  4. 根据权利要求1所述的增压型发动机,其特征在于:所述进气系统包括进气管道,所述进气管道设有进气谐振腔,所述进气谐振腔位于增压系统与发动机进气口之间。
  5. 根据权利要求3所述的增压型发动机,其特征在于:所述进气管道连通设置有压力控制支线,所述压力控制支线连接控制阀用于将进气压力输送至控制阀用于控制控制阀的启闭及启闭程度。
  6. 根据权利要求4所述的增压型发动机,其特征在于:所述发动机为单缸发动机;所述排气谐振腔的容积为发动机排量的1.5-9倍。
  7. 根据权利要求6所述的增压型发动机,其特征在于:所述进气谐振腔的容积大于发动机排量的1.5倍;
  8. 根据权利要求7所述的增压型发动机,其特征在于:所述进气谐振腔的容积为发动机排量的1.5倍,排气谐振腔的容积为发动机排量的6倍。
  9. 根据权利要求8所述的增压型发动机,其特征在于:所述排气管道位于发动机排气口与排气谐振腔之间的管段长度为100-400mm。
  10. 根据权利要求5所述的增压型发动机,其特征在于:所述压力控制支线连通于进气管道的增压系统后管段。
PCT/CN2020/079783 2019-06-20 2020-03-17 增压型发动机 WO2020253286A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910535894.7A CN110159417A (zh) 2019-06-20 2019-06-20 增压型发动机
CN201920932165.0U CN210422761U (zh) 2019-06-20 2019-06-20 带有增压系统的发动机
CN201920932165.0 2019-06-20
CN201910535894.7 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020253286A1 true WO2020253286A1 (zh) 2020-12-24

Family

ID=74037240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079783 WO2020253286A1 (zh) 2019-06-20 2020-03-17 增压型发动机

Country Status (1)

Country Link
WO (1) WO2020253286A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444013A (en) * 1980-09-17 1984-04-24 Honda Giken Kogyo Kabushiki Kaisha Supercharger for motorcycle engine
CN202946272U (zh) * 2011-11-07 2013-05-22 福特环球技术公司 发动机
CN104747279A (zh) * 2015-04-05 2015-07-01 上海凌翼动力科技有限公司 进气压力控制式废气旁通装置
JP2017203444A (ja) * 2016-05-13 2017-11-16 三菱自動車工業株式会社 エンジン制御装置
CN107605589A (zh) * 2017-11-02 2018-01-19 福州大学 一种基于旁通阀控制的双真空罐式汽油机废气涡轮增压器及控制方法
CN110159417A (zh) * 2019-06-20 2019-08-23 重庆隆鑫通航发动机制造有限公司 增压型发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444013A (en) * 1980-09-17 1984-04-24 Honda Giken Kogyo Kabushiki Kaisha Supercharger for motorcycle engine
CN202946272U (zh) * 2011-11-07 2013-05-22 福特环球技术公司 发动机
CN104747279A (zh) * 2015-04-05 2015-07-01 上海凌翼动力科技有限公司 进气压力控制式废气旁通装置
JP2017203444A (ja) * 2016-05-13 2017-11-16 三菱自動車工業株式会社 エンジン制御装置
CN107605589A (zh) * 2017-11-02 2018-01-19 福州大学 一种基于旁通阀控制的双真空罐式汽油机废气涡轮增压器及控制方法
CN110159417A (zh) * 2019-06-20 2019-08-23 重庆隆鑫通航发动机制造有限公司 增压型发动机

Similar Documents

Publication Publication Date Title
KR102440581B1 (ko) 엔진 시스템
KR101734250B1 (ko) 엔진 시스템
CN103615309A (zh) 内燃机全工况可调的两级增压系统
CN105840355A (zh) 内燃机全工况egr率可调的二级增压系统及其控制方法
CN105464769A (zh) 一种双流道动力涡轮系统及其控制方法
JP2007154684A (ja) 2段過給式エンジン
CN102434268A (zh) 双涡双压涡轮增压系统
JP5814008B2 (ja) 蓄圧式egrシステム
CN102418593B (zh) 单涡双压涡轮增压系统
CN210422761U (zh) 带有增压系统的发动机
CN102400777B (zh) 带有放气阀的单涡双压涡轮增压系统
WO2020253286A1 (zh) 增压型发动机
CN210068309U (zh) 辅助增压的发动机涡轮增压系统
KR102633858B1 (ko) 엔진 시스템 및 이의 제어 방법
JP2005147030A (ja) 過給機付エンジンの排気還流装置
CN102444464A (zh) 双涡单压涡轮增压系统
CN102400778A (zh) 串并联可调的单涡双压涡轮增压系统
WO2021008153A1 (zh) 具有增压系统的发动机
CN205225401U (zh) 一种双流道动力涡轮系统
CN110159417A (zh) 增压型发动机
JPH04303124A (ja) 機械式過給機付エンジンの吸気装置
JP2007077900A (ja) 二段過給システム
CN202100326U (zh) 气动内燃混合动力发动机
JP2768734B2 (ja) 排気ターボ過給機付エンジンの排気制御装置
CN205618263U (zh) 内燃机全工况egr率可调的二级增压系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825953

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20825953

Country of ref document: EP

Kind code of ref document: A1