Nothing Special   »   [go: up one dir, main page]

WO2020245890A1 - パワーモジュール及び電力変換装置 - Google Patents

パワーモジュール及び電力変換装置 Download PDF

Info

Publication number
WO2020245890A1
WO2020245890A1 PCT/JP2019/022041 JP2019022041W WO2020245890A1 WO 2020245890 A1 WO2020245890 A1 WO 2020245890A1 JP 2019022041 W JP2019022041 W JP 2019022041W WO 2020245890 A1 WO2020245890 A1 WO 2020245890A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
power module
power
curved portion
module according
Prior art date
Application number
PCT/JP2019/022041
Other languages
English (en)
French (fr)
Inventor
晃久 福本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/022041 priority Critical patent/WO2020245890A1/ja
Priority to JP2021524521A priority patent/JP7094447B2/ja
Publication of WO2020245890A1 publication Critical patent/WO2020245890A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a power module and a power conversion device.
  • Patent Document 1 discloses a semiconductor device including a power semiconductor element, a drain reed, a gate reed, and a sealant.
  • the power semiconductor element is mounted on the drain electrode of the drain reed.
  • the power semiconductor element is electrically connected to the drain lead and the gate lead.
  • the sealant seals the power semiconductor element, a part of the drain reed, and a part of the gate lead.
  • a recess and a protrusion corresponding to the recess are formed in a part of the drain reed.
  • a part of the sealing body is filled in the recess of the drain reed.
  • the protruding part of the drain reed bites into the sealing body. Therefore, the adhesion strength between the sealing body and the drain lead is high.
  • Patent Document 1 the protruding portion has a sharp angle. Therefore, when a thermal cycle is applied to the semiconductor device of Patent Document 1, the stress caused by the difference between the linear expansion coefficient of the drain lead and the linear expansion coefficient of the encapsulant is generated by the sharp corner of the protruding portion and the sealing. It is applied intensively to the interface with the stop. At the interface between the protrusion and the sealant, the sealant separates from the drain lead.
  • the semiconductor device of Patent Document 1 has low reliability.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a power module and a power conversion device having improved reliability.
  • the power module of the present invention includes an insulating circuit board, a power semiconductor element, a base, and a sealing member.
  • the insulated circuit board has a front surface and a back surface opposite to the front surface.
  • the power semiconductor element is bonded to the front surface of the insulating circuit board.
  • the base is joined to the back surface of the insulated circuit board using a joining member.
  • the sealing member seals the power semiconductor element and the insulating circuit board.
  • the base includes a first part and a second part. The first portion of the base is in contact with the joining member.
  • the second portion of the base is exposed from the joining member and surrounds the first portion. At least a part of the second portion is selectively provided with at least one first curved portion that is curved so as to be convex on the side proximal to the power semiconductor element with respect to the first portion.
  • the power conversion device of the present invention includes a main conversion circuit and a control circuit.
  • the main conversion circuit has the power module of the present invention, and is configured to convert and output the input power.
  • the control circuit is configured to output a control signal for controlling the main conversion circuit to the main conversion circuit.
  • At least one first curved portion is provided on the base. Therefore, even if a cooling cycle is applied to the power module, the stress caused by the difference between the linear expansion coefficient of the base and the linear expansion coefficient of the sealing member is generated between at least one first bending portion and the sealing member. It is suppressed that the application is concentrated on a part of the interface between them. Further, at least one first curved portion increases the contact area between the base and the sealing member and increases the adhesion strength between the base and the sealing member. In this way, the sealing member is prevented from peeling off from the base.
  • the power module and power converter of the present invention have improved reliability.
  • FIG. 5 is a schematic cross-sectional view of the power module of the first embodiment in cross-sectional line II-II shown in FIG. It is the schematic sectional drawing of the power module of the modification of Embodiment 1. It is a figure which shows the flowchart of the manufacturing method of the power module of Embodiment 1. It is the schematic plan view of the power module of Embodiment 2.
  • FIG. 5 is a schematic cross-sectional view of the power module of the second embodiment in the cross-sectional line VI-VI shown in FIG. It is a figure which shows the flowchart of the manufacturing method of the power module of Embodiment 2. It is the schematic sectional drawing of the power module of Embodiment 3.
  • FIG. 5 is a schematic cross-sectional view of the power module of the first embodiment in cross-sectional line II-II shown in FIG. It is the schematic sectional drawing of the power module of the modification of Embodiment 1. It is a figure which shows the flowchart of the manufacturing method of the power module of Embodiment 1.
  • Embodiment 1 The power module 1 of the first embodiment will be described with reference to FIGS. 1 and 2.
  • the power module 1 mainly includes insulating circuit boards 10a and 10b, power semiconductor elements 20 and 21, a base 31, and a sealing member 40.
  • the power module 1 may further include lead terminals 26 and 29 and wirings 27 and 28.
  • the power module 1 may further include an enclosure 38.
  • the power module 1 may further include a heat sink 45.
  • the power module 1 may further include a heat transfer layer 46.
  • the power module 1 includes two insulated circuit boards 10a and 10b.
  • the insulating circuit board 10a and the insulating circuit board 10b are arranged in the first direction (x direction) at intervals from each other.
  • the power module 1 may include at least one insulated circuit board.
  • the insulating circuit boards 10a and 10b each include an insulating board 11.
  • the insulating substrate 11 extends in the first direction (x direction) and the second direction (y direction) perpendicular to the first direction.
  • the insulating substrate 11 includes a first surface and a second surface opposite to the first surface.
  • the insulating substrate 11 may be formed of, for example, an inorganic material (ceramic material) such as alumina, aluminum nitride, or silicon nitride.
  • the insulating substrate 11 may be formed of, for example, a resin material such as an epoxy resin, a polyimide resin, or a cyanate resin to which an inorganic filler (ceramic filler) such as alumina, aluminum nitride, or silicon nitride is added.
  • a resin material such as an epoxy resin, a polyimide resin, or a cyanate resin to which an inorganic filler (ceramic filler) such as alumina, aluminum nitride, or silicon nitride is added.
  • the insulating circuit board 10a includes a conductive circuit pattern 12a and a conductive plate 13.
  • the insulating circuit board 10b includes a conductive circuit pattern 12b and a conductive plate 13.
  • the conductive circuit pattern 12a is provided on the first surface of the insulating substrate 11.
  • the conductive circuit pattern 12b is provided on the first surface of the insulating substrate 11.
  • the conductive circuit pattern 12a may have a pattern different from that of the conductive circuit pattern 12b.
  • the conductive plate 13 is provided on the second surface of the insulating substrate 11.
  • the conductive circuit patterns 12a and 12b and the conductive plate 13 may be formed of a metal material having high electric conductivity and high thermal conductivity such as copper or aluminum.
  • the insulating circuit boards 10a and 10b may be, for example, a DCB (Direct Copper Bonded) board or a DAB (Direct Aluminum Bonded) board.
  • the insulated circuit boards 10a and 10b each have a front surface 10p and a back surface 10q on the opposite side of the front surface 10p.
  • the front surface 10p of the insulating circuit board 10a includes the surface of the conductive circuit pattern 12a.
  • the back surface 10q of the insulating circuit board 10a includes the front surface of the conductive plate 13.
  • the front surface 10p of the insulating circuit board 10b includes the surface of the conductive circuit pattern 12b.
  • the back surface 10q of the insulating circuit board 10b includes the front surface of the conductive plate 13.
  • the power module 1 includes two power semiconductor elements 20 and 21.
  • the power module 1 may include at least one power semiconductor element.
  • the power semiconductor elements 20 and 21 are, for example, an insulated gate bipolar transistor (IGBT), a metal oxide semiconductor field effect transistor (MOSFET), or a freewheel diode (FWD).
  • the power semiconductor devices 20 and 21 may be formed of silicon or a wide bandgap semiconductor material such as silicon carbide, gallium nitride or diamond.
  • the power semiconductor element 20 is joined to the front surface 10p of the insulating circuit board 10a.
  • the power semiconductor element 20 is bonded to the conductive circuit pattern 12a by using the first bonding member 23.
  • the power semiconductor element 21 is bonded to the front surface 10p of the insulating circuit board 10b.
  • the power semiconductor element 21 is bonded to the conductive circuit pattern 12b by using the first bonding member 23.
  • the first joining member 23 is not particularly limited, but may be a solder such as lead-free solder, a metal nanoparticle sintered body such as a silver nanoparticle sintered body, or a conductive adhesive.
  • the conductive adhesive is, for example, a resin adhesive in which conductive particles such as silver particles are dispersed.
  • one power semiconductor element is mounted on one insulating circuit board.
  • a plurality of power semiconductor elements may be mounted on one insulating circuit board.
  • the lead terminal 26 is pulled out from the insulating circuit board 10a (conductive circuit pattern 12a).
  • the power semiconductor element 20 and the conductive circuit pattern 12b are electrically connected to each other by wiring 27.
  • the power semiconductor element 21 and a part of the conductive circuit pattern 12b are electrically connected to each other by wiring 28.
  • the lead terminal 29 is pulled out from the insulating circuit board 10b (a part of the conductive circuit pattern 12b).
  • the lead terminals 26 and 29 are made of a metal material having high electrical conductivity such as copper or aluminum.
  • Wiring 27, 28 may be formed of, for example, a metal material such as copper, aluminum, copper alloy or aluminum alloy.
  • Wiring 27, 28 may be, for example, a conductive wire or a conductive ribbon.
  • the base 31 is, for example, a metal material such as copper or aluminum, a metal-based composite material (MMC) such as AlSiC, or a metal material such as 400 series stainless steel, 42 alloy or Invar whose main component is iron. It may be formed.
  • the base 31 may be a foil base.
  • the foil base has a thickness of 200 ⁇ m or less.
  • the foil base may have a thickness of 150 ⁇ m or less, a thickness of 100 ⁇ m or less, or a thickness of 50 ⁇ m or less.
  • the base 31 is joined to the back surface 10q of the insulating circuit boards 10a and 10b by using the second joining member 39.
  • the second joining member 39 is, for example, solder such as lead-free solder.
  • the base 31 includes a first portion 32 and a second portion 33. The first portion 32 of the base 31 is in contact with the second joining member 39. The second portion 33 of the base 31 is exposed from the second joining member 39 and surrounds the first portion 32 of the base 31.
  • At least a part of the second portion 33 of the base 31 is selectively provided with at least one first curved portion 33a.
  • the first curved portion 33a is not provided in the first portion 32 of the base 31.
  • At least one first curved portion 33a is curved so as to be convex toward the side (+ z side) proximal to the power semiconductor elements 20 and 21 with respect to the first portion 32 of the base 31.
  • At least one first curved portion 33a has a radius of curvature of 1 ⁇ m or more.
  • At least one first curved portion 33a may have a radius of curvature of 10 ⁇ m or more, may have a radius of curvature of 100 ⁇ m or more, or may have a radius of curvature of 1 mm or more.
  • the second portion 33 of the base 31 further includes a flat portion 33b in addition to the first curved portion 33a.
  • At least one first curved portion 33a may extend along at least a part of the outer edge of the first portion 32. At least one first curved portion 33a may extend along the first direction (x direction). At least one first curved portion 33a may extend along the second direction (y direction). At least one first curved portion 33a may extend along the first direction (x direction) and the second direction (y direction). At least one first curved portion 33a may extend along the entire outer edge of the first portion 32. At least one first curved portion 33a may surround the first portion 32. As shown in FIG. 3, in the power module 1a of the modified example of the present embodiment, at least one first curved portion 33a may be a plurality of first curved portions 33a.
  • the power semiconductor element 20 may be arranged directly above the second bonding member 39 in a plan view of the front surface 10p of the insulating circuit board 10a.
  • the power semiconductor element 21 may be arranged directly above the second joining member 39 in a plan view of the front surface 10p of the insulating circuit board 10b.
  • the power semiconductor element 20 may be arranged inside the outer edge of the second bonding member 39 in a plan view of the front surface 10p of the insulating circuit boards 10a and 10b.
  • the power semiconductor element 21 may be arranged inside the outer edge of the second joining member 39. Therefore, the length of the heat dissipation path from the power semiconductor elements 20 and 21 to the base 31 is shortened. The heat generated by the power semiconductor elements 20 and 21 is efficiently dissipated to the outside of the power module 1.
  • the outer body 38 may be attached to the peripheral edge of the first main surface of the base 31.
  • the base 31 and the outer body 38 form a case 30.
  • the power module 1 is a case type module.
  • the power module 1 may be a mold type module that does not include the enclosure 38.
  • the outer body 38 may be formed of, for example, an insulating material having high heat resistance.
  • the insulating material having high heat resistance is, for example, a thermoplastic resin such as polyphenylene sulfide (PPS) or polybutylene terephthalate (PBT).
  • the sealing member 40 seals the power semiconductor elements 20 and 21 and the insulating circuit boards 10a and 10b.
  • the sealing member 40 may be made of a resin material such as an epoxy resin.
  • the sealing member 40 is provided on the base 31.
  • the second portion 33 of the base 31 may come into contact with the sealing member 40.
  • the sealing member 40 fills at least a part of the internal space of the case 30 composed of the base 31 and the outer enclosure 38.
  • the base 31 is too thin to provide the power module 1 with sufficient structural strength.
  • the sealing member 40 is thicker than the base 31 and can provide the power module 1 with sufficient structural strength.
  • the heat sink 45 is attached to the second main surface of the base 31 opposite to the first main surface of the base 31.
  • the heat sink 45 may be made of a material having a high thermal conductivity, such as aluminum.
  • the heat sink 45 may be attached to the second main surface of the base 31 via the heat transfer layer 46.
  • the heat transfer layer 46 may be, for example, a heat dissipation grease layer or a heat dissipation sheet made of a material such as a phase change material (PCM).
  • PCM phase change material
  • the heat sink 45 may be attached directly to the second main surface of the base 31.
  • the heat sink 45 may be fixed to the outer body 38 and the base 31 by using a fastening member 47 such as a screw.
  • the heat sink 45 may be fixed to the base 31 using an adhesive.
  • the manufacturing method of the power modules 1, 1a of the present embodiment includes preparing a base 31 provided with at least one first curved portion 33a (S1).
  • preparing the base 31 provided with at least one first curved portion 33a (S1) is to machine the base 31 to form at least one first curved portion 33a on the base 31. May include doing. Machining is, for example, stamping or bending.
  • preparing the base 31 provided with at least one first curved portion 33a (S1) casts the base 31 provided with at least one first curved portion 33a using a mold. May include doing.
  • the base 31 is a foil base, it becomes easy to form at least one first curved portion 33a on the base 31.
  • the manufacturing method of the power modules 1 and 1a of the present embodiment includes joining the power semiconductor elements 20 and 21 to the insulated circuit boards 10a and 10b (S2). Specifically, the power semiconductor elements 20 and 21 are joined to the front surfaces 10p (conductive circuit patterns 12a and 12b) of the insulating circuit boards 10a and 10b by using the first joining member 23.
  • the manufacturing method of the power modules 1 and 1a of the present embodiment includes joining the base 31 to the insulated circuit boards 10a and 10b (S3). Specifically, the first main surface of the base 31 is joined to the back surfaces 10q of the insulating circuit boards 10a and 10b by using the second joining member 39.
  • the base 31 is a first portion 32 of the base 31 and is joined to the insulating circuit boards 10a and 10b.
  • the manufacturing method of the power modules 1 and 1a of the present embodiment includes sealing the power semiconductor elements 20 and 21 and the insulating circuit boards 10a and 10b with the sealing member 40 (S4).
  • the sealing resin material is supplied on the first main surface of the base 31.
  • the sealing resin material is supplied to at least a part of the internal space of the case 30.
  • the sealing resin material is cured to form a sealing member 40 that seals the power semiconductor elements 20 and 21 and the insulating circuit boards 10a and 10b.
  • an assembly including the base 31, the insulating circuit boards 10a and 10b, the power semiconductor elements 20 and 21, and the sealing member 40 is formed.
  • the assembly may further include an enclosure 38.
  • an assembly including a base 31, insulating circuit boards 10a and 10b, power semiconductor elements 20 and 21, and a sealing member 40 is attached to a heat sink 45 (S5).
  • the heat sink 45 may be attached to the base 31 via the heat transfer layer 46. In this way, the power modules 1, 1a are obtained.
  • the power semiconductor elements 20 and 21 are attached to the insulated circuit boards 10a and 10b. It may be joined (S2).
  • the power modules 1 and 1a do not have to include the heat sink 45, and the base 31, the insulating circuit boards 10a and 10b, the power semiconductor elements 20 and 21, and the sealing member 40 do not have to be included.
  • the assembly including the above may be power modules 1, 1a.
  • the power modules 1 and 1a of the present embodiment include insulating circuit boards 10a and 10b, power semiconductor elements 20 and 21, a base 31, and a sealing member 40.
  • the insulating circuit boards 10a and 10b have a front surface 10p and a back surface 10q on the opposite side of the front surface 10p.
  • the power semiconductor elements 20 and 21 are joined to the front surface 10p of the insulating circuit boards 10a and 10b.
  • the base 31 is joined to the back surface 10q of the insulating circuit boards 10a and 10b by using a joining member (second joining member 39).
  • the sealing member 40 seals the power semiconductor elements 20 and 21 and the insulating circuit boards 10a and 10b.
  • the base 31 includes a first portion 32 and a second portion 33.
  • the first portion 32 of the base 31 is in contact with the joining member (second joining member 39).
  • the second portion 33 of the base 31 is exposed from the joining member (second joining member 39) and surrounds the first portion 32.
  • At least one first unit that is selectively curved to at least a part of the second portion 33 so as to be convex toward the side (+ z side) proximal to the power semiconductor elements 20 and 21 with respect to the first portion 32.
  • a curved portion 33a is provided.
  • the base 31 is provided with at least one first curved portion 33a. Therefore, even if a thermal cycle is applied to the power modules 1 and 1a, the stress caused by the difference between the linear expansion coefficient of the base 31 and the linear expansion coefficient of the sealing member 40 is still present at least one first curved portion 33a. It is suppressed that the application is concentrated on a part of the interface between the sealing member 40 and the sealing member 40. Further, at least one first curved portion 33a increases the contact area between the base 31 and the sealing member 40, and increases the adhesion strength between the base 31 and the sealing member 40. In this way, the sealing member 40 is prevented from peeling from the base 31.
  • the power modules 1, 1a have improved reliability.
  • the base 31 may be a foil base. Therefore, the distance that the heat generated by the power semiconductor elements 20 and 21 conducts through the base 31 decreases. The heat generated by the power semiconductor devices 20 and 21 is efficiently dissipated. The heat dissipation performance of the power modules 1 and 1a is improved.
  • At least one first curved portion 33a extends along at least a part of the outer edge of the first portion 32. Therefore, the stress caused by the difference between the coefficient of linear expansion of the base 31 and the coefficient of linear expansion of the sealing member 40 is applied to a part of the interface between at least one first curved portion 33a and the sealing member 40. It is suppressed that it is applied intensively. Further, at least one first curved portion 33a increases the contact area between the base 31 and the sealing member 40, and increases the adhesion strength between the base 31 and the sealing member 40. The sealing member 40 is prevented from peeling from the base 31.
  • the power modules 1, 1a have improved reliability.
  • At least one first curved portion 33a extends along the entire outer edge of the first portion 32. Therefore, the stress caused by the difference between the coefficient of linear expansion of the base 31 and the coefficient of linear expansion of the sealing member 40 is applied to a part of the interface between at least one first curved portion 33a and the sealing member 40. It is suppressed that it is applied intensively. Further, at least one first curved portion 33a increases the contact area between the base 31 and the sealing member 40, and increases the adhesion strength between the base 31 and the sealing member 40. The sealing member 40 is prevented from peeling from the base 31.
  • the power modules 1, 1a have improved reliability.
  • At least one first curved portion 33a is a plurality of first curved portions 33a. Therefore, the contact area between the base 31 and the sealing member 40 increases, and the adhesion strength between the base 31 and the sealing member 40 increases. The sealing member 40 is prevented from peeling from the base 31.
  • the power module 1a has improved reliability.
  • the power modules 1 and 1a of the present embodiment further include a heat sink 45.
  • the insulating circuit boards 10a and 10b are joined to the first main surface of the base 31.
  • the heat sink 45 is attached to the second main surface of the base 31 opposite to the first main surface of the base 31.
  • At least one first curved portion 33a is curved so as to be convex toward the side (+ z side) proximal to the power semiconductor elements 20 and 21 with respect to the first portion 32 of the base 31.
  • the at least one first curved portion 33a prevents the base 31 from bending to the side ( ⁇ z side) distal to the power semiconductor elements 20 and 21. Therefore, the heat sink 45 can be attached to the second main surface of the base 31 at the first portion 32 of the base 31 without mechanically interfering with at least one first curved portion 33a.
  • the heat dissipation performance of the power modules 1 and 1a is improved.
  • the heat sink 45 is attached to the base 31 by using the fastening member 47.
  • the heat sink 45 needs to press the base 31 with a pressure that can ensure heat conduction between the base 31 and the heat sink 45. This pressure is defined as the force with which the heat sink 45 presses the base 31 divided by the area of the base 31 pressed by the heat sink 45.
  • the area of the portion of the base 31 pressed by the heat sink 45 is reduced.
  • the heat sink 45 presses the portion of the base 31 excluding at least one first curved portion 33a. Therefore, it is possible to realize the pressure of the heat sink 45 on the base 31 which can secure the heat conduction between the base 31 and the heat sink 45 with a smaller fastening force of the fastening member 47 (pressing pressure of the heat sink 45 on the base 31). Can be done.
  • the internal stress generated in the power modules 1, 1a is reduced, and the power modules 1, 1a have improved reliability. Further, since the number of fastening members 47 or the size of the fastening members 47 can be reduced, the power modules 1 and 1a can be miniaturized.
  • Embodiment 2 The power module 1b of the second embodiment will be described with reference to FIGS. 5 and 6.
  • the power module 1b of the present embodiment has the same configuration as the power module 1 of the first embodiment, but is mainly different in the following points.
  • at least one first curved portion 33a is provided on the entire second portion 33.
  • the second portion 33 of the base 31 does not include the flat portion 33b (see FIG. 2).
  • the sealing member 40 may be made of a thermosetting resin material.
  • the base 31 may have a coefficient of linear expansion larger than that of the sealing member 40.
  • An example of the manufacturing method of the power module 1b of the present embodiment will be described with reference to FIG. 7.
  • An example of the method for manufacturing the power module 1b of the present embodiment includes the following steps S11 and S14 in place of the steps S1 and S4 of the first embodiment.
  • the manufacturing method of the power module 1b of the present embodiment includes preparing the base 31 (S11). In step S1, at least one first curved portion 33a is not formed on the base 31.
  • the manufacturing method of the power module 1b of the present embodiment includes sealing the power semiconductor elements 20 and 21 and the insulating circuit boards 10a and 10b with the sealing member 40 (S14).
  • the sealing member 40 S14
  • At least one first curved portion 33a is provided on the second portion 33 of the base 31 (S15).
  • the sealing resin material is supplied on the first main surface of the base 31.
  • the sealing resin material is supplied to at least a part of the internal space of the case 30.
  • the sealing resin material is a thermosetting resin material. By applying heat to the sealing resin material, the sealing resin material is cured to form the sealing member 40 that seals the power semiconductor elements 20 and 21 and the insulating circuit boards 10a and 10b.
  • the base 31 has a coefficient of linear expansion larger than that of the sealing member 40. Therefore, when the temperature of the sealing member 40 is lowered from the high temperature at which the sealing member 40 is cured to room temperature, the difference between the coefficient of linear expansion of the base 31 and the coefficient of linear expansion of the sealing member 40 causes the base 31 to have a difference. At least one first curved portion 33a is formed in the entire second portion 33. In the method for manufacturing the power module 1b of the present embodiment, the step of machining the base 31 can be omitted.
  • Another example of the method for manufacturing the power module 1b of the present embodiment may include the same steps as the method for manufacturing the power module 1 of the first embodiment. That is, in another example of the method for manufacturing the power module 1b of the present embodiment, at least one first curved portion 33a may be formed in the entire second portion 33 of the base 31 in the step S1. In the power module 1b, at least one first curved portion 33a may be a plurality of first curved portions 33a.
  • the power module 1b of the present embodiment exerts the following effects in addition to the effects of the power modules 1 and 1a of the first embodiment.
  • At least one first curved portion 33a is provided on the entire second portion 33. Therefore, even if a thermal cycle is applied to the power module 1b, the stress caused by the difference between the linear expansion coefficient of the base 31 and the linear expansion coefficient of the sealing member 40 is sealed with at least one first curved portion 33a. It is suppressed that the application is concentrated on a part of the interface with the stop member 40. Further, the contact area between the base 31 and the sealing member 40 is further increased, and the adhesion strength between the base 31 and the sealing member 40 is further increased. The sealing member 40 is prevented from peeling from the base 31.
  • the power module 1b has improved reliability.
  • the area of the portion of the base 31 pressed by the heat sink 45 is further reduced. With less fastening force of the fastening member 47 (pressing pressure of the heat sink 45 on the base 31), the pressure of the heat sink 45 on the base 31 that can secure heat conduction between the base 31 and the heat sink 45 can be realized. ..
  • the internal stress generated in the power module 1b is further reduced, and the power module 1b has improved reliability. Further, since the number of fastening members 47 or the size of the fastening members 47 can be further reduced, the power module 1b can be miniaturized.
  • the sealing member 40 is made of a thermosetting resin material.
  • the base 31 has a coefficient of linear expansion larger than that of the sealing member 40. Therefore, at least one first curved portion 33a can be formed without the step of machining the base 31.
  • the power module 1b can be easily manufactured by a simple process.
  • Embodiment 3 The power module 1c of the third embodiment will be described with reference to FIG.
  • the power module 1c of the present embodiment has the same configuration as the power module 1 of the first embodiment, but is mainly different in the following points.
  • the power module 1c further includes a film 50 selectively provided on at least one first curved portion 33a.
  • the film 50 is not provided on the portion of the base 31 except for the first curved portion 33a.
  • the film 50 has a coefficient of linear expansion smaller than that of the base 31.
  • the film 50 may be formed of, for example, a thermosetting resin containing a filler.
  • the filler is, for example, an inorganic filler (ceramic filler) such as alumina, aluminum nitride or silicon nitride.
  • the thermosetting resin is, for example, an epoxy resin.
  • the film 50 may be formed of, for example, a metal material containing iron as a main component, such as stainless steel in the 400s, 42 alloy or Invar.
  • At least one first bending portion 33a may be a plurality of first bending portions 33a.
  • the power module 1d includes a plurality of films 50, and the plurality of films 50 are selectively provided on the plurality of first curved portions 33a, respectively.
  • at least one first curved portion 33a is provided on the entire second portion 33, and the film 50 is provided on the entire second portion 33 of the base 31. May be done.
  • the manufacturing method of the power modules 1c and 1d of the present embodiment will be described with reference to FIG.
  • the manufacturing method of the power modules 1c and 1d of the present embodiment includes the same steps as the example of the manufacturing method of the power module 1 of the first embodiment shown in FIG. 4, but the step S1 of the first embodiment is provided. Instead of, the following step S21 is provided.
  • the manufacturing method of the power modules 1c and 1d of the present embodiment includes preparing a base 31 provided with at least one first curved portion 33a (S21). Preparing the base 31 provided with at least one first curved portion 33a (S21) is to form a film 50 on a part of the base 31 at a high temperature higher than room temperature (S22), and to prepare the film 50. The temperature of the base 31 on which the film 50 is formed is lowered from the high temperature at which the film 50 is formed on the base 31 to room temperature (S23).
  • the film 50 has a coefficient of linear expansion smaller than that of the base 31. Therefore, when the temperature of the base 31 on which the film 50 is formed is lowered from the high temperature at which the film 50 is formed on the base 31 to room temperature, the difference between the coefficient of linear expansion of the base 31 and the coefficient of linear expansion of the film 50 causes a difference. At least one first curved portion 33a is formed on the second portion 33 of the base 31.
  • the power modules 1c and 1d of the present embodiment have the following effects in addition to the effects of the power modules 1 and 1a of the first embodiment.
  • the power modules 1c and 1d of the present embodiment further include a film 50 selectively provided on at least one first curved portion 33a.
  • the film 50 has a coefficient of linear expansion smaller than that of the base 31. Therefore, at least one first curved portion 33a can be formed without the step of machining the base 31.
  • the power modules 1c and 1d can be easily manufactured by a simple process. Power modules 1c and 1d of various types in small quantities can be easily obtained.
  • Embodiment 4 The power module 1e of the fourth embodiment will be described with reference to FIG.
  • the power module 1e of the present embodiment has the same configuration as the power module 1 of the first embodiment, but is mainly different in the following points.
  • the first portion 32 of the base 31 is provided with a second curved portion 35 that is curved so as to be convex toward the side ( ⁇ z side) distal to the power semiconductor elements 20 and 21. ..
  • the second curved portion 35 has a radius of curvature of 1 ⁇ m or more.
  • the second curved portion 35 may have a radius of curvature of 10 ⁇ m or more, may have a radius of curvature of 100 ⁇ m or more, or may have a radius of curvature of 1 mm or more.
  • the second curved portion 35 is provided in at least a part of the first portion 32 of the base 31.
  • the second curved portion 35 may be provided on the entire first portion 32 of the base 31.
  • the base 31 may have a coefficient of linear expansion smaller than that of the insulating circuit boards 10a and 10b.
  • An example of the manufacturing method of the power module 1e of the present embodiment will be described with reference to FIG.
  • An example of the method for manufacturing the power module 1e of the present embodiment includes the same steps as the method for manufacturing the power module 1 of the first embodiment, but is mainly different in the following points.
  • An example of the method for manufacturing the power module 1e of the present embodiment includes the following process S33 instead of the process S3 of the first embodiment.
  • the manufacturing method of the power module 1e of the present embodiment includes joining the base 31 to the insulating circuit boards 10a and 10b (S33). Specifically, the first main surface of the base 31 is joined to the back surfaces 10q of the insulating circuit boards 10a and 10b by using the second joining member 39.
  • the base 31 is a first portion 32 of the base 31 and is joined to the back surface 10q of the insulating circuit boards 10a and 10b.
  • Joining the base 31 to the insulating circuit boards 10a and 10b (S33) means joining the base 31 to the insulating circuit boards 10a and 10b using the second joining member 39 at a temperature higher than room temperature (S34).
  • the temperature of the base 31 and the insulating circuit boards 10a and 10b joined to each other using the second joining member 39 from the high temperature at which the base 31 is joined to the insulating circuit boards 10a and 10b using the second joining member 39. Includes lowering to room temperature (S35).
  • the base 31 has a coefficient of linear expansion smaller than that of the insulating circuit boards 10a and 10b. Therefore, the temperature of the base 31 and the insulating circuit boards 10a and 10b joined to each other by using the second joining member 39 is changed from the high temperature at which the base 31 is joined to the insulating circuit boards 10a and 10b by using the second joining member 39.
  • the first portion 32 of the base 31 is located on the side distal to the power semiconductor elements 20 and 21.
  • a second curved portion 35 that is curved so as to be convex ( ⁇ z side) is formed.
  • the base 31 is a foil base, it becomes easy to form the second curved portion 35 on the base 31.
  • Another example of the method for manufacturing the power module 1e of the present embodiment may include the same steps as the method for manufacturing the power module 1 of the first embodiment.
  • preparing the base 31 provided with at least one first curved portion 33a (S1) is to machine the base 31 and at least one.
  • the formation of the first curved portion 33a and the second curved portion 35 may be included in the base 31. Machining is, for example, stamping or bending.
  • preparing the base 31 provided with at least one first curved portion 33a (S1) means that at least one first curved portion 33a and the second curved portion 35 are formed by using a mold. It may include casting the provided base 31.
  • at least one first curved portion 33a may be a plurality of first curved portions 33a.
  • the power module 1e of the present embodiment exerts the following effects in addition to the effects of the power module 1 of the first embodiment.
  • the first portion 32 is provided with a second curved portion 35 that is curved so as to be convex on the side ( ⁇ z side) distal to the power semiconductor elements 20 and 21. ing. Therefore, the second curved portion 35 can reliably and thermally connect the base 31 to the heat sink 45. The heat dissipation performance of the power module 1e is improved. Further, since the thickness of the heat transfer layer 46 between the second curved portion 35 and the heat sink 45 is reduced, the thermal resistance between the base 31 and the heat sink 45 is reduced. The heat dissipation performance of the power module 1e is improved.
  • the base 31 has a coefficient of linear expansion smaller than that of the insulating circuit boards 10a and 10b. Therefore, the second curved portion 35 can be formed without the step of machining the base 31.
  • the power module 1e can be easily manufactured by a simple process.
  • the power module 1f of the fifth embodiment will be described with reference to FIG.
  • the power module 1f of the present embodiment has the same configuration as the power module 1 of the first embodiment, but is mainly different in the following points.
  • both ends of the base 31 are folded.
  • Folded portions 36 of the base 31 are provided at both ends of the base 31.
  • the folded portion 36 is formed by folding the base 31 at least once.
  • both ends of the base 31 may be wound.
  • Winding portions 37 of the base 31 may be provided at both ends of the base 31.
  • the winding portion 37 is formed by winding the base 31 at least once.
  • the outer enclosure 38 may be provided with a recess 38r, and the winding portion 37 of the base 31 may be housed in the recess 38r of the outer enclosure 38. Therefore, the enclosure 38 can be easily positioned with respect to the base 31.
  • the manufacturing method of the power modules 1f and 1g of the present embodiment includes the same steps as the manufacturing method of the power module 1 of the first embodiment, and further includes the following step S41.
  • the method for manufacturing the power modules 1f and 1g of the present embodiment further includes forming a folding portion 36 or a winding portion 37 at both ends of the base 31 (S41).
  • the base 31 before the formation of at least one first curved portion 33a is a flat flexible sheet. Therefore, it is difficult to handle the base 31 before at least one first curved portion 33a is formed. Before the formation of at least one first curved portion 33a, the base 31 may be bent due to a slight handling error of the base 31 and become unusable.
  • the folding portion 36 or the winding portion 37 of the base 31 mechanically reinforces both ends of the base 31 to facilitate the handling of the base 31.
  • the folding portion 36 or the winding portion 37 of the base 31 can reduce the possibility that the base 31 becomes unusable due to a handling error of the base 31.
  • at least one first curved portion 33a may be a plurality of first curved portions 33a.
  • the power modules 1f and 1g of the present embodiment have the following effects in addition to the effects of the power module 1 of the first embodiment.
  • the folding portions 36 of the base 31 or the winding portions 37 of the base 31 are provided at both ends of the base 31.
  • the folding portion 36 of the base 31 or the winding portion 37 of the base 31 mechanically reinforces both ends of the base 31 to facilitate the handling of the base 31.
  • the power modules 1f and 1g can be easily manufactured.
  • Embodiment 6 any one of the power modules 1, 1a, 1b, 1c, 1d, 1e, 1f, and 1g of the first to fifth embodiments is applied to the power conversion device.
  • the case where the power conversion device 200 of the present embodiment is not particularly limited, but is a three-phase inverter will be described below.
  • the power conversion system shown in FIG. 16 includes a power source 100, a power conversion device 200, and a load 300.
  • the power source 100 is a DC power source, and supplies DC power to the power converter 200.
  • the power supply 100 is not particularly limited, but may be composed of, for example, a DC system, a solar cell, or a storage battery, or may be composed of a rectifier circuit or an AC / DC converter connected to an AC system.
  • the power supply 100 may be configured by a DC / DC converter that converts DC power output from the DC system into another DC power.
  • the power conversion device 200 is a three-phase inverter connected between the power supply 100 and the load 300, converts the DC power supplied from the power supply 100 into AC power, and supplies AC power to the load 300. As shown in FIG. 16, the power conversion device 200 has a main conversion circuit 201 that converts DC power into AC power and outputs it, and a control circuit that outputs a control signal for controlling the main conversion circuit 201 to the main conversion circuit 201. It is equipped with 203.
  • the load 300 is a three-phase electric motor driven by AC power supplied from the power converter 200.
  • the load 300 is not particularly limited, but is an electric motor mounted on various electric devices, and is used as, for example, an electric motor for a hybrid vehicle, an electric vehicle, a railroad vehicle, an elevator, or an air conditioner.
  • the main conversion circuit 201 includes a switching element (not shown) and a freewheeling diode (not shown). By switching the voltage supplied from the power supply 100 by the switching element, the main conversion circuit 201 converts the DC power supplied from the power supply 100 into AC power and supplies it to the load 300.
  • the main conversion circuit 201 is a two-level three-phase full bridge circuit, and has six switching elements and each switching element. It may consist of six anti-parallel freewheeling diodes.
  • the six switching elements are connected in series for each of the two switching elements to form an upper and lower arm, and each upper and lower arm constitutes each phase (U phase, V phase and W phase) of the full bridge circuit. Then, the output terminals of the upper and lower arms, that is, the three output terminals of the main conversion circuit 201 are connected to the load 300.
  • the main conversion circuit 201 includes a drive circuit (not shown) for driving each switching element.
  • the drive circuit may be built in the semiconductor module 202, or may be provided separately from the semiconductor module 202.
  • the drive circuit generates a drive signal for driving the switching element included in the main conversion circuit 201, and supplies the drive signal to the control electrode of the switching element of the main conversion circuit 201.
  • a drive signal for turning on the switching element and a drive signal for turning off the switching element are output to the control electrodes of each switching element.
  • the drive signal When the switching element is kept in the on state, the drive signal is a voltage signal (on signal) equal to or higher than the threshold voltage of the switching element, and when the switching element is kept in the off state, the drive signal is a voltage equal to or lower than the threshold voltage of the switching element. It becomes a signal (off signal).
  • the control circuit 203 controls the switching element of the main conversion circuit 201 so that the desired power is supplied to the load 300. Specifically, the time (on time) at which each switching element of the main conversion circuit 201 should be in the on state is calculated based on the power to be supplied to the load 300.
  • the main conversion circuit 201 can be controlled by pulse width modulation (PWM) control that modulates the on-time of the switching element according to the voltage to be output.
  • PWM pulse width modulation
  • a control command is output to the drive circuit included in the main conversion circuit 201 so that an on signal is output to the switching element that should be turned on at each time point and an off signal is output to the switching element that should be turned off. Is output.
  • the drive circuit outputs an on signal or an off signal as a drive signal to the control electrode of each switching element according to this control signal.
  • the power conversion device 200 As the semiconductor module 202 included in the main conversion circuit 201, the power modules 1, 1a, 1b, 1c, 1d, 1e, 1f, from the first embodiment to the fifth embodiment Any of 1 g is applied. Therefore, the power conversion device 200 according to the present embodiment has improved reliability.
  • the present invention is not limited to this, and can be applied to various power conversion devices.
  • a two-level power conversion device is used, but a three-level power conversion device or a multi-level power conversion device may be used.
  • the present invention may be applied to a single-phase inverter when the power converter supplies power to a single-phase load.
  • the present invention may be applied to a DC / DC converter or an AC / DC converter.
  • the power conversion device to which the present invention is applied is not limited to the case where the load is an electric motor, for example, a power supply device for an electric discharge machine or a laser machine, or an induction heating cooker or a non-contactor power supply system. Can be incorporated into a power supply.
  • the power conversion device to which the present invention is applied can be used as a power conditioner for a photovoltaic power generation system, a power storage system, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

パワーモジュール(1)は、絶縁回路基板(10a,10b)と、パワー半導体素子(20,21)と、ベース(31)と、封止部材(40)とを備える。ベース(31)は、第2接合部材(39)を用いて、絶縁回路基板(10a,10b)に接合されている。ベース(31)は、第1部分(32)と、第2部分(33)とを含む。ベース(31)の第1部分(32)は、第2接合部材(39)に接触している。ベース(31)の第2部分(33)は、第2接合部材(39)から露出しており、かつ、第1部分(32)を囲んでいる。第2部分(33)に、少なくとも一つの第1湾曲部(33a)が設けられている。

Description

パワーモジュール及び電力変換装置
 本発明は、パワーモジュール及び電力変換装置に関する。
 特開2005-259758号公報(特許文献1)は、パワー半導体素子と、ドレインリードと、ゲートリードと、封止体とを備える半導体装置を開示している。パワー半導体素子は、ドレインリードのドレイン電極上に搭載されている。パワー半導体素子は、ドレインリード及びゲートリードに電気的に接続されている。封止体は、パワー半導体素子と、ドレインリードの一部と、ゲートリードの一部とを封止している。ドレインリードの一部に、窪みと、この窪みに対応する突出部とが形成されている。封止体の一部は、ドレインリードの窪みに充填されている。ドレインリードの突出部が、封止体に食い込んでいる。そのため、封止体とドレインリードとの間の密着強度が高くなっている。
特開2005-259758号公報
 しかし、特許文献1では、突出部は、尖った角を有している。そのため、特許文献1の半導体装置に冷熱サイクルが印加されると、ドレインリードの線膨張係数と封止体の線膨張係数との間の差に起因する応力が、突出部の尖った角と封止体との間の界面に集中的に印加される。突出部と封止体との間の界面において、封止体がドレインリードから剥離する。特許文献1の半導体装置は、低い信頼性を有している。本発明は、上記の課題を鑑みてなされたものであり、その目的は、向上された信頼性を有するパワーモジュール及び電力変換装置を提供することである。
 本発明のパワーモジュールは、絶縁回路基板と、パワー半導体素子と、ベースと、封止部材とを備える。絶縁回路基板は、おもて面と、おもて面とは反対側の裏面とを有する。パワー半導体素子は、絶縁回路基板のおもて面に接合されている。ベースは、接合部材を用いて、絶縁回路基板の裏面に接合されている。封止部材は、パワー半導体素子及び絶縁回路基板を封止している。ベースは、第1部分と、第2部分とを含む。ベースの第1部分は、接合部材に接触している。ベースの第2部分は、接合部材から露出しており、かつ、第1部分を囲んでいる。第2部分の少なくとも一部に選択的に、第1部分に対してパワー半導体素子に近位する側に凸となるように湾曲されている少なくとも一つの第1湾曲部が設けられている。
 本発明の電力変換装置は、主変換回路と、制御回路とを備える。主変換回路は、本発明のパワーモジュールを有し、かつ、入力される電力を変換して出力するように構成されている。制御回路は、主変換回路を制御する制御信号を主変換回路に出力するように構成されている。
 本発明のパワーモジュール及び電力変換装置では、ベースに、少なくとも一つの第1湾曲部が設けられている。そのため、パワーモジュールに冷熱サイクルが印加されても、ベースの線膨張係数と封止部材の線膨張係数との間の差に起因する応力が、少なくとも一つの第1湾曲部と封止部材との間の界面の一部に集中的に印加されることが抑制される。さらに、少なくとも一つの第1湾曲部は、ベースと封止部材との間の接触面積を増加させて、ベースと封止部材との間の密着強度を増加させる。こうして、ベースから封止部材が剥離することが防止される。本発明のパワーモジュール及び電力変換装置は、向上された信頼性を有する。
実施の形態1のパワーモジュールの概略平面図である。 実施の形態1のパワーモジュールの、図1に示される断面線II-IIにおける概略断面図である。 実施の形態1の変形例のパワーモジュールの概略断面図である。 実施の形態1のパワーモジュールの製造方法のフローチャートを示す図である。 実施の形態2のパワーモジュールの概略平面図である。 実施の形態2のパワーモジュールの、図5に示される断面線VI-VIにおける概略断面図である。 実施の形態2のパワーモジュールの製造方法のフローチャートを示す図である。 実施の形態3のパワーモジュールの概略断面図である。 実施の形態3の変形例のパワーモジュールの概略断面図である。 実施の形態3のパワーモジュールの製造方法のフローチャートを示す図である。 実施の形態4のパワーモジュールの概略断面図である。 実施の形態4のパワーモジュールの製造方法のフローチャートを示す図である。 実施の形態5のパワーモジュールの概略断面図である。 実施の形態5の変形例のパワーモジュールの概略断面図である。 実施の形態5及びその変形例のパワーモジュールの製造方法のフローチャートを示す図である。 実施の形態6に係る電力変換システムの構成を示すブロック図である。
 以下、本発明の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。
 実施の形態1.
 図1及び図2を参照して、実施の形態1のパワーモジュール1を説明する。パワーモジュール1は、絶縁回路基板10a,10bと、パワー半導体素子20,21と、ベース31と、封止部材40とを主に備える。パワーモジュール1は、リード端子26,29と、配線27,28とをさらに備えてもよい。パワーモジュール1は、外囲体38をさらに備えてもよい。パワーモジュール1は、ヒートシンク45をさらに備えてもよい。パワーモジュール1は、伝熱層46をさらに備えてもよい。
 パワーモジュール1は、二つの絶縁回路基板10a,10bを含んでいる。絶縁回路基板10aと絶縁回路基板10bとは、互いに間隔を空けて、第1方向(x方向)に配列されている。パワーモジュール1は、少なくとも一つの絶縁回路基板を含んでもよい。
 絶縁回路基板10a,10bは、各々、絶縁基板11を含む。絶縁基板11は、第1方向(x方向)と、第1方向に垂直な第2方向(y方向)とに延在している。絶縁基板11は、第1面と、第1面とは反対側の第2面とを含む。絶縁基板11は、例えば、アルミナ、窒化アルミニウムまたは窒化ケイ素のような無機材料(セラミックス材料)で形成されてもよい。絶縁基板11は、例えば、アルミナ、窒化アルミニウムまたは窒化ケイ素のような無機フィラー(セラミックスフィラー)が添加された、エポキシ樹脂、ポリイミド樹脂またはシアネート系樹脂のような樹脂材料で形成されてもよい。
 絶縁回路基板10aは、導電回路パターン12aと、導電板13とを含む。絶縁回路基板10bは、導電回路パターン12bと、導電板13とを含む。導電回路パターン12aは、絶縁基板11の第1面上に設けられている。導電回路パターン12bは、絶縁基板11の第1面上に設けられている。導電回路パターン12aは、導電回路パターン12bとは異なるパターンを有してもよい。導電板13は、絶縁基板11の第2面上に設けられている。導電回路パターン12a,12b及び導電板13は、例えば、銅またはアルミニウムのような高い電気伝導率及び高い熱伝導率を有する金属材料で形成されてもよい。絶縁回路基板10a,10bは、例えば、DCB(Direct Copper Bonded)基板、または、DAB(Direct Aluminum Bonded)基板であってもよい。
 絶縁回路基板10a,10bは、各々、おもて面10pと、おもて面10pとは反対側の裏面10qとを有する。絶縁回路基板10aのおもて面10pは、導電回路パターン12aの表面を含む。絶縁回路基板10aの裏面10qは、導電板13の表面を含む。絶縁回路基板10bのおもて面10pは、導電回路パターン12bの表面を含む。絶縁回路基板10bの裏面10qは、導電板13の表面を含む。
 パワーモジュール1は、二つのパワー半導体素子20,21を含んでいる。パワーモジュール1は、少なくとも一つのパワー半導体素子を含んでもよい。パワー半導体素子20,21は、例えば、絶縁ゲート型バイポーラトランジスタ(IGBT)、金属酸化物半導体電界効果トランジスタ(MOSFET)またはフリーホイールダイオード(FWD)である。パワー半導体素子20,21は、シリコン、または、炭化珪素、窒化ガリウムもしくはダイヤモンドのようなワイドバンドギャップ半導体材料で形成されてもよい。
 パワー半導体素子20は、絶縁回路基板10aのおもて面10pに接合されている。パワー半導体素子20は、第1接合部材23を用いて、導電回路パターン12aに接合されている。パワー半導体素子21は、絶縁回路基板10bのおもて面10pに接合されている。パワー半導体素子21は、第1接合部材23を用いて、導電回路パターン12bに接合されている。第1接合部材23は、特に限定されないが、鉛フリーはんだのようなはんだ、銀ナノ粒子焼結体のような金属ナノ粒子焼結体、または、導電性接着剤であってもよい。導電性接着剤は、例えば、銀粒子のような導電性粒子が分散された樹脂接着剤である。本実施の形態では、一つの絶縁回路基板あたり、一つパワー半導体素子が搭載されている。一つの絶縁回路基板あたり、複数のパワー半導体素子が搭載されてもよい。
 絶縁回路基板10a(導電回路パターン12a)から、リード端子26が引き出されている。パワー半導体素子20と導電回路パターン12bとは、配線27により、互いに電気的に接続されている。パワー半導体素子21と導電回路パターン12bの一部とは、配線28により、互いに電気的に接続されている。絶縁回路基板10b(導電回路パターン12bの一部)から、リード端子29が引き出されている。リード端子26、29は、例えば、銅またはアルミニウムのような高い電気伝導率を有する金属材料で形成されている。配線27,28は、例えば、銅、アルミニウム、銅合金またはアルミニウム合金のような金属材料で形成されてもよい。配線27,28は、例えば、導電ワイヤまたは導電リボンであってもよい。
 ベース31は、例えば、銅もしくはアルミニウムのような金属材料、AlSiCのような金属基複合材料(MMC)、または、400番台のステンレス、42アロイもしくはインバーのような主成分が鉄である金属材料で形成されてもよい。ベース31は、箔ベースであってもよい。箔ベースは、200μm以下の厚さを有している。箔ベースは、150μm以下の厚さを有してもよく、100μm以下の厚さを有してもよく、50μm以下の厚さを有してもよい。
 ベース31は、第2接合部材39を用いて、絶縁回路基板10a,10bの裏面10qに接合されている。第2接合部材39は、例えば、鉛フリーはんだのようなはんだである。ベース31は、第1部分32と、第2部分33とを含む。ベース31の第1部分32は、第2接合部材39に接触している。ベース31の第2部分33は、第2接合部材39から露出しており、かつ、ベース31の第1部分32を囲んでいる。
 ベース31の第2部分33の少なくとも一部に選択的に、少なくとも一つの第1湾曲部33aが設けられている。第1湾曲部33aは、ベース31の第1部分32には設けられていない。少なくとも一つの第1湾曲部33aは、ベース31の第1部分32に対してパワー半導体素子20,21に近位する側(+z側)に凸となるように湾曲されている。少なくとも一つの第1湾曲部33aは、1μm以上の曲率半径を有している。少なくとも一つの第1湾曲部33aは、10μm以上の曲率半径を有してもよく、100μm以上の曲率半径を有してもよく、1mm以上の曲率半径を有してもよい。本実施の形態では、ベース31の第2部分33は、第1湾曲部33aに加えて、平坦部33bをさらに含んでいる。
 絶縁回路基板10a,10bのおもて面10pの平面視において、少なくとも一つの第1湾曲部33aは、第1部分32の外縁の少なくとも一部に沿って延在してもよい。少なくとも一つの第1湾曲部33aは、第1方向(x方向)に沿って延在してもよい。少なくとも一つの第1湾曲部33aは、第2方向(y方向)に沿って延在してもよい。少なくとも一つの第1湾曲部33aは、第1方向(x方向)及び第2方向(y方向)に沿って延在してもよい。少なくとも一つの第1湾曲部33aは、第1部分32の外縁全体に沿って延在してもよい。少なくとも一つの第1湾曲部33aは、第1部分32を囲んでもよい。図3に示されるように、本実施の形態の変形例のパワーモジュール1aでは、少なくとも一つの第1湾曲部33aは、複数の第1湾曲部33aであってもよい。
 図1に示されるように、絶縁回路基板10aのおもて面10pの平面視において、パワー半導体素子20は、第2接合部材39の直上に配置されてもよい。絶縁回路基板10bのおもて面10pの平面視において、パワー半導体素子21は、第2接合部材39の直上に配置されてもよい。言い換えると、絶縁回路基板10a,10bのおもて面10pの平面視において、パワー半導体素子20は、第2接合部材39の外縁の内側に配置されてもよい。絶縁回路基板10bのおもて面10pの平面視において、パワー半導体素子21は、第2接合部材39の外縁の内側に配置されてもよい。そのため、パワー半導体素子20,21からベース31に至る放熱経路の長さが短縮される。パワー半導体素子20,21で発生した熱がパワーモジュール1の外部へ効率的に放散される。
 外囲体38が、ベース31の第1主面の周縁に取り付けられてもよい。ベース31と外囲体38とは、ケース30を構成している。パワーモジュール1は、ケースタイプのモジュールである。パワーモジュール1は、外囲体38を備えていないモールドタイプのモジュールであってもよい。外囲体38は、例えば、高い耐熱性を有する絶縁材料で形成されてもよい。高い耐熱性を有する絶縁材料は、例えば、ポリフェニレンサルファイド(PPS)またはポリブチレンテレフタレート(PBT)のような熱可塑性樹脂である。
 封止部材40は、パワー半導体素子20,21及び絶縁回路基板10a,10bを封止している。封止部材40は、例えば、エポキシ樹脂のような樹脂材料で形成されてもよい。封止部材40は、ベース31上に設けられている。ベース31の第2部分33は、封止部材40に接触してもよい。封止部材40は、ベース31と外囲体38とで構成されているケース30の内部空間の少なくとも一部に充填されている。ベース31は薄すぎて、パワーモジュール1に、十分な構造強度を提供することができない。封止部材40は、ベース31よりも厚く、パワーモジュール1に、十分な構造強度を提供することができる。
 ヒートシンク45は、ベース31の第1主面とは反対側のベース31の第2主面に取り付けられている。ヒートシンク45は、アルミニウムのような、高い熱伝導率を有する材料で形成されてもよい。ヒートシンク45は、伝熱層46を介して、ベース31の第2主面に取り付けられてもよい。伝熱層46は、例えば、放熱グリス層、または、フェイズチェンジマテリアル(PCM)のような材料で形成されている放熱シートであってもよい。ヒートシンク45は、ベース31の第2主面に直接取り付けられてもよい。ヒートシンク45は、ねじのような締結部材47を用いて、外囲体38とベース31とに固定されてもよい。ヒートシンク45は、接着剤を用いて、ベース31に固定されてもよい。
 図4を参照して、本実施の形態のパワーモジュール1,1aの製造方法の一例を説明する。
 本実施の形態のパワーモジュール1,1aの製造方法は、少なくとも一つの第1湾曲部33aが設けられたベース31を準備すること(S1)を備える。第一の例では、少なくとも一つの第1湾曲部33aが設けられたベース31を準備すること(S1)は、ベース31を機械加工して、少なくとも一つの第1湾曲部33aをベース31に形成することを含んでもよい。機械加工は、例えば、プレス加工または曲げ加工である。第二の例では、少なくとも一つの第1湾曲部33aが設けられたベース31を準備すること(S1)は、鋳型を用いて、少なくとも一つの第1湾曲部33aが設けられたベース31を鋳造することを含んでもよい。ベース31が箔ベースである場合には、ベース31に少なくとも一つの第1湾曲部33aを形成することが容易になる。
 本実施の形態のパワーモジュール1,1aの製造方法は、パワー半導体素子20,21を絶縁回路基板10a,10bに接合すること(S2)を備える。具体的には、パワー半導体素子20,21は、第1接合部材23を用いて、絶縁回路基板10a,10bのおもて面10p(導電回路パターン12a,12b)に接合される。
 本実施の形態のパワーモジュール1,1aの製造方法は、ベース31を絶縁回路基板10a,10bに接合すること(S3)を備える。具体的には、ベース31の第1主面が、第2接合部材39を用いて、絶縁回路基板10a,10bの裏面10qに接合される。ベース31は、ベース31の第1部分32で、絶縁回路基板10a,10bに接合されている。
 本実施の形態のパワーモジュール1,1aの製造方法は、封止部材40で、パワー半導体素子20,21及び絶縁回路基板10a,10bを封止すること(S4)を備える。具体的には、ベース31の第1主面上に封止樹脂材料を供給する。例えば、ケース30の内部空間の少なくとも一部に封止樹脂材料を供給する。封止樹脂材料に熱を印加または光を照射することによって、封止樹脂材料を硬化させて、パワー半導体素子20,21及び絶縁回路基板10a,10bを封止する封止部材40を形成する。こうして、ベース31と絶縁回路基板10a,10bとパワー半導体素子20,21と封止部材40とを含む組立体が形成される。組立体は、外囲体38をさらに含んでもよい。
 本実施の形態のパワーモジュール1,1aの製造方法は、ベース31と絶縁回路基板10a,10bとパワー半導体素子20,21と封止部材40とを含む組立体をヒートシンク45に取り付けること(S5)を備える。ヒートシンク45は、伝熱層46を介して、ベース31に取り付けられてもよい。こうして、パワーモジュール1,1aが得られる。
 本実施の形態のパワーモジュール1,1aの製造方法の別の例では、ベース31を絶縁回路基板10a,10bに接合(S3)した後に、パワー半導体素子20,21を絶縁回路基板10a,10bに接合(S2)してもよい。
 本実施の形態の別の変形例では、パワーモジュール1,1aは、ヒートシンク45を含んでいなくてもよく、ベース31と絶縁回路基板10a,10bとパワー半導体素子20,21と封止部材40とを含む上記組立体がパワーモジュール1,1aであってもよい。
 本実施の形態のパワーモジュール1,1aの効果を説明する。
 本実施の形態のパワーモジュール1,1aは、絶縁回路基板10a,10bと、パワー半導体素子20,21と、ベース31と、封止部材40とを備える。絶縁回路基板10a,10bは、おもて面10pと、おもて面10pとは反対側の裏面10qとを有する。パワー半導体素子20,21は、絶縁回路基板10a,10bのおもて面10pに接合されている。ベース31は、接合部材(第2接合部材39)を用いて、絶縁回路基板10a,10bの裏面10qに接合されている。封止部材40は、パワー半導体素子20,21及び絶縁回路基板10a,10bを封止している。ベース31は、第1部分32と、第2部分33とを含む。ベース31の第1部分32は、接合部材(第2接合部材39)に接触している。ベース31の第2部分33は、接合部材(第2接合部材39)から露出しており、かつ、第1部分32を囲んでいる。第2部分33の少なくとも一部に選択的に、第1部分32に対してパワー半導体素子20,21に近位する側(+z側)に凸となるように湾曲されている少なくとも一つの第1湾曲部33aが設けられている。
 ベース31に、少なくとも一つの第1湾曲部33aが設けられている。そのため、パワーモジュール1,1aに冷熱サイクルが印加されても、ベース31の線膨張係数と封止部材40の線膨張係数との間の差に起因する応力が、少なくとも一つの第1湾曲部33aと封止部材40との間の界面の一部に集中的に印加されることが抑制される。さらに、少なくとも一つの第1湾曲部33aは、ベース31と封止部材40との間の接触面積を増加させて、ベース31と封止部材40との間の密着強度を増加させる。こうして、ベース31から封止部材40が剥離することが防止される。パワーモジュール1,1aは、向上された信頼性を有する。
 本実施の形態のパワーモジュール1,1aでは、ベース31は、箔ベースであってもよい。そのため、パワー半導体素子20,21で発生した熱がベース31を伝導する距離が減少する。パワー半導体素子20,21で発生した熱が効率的に放散される。パワーモジュール1,1aの放熱性能は向上する。
 本実施の形態のパワーモジュール1,1aでは、少なくとも一つの第1湾曲部33aは、第1部分32の外縁の少なくとも一部に沿って延在している。そのため、ベース31の線膨張係数と封止部材40の線膨張係数との間の差に起因する応力が、少なくとも一つの第1湾曲部33aと封止部材40との間の界面の一部に集中的に印加されることが抑制される。さらに、少なくとも一つの第1湾曲部33aは、ベース31と封止部材40との間の接触面積を増加させて、ベース31と封止部材40との間の密着強度を増加させる。ベース31から封止部材40が剥離することが防止される。パワーモジュール1,1aは、向上された信頼性を有する。
 本実施の形態のパワーモジュール1,1aでは、少なくとも一つの第1湾曲部33aは、第1部分32の外縁全体に沿って延在している。そのため、ベース31の線膨張係数と封止部材40の線膨張係数との間の差に起因する応力が、少なくとも一つの第1湾曲部33aと封止部材40との間の界面の一部に集中的に印加されることが抑制される。さらに、少なくとも一つの第1湾曲部33aは、ベース31と封止部材40との間の接触面積を増加させて、ベース31と封止部材40との間の密着強度を増加させる。ベース31から封止部材40が剥離することが防止される。パワーモジュール1,1aは、向上された信頼性を有する。
 本実施の形態のパワーモジュール1aでは、少なくとも一つの第1湾曲部33aは、複数の第1湾曲部33aである。そのため、ベース31と封止部材40との間の接触面積が増加して、ベース31と封止部材40との間の密着強度が増加する。ベース31から封止部材40が剥離することが防止される。パワーモジュール1aは、向上された信頼性を有する。
 本実施の形態のパワーモジュール1,1aは、ヒートシンク45をさらに備える。絶縁回路基板10a,10bは、ベース31の第1主面に接合されている。ヒートシンク45は、ベース31の第1主面と反対側のベース31の第2主面に取り付けられている。
 少なくとも一つの第1湾曲部33aは、ベース31の第1部分32に対してパワー半導体素子20,21に近位する側(+z側)に凸となるように湾曲されている。少なくとも一つの第1湾曲部33aは、ベース31がパワー半導体素子20,21から遠位する側(-z側)に折れ曲がることを防止する。そのため、ヒートシンク45は、少なくとも一つの第1湾曲部33aに機械的に干渉することなく、ベース31の第1部分32で、ベース31の第2主面に取り付けられ得る。パワーモジュール1,1aの放熱性能は向上する。
 本実施の形態のパワーモジュール1,1aでは、ヒートシンク45は、締結部材47を用いて、ベース31に取り付けられている。ヒートシンク45は、ベース31とヒートシンク45との間の熱伝導を確保し得る圧力で、ベース31を押圧する必要がある。この圧力は、ヒートシンク45がベース31を押圧する力を、ヒートシンク45によって押圧されているベース31の面積で割った値として定義される。
 少なくとも一つの第1湾曲部33aのため、ヒートシンク45によって押圧されるベース31の部分の面積は減少する。締結部材47の締結力で、ヒートシンク45は、少なくとも一つの第1湾曲部33aを除くベース31の部分を押圧する。そのため、より少ない締結部材47の締結力(ベース31へのヒートシンク45の押圧力)で、ベース31とヒートシンク45との間の熱伝導を確保し得るベース31へのヒートシンク45の圧力を実現することができる。パワーモジュール1,1aに発生する内部応力が低減されて、パワーモジュール1,1aは向上された信頼性を有する。また、締結部材47の数または締結部材47のサイズを減少させることができるため、パワーモジュール1,1aは小型化され得る。
 実施の形態2.
 図5及び図6を参照して、実施の形態2のパワーモジュール1bを説明する。本実施の形態のパワーモジュール1bは、実施の形態1のパワーモジュール1と同様の構成を備えるが、以下の点で主に異なる。パワーモジュール1bでは、少なくとも一つの第1湾曲部33aは、第2部分33の全体に設けられている。ベース31の第2部分33は、平坦部33b(図2を参照)を含んでいない。封止部材40は、熱硬化性樹脂材料で形成されてもよい。ベース31は、封止部材40よりも大きな線膨張係数を有してもよい。
 図7を参照して、本実施の形態のパワーモジュール1bの製造方法の一例を説明する。本実施の形態のパワーモジュール1bの製造方法の一例は、実施の形態1の工程S1,S4に代えて、以下の工程S11,S14を備えている。
 本実施の形態のパワーモジュール1bの製造方法は、ベース31を準備すること(S11)を備える。工程S1では、ベース31には、少なくとも一つの第1湾曲部33aは形成されていない。
 本実施の形態のパワーモジュール1bの製造方法は、封止部材40で、パワー半導体素子20,21及び絶縁回路基板10a,10bを封止すること(S14)を備える。封止部材40でパワー半導体素子20,21及び絶縁回路基板10a,10bを封止すること(S14)は、ベース31の第2部分33に、少なくとも一つの第1湾曲部33aを設けること(S15)を含んでいる。具体的には、ベース31の第1主面上に封止樹脂材料を供給する。例えば、ケース30の内部空間の少なくとも一部に封止樹脂材料を供給する。封止樹脂材料は、熱硬化性樹脂材料である。封止樹脂材料に熱を印加することによって、封止樹脂材料を硬化させて、パワー半導体素子20,21及び絶縁回路基板10a,10bを封止する封止部材40を形成する。
 ベース31は、封止部材40よりも大きな線膨張係数を有している。そのため、封止部材40の温度を、封止部材40を硬化させる高温から室温まで下げると、ベース31の線膨張係数と封止部材40の線膨張係数との間の差のため、ベース31の第2部分33全体に、少なくとも一つの第1湾曲部33aが形成される。本実施の形態のパワーモジュール1bの製造方法では、ベース31を機械加工する工程を省くことができる。
 本実施の形態のパワーモジュール1bの製造方法の別の例は、実施の形態1のパワーモジュール1の製造方法と同様の工程を備えてもよい。すなわち、本実施の形態のパワーモジュール1bの製造方法の別の例では、工程S1において、ベース31の第2部分33全体に、少なくとも一つの第1湾曲部33aが形成されてもよい。パワーモジュール1bでは、少なくとも一つの第1湾曲部33aは、複数の第1湾曲部33aであってもよい。
 本実施の形態のパワーモジュール1bは、実施の形態1のパワーモジュール1,1aの効果に加えて、以下の効果を奏する。
 パワーモジュール1bでは、少なくとも一つの第1湾曲部33aは、第2部分33の全体に設けられている。そのため、パワーモジュール1bに冷熱サイクルが印加されても、ベース31の線膨張係数と封止部材40の線膨張係数との間の差に起因する応力が、少なくとも一つの第1湾曲部33aと封止部材40との間の界面の一部に集中的に印加されることが抑制される。また、ベース31と封止部材40との間の接触面積がさらに増加して、ベース31と封止部材40との間の密着強度がさらに増加する。ベース31から封止部材40が剥離することが防止される。パワーモジュール1bは、向上された信頼性を有する。
 少なくとも一つの第1湾曲部33aは、第2部分33の全体に設けられているため、ヒートシンク45によって押圧されるベース31の部分の面積がさらに減少する。より少ない締結部材47の締結力(ベース31へのヒートシンク45の押圧力)で、ベース31とヒートシンク45との間の熱伝導を確保し得るベース31へのヒートシンク45の圧力を実現することができる。パワーモジュール1bに発生する内部応力がさらに低減されて、パワーモジュール1bは向上された信頼性を有する。また、締結部材47の数または締結部材47のサイズをさらに減少させることができるため、パワーモジュール1bは小型化され得る。
 本実施の形態のパワーモジュール1bでは、封止部材40は、熱硬化性樹脂材料で形成されている。ベース31は、封止部材40よりも大きな線膨張係数を有している。そのため、ベース31を機械加工する工程無しに、少なくとも一つの第1湾曲部33aは形成され得る。パワーモジュール1bは、簡素な工程で容易に製造され得る。
 実施の形態3.
 図8を参照して、実施の形態3のパワーモジュール1cを説明する。本実施の形態のパワーモジュール1cは、実施の形態1のパワーモジュール1と同様の構成を備えるが、以下の点で主に異なる。
 パワーモジュール1cは、少なくとも一つの第1湾曲部33a上に選択的に設けられている膜50をさらに備える。膜50は、第1湾曲部33aを除くベース31の部分上に設けられていない。膜50は、ベース31よりも小さな線膨張係数を有している。膜50は、例えば、フィラーを含有する熱硬化性樹脂で形成されてもよい。フィラーは、例えば、アルミナ、窒化アルミニウムまたは窒化ケイ素のような無機フィラー(セラミックスフィラー)である。熱硬化性樹脂は、例えば、エポキシ樹脂である。膜50は、例えば、400番台のステンレス、42アロイもしくはインバーのような鉄を主成分として有する金属材料で形成されてもよい。
 図9に示されるように、本実施の形態の第1変形例のパワーモジュール1dでは、少なくとも一つの第1湾曲部33aは、複数の第1湾曲部33aであってもよい。パワーモジュール1dは、複数の膜50を備えており、複数の膜50は、それぞれ、複数の第1湾曲部33a上に選択的に設けられている。本実施の形態の第2変形例のパワーモジュールでは、少なくとも一つの第1湾曲部33aは、第2部分33の全体に設けられており、膜50はベース31の第2部分33の全体に設けられてもよい。
 図10を参照して、本実施の形態のパワーモジュール1c,1dの製造方法を説明する。本実施の形態のパワーモジュール1c,1dの製造方法は、図4に示される実施の形態1のパワーモジュール1の製造方法の一例と同様の工程を備えているが、実施の形態1の工程S1に代えて、以下の工程S21を備えている。
 本実施の形態のパワーモジュール1c,1dの製造方法は、少なくとも一つの第1湾曲部33aが設けられたベース31を準備すること(S21)を備える。少なくとも一つの第1湾曲部33aが設けられたベース31を準備すること(S21)は、室温よりも高い高温下で、ベース31の一部に膜50を形成すること(S22)と、膜50が形成されたベース31の温度を、ベース31に膜50を形成する高温から室温まで下げること(S23)とを含む。
 膜50は、ベース31よりも小さな線膨張係数を有している。そのため、膜50が形成されたベース31の温度を、ベース31に膜50を形成する高温から室温まで下げると、ベース31の線膨張係数と膜50の線膨張係数との間の差のため、ベース31の第2部分33に、少なくとも一つの第1湾曲部33aが形成される。
 本実施の形態のパワーモジュール1c,1dは、実施の形態1のパワーモジュール1,1aの効果に加えて、以下の効果を奏する。
 本実施の形態のパワーモジュール1c,1dは、少なくとも一つの第1湾曲部33a上に選択的に設けられている膜50をさらに備える。膜50は、ベース31よりも小さな線膨張係数を有している。そのため、ベース31を機械加工する工程無しに、少なくとも一つの第1湾曲部33aは形成され得る。パワーモジュール1c,1dは、簡素な工程で容易に製造され得る。少量多品種のパワーモジュール1c,1dが容易に得られる。
 実施の形態4.
 図11を参照して、実施の形態4のパワーモジュール1eを説明する。本実施の形態のパワーモジュール1eは、実施の形態1のパワーモジュール1と同様の構成を備えるが、以下の点で主に異なる。
 パワーモジュール1eでは、ベース31の第1部分32に、パワー半導体素子20,21から遠位する側(-z側)に凸となるように湾曲されている第2湾曲部35が設けられている。第2湾曲部35は、1μm以上の曲率半径を有している。第2湾曲部35は、10μm以上の曲率半径を有してもよく、100μm以上の曲率半径を有してもよく、1mm以上の曲率半径を有してもよい。第2湾曲部35は、ベース31の第1部分32の少なくとも一部に設けられている。第2湾曲部35は、ベース31の第1部分32の全体に設けられてもよい。ベース31は、絶縁回路基板10a,10bよりも小さな線膨張係数を有してもよい。
 図12を参照して、本実施の形態のパワーモジュール1eの製造方法の一例を説明する。本実施の形態のパワーモジュール1eの製造方法の一例は、実施の形態1のパワーモジュール1の製造方法と同様の工程を備えているが、主に以下の点で異なっている。本実施の形態のパワーモジュール1eの製造方法の一例は、実施の形態1の工程S3に代えて、以下の工程S33を備えている。
 本実施の形態のパワーモジュール1eの製造方法は、ベース31を絶縁回路基板10a,10bに接合すること(S33)を備える。具体的には、ベース31の第1主面が、第2接合部材39を用いて、絶縁回路基板10a,10bの裏面10qに接合される。ベース31は、ベース31の第1部分32で、絶縁回路基板10a,10bの裏面10qに接合される。ベース31を絶縁回路基板10a,10bに接合すること(S33)は、室温よりも高温下で、第2接合部材39を用いて、ベース31を絶縁回路基板10a,10bに接合すること(S34)と、第2接合部材39を用いて互いに接合されているベース31及び絶縁回路基板10a,10bの温度を、第2接合部材39を用いてベース31を絶縁回路基板10a,10bに接合する高温から室温まで下げること(S35)とを含む。
 ベース31は、絶縁回路基板10a,10bよりも小さな線膨張係数を有している。そのため、第2接合部材39を用いて互いに接合されているベース31及び絶縁回路基板10a,10bの温度を、第2接合部材39を用いてベース31を絶縁回路基板10a,10bに接合する高温から室温まで下げると、ベース31の線膨張係数と絶縁回路基板10a,10bの線膨張係数との間の差のため、ベース31の第1部分32に、パワー半導体素子20,21から遠位する側(-z側)に凸となるように湾曲されている第2湾曲部35が形成される。ベース31が箔ベースである場合には、ベース31に第2湾曲部35を形成することが容易になる。
 本実施の形態のパワーモジュール1eの製造方法の別の例は、実施の形態1のパワーモジュール1の製造方法と同様の工程を備えてもよい。本実施の形態のパワーモジュール1eの製造方法の別の例では、少なくとも一つの第1湾曲部33aが設けられたベース31を準備すること(S1)は、ベース31を機械加工して、少なくとも一つの第1湾曲部33aと第2湾曲部35とをベース31に形成することを含んでもよい。機械加工は、例えば、プレス加工または曲げ加工である。第二の例では、少なくとも一つの第1湾曲部33aが設けられたベース31を準備すること(S1)は、鋳型を用いて、少なくとも一つの第1湾曲部33aと第2湾曲部35とが設けられたベース31を鋳造することを含んでもよい。パワーモジュール1eでは、少なくとも一つの第1湾曲部33aは、複数の第1湾曲部33aであってもよい。
 本実施の形態のパワーモジュール1eは、実施の形態1のパワーモジュール1の効果に加えて、以下の効果を奏する。
 本実施の形態のパワーモジュール1eでは、第1部分32に、パワー半導体素子20,21から遠位する側(-z側)に凸となるように湾曲されている第2湾曲部35が設けられている。そのため、第2湾曲部35は、ベース31をヒートシンク45に確実に熱的に接続させることができる。パワーモジュール1eの放熱性能は向上する。また、第2湾曲部35とヒートシンク45との間にある伝熱層46の厚さが減少するため、ベース31とヒートシンク45との間の熱抵抗は減少する。パワーモジュール1eの放熱性能は向上する。
 本実施の形態のパワーモジュール1eでは、ベース31は、絶縁回路基板10a,10bよりも小さな線膨張係数を有している。そのため、ベース31を機械加工する工程無しに、第2湾曲部35は形成され得る。パワーモジュール1eは、簡素な工程で容易に製造され得る。
 実施の形態5.
 図13を参照して、実施の形態5のパワーモジュール1fを説明する。本実施の形態のパワーモジュール1fは、実施の形態1のパワーモジュール1と同様の構成を備えるが、以下の点で主に異なる。本実施の形態のパワーモジュール1fでは、ベース31の両端部は折りたたまれている。ベース31の両端部に、ベース31の折り畳み部36が設けられている。ベース31を少なくとも一回折り畳むことによって、折り畳み部36は形成される。
 図14に示されるように、本実施の形態の変形例のパワーモジュール1gでは、ベース31の両端部は巻回されてもよい。ベース31の両端部に、ベース31の巻回部37が設けられてもよい。ベース31を少なくとも一巻き巻回することによって、巻回部37は形成される。外囲体38に凹部38rが設けられてもよく、ベース31の巻回部37は外囲体38の凹部38rに収容されてもよい。そのため、外囲体38は、ベース31に対して、容易に位置決めされ得る。
 図15を参照して、本実施の形態のパワーモジュール1f,1gの製造方法の一例を説明する。本実施の形態のパワーモジュール1f,1gの製造方法は、実施の形態1のパワーモジュール1の製造方法と同様の工程を備えており、さらに以下の工程S41を備えている。
 本実施の形態のパワーモジュール1f,1gの製造方法は、ベース31の両端部に、折り畳み部36または巻回部37を形成すること(S41)をさらに備えている。少なくとも一つの第1湾曲部33aが形成される前のベース31は、平坦なフレキシブルシートである。そのため、少なくとも一つの第1湾曲部33aが形成される前のベース31は、ハンドリングが困難である。少なくとも一つの第1湾曲部33aが形成される前のベース31は、ベース31の些細なハンドリングミスによって折れ曲がって、使い物にならなくなることがあった。
 これに対し、ベース31の折り畳み部36または巻回部37は、ベース31の両端部を機械的に補強して、ベース31のハンドリングを容易にする。ベース31の折り畳み部36または巻回部37は、ベース31のハンドリングミスによって、ベース31が使い物にならなくなる可能性を低減することができる。パワーモジュール1f,1gでは、少なくとも一つの第1湾曲部33aは、複数の第1湾曲部33aであってもよい。
 本実施の形態のパワーモジュール1f,1gは、実施の形態1のパワーモジュール1の効果に加えて、以下の効果を奏する。
 本実施の形態のパワーモジュール1f,1gでは、ベース31の両端部に、ベース31の折り畳み部36、または、ベース31の巻回部37が設けられている。ベース31の折り畳み部36またはベース31の巻回部37は、ベース31の両端部を機械的に補強して、ベース31のハンドリングを容易にする。パワーモジュール1f,1gは、容易に製造され得る。
 実施の形態6.
 本実施の形態は、実施の形態1から実施の形態5のパワーモジュール1,1a,1b,1c,1d,1e,1f,1gのいずれかを電力変換装置に適用したものである。本実施の形態の電力変換装置200が、特に限定されるものではないが、三相のインバータである場合について以下説明する。
 図16に示される電力変換システムは、電源100、電力変換装置200及び負荷300から構成される。電源100は、直流電源であり、電力変換装置200に直流電力を供給する。電源100は、特に限定されないが、例えば、直流系統、太陽電池または蓄電池で構成されてもよいし、交流系統に接続された整流回路またはAC/DCコンバータで構成されてもよい。電源100は、直流系統から出力される直流電力を別の直流電力に変換するDC/DCコンバータによって構成されてもよい。
 電力変換装置200は、電源100と負荷300の間に接続された三相のインバータであり、電源100から供給された直流電力を交流電力に変換し、負荷300に交流電力を供給する。電力変換装置200は、図16に示されるように、直流電力を交流電力に変換して出力する主変換回路201と、主変換回路201を制御する制御信号を主変換回路201に出力する制御回路203とを備えている。
 負荷300は、電力変換装置200から供給された交流電力によって駆動される三相の電動機である。なお、負荷300は、特に限定されるものではないが、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車、電気自動車、鉄道車両、エレベーター、または、空調機器向けの電動機として用いられる。
 以下、電力変換装置200の詳細を説明する。主変換回路201は、スイッチング素子(図示せず)と還流ダイオード(図示せず)を備えている。スイッチング素子が電源100から供給される電圧をスイッチングすることによって、主変換回路201は、電源100から供給される直流電力を交流電力に変換して、負荷300に供給する。主変換回路201の具体的な回路構成は種々のものがあるが、本実施の形態に係る主変換回路201は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードとから構成され得る。主変換回路201の各スイッチング素子及び各還流ダイオードの少なくともいずれかに、上述した実施の形態1から実施の形態5のパワーモジュール1,1a,1b,1c,1d,1e,1f,1gのいずれかを適用する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相及びW相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路201の3つの出力端子は、負荷300に接続される。
 また、主変換回路201は、各スイッチング素子を駆動する駆動回路(図示せず)を備えている。駆動回路は、半導体モジュール202に内蔵されていてもよいし、半導体モジュール202とは別に設けられてもよい。駆動回路は、主変換回路201に含まれるスイッチング素子を駆動する駆動信号を生成して、主変換回路201のスイッチング素子の制御電極に駆動信号を供給する。具体的には、制御回路203からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。
 制御回路203は、負荷300に所望の電力が供給されるよう主変換回路201のスイッチング素子を制御する。具体的には、負荷300に供給すべき電力に基づいて主変換回路201の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するパルス幅変調(PWM)制御によって、主変換回路201を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態になるべきスイッチング素子にはオフ信号が出力されるよう、主変換回路201が備える駆動回路に制御指令(制御信号)を出力する。駆動回路は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。
 本実施の形態に係る電力変換装置200では、主変換回路201に含まれる半導体モジュール202として、実施の形態1から実施の形態5のパワーモジュール1,1a,1b,1c,1d,1e,1f,1gのいずれかが適用される。そのため、本実施の形態に係る電力変換装置200は、向上された信頼性を有する。
 本実施の形態では、2レベルの三相インバータに本発明を適用する例を説明したが、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では2レベルの電力変換装置としたが、3レベルの電力変換装置であってもよいし、マルチレベルの電力変換装置であってもよい。電力変換装置が単相負荷に電力を供給する場合には、単相のインバータに本発明が適用されてもよい。電力変換装置が直流負荷等に電力を供給する場合には、DC/DCコンバータまたはAC/DCコンバータに本発明が適用されてもよい。
 本発明が適用された電力変換装置は、負荷が電動機の場合に限定されるものではなく、例えば、放電加工機もしくはレーザー加工機の電源装置、または、誘導加熱調理器もしくは非接触器給電システムの電源装置に組み込まれ得る。本発明が適用された電力変換装置は、太陽光発電システムまたは蓄電システム等のパワーコンディショナーとして用いられ得る。
 今回開示された実施の形態1-6はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態1-6の少なくとも2つを組み合わせてもよい。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
 1,1a,1b,1c,1d,1e,1f,1g パワーモジュール、10a,10b 絶縁回路基板、10p おもて面、10q 裏面、11 絶縁基板、12a,12b 導電回路パターン、13 導電板、20,21 パワー半導体素子、23 第1接合部材、26,29 リード端子、27,28 配線、30 ケース、31 ベース、32 第1部分、33 第2部分、33a 第1湾曲部、33b 平坦部、35 第2湾曲部、36 折り畳み部、37 巻回部、38 外囲体、38r 凹部、39 第2接合部材、40 封止部材、45 ヒートシンク、46 伝熱層、47 締結部材、50 膜、100 電源、200 電力変換装置、201 主変換回路、202 半導体モジュール、203 制御回路、300 負荷。

Claims (14)

  1.  おもて面と、前記おもて面とは反対側の裏面とを有する絶縁回路基板と、
     前記絶縁回路基板の前記おもて面に接合されているパワー半導体素子と、
     前記絶縁回路基板の前記裏面に接合部材を用いて接合されているベースと、
     前記パワー半導体素子及び前記絶縁回路基板を封止する封止部材とを備え、
     前記ベースは、前記接合部材に接触している第1部分と、前記接合部材から露出しておりかつ前記第1部分を囲んでいる第2部分とを含み、
     前記第2部分の少なくとも一部に選択的に、前記第1部分に対して前記パワー半導体素子に近位する側に凸となるように湾曲されている少なくとも一つの第1湾曲部が設けられている、パワーモジュール。
  2.  前記ベースは、箔ベースである、請求項1に記載のパワーモジュール。
  3.  前記少なくとも一つの第1湾曲部は、前記第1部分の外縁の少なくとも一部に沿って延在している、請求項1または請求項2に記載のパワーモジュール。
  4.  前記少なくとも一つの第1湾曲部は、前記第1部分の外縁全体に沿って延在している、請求項1または請求項2に記載のパワーモジュール。
  5.  前記少なくとも一つの第1湾曲部は、前記第2部分の全体に設けられている、請求項1から請求項4のいずれか一項に記載のパワーモジュール。
  6.  前記封止部材は、熱硬化性樹脂材料で形成されており、
     前記ベースは、前記封止部材よりも大きな線膨張係数を有している、請求項5に記載のパワーモジュール。
  7.  前記少なくとも一つの第1湾曲部上に選択的に設けられている膜をさらに備え、
     前記膜は、前記ベースよりも小さな線膨張係数を有している、請求項1から請求項6のいずれか一項に記載のパワーモジュール。
  8.  前記第1部分に、前記パワー半導体素子から遠位する側に凸となるように湾曲されている第2湾曲部が設けられている、請求項1から請求項7のいずれか一項に記載のパワーモジュール。
  9.  前記ベースは、前記絶縁回路基板よりも小さな線膨張係数を有している、請求項8に記載のパワーモジュール。
  10.  前記少なくとも一つの第1湾曲部は、複数の第1湾曲部である、請求項1から請求項9のいずれか一項に記載のパワーモジュール。
  11.  前記ベースの両端部に、前記ベースの折り畳み部、または、前記ベースの巻回部が設けられている、請求項1から請求項10のいずれか一項に記載のパワーモジュール。
  12.  ヒートシンクをさらに備え、
     前記絶縁回路基板は、前記ベースの第1主面に接合されており、
     前記ヒートシンクは、前記第1主面と反対側の前記ベースの第2主面に取り付けられている、請求項1から請求項11のいずれか一項に記載のパワーモジュール。
  13.  前記ヒートシンクは、締結部材を用いて、前記ベースに取り付けられている、請求項12に記載のパワーモジュール。
  14.  請求項1から請求項13のいずれか一項に記載の前記パワーモジュールを有し、かつ、入力される電力を変換して出力する主変換回路と、
     前記主変換回路を制御する制御信号を前記主変換回路に出力する制御回路とを備える、電力変換装置。
PCT/JP2019/022041 2019-06-03 2019-06-03 パワーモジュール及び電力変換装置 WO2020245890A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/022041 WO2020245890A1 (ja) 2019-06-03 2019-06-03 パワーモジュール及び電力変換装置
JP2021524521A JP7094447B2 (ja) 2019-06-03 2019-06-03 パワーモジュール及び電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022041 WO2020245890A1 (ja) 2019-06-03 2019-06-03 パワーモジュール及び電力変換装置

Publications (1)

Publication Number Publication Date
WO2020245890A1 true WO2020245890A1 (ja) 2020-12-10

Family

ID=73651950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022041 WO2020245890A1 (ja) 2019-06-03 2019-06-03 パワーモジュール及び電力変換装置

Country Status (2)

Country Link
JP (1) JP7094447B2 (ja)
WO (1) WO2020245890A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023141769A1 (zh) * 2022-01-25 2023-08-03 华为数字能源技术有限公司 封装器件、功率模组及电子装置
JP7487695B2 (ja) 2021-03-26 2024-05-21 三菱電機株式会社 半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045238A (ja) * 2003-07-23 2005-02-17 Semikron Elektron Gmbh 曲げ強化ベースプレートを備えたパワー半導体モジュール
JP2007184315A (ja) * 2006-01-04 2007-07-19 Hitachi Ltd 樹脂封止型パワー半導体モジュール
JP2015076511A (ja) * 2013-10-09 2015-04-20 株式会社日立製作所 半導体装置およびその製造方法
JP2016086186A (ja) * 2012-03-28 2016-05-19 富士電機株式会社 半導体装置及び半導体装置の製造方法
WO2018235197A1 (ja) * 2017-06-21 2018-12-27 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045238A (ja) * 2003-07-23 2005-02-17 Semikron Elektron Gmbh 曲げ強化ベースプレートを備えたパワー半導体モジュール
JP2007184315A (ja) * 2006-01-04 2007-07-19 Hitachi Ltd 樹脂封止型パワー半導体モジュール
JP2016086186A (ja) * 2012-03-28 2016-05-19 富士電機株式会社 半導体装置及び半導体装置の製造方法
JP2015076511A (ja) * 2013-10-09 2015-04-20 株式会社日立製作所 半導体装置およびその製造方法
WO2018235197A1 (ja) * 2017-06-21 2018-12-27 三菱電機株式会社 半導体装置、電力変換装置および半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7487695B2 (ja) 2021-03-26 2024-05-21 三菱電機株式会社 半導体装置
WO2023141769A1 (zh) * 2022-01-25 2023-08-03 华为数字能源技术有限公司 封装器件、功率模组及电子装置

Also Published As

Publication number Publication date
JP7094447B2 (ja) 2022-07-01
JPWO2020245890A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
JP7091878B2 (ja) パワーモジュール、電力変換装置、及びパワーモジュールの製造方法
JP6881238B2 (ja) 半導体モジュール、その製造方法及び電力変換装置
JP7196815B2 (ja) 半導体モジュール及び電力変換装置
JP6833986B2 (ja) パワーモジュール、電力変換装置、およびパワーモジュールの製造方法
WO2022123870A1 (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
JP2021048255A (ja) 電気回路体、電力変換装置、および電気回路体の製造方法
JP6818500B2 (ja) 半導体装置および電力変換装置
WO2020235056A1 (ja) 半導体装置、電力変換装置および半導体装置の製造方法
JP7094447B2 (ja) パワーモジュール及び電力変換装置
JPWO2020157965A1 (ja) 半導体装置およびその製造方法ならびに電力変換装置
JP5948106B2 (ja) パワー半導体モジュール及びそれを用いた電力変換装置
JP7053897B2 (ja) 半導体装置、半導体装置の製造方法及び電力変換装置
JP7126609B2 (ja) パワー半導体モジュール及び電力変換装置
WO2019216161A9 (ja) パワー半導体モジュール及びその製造方法並びに電力変換装置
WO2022137692A1 (ja) 電気回路体および電力変換装置
WO2024090278A1 (ja) 半導体装置、電力変換装置および半導体装置の製造方法
JP7418474B2 (ja) 半導体装置および電力変換装置
WO2022137701A1 (ja) 電気回路体および電力変換装置
US11887903B2 (en) Power semiconductor device, method for manufacturing power semiconductor device, and power conversion apparatus
JP7535909B2 (ja) 電力用半導体装置およびその製造方法ならびに電力変換装置
WO2023022001A1 (ja) パワーモジュールおよび電力変換装置
WO2022107697A1 (ja) パワー半導体モジュール及びその製造方法並びに電力変換装置
WO2021152795A1 (ja) 半導体装置および電力変換装置
WO2021100199A1 (ja) 半導体装置およびその製造方法ならびに電力変換装置
JP2024010348A (ja) 半導体モジュールおよび電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932171

Country of ref document: EP

Kind code of ref document: A1