Nothing Special   »   [go: up one dir, main page]

WO2020108334A1 - 阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板 - Google Patents

阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板 Download PDF

Info

Publication number
WO2020108334A1
WO2020108334A1 PCT/CN2019/119074 CN2019119074W WO2020108334A1 WO 2020108334 A1 WO2020108334 A1 WO 2020108334A1 CN 2019119074 W CN2019119074 W CN 2019119074W WO 2020108334 A1 WO2020108334 A1 WO 2020108334A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
retardant resin
phosphorus
parts
allyl
Prior art date
Application number
PCT/CN2019/119074
Other languages
English (en)
French (fr)
Inventor
崔春梅
戴善凯
黄荣辉
谌香秀
罗鹏辉
Original Assignee
苏州生益科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州生益科技有限公司 filed Critical 苏州生益科技有限公司
Publication of WO2020108334A1 publication Critical patent/WO2020108334A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/04Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides
    • C08F283/045Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonamides, polyesteramides or polyimides on to unsaturated polycarbonamides, polyesteramides or polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • the invention relates to the technical field of electronic materials, in particular to a flame-retardant resin prepolymer and a resin composition, a prepreg and a laminate prepared using the same.
  • bismaleimide resin As a high-performance resin material, bismaleimide resin has excellent heat resistance and high high-temperature modulus retention, but bismaleimide resin has poor solubility and can only be dissolved at some high boiling points Solvents such as N,N-dimethylformamide, N-methylpyrrolidone, etc. have harsh process conditions, and at the same time, the cured bismaleimide has high cross-linking density and high brittleness, which seriously affects other performance. Therefore, in the prior art, aromatic diamine or diallyl compounds are generally used for modification.
  • the modified bismaleimide resin has good processability and excellent performance, but regardless of diamine or diene
  • the propyl compound modified maleimide resin can not reach UL94 V-0 level through intrinsic flame retardant, and it needs to add halogen-free flame retardant to meet the halogen-free flame retardant requirements of the EU directive.
  • the method for achieving halogen-free flame retardancy of printed circuit board laminates is generally to add resins containing flame retardant elements such as nitrogen, phosphorus, silicon and inorganic fillers (such as aluminum hydroxide, magnesium hydroxide and other inorganic compounds containing crystalline water to the resin matrix) ).
  • flame retardant elements such as nitrogen, phosphorus, silicon and inorganic fillers (such as aluminum hydroxide, magnesium hydroxide and other inorganic compounds containing crystalline water to the resin matrix)
  • silicon-containing, nitrogen-containing resin or inorganic filler flame retardants have the problem of low flame retardant efficiency, and cannot meet the requirements of UL94 V-0. Therefore, phosphorus-containing resin as the main flame retardant occupies a dominant position in the current halogen-free substrate materials.
  • phosphorus-containing flame retardants are mainly reactive resins and additive flame retardants, such as phosphorus-containing epoxy resins, phosphazene compounds, phosphate esters or phosphorus-containing phenolic resins.
  • additive flame retardants such as phosphorus-containing epoxy resins, phosphazene compounds, phosphate esters or phosphorus-containing phenolic resins.
  • the prior art discloses a scheme of adding a phosphorus-containing flame retardant to the bismaleimide resin system.
  • the patent CN102276837A discloses a technical solution of adding a phosphorus-containing compound (phosphazenes) to a bi-horse resin system.
  • a halogen-free cured product with good flame retardant performance can be obtained, these flame retardants do not It forms a better cross-linked network structure with the bismaleimide resin system.
  • the phosphazene compounds that did not participate in the reaction are similar to "sweating"
  • the way of floating on the surface of the substrate not only affects the heat resistance of the board, but also affects the bonding force between the board and the copper foil.
  • the patent CN103665864 discloses allyl modified bismaleimide resin, and organic phosphorus flame retardant or organic nitrogen compound is added to the glue, although the technical solution can solve the bismaleimide resin The problem of solubility, and can obtain halogen-free high flame retardant sheet, but the additional flame retardant component affects the heat resistance, moisture resistance and water absorption of the final cured product, so it is difficult to obtain high comprehensive performance Performance sheet.
  • the patent JP2012153896 discloses a technical solution of adding a phosphorus-containing epoxy resin to the double-horse resin system.
  • This technical solution can also meet the halogen-free flame retardant requirements, but the presence of epoxy resin greatly reduces the vitrification of the resin Transition temperature, heat resistance and modulus retention at high temperature.
  • the laminate or copper clad laminate prepared using it has excellent halogen-free Flame retardancy, high heat resistance, low thermal expansion coefficient and high modulus retention rate at high temperature.
  • An object of the present invention is to provide a flame-retardant resin prepolymer that solves the above technical problems and a thermosetting resin composition, prepreg, and laminate prepared using the same, which flame retardant resin prepolymer also has excellent halogen-free resistance Flammability, high heat resistance, high temperature modulus retention rate, high adhesion, excellent toughness, thermal expansion coefficient and high modulus retention rate, especially to meet the halogen-free flame retardant UL94 V-0 while having excellent high temperature modulus The quantity retention rate and the low coefficient of thermal expansion make it suitable for high-performance circuit boards such as IC package boards.
  • the flame retardant resin prepolymer is at least pre-polymerized from a bismaleimide resin and an allyl-based compound, and the allyl-based compound contains the following structural formula (1) or structural formula (2) Of phosphorus-containing allyl compounds:
  • R 1 is a C1-C10 linear alkylene group or a substituted alkylene group or a C6-C20 aromatic group.
  • the present invention also provides a prepreg, which is prepared by adding a solvent to the flame-retardant resin composition as described above to make a glue solution, immersing the reinforcement material in the glue solution, and immersing the reinforcement After the material is heated and dried, the prepreg can be obtained.
  • the present invention also provides a laminate, which is coated with a release film on both sides of at least one prepreg as described above, and hot-pressed to obtain the laminate.
  • the present invention also provides a laminate, which is coated with metal foil on one side or both sides of at least one prepreg as described above, and hot-pressed to obtain the laminate.
  • the present invention has the following advantages compared with the prior art:
  • an allyl compound containing a DOPO or DPPO structure is used as a bismaleimide resin modifier.
  • the phosphorus-containing The group is introduced into the cross-linked network structure of the bismaleimide resin. Therefore, in a cross-linked network structure, nitrogen and phosphorus elements are synergistically flame-retardant, which can reduce the phosphorus content required for the flame retardancy of the cured product to reach UL94V-0 , No need to add other flame retardants, to obtain cured products with excellent halogen-free flame retardancy, high heat resistance, high adhesion, excellent toughness and coefficient of thermal expansion;
  • the cross-linking density of the overall bismaleimide polymer cross-linking network structure can be adjusted to effectively reduce the double-horse
  • the brittleness of the limide resin relieves the stress during the curing reaction, reduces the coefficient of thermal expansion of the sheet, and maintains an excellent high-temperature modulus.
  • a flame-retardant resin prepolymer specifically a modified bismaleimide prepolymer, which is at least composed of a bismaleimide resin and an allyl compound After polymerization, allyl compounds contain phosphorus-containing allyl compounds represented by structural formula (1) or structural formula (2):
  • R 1 is a C1-C10 linear alkyl group or a substituted alkyl group or a C6-C20 aromatic group;
  • the weight ratio of the bismaleimide resin and the allyl compound is 100:10-100, preferably 100:20-60, specifically 100:10, 100:15, 100:20, 100:25, 100:30, 100:35, 100:40, 100:45, 100:50, 100:55, 100:60, 100:65, 100:70, 100:75, 100:80, 100:85, 100: 90, 100:95 or 100:100.
  • R1 is a C2-C6 straight-chain alkyl group.
  • R1 is a straight-chain alkylene group, it is placed in the middle position containing DOPO or DPPO on both sides. It can adjust the crosslink density of the overall bismaleimide polymer crosslinking network structure, effectively reduce the brittleness of bismaleimide resin, and relieve the stress during the curing reaction.
  • R 1 is straight chain alkylene of chain length is too long, easily broken in high temperature long chain offline affect the heat resistance of the cured product, when the chain length of R 1 is a linear alkylene group is too short, it is difficult to Obtain the above effects.
  • Linear alkylene is Or a substituted alkylene group, of which preferred is
  • the bismaleimide resin has the following structural formula:
  • R group is selected from at least one of the following structural formulas:
  • the allyl compound also contains a phosphorus-free allyl compound, preferably, the phosphorus-free allyl compound is selected from diallyl bisphenol A, diallyl bisphenol S, allyl phenoloxy One or a mixture of two or more of resin, allyl phenol resin, or diallyl diphenyl ether.
  • the content of the phosphorus-free allyl compound is based on 100 parts by mass of the total allyl compound and contains 10- 90 parts, preferably 30-50 parts, more preferably 30 parts, 31 parts, 32 parts, 33 parts, 34 parts, 35 parts, 36 parts, 37 parts, 38 parts, 39 parts, 40 parts, 41 parts, 42 One part, 43 parts, 44 parts, 45 parts, 46 parts, 47 parts, 48 parts, 49 parts, 50 parts.
  • the weight ratio of the bismaleimide resin to the allyl compound is 100:20-150.
  • proper addition of a phosphorus-free allyl compound can effectively control the preparation process of the prepolymer.
  • the phosphorus-free allyl compound plays a role in the addition reaction of the maleimide group and the allyl group.
  • the effect of slow polymerization at the same time improve the solubility of bismaleimide resin, but when the content is high, it affects the reaction of phosphorus-containing allyl groups and maleimide groups, DOPO or DPPO can not be well introduced into the bis Horse system.
  • the present invention also provides a flame-retardant resin composition, based on solid weight, including:
  • the above flame retardant resin prepolymer that is, modified bismaleimide prepolymer: 100 parts;
  • Curing accelerator 0.001-5 copies
  • Elastomer 0-50 parts.
  • the filler is selected from an organic filler or an inorganic filler, wherein the inorganic filler is selected from one of non-metal oxide, metal nitride, non-metal nitride, inorganic hydrate, inorganic salt, metal hydrate, or inorganic phosphorus or A mixture of at least any two, preferably fused silica, crystalline silica, spherical silica, hollow silica, aluminum hydroxide, alumina, talc, aluminum nitride, boron nitride, silicon carbide , Barium sulfate, barium titanate, strontium titanate, calcium carbonate, calcium silicate, mica or glass fiber powder, or a mixture of at least two; the organic filler is selected from polytetrafluoroethylene powder, polyphenylene sulfide Or a mixture of polyethersulfone powder or at least any two.
  • the filler is preferably an inorganic filler, further preferably a surface-treated inorganic filler, and most preferably a surface-treated silica.
  • the surface treatment agent for the surface treatment of the inorganic filler is selected from any one or a mixture of at least two of silane coupling agent, silicone oligomer or titanate coupling agent, and the median particle size of the filler is 0.2 -20 ⁇ m, preferably the filler has a median particle size of 0.5-15 ⁇ m, and more preferably the filler has a median particle size of 0.5-5 ⁇ m.
  • the filler in this particle size segment has good dispersibility and good processability.
  • the amount of the surface treatment agent is 0.1 to 5.0%, preferably 0.5 to 3.0%, and more preferably 0.75 to 2.0%, based on the mass of the inorganic filler being 100%.
  • the curing accelerator is selected from dimethylaminopyridine, tertiary amine and its salt, imidazole, organic metal salt, triphenylphosphine and its phosphonium salt and the like.
  • the curing accelerator is added and used according to the actual situation, and can be selected from dimethylaminopyridine, tertiary amine and its salt, imidazole, organic metal salt, triphenylphosphine and its phosphonium salt, etc., the content of which is flame retardant resin prepolymer 100 In terms of parts, the curing accelerator is preferably 0.01 to 2.0 parts.
  • the elastomer is a low modulus component selected from at least one of polybutadienes, styrenes, olefins, polyurethanes, polyesters, polyimines, acrylates or silicones It is preferably a low-modulus component containing a reactive group.
  • the reactive group may be an epoxy group, a hydroxyl group, an amino group, an acid anhydride group, a carboxyl group or a vinyl group, and more preferably an epoxy-modified polybutadiene or an anhydride
  • the content of the elastomer is based on 100 parts of the flame retardant resin prepolymer, and the content is preferably 5-20 parts.
  • the low-modulus elastomer When the low-modulus elastomer is properly added to the flame-retardant resin composition, it can reduce the stress during the curing reaction, effectively improve the thermal expansion coefficient of the sheet, and further improve the brittleness of the bismaleimide resin.
  • antioxidants heat stabilizers, antistatic agents, ultraviolet absorbers, pigments, colorants, lubricants, etc. may be added to the resin composition according to actual conditions. These various additives may be used alone or in combination of two or more.
  • the invention also provides a prepreg prepared by using the above resin composition, the preparation steps are as follows:
  • the prepreg in the present invention can be obtained by immersing the reinforcing material in the glue solution of the above resin composition, and then baking the immersed reinforcing material in an environment of 50-170°C for 1-10 minutes and drying.
  • the reinforcing material is natural fiber, organic synthetic fiber, organic fabric or inorganic fabric.
  • Inorganic fabric is particularly preferably glass fiber cloth, and glass fiber cloth is preferably open fiber cloth or flat cloth.
  • the glass fiber cloth in order to improve the interfacial bond between the resin and the glass fiber cloth, the glass fiber cloth generally needs to be chemically treated.
  • the main method is the coupling agent treatment.
  • the coupling agent used is epoxy silane, amino silane, etc.
  • the solvent is selected from acetone, methyl ethyl ketone, toluene, methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, ethylene glycol methyl ether, propylene glycol methyl ether, benzene, toluene, One or any combination of cyclohexane.
  • the invention also provides a laminate prepared by using the prepreg, and the preparation steps are as follows:
  • At least one of the above prepregs is covered with a release film and hot-pressed to obtain a laminate.
  • the number of prepregs can be determined according to the required thickness of the laminate.
  • One or more sheets can be used.
  • the release film may be a PET film or a release aluminum foil.
  • the invention also provides another laminate prepared by using the prepreg, and the preparation steps are as follows:
  • One side or both sides of one prepreg is covered with metal foil, or after stacking at least two of the above prepregs, one side or both sides are covered with metal foil, and hot-pressed to obtain a metal foil laminate.
  • the number of prepregs can be determined according to the required thickness of the laminate, and one or more sheets can be used.
  • the metal foil may be copper foil or aluminum foil, and their thickness is not particularly limited.
  • the pressing conditions of the above-mentioned laminate are pressing at a pressure of 0.2 to 2 MPa and a temperature of 180 to 250°C for 2 to 4 hours.
  • Preparation of prepreg Use the components and proportions in Table 1 and Table 2 below to prepare a glue solution with 62% solid content, impregnate the glue solution with glass fiber cloth, and bake in a 160°C oven for 5 min to prepare a prepreg.
  • Preparation of copper-clad laminates 8 sheets of the above semi-cured sheets with burrs removed are attached, 35 micron copper foils are attached to the top and bottom, and placed in a vacuum hot press to obtain copper-clad laminates.
  • the specific pressing process is pressing at 1.5Mpa and 220°C for 4 hours.
  • Table 1 is a specific embodiment of the present invention
  • the first step take 1mol of allylamine compound and mix it with an appropriate amount of organic solvent, then drop 0.5mol of terephthalaldehyde to the reaction bottle at a temperature of 50-100°C, react under the protection of nitrogen for 1-5 hour;
  • Step 2 After the reaction is completed, the reaction mixture is cooled, and the crude product is obtained by suction filtration, then dissolved and heated with deionized water, and then cooled and recrystallized in the same way, repeated 2-5 times, and finally in a vacuum drying oven Dry at 60-90°C for 24 hours to obtain an intermediate product;
  • Step 3 Take 0.5mol of intermediate product and 1mol of DOPO, then add appropriate amount of organic solvent, gradually increase the temperature to completely dissolve, react at 90-120°C under nitrogen protection for 5-7 hours, cool to room temperature after the reaction is over, then Dissolve and heat with deionized water, then cool and recrystallize in the same way, repeat 2-5 times, and finally dry in a vacuum oven at 60-90°C for 24 hours to obtain the allyl compound.
  • silica surface treated with silane coupling agent, average particle size is 1.0 ⁇ m, Jiangsu Lianrui;
  • Curing accelerator 2-methylimidazole, Shikoku Chemicals
  • Phosphorus-containing epoxy resin KEG-H5138, Kolon;
  • Phosphazene compound SPB100, Otsuka Chemical
  • Elastomer KMP-605, Shin-Etsu Chemical.
  • DMA Glass transition temperature
  • Modulus measured by DMA, the temperature rise rate is 10°C/min, and the modulus values at 50°C and 260°C are measured at a frequency of 10 Hz in GPa.
  • Thermal expansion coefficient measured by TA instrument TMA, from 30°C to 350°C, with a heating rate of 10°C/min, the linear expansion coefficient in the plane direction of 50°C to 130°C is measured, and the measurement direction is the lateral direction of the glass cloth ( X), longitudinal (Y), the unit is X/Y ppm/°C.
  • an allyl compound containing a DOPO or DPPO structure is used as a bismaleimide resin modifier.
  • the phosphorus-containing groups are introduced into the In the cross-linked network structure of bismaleimide resin, nitrogen and phosphorus are flame-retardant in a cross-linked network structure, which can reduce the phosphorus content of the cured product to achieve the required flame retardancy of UL94V-0. Add other flame retardants to obtain a cured product with excellent halogen-free flame retardancy, high heat resistance, high adhesion, excellent toughness and coefficient of thermal expansion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明揭示了一种阻燃型树脂预聚物及使用其制备的树脂组合物、半固化片和层压板,所述阻燃型树脂预聚物至少由双马来酰亚胺树脂和烯丙基类化合物预聚而成,在不影响双马来酰亚胺树脂性能的基础上,很好地将含磷基团导入至双马来酰亚胺树脂的交联网络结构中。

Description

阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板 技术领域
本发明涉及电子材料技术领域,特别涉及一种阻燃型树脂预聚物及使用其制备的树脂组合物、半固化片和层压板。
背景技术
近年来,随着移动互联网技术的不断发展,多功能化、便携性、轻薄化不断成为电子产品的追寻目标,意味着电子产品装载的元器件更多、印制电路更多地采用高密度互联技术(HDI)且印制电路整板厚度更薄,因此,对制作印制电路板的基材——覆铜板提出了更高的要求,要求其具有类似封装基板的性能,即行业内兴起的类封装材料,要求覆铜板具有高的耐热性、高的玻璃化转变温度、优异的粘结力、良好的加工性,更重要的是板材在高温下具有较好的模量保持率。
双马来酰亚胺树脂作为一种高性能的树脂材料,具有优异的耐热性和较高的高温模量保持率,但是双马来酰亚胺树脂溶解性差,只能溶解于一些高沸点溶剂如N,N-二甲基甲酰胺、N-甲基吡咯烷酮等,工艺条件苛刻,同时双马来酰亚胺的固化物交联密度高、脆性大,严重影响其它的使用性能。因此,现有技术中普遍采用芳香族二胺或二烯丙基化合物进行改性,改性后的双马来酰亚胺树脂具有良好的加工性及优异的性能,但是不论二胺或二烯丙基化合物改性马来酰亚胺树脂,均无法通过本征阻燃达到UL94 V-0级,需要添加无卤阻燃剂来满足欧盟指令要求的无卤阻燃。
实现印刷电路用层压板无卤阻燃的方法一般是在树脂基体中添加含氮、磷、硅等阻燃性元素树脂及无机填料(如氢氧化铝、氢氧化镁等含结晶水的无机化合物)。而含硅、氮树脂或无机填料阻燃剂相比含磷树脂阻燃剂,存在着阻燃效率低的问题,无法满足UL94 V-0的要求。因此,含磷树脂作为主阻燃剂在目前的无卤基板材料中占有主导地位。这些含磷阻燃剂主要为反应型树脂和添加型阻燃剂,如含磷环氧树脂、磷腈化合物、磷酸酯或含磷酚醛树脂等。引入上述组分后,板材的阻燃性能得以改善,但是这些以环氧树脂或酚醛树脂为基体的阻燃树脂,较大地降低了改性双马来酰亚胺树脂体系的耐热性、玻璃化转变温度及高温下模量保持率等,难以满足其在高密度互连或集成电路封装/类封装等高性能领域的应用要求。
因此,为了获得无卤阻燃高性能双马来酰亚胺树脂,现有技术中公开了在双马来酰亚胺树脂体系中添加含磷阻燃剂的方案。
如专利CN102276837A中公开了在双马树脂体系中添加含磷化合物(磷腈类)的技术方案,虽然可以获得不含卤素,并具有较好的阻燃性能的固化物,但是这些阻燃剂没有与双马树脂体系形成较好的交联网络结构,在双马来酰亚胺树脂的高温固化条件(往往高于200℃)下,未参与反应的磷腈类化合物以类似于“出汗”的方式浮出于基材表面,不仅仅影响板材的耐热性,更影响了板材与铜箔之间的结合力。
如专利CN103665864中公开了烯丙基改性双马来酰亚胺树脂,并胶液中另添加有机磷阻燃剂或有机氮化合物等,该技术方案中虽然可以解决双马来酰亚胺树脂的溶解性问题,并可以获得无卤高阻燃性板材,但是另外添加的阻燃剂组分影响最终固化物的耐热性、耐湿热性和吸水率等,因此难以获得综合性能优异的高性能板材。
如专利JP2012153896中公开了在双马树脂体系中添加了含磷环氧树脂的技术方案,该技术方案也可以满足无卤阻燃要求,但因环氧树脂的存在,大大降低了树脂的玻璃化转变温度、耐热性及高温下的模量保持率。
综上所述,有必要开发一种适合用于类载板、封装载板及高密度互联技术领域的高性能印制线路板基板材料,使用其制备的层压板或覆铜板具有优异的无卤阻燃性、高耐热性、低热膨胀系数及高温下高的模量保持率。
发明内容
本发明的目的在于提供一种解决上述技术问题的阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板,该阻燃型树脂预聚物同时具有优异的无卤阻燃性、高耐热性、高温模量保持率、高粘结性、优异的韧性、热膨胀系数和高的模量保持率,特别是满足无卤阻燃UL94 V-0同时具有优异的高温模量保持率和低的热膨胀性系数,因此很好地适用IC封装基板等高性能线路基板。
其中,阻燃型树脂预聚物至少由双马来酰亚胺树脂和烯丙基类化合物预聚而成,所述烯丙基类化合物中含有以下结构式(1)或结构式(2)所示的含磷烯丙基类化合物:
Figure PCTCN2019119074-appb-000001
其中,R 1为C1-C10的直链亚烷基或取代亚烷基或C6-C20的芳香族基。
相应地,本发明还提供一种半固化片,在采用如上所述的阻燃型树脂组合物中加入溶剂溶解制成胶液,将增强材料浸渍在所述胶液中,将浸渍后的所述增强材料加热干燥后,即可得到所述半固化片。
相应地,本发明还提供一种层压板,在至少一张如上所述的半固化片的双面覆上离型膜,热压成形,即可得到所述层压板。
相应地,本发明还提供一种层压板,在至少一张如上所述的半固化片的单面或双面覆上金属箔,热压成形,即可得到所述层压板。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
(1)本发明中采用含DOPO或DPPO结构的烯丙基化合物作为双马来酰亚胺树脂改性剂,在不影响双马来酰亚胺树脂性能的基础上,很好地将含磷基团导入至双马来酰亚胺树脂的交联网络结构中,因此在一个交联网络结构中氮元素和磷元素协同阻燃,能减少固化物阻燃性达到UL94V-0所需磷含量,不需要再增加其他阻燃剂,获得同时具有优异的无卤阻燃性、高耐热性、高粘结性、优异的韧性和热膨胀系数的固化物;
(2)当烯丙基化合物结构中,在DOPO或DPPO的中间位置处设置直链烷基时,可以调节整体双马来酰亚胺聚合物交联网络结构的交联密度,有效降低双马来酰亚胺树脂的脆性,缓解固化反应过程中应力的产生,降低板材的热膨胀系数,同时保持较优异的高温模量。
(3)当制备改性双马来酰亚胺预聚物时,适当添加无磷烯丙基化合物可以有效控制预聚物的制备工艺,该烯丙基化合物在马来酰亚胺基与烯丙基的加成反应中起到缓聚的作用,同时提高双马来酰亚胺树脂的溶解性,可以很好地控制整体聚合反应速率,获得综合性能更加优异的最终固化物。
具体实施方式
以下将结合具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。本领域的普通技术人员根据这些实施方式所做的反应条件、反应物或原料用量上的变换均包含在本发明的保护范围内。
在本发明一具体实施方式中,一种阻燃型树脂预聚物,具体为改性双马来酰亚胺预聚物,其至少由双马来酰亚胺树脂和烯丙基类化合物预聚而成,烯丙基类化合物中含有结构式(1)或结构式(2)所示的含磷烯丙基类化合物:
Figure PCTCN2019119074-appb-000002
其中,R 1为C1-C10的直链烷基或取代烷基或C6-C20的芳香族基;
双马来酰亚胺树脂和烯丙基类化合物的重量比例为100:10-100,优选为100:20-60,具体可以是100:10、100:15、100:20、100:25、100:30、100:35、100:40、100:45、100:50、100:55、100:60、100:65、100:70、100:75、100:80、100:85、100:90、100:95或100:100。
进一步地,上述烯丙基类化合物结构式(1)和(2)中,R1为C2-C6的直链烷基,当R1为直链亚烷基,设置在两侧含DOPO或DPPO的中间位置,可以调节整体双马来酰亚胺聚合物交联网络结构的交联密度,有效降低双马来酰亚胺树脂的脆性,缓解固化反应过程中应力的产生。但是当R 1直链亚烷基的链长过长时,在高温条件下线性长链容易断裂,影响固化物的耐热性,当R 1直链亚烷基的链长过短时,难以获得上述效果。
上述烯丙基类化合物结构式(1)和(2)中,R1中的芳香族基为
Figure PCTCN2019119074-appb-000003
Figure PCTCN2019119074-appb-000004
Figure PCTCN2019119074-appb-000005
其中优选为
Figure PCTCN2019119074-appb-000006
直链亚烷基为
Figure PCTCN2019119074-appb-000007
Figure PCTCN2019119074-appb-000008
或其取代亚烷基,其中优选为
Figure PCTCN2019119074-appb-000009
进一步地,双马来酰亚胺树脂具有以下结构式:
Figure PCTCN2019119074-appb-000010
其中,R基选自下列结构式中的至少一种:
Figure PCTCN2019119074-appb-000011
进一步地,烯丙基类化合物中还含有无磷烯丙基化合物,优选地,无磷烯丙基化合物选自二烯丙基双酚A、二烯丙基双酚S、烯丙基酚氧树脂、烯丙基酚醛树脂或二烯丙基二苯醚中的一种或两种以上的混合物,无磷烯丙基化合物的含量为以总烯丙基类化合物100质量分计,含有10-90份,优选为30-50份,更优选为30份,31份,32份,33份,34份,35份,36份,37份,38份,39份,40份,41份,42份,43份,44份,45份,46份,47份,48份,49份,50份。
当烯丙基类化合物中还含有无磷烯丙基化合物时,双马来酰亚胺树脂和烯丙基类化合物的重量比例为100:20-150。当制备预聚物时,适当添加无磷烯丙基化合物可以有效控制预聚物的制备工艺,该无磷烯丙基化合物在马来酰亚胺基与烯丙基的加成反应中起到缓聚的作用,同时提高双马来酰亚胺树脂的溶解性,但是当含量较高时,影响含磷烯丙基和马来酰亚胺基的反应,DOPO或DPPO不能很好的引入双马体系中。
本发明还提供一种阻燃型树脂组合物,以固体重量计,包括:
上述阻燃型树脂预聚物,即改性双马来酰亚胺预聚物:100份;
填料:0-150份;
固化促进剂:0.001-5份;
弹性体:0-50份。
进一步地,填料选自有机填料或无机填料,其中,无机填料选自非金属氧化物、金属氮化物、非金属氮化物、无机水合物、无机盐、金属水合物或无机磷中的一种或者至少任意两种的混合物,优选熔融二氧化硅、结晶型二氧化硅、球型二氧化硅、空心二氧化硅、氢氧化铝、氧化铝、滑石粉、氮化铝、氮化硼、碳化硅、硫酸钡、钛酸钡、钛酸锶、碳酸钙、硅酸钙、云母或玻璃纤维粉中的任意一种或者至少两种的混合物;有机填料选自聚四氟乙烯粉末、聚苯硫醚或聚醚砜粉末中一种或者至少任意两种的混合物。
本发明中,填料优选无机填料,进一步优选经过表面处理的无机填料,最优选经过表面处 理的二氧化硅。对无机填料进行表面处理的表面处理剂选自硅烷偶联剂、有机硅低聚物或钛酸酯偶联剂中的任意一种或至少两种的混合物,填料的粒径中度值为0.2~20μm,优选填料的粒径中度值为0.5~15μm,更优选地填料的粒径中度值为0.5~5μm,位于此粒径段的填料具有良好的分散性与较好的加工性。
更优选地,以无机填料质量为100%计,表面处理剂的用量为0.1~5.0%,优选0.5~3.0%,进一步优选0.75~2.0%。
进一步地,固化促进剂选自二甲基氨基吡啶、叔胺及其盐、咪唑、有机金属盐、三苯基膦及其鏻盐等。固化促进剂根据实际情况添加使用,可以选自二甲基氨基吡啶、叔胺及其盐、咪唑、有机金属盐、三苯基膦及其鏻盐等,含量以阻燃型树脂预聚物100份计,固化促进剂优选为0.01-2.0份。
进一步地,弹性体为低模量组分,选自聚丁二烯类、苯乙烯类、烯烃类、聚氨酯类、聚酯类、聚亚胺类、丙烯酸酯类或硅酮类中的至少一种,优选为含反应基的低模量组分,反应基可以为环氧基、羟基、氨基、酸酐基、羧基或乙烯基等,更优选为选为环氧改性聚丁二烯、酸酐改性聚丁二烯、苯乙烯丁二烯共聚物、苯乙烯丙烯共聚物或苯乙烯丙烯酸共聚物,弹性体含量以阻燃型树脂预聚物100份计,含量优选为5-20份。
当阻燃型树脂组合物中适当添加低模量弹性体时,可在固化反应过程中减少应力的产生,有效改善板材的热膨胀系数,同时进一步改善双马来酰亚胺树脂脆性。
进一步地,树脂组合物中还可以根据实际情添加使用抗氧剂、热稳定剂、抗静电剂、紫外线吸收剂、颜料、着色剂或润滑剂等。这些各种添加剂可以单独使用,也可以两种或者两种以上混合使用。
本发明还提供一种采用上述树脂组合物制备的半固化片,其制备步骤如下:
将上述阻燃型树脂组合物用溶剂溶解,固体含量为60%-75%,搅拌均匀,并熟化,制成树脂组合物胶液;
将增强材料浸渍在上述树脂组合物胶液中,然后将浸渍后的增强材料在50-170℃环境下烘烤1-10min干燥后即可得本发明中的半固化片。
其中,增强材料为天然纤维、有机合成纤维、有机织物或者无机织物,无机织物,特别优选采用玻璃纤维布,玻璃纤维布优选使用开纤布或扁平布。此外,为了改善树脂与玻璃纤维布的界面结合,玻璃纤维布一般都需要进行化学处理,主要方法是偶联剂处理,所用偶联剂如环氧硅烷,氨基硅烷等。
溶剂选自丙酮、丁酮、甲苯、甲基异丁酮、N、N-二甲基甲酰胺、N、N-二甲基乙酰胺、乙二醇甲醚、丙二醇甲醚、苯、甲苯、环己烷中的一种或任意几种的组合。
本发明还提供一种采用上述半固化片制备的层压板,其制备步骤如下:
在至少一张上述的半固化片的双面覆上离型膜,热压成形,即可得到层压板,半固化片 的数量可根据需要的层压板的厚度来确定,可用一张或多张。离型膜可以是PET膜或离型铝箔。
本发明还提供另一种采用上述半固化片制备的层压板,其制备步骤如下:
在一张上述半固化片的单面或双面覆上金属箔,或者将至少2张上述半固化片叠加后,在其单面或双面覆上金属箔,热压成形,即可得到金属箔层压板。
半固化片的数量可根据需要的层压板的厚度来确定,可用一张或多张。所述金属箔,可以是铜箔,也可以是铝箔,它们的厚度没有特别限制。
上述层压板的压制条件为,在0.2~2MPa压力和180~250℃温度下压制2~4小时。
上述半固化片、层压板和金属箔层压板均用于制备线路板。
为了更好的阐述本发明,以下提供一些具体实施例,对本发明做进一步描述,以下为阻燃型双马来酰亚胺树脂预聚物的制备具体合成例:
合成例一
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺与含DOPO基的烯丙基化合物A-1(直链基型)、二烯丙基双酚A,按照质量份100:80:20依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物1。
合成例二
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺与含DOPO基的烯丙基化合物A-2(芳香族基型)、二烯丙基双酚A,按照质量份100:60:20依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物2。
合成例三
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺与含DPPO基的烯丙基化合物A-3(直链基型)、二烯丙基二苯醚,按照质量份100:40:30依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物3。
合成例四
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺与含DPPO基的烯丙基化合物A-4(芳香族基型)、二烯丙基双酚A,按照质量份100:30:50依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物 4。
合成例五(相比合成例一,不同含量比)
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺与含DOPO基的烯丙基化合物A-1(直链基型)、二烯丙基二苯醚,按照质量份100:20:40依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物5。
合成例六
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺与含DOPO基的烯丙基化合物A-1(直链基型)、二烯丙基双酚A,按照质量份100:30:70依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物6。
合成例七
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺与含DOPO基的烯丙基化合物A-1(直链基型)、二烯丙基二苯醚按照质量份100:10:40依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物7。
合成例八(双马与含磷烯丙基化合物预聚)
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺与含DOPO基的烯丙基化合物A-1(直链基型),按照质量份100:50依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物8。
对比合成例1(双马+烯丙基化合物共聚)
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺与二烯丙基双酚A,按照质量份100:60依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物9。
对比合成例2(双马+烯丙基+含磷化合物共聚)
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺、二烯丙基双酚A和含磷化合物(DOPO),按照质量份100:60:10依次于投入三口烧瓶中,在110℃的油浴条件下持续搅拌,待烧瓶中固体完全溶解后开始计时,持续搅拌1hr后,将所得产物进行蒸馏,得到固含量为75%的改性双马来酰亚胺预聚物10。
对比合成例3(双马+烯丙基化合物+含磷环氧树脂共聚)
在500mL三口烧瓶中加入100份溶剂N,N-二甲基甲酰胺,将4,4’-二苯甲烷双马来酰亚胺、烯丙基化合物、和含磷环氧树脂,按照质量份100:50:30依次于投入三口烧瓶中,在110℃的油浴条件下搅拌反应2hr,将所得产物进行蒸馏,得到固体物质,然后用有机溶剂制备固含量为75%的改性双马来酰亚胺预聚物11。
制备半固化片:采用如下表1和表2中的组分和配比制得62%固体含量的胶液,用玻璃纤维布浸渍上述胶液,并在160℃烘箱中烘5min制得半固化片。
制备覆铜层压板:将8张裁去毛边的上述半固化叠加,上下附上35微米的铜箔,置于真空热压机中压制得到覆铜板。具体的压合工艺为在1.5Mpa压力,220℃温度下压合4小时。
获得的覆铜层压板性能如表1和表2所示:
表1为本发明的具体实施例
Figure PCTCN2019119074-appb-000012
Figure PCTCN2019119074-appb-000013
表2本发明的对比例
Figure PCTCN2019119074-appb-000014
其中,烯丙基化合物A-1至A-4的制备方法为以下:
第一步:取1mol烯丙基胺化合物用适量的有机溶剂混合均匀,然后温度在50-100℃下向反应瓶中滴入0.5mol的对苯二甲醛,在氮气的保护下反应1-5小时;
第二步:待反应结束后,将反应混合物冷却,抽滤得到粗产品,再用去离子水溶解并加热,然后用同样的方法冷却重结晶,重复2-5次,最后在真空干燥箱中于60-90℃下干燥24小时,得到中间产物;
步骤三:取0.5mol中间产物和1mol的DOPO,再加入适量有机溶剂,逐步升温使其完全溶解,在90-120℃、氮气保护下反应5-7小时,待反应结束后冷却至室温,再用去离子水溶解并加热,然后用同样的方法冷却重结晶,重复2-5次,最后在真空干燥箱中于60-90℃下干燥24小时,得到所述烯丙基化合物。
Figure PCTCN2019119074-appb-000015
在上述方法中选择不同的醛类化合物和磷化合物,获得以下结构烯丙基化合物:
烯丙基化合物A-1:结构式(1),R 1
Figure PCTCN2019119074-appb-000016
烯丙基化合物A-2:结构式(1),R 1
Figure PCTCN2019119074-appb-000017
烯丙基化合物A-3:结构式(2),R 1
Figure PCTCN2019119074-appb-000018
烯丙基化合物A-4:结构式(2),R 1
Figure PCTCN2019119074-appb-000019
烯丙基化合物A-5:结构式(1),R 1
Figure PCTCN2019119074-appb-000020
4,4’-二苯甲烷双马来酰亚胺:西安双马新材料有限公司;
未改性双马来酰亚胺:4,4’-二苯甲烷双马来酰亚胺,西安双马新材料制;
填料:二氧化硅,用硅烷偶联剂进行表面处理,平均粒径为1.0μm,江苏联瑞;
固化促进剂:2-甲基咪唑,四国化成;
含磷环氧树脂:KEG-H5138,Kolon;
磷腈化合物:SPB100,大塚化学;
弹性体:KMP-605,信越化学。
性能评价方法:
(1)玻璃化转变温度(DMA):用DMA测定,升温速率为10℃/min,频率为10Hz下测定Tg,温度范围:30-320℃。
(2)剥离强度(PS):按照IPC-TM-650方法中的“热应力后”实验条件,测试金属盖层的剥离强度。
(3)浸锡耐热性:使用50×50mm的两面带铜样品,浸入288℃的焊锡中,记录样品分层起泡的时间。
(4)潮湿处理后浸锡耐热性:将3块100×100mm的基材试样在121℃、105Kpa的加压蒸煮处理装置内保持3hr后,浸入288℃的焊锡槽中2min,观察试样是否发生分层鼓泡等现象,3块均未发生分层鼓泡记为3/3,2块未发生分层鼓泡记为2/3,1块未发生分层鼓泡记为1/3,0块未发生分层鼓泡记为0/3。
(5)吸水率:按照IPC-TM-650中规定的标准方法进行测定,D23℃/24hr。
(6)模量:用DMA测定,升温速率为10℃/min,频率为10Hz下测定50℃和260℃的模量值,单位为GPa。
(7)热膨胀系数:采用TA仪器TMA测定,从30℃~350℃,升温速率为10℃/min,测定50℃至130℃的面方向的线膨胀系数,测定方向为玻璃布面的横向(X),纵向(Y),单位为X/Y ppm/℃。
(8)阻燃性:UL94垂直燃烧(UL94V),根据ASTM(D63-77)方法测试,每种材料测试样品数量均为5条。
本发明采用含DOPO或DPPO结构的烯丙基化合物作为双马来酰亚胺树脂改性剂,在不影响双马来酰亚胺树脂性能的基础上,很好地将含磷基团导入至双马来酰亚胺树脂的交联网络结构中,因此在一个交联网络结构中氮元素和磷元素协同阻燃,能减少固化物阻燃性达到UL94V-0所需磷含量,不需要再增加其他阻燃剂,获得同时具有优异的无卤阻燃性、高耐热性、高粘结性、优异的韧性和热膨胀系数的固化物。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种阻燃型树脂预聚物,其特征在于,所述阻燃型树脂预聚物至少由双马来酰亚胺树脂和烯丙基类化合物预聚而成,所述烯丙基类化合物中含有以下结构式(1)或结构式(2)所示的含磷烯丙基类化合物:
    Figure PCTCN2019119074-appb-100001
    其中,R 1为C1-C10的直链亚烷基或取代亚烷基或C6-C20的芳香族基。
  2. 根据权利要求1所述的阻燃型树脂预聚物,其特征在于,所述双马来酰亚胺树脂和烯丙基类化合物的重量比例为100:10-100。
  3. 根据权利要求1所述的阻燃型树脂预聚物,其特征在于,所述R 1为C2-C6的直链烷基。
  4. 根据权利要求1所述的阻燃型树脂预聚物,其特征在于,所述双马来酰亚胺树脂具有以下结构式:
    Figure PCTCN2019119074-appb-100002
    其中,R基选自下列结构式中的至少一种:
    Figure PCTCN2019119074-appb-100003
    Figure PCTCN2019119074-appb-100004
  5. 根据权利要求1所述的阻燃型树脂预聚物,其特征在于,所述烯丙基类化合物中还含有无磷烯丙基化合物,所述无磷烯丙基化合物选自二烯丙基双酚A、二烯丙基双酚S、烯丙基酚氧树脂、烯丙基酚醛树脂或二烯丙基二苯醚中的一种或任意两种以上的混合物,其含量为以总烯丙基类化合物100质量分计,含有10-90份。
  6. 一种阻燃型树脂组合物,其特征在于,以固体重量计,包括:
    权利要求1所述的阻燃型树脂预聚物:100份;
    填料:0-150份;
    固化促进剂:0.001-5份;
    弹性体:0-50份。
  7. 根据权利要求6所述的阻燃型树脂组合物,其特征在于,所述填料为无机填料或有机填料,所述无机填料选自非金属氧化物、金属氮化物、非金属氮化物、无机水合物、无机盐、金属水合物或无机磷中的一种或者至少任意两种的混合物;所述有机填料选自聚四氟乙烯粉末、聚苯硫醚或聚醚砜粉末中的一种或者至少任意两种的混合物。
  8. 一种半固化片,其特征在于,在采用如上权利要求6或7所述的阻燃型树脂组合物中加入溶剂溶解制成胶液,将增强材料浸渍在所述胶液中,将浸渍后的所述增强材料加热干燥后,即可得到所述半固化片。
  9. 一种层压板,其特征在于,在至少一张权利要求8所述的半固化片的双面覆上离型膜,热压成形,即可得到所述层压板。
  10. 一种层压板,其特征在于,在至少一张权利要求8所述的半固化片的单面或双面覆上金属箔,热压成形,即可得到所述层压板。
PCT/CN2019/119074 2018-11-28 2019-11-18 阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板 WO2020108334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811448846.6A CN109535628B (zh) 2018-11-28 2018-11-28 一种阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板
CN201811448846.6 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020108334A1 true WO2020108334A1 (zh) 2020-06-04

Family

ID=65851355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119074 WO2020108334A1 (zh) 2018-11-28 2019-11-18 阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板

Country Status (2)

Country Link
CN (1) CN109535628B (zh)
WO (1) WO2020108334A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535628B (zh) * 2018-11-28 2020-11-24 苏州生益科技有限公司 一种阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板
CN113061217B (zh) * 2021-05-13 2023-04-28 泰安亚荣生物科技有限公司 一种用于聚乳酸的新型阻燃剂的制备方法
CN114316115B (zh) * 2021-12-31 2023-12-26 广东盈骅新材料科技有限公司 烯丙基型阻燃预聚物、树脂组合物、复合树脂、半固化片及层压板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768269A (zh) * 2008-12-29 2010-07-07 冯星起 一种双马来酰亚胺树脂预聚物的制备方法
CN102199351A (zh) * 2011-04-08 2011-09-28 苏州生益科技有限公司 热固性树脂组合物、半固化片及层压板
CN104448823A (zh) * 2014-11-25 2015-03-25 华东理工大学 一种阻燃性双马来酰亚胺树脂组合物及其制备方法
CN104877134A (zh) * 2015-05-28 2015-09-02 苏州生益科技有限公司 无卤阻燃聚酰亚胺树脂组合物及使用其制作的半固化片及层压板
CN105037723A (zh) * 2015-06-26 2015-11-11 苏州生益科技有限公司 一种无卤阻燃预聚物及使用其制作的半固化片及层压板
CN109535628A (zh) * 2018-11-28 2019-03-29 苏州生益科技有限公司 一种阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323268A (ja) * 2000-05-16 2001-11-22 Sanko Kk 有機リン系難燃剤、その製造方法及びそれらを含有する樹脂組成物
DE102011116178A1 (de) * 2011-10-14 2013-04-18 Schill + Seilacher "Struktol" Gmbh Halogenfreies, phosphorhaltiges Flammschutzmittel
CN103755742B (zh) * 2014-02-11 2015-07-01 厦门大学 一种含dopo基团阻燃单体及其制备方法与应用
CN104961895A (zh) * 2014-11-24 2015-10-07 西安元创化工科技股份有限公司 一种阻燃双马来酰亚胺树脂
CN104725828B (zh) * 2015-03-04 2017-11-21 广东生益科技股份有限公司 一种树脂组合物以及使用它的预浸料和层压板
CN104725857B (zh) * 2015-03-05 2017-11-03 广东生益科技股份有限公司 一种树脂组合物以及使用它的预浸料和层压板
TWI601753B (zh) * 2016-05-27 2017-10-11 台光電子材料股份有限公司 含磷烯烴聚合物、其製備方法與包括彼之組成物與成品
CN107815033A (zh) * 2016-09-14 2018-03-20 广东广山新材料股份有限公司 一种阻燃性聚苯乙烯塑料及其制备方法
CN107298734B (zh) * 2017-06-19 2019-07-23 武汉理工大学 一种本征型无卤阻燃乙烯基酯树脂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768269A (zh) * 2008-12-29 2010-07-07 冯星起 一种双马来酰亚胺树脂预聚物的制备方法
CN102199351A (zh) * 2011-04-08 2011-09-28 苏州生益科技有限公司 热固性树脂组合物、半固化片及层压板
CN104448823A (zh) * 2014-11-25 2015-03-25 华东理工大学 一种阻燃性双马来酰亚胺树脂组合物及其制备方法
CN104877134A (zh) * 2015-05-28 2015-09-02 苏州生益科技有限公司 无卤阻燃聚酰亚胺树脂组合物及使用其制作的半固化片及层压板
CN105037723A (zh) * 2015-06-26 2015-11-11 苏州生益科技有限公司 一种无卤阻燃预聚物及使用其制作的半固化片及层压板
CN109535628A (zh) * 2018-11-28 2019-03-29 苏州生益科技有限公司 一种阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板

Also Published As

Publication number Publication date
CN109535628A (zh) 2019-03-29
CN109535628B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2020108351A1 (zh) 阻燃型树脂组合物及使用其制备的半固化片和层压板
US9629239B2 (en) Resin composition, and prepreg as well as laminate using the same
WO2020155291A1 (zh) 一种热固性树脂组合物、包含其的预浸料以及覆金属箔层压板和印制电路板
US8581107B2 (en) Halogen-free flame-retardant epoxy resin composition, and prepreg and printed circuit board using the same
WO2015127860A1 (zh) 一种无卤阻燃型树脂组合物
JP2013001807A (ja) 電子回路基板材料用樹脂組成物、プリプレグ及び積層板
WO2012083727A1 (zh) 无卤高tg树脂组合物及用其制成的预浸料与层压板
WO2012083728A1 (zh) 无卤树脂组合物及使用其的无卤覆铜板的制作方法
CN109054381B (zh) 改性马来酰亚胺树脂组合物及其制备的半固化片和层压板
WO2020047920A1 (zh) 热固性树脂组合物及含有它的预浸料、层压板和高频电路基板
WO2016119356A1 (zh) 一种无卤树脂组合物及用其制作的预浸料和层压板
WO2020108334A1 (zh) 阻燃型树脂预聚物及使用其制备的热固性树脂组合物、半固化片和层压板
CN109504087B (zh) 一种树脂组合物及使用其制备的半固化片和层压板
TWI765147B (zh) 用於金屬包覆積層板的熱固性樹脂複合物及使用其之金屬包覆積層板
CN109971175B (zh) 改性马来酰亚胺树脂组合物及其制备的半固化片和层压板
JP6546993B2 (ja) 熱硬化性樹脂組成物、及びそれを用いて製造されたプリプレグと積層板
TW202031783A (zh) 樹脂組成物、預浸體、附樹脂之薄膜、附樹脂之金屬箔、覆金屬積層板及印刷配線板
TW202030255A (zh) 樹脂組成物及其製造方法、清漆、積層板、印刷配線基板以及成形品
JP2003253018A (ja) プリプレグ及びそれを用いたプリント配線板
TWI743501B (zh) 樹脂組合物、印刷電路用預浸片及覆金屬層壓板
CN106543686B (zh) 一种树脂组合物及使用其制作的半固化片、层压板和层间绝缘膜
JP6819921B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
WO2020108310A1 (zh) 阻燃型树脂预聚物及使用其制备的树脂组合物、半固化片和层压板
CN114605779B (zh) 一种热固性树脂组合物及包含其的预浸料、电路基板和印刷电路板
JP2016065250A (ja) プリプレグ、積層板及び金属張積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891151

Country of ref document: EP

Kind code of ref document: A1