WO2020116496A1 - Drone system - Google Patents
Drone system Download PDFInfo
- Publication number
- WO2020116496A1 WO2020116496A1 PCT/JP2019/047372 JP2019047372W WO2020116496A1 WO 2020116496 A1 WO2020116496 A1 WO 2020116496A1 JP 2019047372 W JP2019047372 W JP 2019047372W WO 2020116496 A1 WO2020116496 A1 WO 2020116496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drone
- moving body
- unit
- information
- acquisition unit
- Prior art date
Links
- 238000011068 loading method Methods 0.000 claims description 11
- 239000003814 drug Substances 0.000 description 66
- 229940079593 drug Drugs 0.000 description 38
- 230000005540 biological transmission Effects 0.000 description 26
- 230000005856 abnormality Effects 0.000 description 23
- 239000007788 liquid Substances 0.000 description 21
- 238000004891 communication Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 15
- 239000002699 waste material Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 11
- 230000033001 locomotion Effects 0.000 description 9
- 238000005507 spraying Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000000446 fuel Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- -1 seeds Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M7/00—Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D1/00—Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
- B64D1/16—Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
- B64D1/18—Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
- B64D45/04—Landing aids; Safety measures to prevent collision with earth's surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U70/00—Launching, take-off or landing arrangements
- B64U70/90—Launching from or landing on platforms
- B64U70/92—Portable platforms
- B64U70/93—Portable platforms for use on a land or nautical vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U80/00—Transport or storage specially adapted for UAVs
- B64U80/80—Transport or storage specially adapted for UAVs by vehicles
- B64U80/86—Land vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
- B64U10/14—Flying platforms with four distinct rotor axes, e.g. quadcopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/45—UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
- B64U30/29—Constructional aspects of rotors or rotor supports; Arrangements thereof
- B64U30/299—Rotor guards
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/39—Battery swapping
Definitions
- the present invention relates to a drone system.
- a moving body When flying a drone in the field, a moving body is required to transport it to a predetermined position around the field. Further, there is a need for a drone system in which a drone and a mobile body transmit and receive information when the drone arrives and departs from a predetermined position, and operates in cooperation with each other.
- a drone system that can maintain a high level of safety even during autonomous flight, in which the drone and a moving body that can carry the drone and move and that can take off and land the drone operate in coordination.
- a drone system is a drone in which a drone and a movable body capable of carrying the drone and moving the drone can take off and land in cooperation with each other.
- the mobile body has a surrounding environment acquisition unit that acquires information about the surrounding environment, which can be an obstacle when the drone lands at a departure/arrival point, and the drone includes the surrounding environment acquisition unit. Information is acquired, and landing possibility is determined based on the information.
- the surrounding environment acquisition unit may detect an obstacle existing around the moving body as the information about the surrounding environment.
- the surrounding environment acquisition unit may detect an obstacle around the moving body with a visible light or infrared camera.
- the surrounding environment acquisition unit may acquire at least one of wind strength, wind direction, and rainfall around the moving body as the information about the surrounding environment.
- the drone and the moving body capable of loading and moving the drone and capable of taking off and landing the drone cooperate with each other to maintain high safety even during autonomous flight.
- FIG. 1 is a plan view showing a first embodiment of a drone system according to the present invention. It is a front view of the drone which the drone system has. It is a right view of the said drone. It is a rear view of the drone. It is a perspective view of the drone. It is the whole conceptual diagram of the medicine spraying system which the drone has. It is a schematic diagram showing the control function of the said drone system. It is a schematic perspective view which shows a mode that the said drone is loaded in the mobile body concerning this invention.
- FIG. 6 is a schematic perspective view showing a state where an upper surface plate on which the drone is mounted is slid backward in a state where the drone is loaded on the moving body.
- FIG. 7 is an overall conceptual diagram showing a moving body according to a second embodiment of the present invention and a state of the drone.
- FIG. 7 is an overall conceptual diagram showing a state of a moving body and the drone according to the third embodiment of the present invention.
- FIG. 9 is an overall conceptual diagram showing a state of the moving body and the drone according to the fourth exemplary embodiment of the present invention.
- FIG. 9 is an overall conceptual diagram showing a moving body according to a fifth embodiment of the present invention and a state of the drone. It is a general
- FIG. 11 is an overall conceptual diagram showing a moving body according to a seventh embodiment of the present invention and a state of the drone.
- FIG. 10 is an overall conceptual diagram showing a moving body according to an eighth embodiment of the present invention and a state of the drone.
- FIG. 10 is a perspective view of the moving body according to the first exemplary embodiment of the present invention when the state of FIG. 9 is viewed from another angle. Note that the configuration on the top plate of the moving body is omitted as appropriate.
- the drone regardless of power means (electric power, prime mover, etc.), control method (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft with multiple rotors.
- the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of power consumption, eight aircraft (four sets of two-stage rotary blades) are provided.
- Each rotor 101 is arranged on four sides of the main body 110 by arms extending from the main body 110 of the drone 100.
- the rotating blades 101-1a, 101-1b to the left in the traveling direction, the rotating blades 101-2a and 101-2b to the left front, the rotating blades 101-3a and 101-3b to the right rear, and the rotating blades 101-to the front right. 4a and 101-4b are arranged respectively.
- the drone 100 has the traveling direction downward in the plane of FIG.
- Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor blade 101, respectively.
- the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been.
- the motor 102 is an example of a propulsion device.
- the upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc.
- the axes are collinear and rotate in opposite directions. As shown in FIGS.
- the radial member for supporting the propeller guard which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is to promote the buckling of the member to the outside of the rotor blade at the time of collision and prevent the member from interfering with the rotor.
- the drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines.
- the term "chemicals” generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
- the drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance.
- the drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle.
- the pump 106 is a means for discharging the medicine from the nozzle.
- FIG. 6 shows an overall conceptual diagram of a system using an example of drug application of the drone 100 according to the present invention.
- This figure is a schematic diagram and the scale is not accurate.
- the drone 100, the manipulator 401, and the base station 404 are connected to the farm cloud 405, respectively.
- the small portable terminal 401a is connected to the base station 404.
- wireless communication may be performed by Wi-Fi, a mobile communication system, or the like, or part or all of them may be wired.
- the operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.).
- a portable information device such as a general tablet terminal that runs a computer program.
- the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and during emergencies.
- a small mobile terminal 401a capable of displaying a part or all of the information displayed on the operation device 401, for example, a smartphone may be included in the system. Further, the operation of the drone 100 may be changed based on the information input from the small portable terminal 401a.
- the small portable terminal 401a is connected to the base station 404, for example, and can receive information and the like from the farm cloud 405 via the base station 404.
- the field 403 is a rice field, a field, etc. to which the drug is sprayed by the drone 100.
- the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance, or the topographic map and the situation at the site are inconsistent.
- the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like.
- the base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices). Further, the base station 404 may be able to communicate with the farm cloud 405 using a mobile communication system such as 3G, 4G, or LTE. In this embodiment, the base station 404 is loaded on the moving body 406a together with the departure/arrival point 406.
- the farm cloud 405 is a group of computers typically operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like.
- the farm cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growth status of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
- the drone 100 will take off from the landing point 406 outside the field 403 and return to the landing point 406 after spraying the drug on the field 403 or when it becomes necessary to replenish or charge the drug.
- the flight route (intrusion route) from the landing point 406 to the target field 403 may be saved in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
- FIG. 7 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention.
- the flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, a memory, related software, and the like.
- the flight controller 501 based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100.
- ESC Electronic Speed Control
- the actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored.
- the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
- the software used by the flight controller 501 can be rewritten through storage media or the like for function expansion/change, problem correction, etc., or through communication means such as Wi-Fi communication or USB.
- encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software.
- a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
- the flight controller 501 exchanges with the operation unit 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit. Can be sent to 401.
- the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of equipment.
- the base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is highly important, it may be duplicated/multiplexed, and in order to cope with the failure of a specific GPS satellite, each redundant flight controller 501 should use a different satellite. It may be controlled.
- the 6-axis gyro sensor 505 is a means for measuring accelerations of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating accelerations).
- the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity.
- the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
- the atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone.
- the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser.
- the sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves.
- These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to another sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
- the flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103.
- the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount.
- the multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis.
- the obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512.
- the switch 514 is a means for the user 402 of the drone 100 to make various settings.
- the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. ..
- the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open.
- the drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed.
- a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or at another place, and the read information may be transmitted to the drone.
- a wind sensor may be provided in the base station 404, and information regarding wind force/wind direction may be transmitted to the drone 100 via Wi-Fi communication.
- the flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge.
- the current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
- the LED107 is a display means for notifying the drone operator of the status of the drone. Instead of or in addition to the LED, a display means such as a liquid crystal display may be used.
- the buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal.
- the Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like for the transfer of software, for example, apart from the operation unit 401.
- other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used.
- the mobile communication systems such as 3G, 4G, and LTE may be able to communicate with each other.
- the speaker 520 is an output means for notifying the drone state (particularly an error state) by the recorded human voice, synthesized voice or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice.
- the warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input/output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated/multiplexed.
- the drone system 500 is roughly composed of a drone 100 and a mobile unit 406a connected via a network NW.
- the drone 100 and the mobile body 406a transmit and receive information to and from each other, and operate in cooperation with each other.
- a departure/arrival point 406 in FIG. 6 is formed on the moving body 406a.
- the drone 100 has a flight control unit 21 that controls the flight of the drone 100, and a functional unit that transmits and receives information to and from the moving body 406a.
- Each functional unit of the drone 100 is provided in the flight controller 501 shown in FIG. 7, for example.
- the drone 100 and the mobile body 406a may be connected by wire instead of being connected via the network NW.
- the drone system 500 may include a mobile terminal such as a smartphone in addition to the drone 100 and the moving body 406a.
- a mobile terminal such as a smartphone
- information about expected motions related to driving the drone 100 more specifically, the scheduled time when the drone 100 will return to the departure point 406, the content of the work that the user 402 should perform when returning, etc.
- Information is displayed as appropriate.
- the operations of the drone 100 and the moving body 406a may be changed based on the input from the mobile terminal.
- the mobile terminal can receive information from either the drone 100 or the moving body 406a. Further, the information from the drone 100 may be transmitted to the mobile terminal via the mobile body 406a.
- the mobile object 406a shown in FIGS. 8 and 9 receives information that the drone 100 has and notifies the user 402 as appropriate, or receives an input from the user 402 and transmits it to the drone 100. It is a device. Further, the moving body 406a can move by carrying the drone 100. The moving body 406a may be driven by the user 402 or may be autonomously movable. Although the moving body 406a in the present embodiment is assumed to be a vehicle such as an automobile, more specifically, a light truck, it may be an appropriate moving body capable of running on land such as a train, a ship or a flight. It may be the body.
- the drive source of the moving body 406a may be an appropriate source such as gasoline, electricity, a fuel cell, or the like.
- the moving body 406a is a vehicle in which a passenger seat 81 is arranged at the front in the traveling direction and a luggage platform 82 is arranged at the rear. On the bottom surface side of the moving body 406a, four wheels 83, which are an example of moving means, are arranged so as to be drivable. A user 402 can get into the passenger seat 81.
- the upper surface of the loading platform 82 serves as a landing area for the drone 100.
- the passenger seat 81 is provided with a display unit 65 that displays the state of the moving body 406a and the drone 100.
- the display unit 65 may be a device having a screen, or may be realized by a mechanism that projects information on the windshield.
- a rear display unit 65a may be installed on the rear side of the vehicle body 810 that covers the passenger seat 81.
- the rear display unit 65a can change the angle with respect to the vehicle body 810 to the left and right, so that the user 402 working behind and on the left and right sides of the cargo bed 82 can obtain information by looking at the screen.
- a base station 404 having a shape in which a disc-shaped member is connected above a round bar extends above the passenger seat 81.
- the shape and position of the base station 404 are arbitrary. According to the configuration in which the base station 404 is on the passenger seat 81 side of the luggage platform 82, the base station 404 is less likely to interfere with the takeoff and landing of the drone 100, as compared with the configuration behind the luggage platform 82.
- the cargo bed 82 has a battery 502 of the drone 100 and a cargo room 821 for storing medicines to be replenished in the medicine tank 104 of the drone 100.
- the luggage compartment 821 is a region surrounded by a vehicle body 810 that covers the passenger seat 81, a rear plate 822, a pair of side plates 823 and 823, and a top plate 824.
- the rear plate 822 and the side plate 823 are also referred to as “flaws”.
- Rails 825 are provided at both upper ends of the rear plate 822 along the upper ends of the side plates 823 to the vehicle body 810 on the rear side of the passenger seat 81.
- the upper surface plate 824 is a departure and arrival point 406 where the drone 100 is placed and can be taken off and landed, and can be slid back and forth along the rail 825 in the traveling direction.
- the rail 825 is a rib that protrudes above the plane of the upper plate 824, and prevents the drone 100 on the upper plate 824 from slipping out from the left and right ends of the moving body 406a.
- a rib 8241 is formed behind the upper surface plate 824 so as to project to the upper surface side to the same extent as the rail 825.
- a warning light 830 that indicates that the drone system 500 is working may be arranged on the upper side of the vehicle body 810 and on the rear side of the rear plate 822 in the traveling direction.
- the warning light 830 may be a display device that distinguishes between working and non-working by coloration or blinking, and may be capable of displaying characters or patterns. Further, the warning light 830 on the upper portion of the vehicle body 810 may extend to above the vehicle body 810 and can be displayed on both sides. According to this configuration, the warning can be visually recognized from the rear even when the drone 100 is arranged on the loading platform 82. In addition, the warning can be visually recognized from the front of the moving body 406a in the traveling direction.
- the top plate 824 may be manually slidable, or may be slid automatically by using a rack and pinion mechanism or the like. When the top plate 824 is slid backward, articles can be stored in or taken out of the luggage compartment 821 from above the cargo bed 82. Further, in the form in which the upper surface plate 824 slides backward, the upper surface plate 824 and the vehicle body 810 are sufficiently separated from each other, so that the drone 100 can take off and land at the landing point 406.
- the foot receiving portion 826 is, for example, a disk-shaped member whose upper surface is recessed in a truncated cone shape, which are installed one by one at positions corresponding to the four feet 107-1, 107-2, 107-3, 107-4 of the drone 100. is there.
- the feet 107-1,107-2,107-3,107-4 of the drone 100 slide along the conical surface of the foot rest 826, and the feet 107-1,107-2,107 on the bottom of the truncated cone. -3,107-4 tip is guided.
- the drone 100 can be automatically or manually fixed to the foot receiving portion 826 by an appropriate mechanism, and even when the moving body 406a moves with the drone 100 mounted thereon, the drone 100 does not vibrate excessively or fall down. Can be safely transported.
- the moving body 406a can detect whether or not the drone 100 is fixed to the foot receiving portion 826 by the mounting state acquisition unit 322 described later.
- the bottom of the foot receiving portion 826 and the feet 107-1, 107-2, 107-3, 107-4 of the drone 100 may be shaped so as to fit with each other.
- the circumferential lamp 850 is formed of a luminous body group arranged in a substantially circular shape, and the luminous body group can be individually blinked.
- four large light-emitting bodies 850a are arranged at intervals of about 90 degrees on the circumference, and two small light-emitting bodies 850b are arranged at equal intervals between the large light-emitting bodies 850a. It constitutes a circular lamp 850.
- the circumferential light 850 displays the flight direction of the drone 100 after takeoff, or the direction of flight when landing, by lighting one or more of the light emitter groups 850a and 850b.
- the circumferential lamp 850 may be composed of a single ring-shaped light-emitting body that can be partially flickered.
- the pair of side plates 823 are hinged at the bottom sides to the loading platform 82, and the side plates 823 can be tilted outward.
- FIG. 9 shows that the side plate 823 on the left side in the traveling direction is tilted outward.
- the side plate 823 falls outward, it is possible to store and take out stored items from the side of the moving body 406a.
- the side plate 823 is fixed substantially parallel to the bottom surface of the luggage compartment 821, and the side plate 823 can also be used as a workbench.
- the movable body 406a moves in a form in which the upper surface plate 824 is arranged so as to cover the upper side of the luggage compartment 821 and the side plate 823 stands up and covers the side surface of the luggage compartment 821.
- the upper plate 824 is switched to the rearward sliding form or the side plate 823 is tilted so that the user 402 can approach the inside of the luggage compartment 821.
- the drone 100 can replenish the battery 502 while landing at the departure point 406.
- Replenishment of the battery 502 includes charging of the built-in battery 502 and replacement of the battery 502.
- a battery 502 charging device is stored in the luggage compartment 821, and the battery 502 stored in the luggage compartment 821 can be charged.
- the drone 100 may include an ultracapacitor mechanism instead of the battery 502, and a charger for the ultracapacitor may be stored in the luggage compartment 821. In this configuration, when the drone 100 is fixed to the foot receiving portion 826, the battery 502 mounted on the drone 100 can be rapidly charged via the feet of the drone 100.
- the drone 100 can replenish the medicine stored in the medicine tank 104 while landing at the departure point 406.
- the luggage compartment 821 stores a dilute mixing tank for diluting and mixing the drug, a stirring mechanism, and appropriate components for diluting and mixing such as a pump and a hose that suck up the drug from the diluting and mixing tank and inject it into the drug tank 104. It may have been done. Further, a refilling hose that extends from the luggage compartment 821 above the upper surface plate 824 and can be connected to the inlet of the medicine tank 104 may be provided.
- a waste liquid groove 840 and a waste liquid hole 841 for guiding the medicine discharged from the medicine tank 104 are formed on the upper surface side of the upper surface plate 824. Two waste liquid grooves 840 and two waste liquid holes 841 are arranged, so that the waste liquid groove 840 is located below the medicine nozzle 103 regardless of whether the drone 100 is landing facing the left or right of the moving body 406a. ing.
- the waste liquid groove 840 is a groove having a predetermined width, which is formed substantially straight along the position of the medicine nozzle 103 along the lengthwise direction of the moving body 406a, and slightly toward the passenger seat 81 side. It is inclined.
- a waste liquid hole 841 is formed at an end of the waste liquid groove 840 on the passenger seat 81 side to penetrate the upper surface plate 824 and guide the chemical liquid into the inside of the luggage compartment 821.
- the waste liquid hole 841 communicates with a waste liquid tank 842 installed in the luggage compartment 821 and directly below the waste liquid hole 841.
- the mobile body 406a includes a movement control unit 30 as a configuration for moving the mobile body 406a itself.
- the moving body 406a includes a moving body transmitting unit 31, an intervention operating unit 35, and an input unit 36 as a configuration for acquiring information about the moving body 406a and transmitting the information to the drone 100.
- the mobile unit 406a receives information regarding the drone 100 from the drone 100, appropriately determines based on the information, and notifies the user 402 of necessary information.
- a body receiving unit 60, a display unit 65, and a moving body control unit 66 are provided.
- the drone 100 includes a flight control unit 21 capable of autonomously controlling the flight of the drone 100.
- the drone 100 also includes a drone receiving unit 20 as a configuration for receiving information from the mobile body 406a.
- the drone 100 includes a drone transmission unit 40 as a configuration for acquiring information regarding the drone 100 and transmitting the information to the moving body 406a.
- the mobile object transmitter 31 includes a landing information transmitter 311, a mobile object status transmitter 32, and a resource information transmitter 33.
- the landing information transmission unit 311 is a functional unit that transmits the information necessary for the drone 100 to land at the departure point 406 on the moving body 406a to the drone reception unit 20 of the drone 100.
- the landing information transmission unit 311 includes a position acquisition unit 311a, an orientation acquisition unit 311b, an angle acquisition unit 311c, and a surrounding environment acquisition unit 311d.
- the landing information transmission unit 311 transmits the following pieces of information acquired by the position acquisition unit 311a, the orientation acquisition unit 311b, the angle acquisition unit 311c, and the surrounding environment acquisition unit 311d to the drone reception unit 20.
- the position acquisition unit 311a is a functional unit that acquires the position coordinates of the departure point 406.
- the position coordinates are three-dimensional coordinates.
- the departure/arrival point 406 is the current position coordinate of the moving body 406a when the moving body 406a is stationary.
- the coordinates may indicate the expected arrival position of the landing point 406 when the drone 100 reaches a predetermined range near the landing point 406.
- the orientation acquisition unit 311b is a functional unit that acquires the orientation of the moving body 406a. In detecting the direction of the moving body 406a, the value of the geomagnetic sensor of the moving body 406a may be referred to.
- the angle acquisition unit 311c is a functional unit that acquires the roll angle and the pitch angle of the moving body 406a.
- the surrounding environment acquisition unit 311d is a functional unit that acquires information about the surrounding environment, which can be a hindrance when the drone 100 lands at the landing point 406. For example, wind strength and direction, presence of precipitation such as rain or snow. To get. Further, when the departure/arrival point 406 is vibrating, the surrounding environment acquisition unit 311d acquires the information.
- the vibration at the departure/arrival point 406 may be an earthquake or may be a vibration generated near a road having a large traffic volume.
- the vibration at the departure/arrival point 406 can be measured by a 6-axis gyro sensor included in the moving body 406a.
- the surrounding environment acquisition unit 311d may acquire information on satellites that the RTK-GPS communicates with, communication status, and geomagnetic information.
- the drone 100 that has received the information from the surrounding environment acquisition unit 311d determines whether or not to land based on the information about the surrounding environment.
- the surrounding environment acquisition unit 311d detects an obstacle existing around the moving body 406a as one of the information on the surrounding environment.
- the obstacles are, for example, structures such as houses, guardrails, electric wires, creatures such as people and animals, and moving bodies such as cars, and the like, which pose a risk of collision when the drone 100 lands.
- the surrounding environment acquisition unit 311d includes, for example, a camera using visible light or infrared light, and detects an obstacle around the moving body 406a.
- the detection of an obstacle can be performed by using a Rader/Lider in place of or in addition to the camera, and for example, an obstacle detection system generally provided in an automobile, which is an example of the moving body 406a. Can be used. According to this configuration, information on an obstacle that the drone 100 cannot detect can be transmitted to the drone 100. Therefore, the risk of the drone 100 colliding with an obstacle can be further reduced.
- the landing information transmission unit 311 determines whether the drone 100 can land safely based on at least one of the information acquired by the position acquisition unit 311a, the orientation acquisition unit 311b, the angle acquisition unit 311c, and the surrounding environment acquisition unit 311d. May be determined and the determination result may be transmitted to the drone receiving unit 20.
- the flight control unit 21 of the drone 100 may make the determination.
- the mobile unit state transmission unit 32 is a functional unit that transmits the state of the mobile unit 406a to the drone receiving unit 20.
- the moving body state transmission unit 32 particularly acquires information on whether or not the moving body 406a is in a state in which it can perform the function as the departure/arrival point 406, and transmits it to the drone receiving unit 20.
- the function as the landing point 406 includes that the drone 100 can take off and land on the upper plate 824, that the battery 502 of the drone 100 and the chemical solution can be replenished, and the like.
- the mobile body status transmission unit 32 includes a form acquisition unit 321, a mounting status acquisition unit 322, an operation status acquisition unit 323, a work status acquisition unit 324, and a system status acquisition unit 325.
- the mobile body state transmission unit 32 uses the drone reception unit to obtain the following pieces of information obtained by the form acquisition unit 321, the mounting state acquisition unit 322, the driving state acquisition unit 323, the work state acquisition unit 324, and the system state acquisition unit 325. Communicate to 20.
- the form acquisition unit 321 is a functional unit that acquires the form of the moving body 406a.
- the moving body 406a can switch at least a traveling mode when the moving body 406a moves and a take-off/landing base shape when the drone 100 takes off and land from the moving body 406a by the above-described form switching mechanism. Further, in the present embodiment, it is also possible to switch to a workbench configuration in which the side plate 823 is tilted.
- the form acquisition unit 321 acquires information on which of the running form, the takeoff/arrival base form, and the workbench form of the moving body 406a.
- the form acquisition unit 321 may acquire the form of the moving body 406a based on the drive state of an appropriate configuration that drives the form switching mechanism, such as a motor that drives the rack and pinion mechanism of the rail 825.
- the form acquisition unit 321 may have a configuration such as a touch switch that mechanically detects the form of the moving body 406a.
- the drone 100 In the workbench state, it is highly likely that the user 402 is present near the moving body 406a, so the drone 100 cannot be taken off and landed. Therefore, by transmitting the signal for prohibiting the takeoff/landing of the drone 100 or the signal for permitting the takeoff/landing of the drone 100 to the drone receiving unit 20, the safety to the user 402 is secured.
- the loading state acquisition unit 322 is a functional unit that acquires information on whether the drone 100 is loaded at the departure point 406. Further, the mounting state acquisition unit 322 can acquire information on whether or not the drone 100 is fixed to the departure/arrival point 406 and the moving body 406a is in a safely movable state. The mounting state acquisition unit 322 determines whether the moving body 406a is allowed to move or not based on whether or not the moving body 406a is in a safe movable state, and the result of the determination is displayed on the display unit 65 by the user. It may be transmitted to 402.
- the driving state acquisition unit 323 acquires driving information indicating whether or not the moving body 406a is moving or in a movable state.
- the driving state acquisition unit 323 can acquire a more detailed driving state of the moving body 406a, and can separately acquire whether the moving body 406a is moving or is in a stopped but movable idle state. ..
- the work status acquisition unit 324 is a functional unit that acquires the status of the battery 502 and the chemical liquid to be replenished in the drone 100.
- the work status acquisition unit 324 transmits the battery replenishment information indicating the status of replenishment work for the battery 502 to the drone receiving unit 20.
- the battery replenishment information is information on whether or not the moving body 406a is currently charging the battery 502 in the luggage compartment 821, a state in which the battery 502 is being prepared in the luggage compartment 821 of the moving body 406a, and on the moving body 406a.
- the information includes whether the battery 502 is being replaced or the replacement is completed.
- the work status acquisition unit 324 transmits the drug replenishment information indicating the status of the drug refill work to the drone receiving unit 20.
- the medicine replenishment information includes information indicating whether the medicine is being prepared in the luggage compartment 821, the medicine is being replenished on the moving body 406a, or the replenishment is completed.
- the medicine replenishment information includes information indicating the progress status of dilution and mixing of medicines performed in or near the luggage compartment 821.
- the system status acquisition unit 325 is a functional unit that acquires information on the status of the system of the mobile unit 406a (hereinafter, also referred to as “system status”).
- the information on the system state includes information on the presence/absence of abnormality of the mobile unit 406a and the presence/absence of abnormality of the base station 404.
- “abnormality” of the drone 100, the base station 404, and the moving body 406a includes not only a state in which the external environment is abnormal but also an internal failure.
- the abnormality of the mobile unit 406a also includes information on whether or not the drone 100 should return immediately based on the content of the abnormality that has occurred. This is because there is a case where it is not necessary to return the drone 100 when the degree of abnormality of the moving body 406a is slight or the type of abnormality does not greatly affect the work of the drone 100.
- the abnormality in which the drone 100 needs to be returned may be, for example, a case where the fuel of the moving body 406a has dropped below a predetermined level.
- the system state information includes the remaining amount of drive energy capacity of the drive source that drives the moving body 406a.
- the drive source of the moving body 406a may be an appropriate source such as gasoline, electricity, a fuel cell, or the like.
- the information indicating that the abnormality has occurred in the base station 404 may be transmitted from the mobile transmission unit 31 to the drone reception unit 20, or may be transmitted from the base station 404 to the drone reception unit without passing through the mobile transmission unit 31. May be transmitted to 20.
- the resource information transmission unit 33 is a functional unit that transmits resource information indicating the amount of resources prepared in the mobile body 406a that can be replenished to the drone 100 to the drone reception unit 20.
- the resource information includes the number of charged batteries 502 and the amount of medicine. Further, the resource information may be the remaining charging capacity of the facility that charges the battery 502.
- the amount of fuel gas that can be stored in the drone 100 such as hydrogen gas, may be used.
- the amount of resources prepared in the moving body 406a may be manually input by the user 402 or may be automatically acquired.
- a configuration may be adopted in which the weight of a predetermined range of the luggage compartment 821 is measured in order to acquire the drug amount.
- the capacity of the batteries 502 may be measured in addition to the weight of a predetermined range of the luggage compartment 821.
- the intervention operation unit 35 is a functional unit that transmits a flight control command of the drone 100 to the drone receiving unit 20.
- the drone 100 normally operates autonomously by the flight control unit 21 included in the drone 100 itself, but when an abnormality occurs in the drone 100, a command from the mobile unit 406a intervenes to operate the drone 100. can do.
- a command from the user 402 may be transmitted to the drone 100 through the input unit 36 of the mobile unit 406a.
- the intervention operation unit 35 can send a command to the drone 100 to return.
- the intervention operation unit 35 may be capable of transmitting to the drone 100 a signal for individually operating the three-dimensional position coordinates, speed, acceleration, and nose direction of the drone 100.
- the intervention operation unit 35 may start controlling the flight of the drone 100.
- the input unit 36 is a functional unit that receives an input from the user 402.
- the input unit 36 can input, for example, a command to start the flight of the drone 100 or a command to return the drone 100 to the departure point 406.
- the input unit 36 may be a tablet having the same mechanism as the display unit 65.
- the mobile unit 406a further includes a mobile unit reception unit 60, a display unit 65, and a mobile unit control unit 66.
- the mobile reception unit 60 is a functional unit that receives information from the drone transmission unit 40. Information received by the mobile body receiver 60 will be described later together with a description of functional blocks of the drone 100.
- the display unit 65 is a functional unit for appropriately displaying information to be transmitted to the user 402.
- the mobile unit control unit 66 is a functional unit that determines the operation of the mobile unit 406a based on the information received by the mobile unit reception unit 60.
- the operation of the moving body 406a includes an operation of determining whether or not to notify the user 402 and an operation of changing the form of the moving body 406a. The details of the operation of the mobile body control unit 66 will be described later together with the information received by the mobile body receiving unit 60 and the functional block of the drone 100.
- the drone transmission unit 40 includes a machine body information transmission unit 41, a prediction information transmission unit 42, an abnormality detection unit 43, and a request command transmission unit 44.
- the machine body information transmission unit 41 is a functional unit that transmits information regarding the current status of the drone 100 to the mobile body reception unit 60.
- the machine body information transmission unit 41 includes a position acquisition unit 411, an orientation acquisition unit 412, a work information acquisition unit 413, a communication environment acquisition unit 414, a resource information acquisition unit 415, a driving route acquisition unit 416, and a mounting state acquisition. And a unit 417.
- the position acquisition unit 411 is a functional unit that acquires the three-dimensional position coordinates of the drone 100.
- the three-dimensional position coordinates are acquired based on the RTK-GPS information.
- the current position of the drone 100 can be displayed on the display unit 65. It is also possible to acquire the three-dimensional coordinates of the drone 100 while the drone 100 is landing at the departure/arrival point 406 and store it in the drone 100 itself and the moving body 406a as the landable coordinates.
- the drone 100 may be configured to determine the landing position based on the three-dimensional coordinates of the drone 100 when landing.
- the moving body control unit 66 can also guide the moving body 406a so that the drone 100 can return, based on the coordinates when the drone 100 is landing.
- Orientation acquisition unit 412 is a functional unit that acquires the orientation of the drone 100 nose.
- the heading direction is acquired by referring to the value of the geomagnetic sensor mounted on the drone 100 or the value of the GPS compass.
- the work information acquisition unit 413 is a functional unit that acquires information regarding the work status of the drone 100.
- the working state of the drone 100 includes a state of taking off, landing, and waiting for hovering. It also includes a state in which the drone 100 is entering the field and a state in which it is flying outside the field. Furthermore, it includes a state in which the drone 100 is performing a work such as spraying or monitoring a drug, and a state in which the work is not performed.
- the information regarding the work state may be displayed appropriately through the display unit 65. According to this configuration, the user 402 can know the state of the drone 100 in automatic driving in substantially real time, and gives the user 402 a sense of security.
- the communication environment acquisition unit 414 is a functional unit that acquires the status of communication with the satellite and communication with the mobile unit 406a and other components of the drone system 500.
- the resource information acquisition unit 415 is a functional unit that acquires the amount of resources loaded on the drone 100, that is, the remaining amount of the battery 502 and the remaining amount of the drug tank 104.
- the driving route acquisition unit 416 is a functional unit that acquires information on a driving route in the field of the drone 100 that is predetermined.
- the drone 100 flies in the field based on the information on the driving route, and performs predetermined work such as monitoring and spraying chemicals. Further, the driving route acquisition unit 416 acquires the entry/exit point at which the drone 100 enters or leaves the field and the information about the departure/arrival route connecting the departure/arrival point 406, and the moving body via the drone transmission unit 40. It may be transmitted to 406a.
- the loading state acquisition unit 417 is a functional unit that acquires information on whether or not the drone 100 is loaded on the moving body 406a. Further, the mounting state acquisition unit 417 may be able to acquire mounting information indicating whether the drone 100 is fixed to the departure point 406 of the moving body 406a and the moving body 406a is in a safe movable state. When the drone 100 is safely fixed, the mounting state acquisition unit 417 may transmit a signal to the effect that movement of the moving body 406a is permitted to the moving body 406a via the drone transmitting unit 40. Further, when the drone 100 is not fixed, the mounting state acquisition unit 417 may transmit a signal indicating that the movement of the moving body 406a is not permitted to the moving body 406a via the drone transmitting unit 40.
- Prediction information transmitting unit 42 is a functional unit that predicts information regarding resource replenishment performed by drone 100 returning to departure point 406 and transmits it to mobile unit receiving unit 60.
- the prediction information transmission unit 42 includes a return time acquisition unit 421, a return frequency acquisition unit 422, and a necessary supplement amount acquisition unit 423.
- the return time acquisition unit 421 when the drone 100 completes the work on the predetermined operation route in the target area such as a field, the drone 100 returns from the start of the work to the departure/arrival point 406 to replenish resources. It is a functional unit that calculates the time required to reach the interruption point.
- the return time acquisition unit 421 may be able to acquire the scheduled time at which work is to be interrupted and the scheduled time at which the drone 100 will return to the departure point 406 by referring to the required time and the current time.
- the return frequency acquisition unit 422 is a functional unit that acquires the scheduled frequency at which the drone 100 will return to the departure point 406 to supplement resources.
- Requirement replenishment amount acquisition unit 423 is a functional unit that acquires the amount of resources that drone 100 needs to be replenished.
- the necessary amount of resources is, for example, the number of charged batteries or the amount of medicine.
- the number of charged batteries can be calculated in consideration of the length of the planned driving route, the past actual value of power consumption, and the like.
- the drug amount can be calculated based on the total area of the field and the spray concentration determined according to the type of drug.
- the abnormality detection unit 43 is a functional unit that detects an abnormality that has occurred in the drone 100 and transmits it to the mobile reception unit 60 via the drone transmission unit 40. If the drone 100 is abnormal, the drone 100 returns to the departure point 406.
- the moving body control unit 66 receives the abnormality of the drone 100, it determines whether or not the drone 100 is in a returnable position based on the information from the abnormality detection unit 43, and if necessary. Change the position or form.
- the mobile body control unit 66 notifies the user 402 through the display unit 65 to change the position or form. Further, the moving body control unit 66 notifies the user 402 through the display unit 65 to move away from the moving body 406a by a predetermined amount or more.
- the request command transmitting unit 44 is a functional unit that transmits a request command regarding the state of the mobile unit 406a to the mobile unit receiving unit 60.
- the request command transmission unit 44 transmits a request to the mobile unit reception unit 60 to make the position, orientation, and form of the mobile unit 406a ready for landing when the drone 100 is scheduled to return. You may.
- the mobile unit control unit 66 may automatically change to the landable state based on the request, or guide the user 402 to the landable state by giving an appropriate notification to the user 402. May be. Further, the request command transmitting unit 44, even when the mobile body 406a is in a landable state, transmits a command to prohibit the movement of the mobile body 406a and a command to prohibit the change of the form of the mobile body 406a. Good.
- the moving body receiving unit 60 transmits the drone 100's planned landing coordinates, nose direction, and scheduled landing time to the aircraft information. It is received from the unit 41 and the prediction information transmission unit 42 (S11).
- the mobile body control unit 66 determines whether or not the position, orientation, and angle of the mobile body 406a are within a range in which the drone 100 can return (S12). If it is not possible to return, the moving body control unit 66 drives the movement control unit 30 to move the moving body 406a so that the drone 100 can return to the position, direction, and angle (S13). Alternatively, the moving body control unit 66 notifies the user 402 of the movement request of the moving body 406a through the display unit 65, and returns to step S12.
- the user 402 is notified through the display unit 65 not to move the moving body 406a (S14).
- the position, orientation, and angle of the moving body 406a are transmitted to the drone 100.
- the mobile control unit 66 determines whether or not the communication state with the satellite or another configuration on the drone system 500 acquired by the surrounding environment acquisition unit 311d is appropriate (S15). If the communication state is not appropriate, the system waits for a predetermined time (S16). In addition, the user 402 is notified that he is waiting due to the communication state. Further, it may be configured to notify the time when the waiting is scheduled. Further, instead of waiting, the user 402 may be notified of a request to move the position of the moving body 406a. When the moving body 406a is placed near a structure causing radio interference, or when the position of the satellite seen from the moving body 406a is erroneously recognized when communicating with the satellite, the moving body 406a Is useful to move.
- the moving body control unit 66 determines whether or not the moving body 406a acquired by the form acquiring unit 321 is in a form in which the drone 100 can return (S17). If the drone 100 is not in a returnable form, the moving body control unit 66 changes the form of the drone 100 (S18). Further, the moving body control unit 66 may notify the user 402 through the display unit 65 to change the form of the moving body 406a.
- the moving body control unit 66 determines whether or not the operating state of the moving body 406a is in a state where the drone 100 can return to the vehicle (S19). When the drone 100 is not in the returnable driving state, the moving body control unit 66 changes the driving state (S20). Further, the moving body control unit 66 may notify the user 402 via the display unit 65 to change the operating state of the moving body 406a.
- the display unit 65 notifies the user 402 so as not to approach the loading platform 82 because the drone 100 is scheduled to return (S21). At this time, based on the information acquired by the surrounding environment acquisition unit 311d, after confirming that there is no person or obstacle around the moving body 406a, it is configured to issue a landing permission to the drone 100. Good. When the landing permission is received, the drone 100 lands at the departure point 406 (S22).
- the mobile unit reception unit 60 includes a required number of batteries 502 of the drone 100, a required amount of medicine, a scheduled return time, and Information such as the number of times of return is received from the prediction information transmitting unit 42 of the drone 100 (S31).
- the mobile unit control unit 66 refers to the resource amount acquired by the resource information transmission unit 33, and determines whether or not the number of batteries 502 and the drug amount held by the mobile unit 406a are sufficient ( S32). When the number of batteries 502 or the amount of medicines held by the moving body 406a is not sufficient, the moving body control unit 66 notifies the user 402 that replenishment is necessary and the required replenishment amount (S33). In addition, the moving body control unit 66 may notify the user 402 by distinguishing the amount required until the next return from the total amount required until the end of the field work.
- the abnormality detection unit 43 of the drone 100 detects the abnormality (S41).
- the drone transmitting unit 40 transmits information indicating that the drone 100 will return to the moving body 406a to the moving body receiving unit 60 (S42).
- the flight control unit 21 of the drone 100 determines whether or not the flight control unit 21 can return under the control of the flight control unit 21 itself (S43), and if the return is possible, the flight control unit 21 returns to the flight control unit 21 as shown in FIG. Go to step S11.
- the mobile unit control unit 66 determines whether the drone 100 can return by the intervention operation performed by the intervention operation unit 35 of the mobile unit 406a. Determine (S45). If it is possible to return, the operation is switched to the intervention operation from the moving body 406a (S46), and the process proceeds to step 11 of FIG. In step S45, when it is determined that the return is impossible even by the intervention operation, the drone 100 performs an emergency stop such as landing on the spot or stopping the operation of the rotor blades to drop it on the spot ( S47).
- Moving body (2) With reference to FIG. 16, the second embodiment of the moving body according to the present invention will be described focusing on the part different from the form described above. Hereinafter, the same components as those in the other embodiments are designated by the same reference numerals.
- the moving body 406b of the second embodiment is different from the moving body of the first embodiment in that the second upper surface plate 824b is arranged below the upper surface plate 824. According to this configuration, even if the upper surface plate 824 slides, the upper part inside the luggage compartment 821 is not opened, and the loaded object can be protected.
- the lower end of the lateral tilt 823b is connected to the end of the cargo room 821 by a hinge, and the tilt 823b can be tilted and fixed substantially parallel to the bottom surface of the cargo room 821.
- Moving body (3) With reference to FIG. 17, a third embodiment of the moving body according to the present invention will be described focusing on a part different from the form described above.
- the upper end of the side tilt 823c is connected to the rail 825c by a hinge, and the tilt 823c can be rotated and fixed substantially parallel to the upper surface plate 824. , which is different from the moving body of the first embodiment.
- the landing surface can be expanded by the tilt 823c.
- the second upper surface plate 824a is arranged.
- the moving body 406d of the fourth embodiment has a nesting structure in which the sliding load chamber 821d is housed in the load chamber 821, the lower end of the tilt 823d is connected to the sliding load chamber 821d by a hinge, and the tilt 823d.
- the sliding luggage compartment 821d can be pulled out from the lower side of the top plate 824 to the side. According to this configuration, since the loaded object can be pulled out together with the sliding load chamber 821d, workability is improved. Further, in the present embodiment, the second upper surface plate 824a is arranged.
- Moving body (5) With reference to FIG. 19, a fifth embodiment of a moving body according to the present invention will be described focusing on a part different from the above-described form.
- the lateral flank 823e is connected to the end of the cargo bed 82 by a hinge, and the sliding cargo compartment 821e is pulled out from the cargo compartment 821.
- the sliding load chamber 821e is pulled out, the sliding load chamber 821e is supported by the tilt 823e, so that the sliding load chamber 821e can be pulled out more stably.
- the second upper surface plate 824a is arranged.
- the moving body 406f of the sixth embodiment shown in FIG. 20 has a shape obtained by removing the second upper surface plate 824a of the moving body 406d of the fourth embodiment.
- the moving body 406g of the seventh embodiment shown in FIG. 21 has a shape obtained by removing the second upper surface plate 824a of the moving body 406e of the fifth embodiment.
- a moving body 406h of the eighth embodiment shown in FIG. 22 has a shape in which the tilt 823c of the third embodiment is arranged and the sliding load chamber 821e is pulled out from below the tilt 823c. Further, in the present embodiment, the second upper surface plate 824a is arranged.
- the agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and is applicable to drones for other purposes such as shooting and monitoring. .. In particular, it is applicable to a machine that operates autonomously. Further, the moving body is not limited to the vehicle and may have an appropriate configuration.
- the drone and the moving body capable of loading and moving the drone and capable of taking off and landing the drone operate in cooperation with each other, and are highly safe even when the drone autonomously flies. You can maintain sex.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Pest Control & Pesticides (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Insects & Arthropods (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Catching Or Destruction (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
[Problem] To provide a system in which a drone and a moving body that can move with the drone loaded thereon and that enables the drone to take off therefrom and land thereon operate together, and a high degree of safety can be maintained even when the drone flies autonomously. [Solution] Provided is a drone system 500 in which a drone 100 and a moving body 406a that can move with the drone loaded thereon and that enables the drone to take off therefrom and land thereon operate together. The moving body includes a surrounding environment acquisition unit 311d that acquires information relating to a surrounding environment in which the drone, when attempting to land at a take-off and landing site 406, could be obstructed. The drone acquires the information from the surrounding environment acquisition unit and on the basis of the information, determines if landing is possible or not.
Description
本願発明は、ドローンシステムに関する。
The present invention relates to a drone system.
一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。
The application of small helicopters (multicopters) commonly called drones is progressing. One of the important fields of application thereof is spraying chemicals such as pesticides and liquid fertilizers on agricultural land (field) (for example, Patent Document 1). In relatively small farmlands, it is often the case that drones are more suitable than manned planes and helicopters.
準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。
Technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic-Global Positioning System) have made it possible for the drone to accurately know its absolute position in centimeters during flight. Even in a farmland with a narrow and complicated terrain typical of the above, it is possible to autonomously fly with minimal manual operation, and to efficiently and accurately apply a drug.
その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。
On the other hand, there were cases where it was difficult to say that safety considerations were sufficient for autonomous flight drones for agricultural drug spraying. A drone loaded with medicines weighs several tens of kilograms, which could have serious consequences in the event of an accident such as falling onto a person. In addition, the drone operator is usually not an expert, so a fool-proof mechanism is necessary, but the consideration for this was insufficient. Until now, there have been drone safety technologies that are premised on human control (for example, Patent Document 2), but in particular, address the safety issues peculiar to autonomous flight drones for drug spraying for agriculture. There was no technology to do this.
ドローンを圃場で飛行させるにあたり、圃場周辺の所定位置まで運搬する移動体が必要とされている。また、ドローンが所定位置から発着するにあたり、ドローンと移動体とが情報を送受信し、互いに協調して動作するドローンシステムが必要とされている。
When flying a drone in the field, a moving body is required to transport it to a predetermined position around the field. Further, there is a need for a drone system in which a drone and a mobile body transmit and receive information when the drone arrives and departs from a predetermined position, and operates in cooperation with each other.
ドローンと、ドローンを積載して移動可能であってドローンの離着陸が可能な移動体と、が協調して動作し、自律飛行時であっても高い安全性を維持できるドローンシステムを提供する。
We provide a drone system that can maintain a high level of safety even during autonomous flight, in which the drone and a moving body that can carry the drone and move and that can take off and land the drone operate in coordination.
上記目的を達成するため、本発明の一の観点に係るドローンシステムは、ドローンと、前記ドローンを積載して移動可能であって前記ドローンが離着陸可能な移動体と、が協調して動作するドローンシステムであって、前記移動体は、前記ドローンが発着地点に着陸するにあたって障害になりえる、周辺環境に関する情報を取得する周辺環境取得部を有し、前記ドローンは、前記周辺環境取得部から前記情報を取得し、前記情報に基づいて着陸の可否を判定する。
In order to achieve the above-mentioned object, a drone system according to one aspect of the present invention is a drone in which a drone and a movable body capable of carrying the drone and moving the drone can take off and land in cooperation with each other. In the system, the mobile body has a surrounding environment acquisition unit that acquires information about the surrounding environment, which can be an obstacle when the drone lands at a departure/arrival point, and the drone includes the surrounding environment acquisition unit. Information is acquired, and landing possibility is determined based on the information.
前記周辺環境取得部は、前記周辺環境に関する情報として、前記移動体周辺に存在する障害物を検知するものとしてもよい。
The surrounding environment acquisition unit may detect an obstacle existing around the moving body as the information about the surrounding environment.
前記周辺環境取得部は、可視光又は赤外線カメラにより、前記移動体周辺の障害物を検知するものとしてもよい。
The surrounding environment acquisition unit may detect an obstacle around the moving body with a visible light or infrared camera.
前記周辺環境取得部は、前記周辺環境に関する情報として、前記移動体周辺における風の強さ、風の向き、および降雨の少なくともいずれかを取得するものとしてもよい。
The surrounding environment acquisition unit may acquire at least one of wind strength, wind direction, and rainfall around the moving body as the information about the surrounding environment.
ドローンと、ドローンを積載して移動可能であってドローンの離着陸が可能な移動体とが協調して動作し、自律飛行時であっても高い安全性を維持できる。
The drone and the moving body capable of loading and moving the drone and capable of taking off and landing the drone cooperate with each other to maintain high safety even during autonomous flight.
以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。
Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The figures are all examples. In the following detailed description, for purposes of explanation, certain specific details are set forth in order to facilitate a thorough understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, well-known structures and devices are schematically shown in order to simplify the drawing.
まず、本発明にかかるドローンシステムが有する、ドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。
First, the configuration of the drone included in the drone system according to the present invention will be described. In the specification of the present application, the drone, regardless of power means (electric power, prime mover, etc.), control method (whether wireless or wired, and whether it is an autonomous flight type or a manual control type), It refers to all aircraft with multiple rotors.
図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の本体110からのび出たアームにより本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。
As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the drone 100, and in consideration of the stability of flight, the size of the aircraft, and the balance of power consumption, eight aircraft (four sets of two-stage rotary blades) are provided. Each rotor 101 is arranged on four sides of the main body 110 by arms extending from the main body 110 of the drone 100. That is, the rotating blades 101-1a, 101-1b to the left in the traveling direction, the rotating blades 101-2a and 101-2b to the left front, the rotating blades 101-3a and 101-3b to the right rear, and the rotating blades 101-to the front right. 4a and 101-4b are arranged respectively. Note that the drone 100 has the traveling direction downward in the plane of FIG. Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor blade 101, respectively.
モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。
The motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101-. 2b, 101-3a, 101-3b, 101-4a, 101-4b is a means for rotating (typically an electric motor, but may be an engine, etc.), one for each rotor Has been. The motor 102 is an example of a propulsion device. The upper and lower rotor blades (eg 101-1a and 101-1b) and their corresponding motors (eg 102-1a and 102-1b) in one set are for drone flight stability etc. The axes are collinear and rotate in opposite directions. As shown in FIGS. 2 and 3, the radial member for supporting the propeller guard, which is provided so that the rotor does not interfere with foreign matter, is not horizontal but has a tower-like structure. This is to promote the buckling of the member to the outside of the rotor blade at the time of collision and prevent the member from interfering with the rotor.
薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。
The drug nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the drug downward, and are equipped with four machines. In the specification of the present application, the term "chemicals" generally refers to pesticides, herbicides, liquid fertilizers, insecticides, seeds, and liquids or powders applied to fields such as water.
薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。
The drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to the center of gravity of the drone 100 and lower than the center of gravity from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are rigid. And may also serve to support the chemical nozzle. The pump 106 is a means for discharging the medicine from the nozzle.
図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、および基地局404は、営農クラウド405にそれぞれ接続されている。また、小型携帯端末401aは、基地局404に接続されている。これらの接続は、Wi-Fiや移動通信システム等による無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。
FIG. 6 shows an overall conceptual diagram of a system using an example of drug application of the drone 100 according to the present invention. This figure is a schematic diagram and the scale is not accurate. In the figure, the drone 100, the manipulator 401, and the base station 404 are connected to the farm cloud 405, respectively. In addition, the small portable terminal 401a is connected to the base station 404. For these connections, wireless communication may be performed by Wi-Fi, a mobile communication system, or the like, or part or all of them may be wired.
操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機(図示していない)を使用してもよい(非常用操作機は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい)。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末401a、例えばスマートホンがシステムに含まれていてもよい。また、小型携帯端末401aから入力される情報に基づいて、ドローン100の動作が変更される機能を有していてもよい。小型携帯端末401aは、例えば基地局404と接続されていて、基地局404を介して営農クラウド405からの情報等を受信可能である。
The operation unit 401 is a means for transmitting a command to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, battery level, camera image, etc.). Yes, and may be realized by a portable information device such as a general tablet terminal that runs a computer program. Although the drone 100 according to the present invention is controlled to perform autonomous flight, it may be configured so that it can be manually operated during basic operations such as takeoff and return, and during emergencies. In addition to the portable information device, you may use an emergency operating device (not shown) that has a function dedicated to emergency stop (a large emergency stop button, etc. is provided so that the emergency operating device can respond quickly in an emergency). It may be a dedicated device with). Further, in addition to the operation device 401, a small mobile terminal 401a capable of displaying a part or all of the information displayed on the operation device 401, for example, a smartphone may be included in the system. Further, the operation of the drone 100 may be changed based on the information input from the small portable terminal 401a. The small portable terminal 401a is connected to the base station 404, for example, and can receive information and the like from the farm cloud 405 via the base station 404.
圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。
The field 403 is a rice field, a field, etc. to which the drug is sprayed by the drone 100. Actually, the topography of the farm field 403 is complicated, and there are cases where the topographic map cannot be obtained in advance, or the topographic map and the situation at the site are inconsistent. Normally, the farm field 403 is adjacent to a house, a hospital, a school, another crop farm field, a road, a railroad, and the like. In addition, there may be obstacles such as buildings and electric wires in the field 403.
基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、営農クラウド405と互いに通信可能であってもよい。基地局404は、本実施の形態においては、発着地点406と共に移動体406aに積載されている。
The base station 404 is a device that provides a master device function of Wi-Fi communication, etc., and may also function as an RTK-GPS base station to provide an accurate position of the drone 100 (Wi- The base unit function of Fi communication and RTK-GPS base station may be independent devices). Further, the base station 404 may be able to communicate with the farm cloud 405 using a mobile communication system such as 3G, 4G, or LTE. In this embodiment, the base station 404 is loaded on the moving body 406a together with the departure/arrival point 406.
営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。
The farm cloud 405 is a group of computers typically operated on a cloud service and related software, and may be wirelessly connected to the operation unit 401 via a mobile phone line or the like. The farm cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growth status of the crop, and perform a process for determining a flight route. Further, the drone 100 may be provided with the stored topographical information of the field 403 and the like. In addition, the history of the flight of the drone 100 and captured images may be accumulated and various analysis processes may be performed.
通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。
Normally, the drone 100 will take off from the landing point 406 outside the field 403 and return to the landing point 406 after spraying the drug on the field 403 or when it becomes necessary to replenish or charge the drug. The flight route (intrusion route) from the landing point 406 to the target field 403 may be saved in advance in the farm cloud 405 or the like, or may be input by the user 402 before the start of takeoff.
図7に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。
FIG. 7 shows a block diagram showing the control function of the embodiment of the drug spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, a memory, related software, and the like. The flight controller 501, based on the input information received from the operation unit 401 and the input information obtained from various sensors described later, via the control means such as ESC (Electronic Speed Control), the motor 102-1a, 102-1b , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b are controlled to control the flight of the drone 100. The actual rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, 104-b is fed back to the flight controller 501 to perform normal rotation. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。
The software used by the flight controller 501 can be rewritten through storage media or the like for function expansion/change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, encryption, checksum, electronic signature, virus check software, etc. are used to protect the software from being rewritten by unauthorized software. Further, a part of the calculation process used by the flight controller 501 for control may be executed by another computer existing on the operation unit 401, the farm cloud 405, or another place. Since the flight controller 501 is highly important, some or all of its constituent elements may be duplicated.
フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。
The flight controller 501 exchanges with the operation unit 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives a necessary command from the operation unit 401, and outputs necessary information to the operation unit. Can be sent to 401. In this case, the communication may be encrypted so as to prevent illegal acts such as interception, spoofing, and hijacking of equipment. The base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the flight controller 501 is highly important, it may be duplicated/multiplexed, and in order to cope with the failure of a specific GPS satellite, each redundant flight controller 501 should use a different satellite. It may be controlled.
6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段(さらに、加速度の積分により速度を計算する手段)である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。
The 6-axis gyro sensor 505 is a means for measuring accelerations of the drone aircraft in three directions orthogonal to each other (further, a means for calculating speed by integrating accelerations). The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone body in the three directions described above, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The atmospheric pressure sensor 507 is a means for measuring the atmospheric pressure, and can indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone body and the ground surface by using the reflection of sound waves such as ultrasonic waves. These sensors may be selected depending on the drone's cost goals and performance requirements. Further, a gyro sensor (angular velocity sensor) for measuring the tilt of the machine body, a wind force sensor for measuring wind force, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to another sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。
The flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is provided at a plurality of places on the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount. The multi-spectral camera 512 is a means for photographing the field 403 and acquiring data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle and is a device different from the multispectral camera 512 because the image characteristics and the lens orientation are different from those of the multispectral camera 512. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard portion has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. .. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are open. The drug injection port sensor 517 is a sensor that detects that the injection port of the drug tank 104 is open. These sensors may be selected according to the drone's cost targets and performance requirements, and may be duplicated or multiplexed. Further, a sensor may be provided at the base station 404 outside the drone 100, the operation device 401, or at another place, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404, and information regarding wind force/wind direction may be transmitted to the drone 100 via Wi-Fi communication.
フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。
The flight controller 501 sends a control signal to the pump 106 to adjust the drug discharge amount and stop the drug discharge. The current status of the pump 106 (for example, the number of rotations) is fed back to the flight controller 501.
LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。また、Wi-Fi子機機能に替えて、3G、4G、およびLTE等の移動通信システムにより相互に通信可能であってもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。
LED107 is a display means for notifying the drone operator of the status of the drone. Instead of or in addition to the LED, a display means such as a liquid crystal display may be used. The buzzer 518 is an output means for notifying a drone state (especially an error state) by a voice signal. The Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like for the transfer of software, for example, apart from the operation unit 401. In addition to or in addition to the Wi-Fi cordless handset function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection May be used. Further, instead of the Wi-Fi slave device function, the mobile communication systems such as 3G, 4G, and LTE may be able to communicate with each other. The speaker 520 is an output means for notifying the drone state (particularly an error state) by the recorded human voice, synthesized voice or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight, and in such a case, it is effective to communicate the situation by voice. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (in particular, an error state). These input/output means may be selected according to the cost target and performance requirements of the drone, or may be duplicated/multiplexed.
図10に示すように、ドローンシステム500は、大別してドローン100と、移動体406aとがネットワークNWを通じて接続されて構成されている。ドローン100および移動体406aは、互いに情報の送受信を行い、協調して動作する。移動体406a上には、図6における発着地点406が形成されている。ドローン100は、ドローン100の飛行を制御する飛行制御部21の他、移動体406aと情報を送受信するための機能部を有している。ドローン100が有する各機能部は、例えば図7に示すフライトコントローラー501に備えられている。なお、ドローン100と移動体406aとは、ネットワークNWを通じて接続される構成に代えて、有線で接続されていてもよい。
As shown in FIG. 10, the drone system 500 is roughly composed of a drone 100 and a mobile unit 406a connected via a network NW. The drone 100 and the mobile body 406a transmit and receive information to and from each other, and operate in cooperation with each other. A departure/arrival point 406 in FIG. 6 is formed on the moving body 406a. The drone 100 has a flight control unit 21 that controls the flight of the drone 100, and a functional unit that transmits and receives information to and from the moving body 406a. Each functional unit of the drone 100 is provided in the flight controller 501 shown in FIG. 7, for example. Note that the drone 100 and the mobile body 406a may be connected by wire instead of being connected via the network NW.
ドローンシステム500は、ドローン100と移動体406aに加えて、スマートホン等の携帯端末が含まれていてもよい。携帯端末の表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者402が行うべき作業の内容等の情報が適宜表示される。また、携帯端末からの入力に基づいて、ドローン100および移動体406aの動作を変更してもよい。携帯端末は、ドローン100および移動体406aのいずれからでも情報を受信可能である。また、ドローン100からの情報は、移動体406aを介して携帯端末に送信されてもよい。
The drone system 500 may include a mobile terminal such as a smartphone in addition to the drone 100 and the moving body 406a. On the display unit of the mobile terminal, information about expected motions related to driving the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure point 406, the content of the work that the user 402 should perform when returning, etc. Information is displayed as appropriate. Further, the operations of the drone 100 and the moving body 406a may be changed based on the input from the mobile terminal. The mobile terminal can receive information from either the drone 100 or the moving body 406a. Further, the information from the drone 100 may be transmitted to the mobile terminal via the mobile body 406a.
●移動体の構成
図8および図9に示す移動体406aは、ドローン100が有する情報を受信して、使用者402に適宜通知し、又は使用者402からの入力を受け付けてドローン100に送信する装置である。また、移動体406aは、ドローン100を積載して移動可能である。移動体406aは、使用者402により運転可能である他、自律的に移動可能であってもよい。なお、本実施形態における移動体406aは自動車等の車両、より具体的には軽トラックを想定しているが、電車等の陸上走行可能な適宜の移動体であってもよいし、船舶や飛行体であってもよい。移動体406aの駆動源は、ガソリン、電気、燃料電池等、適宜のものであってよい。 ●Structure of Mobile Object Themobile object 406a shown in FIGS. 8 and 9 receives information that the drone 100 has and notifies the user 402 as appropriate, or receives an input from the user 402 and transmits it to the drone 100. It is a device. Further, the moving body 406a can move by carrying the drone 100. The moving body 406a may be driven by the user 402 or may be autonomously movable. Although the moving body 406a in the present embodiment is assumed to be a vehicle such as an automobile, more specifically, a light truck, it may be an appropriate moving body capable of running on land such as a train, a ship or a flight. It may be the body. The drive source of the moving body 406a may be an appropriate source such as gasoline, electricity, a fuel cell, or the like.
図8および図9に示す移動体406aは、ドローン100が有する情報を受信して、使用者402に適宜通知し、又は使用者402からの入力を受け付けてドローン100に送信する装置である。また、移動体406aは、ドローン100を積載して移動可能である。移動体406aは、使用者402により運転可能である他、自律的に移動可能であってもよい。なお、本実施形態における移動体406aは自動車等の車両、より具体的には軽トラックを想定しているが、電車等の陸上走行可能な適宜の移動体であってもよいし、船舶や飛行体であってもよい。移動体406aの駆動源は、ガソリン、電気、燃料電池等、適宜のものであってよい。 ●Structure of Mobile Object The
移動体406aは、進行方向前方に乗車席81、後方に荷台82が配置されている車両である。移動体406aの底面側には、移動手段の例である4個の車輪83が、駆動可能に配置されている。乗車席81には、使用者402が乗り込むことが可能である。荷台82の上面は、ドローン100の発着地点である発着領域となっている。
The moving body 406a is a vehicle in which a passenger seat 81 is arranged at the front in the traveling direction and a luggage platform 82 is arranged at the rear. On the bottom surface side of the moving body 406a, four wheels 83, which are an example of moving means, are arranged so as to be drivable. A user 402 can get into the passenger seat 81. The upper surface of the loading platform 82 serves as a landing area for the drone 100.
乗車席81には、移動体406aおよびドローン100の様子を表示する表示部65が配置されている。表示部65は、画面を有する装置であってもよいし、フロントガラスに情報を投影する機構により実現されていてもよい。また、この表示部65に加えて、乗車席81を覆う車体810の背面側にも背面表示部65aが設置されていてもよい。この背面表示部65aは、車体810に対する角度が左右に変更可能であり、荷台82の後方および左右側方で作業している使用者402が画面を見て情報を取得することができる。
The passenger seat 81 is provided with a display unit 65 that displays the state of the moving body 406a and the drone 100. The display unit 65 may be a device having a screen, or may be realized by a mechanism that projects information on the windshield. In addition to the display unit 65, a rear display unit 65a may be installed on the rear side of the vehicle body 810 that covers the passenger seat 81. The rear display unit 65a can change the angle with respect to the vehicle body 810 to the left and right, so that the user 402 working behind and on the left and right sides of the cargo bed 82 can obtain information by looking at the screen.
移動体406aの荷台82前部左端には、丸棒の上方に円盤状の部材が連結された形状をしている基地局404が、乗車席81より上方に伸び出ている。なお、基地局404の形状および位置は、任意である。基地局404が荷台82の乗車席81側にある構成によれば、荷台82の後方にある構成と比較して、基地局404がドローン100の離着陸の妨げになりづらい。
At the left end of the front of the loading platform 82 of the mobile unit 406a, a base station 404 having a shape in which a disc-shaped member is connected above a round bar extends above the passenger seat 81. The shape and position of the base station 404 are arbitrary. According to the configuration in which the base station 404 is on the passenger seat 81 side of the luggage platform 82, the base station 404 is less likely to interfere with the takeoff and landing of the drone 100, as compared with the configuration behind the luggage platform 82.
荷台82は、ドローン100のバッテリ502や、ドローン100の薬剤タンク104に補充される薬剤を格納する荷室821を有する。荷室821は、乗車席81を覆う車体810と、後方板822と、1対の側方板823、823と、上面板824とに囲まれた領域である。後方板822および側方板823は、「あおり」とも呼ばれる。後方板822の上部両端それぞれには、レール825が、側方板823の上端に沿って乗車席81背面側の車体810まで配設されている。上面板824は、ドローン100が載置され、離着陸することが可能な発着地点406となっており、レール825に沿って進行方向前後に摺動可能になっている。レール825は、上面板824の平面より上方に突出するリブとなっていて、上面板824上に乗っているドローン100が移動体406aの左右端から滑り出てしまうことを防いでいる。また、上面板824の後方にも、レール825と同程度上面側に突出するリブ8241が形成されている。
The cargo bed 82 has a battery 502 of the drone 100 and a cargo room 821 for storing medicines to be replenished in the medicine tank 104 of the drone 100. The luggage compartment 821 is a region surrounded by a vehicle body 810 that covers the passenger seat 81, a rear plate 822, a pair of side plates 823 and 823, and a top plate 824. The rear plate 822 and the side plate 823 are also referred to as “flaws”. Rails 825 are provided at both upper ends of the rear plate 822 along the upper ends of the side plates 823 to the vehicle body 810 on the rear side of the passenger seat 81. The upper surface plate 824 is a departure and arrival point 406 where the drone 100 is placed and can be taken off and landed, and can be slid back and forth along the rail 825 in the traveling direction. The rail 825 is a rib that protrudes above the plane of the upper plate 824, and prevents the drone 100 on the upper plate 824 from slipping out from the left and right ends of the moving body 406a. Further, a rib 8241 is formed behind the upper surface plate 824 so as to project to the upper surface side to the same extent as the rail 825.
車体810上部および後方板822の進行方向後ろ側には、ドローンシステム500が作業中である旨を表示する警告灯830が配置されていてもよい。警告灯830は、配色又は明滅等で作業中と作業中以外とを区別する表示器であってもよいし、文字又は絵柄等が表示可能であってもよい。また、車体810上部の警告灯830は、車体810上方まで伸びあがって両面に表示することが可能であってもよい。この構成によれば、荷台82にドローン100が配置されている場合であっても、後方から警告を視認することができる。また、移動体406aの進行方向前方からも、警告を視認することができる。
A warning light 830 that indicates that the drone system 500 is working may be arranged on the upper side of the vehicle body 810 and on the rear side of the rear plate 822 in the traveling direction. The warning light 830 may be a display device that distinguishes between working and non-working by coloration or blinking, and may be capable of displaying characters or patterns. Further, the warning light 830 on the upper portion of the vehicle body 810 may extend to above the vehicle body 810 and can be displayed on both sides. According to this configuration, the warning can be visually recognized from the rear even when the drone 100 is arranged on the loading platform 82. In addition, the warning can be visually recognized from the front of the moving body 406a in the traveling direction.
上面板824は、手動で摺動可能であってもよいし、ラックアンドピニオン機構などを利用して自動で摺動してもよい。上面板824を後方に摺動させると、荷台82の上方から荷室821に物品を格納したり、物品を取り出したりすることができる。また、上面板824が後方に摺動している形態においては、上面板824と車体810とが十分離間するため、ドローン100が発着地点406に離着陸可能である。
The top plate 824 may be manually slidable, or may be slid automatically by using a rack and pinion mechanism or the like. When the top plate 824 is slid backward, articles can be stored in or taken out of the luggage compartment 821 from above the cargo bed 82. Further, in the form in which the upper surface plate 824 slides backward, the upper surface plate 824 and the vehicle body 810 are sufficiently separated from each other, so that the drone 100 can take off and land at the landing point 406.
上面板824には、ドローン100の足が固定可能な足受部826が4個配設されている。足受部826は、例えばドローン100の4本の足107-1,107-2,107-3,107-4に対応する位置に1個ずつ設置されている、上面が円錐台状に凹んでいる円盤状の部材である。足受部826上に着陸しているとき、ドローン100の足107-1,107-2,107-3,107-4は、足受部826の円錐面に沿って滑り、円錐台の底部に足107-1,107-2,107-3,107-4の先端が誘導される。ドローン100は適宜の機構により足受部826に自動又は手動で固定可能であり、移動体406aがドローン100を載せて移動する際にも、ドローン100が過度に振動したり落下することなくドローン100を安全に輸送することができる。また、移動体406aは、後述する搭載状態取得部322により、ドローン100が足受部826に固定されているか否かを検知可能である。なお、足受部826の底部およびドローン100の足107-1,107-2,107-3,107-4は、互いに嵌合するような形状になっていてもよい。
④ On the top plate 824, four foot receiving parts 826 to which the feet of the drone 100 can be fixed are arranged. The foot receiving portion 826 is, for example, a disk-shaped member whose upper surface is recessed in a truncated cone shape, which are installed one by one at positions corresponding to the four feet 107-1, 107-2, 107-3, 107-4 of the drone 100. is there. When landing on the foot rest 826, the feet 107-1,107-2,107-3,107-4 of the drone 100 slide along the conical surface of the foot rest 826, and the feet 107-1,107-2,107 on the bottom of the truncated cone. -3,107-4 tip is guided. The drone 100 can be automatically or manually fixed to the foot receiving portion 826 by an appropriate mechanism, and even when the moving body 406a moves with the drone 100 mounted thereon, the drone 100 does not vibrate excessively or fall down. Can be safely transported. In addition, the moving body 406a can detect whether or not the drone 100 is fixed to the foot receiving portion 826 by the mounting state acquisition unit 322 described later. The bottom of the foot receiving portion 826 and the feet 107-1, 107-2, 107-3, 107-4 of the drone 100 may be shaped so as to fit with each other.
上面板824の、略中央部には、ドローン100の離着陸の位置の目安を表示する円周灯850が配置されている。円周灯850は、略円状に配設される発光体群により形成されていて、発光体群は個別に明滅可能である。本実施形態では、円周上に約90度ごとに配置される4個の大きな発光体850aと、大きな発光体850aの間に2個ずつ等間隔に配置される小さな発光体850bとで、1の円周灯850を構成している。円周灯850は、発光体群850a、850bのうち1又は複数が点灯することで、ドローン100の離陸後の飛行方向、又は着陸する際に飛来する方向を表示する。なお、円周灯850は、部分的に明滅可能な1個の円環状の発光体により構成されていてもよい。
Around the center of the top plate 824, there is a circumferential light 850 that displays the approximate takeoff/landing position of the drone 100. The circumferential lamp 850 is formed of a luminous body group arranged in a substantially circular shape, and the luminous body group can be individually blinked. In the present embodiment, four large light-emitting bodies 850a are arranged at intervals of about 90 degrees on the circumference, and two small light-emitting bodies 850b are arranged at equal intervals between the large light-emitting bodies 850a. It constitutes a circular lamp 850. The circumferential light 850 displays the flight direction of the drone 100 after takeoff, or the direction of flight when landing, by lighting one or more of the light emitter groups 850a and 850b. The circumferential lamp 850 may be composed of a single ring-shaped light-emitting body that can be partially flickered.
1対の側方板823は、底部の辺が荷台82にヒンジで連結されていて、側方板823を外側に倒すことが可能である。図9では、進行方向左側の側方板823が外側に倒れている様子を示している。側方板823が外側に倒れると、移動体406aの側方から格納物を格納および取り出しが可能になる。側方板823は荷室821の底面と略平行に固定され、側方板823を作業台としても使用することができる。
The pair of side plates 823 are hinged at the bottom sides to the loading platform 82, and the side plates 823 can be tilted outward. FIG. 9 shows that the side plate 823 on the left side in the traveling direction is tilted outward. When the side plate 823 falls outward, it is possible to store and take out stored items from the side of the moving body 406a. The side plate 823 is fixed substantially parallel to the bottom surface of the luggage compartment 821, and the side plate 823 can also be used as a workbench.
1対のレール825は、形態切替機構を構成する。また、側方板823と荷台82を連結するヒンジも、形態切替機構に含まれていてもよい。上面板824が荷室821の上方を覆って配置され、側方板823が起立して荷室821の側面を覆っている形態において、移動体406aは移動する。移動体406aが静止しているとき、上面板824が後方に摺動している形態、又は側方板823が倒れている形態に切り替えられ、使用者402は荷室821の内部にアプローチできる。
-A pair of rails 825 form a form switching mechanism. Further, a hinge that connects the side plate 823 and the loading platform 82 may be included in the form switching mechanism. The movable body 406a moves in a form in which the upper surface plate 824 is arranged so as to cover the upper side of the luggage compartment 821 and the side plate 823 stands up and covers the side surface of the luggage compartment 821. When the moving body 406a is stationary, the upper plate 824 is switched to the rearward sliding form or the side plate 823 is tilted so that the user 402 can approach the inside of the luggage compartment 821.
ドローン100は、発着地点406に着陸している状態において、バッテリ502の補充を行うことができる。バッテリ502の補充とは、内蔵されているバッテリ502の充電、およびバッテリ502の交換を含む。荷室821にはバッテリ502の充電装置が格納されていて、荷室821に格納されているバッテリ502の充電が可能である。また、ドローン100は、バッテリ502に代えてウルトラキャパシタの機構を備え、荷室821内にはウルトラキャパシタ用の充電器が格納されていてもよい。この構成においては、ドローン100が足受部826に固定されている際に、ドローン100の足を介して、ドローン100に搭載されているバッテリ502を急速充電することができる。
The drone 100 can replenish the battery 502 while landing at the departure point 406. Replenishment of the battery 502 includes charging of the built-in battery 502 and replacement of the battery 502. A battery 502 charging device is stored in the luggage compartment 821, and the battery 502 stored in the luggage compartment 821 can be charged. Further, the drone 100 may include an ultracapacitor mechanism instead of the battery 502, and a charger for the ultracapacitor may be stored in the luggage compartment 821. In this configuration, when the drone 100 is fixed to the foot receiving portion 826, the battery 502 mounted on the drone 100 can be rapidly charged via the feet of the drone 100.
ドローン100は、発着地点406に着陸している状態において、薬剤タンク104に貯留される薬剤の補充を行うことができる。荷室821には、薬剤を希釈混合するための希釈混合タンク、撹拌機構、ならびに希釈混合タンクから薬剤を吸い上げて薬剤タンク104に注入せしめるポンプおよびホース等の希釈混合を行う適宜の構成要素が格納されていてもよい。また、荷室821から上面板824の上方へ伸び出て、薬剤タンク104の注入口に接続可能な補充用ホースが配管されていてもよい。
The drone 100 can replenish the medicine stored in the medicine tank 104 while landing at the departure point 406. The luggage compartment 821 stores a dilute mixing tank for diluting and mixing the drug, a stirring mechanism, and appropriate components for diluting and mixing such as a pump and a hose that suck up the drug from the diluting and mixing tank and inject it into the drug tank 104. It may have been done. Further, a refilling hose that extends from the luggage compartment 821 above the upper surface plate 824 and can be connected to the inlet of the medicine tank 104 may be provided.
上面板824の上面側には、薬剤タンク104から排出される薬剤を誘導する廃液溝840および廃液孔841が形成されている。廃液溝840および廃液孔841は、それぞれ2個ずつ配置されていて、ドローン100が移動体406aの左右どちらを向いて着陸しても、薬剤ノズル103の下方に廃液溝840が位置するようになっている。廃液溝840は、薬剤ノズル103の位置に沿って、移動体406aの長さ方向に沿って略真っ直ぐに形成されている、所定の幅を有する溝であり、乗車席81側に向かってわずかに傾斜している。廃液溝840の乗車席81側の端部には、それぞれ上面板824を貫通して荷室821の内部に薬液を誘導する廃液孔841が形成されている。廃液孔841は、荷室821内であって廃液孔841の略真下に設置されている廃液タンク842に連通している。
A waste liquid groove 840 and a waste liquid hole 841 for guiding the medicine discharged from the medicine tank 104 are formed on the upper surface side of the upper surface plate 824. Two waste liquid grooves 840 and two waste liquid holes 841 are arranged, so that the waste liquid groove 840 is located below the medicine nozzle 103 regardless of whether the drone 100 is landing facing the left or right of the moving body 406a. ing. The waste liquid groove 840 is a groove having a predetermined width, which is formed substantially straight along the position of the medicine nozzle 103 along the lengthwise direction of the moving body 406a, and slightly toward the passenger seat 81 side. It is inclined. A waste liquid hole 841 is formed at an end of the waste liquid groove 840 on the passenger seat 81 side to penetrate the upper surface plate 824 and guide the chemical liquid into the inside of the luggage compartment 821. The waste liquid hole 841 communicates with a waste liquid tank 842 installed in the luggage compartment 821 and directly below the waste liquid hole 841.
薬剤タンク104に薬剤を注入する際、薬剤タンク104内に充満する気体、主に空気を外部に排出するエア抜き動作を行う。このとき、薬剤タンク104の排出口から薬剤が排出する動作が必要になる。また、ドローン100が作業終了後に、薬剤タンク104から薬剤を排出する動作が必要になる。上面板824に廃液溝840および廃液孔841が形成されている構成によれば、ドローン100を上面板824に配置した状態で、薬剤タンク104への薬剤注入および排出を行う際、廃液を廃液タンク842に誘導することができ、安全に薬剤注入および排出を行うことができる。
When the medicine is injected into the medicine tank 104, an air venting operation is performed to discharge the gas filling the medicine tank 104, mainly air, to the outside. At this time, an operation of discharging the medicine from the discharge port of the medicine tank 104 is required. Further, it is necessary for the drone 100 to perform an operation of discharging the medicine from the medicine tank 104 after the work is completed. According to the configuration in which the waste liquid groove 840 and the waste liquid hole 841 are formed in the upper surface plate 824, when the drug is injected into and discharged from the drug tank 104 with the drone 100 placed on the upper surface plate 824, the waste liquid is stored in the waste liquid tank. It can be guided to 842, and drug infusion and excretion can be performed safely.
●移動体およびドローンが有する機能ブロックの概要
図10に示すように、移動体406aは、移動体406a自体が移動するための構成として、移動制御部30を備える。また、移動体406aは、移動体406aに関する情報を取得してドローン100に送信するための構成として、移動体送信部31と、介入操作部35と、入力部36と、を備える。さらに、図11に示すように、移動体406aは、ドローン100に関する情報をドローン100から受信して、情報に基づいて適宜判断し、必要な情報を使用者402に通知するための構成として、移動体受信部60、表示部65、および移動体制御部66を備える。 Outline of Functional Blocks of Mobile Body and Drone As shown in FIG. 10, themobile body 406a includes a movement control unit 30 as a configuration for moving the mobile body 406a itself. The moving body 406a includes a moving body transmitting unit 31, an intervention operating unit 35, and an input unit 36 as a configuration for acquiring information about the moving body 406a and transmitting the information to the drone 100. Further, as shown in FIG. 11, the mobile unit 406a receives information regarding the drone 100 from the drone 100, appropriately determines based on the information, and notifies the user 402 of necessary information. A body receiving unit 60, a display unit 65, and a moving body control unit 66 are provided.
図10に示すように、移動体406aは、移動体406a自体が移動するための構成として、移動制御部30を備える。また、移動体406aは、移動体406aに関する情報を取得してドローン100に送信するための構成として、移動体送信部31と、介入操作部35と、入力部36と、を備える。さらに、図11に示すように、移動体406aは、ドローン100に関する情報をドローン100から受信して、情報に基づいて適宜判断し、必要な情報を使用者402に通知するための構成として、移動体受信部60、表示部65、および移動体制御部66を備える。 Outline of Functional Blocks of Mobile Body and Drone As shown in FIG. 10, the
また、図10に示すように、ドローン100は、ドローン100の飛行を自律的に制御可能な飛行制御部21を備える。また、ドローン100は、移動体406aからの情報を受信するための構成として、ドローン受信部20を備える。さらに、図11に示すように、ドローン100は、ドローン100に関する情報を取得して移動体406aに送信するための構成として、ドローン送信部40を備える。
Further, as shown in FIG. 10, the drone 100 includes a flight control unit 21 capable of autonomously controlling the flight of the drone 100. The drone 100 also includes a drone receiving unit 20 as a configuration for receiving information from the mobile body 406a. Further, as shown in FIG. 11, the drone 100 includes a drone transmission unit 40 as a configuration for acquiring information regarding the drone 100 and transmitting the information to the moving body 406a.
●移動体の機能ブロック
図10に示すように、移動体送信部31は、着陸情報送信部311と、移動体状態送信部32と、資源情報送信部33と、を備える。 ● Functional Block of Mobile Object As shown in FIG. 10, the mobile object transmitter 31 includes a landing information transmitter 311, a mobile object status transmitter 32, and a resource information transmitter 33.
図10に示すように、移動体送信部31は、着陸情報送信部311と、移動体状態送信部32と、資源情報送信部33と、を備える。 ● Functional Block of Mobile Object As shown in FIG. 10, the mobile object transmitter 31 includes a landing information transmitter 311, a mobile object status transmitter 32, and a resource information transmitter 33.
着陸情報送信部311は、ドローン100が移動体406a上の発着地点406に着陸するために必要な情報を、ドローン100のドローン受信部20に伝達する機能部である。着陸情報送信部311は、位置取得部311aと、向き取得部311bと、角度取得部311cと、周辺環境取得部311dと、を備える。着陸情報送信部311は、位置取得部311a、向き取得部311b、角度取得部311cおよび周辺環境取得部311dにより取得される以下の各情報を、ドローン受信部20に伝達する。
The landing information transmission unit 311 is a functional unit that transmits the information necessary for the drone 100 to land at the departure point 406 on the moving body 406a to the drone reception unit 20 of the drone 100. The landing information transmission unit 311 includes a position acquisition unit 311a, an orientation acquisition unit 311b, an angle acquisition unit 311c, and a surrounding environment acquisition unit 311d. The landing information transmission unit 311 transmits the following pieces of information acquired by the position acquisition unit 311a, the orientation acquisition unit 311b, the angle acquisition unit 311c, and the surrounding environment acquisition unit 311d to the drone reception unit 20.
位置取得部311aは、発着地点406の位置座標を取得する機能部である。位置座標は、3次元座標である。発着地点406は、移動体406aが静止している場合は、現在の移動体406aの位置座標である。移動体406aが移動している場合は、ドローン100が発着地点406の近傍所定範囲に到達するときにおける発着地点406の到達予定位置を示す座標であってもよい。
The position acquisition unit 311a is a functional unit that acquires the position coordinates of the departure point 406. The position coordinates are three-dimensional coordinates. The departure/arrival point 406 is the current position coordinate of the moving body 406a when the moving body 406a is stationary. When the moving body 406a is moving, the coordinates may indicate the expected arrival position of the landing point 406 when the drone 100 reaches a predetermined range near the landing point 406.
向き取得部311bは、移動体406aの向きを取得する機能部である。移動体406aの向きを検知するにあたっては、移動体406aが有する地磁気センサの値を参照してもよい。
The orientation acquisition unit 311b is a functional unit that acquires the orientation of the moving body 406a. In detecting the direction of the moving body 406a, the value of the geomagnetic sensor of the moving body 406a may be referred to.
角度取得部311cは、移動体406aのロール角度およびピッチ角度を取得する機能部である。
The angle acquisition unit 311c is a functional unit that acquires the roll angle and the pitch angle of the moving body 406a.
周辺環境取得部311dは、ドローン100が発着地点406に着陸するにあたって障害になりえる、周辺環境に関する情報を取得する機能部であり、例えば風の強さおよび向き、雨又は雪等の降水の有無を取得する。また、周辺環境取得部311dは、発着地点406が振動している場合は、その情報を取得する。発着地点406の振動は、地震であってもよいし、交通量の多い道路の近傍において発生する振動であってもよい。発着地点406の振動は、移動体406aが備える6軸ジャイロセンサにより測定可能である。さらに、周辺環境取得部311dは、RTK-GPSが通信する衛星の情報、通信状態、および地磁気の情報を取得してもよい。周辺環境取得部311dからの情報を受信したドローン100は、周辺環境に関する情報に基づいて着陸の可否を判定する。
The surrounding environment acquisition unit 311d is a functional unit that acquires information about the surrounding environment, which can be a hindrance when the drone 100 lands at the landing point 406. For example, wind strength and direction, presence of precipitation such as rain or snow. To get. Further, when the departure/arrival point 406 is vibrating, the surrounding environment acquisition unit 311d acquires the information. The vibration at the departure/arrival point 406 may be an earthquake or may be a vibration generated near a road having a large traffic volume. The vibration at the departure/arrival point 406 can be measured by a 6-axis gyro sensor included in the moving body 406a. Furthermore, the surrounding environment acquisition unit 311d may acquire information on satellites that the RTK-GPS communicates with, communication status, and geomagnetic information. The drone 100 that has received the information from the surrounding environment acquisition unit 311d determines whether or not to land based on the information about the surrounding environment.
さらに、周辺環境取得部311dは、周辺環境に関する情報の1つとして、移動体406a周辺に存在する障害物を検知する。障害物は、例えば家屋やガードレール、電線等の構造物、および人や動物などの生き物、車等の移動体等、ドローン100が着陸するにあたり衝突の危険があるものである。周辺環境取得部311dは、例えば可視光又は赤外線によるカメラを備えていて、移動体406a周辺の障害物を検知する。また、障害物の検知は、カメラに替えて、又は加えて、Rader/Liderを用いて行うことができ、例えば移動体406aの例である自動車に一般的に備えられている障害物検知のシステムを使用することができる。この構成によれば、ドローン100が検知しきれない障害物の情報を、ドローン100に伝達することができる。したがって、ドローン100が障害物に衝突する危険を、より低減することができる。
Further, the surrounding environment acquisition unit 311d detects an obstacle existing around the moving body 406a as one of the information on the surrounding environment. The obstacles are, for example, structures such as houses, guardrails, electric wires, creatures such as people and animals, and moving bodies such as cars, and the like, which pose a risk of collision when the drone 100 lands. The surrounding environment acquisition unit 311d includes, for example, a camera using visible light or infrared light, and detects an obstacle around the moving body 406a. Further, the detection of an obstacle can be performed by using a Rader/Lider in place of or in addition to the camera, and for example, an obstacle detection system generally provided in an automobile, which is an example of the moving body 406a. Can be used. According to this configuration, information on an obstacle that the drone 100 cannot detect can be transmitted to the drone 100. Therefore, the risk of the drone 100 colliding with an obstacle can be further reduced.
着陸情報送信部311は、位置取得部311a、向き取得部311b、角度取得部311cおよび周辺環境取得部311dにより取得される情報の少なくともいずれかに基づいて、ドローン100が安全に着陸できるか否かを判定し、判定結果をドローン受信部20に送信してもよい。なお、当該判定は、ドローン100の飛行制御部21が行ってもよい。
The landing information transmission unit 311 determines whether the drone 100 can land safely based on at least one of the information acquired by the position acquisition unit 311a, the orientation acquisition unit 311b, the angle acquisition unit 311c, and the surrounding environment acquisition unit 311d. May be determined and the determination result may be transmitted to the drone receiving unit 20. The flight control unit 21 of the drone 100 may make the determination.
移動体状態送信部32は、移動体406aの状態をドローン受信部20に伝達する機能部である。移動体状態送信部32は、特に、移動体406aが発着地点406としての機能を発揮できる状態であるかの情報を取得し、ドローン受信部20に伝達する。発着地点406としての機能とは、ドローン100が上面板824に離着陸できること、ドローン100のバッテリ502および薬液を補充可能であること、等を含む。
The mobile unit state transmission unit 32 is a functional unit that transmits the state of the mobile unit 406a to the drone receiving unit 20. The moving body state transmission unit 32 particularly acquires information on whether or not the moving body 406a is in a state in which it can perform the function as the departure/arrival point 406, and transmits it to the drone receiving unit 20. The function as the landing point 406 includes that the drone 100 can take off and land on the upper plate 824, that the battery 502 of the drone 100 and the chemical solution can be replenished, and the like.
移動体状態送信部32は、形態取得部321と、搭載状態取得部322と、運転状態取得部323と、作業状態取得部324と、システム状態取得部325と、を備える。移動体状態送信部32は、形態取得部321、搭載状態取得部322、運転状態取得部323、作業状態取得部324、およびシステム状態取得部325により取得される以下の各情報を、ドローン受信部20に伝達する。
The mobile body status transmission unit 32 includes a form acquisition unit 321, a mounting status acquisition unit 322, an operation status acquisition unit 323, a work status acquisition unit 324, and a system status acquisition unit 325. The mobile body state transmission unit 32 uses the drone reception unit to obtain the following pieces of information obtained by the form acquisition unit 321, the mounting state acquisition unit 322, the driving state acquisition unit 323, the work state acquisition unit 324, and the system state acquisition unit 325. Communicate to 20.
形態取得部321は、移動体406aの形態を取得する機能部である。移動体406aは、前述の形態切替機構により、少なくとも、移動体406aが移動するときの走行形態と、移動体406aからドローン100が離着陸するときの離発着基地形態とが切替可能である。また、本実施形態においては、側方板823が倒れている作業台形態にも切替可能である。形態取得部321は、移動体406aが、走行形態、離発着基地形態、および作業台形態のいずれの形態になっているかの情報を取得する。形態取得部321は、レール825のラックアンドピニオン機構を駆動するモータ等、形態切替機構を駆動する適宜の構成の駆動状態に基づいて、移動体406aの形態を取得してもよい。また、形態取得部321は、タッチスイッチ等、移動体406aの形態を機構的に検知する構成を有していてもよい。
The form acquisition unit 321 is a functional unit that acquires the form of the moving body 406a. The moving body 406a can switch at least a traveling mode when the moving body 406a moves and a take-off/landing base shape when the drone 100 takes off and land from the moving body 406a by the above-described form switching mechanism. Further, in the present embodiment, it is also possible to switch to a workbench configuration in which the side plate 823 is tilted. The form acquisition unit 321 acquires information on which of the running form, the takeoff/arrival base form, and the workbench form of the moving body 406a. The form acquisition unit 321 may acquire the form of the moving body 406a based on the drive state of an appropriate configuration that drives the form switching mechanism, such as a motor that drives the rack and pinion mechanism of the rail 825. The form acquisition unit 321 may have a configuration such as a touch switch that mechanically detects the form of the moving body 406a.
作業台状態においては、使用者402が移動体406aの近傍に存在している蓋然性が高いため、ドローン100を離着陸させることができない。したがって、移動体送信部31が、ドローン100の離着陸を禁止する信号又は離着陸を許可する信号をドローン受信部20に送信することで、使用者402に対する安全性が担保される。
In the workbench state, it is highly likely that the user 402 is present near the moving body 406a, so the drone 100 cannot be taken off and landed. Therefore, by transmitting the signal for prohibiting the takeoff/landing of the drone 100 or the signal for permitting the takeoff/landing of the drone 100 to the drone receiving unit 20, the safety to the user 402 is secured.
搭載状態取得部322は、ドローン100が発着地点406に積載されているか否かの情報を取得する機能部である。また、搭載状態取得部322は、ドローン100が発着地点406に固定され、移動体406aが安全に移動可能な状態になっているか否かの情報を取得可能である。搭載状態取得部322は、移動体406aが安全に移動可能な状態であるか否かに基づいて、移動体406aの移動許可および不許可を判定し、当該判定結果を、表示部65を通じて使用者402に伝達してもよい。
The loading state acquisition unit 322 is a functional unit that acquires information on whether the drone 100 is loaded at the departure point 406. Further, the mounting state acquisition unit 322 can acquire information on whether or not the drone 100 is fixed to the departure/arrival point 406 and the moving body 406a is in a safely movable state. The mounting state acquisition unit 322 determines whether the moving body 406a is allowed to move or not based on whether or not the moving body 406a is in a safe movable state, and the result of the determination is displayed on the display unit 65 by the user. It may be transmitted to 402.
運転状態取得部323は、移動体406aが移動中又は移動可能な状態にあるか否かを示す運転情報を取得する。また、運転状態取得部323は、移動体406aのさらに詳細な運転状態を取得可能であり、移動中であるか、停車しているが移動可能なアイドル状態であるかを区別して取得可能である。また、運転状態取得部323は、移動体406aが移動不可能な状態においてさらに詳細な運転状態を取得可能であり、停車中である情報の他、形態取得部321からの情報を参照して、作業台形態での作業中、又は形態の変形中である旨の情報を取得してもよい。
The driving state acquisition unit 323 acquires driving information indicating whether or not the moving body 406a is moving or in a movable state. In addition, the driving state acquisition unit 323 can acquire a more detailed driving state of the moving body 406a, and can separately acquire whether the moving body 406a is moving or is in a stopped but movable idle state. .. Further, the driving state acquisition unit 323, it is possible to acquire a more detailed driving state in a state in which the moving body 406a is immovable, other than the information that is stopped, with reference to the information from the form acquisition unit 321, Information indicating that work is being performed on the workbench or that the work is being deformed may be acquired.
作業状態取得部324は、ドローン100に補充するバッテリ502および薬液の状態を取得する機能部である。作業状態取得部324は、バッテリ502に対する補充作業の状況を示すバッテリ補充情報をドローン受信部20に伝達する。バッテリ補充情報は、現在移動体406aが荷室821内のバッテリ502を充電中であるか否かの情報、移動体406aの荷室821でバッテリ502の準備をしている状態、移動体406a上でバッテリ502を交換中、又は交換が完了した状態のいずれであるかの情報を含む。また、作業状態取得部324は、薬剤の補充作業の状況を示す薬剤補充情報をドローン受信部20に伝達する。薬剤補充情報は、荷室821で薬剤の準備をしている状態、移動体406a上で薬剤を補充中、又は補充が完了した状態のいずれであるかの情報を含む。また、薬剤補充情報は、荷室821内又は近傍で行われる、薬剤の希釈および混合の進行状況を示す情報を含む。
The work status acquisition unit 324 is a functional unit that acquires the status of the battery 502 and the chemical liquid to be replenished in the drone 100. The work status acquisition unit 324 transmits the battery replenishment information indicating the status of replenishment work for the battery 502 to the drone receiving unit 20. The battery replenishment information is information on whether or not the moving body 406a is currently charging the battery 502 in the luggage compartment 821, a state in which the battery 502 is being prepared in the luggage compartment 821 of the moving body 406a, and on the moving body 406a. The information includes whether the battery 502 is being replaced or the replacement is completed. Further, the work status acquisition unit 324 transmits the drug replenishment information indicating the status of the drug refill work to the drone receiving unit 20. The medicine replenishment information includes information indicating whether the medicine is being prepared in the luggage compartment 821, the medicine is being replenished on the moving body 406a, or the replenishment is completed. In addition, the medicine replenishment information includes information indicating the progress status of dilution and mixing of medicines performed in or near the luggage compartment 821.
システム状態取得部325は、移動体406aが有するシステムがおかれている状態(以下、「システム状態」ともいう。)の情報を取得する機能部である。システム状態の情報は、移動体406aの異常の有無、基地局404の異常の有無の情報を含む。なお、本説明においてドローン100、基地局404、および移動体406aの「異常」とは、外部環境が異常な状態の他、内部の故障も含む。
The system status acquisition unit 325 is a functional unit that acquires information on the status of the system of the mobile unit 406a (hereinafter, also referred to as “system status”). The information on the system state includes information on the presence/absence of abnormality of the mobile unit 406a and the presence/absence of abnormality of the base station 404. In this description, “abnormality” of the drone 100, the base station 404, and the moving body 406a includes not only a state in which the external environment is abnormal but also an internal failure.
移動体406aの異常においては、発生している異常の内容に基づいて、ドローン100がすぐに帰還すべきか否かの情報も含む。移動体406aの異常の程度が軽微であったり、ドローン100の作業に大きな影響のない種類の異常である場合には、ドローン100を帰還させる必要がない場合もあるためである。ドローン100の帰還が必要な異常とは、移動体406aの燃料が所定以下になった場合等が考えられる。システム状態の情報は、移動体406aを駆動する駆動源の、駆動エネルギー容量の残量を含む。システム状態取得部325は、移動体406aを駆動する燃料の残量が所定以下であるとき、その旨を通知可能である。移動体406aの駆動源は、ガソリン、電気、燃料電池等、適宜のものであってよい。
Regarding the abnormality of the mobile unit 406a, it also includes information on whether or not the drone 100 should return immediately based on the content of the abnormality that has occurred. This is because there is a case where it is not necessary to return the drone 100 when the degree of abnormality of the moving body 406a is slight or the type of abnormality does not greatly affect the work of the drone 100. The abnormality in which the drone 100 needs to be returned may be, for example, a case where the fuel of the moving body 406a has dropped below a predetermined level. The system state information includes the remaining amount of drive energy capacity of the drive source that drives the moving body 406a. When the remaining amount of fuel that drives the moving body 406a is less than or equal to a predetermined amount, the system state acquisition unit 325 can notify that effect. The drive source of the moving body 406a may be an appropriate source such as gasoline, electricity, a fuel cell, or the like.
なお、基地局404に異常が生じている旨の情報は、移動体送信部31からドローン受信部20に伝達されてもよいし、移動体送信部31を介さず、基地局404からドローン受信部20に伝達されてもよい。
The information indicating that the abnormality has occurred in the base station 404 may be transmitted from the mobile transmission unit 31 to the drone reception unit 20, or may be transmitted from the base station 404 to the drone reception unit without passing through the mobile transmission unit 31. May be transmitted to 20.
資源情報送信部33は、ドローン100に補充可能な移動体406aに準備されている資源の量を示す資源情報を、ドローン受信部20に送信する機能部である。資源情報は、充電済みのバッテリ502の個数や薬剤量を含む。また、資源情報は、バッテリ502を充電する設備の充電余力であってもよい。ドローン100が燃料電池で駆動する構成の場合は、ドローン100に貯留可能な燃料ガス、例えば水素ガスの量であってもよい。移動体406aに準備されている資源の量は、使用者402による手入力によって取得されてもよいし、自動で取得する構成であってもよい。自動で取得する構成の例としては、薬剤量を取得するために荷室821の所定範囲の重量を計測する構成を有していてもよい。また、充電済みのバッテリ502の個数を取得するために、荷室821の所定範囲の重量に加えて、バッテリ502の容量を測定する構成を有していてもよい。
The resource information transmission unit 33 is a functional unit that transmits resource information indicating the amount of resources prepared in the mobile body 406a that can be replenished to the drone 100 to the drone reception unit 20. The resource information includes the number of charged batteries 502 and the amount of medicine. Further, the resource information may be the remaining charging capacity of the facility that charges the battery 502. In the case where the drone 100 is driven by a fuel cell, the amount of fuel gas that can be stored in the drone 100, such as hydrogen gas, may be used. The amount of resources prepared in the moving body 406a may be manually input by the user 402 or may be automatically acquired. As an example of the configuration that is automatically acquired, a configuration may be adopted in which the weight of a predetermined range of the luggage compartment 821 is measured in order to acquire the drug amount. In addition, in order to obtain the number of charged batteries 502, the capacity of the batteries 502 may be measured in addition to the weight of a predetermined range of the luggage compartment 821.
介入操作部35は、ドローン100の飛行制御の命令をドローン受信部20に送信する機能部である。ドローン100は、通常時にはドローン100自体が有する飛行制御部21により自律的に動作するが、ドローン100に異常が生じた場合等には、移動体406aからの命令が介入して、ドローン100を操作することができる。移動体406aの入力部36を通じて、使用者402からの命令をドローン100に伝達することもできる。特に、介入操作部35は、使用者402がドローン100の作業を中止して発着地点406に帰還させたい場合に、帰還する旨の命令をドローン100に送信することができる。また、介入操作部35は、ドローン100の3次元位置座標、速度、加速度、機首の向きを個別に操作する信号をドローン100に送信可能であってもよい。介入操作部35は、ドローン100からの異常情報を受け取ると、ドローン100の飛行の制御を開始してもよい。
The intervention operation unit 35 is a functional unit that transmits a flight control command of the drone 100 to the drone receiving unit 20. The drone 100 normally operates autonomously by the flight control unit 21 included in the drone 100 itself, but when an abnormality occurs in the drone 100, a command from the mobile unit 406a intervenes to operate the drone 100. can do. A command from the user 402 may be transmitted to the drone 100 through the input unit 36 of the mobile unit 406a. In particular, when the user 402 wants to stop the work of the drone 100 and return to the departure point 406, the intervention operation unit 35 can send a command to the drone 100 to return. Further, the intervention operation unit 35 may be capable of transmitting to the drone 100 a signal for individually operating the three-dimensional position coordinates, speed, acceleration, and nose direction of the drone 100. When the intervention operation unit 35 receives the abnormality information from the drone 100, the intervention operation unit 35 may start controlling the flight of the drone 100.
入力部36は、使用者402からの入力を受け付ける機能部である。入力部36は、例えばドローン100の飛行を開始する旨の命令や、ドローン100を発着地点406に帰還させる旨の命令が入力可能である。入力部36は、表示部65と同様の機構で構成されるタブレットであってもよい。
The input unit 36 is a functional unit that receives an input from the user 402. The input unit 36 can input, for example, a command to start the flight of the drone 100 or a command to return the drone 100 to the departure point 406. The input unit 36 may be a tablet having the same mechanism as the display unit 65.
図11に示すように、移動体406aは、移動体受信部60、表示部65、および移動体制御部66をさらに有する。
As shown in FIG. 11, the mobile unit 406a further includes a mobile unit reception unit 60, a display unit 65, and a mobile unit control unit 66.
移動体受信部60は、ドローン送信部40からの情報を受信する機能部である。移動体受信部60が受信する情報に関しては、ドローン100の機能ブロックの説明と共に後述する。
The mobile reception unit 60 is a functional unit that receives information from the drone transmission unit 40. Information received by the mobile body receiver 60 will be described later together with a description of functional blocks of the drone 100.
表示部65は、使用者402に伝達すべき情報を適宜表示するための機能部である。
The display unit 65 is a functional unit for appropriately displaying information to be transmitted to the user 402.
移動体制御部66は、移動体受信部60により受信される情報に基づいて、移動体406aの動作を決定する機能部である。移動体406aの動作は、使用者402への通知要否の判定や、移動体406aの形態を変更する動作を含む。移動体制御部66の動作の詳細は、移動体受信部60が受信する情報、およびドローン100の機能ブロックの説明と共に後述する。
The mobile unit control unit 66 is a functional unit that determines the operation of the mobile unit 406a based on the information received by the mobile unit reception unit 60. The operation of the moving body 406a includes an operation of determining whether or not to notify the user 402 and an operation of changing the form of the moving body 406a. The details of the operation of the mobile body control unit 66 will be described later together with the information received by the mobile body receiving unit 60 and the functional block of the drone 100.
●ドローンの機能ブロック
図11に示すように、ドローン送信部40は、機体情報送信部41と、予測情報送信部42と、異常検知部43と、要求指令送信部44と、を備える。 ● Functional Block of Drone As shown in FIG. 11, the drone transmission unit 40 includes a machine body information transmission unit 41, a prediction information transmission unit 42, an abnormality detection unit 43, and a request command transmission unit 44.
図11に示すように、ドローン送信部40は、機体情報送信部41と、予測情報送信部42と、異常検知部43と、要求指令送信部44と、を備える。 ● Functional Block of Drone As shown in FIG. 11, the drone transmission unit 40 includes a machine body information transmission unit 41, a prediction information transmission unit 42, an abnormality detection unit 43, and a request command transmission unit 44.
機体情報送信部41は、ドローン100の現在の状況に関する情報を、移動体受信部60に送信する機能部である。機体情報送信部41は、位置取得部411と、向き取得部412と、作業情報取得部413と、通信環境取得部414と、資源情報取得部415と、運転経路取得部416と、搭載状態取得部417と、を備える。
The machine body information transmission unit 41 is a functional unit that transmits information regarding the current status of the drone 100 to the mobile body reception unit 60. The machine body information transmission unit 41 includes a position acquisition unit 411, an orientation acquisition unit 412, a work information acquisition unit 413, a communication environment acquisition unit 414, a resource information acquisition unit 415, a driving route acquisition unit 416, and a mounting state acquisition. And a unit 417.
位置取得部411は、ドローン100の3次元位置座標を取得する機能部である。3次元位置座標は、RTK-GPSの情報に基づいて取得される。本構成によれば、ドローン100の現在の位置を表示部65に表示することができる。また、ドローン100が発着地点406に着陸している際にドローン100の3次元座標を取得して、ドローン100自体および移動体406aに、着陸可能な座標として記憶しておくことも可能である。ドローン100は、着陸時のドローン100の3次元座標に基づいて、着陸する位置を決定するように構成されていてもよい。この構成によれば、着陸するために取得する発着地点406の位置座標をドローン100の構成により取得することができるため、移動体406aにRTK-GPSの構成を搭載する必要がなく、構成が簡素にできる。また、移動体制御部66は、ドローン100が着陸している際の座標に基づいて、ドローン100が帰還可能となるように移動体406aを誘導することも可能である。
The position acquisition unit 411 is a functional unit that acquires the three-dimensional position coordinates of the drone 100. The three-dimensional position coordinates are acquired based on the RTK-GPS information. According to this configuration, the current position of the drone 100 can be displayed on the display unit 65. It is also possible to acquire the three-dimensional coordinates of the drone 100 while the drone 100 is landing at the departure/arrival point 406 and store it in the drone 100 itself and the moving body 406a as the landable coordinates. The drone 100 may be configured to determine the landing position based on the three-dimensional coordinates of the drone 100 when landing. According to this configuration, since the position coordinates of the landing point 406 to be acquired for landing can be acquired by the configuration of the drone 100, it is not necessary to mount the RTK-GPS configuration on the moving body 406a, and the configuration is simple. You can In addition, the moving body control unit 66 can also guide the moving body 406a so that the drone 100 can return, based on the coordinates when the drone 100 is landing.
向き取得部412は、ドローン100の機首の向きを取得する機能部である。機首の向きは、ドローン100に搭載されている地磁気センサの値、又はGPSコンパスの値を参照して取得される。
Orientation acquisition unit 412 is a functional unit that acquires the orientation of the drone 100 nose. The heading direction is acquired by referring to the value of the geomagnetic sensor mounted on the drone 100 or the value of the GPS compass.
作業情報取得部413は、ドローン100が行っている作業状態に関する情報を取得する機能部である。ドローン100の作業状態とは、離陸中、着陸中、ホバリング待機中の状態を含む。また、ドローン100が圃場に進入中の状態、および圃場外を飛行中の状態を含む。さらに、ドローン100が薬剤散布又は監視等の作業を行っている状態、および当該作業を行っていない状態を含む。作業状態に関する情報は、表示部65を通じて適宜表示されてもよい。この構成によれば、使用者402は、自動運転のドローン100の状態を略リアルタイムで知ることができ、使用者402に安心感を与える。
The work information acquisition unit 413 is a functional unit that acquires information regarding the work status of the drone 100. The working state of the drone 100 includes a state of taking off, landing, and waiting for hovering. It also includes a state in which the drone 100 is entering the field and a state in which it is flying outside the field. Furthermore, it includes a state in which the drone 100 is performing a work such as spraying or monitoring a drug, and a state in which the work is not performed. The information regarding the work state may be displayed appropriately through the display unit 65. According to this configuration, the user 402 can know the state of the drone 100 in automatic driving in substantially real time, and gives the user 402 a sense of security.
通信環境取得部414は、衛星との通信、および移動体406aその他ドローンシステム500が有する構成との通信の状態を取得する機能部である。
The communication environment acquisition unit 414 is a functional unit that acquires the status of communication with the satellite and communication with the mobile unit 406a and other components of the drone system 500.
資源情報取得部415は、ドローン100が積載している資源量、すなわちバッテリ502の残量や薬剤タンク104の残量を取得する機能部である。
The resource information acquisition unit 415 is a functional unit that acquires the amount of resources loaded on the drone 100, that is, the remaining amount of the battery 502 and the remaining amount of the drug tank 104.
運転経路取得部416は、あらかじめ定められているドローン100の圃場内の運転経路の情報を取得する機能部である。ドローン100は、当該運転経路の情報に基づいて圃場内を飛行し、監視や薬剤散布等の所定の作業を行う。また、運転経路取得部416は、ドローン100が圃場に進入又は圃場から退出する入退出点と、発着地点406とを結ぶ発着経路の情報と、を取得し、ドローン送信部40を介して移動体406aに送信してもよい。
The driving route acquisition unit 416 is a functional unit that acquires information on a driving route in the field of the drone 100 that is predetermined. The drone 100 flies in the field based on the information on the driving route, and performs predetermined work such as monitoring and spraying chemicals. Further, the driving route acquisition unit 416 acquires the entry/exit point at which the drone 100 enters or leaves the field and the information about the departure/arrival route connecting the departure/arrival point 406, and the moving body via the drone transmission unit 40. It may be transmitted to 406a.
搭載状態取得部417は、ドローン100が移動体406aに積載されているか否かの情報を取得する機能部である。また、搭載状態取得部417は、ドローン100が移動体406aの発着地点406に固定され、移動体406aが安全に移動可能な状態になっているかを示す搭載情報を取得可能であってもよい。搭載状態取得部417は、ドローン100が安全に固定されている場合には、移動体406aの移動を許可する旨の信号を、ドローン送信部40を介して移動体406aに送信してもよい。また、搭載状態取得部417は、ドローン100が固定されていない場合には、移動体406aの移動を許可しない旨の信号を、ドローン送信部40を介して移動体406aに送信してもよい。
The loading state acquisition unit 417 is a functional unit that acquires information on whether or not the drone 100 is loaded on the moving body 406a. Further, the mounting state acquisition unit 417 may be able to acquire mounting information indicating whether the drone 100 is fixed to the departure point 406 of the moving body 406a and the moving body 406a is in a safe movable state. When the drone 100 is safely fixed, the mounting state acquisition unit 417 may transmit a signal to the effect that movement of the moving body 406a is permitted to the moving body 406a via the drone transmitting unit 40. Further, when the drone 100 is not fixed, the mounting state acquisition unit 417 may transmit a signal indicating that the movement of the moving body 406a is not permitted to the moving body 406a via the drone transmitting unit 40.
予測情報送信部42は、ドローン100が発着地点406に帰還して行う、資源の補充に関する情報を予測し、移動体受信部60に送信する機能部である。予測情報送信部42は、帰還時刻取得部421と、帰還回数取得部422と、必要補充量取得部423と、を備える。
Prediction information transmitting unit 42 is a functional unit that predicts information regarding resource replenishment performed by drone 100 returning to departure point 406 and transmits it to mobile unit receiving unit 60. The prediction information transmission unit 42 includes a return time acquisition unit 421, a return frequency acquisition unit 422, and a necessary supplement amount acquisition unit 423.
帰還時刻取得部421は、ドローン100が圃場等の対象エリアにあらかじめ定められる運転予定経路上の作業を完了させるにあたり、作業の開始からドローン100が資源の補充のために発着地点406に帰還する作業中断点に到達するまでの所要時間を算出する機能部である。帰還時刻取得部421は、当該所要時間および現在時刻を参照して、作業を中断する予定時刻、およびドローン100が発着地点406に帰還する予定時刻を取得可能であってもよい。
The return time acquisition unit 421, when the drone 100 completes the work on the predetermined operation route in the target area such as a field, the drone 100 returns from the start of the work to the departure/arrival point 406 to replenish resources. It is a functional unit that calculates the time required to reach the interruption point. The return time acquisition unit 421 may be able to acquire the scheduled time at which work is to be interrupted and the scheduled time at which the drone 100 will return to the departure point 406 by referring to the required time and the current time.
帰還回数取得部422は、ドローン100が資源の補充のために発着地点406に帰還する予定回数を取得する機能部である。
The return frequency acquisition unit 422 is a functional unit that acquires the scheduled frequency at which the drone 100 will return to the departure point 406 to supplement resources.
必要補充量取得部423は、ドローン100に補充が必要な資源の量を取得する機能部である。必要な資源の量は、例えば充電済みバッテリの個数や、薬剤量である。充電済みバッテリの個数は、運転予定経路の長さや、過去の消費電力の実績値等を勘案して算出可能である。薬剤量は、圃場の総面積と、薬剤の種類に応じて定められる散布濃度に基づいて算出可能である。
Requirement replenishment amount acquisition unit 423 is a functional unit that acquires the amount of resources that drone 100 needs to be replenished. The necessary amount of resources is, for example, the number of charged batteries or the amount of medicine. The number of charged batteries can be calculated in consideration of the length of the planned driving route, the past actual value of power consumption, and the like. The drug amount can be calculated based on the total area of the field and the spray concentration determined according to the type of drug.
異常検知部43は、ドローン100に生じている異常を検知し、ドローン送信部40を通じて移動体受信部60に送信する機能部である。ドローン100に異常が生じている場合、ドローン100は発着地点406に帰還する。移動体制御部66は、ドローン100の異常を受信すると、異常検知部43からの情報に基づいて、ドローン100が帰還可能な位置に、帰還可能な形態となっているかを判定し、必要に応じて位置又は形態を変更する。また、移動体制御部66は、使用者402に位置又は形態を変更するよう表示部65を通じて通知する。さらに、移動体制御部66は、使用者402に移動体406aから所定以上離れるよう、表示部65を通じて通知する。
The abnormality detection unit 43 is a functional unit that detects an abnormality that has occurred in the drone 100 and transmits it to the mobile reception unit 60 via the drone transmission unit 40. If the drone 100 is abnormal, the drone 100 returns to the departure point 406. When the moving body control unit 66 receives the abnormality of the drone 100, it determines whether or not the drone 100 is in a returnable position based on the information from the abnormality detection unit 43, and if necessary. Change the position or form. In addition, the mobile body control unit 66 notifies the user 402 through the display unit 65 to change the position or form. Further, the moving body control unit 66 notifies the user 402 through the display unit 65 to move away from the moving body 406a by a predetermined amount or more.
要求指令送信部44は、移動体406aの状態に関する要求指令を、移動体受信部60に送信する機能部である。特に、要求指令送信部44は、ドローン100が帰還を予定している場合において、移動体406aの位置、向き、および形態を着陸可能な状態にする旨の要求を、移動体受信部60に送信してもよい。移動体制御部66は、当該要求に基づいて自動で着陸可能な状態に変更してもよいし、使用者402に適宜の通知をすることで着陸可能な状態になるよう使用者402を誘導してもよい。また、要求指令送信部44は、移動体406aが着陸可能な状態にある場合には、移動体406aの移動を禁止する指令、および移動体406aの形態の変更を禁止する指令を送信してもよい。
The request command transmitting unit 44 is a functional unit that transmits a request command regarding the state of the mobile unit 406a to the mobile unit receiving unit 60. In particular, the request command transmission unit 44 transmits a request to the mobile unit reception unit 60 to make the position, orientation, and form of the mobile unit 406a ready for landing when the drone 100 is scheduled to return. You may. The mobile unit control unit 66 may automatically change to the landable state based on the request, or guide the user 402 to the landable state by giving an appropriate notification to the user 402. May be. Further, the request command transmitting unit 44, even when the mobile body 406a is in a landable state, transmits a command to prohibit the movement of the mobile body 406a and a command to prohibit the change of the form of the mobile body 406a. Good.
●ドローンが移動体上の発着地点に着陸するフローチャート
図12に示すように、まず、移動体受信部60は、ドローン100の着陸予定座標、機首の向き、および着陸予定時刻を、機体情報送信部41および予測情報送信部42から受信する(S11)。 ●Flow chart of a drone landing at a departure/arrival point on a moving body As shown in FIG. 12, first, the moving body receiving unit 60 transmits thedrone 100's planned landing coordinates, nose direction, and scheduled landing time to the aircraft information. It is received from the unit 41 and the prediction information transmission unit 42 (S11).
図12に示すように、まず、移動体受信部60は、ドローン100の着陸予定座標、機首の向き、および着陸予定時刻を、機体情報送信部41および予測情報送信部42から受信する(S11)。 ●Flow chart of a drone landing at a departure/arrival point on a moving body As shown in FIG. 12, first, the moving body receiving unit 60 transmits the
移動体制御部66は、移動体406aの位置、向き、および角度が、ドローン100が帰還可能な範囲になっているか否かを判定する(S12)。帰還可能でない場合には、移動体制御部66は、移動制御部30を駆動させて、移動体406aをドローン100が帰還可能な位置、向き、および角度になるよう移動させる(S13)。又は、移動体制御部66は、表示部65を通じて移動体406aの移動要求を使用者402に通知し、ステップS12に戻る。
The mobile body control unit 66 determines whether or not the position, orientation, and angle of the mobile body 406a are within a range in which the drone 100 can return (S12). If it is not possible to return, the moving body control unit 66 drives the movement control unit 30 to move the moving body 406a so that the drone 100 can return to the position, direction, and angle (S13). Alternatively, the moving body control unit 66 notifies the user 402 of the movement request of the moving body 406a through the display unit 65, and returns to step S12.
移動体406aの位置、向き、および角度が帰還可能な範囲になっている場合、移動体406aを移動させないよう表示部65を通じて使用者402に通知する(S14)。また、移動体406aの位置、向き、および角度をドローン100に送信する。
If the position, orientation, and angle of the moving body 406a are within the returnable range, the user 402 is notified through the display unit 65 not to move the moving body 406a (S14). In addition, the position, orientation, and angle of the moving body 406a are transmitted to the drone 100.
次いで、移動体制御部66は、周辺環境取得部311dにより取得される、衛星又はドローンシステム500上の他の構成との通信状態が適切か否かを判定する(S15)。通信状態が適切でない場合、所定時間待機する(S16)。また、通信状態に起因して待機している旨を使用者402に通知する。さらに、待機を予定している時間を通知するように構成されていてもよい。また、待機に代えて、移動体406aの位置を移動させるような要求を使用者402に通知してもよい。移動体406aが電波障害を引き起こす構造物の近傍に配置されている場合や、衛星との通信にあたって、移動体406aから見た衛星の位置が誤認識されてしまうような場合には、移動体406aの移動が有用である。
Next, the mobile control unit 66 determines whether or not the communication state with the satellite or another configuration on the drone system 500 acquired by the surrounding environment acquisition unit 311d is appropriate (S15). If the communication state is not appropriate, the system waits for a predetermined time (S16). In addition, the user 402 is notified that he is waiting due to the communication state. Further, it may be configured to notify the time when the waiting is scheduled. Further, instead of waiting, the user 402 may be notified of a request to move the position of the moving body 406a. When the moving body 406a is placed near a structure causing radio interference, or when the position of the satellite seen from the moving body 406a is erroneously recognized when communicating with the satellite, the moving body 406a Is useful to move.
次いで、移動体制御部66は、形態取得部321により取得される移動体406aが、ドローン100が帰還可能な形態になっているか否かを判定する(S17)。ドローン100が帰還可能な形態ではない場合、移動体制御部66は、ドローン100の形態を変更する(S18)。また、移動体制御部66は、移動体406aの形態を変更するよう、表示部65を通じて使用者402に通知してもよい。
Next, the moving body control unit 66 determines whether or not the moving body 406a acquired by the form acquiring unit 321 is in a form in which the drone 100 can return (S17). If the drone 100 is not in a returnable form, the moving body control unit 66 changes the form of the drone 100 (S18). Further, the moving body control unit 66 may notify the user 402 through the display unit 65 to change the form of the moving body 406a.
次いで、移動体制御部66は、移動体406aの運転状態が、ドローン100が帰還可能な状態になっているか否かを判定する(S19)。ドローン100が帰還可能な運転状態ではない場合、移動体制御部66は、運転状態を変更する(S20)。また、移動体制御部66は、移動体406aの運転状態を変更するよう、表示部65を通じて使用者402に通知してもよい。
Next, the moving body control unit 66 determines whether or not the operating state of the moving body 406a is in a state where the drone 100 can return to the vehicle (S19). When the drone 100 is not in the returnable driving state, the moving body control unit 66 changes the driving state (S20). Further, the moving body control unit 66 may notify the user 402 via the display unit 65 to change the operating state of the moving body 406a.
表示部65は、ドローン100が帰還予定であるため、荷台82に近づかないよう使用者402に通知する(S21)。このとき、周辺環境取得部311dにより取得される情報に基づいて、移動体406a周辺に人や障害物が存在していないことを確認した上で、ドローン100に着陸許可を出すよう構成されていてもよい。着陸許可が受信されると、ドローン100は、発着地点406に着陸する(S22)。
The display unit 65 notifies the user 402 so as not to approach the loading platform 82 because the drone 100 is scheduled to return (S21). At this time, based on the information acquired by the surrounding environment acquisition unit 311d, after confirming that there is no person or obstacle around the moving body 406a, it is configured to issue a landing permission to the drone 100. Good. When the landing permission is received, the drone 100 lands at the departure point 406 (S22).
●移動体が保有する、ドローンに補充すべき資源を管理するフローチャート
図13に示すように、移動体受信部60は、ドローン100のバッテリ502の必要個数、薬剤の必要量、帰還予定時刻、および帰還回数等の情報を、ドローン100の予測情報送信部42からを受信する(S31)。移動体制御部66は、資源情報送信部33により取得される資源量を参照し、移動体406aが保有しているバッテリ502の個数、および薬剤量が、充分であるか否かを判定する(S32)。移動体406aの保有するバッテリ502の個数又は薬剤量が充分ではない場合、移動体制御部66は、補充する必要がある旨、および必要な補充量を使用者402に通知する(S33)。また、移動体制御部66は、次の帰還までに必要な量と、圃場の作業終了までに必要な総量とを区別して使用者402に通知してもよい。 ●Flowchart for managing resources to be replenished to the drone held by the mobile unit As shown in FIG. 13, the mobile unit reception unit 60 includes a required number ofbatteries 502 of the drone 100, a required amount of medicine, a scheduled return time, and Information such as the number of times of return is received from the prediction information transmitting unit 42 of the drone 100 (S31). The mobile unit control unit 66 refers to the resource amount acquired by the resource information transmission unit 33, and determines whether or not the number of batteries 502 and the drug amount held by the mobile unit 406a are sufficient ( S32). When the number of batteries 502 or the amount of medicines held by the moving body 406a is not sufficient, the moving body control unit 66 notifies the user 402 that replenishment is necessary and the required replenishment amount (S33). In addition, the moving body control unit 66 may notify the user 402 by distinguishing the amount required until the next return from the total amount required until the end of the field work.
図13に示すように、移動体受信部60は、ドローン100のバッテリ502の必要個数、薬剤の必要量、帰還予定時刻、および帰還回数等の情報を、ドローン100の予測情報送信部42からを受信する(S31)。移動体制御部66は、資源情報送信部33により取得される資源量を参照し、移動体406aが保有しているバッテリ502の個数、および薬剤量が、充分であるか否かを判定する(S32)。移動体406aの保有するバッテリ502の個数又は薬剤量が充分ではない場合、移動体制御部66は、補充する必要がある旨、および必要な補充量を使用者402に通知する(S33)。また、移動体制御部66は、次の帰還までに必要な量と、圃場の作業終了までに必要な総量とを区別して使用者402に通知してもよい。 ●Flowchart for managing resources to be replenished to the drone held by the mobile unit As shown in FIG. 13, the mobile unit reception unit 60 includes a required number of
●ドローンに異常が生じた場合のフローチャート
図14に示すように、まず、ドローン100の異常検知部43が異常を検知する(S41)。次いで、ドローン送信部40は、ドローン100が移動体406aに帰還する旨の情報を移動体受信部60に送信する(S42)。 ● Flowchart when an abnormality occurs in the drone As shown in FIG. 14, first, the abnormality detection unit 43 of thedrone 100 detects the abnormality (S41). Next, the drone transmitting unit 40 transmits information indicating that the drone 100 will return to the moving body 406a to the moving body receiving unit 60 (S42).
図14に示すように、まず、ドローン100の異常検知部43が異常を検知する(S41)。次いで、ドローン送信部40は、ドローン100が移動体406aに帰還する旨の情報を移動体受信部60に送信する(S42)。 ● Flowchart when an abnormality occurs in the drone As shown in FIG. 14, first, the abnormality detection unit 43 of the
ドローン100の飛行制御部21は、飛行制御部21自身の制御により帰還が可能であるかを判定し(S43)、帰還可能である場合には飛行制御部21による帰還をするものとして、図12のステップS11に進む。
The flight control unit 21 of the drone 100 determines whether or not the flight control unit 21 can return under the control of the flight control unit 21 itself (S43), and if the return is possible, the flight control unit 21 returns to the flight control unit 21 as shown in FIG. Go to step S11.
飛行制御部21自身の制御により帰還が不可能であると判定される場合、移動体制御部66は、移動体406aの介入操作部35が行う介入操作により、ドローン100が帰還可能であるかを判定する(S45)。帰還可能である場合は、移動体406aからの介入操作に切り替え(S46)、図12のステップ11に進む。ステップS45において、介入操作によっても帰還が不可能であると判定される場合、ドローン100はその場で着陸するか、回転翼の動作を停止させてその場で落下させるといった、緊急停止を行う(S47)。
When it is determined that the flight control unit 21 itself cannot return, the mobile unit control unit 66 determines whether the drone 100 can return by the intervention operation performed by the intervention operation unit 35 of the mobile unit 406a. Determine (S45). If it is possible to return, the operation is switched to the intervention operation from the moving body 406a (S46), and the process proceeds to step 11 of FIG. In step S45, when it is determined that the return is impossible even by the intervention operation, the drone 100 performs an emergency stop such as landing on the spot or stopping the operation of the rotor blades to drop it on the spot ( S47).
●移動体に異常が生じた場合のフローチャート
図15に示すように、まず、移動体406aのシステム状態取得部325は、移動体406aにおいてドローン100の帰還が必要な異常が発生していることを検知する(S51)。ついで、移動体送信部31は、ドローン100を帰還させる旨の指令をドローン受信部20に送信する(S52)。 ●Flowchart when an abnormality occurs in the moving body As shown in FIG. 15, first, the system state acquisition unit 325 of the movingbody 406a confirms that an abnormality that requires the return of the drone 100 has occurred in the moving body 406a. Detect (S51). Next, the mobile body transmission unit 31 transmits a command to return the drone 100 to the drone reception unit 20 (S52).
図15に示すように、まず、移動体406aのシステム状態取得部325は、移動体406aにおいてドローン100の帰還が必要な異常が発生していることを検知する(S51)。ついで、移動体送信部31は、ドローン100を帰還させる旨の指令をドローン受信部20に送信する(S52)。 ●Flowchart when an abnormality occurs in the moving body As shown in FIG. 15, first, the system state acquisition unit 325 of the moving
●移動体(2)
図16を用いて、本発明にかかる移動体の第2の実施形態に関して、先に説明した形態と異なる部分を中心に説明する。以下、他の実施形態と同様の構成に関しては、同一の符号を付した。第2実施形態の移動体406bは、上面板824の下側に第2上面板824bが配置されている点において、第1実施形態の移動体と異なっている。この構成によれば、上面板824が摺動しても、荷室821内部の上方が開放されることがなく、積載物を保護することができる。また、移動体406bは、側方のあおり823bの下端が、荷室821の端部とヒンジで連結されていて、あおり823bを倒して荷室821の底面と略平行に固定することができる。この構成によれば、荷室821内部の積載物にアプローチできると共に、あおり823bを作業台としても利用することができる。 ● Moving body (2)
With reference to FIG. 16, the second embodiment of the moving body according to the present invention will be described focusing on the part different from the form described above. Hereinafter, the same components as those in the other embodiments are designated by the same reference numerals. The movingbody 406b of the second embodiment is different from the moving body of the first embodiment in that the second upper surface plate 824b is arranged below the upper surface plate 824. According to this configuration, even if the upper surface plate 824 slides, the upper part inside the luggage compartment 821 is not opened, and the loaded object can be protected. In addition, in the moving body 406b, the lower end of the lateral tilt 823b is connected to the end of the cargo room 821 by a hinge, and the tilt 823b can be tilted and fixed substantially parallel to the bottom surface of the cargo room 821. With this configuration, it is possible to approach the load in the luggage compartment 821 and also use the tilt 823b as a workbench.
図16を用いて、本発明にかかる移動体の第2の実施形態に関して、先に説明した形態と異なる部分を中心に説明する。以下、他の実施形態と同様の構成に関しては、同一の符号を付した。第2実施形態の移動体406bは、上面板824の下側に第2上面板824bが配置されている点において、第1実施形態の移動体と異なっている。この構成によれば、上面板824が摺動しても、荷室821内部の上方が開放されることがなく、積載物を保護することができる。また、移動体406bは、側方のあおり823bの下端が、荷室821の端部とヒンジで連結されていて、あおり823bを倒して荷室821の底面と略平行に固定することができる。この構成によれば、荷室821内部の積載物にアプローチできると共に、あおり823bを作業台としても利用することができる。 ● Moving body (2)
With reference to FIG. 16, the second embodiment of the moving body according to the present invention will be described focusing on the part different from the form described above. Hereinafter, the same components as those in the other embodiments are designated by the same reference numerals. The moving
●移動体(3)
図17を用いて、本発明にかかる移動体の第3の実施形態に関して、先に説明した形態と異なる部分を中心に説明する。第3実施形態の移動体406cは、側方のあおり823cの上端が、レール825cとヒンジで連結されていて、あおり823cを回動させて上面板824と略平行に固定することができる点において、第1実施形態の移動体と異なっている。この構成によれば、あおり823cにより着陸可能な面を拡張することができる。また、本実施形態では、第2上面板824aが配置されている。 ● Moving body (3)
With reference to FIG. 17, a third embodiment of the moving body according to the present invention will be described focusing on a part different from the form described above. In the movingbody 406c of the third embodiment, the upper end of the side tilt 823c is connected to the rail 825c by a hinge, and the tilt 823c can be rotated and fixed substantially parallel to the upper surface plate 824. , Which is different from the moving body of the first embodiment. With this configuration, the landing surface can be expanded by the tilt 823c. Further, in the present embodiment, the second upper surface plate 824a is arranged.
図17を用いて、本発明にかかる移動体の第3の実施形態に関して、先に説明した形態と異なる部分を中心に説明する。第3実施形態の移動体406cは、側方のあおり823cの上端が、レール825cとヒンジで連結されていて、あおり823cを回動させて上面板824と略平行に固定することができる点において、第1実施形態の移動体と異なっている。この構成によれば、あおり823cにより着陸可能な面を拡張することができる。また、本実施形態では、第2上面板824aが配置されている。 ● Moving body (3)
With reference to FIG. 17, a third embodiment of the moving body according to the present invention will be described focusing on a part different from the form described above. In the moving
●移動体(4)
図18を用いて、本発明にかかる移動体の第4の実施形態に関して、先に説明した形態と異なる部分を中心に説明する。第4実施形態の移動体406dは、荷室821内に摺動荷室821dが収容されてなる入れ子構造になっていて、あおり823dの下端は摺動荷室821dとヒンジで接続され、あおり823dと摺動荷室821dとが上面板824の下方から側方へ向かって引き出せるようになっている。本構成によれば、積載物を摺動荷室821dごと引き出せるため、作業性が向上する。また、本実施形態では、第2上面板824aが配置されている。 ● Moving object (4)
With reference to FIG. 18, a fourth embodiment of the moving body according to the present invention will be described focusing on a part different from the form described above. The movingbody 406d of the fourth embodiment has a nesting structure in which the sliding load chamber 821d is housed in the load chamber 821, the lower end of the tilt 823d is connected to the sliding load chamber 821d by a hinge, and the tilt 823d. The sliding luggage compartment 821d can be pulled out from the lower side of the top plate 824 to the side. According to this configuration, since the loaded object can be pulled out together with the sliding load chamber 821d, workability is improved. Further, in the present embodiment, the second upper surface plate 824a is arranged.
図18を用いて、本発明にかかる移動体の第4の実施形態に関して、先に説明した形態と異なる部分を中心に説明する。第4実施形態の移動体406dは、荷室821内に摺動荷室821dが収容されてなる入れ子構造になっていて、あおり823dの下端は摺動荷室821dとヒンジで接続され、あおり823dと摺動荷室821dとが上面板824の下方から側方へ向かって引き出せるようになっている。本構成によれば、積載物を摺動荷室821dごと引き出せるため、作業性が向上する。また、本実施形態では、第2上面板824aが配置されている。 ● Moving object (4)
With reference to FIG. 18, a fourth embodiment of the moving body according to the present invention will be described focusing on a part different from the form described above. The moving
●移動体(5)
図19を用いて、本発明にかかる移動体の第5の実施形態に関して、先に説明した形態と異なる部分を中心に説明する。第5実施形態の移動体406eは、側方のあおり823eが荷台82の端部とヒンジで連結され、摺動荷室821eが荷室821から引き出されるようになっている。この構成によれば、摺動荷室821eが引き出されたときに、摺動荷室821eがあおり823eによって支持されるので、摺動荷室821eをより安定して引き出すことができる。また、本実施形態では、第2上面板824aが配置されている。 ● Moving body (5)
With reference to FIG. 19, a fifth embodiment of a moving body according to the present invention will be described focusing on a part different from the above-described form. In the movingbody 406e of the fifth embodiment, the lateral flank 823e is connected to the end of the cargo bed 82 by a hinge, and the sliding cargo compartment 821e is pulled out from the cargo compartment 821. With this configuration, when the sliding load chamber 821e is pulled out, the sliding load chamber 821e is supported by the tilt 823e, so that the sliding load chamber 821e can be pulled out more stably. Further, in the present embodiment, the second upper surface plate 824a is arranged.
図19を用いて、本発明にかかる移動体の第5の実施形態に関して、先に説明した形態と異なる部分を中心に説明する。第5実施形態の移動体406eは、側方のあおり823eが荷台82の端部とヒンジで連結され、摺動荷室821eが荷室821から引き出されるようになっている。この構成によれば、摺動荷室821eが引き出されたときに、摺動荷室821eがあおり823eによって支持されるので、摺動荷室821eをより安定して引き出すことができる。また、本実施形態では、第2上面板824aが配置されている。 ● Moving body (5)
With reference to FIG. 19, a fifth embodiment of a moving body according to the present invention will be described focusing on a part different from the above-described form. In the moving
●移動体(6)
図20に示す第6実施形態の移動体406fは、第4実施形態の移動体406dの第2上面板824aを取り外した形状である。 ● Moving body (6)
The movingbody 406f of the sixth embodiment shown in FIG. 20 has a shape obtained by removing the second upper surface plate 824a of the moving body 406d of the fourth embodiment.
図20に示す第6実施形態の移動体406fは、第4実施形態の移動体406dの第2上面板824aを取り外した形状である。 ● Moving body (6)
The moving
●移動体(7)
図21に示す第7実施形態の移動体406gは、第5実施形態の移動体406eの第2上面板824aを取り外した形状である。 ● Moving object (7)
The movingbody 406g of the seventh embodiment shown in FIG. 21 has a shape obtained by removing the second upper surface plate 824a of the moving body 406e of the fifth embodiment.
図21に示す第7実施形態の移動体406gは、第5実施形態の移動体406eの第2上面板824aを取り外した形状である。 ● Moving object (7)
The moving
●移動体(8)
図22に示す第8実施形態の移動体406hは、第3実施形態のあおり823cが配置され、あおり823cの下方から摺動荷室821eが引き出される形状である。また、本実施形態では、第2上面板824aが配置されている。 ● Moving object (8)
A movingbody 406h of the eighth embodiment shown in FIG. 22 has a shape in which the tilt 823c of the third embodiment is arranged and the sliding load chamber 821e is pulled out from below the tilt 823c. Further, in the present embodiment, the second upper surface plate 824a is arranged.
図22に示す第8実施形態の移動体406hは、第3実施形態のあおり823cが配置され、あおり823cの下方から摺動荷室821eが引き出される形状である。また、本実施形態では、第2上面板824aが配置されている。 ● Moving object (8)
A moving
なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、撮影・監視用など他の用途のドローン全般に適用可能である。特に、自律的に動作する機械に適用可能である。また、移動体は、車両に限らず適宜の構成であってもよい。
In the present description, the agricultural chemical spray drone has been described as an example, but the technical idea of the present invention is not limited to this, and is applicable to drones for other purposes such as shooting and monitoring. .. In particular, it is applicable to a machine that operates autonomously. Further, the moving body is not limited to the vehicle and may have an appropriate configuration.
(本願発明による技術的に顕著な効果)
本発明にかかるドローンシステムにおいては、ドローンと、ドローンを積載して移動可能であってドローンの離着陸が可能な移動体とが協調して動作し、ドローンが自律飛行する場合であっても高い安全性を維持できる。
(Technically remarkable effect of the present invention)
In the drone system according to the present invention, the drone and the moving body capable of loading and moving the drone and capable of taking off and landing the drone operate in cooperation with each other, and are highly safe even when the drone autonomously flies. You can maintain sex.
本発明にかかるドローンシステムにおいては、ドローンと、ドローンを積載して移動可能であってドローンの離着陸が可能な移動体とが協調して動作し、ドローンが自律飛行する場合であっても高い安全性を維持できる。
(Technically remarkable effect of the present invention)
In the drone system according to the present invention, the drone and the moving body capable of loading and moving the drone and capable of taking off and landing the drone operate in cooperation with each other, and are highly safe even when the drone autonomously flies. You can maintain sex.
Claims (4)
- ドローンと、前記ドローンを積載して移動可能であって前記ドローンが離着陸可能な移動体と、が協調して動作するドローンシステムであって、
前記移動体は、前記ドローンが発着地点に着陸するにあたって障害になりえる、周辺環境に関する情報を取得する周辺環境取得部を有し、
前記ドローンは、前記周辺環境取得部から前記情報を取得し、前記情報に基づいて着陸の可否を判定する、
ドローンシステム。
A drone system in which a drone and a movable body capable of loading and moving the drone and capable of taking off and landing the drone operate in cooperation with each other,
The mobile unit has a surrounding environment acquisition unit that acquires information about the surrounding environment, which can be an obstacle when the drone lands at a departure point.
The drone acquires the information from the surrounding environment acquisition unit and determines whether or not to land based on the information.
Drone system.
- 前記周辺環境取得部は、前記周辺環境に関する情報として、前記移動体周辺に存在する障害物を検知する、
請求項1記載のドローンシステム。
The surrounding environment acquisition unit detects an obstacle existing around the moving body as the information about the surrounding environment,
The drone system according to claim 1.
- 前記周辺環境取得部は、可視光又は赤外線カメラにより、前記移動体周辺の障害物を検知する、
請求項2記載のドローンシステム。
The surrounding environment acquisition unit detects an obstacle around the moving body with a visible light or infrared camera.
The drone system according to claim 2.
- 前記周辺環境取得部は、前記周辺環境に関する情報として、前記移動体周辺における風の強さ、風の向き、および降雨の少なくともいずれかを取得する、
請求項1乃至3のいずれかに記載のドローンシステム。
The surrounding environment acquisition unit acquires, as the information about the surrounding environment, at least one of wind strength, wind direction, and rainfall around the moving body,
The drone system according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020559957A JPWO2020116496A1 (en) | 2018-12-05 | 2019-12-04 | Drone system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018227827 | 2018-12-05 | ||
JP2018-227827 | 2018-12-05 | ||
JP2019134997 | 2019-07-23 | ||
JP2019-134997 | 2019-07-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020116496A1 true WO2020116496A1 (en) | 2020-06-11 |
Family
ID=70974619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/047372 WO2020116496A1 (en) | 2018-12-05 | 2019-12-04 | Drone system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020116496A1 (en) |
WO (1) | WO2020116496A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220147431A (en) * | 2021-04-27 | 2022-11-03 | 주식회사 탑필드 | Apparatus for takeoff and landing of drone and operation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017006421A1 (en) * | 2015-07-06 | 2017-01-12 | 株式会社0 | Rotorcraft landing device |
JP2017021757A (en) * | 2015-07-15 | 2017-01-26 | 三菱自動車工業株式会社 | Vehicular operation support apparatus |
US10078808B1 (en) * | 2015-09-21 | 2018-09-18 | Amazon Technologies, Inc. | On-demand designated delivery locator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11308813B2 (en) * | 2017-02-27 | 2022-04-19 | The University Of Tokyo | Flight management system |
-
2019
- 2019-12-04 WO PCT/JP2019/047372 patent/WO2020116496A1/en active Application Filing
- 2019-12-04 JP JP2020559957A patent/JPWO2020116496A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017006421A1 (en) * | 2015-07-06 | 2017-01-12 | 株式会社0 | Rotorcraft landing device |
JP2017021757A (en) * | 2015-07-15 | 2017-01-26 | 三菱自動車工業株式会社 | Vehicular operation support apparatus |
US10078808B1 (en) * | 2015-09-21 | 2018-09-18 | Amazon Technologies, Inc. | On-demand designated delivery locator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220147431A (en) * | 2021-04-27 | 2022-11-03 | 주식회사 탑필드 | Apparatus for takeoff and landing of drone and operation method thereof |
KR102516388B1 (en) * | 2021-04-27 | 2023-04-03 | 주식회사 탑필드 | Apparatus for takeoff and landing of drone and operation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020116496A1 (en) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7008996B2 (en) | Mobile | |
JP6876351B2 (en) | Drone system, drone, process control device, process control method of drone system, and process control program of drone system | |
JP6996789B2 (en) | Mobile | |
JP6763596B1 (en) | Drone system, drone, moving object, compartment member, drone system control method, and drone system control program | |
WO2020116392A1 (en) | Drone system, drone, movable body, drone system control method, and drone system control program | |
WO2020162583A1 (en) | Drone system, drone, mobile unit, control device, drone system control method, and drone system control program | |
WO2020162584A1 (en) | Drone system, drone, control device, and drone system control method | |
WO2020116443A1 (en) | Movable body | |
WO2020116496A1 (en) | Drone system | |
WO2020116494A1 (en) | Drone system | |
WO2020116495A1 (en) | Drone system | |
WO2020116444A1 (en) | Drone system | |
WO2020116341A1 (en) | Drone system | |
JP2021037775A (en) | Drone system | |
JP2020196421A (en) | Movable body | |
JP2020200013A (en) | Movable body | |
WO2020116493A1 (en) | Moving body | |
WO2020116396A1 (en) | Drone system and drone | |
WO2020162586A1 (en) | Drone system, drone, control device, and drone system control method | |
WO2020162585A1 (en) | Drone system, drone, control device, and drone system control method | |
JP2022036355A (en) | Drone system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19893995 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020559957 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19893995 Country of ref document: EP Kind code of ref document: A1 |