Nothing Special   »   [go: up one dir, main page]

WO2020100478A1 - Motor control device and motor control method - Google Patents

Motor control device and motor control method Download PDF

Info

Publication number
WO2020100478A1
WO2020100478A1 PCT/JP2019/039931 JP2019039931W WO2020100478A1 WO 2020100478 A1 WO2020100478 A1 WO 2020100478A1 JP 2019039931 W JP2019039931 W JP 2019039931W WO 2020100478 A1 WO2020100478 A1 WO 2020100478A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
command value
voltage command
value
phase
Prior art date
Application number
PCT/JP2019/039931
Other languages
French (fr)
Japanese (ja)
Inventor
健二 福田
敬夢 高田
Original Assignee
澤藤電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 澤藤電機株式会社 filed Critical 澤藤電機株式会社
Publication of WO2020100478A1 publication Critical patent/WO2020100478A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a motor control device and a motor control method in which the influence of a vibration component of a feedback current value on a voltage command value used for controlling a PM motor is eliminated as much as possible.
  • Electric motors are used as the power source for many home appliances and mechanical equipment.
  • a permanent magnet is provided on the rotor side
  • an armature winding is provided on the stator side
  • a PM (Permanent Magnet) motor permanent magnet motor
  • a three-phase voltage command value Vu based on a torque command value instructed from outside (a higher-order control unit of the system, etc.) and the current torque T of the PM motor
  • the three-phase voltage command values Vu, Vv, and Vw are compared by a triangular wave to generate drive signals Su, Sv, and Sw.
  • the drive signals Su, Sv, and Sw are generally used to perform the switching operation of the inverter by the drive currents Iu, Iv, and Iw of the three-phase AC flowing down.
  • the drive signals Su, Sv, Sw are generated by switching between sine wave control and rectangular wave control according to the operating status of the PM motor.
  • the operation control is performed by the sine wave control (PWM control) using the sine wave pattern with high motor efficiency in the medium / low speed operation region, and the output voltage is controlled in the high speed / high torque operation region.
  • the operation is controlled by a rectangular wave control using a rectangular wave pattern that has a high output and a high output.
  • the sine wave pattern is a pattern of the drive signals Su, Sv, and Sw generated by the triangular wave comparison of the three-phase voltage command values Vu, Vv, and Vw whose magnitude does not exceed the apex of the triangular wave. ..
  • the rectangular wave pattern means that each of the three-phase voltage command values Vu, Vv, and Vw intersects the triangular wave twice within one electrical angle cycle, and the Hi period and the Low period within one electrical angle cycle. This is a pattern of the drive signals Su, Sv, and Sw that are generated once.
  • the patterns of the drive signals Su, Sv, and Sw include an overmodulation pattern, and the overmodulation pattern is a three-phase voltage command value that is larger than the amplitude that forms the sine wave pattern and smaller than the amplitude that forms the rectangular wave pattern. It is a pattern of drive signals Su, Sv, Sw generated by Vu, Vv, Vw.
  • the rectangular wave control outputs a larger torque than the sine wave control, and a simple switching operation causes torque fluctuation at the time of switching, which is not preferable. Absent. With respect to this problem, the inventors of the present application continuously change the drive signal between a sine wave pattern (overmodulation pattern) and a rectangular wave pattern while performing torque control in the rectangular wave control mode when switching the control mode.
  • the invention described in Japanese Patent Application No. 2017-212503 capable of smoothly switching the control mode with less torque fluctuation was made.
  • the three-phase currents Ia, Ib, (Ic) of the AC motor are detected by the three-phase current sensor.
  • the three-phase / two-phase coordinate conversion is performed on the phase detection currents Iafb, Ibfb, and Icfb to obtain the two-phase detection currents Idfb and Iqfb, from the two-phase command currents Iq * and Id * that are the command values to the AC motor
  • Two-phase current errors ⁇ Id and ⁇ Iq are calculated by subtracting the above two-phase detection currents Idfb and Iqfb.
  • the first proportional-integral (PI) is multiplied by a gain of two-phase command voltage Vq at a current proportional integral component the current error? Iq, the? Iq *, calculates Vd *, the two-phase command voltage Vq *, Vd * Is subjected to 2-phase / 3-phase coordinate conversion based on the information of the electrical angle ⁇ e to obtain the 3-phase command voltages Va * , Vb * , Vc * .
  • the PWM gate pulse obtained by comparing and calculating the three-phase command voltages Va * , Vb * , Vc * and the carrier wave Vt is input to the PWM inverter to convert the DC voltage Vdc into arbitrary AC voltages Va, Vb, Vc,
  • a technique for controlling the operation of an AC motor by the AC voltages Va, Vb, Vc is disclosed.
  • the present invention has been made in view of the above circumstances, and it is possible to eliminate the influence of the vibration component in the feedback current in the d-axis and q-axis voltage command values Vd and Vq as much as possible, and to stably control the PM motor. It is an object of the present invention to provide a simple motor control device and a motor control method.
  • the present invention includes (1) an inverter 20 that causes a three-phase AC drive current Iu, Iv, and Iw to flow through the PM motor 10, and drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw). And an angle detector 14 that acquires the electrical angle ⁇ of the PM motor 10, and the drive currents Iu, Iv, and (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle ⁇ .
  • a three-phase / dq converter 22 for converting the feedback current value Id into the q-axis feedback current value Iq;
  • a d-axis current command value Id * and a q-axis current command value Iq * are set based on a torque command value T * from the outside, and these d-axis current command value Id * , q-axis current command value Iq * and the d-axis are set.
  • a sine wave control unit 40 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the feedback current value Id and the q-axis feedback current value Iq.
  • a linear correction unit 38 that linearly corrects the d-axis voltage command value Vd and the q-axis voltage command value Vq
  • a dq / 3-phase conversion unit 32 for converting the linearly corrected d-axis voltage command value Vd, q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw
  • a motor control device having a drive signal generation unit 36 that compares a three-phase voltage command value Vu, Vv, Vw with a triangular wave of a predetermined cycle and generates drive signals Su, Sv, Sw for switching the inverter 20.
  • a current integral control unit 410a and a current proportional control unit 410b are provided, and d based on the d-axis current command value Id * , the q-axis current command value Iq * , the d-axis feedback current value Id, and the q-axis feedback current value Iq.
  • a current control unit 410 that generates an axial voltage command value Vd and a q-axis voltage command value Vq, and polar coordinate conversion that polarizes the d-axis voltage command value and the q-axis voltage command value to obtain a voltage command value
  • the current control unit 410 outputs an integration-side d-axis voltage command value Vd ′′ and an integration-side q-axis voltage command value Vq ′′ that do not include the output of the current proportional control unit 410b to the polar coordinate conversion unit 418,
  • the polar coordinate conversion unit 418 acquires a voltage command value
  • the linear correction unit 38 generates the sine wave control unit 40 based on the voltage command value
  • the above problem is solved by providing the motor control device 100 characterized by linearly correcting the d-axis voltage command value Vd and the q-axis voltage command value Vq.
  • An inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10, drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw), and An angle detector 14 that acquires the electrical angle ⁇ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle ⁇ are used as d-axis feedback current values.
  • a d-axis current command value Id * and a q-axis current command value Iq * are set based on a torque command value T * from the outside, and these d-axis current command value Id * , q-axis current command value Iq * and the d-axis are set.
  • a sine wave control unit 40 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the feedback current value Id and the q-axis feedback current value Iq.
  • a dq / 3-phase converter 32 for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
  • a drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave having a predetermined period based on the carrier setting information Sc and generates drive signals Su, Sv, Sw for switching the inverter 20.
  • a current integral control unit 410a and a current proportional control unit 410b are provided, and d based on the d-axis current command value Id * , the q-axis current command value Iq * , the d-axis feedback current value Id, and the q-axis feedback current value Iq.
  • a current control unit 410 that generates an axial voltage command value Vd and a q-axis voltage command value Vq, and a polar coordinate conversion unit 418 that polar-coordinates the d-axis voltage command value and the q-axis voltage command value to obtain the voltage phase ⁇ v.
  • a sine wave mode synchronization control unit 420 that generates the carrier setting information Sc based on the voltage phase ⁇ v
  • the current control unit 410 outputs an integration-side d-axis voltage command value Vd ′′ and an integration-side q-axis voltage command value Vq ′′ that do not include the output of the current proportional control unit 410b to the polar coordinate conversion unit 418,
  • the polar coordinate conversion unit 418 acquires the voltage phase ⁇ v based on the integration-side d-axis voltage command value Vd ′′ and the integration-side q-axis voltage command value Vq ′′, and outputs it to the sine wave mode synchronization control unit 420.
  • the sine wave mode synchronization control unit 420 may generate the carrier setting information Sc based on the voltage phase ⁇ v based on the integration side d-axis voltage command value Vd ′′ and the integration side q-axis voltage command value Vq ′′.
  • An inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10, drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw), and An angle detector 14 that acquires the electrical angle ⁇ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle ⁇ are used as d-axis feedback current values.
  • a voltage phase ⁇ v is set based on the torque command value T * from the outside and the d-axis feedback current value Id and the q-axis feedback current value Iq, and the d-axis voltage command values Vd and q-axis are set based on the voltage phase ⁇ v.
  • a rectangular wave control unit 50 that generates a voltage command value Vq, a linear correction unit 38 that linearly corrects the d-axis voltage command value Vd and the q-axis voltage command value Vq, A dq / 3-phase conversion unit 32 for converting the linearly corrected d-axis voltage command value Vd, q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw, A motor control device having a drive signal generation unit 36 that compares a three-phase voltage command value Vu, Vv, Vw with a triangular wave of a predetermined cycle and generates drive signals Su, Sv, Sw for switching the inverter 20.
  • a voltage phase setting unit 502 that acquires a voltage phase ⁇ v based on the torque command value T * from the outside, the d-axis feedback current value Id, and the q-axis feedback current value Iq, A voltage command generation unit 516 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the voltage command value
  • a correction unit 70 for outputting The linear correction unit 38 linearly corrects the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq based on the voltage command value
  • the inverter 20 that causes the three-phase AC drive currents Iu, Iv, and Iw to flow through the PM motor 10; the drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw); An angle detector 14 that acquires the electrical angle ⁇ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle ⁇ are used as d-axis feedback current values.
  • a voltage phase ⁇ v is set based on the torque command value T * from the outside and the d-axis feedback current value Id and the q-axis feedback current value Iq, and the d-axis voltage command values Vd and q-axis are set based on the voltage phase ⁇ v.
  • a rectangular wave control unit 50 that generates a voltage command value Vq, a dq / 3-phase conversion unit 32 for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
  • a drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave having a predetermined period based on the carrier setting information Sc and generates drive signals Su, Sv, Sw for switching the inverter 20.
  • a voltage phase setting unit 502 that acquires a voltage phase ⁇ v based on the torque command value T * from the outside, the d-axis feedback current value Id, and the q-axis feedback current value Iq
  • a voltage command generation unit 516 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the voltage phase ⁇ v output by the voltage phase setting unit 502; Based on the d-axis feedback current value Id, the q-axis feedback current value Iq, and the d-axis voltage command value Vd and the q-axis voltage command value Vq, the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq.
  • a correction unit 70 for outputting A rectangular wave mode synchronization control unit 520 that generates the carrier setting information Sc The rectangular wave mode synchronization control unit 520 provides the motor control device 100 characterized in that it generates the carrier setting information Sc based on the voltage phase ⁇ v output from the voltage phase setting unit 502. Solve.
  • the inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10; the drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw); An angle detector 14 that acquires the electrical angle ⁇ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle ⁇ are used as d-axis feedback current values.
  • a d-axis current command value Id * and a q-axis current command value Iq * are set based on a torque command value T * from the outside, and these d-axis current command value Id * , q-axis current command value Iq * and the d-axis are set.
  • a sine wave control unit 40 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the feedback current value Id and the q-axis feedback current value Iq.
  • a linear correction unit 38 that linearly corrects the d-axis voltage command value Vd and the q-axis voltage command value Vq
  • a dq / 3-phase conversion unit 32 for converting the linearly corrected d-axis voltage command value Vd, q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw
  • a motor control device having a drive signal generation unit 36 that compares a three-phase voltage command value Vu, Vv, Vw with a triangular wave of a predetermined cycle and generates drive signals Su, Sv, Sw for switching the inverter 20.
  • a current integral control unit 410a and a current proportional control unit 410b are provided, and d based on the d-axis current command value Id * , the q-axis current command value Iq * , the d-axis feedback current value Id, and the q-axis feedback current value Iq.
  • a current control unit 410 that generates an axial voltage command value Vd and a q-axis voltage command value Vq, and polar coordinate conversion that polarizes the d-axis voltage command value and the q-axis voltage command value to obtain a voltage command value
  • the current control unit 410 outputs the integration side d-axis voltage command value Vd ′′ and the integration side q-axis voltage command value Vq ′′ that do not include the output of the current proportional control unit 410b to the polar coordinate conversion unit 418.
  • Command value output step A voltage command that the polar coordinate conversion unit 418 acquires a voltage command value
  • the linear correction unit 38 generates the sine wave control unit 40 based on the voltage command value
  • the above problem is solved by providing a motor control method characterized by performing a sine wave control linear correction step of linearly correcting the d-axis voltage command value Vd and the q-axis voltage command value Vq.
  • the inverter 20 that causes the three-phase AC drive currents Iu, Iv, and Iw to flow through the PM motor 10, the drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw), and An angle detector 14 that acquires the electrical angle ⁇ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle ⁇ are used as d-axis feedback current values.
  • a d-axis current command value Id * and a q-axis current command value Iq * are set based on a torque command value T * from the outside, and these d-axis current command value Id * , q-axis current command value Iq * and the d-axis are set.
  • a sine wave control unit 40 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the feedback current value Id and the q-axis feedback current value Iq.
  • a dq / 3-phase converter 32 for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
  • a drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave having a predetermined period based on the carrier setting information Sc and generates drive signals Su, Sv, Sw for switching the inverter 20.
  • a motor control method for a motor control device having: The sine wave control unit 40, A current integral control unit 410a and a current proportional control unit 410b are provided, and d based on the d-axis current command value Id * , the q-axis current command value Iq * , the d-axis feedback current value Id, and the q-axis feedback current value Iq.
  • a current control unit 410 that generates an axial voltage command value Vd and a q-axis voltage command value Vq, and a polar coordinate conversion unit 418 that polar-coordinates the d-axis voltage command value and the q-axis voltage command value to obtain the voltage phase ⁇ v.
  • a sine wave mode synchronization control unit 420 that generates the carrier setting information Sc based on the voltage phase ⁇ v
  • the current control unit 410 outputs the integration side d-axis voltage command value Vd ′′ and the integration side q-axis voltage command value Vq ′′ that do not include the output of the current proportional control unit 410b to the polar coordinate conversion unit 418.
  • Command value output step The voltage phase that the polar coordinate conversion unit 418 acquires the voltage phase ⁇ v based on the integration-side d-axis voltage command value Vd ′′ and the integration-side q-axis voltage command value Vq ′′ and outputs it to the sine wave mode synchronization control unit 420.
  • Inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10, drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw), and An angle detector 14 that acquires the electrical angle ⁇ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle ⁇ are used as d-axis feedback current values.
  • a voltage phase ⁇ v is set based on the torque command value T * from the outside and the d-axis feedback current value Id and the q-axis feedback current value Iq, and the d-axis voltage command values Vd and q-axis are set based on the voltage phase ⁇ v.
  • a rectangular wave control unit 50 that generates a voltage command value Vq, a linear correction unit 38 that linearly corrects the d-axis voltage command value Vd and the q-axis voltage command value Vq, A dq / 3-phase conversion unit 32 for converting the linearly corrected d-axis voltage command value Vd, q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw, A motor control device having a drive signal generation unit 36 that compares a three-phase voltage command value Vu, Vv, Vw with a triangular wave of a predetermined cycle and generates drive signals Su, Sv, Sw for switching the inverter 20.
  • the motor control method of The rectangular wave control unit 50 A voltage phase setting unit 502 that acquires a voltage phase ⁇ v based on the torque command value T * from the outside, the d-axis feedback current value Id, and the q-axis feedback current value Iq, A voltage command generation unit 516 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the voltage command value
  • a correction unit 70 for outputting A motor characterized in that the linear correction unit 38 performs a rectangular wave control linear correction step of linearly correcting the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq based on the voltage command value
  • An inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10; drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw); An angle detector 14 that acquires the electrical angle ⁇ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle ⁇ are used as d-axis feedback current values.
  • a voltage phase ⁇ v is set based on the torque command value T * from the outside and the d-axis feedback current value Id and the q-axis feedback current value Iq, and the d-axis voltage command values Vd and q-axis are set based on the voltage phase ⁇ v.
  • a rectangular wave control unit 50 that generates a voltage command value Vq, A dq / 3-phase converter 32 for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
  • a drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave having a predetermined period based on the carrier setting information Sc and generates drive signals Su, Sv, Sw for switching the inverter 20.
  • a motor control method for a motor control device having: The rectangular wave control unit 50 A voltage phase setting unit 502 that acquires a voltage phase ⁇ v based on the torque command value T * from the outside, the d-axis feedback current value Id, and the q-axis feedback current value Iq, A voltage command generation unit 516 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the voltage phase ⁇ v output by the voltage phase setting unit 502; Based on the d-axis feedback current value Id, the q-axis feedback current value Iq, and the d-axis voltage command value Vd and the q-axis voltage command value Vq, the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq.
  • a correction unit 70 for outputting A rectangular wave mode synchronization control unit 520 that generates the carrier setting information Sc The motor control method is characterized in that the rectangular wave mode synchronization control unit 520 performs a rectangular wave control carrier information generation step of generating the carrier setting information Sc based on the voltage phase ⁇ v output from the voltage phase setting unit 502.
  • the motor control device and the motor control method according to the present invention perform linear correction on the d-axis voltage command value Vd and the q-axis voltage command value Vq based on the voltage command value
  • the carrier setting information Sc is generated based on the voltage phase ⁇ v that does not include the current proportional control component. This makes it possible to generate stable three-phase voltage command values Vu, Vv, Vw and drive signals Su, Sv, Sw with little influence of vibration components, and stabilize the output voltage, current, and torque. Further, by using the voltage command value
  • Embodiments of a motor control device 100 and a motor control method according to the present invention will be described with reference to the drawings. Note that, here, description will be made using an example of a configuration in which neither the voltage phase ⁇ v nor the voltage command value
  • FIG. 1 is a block diagram of a motor control device 100 according to the present invention.
  • the motor control device 100 controls the operation of the PM motor (permanent magnet motor) 10, and the inverter 20 that causes the drive currents Iu, Iv, and Iw of the three-phase AC to flow down to the PM motor 10.
  • the drive current detectors 12u and 12v that acquire the values of the drive currents Iu, Iv, and (Iw), the angle detector 14 that acquires the electrical angle ⁇ of the PM motor 10, and the drive current detectors 12u and 12v.
  • a three-phase / dq converter 22 for converting the acquired drive currents Iu, Iv, (Iw) into a d-axis feedback current value Id, a q-axis feedback current value Iq, and an instruction from the outside (upper control unit of the system or the like).
  • a sine wave that sets the d-axis current command value Id * and the q-axis current command value Iq * based on the torque command value T * to generate the d-axis voltage command value Vd and the q-axis voltage command value Vq in the sine wave control mode.
  • the voltage phase ⁇ v is set based on the torque command value T * similarly instructed from the outside, and the d-axis voltage command value Vd and the q-axis voltage command value Vq (d-axis voltage command correction value) in the rectangular wave control mode are set.
  • Vd, q-axis voltage command correction value Vq) a rectangular wave control unit 50, a switching unit 24 that switches control of the PM motor 10 between the sine wave control unit 40 and the rectangular wave control unit 50, and the sine wave control unit 40.
  • dq / 3 phase for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the rectangular wave control unit 50 into three-phase voltage command values Vu, Vv, Vw of U phase, V phase, W phase.
  • a conversion unit 32 and a drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, and Vw with a triangular wave having a predetermined cycle to generate drive signals Su, Sv, and Sw that switch the inverter 20.
  • the motor control device 100 may include a mode transition unit 80 that performs a predetermined operation when the control unit switches the control mode, in addition to the above configuration.
  • the inverter 20 included in the motor control device 100 performs a switching operation according to the Hi-Low drive signals Su, Sv, Sw output from the drive signal generation unit 36, and a known DC power supply unit 18 such as a battery.
  • the DC power of 3 is converted into a three-phase AC voltage based on the drive signals Su, Sv, Sw, and output.
  • the three-phase drive currents Iu, Iv, and Iw whose phases are shifted by 1/3 cycle (2 / 3 ⁇ (rad)) flow down to the armature windings of the PM motor 10.
  • the permanent magnet is provided on the rotor side as described above, and the three-phase armature winding is provided on the stator side, and the drive current Iu described above is provided on the three-phase armature winding.
  • IPM Interior Permanent Magnet
  • the PM motor 10 it is preferable to use an IPM (Interior Permanent Magnet) motor in which a permanent magnet is embedded in a rotor.
  • the drive current detectors 12u and 12v can use well-known current sensors that can contactlessly acquire the drive currents Iu, Iv, and Iw flowing down by the switching operation of the inverter 20.
  • two driving currents Iu, Iv of the driving currents Iu, Iv, Iw are acquired and converted into d-axis and q-axis feedback current values Id, Iq.
  • a well-known angle sensor that can acquire the angle of the rotor can be used as the angle detection unit 14. Above all, it is particularly preferable to acquire the electrical angle ⁇ of the PM motor 10 using the resolver rotation angle sensor. It is preferable that the electric angle ⁇ and the driving currents Iu and Iv are acquired at both the apex and the valley of the triangular wave, and are used in each part of the motor control device 100 for each half cycle of the triangular wave.
  • the electrical angle ⁇ acquired by the angle detection unit 14 is also output to the angular velocity calculation unit 16, and the angular velocity calculation unit 16 calculates the electrical angular velocity ⁇ (rad / s) from the input electrical angle ⁇ , and the motor control device 100. Output to each part of.
  • the three-phase / dq conversion unit 22 also includes the drive currents Iu, Iv, (Iw) acquired by the drive current detection units 12u, 12v based on the electrical angle ⁇ (rad) of the PM motor 10 acquired by the angle detection unit 14. Is converted into d-axis current value (flux current value) Id and q-axis current value (torque current value) Iq. Convert. Then, these are output to the switching unit 24 as the d-axis feedback current value Id and the q-axis feedback current value Iq.
  • the switching unit 24 is a switching circuit that switches the generation method of the d-axis voltage command value Vd and the q-axis voltage command value Vq according to the operating status (torque, rotation speed) of the PM motor 10, and the PM motor 10 rotates at medium and low speeds. 2 operates in the sine wave control mode by the sine wave control unit 40, the PM motor 10 is operated. Further, when the PM motor 10 operates in the region B (rectangular wave control region B) in FIG. 2 where the rotation speed and torque are high, the control of the PM motor 10 is switched to the rectangular wave control unit 50 and the rectangular wave control mode is used. To operate.
  • the switching value (switching line C) between the sine wave control area A and the rectangular wave control area B changes depending on the voltage value of the DC power supply unit 18.
  • the switching value for each voltage value of the DC power supply unit 18 is set in advance in a memory unit or the like not shown, and the switching unit 24 appropriately acquires and uses the switching value according to the voltage value of the DC power supply unit 18. ..
  • the switching unit 24 when there is no matching voltage value, it is preferable to obtain an appropriate switching value from the switching values of the preceding and succeeding voltages by calculation and use it.
  • the operating condition (torque, rotation speed) of the PM motor 10 exceeds the switching value, each step described below is performed to switch the control mode.
  • a hysteresis width is added to the switching value when switching from the sine wave control mode to the rectangular wave control mode and the switching value when switching from the rectangular wave control mode to the sine wave control mode. It is preferable to prevent the frequent switching operation of.
  • the configuration and operation of the sine wave control unit 40 will be described. Since the configuration of the sine wave control unit 40 described below is an example suitable for the present invention, it is not limited to the following configuration, and any other configuration is provided as long as it has an essential configuration for the present invention. A sine wave control mechanism may be used.
  • the torque command value T * is output from the control unit or the like of the host system.
  • the torque command value T * is a torque that is an operation target of the PM motor 10.
  • this torque command value T * is input to the current command value setting unit 402 of the sine wave control unit 40 when the switching unit 24 selects the sine wave control unit 40.
  • the current torque T of the PM motor 10 is input to the current command value setting unit 402 from the torque calculation unit 404.
  • the torque calculation unit 404 has an induced voltage constant ⁇ a, a d-axis inductance Ld, a q-axis inductance Lq, etc. as motor parameters of the PM motor 10.
  • the induced voltage constant ⁇ a, the d-axis inductance Ld, and the q-axis inductance Lq may be preset fixed values, or appropriate values preset according to the temperature and operating conditions of the PM motor 10 may be used as a data table, for example. It is also possible to obtain it appropriately from the above.
  • the torque calculation unit 404 uses these values and the d-axis and q-axis feedback current values Id and Iq described later or the d-axis and q-axis current command values Id * and Iq * output from the current command value generation unit 406. Based on this, the current torque T of the PM motor 10 is calculated based on the following equation, for example. In this example, the torque T is calculated based on the d-axis and q-axis current command values Id * and Iq * .
  • T P ( ⁇ aIq * + (Ld ⁇ Lq) Id * Iq * ) [N ⁇ m]
  • P number of pole pairs of permanent magnet of PM motor
  • ⁇ a induced voltage constant
  • Ld d-axis inductance
  • Lq q-axis inductance
  • the current command value setting unit 402 sets the current command value Ia * such that the torque T takes the torque command value T * based on the torque command value T * and the current torque T, and the current command value generation unit 406. Output to.
  • the current command value Ia * may be calculated by calculation such as integral control or proportional control.
  • a limiter value may be set for the current command value Ia * , and a value corresponding to the electrical angular velocity ⁇ and the power supply voltage Vdc may be read from the table data as the limiter value. Alternatively, only the maximum value of the limiter may be set and used.
  • the current command value generation unit 406 acquires, for example, the current phase angle ⁇ i of the current command value Ia * input from the current command value setting unit 402 from table data or the like, and obtains the current command value Ia * and the current phase angle ⁇ i. Based on this, the d-axis current command value Id * and the q-axis current command value Iq * are calculated and output to the voltage command value generation unit 416 of the sine wave control unit 40.
  • the motor voltage is obtained from a well-known arithmetic expression and the above-mentioned motor parameters ( ⁇ a, Ld, Lq) and the electrical angular velocity ⁇ , d-axis, q-axis current command values Id * , Iq * , and the magnitude of this motor voltage is determined.
  • K voltage utilization rate setting value
  • the d-axis and q-axis current command values Id * and Iq * can be set at arbitrary voltage utilization rates.
  • the adjustment of the d-axis and q-axis current command values Id * , Iq * using the voltage utilization rate K is performed by the above-mentioned motor parameters ( ⁇ a, Ld, Lq), the electrical angular velocity ⁇ from the angular velocity calculation unit 16, and the direct current. It is preferable to perform the well-known voltage control, proportional control, integral control, or the like based on the power supply voltage Vdc from the power supply unit 18 or the like. Alternatively, the current phase angle ⁇ i may be calculated by calculation such as integral control or proportional control. Further, a current limiter may be provided for the d-axis current command value Id * and the q-axis current command value Iq * , if necessary.
  • the d-axis and q-axis current command values Id * and Iq * input to the voltage command value generation unit 416 are branched into two, and one of them is input to the non-interference control unit 414.
  • the non-interference control unit 414 calculates a speed electromotive force component that causes interference between the d-axis and q-axis current command values Id * , Iq * , and performs current control as the d-axis, q-axis voltage command values Vd ′, Vq ′. It is output to the section 410.
  • the other of the d-axis and q-axis current command values Id * and Iq * is subjected to current control after the d-axis and q-axis feedback current values Id and Iq are subtracted in the subtraction unit 412 to obtain fluctuation components ⁇ Id and ⁇ Iq. Input to the section 410.
  • the current control unit 410 has a current integration control unit 410a and a current proportional control unit 410b, and the fluctuation components ⁇ Id and ⁇ Iq input to the current control unit 410 are branched into two, and the current integration control unit 410a and the current Input to each of the proportional control units 410b. Then, the known current integration control is performed in the current integration control unit 410a. Further, a well-known current proportional control is performed in the current proportional controller 410b.
  • the d-axis and q-axis voltage command values Vd ′ and Vq ′ from the non-interference control unit 414 are added to the output of the current integration control unit 410 a to add the integration-side d-axis voltage command value Vd ′′ and the integration-side q-axis voltage command.
  • the outputs from the current proportional control unit 410b are added to generate the d-axis voltage command value Vd and the q-axis voltage command value Vq.
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq are output to the control signal generation unit 30 via the switching unit 24.
  • the current control unit 410 causes the three-phase voltage command values Vu, Vv, Vw based on the d-axis and q-axis voltage command values Vd, Vq to be the maximum voltage (1 pulse rectangular wave voltage) at which the inverter 20 outputs. It is preferable to provide a limiter portion for limiting the voltage so that the voltage does not become near the voltage. Further, it is preferable that the limiter section is provided in the previous stage where the output from the current proportional control section 410b is added. Further, it is preferable that the limit voltage of the limiter unit is set according to the number of synchronization of triangular waves set by the sine wave mode synchronization control unit 420 described later.
  • the integration side d-axis voltage command value Vd ′′ and the integration side q-axis voltage command value Vq ′′ in the preceding stage to which the output of the current proportional control unit 410b is added are sinusoidally controlled. It is output to the polar coordinate conversion unit 418 of the unit 40 (integral side voltage command value output step). Then, the polar coordinate conversion unit 418 performs polar coordinate conversion to acquire the voltage phase ⁇ v and the voltage command value
  • based on the integration side d-axis voltage command value Vd ′′ and the integration side q-axis voltage command value Vq ′′ that do not include the output of the current proportional control unit 410b. And are obtained. Therefore, the voltage phase ⁇ v and the voltage command value
  • the sine wave mode synchronization control unit 420 of the sine wave control unit 40 generates triangular wave carrier setting information Sc described later from the voltage phase ⁇ v, the electrical angular velocity ⁇ , and the electrical angle ⁇ obtained by the polar coordinate conversion unit 418 to generate a triangular wave.
  • Output to the generation unit 34 (sine wave control carrier information generation step). Since the voltage phase ⁇ v used at this time does not include the output of the current proportional control unit 410b (does not include the vibration component) as described above, the carrier setting information Sc generated thereby is affected by the vibration component. There will be nothing. The carrier setting information Sc will be described later.
  • the configuration and operation of the rectangular wave control unit 50 will be described. Since the configuration of the rectangular wave control unit 50 described below is an example suitable for the present invention, it is not limited to the following configuration, and any other configuration is provided as long as it has an essential configuration for the present invention. A rectangular wave control mechanism may be used.
  • the switching unit 24 controls the PM motor 10 when the PM motor 10 exceeds the switching value (switching line C) in FIG. 2 and enters the operating state in the operating region B of high rotation speed and high torque. Switching from 40 to the rectangular wave control unit 50. The switching operation at this time will be described later.
  • the torque command value T * is input to the voltage phase setting unit 502 of the rectangular wave control unit 50.
  • the d-axis feedback current value Id and the q-axis feedback current value Iq are input to the torque calculation section 504 of the rectangular wave control section 50.
  • the torque calculation unit 504 has motor parameters similar to the torque calculation unit 404 of the sine wave control unit 40.
  • the current PM motor 10 is calculated.
  • the torque T is calculated and output to the voltage phase setting unit 502.
  • the voltage phase setting unit 502 generates, from the torque command value T * and the torque T, a voltage phase ⁇ v that causes the PM motor 10 to operate at the target torque by integral control, proportional control, or the like. Then, it is output to the voltage command value generation unit 516 of the rectangular wave control unit 50.
  • the voltage phase ⁇ v generated by the voltage phase setting unit 502 is output to the rectangular wave mode synchronization control unit 520.
  • the rectangular wave mode synchronization control unit 520 generates carrier setting information Sc for setting a triangular wave from the voltage phase ⁇ v, the electrical angular velocity ⁇ , and the electrical angle ⁇ (rectangular wave control carrier information generating step).
  • the carrier setting information Sc is obtained using the voltage phase ⁇ v generated by the voltage phase setting unit 502, that is, the voltage phase ⁇ v that does not include the vibration component before the proportional control is performed by the correction unit 70 described later. . Therefore, the carrier setting information Sc is not affected by the vibration component.
  • the carrier setting information Sc will be described later.
  • the rectangular wave mode synchronization control unit 520 also functions as a voltage command acquisition unit, and the triangular wave and the three-phase voltage command values Vu, Vv, and Vw are within one cycle of the three-phase voltage command values Vu, Vv, and Vw.
  • that causes the drive signals Su, Sv, and Sw generated by the triangular wave comparison to be a one-pulse rectangular wave is acquired and output to the voltage command value generation unit 516.
  • the rectangular wave mode synchronization control unit 520 (voltage command acquisition unit) sets the voltage command value
  • the rectangular wave mode synchronization control unit 520 determines the synchronization number of the triangular wave and, at the same time, selects and sets the voltage command value
  • that forms this rectangular wave is also preferably used as a rectangular wave forming voltage value
  • the voltage command value generation unit 516 uses the voltage phase ⁇ v input from the voltage phase setting unit 502 and the voltage command value
  • the voltage command value Vd and the q-axis voltage command value Vq are generated.
  • the rectangular wave control unit 50 has a correction unit 70 that corrects a fluctuation component due to an offset or the like.
  • a correction unit 70 that corrects a fluctuation component due to an offset or the like.
  • an example of the correction unit 70 is shown below.
  • the configuration of the correction unit 70 described below is an example suitable for the present invention, and is not limited to the following configuration.
  • A is an input value (d-axis, q-axis feedback current value Id, Iq)
  • B is an output value after the smoothing process in the immediately preceding cycle
  • K is a smoothing constant
  • C is an output. Values (estimated d-axis, q-axis current command values Id * , Iq * ).
  • the pseudo estimated d-axis current command value Id * and estimated q-axis current command value Iq * in which the fluctuation components due to the offsets and amplitude imbalances of the drive currents Iu, Iv, Iw are smoothed are obtained. Is generated. Then, these estimated d-axis and q-axis current command values Id * , Iq * are output to the correction current generation unit 74.
  • the d-axis feedback current value Id and the q-axis feedback current value Iq are input to the correction current generation unit 74, and the correction current generation unit 74 generates the estimated d-axis current command value Id * generated by the smoothing unit 72 .
  • the d-axis feedback current value Id and the q-axis feedback current value Iq are subtracted from the estimated q-axis current command value Iq * .
  • the d-axis correction current ⁇ Id and the q-axis correction current ⁇ Iq as the fluctuation components are generated.
  • the d-axis correction current ⁇ Id and the q-axis correction current ⁇ Iq are output to the correction voltage generation unit 76.
  • the d-axis correction current ⁇ Id and the q-axis correction current ⁇ Iq are offset and amplitude unbalanced from the estimated d-axis and q-axis current command values Id * and Iq * in which the offset and amplitude imbalance components (variation components) are smoothed. Since the d-axis and q-axis feedback current values Id and Iq including the balance component (fluctuation component) are subtracted from each other, basically the opposite phase of the fluctuation component is taken.
  • the correction voltage generation unit 76 uses the d-axis correction current ⁇ Id and the q-axis correction current ⁇ Iq input from the correction current generation unit 74, for example, by proportional control with a predetermined correction gain (Kd, Kq) to correct the d-axis correction voltage ⁇ Vd.
  • Q-axis correction voltage ⁇ Vq is generated and output to the voltage command value correction unit 78.
  • the voltage command value correction unit 78 outputs the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq input from the correction voltage generation unit 76 to the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the voltage command value generation unit 516. To each. Therefore, the d-axis and q-axis voltage command correction values Vd and Vq thus generated have opposite voltages (d-axis and q-axis correction voltages ⁇ Vd and ⁇ Vq) to the offsets and amplitude imbalance components generated in the drive currents Iu, Iv, and Iw. ) Will be added.
  • the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq are input to the control signal generation unit 30 via the switching unit 24.
  • the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq corrected by the correction unit 70 include the reverse voltage of the offset and amplitude unbalance components as described above. The offset or the like of the driven PM motor 10 is corrected and eliminated.
  • the carrier setting information Sc output by the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 will be described.
  • the carrier setting information Sc maintains the frequency of the triangular wave generated by the triangular wave generation unit 34 in an appropriate state.
  • the center position of the falling edge of the triangular wave crosses the zero position of the rising of the three-phase voltage command values Vu, Vv, Vw.
  • the frequency of the triangular wave becomes an integer multiple of 3 which is an odd number of the frequencies of the three-phase voltage command values Vu, Vv, Vw, that is, 9, 15, 21, 27 times (hereinafter, this multiple is the synchronization number). It is a thing.
  • the number of synchronization of the triangular wave is set according to the electrical angular velocity ⁇ . The reason for setting the frequency of the triangular wave to an integer multiple of 3 which is an odd number of the frequencies of the three-phase voltage command values Vu, Vv, and Vw will be described later.
  • the voltage phase ⁇ v used to generate the carrier setting information Sc is obtained from the d-axis on the integration side (before the addition of the output of the current proportional control unit 410b) and the q-axis voltage command values Vd ′′ and Vq ′′.
  • the voltage phase ⁇ v is used, or the voltage phase ⁇ v branched before the correction unit 70 (where proportional control is performed) is used.
  • the voltage phase ⁇ v includes a proportional control component that is a short-term vibration component
  • the triangular wave cycle (carrier setting information Sc) also vibrates in the short term according to the proportional control component.
  • the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 determine the center position of the triangular wave and the zero position of the three-phase voltage command value Vu (Vv, Vw) based on the voltage phase ⁇ v and the electrical angle ⁇ . Further, the period of the triangular wave is set such that the frequency of the triangular wave intersects and the frequency becomes equal to the set synchronization number (an integer multiple of 3 which is an odd number of the frequencies of the three-phase voltage command values Vu, Vv, and Vw).
  • the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 change the setting information of the cycle in association with the change of the electrical angular velocity ⁇ , and make the triangular wave follow and maintain the above state. Further, the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 reduce the number of synchronization by one stage and set and output the carrier setting information Sc when the electrical angular velocity ⁇ exceeds a preset predetermined value. .. When the electrical angular velocity ⁇ falls below a preset predetermined value, the number of synchronizations is increased by one step to set and output the carrier setting information Sc.
  • the value of the electrical angular velocity ⁇ that changes the number of synchronizations is stored in advance in a data table or the like for each number of synchronizations, and the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 correspond to the input electrical angular velocity ⁇ . It is preferable that the corresponding synchronization number is acquired from the data table and set. At this time, it is preferable that the electrical angular velocity ⁇ that fluctuates the synchronization number has a hysteresis width. Note that the correction gain (Kd, Kq) of the correction voltage generation unit 76, the time constant of the smoothing unit 72, the gain of each control, and the like are adjusted and reset in association with the change in the cycle of these triangular waves.
  • control signal generation unit 30 a suitable example of the control signal generation unit 30 will be described. Since the configuration of the control signal generation unit 30 described below is an example suitable for the present invention, the configuration is not limited to the following configuration, and any other control signal generation mechanism may be used.
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq (d-axis voltage command correction value Vd, q-axis voltage command correction value Vq) output from the sine wave control unit 40 or the rectangular wave control unit 50 are generated as control signals. It is input to the dq / 3-phase conversion unit 32 of the unit 30.
  • the control signal generation unit 30 mainly includes the d-axis and q-axis voltage command values Vd and Vq and the voltage command value
  • the correction value used by the linear correction unit 38 is preferably set in correspondence with, for example, the modulation rate or the voltage command value
  • input to the linear correction unit 38 from the integration side d-axis and q-axis voltage command values Vd ′′ and Vq ′′ (before the addition of the output of the current proportional control unit 410b).
  • , or the correction unit 70 (proportional control is performed) in the preceding stage does not include short-term vibration components of the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq of the correction unit 70).
  • output by the rectangular wave mode synchronization control unit 520 (voltage command acquisition unit) is used (sine wave control linear correction step, rectangular wave control linear correction step).
  • the correction value fluctuates due to the influence of this vibration component.
  • the subsequent three-phase voltage command values Vu, Vv, Vw and the drive signals Su, Sv, Sw also fluctuate, which causes fluctuations in the output voltage, current, and torque.
  • the correction value is set based on the relatively stable voltage command value
  • the electrical angle ⁇ from the angle detection unit 14 and the electrical angular velocity ⁇ from the angular velocity calculation unit 16 are input to the dq / 3-phase conversion unit 32, and the inverter 20 switches based on the electrical angle ⁇ and the electrical angular velocity ⁇ .
  • a predicted electrical angle ⁇ ′ at a new timing of operation is calculated, and the d-axis and q-axis voltage command values Vd, Vq are converted into three-phase voltage command values Vu, Vv, Vw based on the predicted electrical angle ⁇ ′. , To the drive signal generator 36.
  • the drive signal generation unit 36 has a triangular wave generation unit 34, and the above-mentioned carrier setting information Sc is input to this triangular wave generation unit 34, and a triangular wave having a cycle based on this carrier setting information Sc is generated.
  • the triangular wave is based on the carrier setting information Sc from the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520, and the center position of the falling edge of the triangular wave is the rise of the three-phase voltage command values Vu, Vv, Vw.
  • the frequency becomes a triangular wave that is an integer multiple of 3.
  • the drive signal generator 36 compares the triangular wave with the three-phase voltage command values Vu, Vv, Vw, respectively.
  • the amplitude of the triangular wave increases or decreases according to the carrier setting information Sc. Therefore, the three-phase voltage command values Vu, Vv, Vw are adjusted by a conversion factor proportional to the amplitude of the triangular wave, and the adjusted three-phase voltage command values Vu, Vv, Vw are used to perform the triangular wave comparison.
  • the Hi-Low drive signals Su, Sv, Sw are generated.
  • the internal switching elements are turned on / off by the drive signals Su, Sv, Sw output from the drive signal generation unit 36, and the DC power from the DC power supply unit 18 is converted into an AC voltage based on the drive signals Su, Sv, Sw. Converted to and output.
  • alternating drive currents Iu, Iv, and Iw whose phases are shifted by 1/3 cycle (2 / 3 ⁇ (rad)) flow down to the armature windings of the PM motor 10.
  • the PM motor 10 rotates with a torque according to the torque command value T * .
  • FIG. 4 is an operation flowchart when switching from the sine wave control mode to the rectangular wave pattern control mode.
  • FIG. 5 is an operation flowchart when switching from the rectangular wave control mode to the sine wave control mode.
  • the sine wave control unit 40 In the sine wave control mode, the sine wave control unit 40 generates the d-axis voltage command value Vd and the q-axis voltage command value Vq based on the torque command value T * , and the d-axis voltage command value Vd and the q-axis voltage
  • the drive signals Su, Sv, Sw are generated based on the command value Vq.
  • the drive signals Su, Sv, Sw at this time have a sine wave pattern or an overmodulation pattern when the sine wave control unit 40 enables overmodulation control or weakening magnetic flux control.
  • the sine wave control unit 40 does not have the overmodulation control function or the weakening magnetic flux control function, the sine wave pattern is obtained.
  • the operation of the PM motor 10 is controlled by the drive signals Su, Sv, Sw of these sine wave patterns or overmodulation patterns (step S102).
  • the polar coordinate conversion unit 418 of the sine wave control unit 40 causes the integration side d-axis, q-axis voltage command values Vd ′′, Vq before the current proportional control component in the current control unit 410 is added as described above. '' Is converted into polar coordinates to calculate the voltage phase ⁇ v and the voltage command value
  • fluctuate at any time, and the initial values of the initial voltage phase ⁇ v1 and the transition voltage command value
  • are obtained from the d-axis on the integration side and the q-axis voltage command values Vd ′′ and Vq ′′ that do not include the proportional control component. Therefore, there are few short-term fluctuations, and the output during the transition period can be stabilized.
  • Step S106 when the operating condition (torque, rotation speed) of the PM motor 10 exceeds the switching value (switching line C) and enters the rectangular wave control area B due to an increase in the torque command value T * from the outside ( (Step S106: Yes), the switching unit 24 immediately switches the generation unit of the d-axis voltage command value Vd and the q-axis voltage command value Vq from the sine wave control unit 40 to the rectangular wave control unit 50 (Step S108).
  • the motor control device 100 is provided with the second mode described later, the control unit is switched to the rectangular wave control unit 50, so that steps S203 and S204 described below are performed, and the rectangular wave control unit 50 is controlled.
  • the sine wave control unit outputs the d-axis and q-axis voltage command values Vd and Vq (d-axis voltage command correction value Vd and q-axis voltage command correction value Vq) as the initial values Vd1 and Vq1 of the d-axis and q-axis voltage command values. While being output to 40, the shift data Ifb is calculated based on the d-axis feedback current value Id and the q-axis feedback current value Iq.
  • the mode transition unit 80 acquires a rectangular wave forming voltage value
  • the mode transition unit 80 continuously changes the transition voltage command value
  • from the initial value (
  • the rectangular wave mode synchronization control unit 520 does not depend on the torque command value T * and the transition voltage command value
  • the initial voltage phase ⁇ v1 is only output when the control unit is switched to the rectangular wave control unit 50, and then becomes the voltage phase ⁇ v according to the torque command value T * . Therefore, the d-axis and q-axis voltage command values Vd and Vq in the transition period of steps S114 to S116 are generated based on the voltage phase ⁇ v and the transition voltage command value
  • is the voltage command value
  • step S116 When the transition voltage command value
  • the drive signals Su, Sv, and Sw are sine-controlled while performing torque control with the voltage phase ⁇ v.
  • the wave pattern (or overmodulation pattern) is continuously changed to a rectangular wave pattern. Therefore, it is possible to smoothly switch the control mode with less torque fluctuation.
  • the rectangular wave control unit 50 causes the d-axis voltage command value Vd, the q-axis voltage command value Vq (d-axis voltage command correction value Vd, q-axis voltage command correction value) based on the torque command value T *. Vq) and drive signals Su, Sv, Sw are generated based on the d-axis voltage command value Vd and the q-axis voltage command value Vq (d-axis voltage command correction value Vd, q-axis voltage command correction value Vq).
  • the drive signals Su, Sv, Sw at this time basically have a one-pulse rectangular wave pattern as described above.
  • the operation of the PM motor 10 is controlled by the drive signals Su, Sv, Sw of this rectangular wave pattern (step S202).
  • the d-axis and q-axis voltage command correction values Vd and Vq output by the rectangular wave control unit 50 are supplied to the voltage command value generation unit 416 of the sine wave control unit 40.
  • the initial values Vd1 and Vq1 of the command value are output directly or via the mode transition unit 80 (step S203).
  • the interference components between the d-axis and the q-axis of the non-interference control unit 414 (d-axis, q-axis voltage command values Vd ′, Vq ′).
  • the result is input to the current integration control unit 410a and becomes the integrated value of the current control unit 410.
  • the integral value of the current control unit 410 does not participate in the control of the PM motor 10.
  • the initial values Vd1 and Vq1 change at any time according to changes in the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the rectangular wave control unit 50.
  • the mode transition unit 80 also acquires the d-axis feedback current value Id and the q-axis feedback current value Iq from the three-phase / dq conversion unit 22. Then, the transition data Ifb for calculating the initial value Id * 1 of the d-axis current command value and the initial value Iq * 1 of the q-axis current command value is calculated (step S204).
  • the transition data Ifb is, for example, the integral value of the integral control unit inside the current command value setting unit 402 or the current command value generating unit 406, which is obtained by calculation using the d-axis and q-axis feedback current values Id and Iq.
  • the current command value setting unit 402 and the current command value generation unit 406 complement the data that cannot be acquired immediately after switching from the rectangular wave control unit 50 to the sine wave control unit 40. It should be noted that the acquisition of the migration data Ifb is similarly performed during a migration period described later.
  • the mode transition unit 80 acquires the voltage command value
  • a preset fixed value such as the upper limit value of the voltage command value
  • the mode transition unit 80 continuously changes the transition voltage command value
  • from the initial value (
  • the initial values Vd1 and Vq1 output by the rectangular wave control unit 50 are continuously output to the sine wave control unit 40 (step S214), and the transition data Ifb is updated at any time (step S215). ).
  • the rectangular wave mode synchronization control unit 520 receives the transition voltage command value regardless of the torque command value T * , as described above.
  • the initial value (
  • is the voltage command value during rectangular wave control
  • the mode transition unit 80 stops outputting the transition voltage command value
  • the switching unit 24 switches the generation unit of the d-axis voltage command value Vd and the q-axis voltage command value Vq from the rectangular wave control unit 50 to the sine wave control unit 40 (step S218). Further, at this time, the mode transition unit 80 outputs the transition data Ifb to the current command value setting unit 402 and the current command value generation unit 406 of the sine wave control unit 40 (step S220).
  • the current command value setting unit 402 and the current command value generation unit 406 calculate the initial value Id * 1 of the d-axis current command value and the initial value Iq * 1 of the q-axis current command value based on the transition data Ifb, It outputs to the voltage command value generation unit 416.
  • the sine wave control unit Immediately after switching to 40, based on the initial values Vd1, Vq1 of the d-axis and q-axis voltage command values, the initial value Id * 1 of the d-axis current command value, and the initial value Iq * 1 of the q-axis current command value.
  • the switching d-axis voltage command value Vd and the switching q-axis voltage command value Vq are generated and output to the control signal generation unit 30 side (step S222).
  • the PM motor 10 is controlled by the drive signals Su, Sv, and Sw based on the switching d-axis voltage command value Vd and the switching q-axis voltage command value Vq.
  • the motor control device 100 completely shifts to the sine wave control mode by the sine wave control unit 40 (step S224). Accordingly, the sine wave control unit 40 generates the d-axis and q-axis voltage command values Vd and Vq by the d-axis current command value Id * and the q-axis current command value Iq * according to the torque command value T * , and outputs the control signal. Output to the generation unit 30 side. As a result, the operation of the PM motor 10 is controlled by the drive signals Su, Sv, Sw having a sine wave pattern or an overmodulation pattern.
  • the drive signals Su, Sv, and Sw are rectangular while the torque control is performed by the voltage phase ⁇ v.
  • the wave pattern is continuously changed to a sine wave pattern (or overmodulation pattern), and when the sine wave pattern (or overmodulation pattern) is reached, switching to the sine wave control mode is performed.
  • the last value at the time of mode transition (the initial value Vd1 of the d-axis voltage command value, the initial value Vq1 of the q-axis voltage command value, the initial value Id of the d-axis current command value Id * 1, the switching d-axis and q-axis voltage command values Vd and Vq are generated based on the initial value Iq * 1) of the q-axis current command value, and the operation control of the PM motor 10 is performed. Therefore, it is possible to smoothly switch the control mode in which the control value is continuous before and after the switching of the control unit and the torque fluctuation is small.
  • the rectangular wave control unit 50 performs control based on the transition voltage command value
  • the rectangular wave control mode by the rectangular wave control unit 50 is directly transferred to steps S110 to S116.
  • the control in can be continued.
  • the motor control device 100 and the motor control method according to the present example can cope with the re-switching of the control mode even during the transition period, and also during the transition period, the voltage phase based on the torque command value T *. Since torque control is performed by ⁇ v, it is possible to perform operation control with excellent responsiveness.
  • the sine wave control unit 40 of the motor control device 100 corresponds to the overmodulation control and the weakening magnetic flux control, and has the same rectangular wave forming voltage value
  • are substantially equal, the control of steps S208 to S216 may be omitted.
  • the d-axis and q-axis voltage command values Vd and Vq at the time of switching are generated immediately after switching from the rectangular wave control mode to the sine wave control mode, and smooth control mode with less torque fluctuation can be switched. ..
  • the triangular wave of the motor control device 100 and the motor control method according to the present invention will be described.
  • the center position of the falling edge of the triangular wave crosses the zero position of the rising of the three-phase voltage command values Vu, Vv, Vw, and the frequencies of the three-phase voltage command values Vu, Vv, Vw. It is assumed that the frequency is an integer multiple of 3 which is an odd number of.
  • the frequency of the triangular wave is not an integral multiple of 3 of the frequency of the three-phase voltage command values Vu, Vv, Vw
  • the waveforms of the drive signals Su, Sv, Sw are different for the U phase, V phase, and W phase.
  • PM motor 10 cannot be controlled smoothly. Therefore, the frequency of the triangular wave is an integral multiple of 3 of the frequencies of the three-phase voltage command values Vu, Vv, and Vw.
  • FIG. 6A1 shows the triangular wave with the three-phase voltage command values Vu and Vv when the frequency of the triangular wave is set to 6 times the three-phase voltage command value Vu (Vv, Vw) (an integer multiple of an even 3) in FIG. 6A1.
  • the schematic diagram of comparison is shown. 6A2 and 6A3 show the drive signals Su and Sv generated by this triangular wave comparison. Further, FIG. 6 (a4) shows the output line voltage Vuv between the U phase and the V phase at this time. Further, in FIG.
  • FIG. 6 (b1) the triangular wave comparison with the three-phase voltage command values Vu and Vv when the frequency of the triangular wave is set to nine times the three-phase voltage command value Vu (Vv, Vw) (an integer multiple of an odd 3)
  • Vu the three-phase voltage command value
  • FIG. 6B4 shows the output line voltage Vuv between the U phase and the V phase at this time.
  • the frequency of the triangular wave is set to an integer multiple of 3 which is an even number of the three-phase voltage command values Vu, Vv, and Vw
  • the zero position of the three-phase voltage command value Vu and the triangular wave Both intersect with the center position in the falling area.
  • the inclinations of the three-phase voltage command values Vu, Vv, Vw and the triangular wave may be partially approximated (they both overlap). ..
  • the drive signals Su, Sv, Sw change from a sine wave pattern (overmodulation pattern) to a rectangular wave pattern, a discontinuous or abrupt change may occur, which causes torque fluctuation. Becomes
  • the frequency of the triangular wave is set to an integer multiple of the odd-numbered three of the three-phase voltage command values Vu, Vv, and Vw, as shown by the alternate long and short dash line in FIG.
  • the frequency of the triangular wave is set to an integer multiple of 3 which is an even number of the three-phase voltage command values Vu, Vv, and Vw, for example, in FIG. 6 (a4)
  • the waveform of the output line voltage Vuv becomes vertically asymmetric.
  • an offset component or distortion may be generated in the drive currents Iu, Iv, and Iw, which is not a preferable control signal for the PM motor 10.
  • the waveform of the output line voltage Vuv is vertical and horizontal as shown in FIG. 6 (b4). And become symmetrical. Similarly, the output line voltages Vvw and Vwu also have symmetry, which enables stable control of the PM motor 10.
  • the motor control device 100 and the motor control method according to the present invention are calculated from the integration-side d-axis (before the output addition of the current proportional control unit 410b) and the q-axis voltage command values Vd ′′ and Vq ′′.
  • Linear correction is performed based on the voltage command value
  • Va or the voltage command value
  • the linearly corrected d-axis and q-axis voltage command values Vd, Vq are not affected by the short-term vibration component, and stable three-phase voltage command values Vu, Vv, Vw, drive signals Su, Sv, Sw are obtained.
  • the motor control device 100 and the motor control method according to the present invention the voltage phase obtained from the integration side d axis (before the output addition of the current proportional control unit 410b), the q axis voltage command values Vd ′′, Vq ′′.
  • the carrier setting information Sc is generated based on ⁇ v or the voltage phase ⁇ v that does not include the component of the current proportional control branched before the correction unit 70 (where proportional control is performed).
  • the carrier setting information Sc and the triangular wave are not affected by the short-term vibration component, stable drive signals Su, Sv, Sw can be generated, and the output voltage, current, and torque can be stabilized.
  • the voltage phase ⁇ v that does not include the proportional control component, it is possible to obtain a large control gain for the sine wave mode synchronization control unit 420, the rectangular wave mode synchronization control unit 520, the voltage phase setting unit 502, etc. The responsiveness of can be improved.
  • the motor control device 100 and the motor control method shown in this example are merely examples, and the configuration, operation, configuration of each step, and the like of each unit such as the control signal generation unit 30, the sine wave control unit 40, and the rectangular wave control unit 50. Can be changed and implemented without departing from the scope of the present invention. For example, a triangular wave can be replaced with a carrier wave.
  • the correction value used by the linear correction unit 38 is obtained by previously obtaining the nonlinear relationship between the modulation factor or the voltage command value
  • as an argument is preset, and the linear correction unit 38 corrects the correction value (magnification) according to the input voltage command value
  • the linear correction it is preferable to apply the linear correction to “the magnitude of the voltage command value before the comparison operation of the drive signal generation unit 36”.
  • the d-axis and q-axis voltage command values Vd and Vq in the preceding stage of the dq / 3-phase conversion unit 32 may be linearly corrected.
  • the three-phase voltage command values Vu, Vv, and Vw output from the dq / 3-phase converter 32 may be linearly corrected.
  • is calculated from the d-axis and q-axis voltage command values Vd and Vq in the preceding stage of the dq / 3-phase conversion unit 32 and the following equation (2), and this
  • Vd and Vq may be reconfigured and transferred to the dq / 3-phase conversion unit 32.
  • the correction value of the linear correction is acquired by using
  • a linear correction is also performed on the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq output from the voltage generation unit 76, and the voltage command value correction unit 78 adds the linear corrections and then transfers them to the dq / 3-phase conversion unit 32. Is also good.
  • the conversion coefficient corresponding to the three-phase voltage command values Vu, Vv, and Vw is multiplied by the correction value of the linear correction so as to be proportional to the change in the amplitude of the triangular wave of the drive signal generation unit 36, and the conversion coefficient after the multiplication is obtained.
  • the three-phase voltage command values Vu, Vv, Vw output by the dq / 3-phase conversion unit 32 are multiplied so that the adjusted three-phase voltage command values Vu, Vv, Vw used for the comparison operation are linearly corrected. May be.
  • used when obtaining the correction value of the linear correction when the rectangular wave control unit 50 is used may be set as follows.
  • output from the rectangular wave control unit 50 to the linear correction unit 38 is the current phase ⁇ i of the vector formed by the d-axis current and the q-axis current, which is preset based on the magnitude of the current.
  • is decreased when it is deviated to the q-axis side, and is increased when it is deviated to the d-axis side.
  • Va is controlled by controlling the magnitude by integral control, proportional control, or the like, and is controlled so as to have a current phase ⁇ i equivalent to the target current phase ⁇ i (base) based on the d-axis current or the q-axis current.
  • When performing linear correction using this voltage command value
  • the correction unit 70 is used by selecting a control gain such as integral control or proportional control of the control unit that increases or decreases the voltage command value
  • the mode transition unit 80 continuously increases the transition voltage command value
  • from the initial value (
  • the mode transition unit 80 continuously changes the transition voltage command value
  • from the initial value (
  • the drive signals Su, Sv, and Sw continuously change from a sine wave pattern or an overmodulation pattern to a rectangular wave pattern while torque control by the voltage phase ⁇ v is performed during the transition period, or during the transition period
  • the drive signal Su Su, Sv, and Sw are such that when the rectangular wave pattern is continuously changed to the overmodulation pattern or the sine wave pattern while the torque control by the voltage phase ⁇ v is performed, the drive signals Su, Sv, and Sw are sine wave pattern and the overmodulation pattern.
  • Linear correction is performed based on the voltage command value
  • output by the mode transition unit 80 is continuously increased or decreased based on a predetermined time constant, the d-axis correction output from the correction voltage generation unit 76 is performed. Since a vibration component such as the voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq is not included, stable linear correction can be performed.
  • the difference between the current integral control unit 410a and the current proportional control unit 410b is that the operation of the current proportional control unit 410b is the difference between the current command values (Id * and Iq * ) and the feedback currents Id and Iq ⁇ Id and ⁇ Iq.
  • the current proportional control unit 410b is multiplied by a preset proportional gain, and the output value of the current proportional control unit 410b is generated.
  • the current proportional control unit 410b which is a well-known proportional control, can obtain an output obtained by multiplying a change in ⁇ Id and ⁇ Iq by a proportional gain. Therefore, when the feedback current changes with respect to the current command value, ⁇ Id and ⁇ Iq change, and it can be seen that the output changes according to the changes in ⁇ Id and ⁇ Iq.
  • the electric angle ⁇ and the drive currents Iu, Iv, and (Iw) are acquired at the timings of both the peaks and the valleys of the triangular wave, and the motor control device is provided for each half cycle of the triangular wave. It is used in each part of 100 ”, based on the drive currents Iu and Iv and the electrical angle ⁇ acquired for each half cycle of the triangular wave, the three-phase / dq conversion part 22 d-axis feedback current value Id.
  • higher-order components may be superimposed on the drive currents Iu, Iv, Iw, or the drive currents Iu, Iv, Iw may be offset.
  • the d-axis feedback current value Id generated by converting the drive currents Iu and Iv by the three-phase / dq conversion
  • the q-axis feedback current value Iq has a first-order higher component superposed on the three-phase current. For example, when there is an offset in the three-phase current, a first-order component is superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq.
  • the vibration component Due to the offset and higher-order components superimposed on the three-phase current, the vibration component is superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq.
  • the subtraction unit 412 subtracts the d-axis feedback current value Id and the q-axis feedback current value Iq on which the vibration component is superimposed from the d-axis and q-axis current command values Id * and Iq * to generate ⁇ Id and ⁇ Iq. Therefore, ⁇ Id and ⁇ Iq in which the vibration component is superimposed are generated.
  • the current proportional control unit 410b multiplies ⁇ Id and ⁇ Iq on which the vibration component is superimposed by a proportional gain to control the current proportional control. It is output as a d-axis voltage command value and a q-axis voltage command value by the unit 410b.
  • the vibration component is also multiplied by the proportional gain and the vibration component is superposed.
  • the axial voltage command value and the q-axis voltage command value are output from the current proportional controller 410b.
  • the vibration component superimposed on ⁇ Id and ⁇ Iq is output to the d-axis voltage command value and the q-axis voltage command value for each control cycle.
  • the operation of the current integration control unit 410a is based on the integration set in advance in the current integration control unit 410a with respect to ⁇ Id and ⁇ Iq which are the differences between the current command values (Id * and Iq * ) and the feedback currents Id and Iq.
  • the gain is multiplied and added to the integral value of the current integral controller 410a, and this integral value is output as an output value.
  • the value obtained by multiplying the change in ⁇ Id and ⁇ Iq by the integral gain is not output as it is, but is added to the integrated value and the integrated value is output.
  • the rate of change in the output value for each control cycle is proportional to that in which the output value changes at the same rate as the rate of change in ⁇ Id and ⁇ Iq described above.
  • the rate of change in output value is smaller than the rate of change in ⁇ Id and ⁇ Iq.
  • the change in the output value of each control due to the change in the input value including the vibration component is that proportional output changes the output value in proportion to the rate of change of the input value.
  • the rate of change in the output value is smaller than the rate of change in the input value.
  • the linear correction of the sine wave control unit by the proportional control and the integral control of the sine wave control unit and the influence on the carrier setting information Sc will be supplemented.
  • polar coordinate conversion is performed in the polar coordinate conversion unit 418 based on the d-axis voltage command value and the q-axis voltage command value, and the voltage phase ⁇ v and the voltage command value
  • the correction value for the linear correction when the correction value for the linear correction is generated based on the d-axis voltage command value and the q-axis voltage command value including the output of the proportional control, the correction value for the linear correction also becomes oscillatory, and the linear correction is applied.
  • the voltage command values (d-axis voltage command value, q-axis voltage command value and three-phase voltage command value) and the drive signals Su, Sv, Sw become oscillatory, and as a result, the drive currents Iu, Iv, Iw and the motor are The output torque may become unstable.
  • the carrier setting information Sc Becomes oscillating, the cycle of the triangular wave generated based on the carrier setting information Sc becomes oscillating, and the drive signals Su, Sv, Sw generated using the triangular wave become oscillating, resulting in the drive current. Iu, Iv, Iw and the torque output from the motor may become unstable. Therefore, as the voltage value used to obtain the carrier setting information Sc, the output value of the integral control with a small proportion of the vibration component is used, and the output value of the proportional control with a large proportion of the vibration component is not included. As a result, the carrier setting information Sc becomes stable.
  • the output value of the non-interference control unit 414 is also added to the output value of the integral control and used.
  • the d-axis current value and the q-axis current value used in the non-interference control unit 414 are not the feedback value but the d-axis current command value and the q-axis current command value, so that the vibration component included in the feedback current Since the d-axis and q-axis voltage command values Vd ′ and Vq ′, which are the output values of the non-interference control, can be obtained without being affected by, the voltage phase ⁇ v that is the output of the polar coordinate conversion unit 418 using this output value The voltage command value
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq input to the switching unit 24 are the d-axis correction voltage ⁇ Vd, q input from the correction voltage generation unit 76 in the voltage command value correction unit 78.
  • the axis correction voltage ⁇ Vq is set by adding it to the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the voltage command value generation unit 516.
  • the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq output by the correction voltage generator 76 are the d-axis due to the offset and amplitude imbalance components generated in the drive currents Iu, Iv, and Iw as in paragraphs 0038 to 0040 of the present application.
  • the feedback current value Id and the q-axis feedback current value Iq are voltages including a fluctuation component having a reverse phase of the fluctuation component superimposed on the feedback current value Iq.
  • the d-axis feedback current value Id and the q-axis feedback current value Iq on which the fluctuation components due to the offset and the amplitude imbalance components generated in the drive currents Iu, Iv, and Iw are superimposed are used as the offset and amplitude imbalance components (variation components).
  • d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq are generated by proportional control in which the current ⁇ Iq is multiplied by a predetermined correction gain (Kd, Kq).
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq which are input to the switching unit 24 to which the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq output from the correction voltage generation unit 76 are added, have a variation component. It includes.
  • the rectangular wave mode synchronization control unit 520 outputs the carrier setting information Sc and the voltage command value
  • is set to a voltage command value
  • is set to the rectangular wave forming voltage value
  • Sw outputs a voltage command value
  • output by the mode transition unit 80 in this example is input to the rectangular wave mode synchronization control unit 520, and the rectangular wave mode synchronization control unit 520 An arbitrary magnitude voltage command value
  • the rectangular wave mode synchronization control unit 520 outputs the voltage command value
  • the rectangular wave mode synchronization control unit 520 causes the voltage command value generation unit 516 and the switching unit 24 to generate the voltage command value
  • the rectangular wave mode synchronization control unit 520 uses the rectangular wave formation voltage value
  • the correction value of the linear correction unit 38 is calculated using the magnitude of the voltage command value obtained by performing polar coordinate conversion.
  • the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the switching unit 24 are examined.
  • Q-axis correction voltage ⁇ Vq is added, the correction value of the linear correction unit 38 changes due to the influence of the fluctuation component contained in the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq, and the linear correction is applied.
  • the three-phase voltage command values Vu, Vv, Vw and the drive signals Su, Sv, Sw may also fluctuate according to fluctuations in the correction value of the linear correction unit 38, and may become a factor of fluctuations in output voltage, current, and torque.
  • the correction value of the linear correction unit 38 is generated based on the voltage command value
  • the correction value of the linear correction unit 38 is generated based on the voltage command value including the fluctuation components of the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq output from the correction voltage generation unit 76, the d-axis correction is performed as described above.
  • the correction value fluctuates under the influence of the fluctuation component contained in the voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq, and the three-phase voltage command values Vu, Vv, Vw to which the linear correction is applied, and the drive signals Su, Sv, Sw also fluctuate.
  • the correction value of the linear correction unit 38 is set based on the voltage command value that is not affected by the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq output from the correction voltage generation unit 76, and thus the correction is performed.
  • the gain of the voltage generation unit 76 can be increased, and the responsiveness of the correction voltage generation unit 76 can be improved.
  • the rectangular wave mode synchronization control unit 520 also generates carrier setting information Sc for setting a triangular wave from the voltage phase ⁇ v, the electrical angular velocity ⁇ , and the electrical angle ⁇ .
  • the carrier setting information Sc is obtained using the voltage phase ⁇ v generated by the voltage phase setting unit 502.
  • the voltage phase setting unit 502 generates the voltage phase ⁇ v by integral control, proportional control, or the like based on the current torque T calculated by the torque calculation unit 504 and the torque command value T * .
  • the torque calculation unit 504 calculates the current torque T based on the d-axis feedback current value Id and the q-axis feedback current value Iq. Therefore, the current torque T calculated by the torque calculation unit 504 is a value that includes the fluctuation component superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq. Therefore, the voltage phase ⁇ v generated by the voltage phase setting unit 502 based on the current torque T calculated by the torque calculation unit 504 may include a fluctuation component.
  • the d-axis correction output by the correction voltage generation unit 76 is first obtained in the voltage phase obtained by performing polar coordinate conversion based on the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the switching unit 24.
  • the fluctuation components of the voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq are included.
  • the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq are, as described above, offsets and amplitude imbalance components generated in the drive currents Iu, Iv, and Iw.
  • the d-axis feedback current value Id and the q-axis feedback current value Iq on which the fluctuation component due to is superimposed are estimated d-axis and q-axis current command values Id * , Iq * in which the offset (amplitude unbalance) component (fluctuation component) is smoothed .
  • D-axis correction current ⁇ Id and q-axis correction current ⁇ Iq, and the d-axis correction current ⁇ Id and the q-axis correction current ⁇ Iq are multiplied by a predetermined correction gain (Kd, Kq) to obtain d.
  • Kd, Kq predetermined correction gain
  • the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq are the fluctuation components superposed on the d-axis feedback current value Id and the q-axis feedback current value Iq. Since it is the variation component multiplied by (Kd, Kq), it varies in proportion to the variation of the variation component superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq.
  • the voltage phase obtained by performing polar coordinate conversion based on the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the switching unit 24 to which the d-axis correction voltage ⁇ Vd and the q-axis correction voltage ⁇ Vq are added is , D-axis feedback current value Id and q-axis feedback current value Iq.
  • the voltage phase ⁇ v generated by the voltage phase setting unit 502 is proportional to the voltage phase setting unit 502 based on the current torque T calculated based on the d-axis feedback current value Id and the q-axis feedback current value Iq.
  • the ratio to the voltage phase ⁇ v which is the output value of the voltage phase setting unit 502, in consideration of the ratio of the integral value due to the integral control of the voltage phase setting unit 502, The rate of change per control cycle is reduced. Therefore, the voltage phase ⁇ v generated by the voltage phase setting unit 502 is obtained by performing polar coordinate conversion based on the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the switching unit 24 described above.
  • the voltage phase setting unit 502 does not change immediately in response to the change of the fluctuation component superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq such as the voltage phase, and the voltage phase setting unit 502 uses the integrated value of the integral control of the voltage phase setting unit 502. The influence of the fluctuation component per control cycle of the voltage phase ⁇ v generated in 1 is suppressed.
  • the setting of the control gain of the integral control or proportional control of the rectangular wave mode synchronization control unit 520 is set according to the responsiveness of the torque required by the system, and the responsiveness required by the system is satisfied.
  • the integration is performed so that the response to the fluctuation component of the d-axis feedback current value Id or the q-axis feedback current value Iq, which is caused by the offset or the higher-order component superimposed on the three-phase current, is suppressed.
  • the current torque T is calculated after smoothing the d-axis feedback current value Id and the q-axis feedback current value Iq used when calculating the current torque T with a low-pass filter or the like.
  • the fluctuation component included in the voltage phase ⁇ v generated by the voltage phase setting unit 502 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

[Problem] To provide a motor control device and a motor control method with which it is possible to eliminate, as much as possible, the effect of a vibration component of a feedback current on d-axis and q-axis voltage command values Vd, Vq, and control a PM motor in a stable manner. [Solution] In this motor control device 100 and motor control method, linear correction is performed on the basis of a voltage command value |Va| that does not include a current proportional control component. The d-axis and q-axis voltage command values Vd, Vq after linear correction are thereby prevented from being affected by a short-term vibration component, making it possible to generate three-phase voltage command values and a drive signal that are stable, and stabilize the output voltage, current, and torque. Carrier setting information Sc is generated on the basis of a voltage phase θv that does not include a current proportional control component. The carrier setting information Sc and a triangle wave are thereby prevented from being affected by a short-term vibration component, making it possible to generate a stable drive signal, and stabilize the output voltage, current, and torque.

Description

モータ制御装置及びモータ制御方法Motor control device and motor control method
 本発明は、PMモータの制御に用いる電圧指令値に対して、フィードバック電流値の振動成分の影響を極力排除したモータ制御装置及びモータ制御方法に関するものである。 The present invention relates to a motor control device and a motor control method in which the influence of a vibration component of a feedback current value on a voltage command value used for controlling a PM motor is eliminated as much as possible.
 多くの家電や機械設備の動力源として電動モータが使用されている。このうち、回転子側に永久磁石を設け、固定子側に電機子巻線を設け、この電機子巻線の磁界を制御することで回転子を回転させるPM(Permanent Magnet)モータ(永久磁石モータ)は、界磁損失が存在しないため低損失、高効率であり、近年の省エネルギー化の流れから大型の機械機器にも多く採用されている。そして、このPMモータの制御方法としては、先ず、外部(システムの上位の制御部等)から指示されるトルク指令値と、PMモータの現在のトルクTとに基づいて三相電圧指令値Vu、Vv、Vwを生成するとともに、この三相電圧指令値Vu、Vv、Vwを三角波比較して駆動信号Su、Sv、Swを生成する。そして、この駆動信号Su、Sv、Swによってインバータをスイッチング動作させることで流下する3相交流の駆動電流Iu、Iv、Iwによって行う事が一般的である。また、この駆動信号Su、Sv、Swの生成は、PMモータの運転状況に応じて正弦波制御と矩形波制御とを切り替えて行うものが多い。この制御方法では、一般的に中・低速回転の動作領域ではモータ効率の高い正弦波パターンを用いた正弦波制御(PWM制御)によって動作制御を行い、高速回転・高トルクの動作領域では出力電圧が高く高出力が可能な矩形波パターンを用いた矩形波制御にて動作制御を行う。 Electric motors are used as the power source for many home appliances and mechanical equipment. Of these, a permanent magnet is provided on the rotor side, an armature winding is provided on the stator side, and a PM (Permanent Magnet) motor (permanent magnet motor) that rotates the rotor by controlling the magnetic field of the armature winding. ) Has low loss and high efficiency because there is no field loss, and has been widely used in large-scale mechanical devices due to the recent trend of energy saving. As a method of controlling the PM motor, first, a three-phase voltage command value Vu based on a torque command value instructed from outside (a higher-order control unit of the system, etc.) and the current torque T of the PM motor, In addition to generating Vv and Vw, the three-phase voltage command values Vu, Vv, and Vw are compared by a triangular wave to generate drive signals Su, Sv, and Sw. Then, the drive signals Su, Sv, and Sw are generally used to perform the switching operation of the inverter by the drive currents Iu, Iv, and Iw of the three-phase AC flowing down. Further, in many cases, the drive signals Su, Sv, Sw are generated by switching between sine wave control and rectangular wave control according to the operating status of the PM motor. In this control method, generally, the operation control is performed by the sine wave control (PWM control) using the sine wave pattern with high motor efficiency in the medium / low speed operation region, and the output voltage is controlled in the high speed / high torque operation region. The operation is controlled by a rectangular wave control using a rectangular wave pattern that has a high output and a high output.
 ここで、正弦波パターンとは、振幅のピークが三角波の頂点を越えない大きさの三相電圧指令値Vu、Vv、Vwの三角波比較により生成される駆動信号Su、Sv、Swのパターンである。また、矩形波パターンとは、三相電圧指令値Vu、Vv、Vwのそれぞれが電気角1周期のうちに三角波と2回交差して、Hi期間とLow期間とが電気角1周期のうちに1回ずつ生成される駆動信号Su、Sv、Swのパターンである。さらに、駆動信号Su、Sv、Swのパターンには過変調パターンがあり、この過変調パターンは正弦波パターンを形成する振幅よりも大きく、矩形波パターンを形成する振幅よりも小さい三相電圧指令値Vu、Vv、Vwにより生成される駆動信号Su、Sv、Swのパターンである。 Here, the sine wave pattern is a pattern of the drive signals Su, Sv, and Sw generated by the triangular wave comparison of the three-phase voltage command values Vu, Vv, and Vw whose magnitude does not exceed the apex of the triangular wave. .. The rectangular wave pattern means that each of the three-phase voltage command values Vu, Vv, and Vw intersects the triangular wave twice within one electrical angle cycle, and the Hi period and the Low period within one electrical angle cycle. This is a pattern of the drive signals Su, Sv, and Sw that are generated once. Furthermore, the patterns of the drive signals Su, Sv, and Sw include an overmodulation pattern, and the overmodulation pattern is a three-phase voltage command value that is larger than the amplitude that forms the sine wave pattern and smaller than the amplitude that forms the rectangular wave pattern. It is a pattern of drive signals Su, Sv, Sw generated by Vu, Vv, Vw.
 しかしながら、正弦波制御と矩形波制御とでは同一の電圧位相であっても正弦波制御よりも矩形波制御の方が出力するトルクが大きく、単純な切り替え動作では切り替え時にトルク変動が生じ好ましいものではない。この問題点に関し本願発明者らは、制御モードの切り替え時に矩形波制御モードによるトルク制御を行いながら、駆動信号を正弦波パターン(過変調パターン)と矩形波パターンとの間で連続的に変化させ、トルク変動の少ないスムーズな制御モードの切り替えを行うことが可能な特願2017-212503号に記載の発明を行った。 However, even if the sine wave control and the rectangular wave control have the same voltage phase, the rectangular wave control outputs a larger torque than the sine wave control, and a simple switching operation causes torque fluctuation at the time of switching, which is not preferable. Absent. With respect to this problem, the inventors of the present application continuously change the drive signal between a sine wave pattern (overmodulation pattern) and a rectangular wave pattern while performing torque control in the rectangular wave control mode when switching the control mode. The invention described in Japanese Patent Application No. 2017-212503 capable of smoothly switching the control mode with less torque fluctuation was made.
 ここで、例えば下記[特許文献1]に記載の発明では、ACモータの電流制御を行う上で、3相電流センサによりACモータの3相電流Ia、Ib、(Ic)を検出し、この3相検出電流Iafb、Ibfb、Icfbに対し3相/2相座標変換を行って2相検出電流Idfb、Iqfbを取得した後、ACモータへの指令値となる2相指令電流Iq、Idから先の2相検出電流Idfb、Iqfbを差し引いて2相電流誤差ΔId、ΔIqを計算する。そして、電流比例積分構成部においてこの電流誤差ΔIq、ΔIqに第1の比例積分(PI)ゲインを乗じて2相指令電圧Vq、Vdを算出し、この2相指令電圧Vq、Vdに対して電気角θeの情報に基づく2相/3相座標変換を行って3相指令電圧Va、Vb、Vcを取得する。そして、3相指令電圧Va、Vb、Vcと搬送波Vtとを比較・演算したPWMゲートパルスをPWMインバータに入力して直流電圧Vdcを任意の交流電圧Va、Vb、Vcに変換し、この交流電圧Va、Vb、VcによってACモータを動作制御する技術が開示されている。 Here, for example, in the invention described in the following [Patent Document 1], in controlling the current of the AC motor, the three-phase currents Ia, Ib, (Ic) of the AC motor are detected by the three-phase current sensor. After the three-phase / two-phase coordinate conversion is performed on the phase detection currents Iafb, Ibfb, and Icfb to obtain the two-phase detection currents Idfb and Iqfb, from the two-phase command currents Iq * and Id * that are the command values to the AC motor Two-phase current errors ΔId and ΔIq are calculated by subtracting the above two-phase detection currents Idfb and Iqfb. The first proportional-integral (PI) is multiplied by a gain of two-phase command voltage Vq at a current proportional integral component the current error? Iq, the? Iq *, calculates Vd *, the two-phase command voltage Vq *, Vd * Is subjected to 2-phase / 3-phase coordinate conversion based on the information of the electrical angle θe to obtain the 3-phase command voltages Va * , Vb * , Vc * . Then, the PWM gate pulse obtained by comparing and calculating the three-phase command voltages Va * , Vb * , Vc * and the carrier wave Vt is input to the PWM inverter to convert the DC voltage Vdc into arbitrary AC voltages Va, Vb, Vc, A technique for controlling the operation of an AC motor by the AC voltages Va, Vb, Vc is disclosed.
 また、下記[特許文献2]に記載の発明では、電圧指令値とインバータ出力電圧の非線形性を補正するために、下記式よりあらかじめ所要の変調率Aを算出し、
E=1/2{Asin-1(1/A)+(1-1/A1/2}Emax
Emax=(2/π)1/2・Ed
Ed:全直流電圧
予め取得された変調率Aとインバータの出力電圧指令Eとの関係に基づいて、この変調率Aをインバータの出力電圧指令Eに対して非直線的に補正することで、出力電圧をインバータの出力電圧指令Eに対して直線的に制御する技術が開示されている。
Further, in the invention described in the following [Patent Document 2], in order to correct the nonlinearity between the voltage command value and the inverter output voltage, the required modulation factor A is calculated in advance from the following formula,
E = 1/2 {Asin -1 (1 / A) + (1-1 / A 2 ) 1/2 } Emax
Emax = (2 / π) 1/2 · Ed
Ed: By correcting the modulation factor A non-linearly with respect to the output voltage command E * of the inverter, based on the relationship between the modulation factor A previously acquired and the output voltage command E * of the inverter. , The technique of linearly controlling the output voltage with respect to the output voltage command E * of the inverter is disclosed.
特開2000-270599号公報Japanese Patent Laid-Open No. 2000-270599 特開平7-194130号公報JP-A-7-194130
 そして、これら[特許文献1]と[特許文献2]とを組み合わせ、[特許文献1]のフィードバック電流を用いた電流比例制御の電圧指令値Vd、Vqに[特許文献2]のEに相当する電圧の値(Vd+Vq1/2を求めて線形補正を行うとき、フィードバック電流の振動成分が出力電圧指令Eに含まれると、線形補正の補正係数(変調率A)も振動的な値となり、制御が不安定となる虞がある。 Then, these [Patent Document 1] and [Patent Document 2] are combined, and E * of [Patent Document 2] is added to the voltage command values Vd * and Vq * of the current proportional control using the feedback current of [Patent Document 1] . When the value of the voltage (Vd 2 + Vq 2 ) 1/2 corresponding to is calculated for linear correction and the oscillation component of the feedback current is included in the output voltage command E * , the correction coefficient for the linear correction (modulation factor A) Also has an oscillating value, which may cause unstable control.
 本発明は上記事情に鑑みてなされたものであり、d軸、q軸電圧指令値Vd、Vqにおけるフィードバック電流中の振動成分による影響を極力排除し、PMモータを安定して制御することが可能なモータ制御装置及びモータ制御方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and it is possible to eliminate the influence of the vibration component in the feedback current in the d-axis and q-axis voltage command values Vd and Vq as much as possible, and to stably control the PM motor. It is an object of the present invention to provide a simple motor control device and a motor control method.
 本発明は
(1)PMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、前記PMモータ10の電気角θを取得する角度検出部14と、前記電気角θに基づいて前記駆動電流検出部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、
外部からのトルク指令値Tに基づいてd軸電流指令値Id、q軸電流指令値Iqを設定し、これらd軸電流指令値Id、q軸電流指令値Iqと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する正弦波制御部40と、
前記d軸電圧指令値Vd、q軸電圧指令値Vqを線形補正する線形補正部38と、
線形補正された前記d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、
所定の周期の三角波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有するモータ制御装置において、
前記正弦波制御部40は、
電流積分制御部410aと電流比例制御部410bとを備え前記d軸電流指令値Id、q軸電流指令値Iqと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電流制御部410と、d軸の電圧指令値とq軸の電圧指令値とを極座標変換し電圧指令値|Va|を取得する極座標変換部418と、を有し、
前記電流制御部410は前記電流比例制御部410bの出力を含まない積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’を前記極座標変換部418に出力し、
前記極座標変換部418は前記積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’に基づいて電圧指令値|Va|を取得し前記線形補正部38に出力し、
前記線形補正部38は前記積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’に基づく前記電圧指令値|Va|に基づいて前記正弦波制御部40が生成した前記d軸電圧指令値Vd、q軸電圧指令値Vqを線形補正することを特徴とするモータ制御装置100を提供することにより、上記課題を解決する。
(2)PMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、前記PMモータ10の電気角θを取得する角度検出部14と、前記電気角θに基づいて前記駆動電流検出部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、
外部からのトルク指令値Tに基づいてd軸電流指令値Id、q軸電流指令値Iqを設定し、これらd軸電流指令値Id、q軸電流指令値Iqと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する正弦波制御部40と、
前記d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、
キャリア設定情報Scに基づく所定の周期の三角波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有するモータ制御装置において、
前記正弦波制御部40は、
電流積分制御部410aと電流比例制御部410bとを備え前記d軸電流指令値Id、q軸電流指令値Iqと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電流制御部410と、d軸の電圧指令値とq軸の電圧指令値とを極座標変換し電圧位相θvを取得する極座標変換部418と、前記電圧位相θvに基づいて前記キャリア設定情報Scを生成する正弦波モード同期制御部420と、を有し、
前記電流制御部410は前記電流比例制御部410bの出力を含まない積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’を前記極座標変換部418に出力し、
前記極座標変換部418は前記積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’に基づいて電圧位相θvを取得し前記正弦波モード同期制御部420に出力し、
前記正弦波モード同期制御部420は前記積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’に基づく前記電圧位相θvに基づいて前記キャリア設定情報Scを生成することを特徴とするモータ制御装置100を提供することにより、上記課題を解決する。
(3)PMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、前記PMモータ10の電気角θを取得する角度検出部14と、前記電気角θに基づいて前記駆動電流検出部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、
外部からのトルク指令値Tと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいて電圧位相θvを設定し、前記電圧位相θvに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する矩形波制御部50と、
d軸電圧指令値Vd、q軸電圧指令値Vqを線形補正する線形補正部38と、
線形補正されたd軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、
所定の周期の三角波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有するモータ制御装置において、
前記矩形波制御部50は、
外部からの前記トルク指令値Tと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいて電圧位相θvを取得する電圧位相設定部502と、
電圧指令値|Va|と前記電圧位相設定部502が出力した電圧位相θvに基づいてd軸電圧指令値Vd及びq軸電圧指令値Vqを生成する電圧指令生成部516と、
前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqと、前記d軸電圧指令値Vd及びq軸電圧指令値Vqと、に基づいてd軸電圧指令補正値Vd及びq軸電圧指令補正値Vqを出力する補正部70と、を有し、
前記線形補正部38は前記電圧指令値|Va|に基づいて前記d軸電圧指令補正値Vd、q軸電圧指令補正値Vqを線形補正することを特徴とするモータ制御装置100を提供することにより、上記課題を解決する。
(4)PMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、前記PMモータ10の電気角θを取得する角度検出部14と、前記電気角θに基づいて前記駆動電流検出部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、
外部からのトルク指令値Tと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいて電圧位相θvを設定し、前記電圧位相θvに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する矩形波制御部50と、
d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、
キャリア設定情報Scに基づく所定の周期の三角波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有するモータ制御装置において、
前記矩形波制御部50は、
外部からの前記トルク指令値Tと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいて電圧位相θvを取得する電圧位相設定部502と、
前記電圧位相設定部502が出力した電圧位相θvに基づいてd軸電圧指令値Vd及びq軸電圧指令値Vqを生成する電圧指令生成部516と、
前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqと、前記d軸電圧指令値Vd及びq軸電圧指令値Vqと、に基づいてd軸電圧指令補正値Vd及びq軸電圧指令補正値Vqを出力する補正部70と、
前記キャリア設定情報Scを生成する矩形波モード同期制御部520と、を有し、
前記矩形波モード同期制御部520は前記電圧位相設定部502の出力した電圧位相θvに基づいて前記キャリア設定情報Scを生成することを特徴とするモータ制御装置100を提供することにより、上記課題を解決する。
(5)PMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、前記PMモータ10の電気角θを取得する角度検出部14と、前記電気角θに基づいて前記駆動電流検出部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、
外部からのトルク指令値Tに基づいてd軸電流指令値Id、q軸電流指令値Iqを設定し、これらd軸電流指令値Id、q軸電流指令値Iqと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する正弦波制御部40と、
前記d軸電圧指令値Vd、q軸電圧指令値Vqを線形補正する線形補正部38と、
線形補正された前記d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、
所定の周期の三角波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有するモータ制御装置のモータ制御方法であって、
前記正弦波制御部40は、
電流積分制御部410aと電流比例制御部410bとを備え前記d軸電流指令値Id、q軸電流指令値Iqと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電流制御部410と、d軸の電圧指令値とq軸の電圧指令値とを極座標変換し電圧指令値|Va|を取得する極座標変換部418と、を有し、
前記電流制御部410が前記電流比例制御部410bの出力を含まない積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’を前記極座標変換部418に出力する積分側電圧指令値出力ステップと、
前記極座標変換部418が前記積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’に基づいて電圧指令値|Va|を取得し前記線形補正部38に出力する電圧指令値出力ステップと、
前記線形補正部38が前記積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’に基づく前記電圧指令値|Va|に基づいて前記正弦波制御部40が生成した前記d軸電圧指令値Vd、q軸電圧指令値Vqを線形補正する正弦波制御線形補正ステップと、を行うことを特徴とするモータ制御方法を提供することにより、上記課題を解決する。
(6)PMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、前記PMモータ10の電気角θを取得する角度検出部14と、前記電気角θに基づいて前記駆動電流検出部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、
外部からのトルク指令値Tに基づいてd軸電流指令値Id、q軸電流指令値Iqを設定し、これらd軸電流指令値Id、q軸電流指令値Iqと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する正弦波制御部40と、
前記d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、
キャリア設定情報Scに基づく所定の周期の三角波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有するモータ制御装置のモータ制御方法であって、
前記正弦波制御部40は、
電流積分制御部410aと電流比例制御部410bとを備え前記d軸電流指令値Id、q軸電流指令値Iqと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する電流制御部410と、d軸の電圧指令値とq軸の電圧指令値とを極座標変換し電圧位相θvを取得する極座標変換部418と、前記電圧位相θvに基づいて前記キャリア設定情報Scを生成する正弦波モード同期制御部420と、を有し、
前記電流制御部410が前記電流比例制御部410bの出力を含まない積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’を前記極座標変換部418に出力する積分側電圧指令値出力ステップと、
前記極座標変換部418が前記積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’に基づいて電圧位相θvを取得し前記正弦波モード同期制御部420に出力する電圧位相出力ステップと、
前記正弦波モード同期制御部420が前記積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’に基づく前記電圧位相θvに基づいて前記キャリア設定情報Scを生成する正弦波制御キャリア情報生成ステップと、を行うことを特徴とするモータ制御方法を提供することにより、上記課題を解決する。
(7)PMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、前記PMモータ10の電気角θを取得する角度検出部14と、前記電気角θに基づいて前記駆動電流検出部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、
外部からのトルク指令値Tと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいて電圧位相θvを設定し、前記電圧位相θvに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する矩形波制御部50と、
d軸電圧指令値Vd、q軸電圧指令値Vqを線形補正する線形補正部38と、
線形補正されたd軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、
所定の周期の三角波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有するモータ制御装置のモータ制御方法であって、
前記矩形波制御部50は、
外部からの前記トルク指令値Tと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいて電圧位相θvを取得する電圧位相設定部502と、
電圧指令値|Va|と前記電圧位相設定部502が出力した電圧位相θvに基づいてd軸電圧指令値Vd及びq軸電圧指令値Vqを生成する電圧指令生成部516と、
前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqと、前記d軸電圧指令値Vd及びq軸電圧指令値Vqと、に基づいてd軸電圧指令補正値Vd及びq軸電圧指令補正値Vqを出力する補正部70と、を有し、
前記線形補正部38が前記電圧指令値|Va|に基づいて前記d軸電圧指令補正値Vd、q軸電圧指令補正値Vqを線形補正する矩形波制御線形補正ステップを行うことを特徴とするモータ制御方法を提供することにより、上記課題を解決する。
(8)PMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、前記駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、前記PMモータ10の電気角θを取得する角度検出部14と、前記電気角θに基づいて前記駆動電流検出部12u、12vが取得した前記駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、
外部からのトルク指令値Tと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいて電圧位相θvを設定し、前記電圧位相θvに基づいてd軸電圧指令値Vd、q軸電圧指令値Vqを生成する矩形波制御部50と、
前記d軸電圧指令値Vd、q軸電圧指令値Vqを三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、
キャリア設定情報Scに基づく所定の周期の三角波と前記三相電圧指令値Vu、Vv、Vwとを比較して前記インバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有するモータ制御装置のモータ制御方法であって、
前記矩形波制御部50は、
外部からの前記トルク指令値Tと前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqとに基づいて電圧位相θvを取得する電圧位相設定部502と、
前記電圧位相設定部502が出力した電圧位相θvに基づいてd軸電圧指令値Vd及びq軸電圧指令値Vqを生成する電圧指令生成部516と、
前記d軸フィードバック電流値Id、q軸フィードバック電流値Iqと、前記d軸電圧指令値Vd及びq軸電圧指令値Vqと、に基づいてd軸電圧指令補正値Vd及びq軸電圧指令補正値Vqを出力する補正部70と、
前記キャリア設定情報Scを生成する矩形波モード同期制御部520と、を有し、
前記矩形波モード同期制御部520が前記電圧位相設定部502の出力した電圧位相θvに基づいて前記キャリア設定情報Scを生成する矩形波制御キャリア情報生成ステップを行うことを特徴とするモータ制御方法を提供することにより、上記課題を解決する。
The present invention includes (1) an inverter 20 that causes a three-phase AC drive current Iu, Iv, and Iw to flow through the PM motor 10, and drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw). And an angle detector 14 that acquires the electrical angle θ of the PM motor 10, and the drive currents Iu, Iv, and (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle θ. A three-phase / dq converter 22 for converting the feedback current value Id into the q-axis feedback current value Iq;
A d-axis current command value Id * and a q-axis current command value Iq * are set based on a torque command value T * from the outside, and these d-axis current command value Id * , q-axis current command value Iq * and the d-axis are set. A sine wave control unit 40 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the feedback current value Id and the q-axis feedback current value Iq.
A linear correction unit 38 that linearly corrects the d-axis voltage command value Vd and the q-axis voltage command value Vq,
A dq / 3-phase conversion unit 32 for converting the linearly corrected d-axis voltage command value Vd, q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
A motor control device having a drive signal generation unit 36 that compares a three-phase voltage command value Vu, Vv, Vw with a triangular wave of a predetermined cycle and generates drive signals Su, Sv, Sw for switching the inverter 20. At
The sine wave control unit 40,
A current integral control unit 410a and a current proportional control unit 410b are provided, and d based on the d-axis current command value Id * , the q-axis current command value Iq * , the d-axis feedback current value Id, and the q-axis feedback current value Iq. A current control unit 410 that generates an axial voltage command value Vd and a q-axis voltage command value Vq, and polar coordinate conversion that polarizes the d-axis voltage command value and the q-axis voltage command value to obtain a voltage command value | Va |. And a portion 418,
The current control unit 410 outputs an integration-side d-axis voltage command value Vd ″ and an integration-side q-axis voltage command value Vq ″ that do not include the output of the current proportional control unit 410b to the polar coordinate conversion unit 418,
The polar coordinate conversion unit 418 acquires a voltage command value | Va | based on the integration side d-axis voltage command value Vd ″ and the integration side q-axis voltage command value Vq ″, and outputs the voltage command value | Va | to the linear correction unit 38.
The linear correction unit 38 generates the sine wave control unit 40 based on the voltage command value | Va | based on the integration-side d-axis voltage command value Vd ″ and the integration-side q-axis voltage command value Vq ″. The above problem is solved by providing the motor control device 100 characterized by linearly correcting the d-axis voltage command value Vd and the q-axis voltage command value Vq.
(2) An inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10, drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw), and An angle detector 14 that acquires the electrical angle θ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle θ are used as d-axis feedback current values. A three-phase / dq converter 22 for converting the Id and q-axis feedback current values Iq;
A d-axis current command value Id * and a q-axis current command value Iq * are set based on a torque command value T * from the outside, and these d-axis current command value Id * , q-axis current command value Iq * and the d-axis are set. A sine wave control unit 40 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the feedback current value Id and the q-axis feedback current value Iq.
A dq / 3-phase converter 32 for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
A drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave having a predetermined period based on the carrier setting information Sc and generates drive signals Su, Sv, Sw for switching the inverter 20. In the motor control device having
The sine wave control unit 40,
A current integral control unit 410a and a current proportional control unit 410b are provided, and d based on the d-axis current command value Id * , the q-axis current command value Iq * , the d-axis feedback current value Id, and the q-axis feedback current value Iq. A current control unit 410 that generates an axial voltage command value Vd and a q-axis voltage command value Vq, and a polar coordinate conversion unit 418 that polar-coordinates the d-axis voltage command value and the q-axis voltage command value to obtain the voltage phase θv. , A sine wave mode synchronization control unit 420 that generates the carrier setting information Sc based on the voltage phase θv,
The current control unit 410 outputs an integration-side d-axis voltage command value Vd ″ and an integration-side q-axis voltage command value Vq ″ that do not include the output of the current proportional control unit 410b to the polar coordinate conversion unit 418,
The polar coordinate conversion unit 418 acquires the voltage phase θv based on the integration-side d-axis voltage command value Vd ″ and the integration-side q-axis voltage command value Vq ″, and outputs it to the sine wave mode synchronization control unit 420.
The sine wave mode synchronization control unit 420 may generate the carrier setting information Sc based on the voltage phase θv based on the integration side d-axis voltage command value Vd ″ and the integration side q-axis voltage command value Vq ″. The above problem is solved by providing a motor control device 100 having a feature.
(3) An inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10, drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw), and An angle detector 14 that acquires the electrical angle θ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle θ are used as d-axis feedback current values. A three-phase / dq converter 22 for converting the Id and q-axis feedback current values Iq;
A voltage phase θv is set based on the torque command value T * from the outside and the d-axis feedback current value Id and the q-axis feedback current value Iq, and the d-axis voltage command values Vd and q-axis are set based on the voltage phase θv. A rectangular wave control unit 50 that generates a voltage command value Vq,
a linear correction unit 38 that linearly corrects the d-axis voltage command value Vd and the q-axis voltage command value Vq,
A dq / 3-phase conversion unit 32 for converting the linearly corrected d-axis voltage command value Vd, q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
A motor control device having a drive signal generation unit 36 that compares a three-phase voltage command value Vu, Vv, Vw with a triangular wave of a predetermined cycle and generates drive signals Su, Sv, Sw for switching the inverter 20. At
The rectangular wave control unit 50
A voltage phase setting unit 502 that acquires a voltage phase θv based on the torque command value T * from the outside, the d-axis feedback current value Id, and the q-axis feedback current value Iq,
A voltage command generation unit 516 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the voltage command value | Va | and the voltage phase θv output by the voltage phase setting unit 502;
Based on the d-axis feedback current value Id, the q-axis feedback current value Iq, and the d-axis voltage command value Vd and the q-axis voltage command value Vq, the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq. And a correction unit 70 for outputting
The linear correction unit 38 linearly corrects the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq based on the voltage command value | Va |. , To solve the above problems.
(4) The inverter 20 that causes the three-phase AC drive currents Iu, Iv, and Iw to flow through the PM motor 10; the drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw); An angle detector 14 that acquires the electrical angle θ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle θ are used as d-axis feedback current values. A three-phase / dq converter 22 for converting the Id and q-axis feedback current values Iq;
A voltage phase θv is set based on the torque command value T * from the outside and the d-axis feedback current value Id and the q-axis feedback current value Iq, and the d-axis voltage command values Vd and q-axis are set based on the voltage phase θv. A rectangular wave control unit 50 that generates a voltage command value Vq,
a dq / 3-phase conversion unit 32 for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
A drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave having a predetermined period based on the carrier setting information Sc and generates drive signals Su, Sv, Sw for switching the inverter 20. In the motor control device having
The rectangular wave control unit 50
A voltage phase setting unit 502 that acquires a voltage phase θv based on the torque command value T * from the outside, the d-axis feedback current value Id, and the q-axis feedback current value Iq,
A voltage command generation unit 516 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the voltage phase θv output by the voltage phase setting unit 502;
Based on the d-axis feedback current value Id, the q-axis feedback current value Iq, and the d-axis voltage command value Vd and the q-axis voltage command value Vq, the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq. A correction unit 70 for outputting
A rectangular wave mode synchronization control unit 520 that generates the carrier setting information Sc,
The rectangular wave mode synchronization control unit 520 provides the motor control device 100 characterized in that it generates the carrier setting information Sc based on the voltage phase θv output from the voltage phase setting unit 502. Solve.
(5) The inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10; the drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw); An angle detector 14 that acquires the electrical angle θ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle θ are used as d-axis feedback current values. A three-phase / dq converter 22 for converting the Id and q-axis feedback current values Iq;
A d-axis current command value Id * and a q-axis current command value Iq * are set based on a torque command value T * from the outside, and these d-axis current command value Id * , q-axis current command value Iq * and the d-axis are set. A sine wave control unit 40 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the feedback current value Id and the q-axis feedback current value Iq.
A linear correction unit 38 that linearly corrects the d-axis voltage command value Vd and the q-axis voltage command value Vq,
A dq / 3-phase conversion unit 32 for converting the linearly corrected d-axis voltage command value Vd, q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
A motor control device having a drive signal generation unit 36 that compares a three-phase voltage command value Vu, Vv, Vw with a triangular wave of a predetermined cycle and generates drive signals Su, Sv, Sw for switching the inverter 20. The motor control method of
The sine wave control unit 40,
A current integral control unit 410a and a current proportional control unit 410b are provided, and d based on the d-axis current command value Id * , the q-axis current command value Iq * , the d-axis feedback current value Id, and the q-axis feedback current value Iq. A current control unit 410 that generates an axial voltage command value Vd and a q-axis voltage command value Vq, and polar coordinate conversion that polarizes the d-axis voltage command value and the q-axis voltage command value to obtain a voltage command value | Va |. And a portion 418,
The current control unit 410 outputs the integration side d-axis voltage command value Vd ″ and the integration side q-axis voltage command value Vq ″ that do not include the output of the current proportional control unit 410b to the polar coordinate conversion unit 418. Command value output step,
A voltage command that the polar coordinate conversion unit 418 acquires a voltage command value | Va | based on the integration-side d-axis voltage command value Vd ″ and the integration-side q-axis voltage command value Vq ″ and outputs it to the linear correction unit 38. Value output step,
The linear correction unit 38 generates the sine wave control unit 40 based on the voltage command value | Va | based on the integration-side d-axis voltage command value Vd ″ and the integration-side q-axis voltage command value Vq ″. The above problem is solved by providing a motor control method characterized by performing a sine wave control linear correction step of linearly correcting the d-axis voltage command value Vd and the q-axis voltage command value Vq.
(6) The inverter 20 that causes the three-phase AC drive currents Iu, Iv, and Iw to flow through the PM motor 10, the drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw), and An angle detector 14 that acquires the electrical angle θ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle θ are used as d-axis feedback current values. A three-phase / dq converter 22 for converting the Id and q-axis feedback current values Iq;
A d-axis current command value Id * and a q-axis current command value Iq * are set based on a torque command value T * from the outside, and these d-axis current command value Id * , q-axis current command value Iq * and the d-axis are set. A sine wave control unit 40 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the feedback current value Id and the q-axis feedback current value Iq.
A dq / 3-phase converter 32 for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
A drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave having a predetermined period based on the carrier setting information Sc and generates drive signals Su, Sv, Sw for switching the inverter 20. A motor control method for a motor control device having:
The sine wave control unit 40,
A current integral control unit 410a and a current proportional control unit 410b are provided, and d based on the d-axis current command value Id * , the q-axis current command value Iq * , the d-axis feedback current value Id, and the q-axis feedback current value Iq. A current control unit 410 that generates an axial voltage command value Vd and a q-axis voltage command value Vq, and a polar coordinate conversion unit 418 that polar-coordinates the d-axis voltage command value and the q-axis voltage command value to obtain the voltage phase θv. , A sine wave mode synchronization control unit 420 that generates the carrier setting information Sc based on the voltage phase θv,
The current control unit 410 outputs the integration side d-axis voltage command value Vd ″ and the integration side q-axis voltage command value Vq ″ that do not include the output of the current proportional control unit 410b to the polar coordinate conversion unit 418. Command value output step,
The voltage phase that the polar coordinate conversion unit 418 acquires the voltage phase θv based on the integration-side d-axis voltage command value Vd ″ and the integration-side q-axis voltage command value Vq ″ and outputs it to the sine wave mode synchronization control unit 420. Output step,
A sine wave in which the sine wave mode synchronization control unit 420 generates the carrier setting information Sc based on the voltage phase θv based on the integration-side d-axis voltage command value Vd ″ and the integration-side q-axis voltage command value Vq ″. The above problem is solved by providing a motor control method characterized by performing a control carrier information generation step.
(7) Inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10, drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw), and An angle detector 14 that acquires the electrical angle θ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle θ are used as d-axis feedback current values. A three-phase / dq converter 22 for converting the Id and q-axis feedback current values Iq;
A voltage phase θv is set based on the torque command value T * from the outside and the d-axis feedback current value Id and the q-axis feedback current value Iq, and the d-axis voltage command values Vd and q-axis are set based on the voltage phase θv. A rectangular wave control unit 50 that generates a voltage command value Vq,
a linear correction unit 38 that linearly corrects the d-axis voltage command value Vd and the q-axis voltage command value Vq,
A dq / 3-phase conversion unit 32 for converting the linearly corrected d-axis voltage command value Vd, q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
A motor control device having a drive signal generation unit 36 that compares a three-phase voltage command value Vu, Vv, Vw with a triangular wave of a predetermined cycle and generates drive signals Su, Sv, Sw for switching the inverter 20. The motor control method of
The rectangular wave control unit 50
A voltage phase setting unit 502 that acquires a voltage phase θv based on the torque command value T * from the outside, the d-axis feedback current value Id, and the q-axis feedback current value Iq,
A voltage command generation unit 516 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the voltage command value | Va | and the voltage phase θv output by the voltage phase setting unit 502;
Based on the d-axis feedback current value Id, the q-axis feedback current value Iq, and the d-axis voltage command value Vd and the q-axis voltage command value Vq, the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq. And a correction unit 70 for outputting
A motor characterized in that the linear correction unit 38 performs a rectangular wave control linear correction step of linearly correcting the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq based on the voltage command value | Va |. The above problem is solved by providing a control method.
(8) An inverter 20 that causes the three-phase alternating current drive currents Iu, Iv, and Iw to flow through the PM motor 10; drive current detection units 12u and 12v that obtain the values of the drive currents Iu, Iv, and (Iw); An angle detector 14 that acquires the electrical angle θ of the PM motor 10 and the drive currents Iu, Iv, (Iw) acquired by the drive current detectors 12u and 12v based on the electrical angle θ are used as d-axis feedback current values. A three-phase / dq converter 22 for converting the Id and q-axis feedback current values Iq;
A voltage phase θv is set based on the torque command value T * from the outside and the d-axis feedback current value Id and the q-axis feedback current value Iq, and the d-axis voltage command values Vd and q-axis are set based on the voltage phase θv. A rectangular wave control unit 50 that generates a voltage command value Vq,
A dq / 3-phase converter 32 for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq into three-phase voltage command values Vu, Vv, Vw,
A drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave having a predetermined period based on the carrier setting information Sc and generates drive signals Su, Sv, Sw for switching the inverter 20. A motor control method for a motor control device having:
The rectangular wave control unit 50
A voltage phase setting unit 502 that acquires a voltage phase θv based on the torque command value T * from the outside, the d-axis feedback current value Id, and the q-axis feedback current value Iq,
A voltage command generation unit 516 that generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the voltage phase θv output by the voltage phase setting unit 502;
Based on the d-axis feedback current value Id, the q-axis feedback current value Iq, and the d-axis voltage command value Vd and the q-axis voltage command value Vq, the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq. A correction unit 70 for outputting
A rectangular wave mode synchronization control unit 520 that generates the carrier setting information Sc,
The motor control method is characterized in that the rectangular wave mode synchronization control unit 520 performs a rectangular wave control carrier information generation step of generating the carrier setting information Sc based on the voltage phase θv output from the voltage phase setting unit 502. By providing, the above-mentioned subject is solved.
 本発明に係るモータ制御装置及びモータ制御方法は、電流比例制御の成分を含まない電圧指令値|Va|に基づいてd軸電圧指令値Vd、q軸電圧指令値Vqに対する線形補正を行う。また、電流比例制御の成分を含まない電圧位相θvに基づいてキャリア設定情報Scの生成を行う。これにより、振動成分の影響の少ない安定した三相電圧指令値Vu、Vv、Vw、駆動信号Su、Sv、Swを生成でき、出力電圧、電流、トルクの安定化を図ることができる。また、比例制御成分を含まない電圧指令値|Va|を用いることで、電流比例制御部、補正電圧生成部等のゲインを大きくとることが可能となり、これらの応答性の向上を図ることができる。また、比例制御成分を含まない電圧位相θvを用いることで、正弦波モード同期制御部、矩形波モード同期制御部、電圧位相設定部等の制御ゲインを大きくとることが可能となり、これらの応答性の向上を図ることができる。 The motor control device and the motor control method according to the present invention perform linear correction on the d-axis voltage command value Vd and the q-axis voltage command value Vq based on the voltage command value | Va | that does not include the current proportional control component. Further, the carrier setting information Sc is generated based on the voltage phase θv that does not include the current proportional control component. This makes it possible to generate stable three-phase voltage command values Vu, Vv, Vw and drive signals Su, Sv, Sw with little influence of vibration components, and stabilize the output voltage, current, and torque. Further, by using the voltage command value | Va | that does not include the proportional control component, it is possible to increase the gain of the current proportional control unit, the correction voltage generation unit, etc., and improve the responsiveness thereof. .. Further, by using the voltage phase θv that does not include the proportional control component, it is possible to obtain a large control gain for the sine wave mode synchronization control unit, the rectangular wave mode synchronization control unit, the voltage phase setting unit, etc. Can be improved.
本発明に係るモータ制御装置のブロック図である。It is a block diagram of a motor control device according to the present invention. モータの運転状況と制御モードの切り替えを説明する図である。It is a figure explaining the operating condition of a motor, and switching of control mode. 本発明に係るモータ制御装置の三角波と三相電圧指令値Vuの位置関係を説明する図である。It is a figure explaining the positional relationship of the triangular wave and three-phase voltage command value Vu of the motor control device concerning the present invention. 矩形波制御モードへの移行時の動作を示すフローチャートである。It is a flow chart which shows operation at the time of transfer to a rectangular wave control mode. 正弦波制御モードへの移行時の動作を示すフローチャートである。It is a flow chart which shows operation at the time of transfer to a sine wave control mode. 本発明に係るモータ制御装置及びモータ制御方法の三角波を説明する図である。It is a figure explaining the triangular wave of the motor control device and motor control method concerning the present invention.
 本発明に係るモータ制御装置100及びモータ制御方法の実施の形態について図面に基づいて説明する。尚、ここでは電圧位相θv、電圧指令値|Va|ともに電流比例制御の成分を含まない構成の例を用いて説明を行うが、本発明は電圧位相θv、電圧指令値|Va|のいずれか一方が電流比例制御の成分を含まない構成としても良い。 Embodiments of a motor control device 100 and a motor control method according to the present invention will be described with reference to the drawings. Note that, here, description will be made using an example of a configuration in which neither the voltage phase θv nor the voltage command value | Va | includes the component of the current proportional control. One of them may be configured so as not to include the current proportional control component.
 ここで、図1は本発明に係るモータ制御装置100のブロック図である。先ず、本発明に係るモータ制御装置100は、PMモータ(永久磁石モータ)10の動作を制御するものであり、このPMモータ10に3相交流の駆動電流Iu、Iv、Iwを流下させるインバータ20と、この駆動電流Iu、Iv、(Iw)の値を取得する駆動電流検出部12u、12vと、PMモータ10の電気角θを取得する角度検出部14と、駆動電流検出部12u、12vが取得した駆動電流Iu、Iv、(Iw)をd軸フィードバック電流値Id、q軸フィードバック電流値Iqに変換する3相/dq変換部22と、外部(システムの上位の制御部等)から指示されるトルク指令値Tに基づいてd軸電流指令値Id、q軸電流指令値Iqを設定し正弦波制御モードにおけるd軸電圧指令値Vd、q軸電圧指令値Vqを生成する正弦波制御部40と、同じく外部から指示されるトルク指令値Tに基づいて電圧位相θvを設定し矩形波制御モードにおけるd軸電圧指令値Vd、q軸電圧指令値Vq(d軸電圧指令補正値Vd、q軸電圧指令補正値Vq)を生成する矩形波制御部50と、PMモータ10の制御を正弦波制御部40と矩形波制御部50とで切り替える切替部24と、正弦波制御部40もしくは矩形波制御部50から出力されたd軸電圧指令値Vd、q軸電圧指令値VqをU相、V相、W相の三相電圧指令値Vu、Vv、Vwに変換するdq/3相変換部32と、この三相電圧指令値Vu、Vv、Vwと所定の周期の三角波とを比較してインバータ20をスイッチングする駆動信号Su、Sv、Swを生成する駆動信号生成部36と、を有している。また、本発明に係るモータ制御装置100は、上記の構成に加え、切替部24による制御モードの切り替え時に所定の動作を行うモード移行部80を備えていても良い。 Here, FIG. 1 is a block diagram of a motor control device 100 according to the present invention. First, the motor control device 100 according to the present invention controls the operation of the PM motor (permanent magnet motor) 10, and the inverter 20 that causes the drive currents Iu, Iv, and Iw of the three-phase AC to flow down to the PM motor 10. The drive current detectors 12u and 12v that acquire the values of the drive currents Iu, Iv, and (Iw), the angle detector 14 that acquires the electrical angle θ of the PM motor 10, and the drive current detectors 12u and 12v. A three-phase / dq converter 22 for converting the acquired drive currents Iu, Iv, (Iw) into a d-axis feedback current value Id, a q-axis feedback current value Iq, and an instruction from the outside (upper control unit of the system or the like). A sine wave that sets the d-axis current command value Id * and the q-axis current command value Iq * based on the torque command value T * to generate the d-axis voltage command value Vd and the q-axis voltage command value Vq in the sine wave control mode. Similarly to the control unit 40, the voltage phase θv is set based on the torque command value T * similarly instructed from the outside, and the d-axis voltage command value Vd and the q-axis voltage command value Vq (d-axis voltage command correction value) in the rectangular wave control mode are set. Vd, q-axis voltage command correction value Vq), a rectangular wave control unit 50, a switching unit 24 that switches control of the PM motor 10 between the sine wave control unit 40 and the rectangular wave control unit 50, and the sine wave control unit 40. Alternatively, dq / 3 phase for converting the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the rectangular wave control unit 50 into three-phase voltage command values Vu, Vv, Vw of U phase, V phase, W phase. A conversion unit 32 and a drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, and Vw with a triangular wave having a predetermined cycle to generate drive signals Su, Sv, and Sw that switch the inverter 20. Have Further, the motor control device 100 according to the present invention may include a mode transition unit 80 that performs a predetermined operation when the control unit switches the control mode, in addition to the above configuration.
 本発明に係るモータ制御装置100を構成するインバータ20は駆動信号生成部36から出力されるHi-Lowの駆動信号Su、Sv、Swによってスイッチング動作して、バッテリ等の周知の直流電源部18からの直流電力を駆動信号Su、Sv、Swに基づく3相の交流電圧に変換して出力する。これにより、PMモータ10の電機子巻線には位相が1/3周期(2/3π(rad))づつずれた3相の駆動電流Iu、Iv、Iwがそれぞれ流下する。 The inverter 20 included in the motor control device 100 according to the present invention performs a switching operation according to the Hi-Low drive signals Su, Sv, Sw output from the drive signal generation unit 36, and a known DC power supply unit 18 such as a battery. The DC power of 3 is converted into a three-phase AC voltage based on the drive signals Su, Sv, Sw, and output. As a result, the three-phase drive currents Iu, Iv, and Iw whose phases are shifted by 1/3 cycle (2 / 3π (rad)) flow down to the armature windings of the PM motor 10.
 また、PMモータ10は、前述のように回転子側に永久磁石を設けるとともに、固定子側に3相の電機子巻線を設け、この3相の電機子巻線に前述の駆動電流Iu、Iv、Iwをそれぞれ流下させることで各電機子巻線の磁極及び磁束を連続的に変化させ、回転子を回転させるものである。尚、PMモータ10としては永久磁石を回転子に埋め込んだIPM(Interior Permanent Magnet)モータを用いることが好ましい。 Further, in the PM motor 10, the permanent magnet is provided on the rotor side as described above, and the three-phase armature winding is provided on the stator side, and the drive current Iu described above is provided on the three-phase armature winding. By flowing down Iv and Iw, the magnetic pole and magnetic flux of each armature winding are continuously changed, and the rotor is rotated. As the PM motor 10, it is preferable to use an IPM (Interior Permanent Magnet) motor in which a permanent magnet is embedded in a rotor.
 また、駆動電流検出部12u、12vはインバータ20のスイッチング動作によって流下する駆動電流Iu、Iv、Iwを非接触で取得可能な周知の電流センサを用いることができる。尚、本例では駆動電流Iu、Iv、Iwのうちの2つの駆動電流Iu、Ivを取得し、d軸、q軸フィードバック電流値Id、Iqに変換する例を示している。 Further, the drive current detectors 12u and 12v can use well-known current sensors that can contactlessly acquire the drive currents Iu, Iv, and Iw flowing down by the switching operation of the inverter 20. In this example, two driving currents Iu, Iv of the driving currents Iu, Iv, Iw are acquired and converted into d-axis and q-axis feedback current values Id, Iq.
 また、角度検出部14としては、回転子の角度を取得可能な周知の角度センサを用いることができる。中でもレゾルバ回転角センサを用いて、PMモータ10の電気角θを取得することが特に好ましい。尚、上記の電気角θと駆動電流Iu、Ivの取得は、三角波の頂点と谷の両方のタイミングで行い、三角波の半周期毎にモータ制御装置100の各部にて使用することが好ましい。そして、角度検出部14が取得した電気角θは角速度演算部16にも出力され、この角速度演算部16は入力した電気角θから電気角速度ω(rad/s)を算出し、モータ制御装置100の各部に出力する。 A well-known angle sensor that can acquire the angle of the rotor can be used as the angle detection unit 14. Above all, it is particularly preferable to acquire the electrical angle θ of the PM motor 10 using the resolver rotation angle sensor. It is preferable that the electric angle θ and the driving currents Iu and Iv are acquired at both the apex and the valley of the triangular wave, and are used in each part of the motor control device 100 for each half cycle of the triangular wave. The electrical angle θ acquired by the angle detection unit 14 is also output to the angular velocity calculation unit 16, and the angular velocity calculation unit 16 calculates the electrical angular velocity ω (rad / s) from the input electrical angle θ, and the motor control device 100. Output to each part of.
 また、3相/dq変換部22は、角度検出部14が取得したPMモータ10の電気角θ(rad)に基づいて駆動電流検出部12u、12vが取得した駆動電流Iu、Iv、(Iw)の値に対する3相2相変換及び回転座標変換を行い、駆動電流Iu、Iv、(Iw)をd軸電流値(磁束分電流値)Idとq軸電流値(トルク分電流値)Iqとに変換する。そして、これらをd軸フィードバック電流値Id、q軸フィードバック電流値Iqとして切替部24に出力する。 The three-phase / dq conversion unit 22 also includes the drive currents Iu, Iv, (Iw) acquired by the drive current detection units 12u, 12v based on the electrical angle θ (rad) of the PM motor 10 acquired by the angle detection unit 14. Is converted into d-axis current value (flux current value) Id and q-axis current value (torque current value) Iq. Convert. Then, these are output to the switching unit 24 as the d-axis feedback current value Id and the q-axis feedback current value Iq.
 切替部24はPMモータ10の運転状況(トルク、回転数)に応じてd軸電圧指令値Vd、q軸電圧指令値Vqの生成方法を切り替える切り替え回路であり、PMモータ10が中・低速回転の図2の領域A(正弦波制御領域A)で動作する場合には正弦波制御部40による正弦波制御モードによってPMモータ10を動作させる。また、PMモータ10が高回転速度、高トルクの図2の領域B(矩形波制御領域B)で動作する場合にはPMモータ10の制御を矩形波制御部50に切り替えて矩形波制御モードによって動作させる。尚、正弦波制御領域Aと矩形波制御領域Bとの切替値(切替ラインC)は直流電源部18の電圧値により変化する。この直流電源部18の電圧値ごとの切替値は図示しないメモリ部等に予め設定しておき、切替部24が直流電源部18の電圧値に応じた切替値を適宜取得して用いることが好ましい。また、一致する電圧値が無い場合、前後の電圧の切替値から適切な切替値を演算等により取得して用いることが好ましい。そして、PMモータ10の運転状況(トルク、回転数)が切替値を越える場合には後述する各ステップを行い制御モードの切り替えを行う。尚、正弦波制御モードから矩形波制御モードへの切り替え時の切替値と、矩形波制御モードから正弦波制御モードへの切り替え時の切替値とにはヒステリシス幅を付与し、切替値の境界での頻繁な切り替え動作を防止することが好ましい。 The switching unit 24 is a switching circuit that switches the generation method of the d-axis voltage command value Vd and the q-axis voltage command value Vq according to the operating status (torque, rotation speed) of the PM motor 10, and the PM motor 10 rotates at medium and low speeds. 2 operates in the sine wave control mode by the sine wave control unit 40, the PM motor 10 is operated. Further, when the PM motor 10 operates in the region B (rectangular wave control region B) in FIG. 2 where the rotation speed and torque are high, the control of the PM motor 10 is switched to the rectangular wave control unit 50 and the rectangular wave control mode is used. To operate. The switching value (switching line C) between the sine wave control area A and the rectangular wave control area B changes depending on the voltage value of the DC power supply unit 18. It is preferable that the switching value for each voltage value of the DC power supply unit 18 is set in advance in a memory unit or the like not shown, and the switching unit 24 appropriately acquires and uses the switching value according to the voltage value of the DC power supply unit 18. .. In addition, when there is no matching voltage value, it is preferable to obtain an appropriate switching value from the switching values of the preceding and succeeding voltages by calculation and use it. When the operating condition (torque, rotation speed) of the PM motor 10 exceeds the switching value, each step described below is performed to switch the control mode. A hysteresis width is added to the switching value when switching from the sine wave control mode to the rectangular wave control mode and the switching value when switching from the rectangular wave control mode to the sine wave control mode. It is preferable to prevent the frequent switching operation of.
 次に、正弦波制御部40の構成及び動作を説明する。尚、以下で説明する正弦波制御部40の構成は本発明に好適な一例であるから、下記の構成に限定されるわけではなく、本発明に必須の構成を備えていれば、他の如何なる正弦波制御機構を用いても良い。 Next, the configuration and operation of the sine wave control unit 40 will be described. Since the configuration of the sine wave control unit 40 described below is an example suitable for the present invention, it is not limited to the following configuration, and any other configuration is provided as long as it has an essential configuration for the present invention. A sine wave control mechanism may be used.
 先ず、上位システムの制御部等からトルク指令値Tが出力される。このトルク指令値TはPMモータ10の動作目標となるトルクである。そして、このトルク指令値Tは切替部24が正弦波制御部40を選択している場合、正弦波制御部40の電流指令値設定部402に入力する。また、電流指令値設定部402にはトルク計算部404からPMモータ10の現在のトルクTが入力する。 First, the torque command value T * is output from the control unit or the like of the host system. The torque command value T * is a torque that is an operation target of the PM motor 10. Then, this torque command value T * is input to the current command value setting unit 402 of the sine wave control unit 40 when the switching unit 24 selects the sine wave control unit 40. The current torque T of the PM motor 10 is input to the current command value setting unit 402 from the torque calculation unit 404.
 ここで、トルク計算部404はPMモータ10のモータパラメータとしての誘起電圧定数φa、d軸インダクタンスLd、q軸インダクタンスLq等を有している。尚、誘起電圧定数φa、d軸インダクタンスLd、q軸インダクタンスLqは予め設定された固定値としても良いし、PMモータ10の温度や動作状況に応じて予め設定された適切な値を例えばデータテーブル等から適宜取得するようにしても良い。そして、トルク計算部404はこれらの値と、後述するd軸、q軸フィードバック電流値Id、Iqもしくは電流指令値生成部406から出力されるd軸、q軸電流指令値Id、Iqに基づいて、PMモータ10の現在のトルクTを例えば下記式に基づいて算出する。尚、本例ではd軸、q軸電流指令値Id、Iqに基づいてトルクTを算出する例を示している。
T=P(φaIq+(Ld-Lq)IdIq) [N・m]
P:PMモータの永久磁石の極対数
φa:誘起電圧定数
Ld:d軸インダクタンス
Lq:q軸インダクタンス
Here, the torque calculation unit 404 has an induced voltage constant φa, a d-axis inductance Ld, a q-axis inductance Lq, etc. as motor parameters of the PM motor 10. The induced voltage constant φa, the d-axis inductance Ld, and the q-axis inductance Lq may be preset fixed values, or appropriate values preset according to the temperature and operating conditions of the PM motor 10 may be used as a data table, for example. It is also possible to obtain it appropriately from the above. Then, the torque calculation unit 404 uses these values and the d-axis and q-axis feedback current values Id and Iq described later or the d-axis and q-axis current command values Id * and Iq * output from the current command value generation unit 406. Based on this, the current torque T of the PM motor 10 is calculated based on the following equation, for example. In this example, the torque T is calculated based on the d-axis and q-axis current command values Id * and Iq * .
T = P (φaIq * + (Ld−Lq) Id * Iq * ) [N · m]
P: number of pole pairs of permanent magnet of PM motor φa: induced voltage constant Ld: d-axis inductance Lq: q-axis inductance
 そして、電流指令値設定部402はトルク指令値Tと現在のトルクTとに基づいてトルクTがトルク指令値Tをとるような電流指令値Iaを設定し、電流指令値生成部406に出力する。尚、電流指令値Iaは積分制御、比例制御などの演算により算出しても良い。また、電流指令値Iaにはリミッタ値を設定しても良く、このリミッタ値は電気角速度ωと電源電圧Vdcとに対応した値をテーブルデータから読み出すようにしても良い。また、リミッタの最大値のみを設定して、これを用いても良い。 Then, the current command value setting unit 402 sets the current command value Ia * such that the torque T takes the torque command value T * based on the torque command value T * and the current torque T, and the current command value generation unit 406. Output to. The current command value Ia * may be calculated by calculation such as integral control or proportional control. A limiter value may be set for the current command value Ia * , and a value corresponding to the electrical angular velocity ω and the power supply voltage Vdc may be read from the table data as the limiter value. Alternatively, only the maximum value of the limiter may be set and used.
 電流指令値生成部406は、例えば電流指令値設定部402から入力した電流指令値Iaの電流位相角θiをテーブルデータ等から取得して、これら電流指令値Iaと電流位相角θiとに基づいてd軸電流指令値Id、q軸電流指令値Iqを算出し、正弦波制御部40の電圧指令値生成部416に出力する。このとき、モータ電圧を周知の演算式と前述のモータパラメータ(φa、Ld、Lq)及び電気角速度ω、d軸、q軸電流指令値Id、Iqより求め、このモータ電圧の大きさがK×Vdc(K:電圧利用率設定値)の値を超えないようにd軸、q軸電流指令値Id、Iqを調整することで、正弦波制御領域と矩形波制御領域との間に過変調制御や弱め磁束制御領域を設けることが可能となり、中高速動作領域での出力向上を図ることができる。また、電圧利用率Kを変更することで任意の電圧利用率でd軸、q軸電流指令値Id、Iqを設定することができる。尚、電圧利用率Kを用いたd軸、q軸電流指令値Id、Iqの調整は、前述のモータパラメータ(φa、Ld、Lq)と、角速度演算部16からの電気角速度ω、直流電源部18からの電源電圧Vdc等に基づいた周知の電圧制御、比例制御、積分制御等により行う事が好ましい。また、電流位相角θiに対する積分制御、比例制御などの演算により算出しても良い。さらに、d軸電流指令値Id、q軸電流指令値Iqには必要に応じて電流リミッタを設けても良い。 The current command value generation unit 406 acquires, for example, the current phase angle θi of the current command value Ia * input from the current command value setting unit 402 from table data or the like, and obtains the current command value Ia * and the current phase angle θi. Based on this, the d-axis current command value Id * and the q-axis current command value Iq * are calculated and output to the voltage command value generation unit 416 of the sine wave control unit 40. At this time, the motor voltage is obtained from a well-known arithmetic expression and the above-mentioned motor parameters (φa, Ld, Lq) and the electrical angular velocity ω, d-axis, q-axis current command values Id * , Iq * , and the magnitude of this motor voltage is determined. Between the sine wave control area and the rectangular wave control area by adjusting the d-axis and q-axis current command values Id * , Iq * so as not to exceed the value of K × Vdc (K: voltage utilization rate setting value). It is possible to provide an overmodulation control and a weakening magnetic flux control area in, and it is possible to improve the output in the middle and high speed operation areas. Further, by changing the voltage utilization rate K, the d-axis and q-axis current command values Id * and Iq * can be set at arbitrary voltage utilization rates. The adjustment of the d-axis and q-axis current command values Id * , Iq * using the voltage utilization rate K is performed by the above-mentioned motor parameters (φa, Ld, Lq), the electrical angular velocity ω from the angular velocity calculation unit 16, and the direct current. It is preferable to perform the well-known voltage control, proportional control, integral control, or the like based on the power supply voltage Vdc from the power supply unit 18 or the like. Alternatively, the current phase angle θi may be calculated by calculation such as integral control or proportional control. Further, a current limiter may be provided for the d-axis current command value Id * and the q-axis current command value Iq * , if necessary.
 ここで、電圧指令値生成部416の好適な一例を説明する。先ず、電圧指令値生成部416に入力したd軸、q軸電流指令値Id、Iqは2分岐して、一方は非干渉制御部414に入力する。そして、非干渉制御部414にてd軸、q軸電流指令値Id、Iq間で干渉する速度起電力成分が算出され、d軸、q軸電圧指令値Vd’、Vq’として電流制御部410に出力される。また、d軸、q軸電流指令値Id、Iqの他方は、減算部412においてd軸、q軸フィードバック電流値Id、Iqが減算されて変動成分ΔId、ΔIqとされた後、電流制御部410に入力する。 Here, a suitable example of the voltage command value generation unit 416 will be described. First, the d-axis and q-axis current command values Id * and Iq * input to the voltage command value generation unit 416 are branched into two, and one of them is input to the non-interference control unit 414. Then, the non-interference control unit 414 calculates a speed electromotive force component that causes interference between the d-axis and q-axis current command values Id * , Iq * , and performs current control as the d-axis, q-axis voltage command values Vd ′, Vq ′. It is output to the section 410. The other of the d-axis and q-axis current command values Id * and Iq * is subjected to current control after the d-axis and q-axis feedback current values Id and Iq are subtracted in the subtraction unit 412 to obtain fluctuation components ΔId and ΔIq. Input to the section 410.
 また、電流制御部410は、電流積分制御部410aと電流比例制御部410bを有しており、電流制御部410に入力した変動成分ΔId、ΔIqは2分岐して、電流積分制御部410aと電流比例制御部410bのそれぞれに入力する。そして、電流積分制御部410aにおいて周知の電流積分制御が施される。また、電流比例制御部410bにおいて周知の電流比例制御が施される。そして、電流積分制御部410aの出力に非干渉制御部414からのd軸、q軸電圧指令値Vd’、Vq’が加算され積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’とされた後、電流比例制御部410bからの出力が加算されd軸電圧指令値Vd、q軸電圧指令値Vqが生成される。このd軸電圧指令値Vd、q軸電圧指令値Vqは切替部24を介して制御信号生成部30に出力される。 Further, the current control unit 410 has a current integration control unit 410a and a current proportional control unit 410b, and the fluctuation components ΔId and ΔIq input to the current control unit 410 are branched into two, and the current integration control unit 410a and the current Input to each of the proportional control units 410b. Then, the known current integration control is performed in the current integration control unit 410a. Further, a well-known current proportional control is performed in the current proportional controller 410b. Then, the d-axis and q-axis voltage command values Vd ′ and Vq ′ from the non-interference control unit 414 are added to the output of the current integration control unit 410 a to add the integration-side d-axis voltage command value Vd ″ and the integration-side q-axis voltage command. After being set to the value Vq ″, the outputs from the current proportional control unit 410b are added to generate the d-axis voltage command value Vd and the q-axis voltage command value Vq. The d-axis voltage command value Vd and the q-axis voltage command value Vq are output to the control signal generation unit 30 via the switching unit 24.
 尚、電流制御部410には、このd軸、q軸電圧指令値Vd、Vqに基づく三相電圧指令値Vu、Vv、Vwがインバータ20の出力限界となる最大電圧(1パルスの矩形波電圧となる電圧)の近傍とならないように制限するリミッタ部を設けることが好ましい。そして、このリミッタ部は電流比例制御部410bからの出力が加算される前段に設けることが好ましい。また、リミッタ部の制限電圧は後述の正弦波モード同期制御部420が設定する三角波の同期数に準じて設定することが好ましい。 It should be noted that the current control unit 410 causes the three-phase voltage command values Vu, Vv, Vw based on the d-axis and q-axis voltage command values Vd, Vq to be the maximum voltage (1 pulse rectangular wave voltage) at which the inverter 20 outputs. It is preferable to provide a limiter portion for limiting the voltage so that the voltage does not become near the voltage. Further, it is preferable that the limiter section is provided in the previous stage where the output from the current proportional control section 410b is added. Further, it is preferable that the limit voltage of the limiter unit is set according to the number of synchronization of triangular waves set by the sine wave mode synchronization control unit 420 described later.
 ここで、本発明の特徴的な構成として、電流比例制御部410bの出力が加算される前段の積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’を正弦波制御部40の極座標変換部418に出力する(積分側電圧指令値出力ステップ)。そして、この極座標変換部418において極座標変換が施され電圧位相θvと、電圧指令値|Va|とが取得される。即ち、本発明では電流比例制御部410bの出力を含まない積分側d軸電圧指令値Vd’’、積分側q軸電圧指令値Vq’’に基づいて電圧位相θvと、電圧指令値|Va|とが取得される。このため、これら電圧位相θv、電圧指令値|Va|は振動成分(短期的な変動成分)の影響を受けないものとなる。そして、極座標変換部418はこの電圧位相θvを正弦波モード同期制御部420に出力する(電圧位相出力ステップ)。また、電圧指令値|Va|を線形補正部38に出力する(電圧指令値出力ステップ)。尚、本例ではこれら電圧位相θv及び電圧指令値|Va|をモード移行部80にも出力する。 Here, as a characteristic configuration of the present invention, the integration side d-axis voltage command value Vd ″ and the integration side q-axis voltage command value Vq ″ in the preceding stage to which the output of the current proportional control unit 410b is added are sinusoidally controlled. It is output to the polar coordinate conversion unit 418 of the unit 40 (integral side voltage command value output step). Then, the polar coordinate conversion unit 418 performs polar coordinate conversion to acquire the voltage phase θv and the voltage command value | Va |. That is, in the present invention, the voltage phase θv and the voltage command value | Va | based on the integration side d-axis voltage command value Vd ″ and the integration side q-axis voltage command value Vq ″ that do not include the output of the current proportional control unit 410b. And are obtained. Therefore, the voltage phase θv and the voltage command value | Va | are not affected by the vibration component (short-term fluctuation component). Then, the polar coordinate converter 418 outputs this voltage phase θv to the sine wave mode synchronization controller 420 (voltage phase output step). Further, the voltage command value | Va | is output to the linear correction unit 38 (voltage command value output step). In this example, the voltage phase θv and the voltage command value | Va | are also output to the mode transition unit 80.
 また、正弦波制御部40の正弦波モード同期制御部420は、極座標変換部418で得られた電圧位相θvと電気角速度ωと電気角θとから後述する三角波のキャリア設定情報Scを生成し三角波生成部34に出力する(正弦波制御キャリア情報生成ステップ)。このとき用いられる電圧位相θvは前述のように電流比例制御部410bの出力を含まない(振動成分を含まない)ものであるから、これにより生成されるキャリア設定情報Scは振動成分の影響を受けないものとなる。尚、キャリア設定情報Scに関しては後述する。 Further, the sine wave mode synchronization control unit 420 of the sine wave control unit 40 generates triangular wave carrier setting information Sc described later from the voltage phase θv, the electrical angular velocity ω, and the electrical angle θ obtained by the polar coordinate conversion unit 418 to generate a triangular wave. Output to the generation unit 34 (sine wave control carrier information generation step). Since the voltage phase θv used at this time does not include the output of the current proportional control unit 410b (does not include the vibration component) as described above, the carrier setting information Sc generated thereby is affected by the vibration component. There will be nothing. The carrier setting information Sc will be described later.
 次に、矩形波制御部50の構成及び動作を説明する。尚、以下で説明する矩形波制御部50の構成は本発明に好適な一例であるから、下記の構成に限定されるわけではなく、本発明に必須の構成を備えていれば、他の如何なる矩形波制御機構を用いても良い。 Next, the configuration and operation of the rectangular wave control unit 50 will be described. Since the configuration of the rectangular wave control unit 50 described below is an example suitable for the present invention, it is not limited to the following configuration, and any other configuration is provided as long as it has an essential configuration for the present invention. A rectangular wave control mechanism may be used.
 先ず、切替部24はPMモータ10が図2の切替値(切替ラインC)を越えて高回転速度、高トルクの動作領域Bでの動作状態となると、PMモータ10の制御を正弦波制御部40から矩形波制御部50に切り替える。尚、このときの切り替え動作に関しては後述する。これにより、トルク指令値Tは矩形波制御部50の電圧位相設定部502に入力する。また、矩形波制御部50のトルク計算部504にはd軸フィードバック電流値Id、q軸フィードバック電流値Iqが入力する。尚、トルク計算部504は正弦波制御部40のトルク計算部404と同様にモータパラメータを有しており、これらモータパラメータとd軸、q軸フィードバック電流値Id、IqとからPMモータ10の現在のトルクTを算出して、電圧位相設定部502に出力する。そして、電圧位相設定部502は、トルク指令値TとトルクTとから、PMモータ10が目標のトルクで動作するような電圧位相θvを積分制御、比例制御などにより生成する。そして、矩形波制御部50の電圧指令値生成部516に出力する。また、本発明の特徴的な構成として、この電圧位相設定部502で生成された電圧位相θvを矩形波モード同期制御部520に出力する。 First, the switching unit 24 controls the PM motor 10 when the PM motor 10 exceeds the switching value (switching line C) in FIG. 2 and enters the operating state in the operating region B of high rotation speed and high torque. Switching from 40 to the rectangular wave control unit 50. The switching operation at this time will be described later. As a result, the torque command value T * is input to the voltage phase setting unit 502 of the rectangular wave control unit 50. The d-axis feedback current value Id and the q-axis feedback current value Iq are input to the torque calculation section 504 of the rectangular wave control section 50. The torque calculation unit 504 has motor parameters similar to the torque calculation unit 404 of the sine wave control unit 40. Based on these motor parameters and the d-axis and q-axis feedback current values Id and Iq, the current PM motor 10 is calculated. The torque T is calculated and output to the voltage phase setting unit 502. Then, the voltage phase setting unit 502 generates, from the torque command value T * and the torque T, a voltage phase θv that causes the PM motor 10 to operate at the target torque by integral control, proportional control, or the like. Then, it is output to the voltage command value generation unit 516 of the rectangular wave control unit 50. In addition, as a characteristic configuration of the present invention, the voltage phase θv generated by the voltage phase setting unit 502 is output to the rectangular wave mode synchronization control unit 520.
 矩形波モード同期制御部520は電圧位相θvと電気角速度ωと電気角θとから三角波を設定するためのキャリア設定情報Scを生成する(矩形波制御キャリア情報生成ステップ)。ここで、本発明では電圧位相設定部502で生成された電圧位相θv、即ち後述の補正部70で比例制御が行われる前の振動成分を含まない電圧位相θvを用いてキャリア設定情報Scを求める。このためキャリア設定情報Scは振動成分の影響を受けないものとなる。尚、キャリア設定情報Scに関しては後述する。また、矩形波モード同期制御部520は電圧指令取得部としても機能して、三角波と三相電圧指令値Vu、Vv、Vwとが、三相電圧指令値Vu、Vv、Vwの1周期の間で2回交差する、即ち、三角波比較により生成される駆動信号Su、Sv、Swが1パルスの矩形波となるような電圧指令値|Va|を取得し電圧指令値生成部516に出力する。尚、矩形波モード同期制御部520(電圧指令取得部)による電圧指令値|Va|の設定は、電圧指令値|Va|の値を予め三角波の同期数毎にデータテーブルに設定しておき、矩形波モード同期制御部520が三角波の同期数を決定すると同時に、この同期数と対応した電圧指令値|Va|を選択して設定することが好ましい。よって、このときの電圧指令値|Va|も振動成分の影響を受けないものとなる。そして、矩形波モード同期制御部520(電圧指令取得部)はこの電圧指令値|Va|を電圧指令値生成部516と線形補正部38に出力する。尚、この矩形波を形成する電圧指令値|Va|は後述の矩形波形成電圧値|Va1|としても利用することが好ましい。 The rectangular wave mode synchronization control unit 520 generates carrier setting information Sc for setting a triangular wave from the voltage phase θv, the electrical angular velocity ω, and the electrical angle θ (rectangular wave control carrier information generating step). Here, in the present invention, the carrier setting information Sc is obtained using the voltage phase θv generated by the voltage phase setting unit 502, that is, the voltage phase θv that does not include the vibration component before the proportional control is performed by the correction unit 70 described later. . Therefore, the carrier setting information Sc is not affected by the vibration component. The carrier setting information Sc will be described later. The rectangular wave mode synchronization control unit 520 also functions as a voltage command acquisition unit, and the triangular wave and the three-phase voltage command values Vu, Vv, and Vw are within one cycle of the three-phase voltage command values Vu, Vv, and Vw. The voltage command value | Va | that causes the drive signals Su, Sv, and Sw generated by the triangular wave comparison to be a one-pulse rectangular wave is acquired and output to the voltage command value generation unit 516. The rectangular wave mode synchronization control unit 520 (voltage command acquisition unit) sets the voltage command value | Va | by setting the voltage command value | Va | in the data table in advance for each triangular wave synchronization number. It is preferable that the rectangular wave mode synchronization control unit 520 determines the synchronization number of the triangular wave and, at the same time, selects and sets the voltage command value | Va | corresponding to this synchronization number. Therefore, the voltage command value | Va | at this time is also not affected by the vibration component. Then, the rectangular wave mode synchronization control unit 520 (voltage command acquisition unit) outputs this voltage command value | Va | to the voltage command value generation unit 516 and the linear correction unit 38. The voltage command value | Va | that forms this rectangular wave is also preferably used as a rectangular wave forming voltage value | Va1 | to be described later.
 また、電圧指令値生成部516は、電圧位相設定部502から入力した電圧位相θvと、矩形波モード同期制御部520(電圧指令取得部)から入力した電圧指令値|Va|とから、d軸電圧指令値Vd、q軸電圧指令値Vqを生成する。 Further, the voltage command value generation unit 516 uses the voltage phase θv input from the voltage phase setting unit 502 and the voltage command value | Va | input from the rectangular wave mode synchronization control unit 520 (voltage command acquisition unit) to determine the d-axis. The voltage command value Vd and the q-axis voltage command value Vq are generated.
 また、矩形波制御部50はオフセット等による変動成分を補正する補正部70を有する。ここで、補正部70の一例を以下に示す。尚、以下で説明する補正部70の構成は本発明に好適な一例であるから、下記の構成に限定されるわけではい。 Further, the rectangular wave control unit 50 has a correction unit 70 that corrects a fluctuation component due to an offset or the like. Here, an example of the correction unit 70 is shown below. The configuration of the correction unit 70 described below is an example suitable for the present invention, and is not limited to the following configuration.
 本例に示す補正部70は、平滑部72と、補正電流生成部74と、補正電圧生成部76と、電圧指令値補正部78と、を有している。そして、補正部70の平滑部72は、切替部24を介して入力したd軸、q軸フィードバック電流値Id、Iqを例えば移動平均処理もしくはなまし処理を行ってそれぞれ平滑化する。尚、ここでのなまし処理とは、入力信号(d軸、q軸フィードバック電流値Id、Iq)に対し、任意の周期ごとに下記(1)式の処理を行う事で平滑化する処理を意味する。
C=B(1-K)+K×A・・・・(1)
ここで、Aは入力値(d軸、q軸フィードバック電流値Id、Iq)であり、Bは直前の周期のなまし処理後の出力値であり、Kはなまし定数であり、Cが出力値(推定d軸、q軸電流指令値Id、Iq)である。
The correction unit 70 shown in this example includes a smoothing unit 72, a correction current generation unit 74, a correction voltage generation unit 76, and a voltage command value correction unit 78. Then, the smoothing unit 72 of the correction unit 70 smoothes the d-axis and q-axis feedback current values Id and Iq input via the switching unit 24 by, for example, moving average processing or smoothing processing. Note that the smoothing process here is a process of performing smoothing by performing the process of the following formula (1) on the input signals (d-axis, q-axis feedback current values Id, Iq) every arbitrary period. means.
C = B (1-K) + K × A ... (1)
Here, A is an input value (d-axis, q-axis feedback current value Id, Iq), B is an output value after the smoothing process in the immediately preceding cycle, K is a smoothing constant, and C is an output. Values (estimated d-axis, q-axis current command values Id * , Iq * ).
 この平滑化処理により、駆動電流Iu、Iv、Iwのオフセットや振幅アンバランスに起因する変動成分が平滑化された疑似的な推定d軸電流指令値Id、推定q軸電流指令値Iqが生成される。そして、これら推定d軸、q軸電流指令値Id、Iqは補正電流生成部74に出力される。 By this smoothing processing, the pseudo estimated d-axis current command value Id * and estimated q-axis current command value Iq * in which the fluctuation components due to the offsets and amplitude imbalances of the drive currents Iu, Iv, Iw are smoothed are obtained. Is generated. Then, these estimated d-axis and q-axis current command values Id * , Iq * are output to the correction current generation unit 74.
 また、補正電流生成部74にはd軸フィードバック電流値Id、q軸フィードバック電流値Iqがそれぞれ入力しており、補正電流生成部74は平滑部72で生成された推定d軸電流指令値Id、推定q軸電流指令値Iqからd軸フィードバック電流値Id、q軸フィードバック電流値Iqをそれぞれ減算する。これにより、変動成分としてのd軸補正電流ΔId、q軸補正電流ΔIqが生成される。そして、これらd軸補正電流ΔId、q軸補正電流ΔIqを補正電圧生成部76に出力する。尚、このd軸補正電流ΔId、q軸補正電流ΔIqは、オフセットや振幅アンバランスの成分(変動成分)が平滑化した推定d軸、q軸電流指令値Id、Iqからオフセットや振幅アンバランスの成分(変動成分)を含むd軸、q軸フィードバック電流値Id、Iqをそれぞれ減算したものであるから、基本的に変動成分の逆相をとる。 Further, the d-axis feedback current value Id and the q-axis feedback current value Iq are input to the correction current generation unit 74, and the correction current generation unit 74 generates the estimated d-axis current command value Id * generated by the smoothing unit 72 . , And the d-axis feedback current value Id and the q-axis feedback current value Iq are subtracted from the estimated q-axis current command value Iq * . As a result, the d-axis correction current ΔId and the q-axis correction current ΔIq as the fluctuation components are generated. Then, the d-axis correction current ΔId and the q-axis correction current ΔIq are output to the correction voltage generation unit 76. The d-axis correction current ΔId and the q-axis correction current ΔIq are offset and amplitude unbalanced from the estimated d-axis and q-axis current command values Id * and Iq * in which the offset and amplitude imbalance components (variation components) are smoothed. Since the d-axis and q-axis feedback current values Id and Iq including the balance component (fluctuation component) are subtracted from each other, basically the opposite phase of the fluctuation component is taken.
 また、補正電圧生成部76は、補正電流生成部74から入力したd軸補正電流ΔId、q軸補正電流ΔIqから、例えば所定の補正ゲイン(Kd、Kq)による比例制御等によりd軸補正電圧ΔVd、q軸補正電圧ΔVqを生成し、電圧指令値補正部78に出力する。 In addition, the correction voltage generation unit 76 uses the d-axis correction current ΔId and the q-axis correction current ΔIq input from the correction current generation unit 74, for example, by proportional control with a predetermined correction gain (Kd, Kq) to correct the d-axis correction voltage ΔVd. , Q-axis correction voltage ΔVq is generated and output to the voltage command value correction unit 78.
 電圧指令値補正部78は、補正電圧生成部76から入力したd軸補正電圧ΔVd、q軸補正電圧ΔVqを電圧指令値生成部516から出力したd軸電圧指令値Vd、q軸電圧指令値Vqにそれぞれ加算する。よってこれにより生成されたd軸、q軸電圧指令補正値Vd、Vqには駆動電流Iu、Iv、Iwに生じるオフセットや振幅アンバランス成分の逆の電圧(d軸、q軸補正電圧ΔVd、ΔVq)が加味されたものとなる。そして、これらd軸電圧指令補正値Vd、q軸電圧指令補正値Vqは切替部24を介して制御信号生成部30に入力する。尚、上記の補正部70により補正されたd軸電圧指令補正値Vd、q軸電圧指令補正値Vqは上記のようにオフセットや振幅アンバランス成分の逆の電圧が加味されているから、これにより駆動するPMモータ10のオフセット等は補正され解消される。 The voltage command value correction unit 78 outputs the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq input from the correction voltage generation unit 76 to the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the voltage command value generation unit 516. To each. Therefore, the d-axis and q-axis voltage command correction values Vd and Vq thus generated have opposite voltages (d-axis and q-axis correction voltages ΔVd and ΔVq) to the offsets and amplitude imbalance components generated in the drive currents Iu, Iv, and Iw. ) Will be added. Then, the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq are input to the control signal generation unit 30 via the switching unit 24. Note that the d-axis voltage command correction value Vd and the q-axis voltage command correction value Vq corrected by the correction unit 70 include the reverse voltage of the offset and amplitude unbalance components as described above. The offset or the like of the driven PM motor 10 is corrected and eliminated.
 次に、正弦波モード同期制御部420、矩形波モード同期制御部520が出力するキャリア設定情報Scに関して説明を行う。先ず、このキャリア設定情報Scは三角波生成部34で生成される三角波の周波数を適切な状態に維持するものである。ここで、キャリア設定情報Scが設定する三角波は、図3中の点Aに示すように、三角波の立ち下がりの中央位置が三相電圧指令値Vu、Vv、Vwの立ち上がりのゼロ位置と交差し、さらに三角波の周波数が三相電圧指令値Vu、Vv、Vwの周波数の奇数の3の整数倍、即ち、9、15、21、27倍等(以後、この倍数を同期数とする)となるものである。尚、三角波の同期数は電気角速度ωに応じて設定される。また、三角波の周波数を三相電圧指令値Vu、Vv、Vwの周波数の奇数の3の整数倍とする理由に関しては後述する。 Next, the carrier setting information Sc output by the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 will be described. First, the carrier setting information Sc maintains the frequency of the triangular wave generated by the triangular wave generation unit 34 in an appropriate state. Here, in the triangular wave set by the carrier setting information Sc, as shown by a point A in FIG. 3, the center position of the falling edge of the triangular wave crosses the zero position of the rising of the three-phase voltage command values Vu, Vv, Vw. Further, the frequency of the triangular wave becomes an integer multiple of 3 which is an odd number of the frequencies of the three-phase voltage command values Vu, Vv, Vw, that is, 9, 15, 21, 27 times (hereinafter, this multiple is the synchronization number). It is a thing. The number of synchronization of the triangular wave is set according to the electrical angular velocity ω. The reason for setting the frequency of the triangular wave to an integer multiple of 3 which is an odd number of the frequencies of the three-phase voltage command values Vu, Vv, and Vw will be described later.
 尚、本発明ではキャリア設定情報Scの生成に使用する電圧位相θvとして、(電流比例制御部410bの出力加算前の)積分側d軸、q軸電圧指令値Vd’’、Vq’’から求めた電圧位相θv、もしくは、(比例制御が行われる)補正部70の前で分岐した電圧位相θvを用いる。ここで、電圧位相θvが短期的な振動成分である比例制御成分を含む場合、三角波の周期(キャリア設定情報Sc)もこの比例制御成分に応じて短期的に振動する。これは、三角波比較で生成される駆動信号Su、Sv、Swを変動させ、出力電圧、電流、トルクの変動要因となる。しかしながら、本発明では上記のように比例制御成分(短期的な振動成分)を含まない電圧位相θvを用いてキャリア設定情報Scを設定するため、三角波及び駆動信号Su、Sv、Swが安定し、これにより出力電圧、電流、トルクを安定化することができる。また、比例制御成分を含まない電圧位相θvを用いることで、正弦波モード同期制御部420、矩形波モード同期制御部520、電圧位相設定部502等の制御ゲインを大きくとることが可能となり、これらの応答性の向上を図ることができる。 In the present invention, the voltage phase θv used to generate the carrier setting information Sc is obtained from the d-axis on the integration side (before the addition of the output of the current proportional control unit 410b) and the q-axis voltage command values Vd ″ and Vq ″. The voltage phase θv is used, or the voltage phase θv branched before the correction unit 70 (where proportional control is performed) is used. Here, when the voltage phase θv includes a proportional control component that is a short-term vibration component, the triangular wave cycle (carrier setting information Sc) also vibrates in the short term according to the proportional control component. This causes the drive signals Su, Sv, Sw generated by the triangular wave comparison to fluctuate, which causes fluctuations in the output voltage, current, and torque. However, in the present invention, since the carrier setting information Sc is set using the voltage phase θv that does not include the proportional control component (short-term vibration component) as described above, the triangular wave and the drive signals Su, Sv, Sw are stable, As a result, the output voltage, current and torque can be stabilized. Further, by using the voltage phase θv that does not include the proportional control component, it is possible to obtain a large control gain for the sine wave mode synchronization control unit 420, the rectangular wave mode synchronization control unit 520, the voltage phase setting unit 502, etc. The responsiveness of can be improved.
 そして、正弦波モード同期制御部420、矩形波モード同期制御部520は電圧位相θvと電気角θとに基づいて三角波の中央位置と三相電圧指令値Vu(Vv、Vw)のゼロ位置とが交差し、さらに三角波の周波数が設定された同期数(三相電圧指令値Vu、Vv、Vwの周波数の奇数の3の整数倍)となるような三角波の周期を設定する。また、正弦波モード同期制御部420、矩形波モード同期制御部520は電気角速度ωの変化に連動して周期の設定情報を変化させ、三角波を上記の状態に追従、維持させる。さらに、正弦波モード同期制御部420、矩形波モード同期制御部520は電気角速度ωが予め設定された所定の値を超えた場合、同期数を1段階下げてキャリア設定情報Scを設定し出力する。また、電気角速度ωが予め設定された所定の値を下回った場合、同期数を1段階上げてキャリア設定情報Scを設定し出力する。尚、同期数を変化させる電気角速度ωの値は同期数毎にデータテーブル等に予め記憶しておき、正弦波モード同期制御部420、矩形波モード同期制御部520は入力した電気角速度ωに応じて対応する同期数をデータテーブルから取得し設定を行う事が好ましい。このとき、同期数を上下する電気角速度ωにはヒステリシス幅を持たせることが好ましい。尚、これらの三角波の周期の変化と連動して、前述の補正電圧生成部76の補正ゲイン(Kd、Kq)、平滑部72の時定数、各制御のゲイン等は調整され再設定される。 Then, the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 determine the center position of the triangular wave and the zero position of the three-phase voltage command value Vu (Vv, Vw) based on the voltage phase θv and the electrical angle θ. Further, the period of the triangular wave is set such that the frequency of the triangular wave intersects and the frequency becomes equal to the set synchronization number (an integer multiple of 3 which is an odd number of the frequencies of the three-phase voltage command values Vu, Vv, and Vw). Further, the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 change the setting information of the cycle in association with the change of the electrical angular velocity ω, and make the triangular wave follow and maintain the above state. Further, the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 reduce the number of synchronization by one stage and set and output the carrier setting information Sc when the electrical angular velocity ω exceeds a preset predetermined value. .. When the electrical angular velocity ω falls below a preset predetermined value, the number of synchronizations is increased by one step to set and output the carrier setting information Sc. The value of the electrical angular velocity ω that changes the number of synchronizations is stored in advance in a data table or the like for each number of synchronizations, and the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520 correspond to the input electrical angular velocity ω. It is preferable that the corresponding synchronization number is acquired from the data table and set. At this time, it is preferable that the electrical angular velocity ω that fluctuates the synchronization number has a hysteresis width. Note that the correction gain (Kd, Kq) of the correction voltage generation unit 76, the time constant of the smoothing unit 72, the gain of each control, and the like are adjusted and reset in association with the change in the cycle of these triangular waves.
 次に、制御信号生成部30の好適な一例を説明する。尚、以下で説明する制御信号生成部30の構成は本発明に好適な一例であるから、下記の構成に限定されるわけではなく、他の如何なる制御信号生成機構を用いても良い。 Next, a suitable example of the control signal generation unit 30 will be described. Since the configuration of the control signal generation unit 30 described below is an example suitable for the present invention, the configuration is not limited to the following configuration, and any other control signal generation mechanism may be used.
 先ず、正弦波制御部40もしくは矩形波制御部50から出力したd軸電圧指令値Vd、q軸電圧指令値Vq(d軸電圧指令補正値Vd、q軸電圧指令補正値Vq)は制御信号生成部30のdq/3相変換部32に入力する。尚、制御信号生成部30は、dq/3相変換部32の前段に主に過変調制御時におけるd軸、q軸電圧指令値Vd、Vq及び電圧指令値|Va|と、インバータ出力電圧の基本波成分との非線形性を補正するための線形補正部38を有している。尚、この線形補正部38で用いる補正値は例えば変調率や電圧指令値|Va|等と対応して設定することが好ましい。 First, the d-axis voltage command value Vd and the q-axis voltage command value Vq (d-axis voltage command correction value Vd, q-axis voltage command correction value Vq) output from the sine wave control unit 40 or the rectangular wave control unit 50 are generated as control signals. It is input to the dq / 3-phase conversion unit 32 of the unit 30. Note that the control signal generation unit 30 mainly includes the d-axis and q-axis voltage command values Vd and Vq and the voltage command value | Va | at the pre-stage of the dq / 3-phase conversion unit 32 during the overmodulation control and the inverter output voltage. It has a linear correction unit 38 for correcting the non-linearity with the fundamental wave component. The correction value used by the linear correction unit 38 is preferably set in correspondence with, for example, the modulation rate or the voltage command value | Va |.
 そして、本発明では線形補正部38に入力する電圧指令値|Va|として、(電流比例制御部410bの出力加算前の)積分側d軸、q軸電圧指令値Vd’’、Vq’’から求めた電圧指令値|Va|、もしくは(比例制御が行われる)補正部70よりも前段の(補正部70のd軸補正電圧ΔVd、q軸補正電圧ΔVqの短期的な振動成分を含まない)矩形波モード同期制御部520(電圧指令取得部)が出力する電圧指令値|Va|を用いる(正弦波制御線形補正ステップ、矩形波制御線形補正ステップ)。ここで、電圧指令値|Va|が短期的な振動成分である比例制御成分を含む場合、補正値がこの振動成分の影響によって変動する。これにより、後段の三相電圧指令値Vu、Vv、Vw、駆動信号Su、Sv、Swも変動し出力電圧、電流、トルクの変動要因となる。しかしながら、本発明では上記のように比例制御成分を含まない比較的安定した電圧指令値|Va|を基に補正値を設定するため、安定した三相電圧指令値Vu、Vv、Vw、駆動信号Su、Sv、Swを生成でき、出力電圧、電流、トルクの安定化を図ることができる。また、比例制御成分を含まない電圧指令値|Va|を基に補正値を設定することで、電流比例制御部410b、補正電圧生成部76のゲインを大きくとることが可能となり、これらの応答性の向上を図ることができる。 Then, in the present invention, as the voltage command value | Va | input to the linear correction unit 38, from the integration side d-axis and q-axis voltage command values Vd ″ and Vq ″ (before the addition of the output of the current proportional control unit 410b). The obtained voltage command value | Va |, or the correction unit 70 (proportional control is performed) in the preceding stage (does not include short-term vibration components of the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq of the correction unit 70). The voltage command value | Va | output by the rectangular wave mode synchronization control unit 520 (voltage command acquisition unit) is used (sine wave control linear correction step, rectangular wave control linear correction step). Here, when the voltage command value | Va | includes a proportional control component that is a short-term vibration component, the correction value fluctuates due to the influence of this vibration component. As a result, the subsequent three-phase voltage command values Vu, Vv, Vw and the drive signals Su, Sv, Sw also fluctuate, which causes fluctuations in the output voltage, current, and torque. However, in the present invention, since the correction value is set based on the relatively stable voltage command value | Va | that does not include the proportional control component as described above, the stable three-phase voltage command values Vu, Vv, Vw, and the drive signal Su, Sv, Sw can be generated, and the output voltage, current, and torque can be stabilized. Further, by setting the correction value based on the voltage command value | Va | that does not include the proportional control component, it is possible to increase the gains of the current proportional control unit 410b and the correction voltage generation unit 76, and the responsiveness of these is increased. Can be improved.
 また、dq/3相変換部32には角度検出部14からの電気角θと角速度演算部16からの電気角速度ωが入力し、この電気角θと電気角速度ωとに基づいてインバータ20がスイッチング動作を行う新たなタイミングの予測電気角θ’を算出し、この予測電気角θ’に基づいてd軸、q軸電圧指令値Vd、Vqを三相電圧指令値Vu、Vv、Vwに変換し、駆動信号生成部36に出力する。 Further, the electrical angle θ from the angle detection unit 14 and the electrical angular velocity ω from the angular velocity calculation unit 16 are input to the dq / 3-phase conversion unit 32, and the inverter 20 switches based on the electrical angle θ and the electrical angular velocity ω. A predicted electrical angle θ ′ at a new timing of operation is calculated, and the d-axis and q-axis voltage command values Vd, Vq are converted into three-phase voltage command values Vu, Vv, Vw based on the predicted electrical angle θ ′. , To the drive signal generator 36.
 駆動信号生成部36は三角波生成部34を有しており、この三角波生成部34には前述のキャリア設定情報Scが入力して、このキャリア設定情報Scに基づいた周期の三角波を生成する。尚、このときの三角波は正弦波モード同期制御部420、矩形波モード同期制御部520からのキャリア設定情報Scによって、三角波の立ち下がりの中央位置が三相電圧指令値Vu、Vv、Vwの立ち上がりのゼロ位置と交差し、さらに周波数が三相電圧指令値Vu、Vv、Vwの奇数の3の整数倍の三角波となる。 The drive signal generation unit 36 has a triangular wave generation unit 34, and the above-mentioned carrier setting information Sc is input to this triangular wave generation unit 34, and a triangular wave having a cycle based on this carrier setting information Sc is generated. At this time, the triangular wave is based on the carrier setting information Sc from the sine wave mode synchronization control unit 420 and the rectangular wave mode synchronization control unit 520, and the center position of the falling edge of the triangular wave is the rise of the three-phase voltage command values Vu, Vv, Vw. Of the three-phase voltage command values Vu, Vv, and Vw, the frequency becomes a triangular wave that is an integer multiple of 3.
 そして、駆動信号生成部36はこの三角波と三相電圧指令値Vu、Vv、Vwとをそれぞれ三角波比較する。このとき、三角波の振幅は上記のキャリア設定情報Scによって増減する。よって、三相電圧指令値Vu、Vv、Vwを三角波の振幅と比例する換算係数によって調整し、この調整後の三相電圧指令値Vu、Vv、Vwを用いて三角波比較を行う。これにより、Hi-Lowの駆動信号Su、Sv、Swが生成される。 Then, the drive signal generator 36 compares the triangular wave with the three-phase voltage command values Vu, Vv, Vw, respectively. At this time, the amplitude of the triangular wave increases or decreases according to the carrier setting information Sc. Therefore, the three-phase voltage command values Vu, Vv, Vw are adjusted by a conversion factor proportional to the amplitude of the triangular wave, and the adjusted three-phase voltage command values Vu, Vv, Vw are used to perform the triangular wave comparison. As a result, the Hi-Low drive signals Su, Sv, Sw are generated.
 インバータ20は駆動信号生成部36から出力される駆動信号Su、Sv、Swにより内部のスイッチング素子がオン・オフし、直流電源部18からの直流電力を駆動信号Su、Sv、Swに基づく交流電圧に変換して出力する。これにより、PMモータ10の電機子巻線には位相が1/3周期(2/3π(rad))づつずれた交流の駆動電流Iu、Iv、Iwがそれぞれ流下する。これにより、PMモータ10がトルク指令値Tに応じたトルクで回転動作する。 In the inverter 20, the internal switching elements are turned on / off by the drive signals Su, Sv, Sw output from the drive signal generation unit 36, and the DC power from the DC power supply unit 18 is converted into an AC voltage based on the drive signals Su, Sv, Sw. Converted to and output. As a result, alternating drive currents Iu, Iv, and Iw whose phases are shifted by 1/3 cycle (2 / 3π (rad)) flow down to the armature windings of the PM motor 10. As a result, the PM motor 10 rotates with a torque according to the torque command value T * .
 次に、本発明に係るモータ制御装置100及びモータ制御方法のモード移行部80の動作の一例を説明する。ここで、図4は正弦波制御モードから矩形波パターン制御モードへの切り替え時の動作フローチャートである。また、図5は矩形波制御モードから正弦波制御モードへの切り替え時の動作フローチャートである。 Next, an example of the operation of the mode transition unit 80 of the motor control device 100 and the motor control method according to the present invention will be described. Here, FIG. 4 is an operation flowchart when switching from the sine wave control mode to the rectangular wave pattern control mode. FIG. 5 is an operation flowchart when switching from the rectangular wave control mode to the sine wave control mode.
 初めに、本例におけるモータ制御装置100及びモータ制御方法の正弦波制御モードから矩形波制御モードへの切り替え時の動作を説明する。先ず、正弦波制御モードにおいては、正弦波制御部40がトルク指令値Tに基づくd軸電圧指令値Vd、q軸電圧指令値Vqを生成し、このd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて駆動信号Su、Sv、Swが生成される。このときの駆動信号Su、Sv、Swは、正弦波制御部40が過変調制御や弱め磁束制御を可能とする場合には、正弦波パターンもしくは過変調パターンとなる。また、正弦波制御部40が過変調制御機能もしくは弱め磁束制御機能を備えない場合には正弦波パターンとなる。そして、PMモータ10はこれら正弦波パターンもしくは過変調パターンの駆動信号Su、Sv、Swによって動作制御される(ステップS102)。 First, the operation of the motor control device 100 and the motor control method in this example when switching from the sine wave control mode to the rectangular wave control mode will be described. First, in the sine wave control mode, the sine wave control unit 40 generates the d-axis voltage command value Vd and the q-axis voltage command value Vq based on the torque command value T * , and the d-axis voltage command value Vd and the q-axis voltage The drive signals Su, Sv, Sw are generated based on the command value Vq. The drive signals Su, Sv, Sw at this time have a sine wave pattern or an overmodulation pattern when the sine wave control unit 40 enables overmodulation control or weakening magnetic flux control. Further, when the sine wave control unit 40 does not have the overmodulation control function or the weakening magnetic flux control function, the sine wave pattern is obtained. The operation of the PM motor 10 is controlled by the drive signals Su, Sv, Sw of these sine wave patterns or overmodulation patterns (step S102).
 また、このとき正弦波制御部40の極座標変換部418は、前述のように電流制御部410における電流比例制御成分が加算される前の積分側d軸、q軸電圧指令値Vd’’、Vq’’を極座標変換して電圧位相θvと電圧指令値|Va|とを算出する。そして、モード移行部80はこの電圧位相θvと電圧指令値|Va|とをそれぞれ取得し(ステップS104)、これを初期電圧位相θv1及び移行電圧指令値|Va’|の初期値とする(ステップS105)。尚、電圧位相θvと電圧指令値|Va|は随時変動し、これに伴って初期電圧位相θv1、移行電圧指令値|Va’|の初期値も変化する。尚、上記のように初期電圧位相θv1及び移行電圧指令値|Va’|の初期値は比例制御成分を含まない積分側d軸、q軸電圧指令値Vd’’、Vq’’から求めたものであるから短期的な変動が少なく後述の移行期間中の出力を安定化することができる。 Further, at this time, the polar coordinate conversion unit 418 of the sine wave control unit 40 causes the integration side d-axis, q-axis voltage command values Vd ″, Vq before the current proportional control component in the current control unit 410 is added as described above. '' Is converted into polar coordinates to calculate the voltage phase θv and the voltage command value | Va |. Then, the mode transition unit 80 acquires the voltage phase θv and the voltage command value | Va |, respectively (step S104), and uses these as the initial values of the initial voltage phase θv1 and the transition voltage command value | Va ′ | (step). S105). The voltage phase θv and the voltage command value | Va | fluctuate at any time, and the initial values of the initial voltage phase θv1 and the transition voltage command value | Va ′ | also change accordingly. As described above, the initial values of the initial voltage phase θv1 and the transition voltage command value | Va ′ | are obtained from the d-axis on the integration side and the q-axis voltage command values Vd ″ and Vq ″ that do not include the proportional control component. Therefore, there are few short-term fluctuations, and the output during the transition period can be stabilized.
 次に、外部からのトルク指令値Tが増大するなどしてPMモータ10の運転状況(トルク、回転数)が切替値(切替ラインC)を越えて矩形波制御領域Bとなった場合(ステップS106:Yes)、切替部24は直ちにd軸電圧指令値Vd、q軸電圧指令値Vqの生成部を正弦波制御部40から矩形波制御部50に切り替える(ステップS108)。尚、モータ制御装置100が後述の第2の形態を備えている場合には、制御部が矩形波制御部50に切り替わることで、後述のステップS203、S204が行われ、矩形波制御部50の出力するd軸、q軸電圧指令値Vd、Vq(d軸電圧指令補正値Vd、q軸電圧指令補正値Vq)がd軸、q軸電圧指令値の初期値Vd1、Vq1として正弦波制御部40に出力されるとともに、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに基づいて移行データIfbが算出される。 Next, when the operating condition (torque, rotation speed) of the PM motor 10 exceeds the switching value (switching line C) and enters the rectangular wave control area B due to an increase in the torque command value T * from the outside ( (Step S106: Yes), the switching unit 24 immediately switches the generation unit of the d-axis voltage command value Vd and the q-axis voltage command value Vq from the sine wave control unit 40 to the rectangular wave control unit 50 (Step S108). When the motor control device 100 is provided with the second mode described later, the control unit is switched to the rectangular wave control unit 50, so that steps S203 and S204 described below are performed, and the rectangular wave control unit 50 is controlled. The sine wave control unit outputs the d-axis and q-axis voltage command values Vd and Vq (d-axis voltage command correction value Vd and q-axis voltage command correction value Vq) as the initial values Vd1 and Vq1 of the d-axis and q-axis voltage command values. While being output to 40, the shift data Ifb is calculated based on the d-axis feedback current value Id and the q-axis feedback current value Iq.
 また、このときモード移行部80は初期電圧位相θv1を矩形波制御部50の電圧位相設定部502に出力するとともに、移行電圧指令値|Va’|の初期値(=|Va|)を矩形波モード同期制御部520に出力する(ステップS110)。 Further, at this time, the mode transition unit 80 outputs the initial voltage phase θv1 to the voltage phase setting unit 502 of the rectangular wave control unit 50, and the initial value (= | Va |) of the transition voltage command value | Va ′ | It is output to the mode synchronization control unit 520 (step S110).
 次に、モード移行部80は矩形波モード同期制御部520から駆動信号Su、Sv、Swが1パルスの矩形波パターンとなるような矩形波形成電圧値|Va1|を取得する(ステップS112)。 Next, the mode transition unit 80 acquires a rectangular wave forming voltage value | Va1 | such that the drive signals Su, Sv, Sw become a rectangular wave pattern of one pulse from the rectangular wave mode synchronization control unit 520 (step S112).
 次に、モード移行部80は移行電圧指令値|Va’|を初期値(=|Va|)から矩形波形成電圧値|Va1|まで例えば予め設定された所定の時定数に基づいて連続的に増大させ矩形波モード同期制御部520に出力する(ステップS114~ステップS116)。 Next, the mode transition unit 80 continuously changes the transition voltage command value | Va ′ | from the initial value (= | Va |) to the rectangular wave forming voltage value | Va1 |, for example, based on a predetermined time constant set in advance. It is increased and output to the rectangular wave mode synchronization control unit 520 (steps S114 to S116).
 尚、矩形波モード同期制御部520はモード移行部80から移行電圧指令値|Va’|が入力している場合には、トルク指令値Tによらず、この移行電圧指令値|Va’|を電圧指令値生成部516と切替部24とに出力する。ただし、初期電圧位相θv1は矩形波制御部50への制御部切り替え時に出力されるのみで、その後はトルク指令値Tに応じた電圧位相θvとなる。従って、ステップS114~ステップS116の移行期間におけるd軸、q軸電圧指令値Vd、Vqは、電圧位相θvと移行電圧指令値|Va’|とに基づいて生成されるものとなる。尚、移行電圧指令値|Va’|の初期値は正弦波制御部40で使用されていた正弦波パターン(もしくは過変調パターン)を形成する電圧指令値|Va|であり、また移行電圧指令値|Va’|の最終値である矩形波形成電圧値|Va1|は矩形波パターンを形成する電圧指令値であるから、この移行期間において駆動信号Su、Sv、Swは電圧位相θvによるトルク制御が行われながら正弦波パターンもしくは過変調パターンから矩形波パターンへと連続的に変化する。 If the transition voltage command value | Va ′ | is input from the mode transition unit 80, the rectangular wave mode synchronization control unit 520 does not depend on the torque command value T * and the transition voltage command value | Va ′ | Is output to the voltage command value generation unit 516 and the switching unit 24. However, the initial voltage phase θv1 is only output when the control unit is switched to the rectangular wave control unit 50, and then becomes the voltage phase θv according to the torque command value T * . Therefore, the d-axis and q-axis voltage command values Vd and Vq in the transition period of steps S114 to S116 are generated based on the voltage phase θv and the transition voltage command value | Va ′ |. The initial value of the transition voltage command value | Va ′ | is the voltage command value | Va | that forms the sine wave pattern (or overmodulation pattern) used in the sine wave control unit 40. Since the rectangular wave forming voltage value | Va1 |, which is the final value of | Va ′ |, is a voltage command value that forms a rectangular wave pattern, the drive signals Su, Sv, and Sw are torque controlled by the voltage phase θv during this transition period. While being performed, the sine wave pattern or overmodulation pattern continuously changes to a rectangular wave pattern.
 そして、移行電圧指令値|Va’|が矩形波形成電圧値|Va1|以上となった場合(ステップS116:Yes)、モード移行部80は移行電圧指令値|Va’|の出力を停止して、矩形波制御部50による矩形波制御モードに完全に移行する(ステップS118)。これにより、矩形波制御部50はトルク指令値Tに応じた電圧位相θvと矩形波形成電圧値|Va1|によってd軸、q軸電圧指令値Vd、Vq(d軸電圧指令補正値Vd、q軸電圧指令補正値Vq)を生成し、制御信号生成部30側に出力する。これにより、PMモータ10は矩形波パターンの駆動信号Su、Sv、Swにより動作制御される。 When the transition voltage command value | Va ′ | becomes equal to or greater than the rectangular wave forming voltage value | Va1 | (step S116: Yes), the mode transition unit 80 stops the output of the transition voltage command value | Va ′ |. , The rectangular wave control unit 50 completely shifts to the rectangular wave control mode (step S118). Thereby, the rectangular wave control unit 50 uses the voltage phase θv corresponding to the torque command value T * and the rectangular wave forming voltage value | Va1 | to d-axis, q-axis voltage command values Vd, Vq (d-axis voltage command correction value Vd, The q-axis voltage command correction value Vq) is generated and output to the control signal generation unit 30 side. As a result, the operation of the PM motor 10 is controlled by the rectangular-wave pattern drive signals Su, Sv, and Sw.
 このように、本例に示すモータ制御装置100及びモータ制御方法では、正弦波制御モードから矩形波制御モードへ切り替える際に、電圧位相θvによるトルク制御を行いながら駆動信号Su、Sv、Swを正弦波パターン(もしくは過変調パターン)から矩形波パターンに連続的に変化させる。このため、トルク変動の少ないスムーズな制御モードの切り替えを行うことができる。 As described above, in the motor control device 100 and the motor control method according to the present example, when the sine wave control mode is switched to the rectangular wave control mode, the drive signals Su, Sv, and Sw are sine-controlled while performing torque control with the voltage phase θv. The wave pattern (or overmodulation pattern) is continuously changed to a rectangular wave pattern. Therefore, it is possible to smoothly switch the control mode with less torque fluctuation.
 次に、本例におけるモータ制御装置100及びモータ制御方法の矩形波制御モードから正弦波制御モードへの切り替え時の動作を説明する。先ず、矩形波制御モードにおいては、矩形波制御部50がトルク指令値Tに基づくd軸電圧指令値Vd、q軸電圧指令値Vq(d軸電圧指令補正値Vd、q軸電圧指令補正値Vq)を生成し、このd軸電圧指令値Vd、q軸電圧指令値Vq(d軸電圧指令補正値Vd、q軸電圧指令補正値Vq)に基づいて駆動信号Su、Sv、Swが生成される。このときの駆動信号Su、Sv、Swは前述のように基本的に1パルスの矩形波パターンとなる。そして、PMモータ10はこの矩形波パターンの駆動信号Su、Sv、Swによって動作制御される(ステップS202)。 Next, the operation of the motor control device 100 and the motor control method in this example when switching from the rectangular wave control mode to the sine wave control mode will be described. First, in the rectangular wave control mode, the rectangular wave control unit 50 causes the d-axis voltage command value Vd, the q-axis voltage command value Vq (d-axis voltage command correction value Vd, q-axis voltage command correction value) based on the torque command value T *. Vq) and drive signals Su, Sv, Sw are generated based on the d-axis voltage command value Vd and the q-axis voltage command value Vq (d-axis voltage command correction value Vd, q-axis voltage command correction value Vq). It The drive signals Su, Sv, Sw at this time basically have a one-pulse rectangular wave pattern as described above. The operation of the PM motor 10 is controlled by the drive signals Su, Sv, Sw of this rectangular wave pattern (step S202).
 この矩形波制御部50による制御時には、矩形波制御部50が出力するd軸、q軸電圧指令補正値Vd、Vqが正弦波制御部40の電圧指令値生成部416にd軸、q軸電圧指令値の初期値Vd1、Vq1として直接もしくはモード移行部80を介して出力される(ステップS203)。そして、入力したd軸、q軸電圧指令値の初期値Vd1、Vq1には非干渉制御部414のd軸、q軸間の干渉成分(d軸、q軸電圧指令値Vd’、Vq’)がそれぞれ減算された後、電流積分制御部410aに入力して電流制御部410の積分値となる。ただし、矩形波制御モード時にはこの電流制御部410の積分値等はPMモータ10の制御には関与しない。尚、この初期値Vd1、Vq1は矩形波制御部50が出力するd軸電圧指令値Vd、q軸電圧指令値Vqの変動に応じて随時変化する。 During the control by the rectangular wave control unit 50, the d-axis and q-axis voltage command correction values Vd and Vq output by the rectangular wave control unit 50 are supplied to the voltage command value generation unit 416 of the sine wave control unit 40. The initial values Vd1 and Vq1 of the command value are output directly or via the mode transition unit 80 (step S203). Then, in the input d-axis and q-axis voltage command value initial values Vd1 and Vq1, the interference components between the d-axis and the q-axis of the non-interference control unit 414 (d-axis, q-axis voltage command values Vd ′, Vq ′). After being respectively subtracted, the result is input to the current integration control unit 410a and becomes the integrated value of the current control unit 410. However, in the rectangular wave control mode, the integral value of the current control unit 410 does not participate in the control of the PM motor 10. The initial values Vd1 and Vq1 change at any time according to changes in the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the rectangular wave control unit 50.
 また、このときモード移行部80は3相/dq変換部22からのd軸フィードバック電流値Id、q軸フィードバック電流値Iqを取得する。そして、d軸電流指令値の初期値Id1、q軸電流指令値の初期値Iq1を算出するための移行データIfbを算出する(ステップS204)。尚、この移行データIfbは例えば、d軸、q軸フィードバック電流値Id、Iqを用いて演算により求められる電流指令値設定部402内部、電流指令値生成部406内部の積分制御部の積分値等であり、矩形波制御部50から正弦波制御部40への切り替え直後において電流指令値設定部402、電流指令値生成部406が取得できないデータを補完するものである。尚、この移行データIfbの取得は後述の移行期間にも同様に行われる。 At this time, the mode transition unit 80 also acquires the d-axis feedback current value Id and the q-axis feedback current value Iq from the three-phase / dq conversion unit 22. Then, the transition data Ifb for calculating the initial value Id * 1 of the d-axis current command value and the initial value Iq * 1 of the q-axis current command value is calculated (step S204). The transition data Ifb is, for example, the integral value of the integral control unit inside the current command value setting unit 402 or the current command value generating unit 406, which is obtained by calculation using the d-axis and q-axis feedback current values Id and Iq. Therefore, the current command value setting unit 402 and the current command value generation unit 406 complement the data that cannot be acquired immediately after switching from the rectangular wave control unit 50 to the sine wave control unit 40. It should be noted that the acquisition of the migration data Ifb is similarly performed during a migration period described later.
 次に、外部からのトルク指令値Tが減少するなどしてPMモータ10の運転状況(トルク、回転数)が切替値(切替ラインC)を越えて正弦波制御領域Aとなった場合(ステップS206:Yes)、モード移行部80はこの時に矩形波モード同期制御部520が出力した電圧指令値|Va|を取得する。そして、この電圧指令値|Va|を移行電圧指令値|Va’|の初期値とする(ステップS208)。また、モード移行部80は駆動信号Su、Sv、Swが正弦波パターン(もしくは過変調パターン)をとるような正弦波モード移行電圧値|Va2|を取得する(ステップS210)。尚、正弦波モード移行電圧値|Va2|は例えば正弦波制御モードにおける電圧指令値|Va|の上限値(電流制御部410のリミッタ部のリミッタ値)等の予め設定された固定値を用いることが好ましい。 Next, when the operating condition (torque, rotation speed) of the PM motor 10 exceeds the switching value (switching line C) and becomes the sine wave control area A due to a decrease in the torque command value T * from the outside ( (Step S206: Yes), the mode transition unit 80 acquires the voltage command value | Va | output by the rectangular wave mode synchronization control unit 520 at this time. Then, this voltage command value | Va | is set as the initial value of the transition voltage command value | Va ′ | (step S208). Further, the mode transition unit 80 acquires a sine wave mode transition voltage value | Va2 | such that the drive signals Su, Sv, Sw have a sine wave pattern (or an overmodulation pattern) (step S210). As the sine wave mode transition voltage value | Va2 |, a preset fixed value such as the upper limit value of the voltage command value | Va | in the sine wave control mode (limiter value of the limiter section of the current control section 410) is used. Is preferred.
 次に、モード移行部80は移行電圧指令値|Va’|を初期値(=|Va|)から正弦波モード移行電圧値|Va2|まで例えば予め設定された所定の時定数に基づいて連続的に減少させ矩形波モード同期制御部520に出力する(ステップS212~ステップS216)。尚、この移行期間中においても矩形波制御部50が出力する初期値Vd1、Vq1は正弦波制御部40に継続して出力され(ステップS214)、また移行データIfbは随時更新される(ステップS215)。 Next, the mode transition unit 80 continuously changes the transition voltage command value | Va ′ | from the initial value (= | Va |) to the sine wave mode transition voltage value | Va2 | based on, for example, a predetermined time constant set in advance. To the rectangular wave mode synchronization control unit 520 (steps S212 to S216). Even during this transition period, the initial values Vd1 and Vq1 output by the rectangular wave control unit 50 are continuously output to the sine wave control unit 40 (step S214), and the transition data Ifb is updated at any time (step S215). ).
 尚、矩形波モード同期制御部520は前述と同様にモード移行部80から移行電圧指令値|Va’|が入力している場合には、トルク指令値Tによらず、この移行電圧指令値|Va’|を電圧指令値生成部516と切替部24とに出力する。従って、ステップS212~ステップS216の移行期間におけるd軸、q軸電圧指令値Vd、Vqは、前述と同様に電圧位相θvと移行電圧指令値|Va’|とに基づいて生成されるものとなる。そして、移行電圧指令値|Va’|の初期値(=|Va|)は矩形波制御時の電圧指令値であり、また移行電圧指令値|Va’|の最終値である正弦波モード移行電圧値|Va2|は正弦波パターンもしくは過変調パターンを形成する電圧指令値であるから、この移行期間において駆動信号Su、Sv、Swは電圧位相θvによるトルク制御が行われながら矩形波パターンから過変調パターンもしくは正弦波パターンへと連続的に変化する。また、この移行期間においてトルク指令値Tや電源電圧Vdc、電気角速度ωに変化があった場合でも、これらの変化はトルク制御及び移行データIfbに随時反映される。 When the transition voltage command value | Va ′ | is input from the mode transition unit 80, the rectangular wave mode synchronization control unit 520 receives the transition voltage command value regardless of the torque command value T * , as described above. | Va ′ | is output to the voltage command value generation unit 516 and the switching unit 24. Therefore, the d-axis and q-axis voltage command values Vd, Vq in the transition period of steps S212 to S216 are generated based on the voltage phase θv and the transition voltage command value | Va ′ | .. The initial value (= | Va |) of the transition voltage command value | Va ′ | is the voltage command value during rectangular wave control, and the sine wave mode transition voltage that is the final value of the transition voltage command value | Va ′ | Since the value | Va2 | is a voltage command value that forms a sine wave pattern or an overmodulation pattern, the drive signals Su, Sv, and Sw are overmodulated from the rectangular wave pattern while torque control is performed by the voltage phase θv during this transition period. It continuously changes to a pattern or a sine wave pattern. Further, even if there is a change in the torque command value T * , the power supply voltage Vdc, or the electrical angular velocity ω during this transition period, these changes are reflected in the torque control and transition data Ifb at any time.
 そして、移行電圧指令値|Va’|が正弦波モード移行電圧値|Va2|以下となった場合(ステップS216:Yes)、モード移行部80は移行電圧指令値|Va’|の出力を停止するとともに、切替部24はd軸電圧指令値Vd、q軸電圧指令値Vqの生成部を矩形波制御部50から正弦波制御部40に切り替える(ステップS218)。また、このときモード移行部80は移行データIfbを正弦波制御部40の電流指令値設定部402、電流指令値生成部406に出力する(ステップS220)。これにより、電流指令値設定部402、電流指令値生成部406は移行データIfbに基づいてd軸電流指令値の初期値Id1、q軸電流指令値の初期値Iq1を算出し、電圧指令値生成部416に出力する。 When the transition voltage command value | Va ′ | becomes less than or equal to the sine wave mode transition voltage value | Va2 | (step S216: Yes), the mode transition unit 80 stops outputting the transition voltage command value | Va ′ |. At the same time, the switching unit 24 switches the generation unit of the d-axis voltage command value Vd and the q-axis voltage command value Vq from the rectangular wave control unit 50 to the sine wave control unit 40 (step S218). Further, at this time, the mode transition unit 80 outputs the transition data Ifb to the current command value setting unit 402 and the current command value generation unit 406 of the sine wave control unit 40 (step S220). As a result, the current command value setting unit 402 and the current command value generation unit 406 calculate the initial value Id * 1 of the d-axis current command value and the initial value Iq * 1 of the q-axis current command value based on the transition data Ifb, It outputs to the voltage command value generation unit 416.
 また、電圧指令値生成部416にはd軸、q軸電圧指令値の初期値Vd1、Vq1が入力しd軸、q軸の電流積分制御の積分値となっているから、よって正弦波制御部40への切り替え直後においては、これらd軸、q軸電圧指令値の初期値Vd1、Vq1、d軸電流指令値の初期値Id1、q軸電流指令値の初期値Iq1に基づいて切替時d軸電圧指令値Vd、切替時q軸電圧指令値Vqが生成され制御信号生成部30側に出力される(ステップS222)。これにより、正弦波制御部40への切り替え直後は、切替時d軸電圧指令値Vd、切替時q軸電圧指令値Vqに基づく駆動信号Su、Sv、SwによりPMモータ10の制御が行われる。 Further, since the initial values Vd1 and Vq1 of the d-axis and q-axis voltage command values are input to the voltage command value generation unit 416 and become the integrated values of the current integration control of the d-axis and q-axis, the sine wave control unit Immediately after switching to 40, based on the initial values Vd1, Vq1 of the d-axis and q-axis voltage command values, the initial value Id * 1 of the d-axis current command value, and the initial value Iq * 1 of the q-axis current command value. The switching d-axis voltage command value Vd and the switching q-axis voltage command value Vq are generated and output to the control signal generation unit 30 side (step S222). Thus, immediately after switching to the sine wave control unit 40, the PM motor 10 is controlled by the drive signals Su, Sv, and Sw based on the switching d-axis voltage command value Vd and the switching q-axis voltage command value Vq.
 その後、モータ制御装置100は正弦波制御部40による正弦波制御モードに完全に移行する(ステップS224)。これにより、正弦波制御部40はトルク指令値Tに応じたd軸電流指令値Id、q軸電流指令値Iqによってd軸、q軸電圧指令値Vd、Vqを生成し、制御信号生成部30側に出力する。これにより、PMモータ10は正弦波パターンもしくは過変調パターンの駆動信号Su、Sv、Swにより動作制御される。 After that, the motor control device 100 completely shifts to the sine wave control mode by the sine wave control unit 40 (step S224). Accordingly, the sine wave control unit 40 generates the d-axis and q-axis voltage command values Vd and Vq by the d-axis current command value Id * and the q-axis current command value Iq * according to the torque command value T * , and outputs the control signal. Output to the generation unit 30 side. As a result, the operation of the PM motor 10 is controlled by the drive signals Su, Sv, Sw having a sine wave pattern or an overmodulation pattern.
 このように、本例に示すモータ制御装置100及びモータ制御方法では、矩形波制御モードから正弦波制御モードへ切り替える際に、電圧位相θvによるトルク制御を行いながら駆動信号Su、Sv、Swを矩形波パターンから正弦波パターン(もしくは過変調パターン)に連続的に変化させ、正弦波パターン(もしくは過変調パターン)となったところで正弦波制御モードへの切り替えを行う。また、正弦波制御モードへの切り替え直後にはモード移行時の最後の値(d軸電圧指令値の初期値Vd1、q軸電圧指令値の初期値Vq1、d軸電流指令値の初期値Id1、q軸電流指令値の初期値Iq1)に基づいて切替時d軸、q軸電圧指令値Vd、Vqが生成され、PMモータ10の動作制御が行われる。このため、制御部の切り替えの前後で制御値が連続しトルク変動の少ないスムーズな制御モードの切り替えを行うことができる。 As described above, in the motor control device 100 and the motor control method according to the present example, when the rectangular wave control mode is switched to the sine wave control mode, the drive signals Su, Sv, and Sw are rectangular while the torque control is performed by the voltage phase θv. The wave pattern is continuously changed to a sine wave pattern (or overmodulation pattern), and when the sine wave pattern (or overmodulation pattern) is reached, switching to the sine wave control mode is performed. Immediately after switching to the sine wave control mode, the last value at the time of mode transition (the initial value Vd1 of the d-axis voltage command value, the initial value Vq1 of the q-axis voltage command value, the initial value Id of the d-axis current command value Id * 1, the switching d-axis and q-axis voltage command values Vd and Vq are generated based on the initial value Iq * 1) of the q-axis current command value, and the operation control of the PM motor 10 is performed. Therefore, it is possible to smoothly switch the control mode in which the control value is continuous before and after the switching of the control unit and the torque fluctuation is small.
 また、本例に示すモータ制御装置100及びモータ制御方法では、モード切り替え時の移行期間中は移行電圧指令値|Va’|に基づいた矩形波制御部50による制御が行われる。従って、移行期間中にPMモータ10の運転状況が変化し再切り換えが必要となった場合でも、そのまま再切り換え動作に移行することができる。例えば、正弦波制御モードから矩形波制御モードへの切り替え動作中に正弦波制御モードへ再切り替えが生じた場合、そのままステップS208~ステップS216に移行し、矩形波制御部50による移行動作を経た後、ステップS218~ステップS224により正弦波制御モードへの切り替えを行うことができる。また、矩形波制御モードから正弦波制御モードへの切り替え動作中に矩形波制御モードへ再切り替えが生じた場合、そのままステップS110~ステップS116に移行した後、矩形波制御部50による矩形波制御モードでの制御を継続することができる。このように、本例に示すモータ制御装置100及びモータ制御方法では、移行期間中においても制御モードの再切り替えに対応することができる他、移行期間中もトルク指令値Tに基づいた電圧位相θvによってトルク制御が行われるため、応答性に優れた動作制御を行うことができる。 Further, in the motor control device 100 and the motor control method shown in this example, the rectangular wave control unit 50 performs control based on the transition voltage command value | Va ′ | during the transition period during mode switching. Therefore, even when the operating condition of the PM motor 10 changes during the transition period and re-switching is required, the re-switching operation can be directly performed. For example, when re-switching to the sine wave control mode occurs during the switching operation from the sine wave control mode to the rectangular wave control mode, the process directly proceeds to steps S208 to S216, and after the transition operation by the rectangular wave control unit 50 is performed. The switching to the sine wave control mode can be performed by steps S218 to S224. Further, if the rectangular wave control mode is switched again to the rectangular wave control mode during the switching operation from the rectangular wave control mode to the sine wave control mode, the rectangular wave control mode by the rectangular wave control unit 50 is directly transferred to steps S110 to S116. The control in can be continued. As described above, the motor control device 100 and the motor control method according to the present example can cope with the re-switching of the control mode even during the transition period, and also during the transition period, the voltage phase based on the torque command value T *. Since torque control is performed by θv, it is possible to perform operation control with excellent responsiveness.
 尚、モータ制御装置100の正弦波制御部40が過変調制御や弱め磁束制御に対応し、且つ、過変調パターンの制御領域で矩形波制御部50と同等の矩形波形成電圧値|Va1|の電圧出力が可能な場合、即ち正弦波モード移行電圧値|Va2|と矩形波形成電圧値|Va1|とが略同等な場合には上記のステップS208~ステップS216の制御は省略しても良い。この場合でも、矩形波制御モードから正弦波制御モードへ切り替え直後には切替時d軸、q軸電圧指令値Vd、Vqが生成され、トルク変動の少ないスムーズな制御モードの切り替えを行うことができる。 In addition, the sine wave control unit 40 of the motor control device 100 corresponds to the overmodulation control and the weakening magnetic flux control, and has the same rectangular wave forming voltage value | Va1 | as the rectangular wave control unit 50 in the control region of the overmodulation pattern. When voltage output is possible, that is, when the sine wave mode transition voltage value | Va2 | and the rectangular wave forming voltage value | Va1 | are substantially equal, the control of steps S208 to S216 may be omitted. Even in this case, the d-axis and q-axis voltage command values Vd and Vq at the time of switching are generated immediately after switching from the rectangular wave control mode to the sine wave control mode, and smooth control mode with less torque fluctuation can be switched. ..
 次に、本発明に係るモータ制御装置100及びモータ制御方法の三角波に関して説明を行う。本発明に用いる三角波は前述のように三角波の立ち下がりの中央位置が三相電圧指令値Vu、Vv、Vwの立ち上がりのゼロ位置と交差し、さらに三相電圧指令値Vu、Vv、Vwの周波数の奇数の3の整数倍の周波数のものとする。先ず、三角波の周波数が三相電圧指令値Vu、Vv、Vwの周波数の3の整数倍ではない場合、駆動信号Su、Sv、Swの波形がU相、V相、W相でそれぞれ異なるものとなり、PMモータ10を円滑に制御することができない。よって、三角波の周波数は三相電圧指令値Vu、Vv、Vwの周波数の3の整数倍とする。 Next, the triangular wave of the motor control device 100 and the motor control method according to the present invention will be described. In the triangular wave used in the present invention, as described above, the center position of the falling edge of the triangular wave crosses the zero position of the rising of the three-phase voltage command values Vu, Vv, Vw, and the frequencies of the three-phase voltage command values Vu, Vv, Vw. It is assumed that the frequency is an integer multiple of 3 which is an odd number of. First, when the frequency of the triangular wave is not an integral multiple of 3 of the frequency of the three-phase voltage command values Vu, Vv, Vw, the waveforms of the drive signals Su, Sv, Sw are different for the U phase, V phase, and W phase. , PM motor 10 cannot be controlled smoothly. Therefore, the frequency of the triangular wave is an integral multiple of 3 of the frequencies of the three-phase voltage command values Vu, Vv, and Vw.
 次に、奇数の3の整数倍とする理由を説明する。ここで、図6(a1)に三角波の周波数を三相電圧指令値Vu(Vv、Vw)の6倍(偶数の3の整数倍)としたときの三相電圧指令値Vu、Vvとの三角波比較の模式図を示す。また、図6(a2)、(a3)にこの三角波比較により生成される駆動信号Su、Svを示す。さらに、図6(a4)にこのときのU相―V相間の出力線間電圧Vuvを示す。また、図6(b1)に三角波の周波数を三相電圧指令値Vu(Vv、Vw)の9倍(奇数の3の整数倍)としたときの三相電圧指令値Vu、Vvとの三角波比較の模式図を示す。また、図6(b2)、(b3)にこの三角波比較により生成される駆動信号Su、Svを示す。さらに、図6(b4)にこのときのU相―V相間の出力線間電圧Vuvを示す。 Next, the reason for setting an odd multiple of 3 is explained. Here, the triangular wave with the three-phase voltage command values Vu and Vv when the frequency of the triangular wave is set to 6 times the three-phase voltage command value Vu (Vv, Vw) (an integer multiple of an even 3) in FIG. 6A1. The schematic diagram of comparison is shown. 6A2 and 6A3 show the drive signals Su and Sv generated by this triangular wave comparison. Further, FIG. 6 (a4) shows the output line voltage Vuv between the U phase and the V phase at this time. Further, in FIG. 6 (b1), the triangular wave comparison with the three-phase voltage command values Vu and Vv when the frequency of the triangular wave is set to nine times the three-phase voltage command value Vu (Vv, Vw) (an integer multiple of an odd 3) The schematic diagram of is shown. 6B2 and 6B3 show the drive signals Su and Sv generated by this triangular wave comparison. Further, FIG. 6B4 shows the output line voltage Vuv between the U phase and the V phase at this time.
 先ず、三角波の周波数を三相電圧指令値Vu、Vv、Vwの偶数の3の整数倍とした場合、図6(a1)の一点鎖線で示す部位では三相電圧指令値Vuのゼロ位置と三角波の中央位置とが双方とも立ち下がりの領域で交差する。このような場合、三相電圧指令値Vu、Vv、Vwの振幅によっては、三相電圧指令値Vu、Vv、Vwと三角波との傾きが部分的に近似する(両者が重なる)可能性が有る。そしてこのような場合には、駆動信号Su、Sv、Swが正弦波パターン(過変調パターン)から矩形波パターンに変化する際に不連続もしくは急激な変化が生じる可能性が有り、トルク変動の原因となる。 First, when the frequency of the triangular wave is set to an integer multiple of 3 which is an even number of the three-phase voltage command values Vu, Vv, and Vw, the zero position of the three-phase voltage command value Vu and the triangular wave Both intersect with the center position in the falling area. In such a case, depending on the amplitudes of the three-phase voltage command values Vu, Vv, Vw, the inclinations of the three-phase voltage command values Vu, Vv, Vw and the triangular wave may be partially approximated (they both overlap). .. In such a case, when the drive signals Su, Sv, Sw change from a sine wave pattern (overmodulation pattern) to a rectangular wave pattern, a discontinuous or abrupt change may occur, which causes torque fluctuation. Becomes
 しかしながら、三角波の周波数を三相電圧指令値Vu、Vv、Vwの奇数の3の整数倍とした場合、図6(b1)の一点鎖線で示すように、三相電圧指令値Vuの立ち下り領域でのゼロ位置は三角波の立ち上がりの中央位置で交差する。即ち、奇数の3の整数倍の場合には、基本的に三相電圧指令値Vu、Vv、Vwの立ち下り領域でのゼロ位置は三角波の立ち上がり領域で交差し、三相電圧指令値Vu、Vv、Vwの立ち上がり領域でのゼロ位置は三角波の立ち下がり領域で交差する。このため、駆動信号Su、Sv、Swの連続性は良好に維持され、安定した駆動信号Su、Sv、Swを生成することができる。 However, when the frequency of the triangular wave is set to an integer multiple of the odd-numbered three of the three-phase voltage command values Vu, Vv, and Vw, as shown by the alternate long and short dash line in FIG. The zero position at intersects with the center position of the rising edge of the triangular wave. That is, when the odd number is an integer multiple of 3, basically, the zero positions in the falling regions of the three-phase voltage command values Vu, Vv, and Vw intersect in the rising region of the triangular wave, and the three-phase voltage command values Vu, The zero position in the rising region of Vv and Vw intersects in the falling region of the triangular wave. Therefore, the continuity of the drive signals Su, Sv, Sw is maintained well, and stable drive signals Su, Sv, Sw can be generated.
 また、三角波の周波数を三相電圧指令値Vu、Vv、Vwの偶数の3の整数倍とした場合、例えば図6(a4)では、出力線間電圧Vuvの波形が上下で非対称となる。このように、出力線間電圧の波形の対称性が確保されない場合、駆動電流Iu、Iv、Iwにオフセット成分や歪みを発生させる虞がありPMモータ10の制御信号として好ましいものではない。 Further, when the frequency of the triangular wave is set to an integer multiple of 3 which is an even number of the three-phase voltage command values Vu, Vv, and Vw, for example, in FIG. 6 (a4), the waveform of the output line voltage Vuv becomes vertically asymmetric. As described above, when the symmetry of the waveform of the output line voltage is not ensured, there is a possibility that an offset component or distortion may be generated in the drive currents Iu, Iv, and Iw, which is not a preferable control signal for the PM motor 10.
 しかしながら、三角波の周波数を三相電圧指令値Vu、Vv、Vwの奇数の3の整数倍とした場合には、図6(b4)に示すように、出力線間電圧Vuvの波形は上下及び左右で対称となる。同様に出力線間電圧Vvw、Vwuも対称性を備え、PMモータ10の安定した制御が可能となる。 However, when the frequency of the triangular wave is set to an integer multiple of the odd three of the three-phase voltage command values Vu, Vv, and Vw, the waveform of the output line voltage Vuv is vertical and horizontal as shown in FIG. 6 (b4). And become symmetrical. Similarly, the output line voltages Vvw and Vwu also have symmetry, which enables stable control of the PM motor 10.
 以上のように、本発明に係るモータ制御装置100及びモータ制御方法は、(電流比例制御部410bの出力加算前の)積分側d軸、q軸電圧指令値Vd’’、Vq’’から求めた電圧指令値|Va|、もしくは矩形波モード同期制御部520(電圧指令取得部)が出力する電流比例制御の成分を含まない電圧指令値|Va|に基づいて線形補正が行われる。これにより、線形補正後のd軸、q軸電圧指令値Vd、Vqは短期的な振動成分の影響を受けず、安定した三相電圧指令値Vu、Vv、Vw、駆動信号Su、Sv、Swを生成でき、出力電圧、電流、トルクの安定化を図ることができる。また、比例制御成分を含まない電圧指令値|Va|を基に線形補正の補正値を設定することで、電流比例制御部410b、補正電圧生成部76のゲインを大きくとることが可能となり、これらの応答性の向上を図ることができる。 As described above, the motor control device 100 and the motor control method according to the present invention are calculated from the integration-side d-axis (before the output addition of the current proportional control unit 410b) and the q-axis voltage command values Vd ″ and Vq ″. Linear correction is performed based on the voltage command value | Va | or the voltage command value | Va | that does not include the current proportional control component output by the rectangular wave mode synchronization control unit 520 (voltage command acquisition unit). As a result, the linearly corrected d-axis and q-axis voltage command values Vd, Vq are not affected by the short-term vibration component, and stable three-phase voltage command values Vu, Vv, Vw, drive signals Su, Sv, Sw are obtained. Can be generated, and the output voltage, current, and torque can be stabilized. Further, by setting the correction value for the linear correction based on the voltage command value | Va | that does not include the proportional control component, it is possible to increase the gains of the current proportional control unit 410b and the correction voltage generation unit 76. The responsiveness of can be improved.
 また、本発明に係るモータ制御装置100及びモータ制御方法は、(電流比例制御部410bの出力加算前の)積分側d軸、q軸電圧指令値Vd’’、Vq’’から求めた電圧位相θv、もしくは、(比例制御が行われる)補正部70の前で分岐した電流比例制御の成分を含まない電圧位相θvに基づいてキャリア設定情報Scを生成する。これにより、キャリア設定情報Sc及び三角波は短期的な振動成分の影響を受けず、安定した駆動信号Su、Sv、Swを生成でき、出力電圧、電流、トルクの安定化を図ることができる。また、比例制御成分を含まない電圧位相θvを用いることで、正弦波モード同期制御部420、矩形波モード同期制御部520、電圧位相設定部502等の制御ゲインを大きくとることが可能となり、これらの応答性の向上を図ることができる。 Further, the motor control device 100 and the motor control method according to the present invention, the voltage phase obtained from the integration side d axis (before the output addition of the current proportional control unit 410b), the q axis voltage command values Vd ″, Vq ″. The carrier setting information Sc is generated based on θv or the voltage phase θv that does not include the component of the current proportional control branched before the correction unit 70 (where proportional control is performed). As a result, the carrier setting information Sc and the triangular wave are not affected by the short-term vibration component, stable drive signals Su, Sv, Sw can be generated, and the output voltage, current, and torque can be stabilized. Further, by using the voltage phase θv that does not include the proportional control component, it is possible to obtain a large control gain for the sine wave mode synchronization control unit 420, the rectangular wave mode synchronization control unit 520, the voltage phase setting unit 502, etc. The responsiveness of can be improved.
 尚、本例で示したモータ制御装置100及びモータ制御方法は一例であり、制御信号生成部30、正弦波制御部40、矩形波制御部50等の各部の構成、動作、各ステップの構成等は本発明の要旨を逸脱しない範囲で変更して実施することが可能である。たとえば、三角波については搬送波と置き換えが可能である。 It should be noted that the motor control device 100 and the motor control method shown in this example are merely examples, and the configuration, operation, configuration of each step, and the like of each unit such as the control signal generation unit 30, the sine wave control unit 40, and the rectangular wave control unit 50. Can be changed and implemented without departing from the scope of the present invention. For example, a triangular wave can be replaced with a carrier wave.
 ところで、線形補正部38で用いる補正値は、変調率や電圧指令値|Va|とインバータ出力電圧の基本波成分との非線形性の関係を予め実験などにより求めて、この非線形性を補正するように補正値のテーブルデータを作成し、このテーブルデータを読み出して設定しても良い。
なお、本例では電圧指令値|Va|を引数とした補正値(倍率)のテーブルデータが予め設定されており、線形補正部38は入力した電圧指令値|Va|に応じた補正値(倍率)を読み出しd軸電圧指令値Vd、q軸電圧指令値Vqに掛けることで線形補正を行う構成としている。
By the way, the correction value used by the linear correction unit 38 is obtained by previously obtaining the nonlinear relationship between the modulation factor or the voltage command value | Va | and the fundamental wave component of the inverter output voltage by an experiment or the like to correct this nonlinearity. It is also possible to create table data of the correction values and read the table data for setting.
In this example, table data of the correction value (magnification) using the voltage command value | Va | as an argument is preset, and the linear correction unit 38 corrects the correction value (magnification) according to the input voltage command value | Va | ) Is read out and multiplied by the d-axis voltage command value Vd and the q-axis voltage command value Vq to perform linear correction.
 なお、線形補正の適用箇所としては、“駆動信号生成部36の比較動作よりも前の電圧指令値の大きさ”に線形補正を適用すると良い。例えば、dq/3相変換部32の前段のd軸、q軸電圧指令値Vd、Vqに線形補正を行うようにしても良い。また、dq/3相変換部32の出力する三相電圧指令値Vu、Vv、Vwに線形補正を行うようにしても良い。 Note that as a place to which the linear correction is applied, it is preferable to apply the linear correction to “the magnitude of the voltage command value before the comparison operation of the drive signal generation unit 36”. For example, the d-axis and q-axis voltage command values Vd and Vq in the preceding stage of the dq / 3-phase conversion unit 32 may be linearly corrected. Further, the three-phase voltage command values Vu, Vv, and Vw output from the dq / 3-phase converter 32 may be linearly corrected.
 また、dq/3相変換部32の前段のd軸、q軸電圧指令値Vd、Vqと下式(2)から|Va|を求めてこの|Va|に線形補正を行い、式(3)(4)(5)から改めてVdとVqを構成してdq/3相変換部32に受け渡すようにしても良い。 Further, | Va | is calculated from the d-axis and q-axis voltage command values Vd and Vq in the preceding stage of the dq / 3-phase conversion unit 32 and the following equation (2), and this | Va | is linearly corrected to obtain the equation (3). (4) From (5), Vd and Vq may be reconfigured and transferred to the dq / 3-phase conversion unit 32.
 また、電圧指令値生成部516に入力する(または入力した)|Va|を用いて線形補正の補正値を取得し、さらにこの|Va|に線形補正を行いVd、Vqを生成し、さらに補正電圧生成部76から出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqにも線形補正を行い、これを電圧指令値補正部78で合算た後にdq/3相変換部32に受け渡すようにしても良い。 Further, the correction value of the linear correction is acquired by using | Va | that is input (or input) to the voltage command value generation unit 516, and this | Va | is linearly corrected to generate Vd and Vq, and further correction is performed. A linear correction is also performed on the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq output from the voltage generation unit 76, and the voltage command value correction unit 78 adds the linear corrections and then transfers them to the dq / 3-phase conversion unit 32. Is also good.
 また、駆動信号生成部36の三角波の振幅の変化に比例するように三相電圧指令値Vu、Vv、Vwを対応させる換算係数に線形補正の補正値を乗算し、この乗算後の換算係数とdq/3相変換部32が出力した三相電圧指令値Vu、Vv、Vwを乗算して、比較動作に使用する調整後の三相電圧指令値Vu、Vv、Vwが線形補正されるようにしても良い。
式(2):|Va|=(Vd^2 + Vq^2)1/2
式(3):θv = tan-1(-Vd/Vq)
式(4):Vd = |Va|・sinθv (ただしVdの符号は、元のVdの符号と同じ)
式(5):Vq = |Va|・cosθv (ただしVqの符号は、元のVqの符号と同じ)
In addition, the conversion coefficient corresponding to the three-phase voltage command values Vu, Vv, and Vw is multiplied by the correction value of the linear correction so as to be proportional to the change in the amplitude of the triangular wave of the drive signal generation unit 36, and the conversion coefficient after the multiplication is obtained. The three-phase voltage command values Vu, Vv, Vw output by the dq / 3-phase conversion unit 32 are multiplied so that the adjusted three-phase voltage command values Vu, Vv, Vw used for the comparison operation are linearly corrected. May be.
Formula (2): | Va | = (Vd ^ 2 + Vq ^ 2) 1/2
Formula (3): θv = tan −1 (−Vd / Vq)
Formula (4): Vd = | Va | · sin θv (however, the sign of Vd is the same as the original sign of Vd)
Formula (5): Vq = | Va | · cos θv (however, the sign of Vq is the same as the sign of the original Vq)
 また、矩形波制御部50を用いる場合の線形補正の補正値を求める際に用いる電圧指令値|Va|は、以下のように設定しても良い。
例えば、矩形波制御部50が線形補正部38に出力する電圧指令値|Va|は、d軸電流とq軸電流が成すベクトルの電流位相θiが、電流の大きさに基づいて予め設定した電流位相θi(base)に対して、q軸側にずれている場合に電圧指令値|Va|を小さくし、また、d軸側にずれている場合に電圧指令値|Va|を大きくするように電圧指令値|Va|を大きさを積分制御や比例制御などにより制御して、d軸電流やq軸電流に基づいて目標電流位相θi(base)と同等な電流位相θiをとるように制御された電圧指令値|Va|でも良い。この電圧指令値|Va|を用いて線形補正を行う場合には、補正電圧生成部76から出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqの振動成分に比べて、d軸q軸電流の変動による電圧指令値|Va|への影響が十分小さくなるように電圧指令値|Va|を増減する制御部の積分制御や比例制御などの制御ゲインを選定することで、補正部70を利用しつつ、d軸q軸電流の変動による影響を十分小さくた電圧指令値|Va|に基づいて安定した線形補正を行うことができる。
Further, the voltage command value | Va | used when obtaining the correction value of the linear correction when the rectangular wave control unit 50 is used may be set as follows.
For example, the voltage command value | Va | output from the rectangular wave control unit 50 to the linear correction unit 38 is the current phase θi of the vector formed by the d-axis current and the q-axis current, which is preset based on the magnitude of the current. With respect to the phase θi (base), the voltage command value | Va | is decreased when it is deviated to the q-axis side, and is increased when it is deviated to the d-axis side. The voltage command value | Va | is controlled by controlling the magnitude by integral control, proportional control, or the like, and is controlled so as to have a current phase θi equivalent to the target current phase θi (base) based on the d-axis current or the q-axis current. The voltage command value | Va | When performing linear correction using this voltage command value | Va |, compared with the vibration components of the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq output from the correction voltage generation unit 76, the d-axis q-axis current The correction unit 70 is used by selecting a control gain such as integral control or proportional control of the control unit that increases or decreases the voltage command value | Va | so that the influence on the voltage command value | Va | At the same time, stable linear correction can be performed on the basis of the voltage command value | Va |, which has a sufficiently small effect due to fluctuations in the d-axis and q-axis currents.
 また、モード移行部80は移行電圧指令値|Va’|を初期値(=|Va|)から矩形波形成電圧値|Va1|まで例えば予め設定された所定の時定数に基づいて連続的に増大させ矩形波モード同期制御部520に出力して同期制御部520が取得した|Va’|を電圧指令値|Va|として、線形補正部38に出力して線形補正に使用するようにしても良く、
また、モード移行部80は移行電圧指令値|Va’|を初期値(=|Va|)から正弦波モード移行電圧値|Va2|まで例えば予め設定された所定の時定数に基づいて連続的に減少させ矩形波モード同期制御部520に出力して同期制御部520が取得した|Va’|を電圧指令値|Va|として、線形補正部38に出力して線形補正に使用するようにしても良い。
Further, the mode transition unit 80 continuously increases the transition voltage command value | Va ′ | from the initial value (= | Va |) to the rectangular wave forming voltage value | Va1 |, for example, based on a predetermined time constant set in advance. Then, | Va ′ | output to the rectangular wave mode synchronization control unit 520 and acquired by the synchronization control unit 520 may be output to the linear correction unit 38 as a voltage command value | Va | and used for linear correction. ,
Further, the mode transition unit 80 continuously changes the transition voltage command value | Va ′ | from the initial value (= | Va |) to the sine wave mode transition voltage value | Va2 |, for example, based on a predetermined time constant set in advance. Even if it is reduced and output to the rectangular wave mode synchronization control unit 520 and | Va ′ | acquired by the synchronization control unit 520 as a voltage command value | Va | is output to the linear correction unit 38 and used for linear correction. good.
 また、移行期間において駆動信号Su、Sv、Swは電圧位相θvによるトルク制御が行われながら正弦波パターンもしくは過変調パターンから矩形波パターンへと連続的に変化するとき、または、移行期間において駆動信号Su、Sv、Swは電圧位相θvによるトルク制御が行われながら矩形波パターンから過変調パターンもしくは正弦波パターンへと連続的に変化するときには、駆動信号Su、Sv、Swが正弦波パターンや過変調パターン、矩形波パターンとなる電圧指令値|Va|に基づいて線形補正がおこなわれる。 Further, when the drive signals Su, Sv, and Sw continuously change from a sine wave pattern or an overmodulation pattern to a rectangular wave pattern while torque control by the voltage phase θv is performed during the transition period, or during the transition period, the drive signal Su Su, Sv, and Sw are such that when the rectangular wave pattern is continuously changed to the overmodulation pattern or the sine wave pattern while the torque control by the voltage phase θv is performed, the drive signals Su, Sv, and Sw are sine wave pattern and the overmodulation pattern. Linear correction is performed based on the voltage command value | Va | that becomes a pattern or a rectangular wave pattern.
 また、モード移行部80が出力する移行電圧指令値|Va’|は、所定の時定数に基づいて連続的に増大もしくは減少される動作を行うので、補正電圧生成部76から出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqのような振動成分が含まれておらず、安定して線形補正を行うことができる。 Further, since the transition voltage command value | Va ′ | output by the mode transition unit 80 is continuously increased or decreased based on a predetermined time constant, the d-axis correction output from the correction voltage generation unit 76 is performed. Since a vibration component such as the voltage ΔVd and the q-axis correction voltage ΔVq is not included, stable linear correction can be performed.
 ここで、正弦波制御部の比例制御と積分制御について補足する。
電流積分制御部410aと電流比例制御部410bの違いは、まず、電流比例制御部410bの動作は、電流指令値(IdとIq)とフィードバック電流Id,Iqとの差分であるΔIdとΔIqに対して、電流比例制御部410bに予め設定される比例ゲインを乗算し、電流比例制御部410bの出力値が生成される。このように周知の比例制御である電流比例制御部410bは、ΔIdとΔIqの変化を比例ゲイン倍した出力が得られる。そのため、電流指令値に対してフィードバック電流が変化するとΔId、ΔIqが変化するので、このΔIdとΔIqの変化に応じて出力が変化することがわかる。
Here, the proportional control and the integral control of the sine wave control unit will be supplemented.
The difference between the current integral control unit 410a and the current proportional control unit 410b is that the operation of the current proportional control unit 410b is the difference between the current command values (Id * and Iq * ) and the feedback currents Id and Iq ΔId and ΔIq. , The current proportional control unit 410b is multiplied by a preset proportional gain, and the output value of the current proportional control unit 410b is generated. As described above, the current proportional control unit 410b, which is a well-known proportional control, can obtain an output obtained by multiplying a change in ΔId and ΔIq by a proportional gain. Therefore, when the feedback current changes with respect to the current command value, ΔId and ΔIq change, and it can be seen that the output changes according to the changes in ΔId and ΔIq.
 また、本願0018段落に記載したように、「電気角θと駆動電流Iu、Iv、(Iw)の取得は、三角波の頂点と谷の両方のタイミングで行い、三角波の半周期毎にモータ制御装置100の各部にて使用する」と記載したように、三角波の半周期毎に取得した駆動電流Iu、Ivと電気角θに基づいて、3相/dq変換部22にてd軸フィードバック電流値Id、q軸フィードバック電流値Iqが変換され、さらにこれを用いてΔId、ΔIqが更新されて、三角波の半周期毎に電流比例制御部410bが電流比例制御の演算を行う。このように、毎制御周期の度にフィードバック電流の変化に基づいて一連の電流比例制御が行われて、電流比例制御部410bの出力が変化する。 In addition, as described in paragraph 0018 of the present application, “the electric angle θ and the drive currents Iu, Iv, and (Iw) are acquired at the timings of both the peaks and the valleys of the triangular wave, and the motor control device is provided for each half cycle of the triangular wave. It is used in each part of 100 ”, based on the drive currents Iu and Iv and the electrical angle θ acquired for each half cycle of the triangular wave, the three-phase / dq conversion part 22 d-axis feedback current value Id. , Q-axis feedback current value Iq is converted, and ΔId and ΔIq are updated using this, and the current proportional control unit 410b calculates the current proportional control every half cycle of the triangular wave. In this way, a series of current proportional control is performed based on the change of the feedback current at every control cycle, and the output of the current proportional control unit 410b changes.
 ところで、交流電動機の制御装置では、駆動電流Iu、Iv、Iwに高次成分が重畳したり、駆動電流Iu、Iv、Iwがオフセットしたりする場合がある。三相の電流情報に基本波である正弦波に対するオフセットや高次成分が重畳していると、3相/dq変換にて駆動電流Iu、Ivを変換して生成するd軸フィードバック電流値Id、q軸フィードバック電流値Iqには、三相電流に重畳した成分の1次高い成分が重畳する。例えば、三相電流にオフセットが有る場合にはd軸フィードバック電流値Id、q軸フィードバック電流値Iqには1次の成分が重畳する。 By the way, in the control device for the AC motor, higher-order components may be superimposed on the drive currents Iu, Iv, Iw, or the drive currents Iu, Iv, Iw may be offset. If an offset or a higher-order component with respect to the sine wave as the fundamental wave is superimposed on the three-phase current information, the d-axis feedback current value Id generated by converting the drive currents Iu and Iv by the three-phase / dq conversion, The q-axis feedback current value Iq has a first-order higher component superposed on the three-phase current. For example, when there is an offset in the three-phase current, a first-order component is superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq.
 このような三相電流に重畳したオフセットや高次成分により、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに振動成分が重畳する。次に、減算部412においてd軸、q軸電流指令値Id、Iqから、振動成分が重畳したd軸フィードバック電流値Id、q軸フィードバック電流値Iqが減算されてΔId、ΔIqが生成されるので、振動成分が重畳しているΔId、ΔIqが生成される。 Due to the offset and higher-order components superimposed on the three-phase current, the vibration component is superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq. Next, the subtraction unit 412 subtracts the d-axis feedback current value Id and the q-axis feedback current value Iq on which the vibration component is superimposed from the d-axis and q-axis current command values Id * and Iq * to generate ΔId and ΔIq. Therefore, ΔId and ΔIq in which the vibration component is superimposed are generated.
 このように、振動成分が重畳しているΔId、ΔIqが電流比例制御部410bに入力すると、電流比例制御部410bでは、振動成分が重畳しているΔId、ΔIqに比例ゲインを乗算し電流比例制御部410bによるd軸電圧指令値、q軸電圧指令値として出力される。このように電流比例制御部410bでは、ΔId、ΔIqに比例ゲインを乗算するので、ΔId、ΔIqに振動成分が重畳していると、振動成分にも比例ゲインが乗算され、振動成分が重畳したd軸電圧指令値、q軸電圧指令値が電流比例制御部410bから出力される。
以上のように、比例制御では毎制御サイクルの度にΔId、ΔIqに重畳する振動成分をd軸電圧指令値、q軸電圧指令値に出力する。
In this way, when ΔId and ΔIq on which the vibration component is superimposed are input to the current proportional control unit 410b, the current proportional control unit 410b multiplies ΔId and ΔIq on which the vibration component is superimposed by a proportional gain to control the current proportional control. It is output as a d-axis voltage command value and a q-axis voltage command value by the unit 410b. In this way, in the current proportional control unit 410b, since ΔId and ΔIq are multiplied by the proportional gain, when ΔId and ΔIq are superposed with the vibration component, the vibration component is also multiplied by the proportional gain and the vibration component is superposed. The axial voltage command value and the q-axis voltage command value are output from the current proportional controller 410b.
As described above, in the proportional control, the vibration component superimposed on ΔId and ΔIq is output to the d-axis voltage command value and the q-axis voltage command value for each control cycle.
 一方、電流積分制御部410aの動作は、電流指令値(IdとIq)とフィードバック電流Id,Iqとの差分であるΔIdとΔIqに対して、電流積分制御部410aに予め設定される積分ゲインを乗算し、電流積分制御部410aの積分値に加算し、この積分値を出力値として出力する。このように周知の電流積分制御は、ΔIdとΔIqの変化を積分ゲイン倍した値をそのまま出力せずに、積分値に加算し、積分値を出力する。そのため、電流指令値に対してフィードバック電流が変化してΔId、ΔIqが変化すると、このΔIdとΔIqの変化に応じて積分値に加算する値が変化するが、元の積分値に対する加算値の割合に応じて出力となる積分値の変化の割合が決まるので、1制御周期毎の出力値の変化の割合は、前述のΔIdとΔIqの変化の割合と同じ割合で出力値が変化する比例制御に比べて、積分制御はΔIdとΔIqの変化の割合に比べて出力値の変化の割合が小さい。 On the other hand, the operation of the current integration control unit 410a is based on the integration set in advance in the current integration control unit 410a with respect to ΔId and ΔIq which are the differences between the current command values (Id * and Iq * ) and the feedback currents Id and Iq. The gain is multiplied and added to the integral value of the current integral controller 410a, and this integral value is output as an output value. As described above, in the well-known current integration control, the value obtained by multiplying the change in ΔId and ΔIq by the integral gain is not output as it is, but is added to the integrated value and the integrated value is output. Therefore, when the feedback current changes with respect to the current command value and ΔId and ΔIq change, the value added to the integrated value changes according to the changes in ΔId and ΔIq, but the ratio of the added value to the original integrated value Since the rate of change in the integrated value that becomes the output is determined according to, the rate of change in the output value for each control cycle is proportional to that in which the output value changes at the same rate as the rate of change in ΔId and ΔIq described above. In comparison, in integral control, the rate of change in output value is smaller than the rate of change in ΔId and ΔIq.
 このように、積分制御と比例制御を比べると、振動成分を含む入力値の変化による各制御の出力値の変化は、比例制御が入力値の変化の割合に比例して出力値が変化することに対して、積分制御は入力値の変化の割合よりも出力値の変化の割合は小さい。 In this way, comparing integral control and proportional control, the change in the output value of each control due to the change in the input value including the vibration component is that proportional output changes the output value in proportion to the rate of change of the input value. On the other hand, in the integral control, the rate of change in the output value is smaller than the rate of change in the input value.
 次に正弦波制御部の比例制御と積分制御による正弦波制御部の線形補正とキャリア設定情報Scへの影響について補足する。
本例では、極座標変換部418においてd軸電圧指令値とq軸電圧指令値に基づいて極座標変換が施され電圧位相θvと、電圧指令値|Va|とが取得される。そして、極座標変換部418はこの電圧位相θvを正弦波モード同期制御部420に出力する。また、電圧指令値|Va|を線形補正部38に出力する。
Next, the linear correction of the sine wave control unit by the proportional control and the integral control of the sine wave control unit and the influence on the carrier setting information Sc will be supplemented.
In this example, polar coordinate conversion is performed in the polar coordinate conversion unit 418 based on the d-axis voltage command value and the q-axis voltage command value, and the voltage phase θv and the voltage command value | Va | are acquired. Then, the polar coordinate conversion unit 418 outputs this voltage phase θv to the sine wave mode synchronization control unit 420. Also, the voltage command value | Va | is output to the linear correction unit 38.
 このため、線形補正の補正値の生成を比例制御の出力を含むd軸電圧指令値、q軸電圧指令値に基づいて行うと、線形補正の補正値も振動的になり、線形補正を適用した電圧指令値(d軸電圧指令値、q軸電圧指令値や三相電圧指令値)および、駆動信号Su、Sv、Swが振動的になり、その結果、駆動電流Iu、Iv、Iwおよびモータが出力するトルクが不安定となる虞がある。 Therefore, when the correction value for the linear correction is generated based on the d-axis voltage command value and the q-axis voltage command value including the output of the proportional control, the correction value for the linear correction also becomes oscillatory, and the linear correction is applied. The voltage command values (d-axis voltage command value, q-axis voltage command value and three-phase voltage command value) and the drive signals Su, Sv, Sw become oscillatory, and as a result, the drive currents Iu, Iv, Iw and the motor are The output torque may become unstable.
 また、このような不安定な状態を低減するためには、電流比例制御のゲインを低く設定する必要があり、電流比例制御の応答が低くなる虞がある。
このため、線形補正の補正値を求めるために使用する電圧値としては、振動成分の割合が小さい積分制御の出力値は使用し、振動成分の割合が大きい比例制御の出力値を含まないようにすることで、線形補正の補正値が安定する。
Further, in order to reduce such an unstable state, it is necessary to set the gain of the current proportional control to a low value, which may result in a low response of the current proportional control.
Therefore, as the voltage value used to obtain the correction value of the linear correction, use the output value of the integral control with a small proportion of the vibration component, and do not include the output value of the proportional control with a large proportion of the vibration component. By doing so, the correction value of the linear correction becomes stable.
 また、同様にキャリア設定情報Scを生成する際に使用する電圧位相θvの生成についても、比例制御の出力を含むd軸電圧指令値、q軸電圧指令値に基づいて行うと、キャリア設定情報Scが振動的になり、キャリア設定情報Scに基づいて生成される三角波の周期が振動的になり、三角波を使用して生成する駆動信号Su、Sv、Swが振動的になり、その結果、駆動電流Iu、Iv、Iwおよびモータが出力するトルクが不安定となる虞がある。
このため、キャリア設定情報Scを求めるために使用する電圧値としては、振動成分の割合が小さい積分制御の出力値は使用し、振動成分の割合が大きい比例制御の出力値を含まないようにすることで、キャリア設定情報Scが安定する。
Similarly, when the voltage phase θv used when generating the carrier setting information Sc is also generated based on the d-axis voltage command value and the q-axis voltage command value including the output of the proportional control, the carrier setting information Sc Becomes oscillating, the cycle of the triangular wave generated based on the carrier setting information Sc becomes oscillating, and the drive signals Su, Sv, Sw generated using the triangular wave become oscillating, resulting in the drive current. Iu, Iv, Iw and the torque output from the motor may become unstable.
Therefore, as the voltage value used to obtain the carrier setting information Sc, the output value of the integral control with a small proportion of the vibration component is used, and the output value of the proportional control with a large proportion of the vibration component is not included. As a result, the carrier setting information Sc becomes stable.
 また、正弦波制御部の使用時に非干渉制御を使用する場合には、非干渉制御部414の出力値も積分制御の出力値に加算して用いる。その際、非干渉制御部414で使用するd軸電流値とq軸電流値は、フィードバック値ではなく、d軸電流指令値およびq軸電流指令値とすることで、フィードバック電流に含まれる振動成分の影響を受けずに非干渉制御の出力値であるd軸、q軸電圧指令値Vd’、Vq’が得られるので、この出力値を使用する極座標変換部418の出力である電圧位相θvと電圧指令値|Va|が安定し、この電圧位相θvと電圧指令値|Va|を使用する、線形補正部38の補正値や同期制御部420の出力であるキャリア設定情報Scがより安定する。 When the non-interference control is used when the sine wave control unit is used, the output value of the non-interference control unit 414 is also added to the output value of the integral control and used. At that time, the d-axis current value and the q-axis current value used in the non-interference control unit 414 are not the feedback value but the d-axis current command value and the q-axis current command value, so that the vibration component included in the feedback current Since the d-axis and q-axis voltage command values Vd ′ and Vq ′, which are the output values of the non-interference control, can be obtained without being affected by, the voltage phase θv that is the output of the polar coordinate conversion unit 418 using this output value The voltage command value | Va | becomes stable, and the correction value of the linear correction unit 38 and the carrier setting information Sc that is the output of the synchronization control unit 420 using this voltage phase θv and the voltage command value | Va | become more stable.
 次に、矩形波制御時の補正部70の変動成分を補足する。
矩形波制御部50では切替部24に入力するd軸電圧指令値Vd、q軸電圧指令値Vqは、電圧指令値補正部78において、補正電圧生成部76から入力したd軸補正電圧ΔVd、q軸補正電圧ΔVqを電圧指令値生成部516から出力したd軸電圧指令値Vd、q軸電圧指令値Vqにそれぞれ加算して設定している。
Next, the variation component of the correction unit 70 during rectangular wave control will be supplemented.
In the rectangular wave control unit 50, the d-axis voltage command value Vd and the q-axis voltage command value Vq input to the switching unit 24 are the d-axis correction voltage ΔVd, q input from the correction voltage generation unit 76 in the voltage command value correction unit 78. The axis correction voltage ΔVq is set by adding it to the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the voltage command value generation unit 516.
 補正電圧生成部76が出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqは、本願0038段落~0040段落のように、駆動電流Iu、Iv、Iwに生じるオフセットや振幅アンバランス成分などによるd軸フィードバック電流値Id、q軸フィードバック電流値Iqに重畳する変動成分の逆相の変動成分を含む電圧である。
詳しくは、駆動電流Iu、Iv、Iwに生じるオフセットや振幅アンバランス成分などによる変動成分が重畳したd軸フィードバック電流値Id、q軸フィードバック電流値Iqを、オフセットや振幅アンバランスの成分(変動成分)が平滑化した推定d軸、q軸電流指令値Id、Iqからそれぞれ減算して、d軸補正電流ΔId、q軸補正電流ΔIqを生成し、このd軸補正電流ΔId、q軸補正電流ΔIqに所定の補正ゲイン(Kd、Kq)を乗算する比例制御によりd軸補正電圧ΔVd、q軸補正電圧ΔVqを生成している。
このように補正電圧生成部76が出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqが加算された切替部24に入力するd軸電圧指令値Vd、q軸電圧指令値Vqは、変動成分を含むものである。
The d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq output by the correction voltage generator 76 are the d-axis due to the offset and amplitude imbalance components generated in the drive currents Iu, Iv, and Iw as in paragraphs 0038 to 0040 of the present application. The feedback current value Id and the q-axis feedback current value Iq are voltages including a fluctuation component having a reverse phase of the fluctuation component superimposed on the feedback current value Iq.
Specifically, the d-axis feedback current value Id and the q-axis feedback current value Iq on which the fluctuation components due to the offset and the amplitude imbalance components generated in the drive currents Iu, Iv, and Iw are superimposed are used as the offset and amplitude imbalance components (variation components). ) Is subtracted from the estimated d-axis and q-axis current command values Id * , Iq * , respectively, to generate a d-axis correction current ΔId, a q-axis correction current ΔIq, and the d-axis correction current ΔId, q-axis correction The d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq are generated by proportional control in which the current ΔIq is multiplied by a predetermined correction gain (Kd, Kq).
In this way, the d-axis voltage command value Vd and the q-axis voltage command value Vq, which are input to the switching unit 24 to which the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq output from the correction voltage generation unit 76 are added, have a variation component. It includes.
 次に、矩形波制御時の本例の電圧指令値|Va|の生成について補足する。
一方、矩形波制御部50においてキャリア設定情報Scと線形補正部へ出力する電圧指令値|Va|は、矩形波モード同期制御部520が出力する。この電圧指令値|Va|は、矩形波制御部50の動作状態に応じた所定の大きさの電圧指令値|Va|が設定され、矩形波モード同期制御部520が出力する。
Next, a supplementary description will be given of generation of the voltage command value | Va | of this example during rectangular wave control.
On the other hand, the rectangular wave mode synchronization control unit 520 outputs the carrier setting information Sc and the voltage command value | Va | output to the linear correction unit in the rectangular wave control unit 50. The voltage command value | Va | is set to a voltage command value | Va | of a predetermined magnitude according to the operating state of the rectangular wave control unit 50, and the rectangular wave mode synchronization control unit 520 outputs it.
 例えば、駆動信号Su、Sv、Swを矩形波パターンとする際には、電圧指令値|Va|を本願0033段落に記載した矩形波形成電圧値|Va1|とすることで、駆動信号生成部36において三角波と三相電圧指令値Vu、Vv、Vwとが、三相電圧指令値Vu、Vv、Vwの1周期の間で2回交差する、即ち、三角波比較により生成される駆動信号Su、Sv、Swが1パルスの矩形波となる大きさの電圧指令値|Va|を矩形波モード同期制御部520が出力する。 For example, when the drive signals Su, Sv, and Sw are formed into a rectangular wave pattern, the voltage command value | Va | is set to the rectangular wave forming voltage value | Va1 | described in the paragraph 0033 of the present application, so that the drive signal generation unit 36 In, the triangular wave and the three-phase voltage command values Vu, Vv, Vw intersect twice in one cycle of the three-phase voltage command values Vu, Vv, Vw, that is, the drive signals Su, Sv generated by the triangular wave comparison. , Sw outputs a voltage command value | Va | having a magnitude that makes a one-pulse rectangular wave, the rectangular wave mode synchronization control unit 520 outputs.
 また例えば、本願0058段落に記載したように、本例におけるモード移行部80が出力する移行電圧指令値|Va’|が矩形波モード同期制御部520に入力し、矩形波モード同期制御部520が移行電圧指令値|Va’|を電圧指令値生成部516と切替部24とに出力するように、矩形波モード同期制御部520の外部から入力される任意の大きさの電圧指令値|Va|に基づいて矩形波モード同期制御部520が電圧指令値|Va|を出力する場合には、矩形波モード同期制御部520の外部から入力される任意の大きさの電圧指令値|Va|に基づいて、駆動信号Su、Sv、Swが正弦波パターンや過変調パターンや矩形波パターンの波形となる電圧指令値|Va|を矩形波モード同期制御部520が電圧指令値生成部516と切替部24とに出力する。 Further, for example, as described in paragraph 0058 of the present application, the transition voltage command value | Va ′ | output by the mode transition unit 80 in this example is input to the rectangular wave mode synchronization control unit 520, and the rectangular wave mode synchronization control unit 520 An arbitrary magnitude voltage command value | Va | input from outside the rectangular wave mode synchronization control unit 520 so that the transition voltage command value | Va ′ | is output to the voltage command value generation unit 516 and the switching unit 24. When the rectangular wave mode synchronization control unit 520 outputs the voltage command value | Va | based on the above, the voltage command value | Va | of an arbitrary size input from the outside of the rectangular wave mode synchronization control unit 520 is used. Then, the rectangular wave mode synchronization control unit 520 causes the voltage command value generation unit 516 and the switching unit 24 to generate the voltage command value | Va | where the drive signals Su, Sv, and Sw have the waveforms of the sine wave pattern, the overmodulation pattern, and the rectangular wave pattern. And output to.
 このように、矩形波モード同期制御部520は、矩形波形成電圧値|Va1|や、矩形波モード同期制御部520の外部から入力される任意の大きさの電圧指令値|Va|(|Va’|)に基づいて、電圧指令値生成部516と切替部24とに電圧指令値|Va|を出力するので、切替部24から線形補正部38に出力される電圧指令値|Va|は、d軸フィードバック電流値Idおよびq軸フィードバック電流値Iqの影響を受けずに設定される為、補正電圧生成部76が出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqが加算された切替部24に入力するd軸電圧指令値Vd、q軸電圧指令値Vqに含まれるような変動成分が重畳されていない。 In this way, the rectangular wave mode synchronization control unit 520 uses the rectangular wave formation voltage value | Va1 | and the voltage command value | Va | (| Va | of the arbitrary magnitude input from the outside of the rectangular wave mode synchronization control unit 520. Since the voltage command value | Va | is output to the voltage command value generation unit 516 and the switching unit 24 based on '|), the voltage command value | Va | output from the switching unit 24 to the linear correction unit 38 is Since it is set without being affected by the d-axis feedback current value Id and the q-axis feedback current value Iq, the switching unit 24 in which the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq output by the correction voltage generation unit 76 are added Fluctuation components such as those contained in the d-axis voltage command value Vd and the q-axis voltage command value Vq to be input to are not superimposed.
 一方、例えば、切替部24が出力するd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて、極座標変換を行って得られる電圧指令値の大きさを用いて線形補正部38の補正値の生成を行うような制御構成を検討してみると、切替部24が出力するd軸電圧指令値Vd、q軸電圧指令値Vqには、補正電圧生成部76が出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqが加算されているので、d軸補正電圧ΔVd、q軸補正電圧ΔVqに含まれる変動成分の影響を受けて線形補正部38の補正値が変動し、線形補正を適用した三相電圧指令値Vu、Vv、Vw、駆動信号Su、Sv、Swも線形補正部38の補正値の変動に応じて変動し出力電圧、電流、トルクの変動要因となる虞がある。 On the other hand, for example, based on the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the switching unit 24, the correction value of the linear correction unit 38 is calculated using the magnitude of the voltage command value obtained by performing polar coordinate conversion. Considering a control configuration that generates the d-axis correction voltage ΔVd output from the correction voltage generation unit 76, the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the switching unit 24 are examined. , Q-axis correction voltage ΔVq is added, the correction value of the linear correction unit 38 changes due to the influence of the fluctuation component contained in the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq, and the linear correction is applied. The three-phase voltage command values Vu, Vv, Vw and the drive signals Su, Sv, Sw may also fluctuate according to fluctuations in the correction value of the linear correction unit 38, and may become a factor of fluctuations in output voltage, current, and torque.
 しかしながら、本例では矩形波モード同期制御部520が出力する電圧指令値|Va|に基づいて、線形補正部38の補正値の生成を行うので、補正電圧生成部76が出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqが加算された切替部24が出力するd軸電圧指令値Vd、q軸電圧指令値Vqに含まれるような変動成分が重畳されていないので、補正値が安定し、安定した三相電圧指令値Vu、Vv、Vw、駆動信号Su、Sv、Swを生成でき、出力電圧、電流、トルクの安定化を図ることができる。 However, in this example, since the correction value of the linear correction unit 38 is generated based on the voltage command value | Va | output by the rectangular wave mode synchronization control unit 520, the d-axis correction voltage output by the correction voltage generation unit 76 is generated. Since the fluctuation components included in the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the switching unit 24 to which ΔVd and the q-axis correction voltage ΔVq are added are not superimposed, the correction value is stable, The stable three-phase voltage command values Vu, Vv, Vw and the drive signals Su, Sv, Sw can be generated, and the output voltage, current, and torque can be stabilized.
 また、補正電圧生成部76が出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqの変動成分を含む電圧指令値に基づいて線形補正部38の補正値を生成すると、前述のようにd軸補正電圧ΔVd、q軸補正電圧ΔVqに含まれる変動成分の影響を受けて補正値が変動し、線形補正を適用した三相電圧指令値Vu、Vv、Vw、駆動信号Su、Sv、Swも変動し出力電圧、電流、トルクの変動要因となるため、例えば、補正電圧生成部76のゲインを大きくすると、さらに出力電圧、電流、トルクの変動が大きくなってしまうため、補正電圧生成部76のゲインを大きくすることで補正電圧生成部76の応答性を向上させることが困難となる。 Further, when the correction value of the linear correction unit 38 is generated based on the voltage command value including the fluctuation components of the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq output from the correction voltage generation unit 76, the d-axis correction is performed as described above. The correction value fluctuates under the influence of the fluctuation component contained in the voltage ΔVd and the q-axis correction voltage ΔVq, and the three-phase voltage command values Vu, Vv, Vw to which the linear correction is applied, and the drive signals Su, Sv, Sw also fluctuate. Since it causes fluctuations in the output voltage, current, and torque, for example, if the gain of the correction voltage generation unit 76 is increased, the fluctuations of the output voltage, current, and torque further increase. Increasing the size makes it difficult to improve the responsiveness of the correction voltage generation unit 76.
 しかしながら、本例では補正電圧生成部76が出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqの影響を受けない電圧指令値に基づいて線形補正部38の補正値の設定をすることで、補正電圧生成部76のゲインを大きくとることが可能となり、補正電圧生成部76の応答性の向上を図ることができる。 However, in the present example, the correction value of the linear correction unit 38 is set based on the voltage command value that is not affected by the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq output from the correction voltage generation unit 76, and thus the correction is performed. The gain of the voltage generation unit 76 can be increased, and the responsiveness of the correction voltage generation unit 76 can be improved.
 次に、矩形波制御時の本例のキャリア設定情報Scの生成に用いる電圧位相θvについて補足する。
また、矩形波モード同期制御部520は電圧位相θvと電気角速度ωと電気角θとから三角波を設定するためのキャリア設定情報Scを生成する。ここで、本例では電圧位相設定部502で生成された電圧位相θvを用いてキャリア設定情報Scを求めている。
電圧位相設定部502では、トルク計算部504にて算出された現在のトルクTとトルク指令値Tに基づいて電圧位相θvを積分制御、比例制御などにより生成する。
Next, the voltage phase θv used to generate the carrier setting information Sc of this example during rectangular wave control will be supplemented.
The rectangular wave mode synchronization control unit 520 also generates carrier setting information Sc for setting a triangular wave from the voltage phase θv, the electrical angular velocity ω, and the electrical angle θ. Here, in this example, the carrier setting information Sc is obtained using the voltage phase θv generated by the voltage phase setting unit 502.
The voltage phase setting unit 502 generates the voltage phase θv by integral control, proportional control, or the like based on the current torque T calculated by the torque calculation unit 504 and the torque command value T * .
 トルク計算部504は、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに基づいて現在のトルクTを算出する。
このため、トルク計算部504が算出する現在のトルクTは、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに重畳した変動成分が含まれる値となる。
このため、トルク計算部504が算出する現在のトルクTに基づいて電圧位相設定部502にて生成される電圧位相θvにも変動成分が含まれる虞がある。
The torque calculation unit 504 calculates the current torque T based on the d-axis feedback current value Id and the q-axis feedback current value Iq.
Therefore, the current torque T calculated by the torque calculation unit 504 is a value that includes the fluctuation component superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq.
Therefore, the voltage phase θv generated by the voltage phase setting unit 502 based on the current torque T calculated by the torque calculation unit 504 may include a fluctuation component.
 しかしながら、電圧位相設定部502にて生成される電圧位相θvと、矩形波制御部50が動作する際の切替部24が出力するd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて、極座標変換を行って得られる電圧位相とを比べると、いずれの電圧位相にもd軸フィードバック電流値Id、q軸フィードバック電流値Iqに重畳した変動成分が含まれているものの、電圧位相設定部502にて生成される電圧位相θvの方がd軸フィードバック電流値Id、q軸フィードバック電流値Iqに重畳した変動成分の影響が小さくなる。 However, based on the voltage phase θv generated by the voltage phase setting unit 502 and the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the switching unit 24 when the rectangular wave control unit 50 operates, Comparing with the voltage phase obtained by performing the polar coordinate conversion, although the voltage phase setting unit 502 has a fluctuation component superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq, both voltage phases are included. The voltage phase θv generated in 1 is less affected by the fluctuation component superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq.
 この理由はまず、切替部24が出力するd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて、極座標変換を行って得られる電圧位相では、補正電圧生成部76が出力するd軸補正電圧ΔVd、q軸補正電圧ΔVqの変動成分を含むが、このd軸補正電圧ΔVd、q軸補正電圧ΔVqは、前述のように、駆動電流Iu、Iv、Iwに生じるオフセットや振幅アンバランス成分などによる変動成分が重畳したd軸フィードバック電流値Id、q軸フィードバック電流値Iqを、オフセットや振幅アンバランスの成分(変動成分)が平滑化した推定d軸、q軸電流指令値Id、Iqからそれぞれ減算して、d軸補正電流ΔId、q軸補正電流ΔIqを生成し、このd軸補正電流ΔId、q軸補正電流ΔIqに所定の補正ゲイン(Kd、Kq)を乗算する比例制御によりd軸補正電圧ΔVd、q軸補正電圧ΔVqを生成している。 The reason is that the d-axis correction output by the correction voltage generation unit 76 is first obtained in the voltage phase obtained by performing polar coordinate conversion based on the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the switching unit 24. The fluctuation components of the voltage ΔVd and the q-axis correction voltage ΔVq are included. The d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq are, as described above, offsets and amplitude imbalance components generated in the drive currents Iu, Iv, and Iw. The d-axis feedback current value Id and the q-axis feedback current value Iq on which the fluctuation component due to is superimposed are estimated d-axis and q-axis current command values Id * , Iq * in which the offset (amplitude unbalance) component (fluctuation component) is smoothed . D-axis correction current ΔId and q-axis correction current ΔIq, and the d-axis correction current ΔId and the q-axis correction current ΔIq are multiplied by a predetermined correction gain (Kd, Kq) to obtain d. The axis correction voltage ΔVd and the q-axis correction voltage ΔVq are generated.
 このため、d軸補正電圧ΔVd、q軸補正電圧ΔVqは、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに重畳した変動成分といえるd軸補正電流ΔId、q軸補正電流ΔIqに補正ゲイン(Kd、Kq)を乗じた変動成分であるので、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに重畳した変動成分の変化に比例して変動する。 For this reason, the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq are the fluctuation components superposed on the d-axis feedback current value Id and the q-axis feedback current value Iq. Since it is the variation component multiplied by (Kd, Kq), it varies in proportion to the variation of the variation component superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq.
 つまり、d軸補正電圧ΔVd、q軸補正電圧ΔVqが加算された切替部24が出力するd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて、極座標変換を行って得られる電圧位相は、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに重畳した変動成分の変化に即応して変動する変動成分を含んでいる。 That is, the voltage phase obtained by performing polar coordinate conversion based on the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the switching unit 24 to which the d-axis correction voltage ΔVd and the q-axis correction voltage ΔVq are added is , D-axis feedback current value Id and q-axis feedback current value Iq.
 一方、電圧位相設定部502にて生成される電圧位相θvでは、d軸フィードバック電流値Id、q軸フィードバック電流値Iqに基づいて算出された現在のトルクTに基づいた電圧位相設定部502の比例制御による変動成分が含まれるものの、電圧位相設定部502の出力値である電圧位相θvに対する割合は、電圧位相設定部502の積分制御による積分値の割合を考慮すると、前記比例制御および積分制御の1制御サイクルあたりの変化の割合が低減する。
このため、電圧位相設定部502にて生成される電圧位相θvは、前述の切替部24が出力するd軸電圧指令値Vd、q軸電圧指令値Vqに基づいて、極座標変換を行って得られる電圧位相のようなd軸フィードバック電流値Id、q軸フィードバック電流値Iqに重畳した変動成分の変化に即応した変化はせず、電圧位相設定部502の積分制御の積分値により電圧位相設定部502にて生成される電圧位相θvの1制御サイクルあたりの前記変動成分の影響は抑制される。
On the other hand, the voltage phase θv generated by the voltage phase setting unit 502 is proportional to the voltage phase setting unit 502 based on the current torque T calculated based on the d-axis feedback current value Id and the q-axis feedback current value Iq. Although the fluctuation component due to control is included, the ratio to the voltage phase θv which is the output value of the voltage phase setting unit 502, in consideration of the ratio of the integral value due to the integral control of the voltage phase setting unit 502, The rate of change per control cycle is reduced.
Therefore, the voltage phase θv generated by the voltage phase setting unit 502 is obtained by performing polar coordinate conversion based on the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the switching unit 24 described above. The voltage phase setting unit 502 does not change immediately in response to the change of the fluctuation component superimposed on the d-axis feedback current value Id and the q-axis feedback current value Iq such as the voltage phase, and the voltage phase setting unit 502 uses the integrated value of the integral control of the voltage phase setting unit 502. The influence of the fluctuation component per control cycle of the voltage phase θv generated in 1 is suppressed.
 また、矩形波モード同期制御部520の積分制御や比例制御の制御ゲインの設定は、システムが必要とするトルクの応答性に応じて設定されるものであり、システムが必要とする応答性を満足しつつ、三相電流に重畳したオフセットや高次成分に起因するd軸フィードバック電流値Id、q軸フィードバック電流値Iqに重畳した基本波周波数以上の変動成分に対する応答が抑制されるように前記積分制御や比例制御の制御ゲインを設定することで、さらに電圧位相設定部502にて生成される電圧位相θvに含まれる変動成分を低減することが出来る。 Further, the setting of the control gain of the integral control or proportional control of the rectangular wave mode synchronization control unit 520 is set according to the responsiveness of the torque required by the system, and the responsiveness required by the system is satisfied. However, the integration is performed so that the response to the fluctuation component of the d-axis feedback current value Id or the q-axis feedback current value Iq, which is caused by the offset or the higher-order component superimposed on the three-phase current, is suppressed. By setting the control gain of the control or proportional control, it is possible to further reduce the fluctuation component included in the voltage phase θv generated by the voltage phase setting unit 502.
 また、トルク計算部504において、現在のトルクTを算出する際に使用するd軸フィードバック電流値Id、q軸フィードバック電流値Iqをローパスフィルタなどで平滑処理を行ったうえで現在のトルクTを算出するようにしても良く、この場合においても電圧位相設定部502にて生成される電圧位相θvに含まれる変動成分を低減することが出来る。 Further, in the torque calculation unit 504, the current torque T is calculated after smoothing the d-axis feedback current value Id and the q-axis feedback current value Iq used when calculating the current torque T with a low-pass filter or the like. Alternatively, in this case, the fluctuation component included in the voltage phase θv generated by the voltage phase setting unit 502 can be reduced.
      10  PMモータ
      12u、12v 駆動電流検出部
      14  角度検出部
      20  インバータ
      22  3相/dq変換部
      32  dq/3相変換部
      36  駆動信号生成部
      38  線形補正部
      40  正弦波制御部
      50  矩形波制御部
      100 モータ制御装置
      410 電流制御部
      410a 電流積分制御部
      410b 電流比例制御部
      418 極座標変換部
      420 正弦波モード同期制御部
      502 電圧位相設定部
      520 矩形波モード同期制御部(電圧指令取得部)
      θ   電気角
      θv  電圧位相
      Id  d軸フィードバック電流値
      Iq  q軸フィードバック電流値
      Id d軸電流指令値
      Iq q軸電流指令値
      Iu、Iv、Iw 駆動電流
      |Va| 電圧指令値
      Vd  d軸電圧指令値
      Vq  q軸電圧指令値
      Vd’’ 積分側d軸電圧指令値
      Vq’’ 積分側q軸電圧指令値
      Vu、Vv、Vw 電圧指令値(3相)
      T  トルク指令値
      Sc  キャリア設定情報
      Su、Sv、Sw 駆動信号
10 PM motors 12u, 12v Drive current detection unit 14 Angle detection unit 20 Inverter 22 Three-phase / dq conversion unit 32 dq / 3-phase conversion unit 36 Drive signal generation unit 38 Linear correction unit 40 Sine wave control unit 50 Rectangular wave control unit 100 Motor control device 410 Current control unit 410a Current integration control unit 410b Current proportional control unit 418 Polar coordinate conversion unit 420 Sine wave mode synchronization control unit 502 Voltage phase setting unit 520 Rectangular wave mode synchronization control unit (voltage command acquisition unit)
θ Electrical angle θv Voltage phase Id d-axis feedback current value Iq q-axis feedback current value Id * d-axis current command value Iq * q-axis current command value Iu, Iv, Iw Drive current | Va | Voltage command value Vd d-axis voltage command Value Vq q-axis voltage command value Vd '' Integration-side d-axis voltage command value Vq '' Integration-side q-axis voltage command value Vu, Vv, Vw Voltage command value (3 phases)
T * Torque command value Sc Carrier setting information Su, Sv, Sw Drive signal

Claims (8)

  1. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流検出部と、
    前記PMモータの電気角を取得する角度検出部と、
    前記電気角に基づいて前記駆動電流検出部が取得した前記駆動電流をd軸フィードバック電流値、q軸フィードバック電流値に変換する3相/dq変換部と、
    外部からのトルク指令値に基づいてd軸電流指令値、q軸電流指令値を設定し、これらd軸電流指令値、q軸電流指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいてd軸電圧指令値、q軸電圧指令値を生成する正弦波制御部と、
    前記d軸電圧指令値、q軸電圧指令値を線形補正する線形補正部と、
    線形補正された前記d軸電圧指令値、q軸電圧指令値を三相電圧指令値に変換するdq/3相変換部と、
    所定の周期の三角波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する駆動信号生成部と、を有するモータ制御装置において、
    前記正弦波制御部は、
    電流積分制御部と電流比例制御部とを備え前記d軸電流指令値、q軸電流指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいてd軸電圧指令値、q軸電圧指令値を生成する電流制御部と、
    d軸の電圧指令値とq軸の電圧指令値とを極座標変換し電圧指令値を取得する極座標変換部と、を有し、
    前記電流制御部は前記電流比例制御部の出力を含まない積分側d軸電圧指令値、積分側q軸電圧指令値を前記極座標変換部に出力し、
    前記極座標変換部は前記積分側d軸電圧指令値、積分側q軸電圧指令値に基づいて電圧指令値を取得し前記線形補正部に出力し、
    前記線形補正部は前記積分側d軸電圧指令値、積分側q軸電圧指令値に基づく前記電圧指令値に基づいて前記正弦波制御部が生成した前記d軸電圧指令値、q軸電圧指令値を線形補正することを特徴とするモータ制御装置。
    An inverter that causes a three-phase AC drive current to flow down to the PM motor,
    A drive current detector that acquires the value of the drive current;
    An angle detector for acquiring the electrical angle of the PM motor,
    A three-phase / dq converter that converts the drive current acquired by the drive current detector based on the electrical angle into a d-axis feedback current value and a q-axis feedback current value;
    A d-axis current command value and a q-axis current command value are set based on a torque command value from the outside, and these d-axis current command value, q-axis current command value and the d-axis feedback current value, q-axis feedback current value are set. A sine wave control unit that generates a d-axis voltage command value and a q-axis voltage command value based on
    A linear correction unit that linearly corrects the d-axis voltage command value and the q-axis voltage command value,
    A dq / 3-phase converter that converts the linearly corrected d-axis voltage command value and q-axis voltage command value into a three-phase voltage command value;
    In a motor control device comprising: a drive signal generation unit that generates a drive signal for switching the inverter by comparing a triangular wave of a predetermined cycle with the three-phase voltage command value.
    The sine wave control unit,
    A d-axis current command value, a q-axis current command value, a d-axis feedback current value, and a q-axis feedback current value based on the d-axis current command value, the d-axis feedback current value, and the q-axis feedback current value. A current control unit that generates a command value,
    a polar coordinate conversion unit that polar-converts the d-axis voltage command value and the q-axis voltage command value to obtain the voltage command value.
    The current control unit outputs an integration-side d-axis voltage command value and an integration-side q-axis voltage command value that do not include the output of the current proportional control unit to the polar coordinate conversion unit,
    The polar coordinate converter acquires a voltage command value based on the integration-side d-axis voltage command value and the integration-side q-axis voltage command value, and outputs the voltage command value to the linear correction unit.
    The linear correction unit includes the d-axis voltage command value and the q-axis voltage command value generated by the sine wave control unit based on the voltage command value based on the integration-side d-axis voltage command value and the integration-side q-axis voltage command value. A motor control device characterized by linearly correcting.
  2. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流検出部と、
    前記PMモータの電気角を取得する角度検出部と、
    前記電気角に基づいて前記駆動電流検出部が取得した前記駆動電流をd軸フィードバック電流値、q軸フィードバック電流値に変換する3相/dq変換部と、
    外部からのトルク指令値に基づいてd軸電流指令値、q軸電流指令値を設定し、これらd軸電流指令値、q軸電流指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいてd軸電圧指令値、q軸電圧指令値を生成する正弦波制御部と、
    前記d軸電圧指令値、q軸電圧指令値を三相電圧指令値に変換するdq/3相変換部と、
    キャリア設定情報に基づく所定の周期の三角波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する駆動信号生成部と、を有するモータ制御装置において、
    前記正弦波制御部は、
    電流積分制御部と電流比例制御部とを備え前記d軸電流指令値、q軸電流指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいてd軸電圧指令値、q軸電圧指令値を生成する電流制御部と、
    d軸の電圧指令値とq軸の電圧指令値とを極座標変換し電圧位相を取得する極座標変換部と、
    前記電圧位相に基づいて前記キャリア設定情報を生成する正弦波モード同期制御部と、を有し、
    前記電流制御部は前記電流比例制御部の出力を含まない積分側d軸電圧指令値、積分側q軸電圧指令値を前記極座標変換部に出力し、
    前記極座標変換部は前記積分側d軸電圧指令値、積分側q軸電圧指令値に基づいて電圧位相を取得し前記正弦波モード同期制御部に出力し、
    前記正弦波モード同期制御部は前記積分側d軸電圧指令値、積分側q軸電圧指令値に基づく前記電圧位相に基づいて前記キャリア設定情報を生成することを特徴とするモータ制御装置。
    An inverter that causes a three-phase AC drive current to flow down to the PM motor,
    A drive current detector that acquires the value of the drive current;
    An angle detector for acquiring the electrical angle of the PM motor,
    A three-phase / dq converter that converts the drive current acquired by the drive current detector based on the electrical angle into a d-axis feedback current value and a q-axis feedback current value;
    A d-axis current command value and a q-axis current command value are set based on a torque command value from the outside, and these d-axis current command value, q-axis current command value and the d-axis feedback current value, q-axis feedback current value are set. A sine wave control unit that generates a d-axis voltage command value and a q-axis voltage command value based on
    A dq / 3-phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into a three-phase voltage command value,
    In a motor control device comprising: a drive signal generation unit that generates a drive signal for switching the inverter by comparing a triangular wave of a predetermined cycle based on carrier setting information with the three-phase voltage command value.
    The sine wave control unit,
    A d-axis current command value, a q-axis current command value, a d-axis feedback current value, and a q-axis feedback current value based on the d-axis current command value, the d-axis feedback current value, and the q-axis feedback current value. A current control unit that generates a command value,
    a polar coordinate conversion unit for polar coordinate conversion of the d-axis voltage command value and the q-axis voltage command value to obtain the voltage phase;
    A sine wave mode synchronization control unit that generates the carrier setting information based on the voltage phase,
    The current control unit outputs an integration-side d-axis voltage command value and an integration-side q-axis voltage command value that do not include the output of the current proportional control unit to the polar coordinate conversion unit,
    The polar coordinate conversion unit acquires a voltage phase based on the integration-side d-axis voltage command value and the integration-side q-axis voltage command value and outputs the voltage phase to the sine wave mode synchronization control unit.
    The motor control device, wherein the sine wave mode synchronization control unit generates the carrier setting information based on the voltage phase based on the integration-side d-axis voltage command value and the integration-side q-axis voltage command value.
  3. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流検出部と、
    前記PMモータの電気角を取得する角度検出部と、
    前記電気角に基づいて前記駆動電流検出部が取得した前記駆動電流をd軸フィードバック電流値、q軸フィードバック電流値に変換する3相/dq変換部と、
    外部からのトルク指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいて電圧位相を設定し、前記電圧位相に基づいてd軸電圧指令値、q軸電圧指令値を生成する矩形波制御部と、
    d軸電圧指令値、q軸電圧指令値を線形補正する線形補正部と、
    線形補正されたd軸電圧指令値、q軸電圧指令値を三相電圧指令値に変換するdq/3相変換部と、
    所定の周期の三角波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する駆動信号生成部と、を有するモータ制御装置において、
    前記矩形波制御部は、
    外部からの前記トルク指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいて電圧位相を取得する電圧位相設定部と、
    電圧指令値と前記電圧位相設定部が出力した電圧位相に基づいてd軸電圧指令値及びq軸電圧指令値を生成する電圧指令生成部と、
    前記d軸フィードバック電流値、q軸フィードバック電流値と、前記d軸電圧指令値及びq軸電圧指令値と、に基づいてd軸電圧指令補正値及びq軸電圧指令補正値を出力する補正部と、を有し、
    前記線形補正部は前記電圧指令値に基づいて前記d軸電圧指令補正値、q軸電圧指令補正値を線形補正することを特徴とするモータ制御装置。
    An inverter that causes a three-phase AC drive current to flow down to the PM motor,
    A drive current detector that acquires the value of the drive current;
    An angle detector for acquiring the electrical angle of the PM motor,
    A three-phase / dq converter that converts the drive current acquired by the drive current detector based on the electrical angle into a d-axis feedback current value and a q-axis feedback current value;
    A rectangle that sets a voltage phase based on an external torque command value and the d-axis feedback current value and the q-axis feedback current value, and generates a d-axis voltage command value and a q-axis voltage command value based on the voltage phase. A wave controller,
    a linear correction unit that linearly corrects the d-axis voltage command value and the q-axis voltage command value,
    A dq / 3-phase converter that converts the linearly corrected d-axis voltage command value and the q-axis voltage command value into a three-phase voltage command value;
    In a motor control device comprising: a drive signal generation unit that generates a drive signal for switching the inverter by comparing a triangular wave of a predetermined cycle with the three-phase voltage command value.
    The rectangular wave control unit,
    A voltage phase setting unit that acquires a voltage phase based on the torque command value from the outside, the d-axis feedback current value, and the q-axis feedback current value;
    A voltage command generator that generates a d-axis voltage command value and a q-axis voltage command value based on the voltage command value and the voltage phase output by the voltage phase setting unit;
    A correction unit that outputs a d-axis voltage command correction value and a q-axis voltage command correction value based on the d-axis feedback current value, the q-axis feedback current value, and the d-axis voltage command value and the q-axis voltage command value. Has,
    The motor control device, wherein the linear correction unit linearly corrects the d-axis voltage command correction value and the q-axis voltage command correction value based on the voltage command value.
  4. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流検出部と、
    前記PMモータの電気角を取得する角度検出部と、
    前記電気角に基づいて前記駆動電流検出部が取得した前記駆動電流をd軸フィードバック電流値、q軸フィードバック電流値に変換する3相/dq変換部と、
    外部からのトルク指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいて電圧位相を設定し、前記電圧位相に基づいてd軸電圧指令値、q軸電圧指令値を生成する矩形波制御部と、
    d軸電圧指令値、q軸電圧指令値を三相電圧指令値に変換するdq/3相変換部と、
    キャリア設定情報に基づく所定の周期の三角波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する駆動信号生成部と、を有するモータ制御装置において、
    前記矩形波制御部は、
    外部からの前記トルク指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいて電圧位相を取得する電圧位相設定部と、
    前記電圧位相設定部が出力した電圧位相に基づいてd軸電圧指令値及びq軸電圧指令値を生成する電圧指令生成部と、
    前記d軸フィードバック電流値、q軸フィードバック電流値と、前記d軸電圧指令値及びq軸電圧指令値と、に基づいてd軸電圧指令補正値及びq軸電圧指令補正値を出力する補正部と、
    前記キャリア設定情報を生成する矩形波モード同期制御部と、を有し、
    前記矩形波モード同期制御部は前記電圧位相設定部の出力した電圧位相に基づいて前記キャリア設定情報を生成することを特徴とするモータ制御装置。
    An inverter that causes a three-phase AC drive current to flow down to the PM motor,
    A drive current detector that acquires the value of the drive current;
    An angle detector for acquiring the electrical angle of the PM motor,
    A three-phase / dq converter that converts the drive current acquired by the drive current detector based on the electrical angle into a d-axis feedback current value and a q-axis feedback current value;
    A rectangle that sets a voltage phase based on an external torque command value and the d-axis feedback current value and the q-axis feedback current value, and generates a d-axis voltage command value and a q-axis voltage command value based on the voltage phase. A wave controller,
    a dq / 3-phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into a three-phase voltage command value,
    In a motor control device comprising: a drive signal generation unit that generates a drive signal for switching the inverter by comparing a triangular wave of a predetermined cycle based on carrier setting information with the three-phase voltage command value.
    The rectangular wave control unit,
    A voltage phase setting unit that acquires a voltage phase based on the torque command value from the outside, the d-axis feedback current value, and the q-axis feedback current value;
    A voltage command generator that generates a d-axis voltage command value and a q-axis voltage command value based on the voltage phase output by the voltage phase setting unit;
    A correction unit that outputs a d-axis voltage command correction value and a q-axis voltage command correction value based on the d-axis feedback current value, the q-axis feedback current value, and the d-axis voltage command value and the q-axis voltage command value. ,
    A rectangular wave mode synchronization control unit for generating the carrier setting information,
    The rectangular wave mode synchronization control unit generates the carrier setting information based on the voltage phase output from the voltage phase setting unit.
  5. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流検出部と、
    前記PMモータの電気角を取得する角度検出部と、
    前記電気角に基づいて前記駆動電流検出部が取得した前記駆動電流をd軸フィードバック電流値、q軸フィードバック電流値に変換する3相/dq変換部と、
    外部からのトルク指令値に基づいてd軸電流指令値、q軸電流指令値を設定し、これらd軸電流指令値、q軸電流指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいてd軸電圧指令値、q軸電圧指令値を生成する正弦波制御部と、
    前記d軸電圧指令値、q軸電圧指令値を線形補正する線形補正部と、
    線形補正された前記d軸電圧指令値、q軸電圧指令値を三相電圧指令値に変換するdq/3相変換部と、
    所定の周期の三角波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する駆動信号生成部と、を有するモータ制御装置のモータ制御方法であって、
    前記正弦波制御部は、
    電流積分制御部と電流比例制御部とを備え前記d軸電流指令値、q軸電流指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいてd軸電圧指令値、q軸電圧指令値を生成する電流制御部と、
    d軸の電圧指令値とq軸の電圧指令値とを極座標変換し電圧指令値を取得する極座標変換部と、を有し、
    前記電流制御部が前記電流比例制御部の出力を含まない積分側d軸電圧指令値、積分側q軸電圧指令値を前記極座標変換部に出力する積分側電圧指令値出力ステップと、
    前記極座標変換部が前記積分側d軸電圧指令値、積分側q軸電圧指令値に基づいて電圧指令値を取得し前記線形補正部に出力する電圧指令値出力ステップと、
    前記線形補正部が前記積分側d軸電圧指令値、積分側q軸電圧指令値に基づく前記電圧指令値に基づいて前記正弦波制御部が生成した前記d軸電圧指令値、q軸電圧指令値を線形補正する正弦波制御線形補正ステップと、を行うことを特徴とするモータ制御方法。
    An inverter that causes a three-phase AC drive current to flow down to the PM motor,
    A drive current detector that acquires the value of the drive current;
    An angle detector for acquiring the electrical angle of the PM motor,
    A three-phase / dq converter that converts the drive current acquired by the drive current detector based on the electrical angle into a d-axis feedback current value and a q-axis feedback current value;
    A d-axis current command value and a q-axis current command value are set based on a torque command value from the outside, and these d-axis current command value, q-axis current command value and the d-axis feedback current value, q-axis feedback current value are set. A sine wave control unit that generates a d-axis voltage command value and a q-axis voltage command value based on
    A linear correction unit that linearly corrects the d-axis voltage command value and the q-axis voltage command value,
    A dq / 3-phase converter that converts the linearly corrected d-axis voltage command value and q-axis voltage command value into a three-phase voltage command value;
    A motor control method for a motor control device, comprising: a drive signal generation unit that generates a drive signal for switching the inverter by comparing a triangular wave of a predetermined cycle with the three-phase voltage command value.
    The sine wave control unit,
    A d-axis current command value, a q-axis current command value, a d-axis feedback current value, and a q-axis feedback current value based on the d-axis current command value, the d-axis feedback current value, and the q-axis feedback current value. A current control unit that generates a command value,
    a polar coordinate conversion unit that polar-converts the d-axis voltage command value and the q-axis voltage command value to obtain the voltage command value.
    An integration-side voltage command value output step in which the current control unit outputs an integration-side d-axis voltage command value and an integration-side q-axis voltage command value that do not include the output of the current proportional control unit,
    A voltage command value output step in which the polar coordinate conversion unit acquires a voltage command value based on the integration-side d-axis voltage command value and the integration-side q-axis voltage command value and outputs the voltage command value to the linear correction unit;
    The linear correction unit generates the d-axis voltage command value and the q-axis voltage command value generated by the sine wave control unit based on the voltage command value based on the integration-side d-axis voltage command value and the integration-side q-axis voltage command value. And a sine wave control linear correction step for linearly correcting.
  6. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流検出部と、
    前記PMモータの電気角を取得する角度検出部と、
    前記電気角に基づいて前記駆動電流検出部が取得した前記駆動電流をd軸フィードバック電流値、q軸フィードバック電流値に変換する3相/dq変換部と、
    外部からのトルク指令値に基づいてd軸電流指令値、q軸電流指令値を設定し、これらd軸電流指令値、q軸電流指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいてd軸電圧指令値、q軸電圧指令値を生成する正弦波制御部と、
    前記d軸電圧指令値、q軸電圧指令値を三相電圧指令値に変換するdq/3相変換部と、
    キャリア設定情報に基づく所定の周期の三角波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する駆動信号生成部と、を有するモータ制御装置のモータ制御方法であって、
    前記正弦波制御部は、
    電流積分制御部と電流比例制御部とを備え前記d軸電流指令値、q軸電流指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいてd軸電圧指令値、q軸電圧指令値を生成する電流制御部と、
    d軸の電圧指令値とq軸の電圧指令値とを極座標変換し電圧位相を取得する極座標変換部と、
    前記電圧位相に基づいて前記キャリア設定情報を生成する正弦波モード同期制御部と、を有し、
    前記電流制御部が前記電流比例制御部の出力を含まない積分側d軸電圧指令値、積分側q軸電圧指令値を前記極座標変換部に出力する積分側電圧指令値出力ステップと、
    前記極座標変換部が前記積分側d軸電圧指令値、積分側q軸電圧指令値に基づいて電圧位相を取得し前記正弦波モード同期制御部に出力する電圧位相出力ステップと、
    前記正弦波モード同期制御部が前記積分側d軸電圧指令値、積分側q軸電圧指令値に基づく前記電圧位相に基づいて前記キャリア設定情報を生成する正弦波制御キャリア情報生成ステップと、を行うことを特徴とするモータ制御方法。
    An inverter that causes a three-phase AC drive current to flow down to the PM motor,
    A drive current detector that acquires the value of the drive current;
    An angle detector for acquiring the electrical angle of the PM motor,
    A three-phase / dq converter that converts the drive current acquired by the drive current detector based on the electrical angle into a d-axis feedback current value and a q-axis feedback current value;
    A d-axis current command value and a q-axis current command value are set based on a torque command value from the outside, and these d-axis current command value, q-axis current command value and the d-axis feedback current value, q-axis feedback current value are set. A sine wave control unit that generates a d-axis voltage command value and a q-axis voltage command value based on
    A dq / 3-phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into a three-phase voltage command value,
    A motor control method for a motor control device, comprising: a drive signal generation unit that compares a triangular wave of a predetermined cycle based on carrier setting information with the three-phase voltage command value to generate a drive signal for switching the inverter. ,
    The sine wave control unit,
    A d-axis current command value, a q-axis current command value, a d-axis feedback current value, and a q-axis feedback current value based on the d-axis current command value, the d-axis feedback current value, and the q-axis feedback current value. A current control unit that generates a command value,
    a polar coordinate converter that polar-converts the d-axis voltage command value and the q-axis voltage command value to obtain the voltage phase;
    A sine wave mode synchronization control unit that generates the carrier setting information based on the voltage phase,
    An integration-side voltage command value output step in which the current control unit outputs an integration-side d-axis voltage command value and an integration-side q-axis voltage command value that do not include the output of the current proportional control unit,
    A voltage phase output step in which the polar coordinate conversion unit acquires a voltage phase based on the integration-side d-axis voltage command value and the integration-side q-axis voltage command value and outputs the voltage phase to the sine wave mode synchronization control unit;
    And a sine wave control carrier information generation step in which the sine wave mode synchronization control unit generates the carrier setting information based on the voltage phase based on the integration side d-axis voltage command value and the integration side q-axis voltage command value. A motor control method characterized by the above.
  7. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流検出部と、
    前記PMモータの電気角を取得する角度検出部と、
    前記電気角に基づいて前記駆動電流検出部が取得した前記駆動電流をd軸フィードバック電流値、q軸フィードバック電流値に変換する3相/dq変換部と、
    外部からのトルク指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいて電圧位相を設定し、前記電圧位相に基づいてd軸電圧指令値、q軸電圧指令値を生成する矩形波制御部と、
    d軸電圧指令値、q軸電圧指令値を線形補正する線形補正部と、
    線形補正されたd軸電圧指令値、q軸電圧指令値を三相電圧指令値に変換するdq/3相変換部と、
    所定の周期の三角波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する駆動信号生成部と、を有するモータ制御装置のモータ制御方法であって、
    前記矩形波制御部は、
    外部からの前記トルク指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいて電圧位相を取得する電圧位相設定部と、
    電圧指令値と前記電圧位相設定部が出力した電圧位相に基づいてd軸電圧指令値及びq軸電圧指令値を生成する電圧指令生成部と、
    前記d軸フィードバック電流値、q軸フィードバック電流値と、前記d軸電圧指令値及びq軸電圧指令値と、に基づいてd軸電圧指令補正値及びq軸電圧指令補正値を出力する補正部と、を有し、
    前記線形補正部が前記電圧指令値に基づいて前記d軸電圧指令補正値、q軸電圧指令補正値を線形補正する矩形波制御線形補正ステップを行うことを特徴とするモータ制御方法。
    An inverter that causes a three-phase AC drive current to flow down to the PM motor,
    A drive current detector that acquires the value of the drive current;
    An angle detector for acquiring the electrical angle of the PM motor,
    A three-phase / dq converter that converts the drive current acquired by the drive current detector based on the electrical angle into a d-axis feedback current value and a q-axis feedback current value;
    A rectangle that sets a voltage phase based on an external torque command value and the d-axis feedback current value and the q-axis feedback current value, and generates a d-axis voltage command value and a q-axis voltage command value based on the voltage phase. A wave controller,
    a linear correction unit that linearly corrects the d-axis voltage command value and the q-axis voltage command value,
    A dq / 3-phase converter that converts the linearly corrected d-axis voltage command value and the q-axis voltage command value into a three-phase voltage command value;
    A motor control method for a motor control device, comprising: a drive signal generator that generates a drive signal for switching the inverter by comparing a triangular wave of a predetermined cycle with the three-phase voltage command value.
    The rectangular wave control unit,
    A voltage phase setting unit that acquires a voltage phase based on the torque command value from the outside, the d-axis feedback current value, and the q-axis feedback current value;
    A voltage command generator that generates a d-axis voltage command value and a q-axis voltage command value based on the voltage command value and the voltage phase output by the voltage phase setting unit;
    A correction unit that outputs a d-axis voltage command correction value and a q-axis voltage command correction value based on the d-axis feedback current value, the q-axis feedback current value, and the d-axis voltage command value and the q-axis voltage command value. Has,
    The motor control method, wherein the linear correction unit performs a rectangular wave control linear correction step of linearly correcting the d-axis voltage command correction value and the q-axis voltage command correction value based on the voltage command value.
  8. PMモータに3相交流の駆動電流を流下させるインバータと、
    前記駆動電流の値を取得する駆動電流検出部と、
    前記PMモータの電気角を取得する角度検出部と、
    前記電気角に基づいて前記駆動電流検出部が取得した前記駆動電流をd軸フィードバック電流値、q軸フィードバック電流値に変換する3相/dq変換部と、
    外部からのトルク指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいて電圧位相を設定し、前記電圧位相に基づいてd軸電圧指令値、q軸電圧指令値を生成する矩形波制御部と、
    d軸電圧指令値、q軸電圧指令値を三相電圧指令値に変換するdq/3相変換部と、
    キャリア設定情報に基づく所定の周期の三角波と前記三相電圧指令値とを比較して前記インバータをスイッチングする駆動信号を生成する駆動信号生成部と、を有するモータ制御装置のモータ制御方法であって、
    前記矩形波制御部は、
    外部からの前記トルク指令値と前記d軸フィードバック電流値、q軸フィードバック電流値とに基づいて電圧位相を取得する電圧位相設定部と、
    前記電圧位相設定部が出力した電圧位相に基づいてd軸電圧指令値及びq軸電圧指令値を生成する電圧指令生成部と、
    前記d軸フィードバック電流値、q軸フィードバック電流値と、前記d軸電圧指令値及びq軸電圧指令値と、に基づいてd軸電圧指令補正値及びq軸電圧指令補正値を出力する補正部と、
    前記キャリア設定情報を生成する矩形波モード同期制御部と、を有し、
    前記矩形波モード同期制御部が前記電圧位相設定部の出力した電圧位相に基づいて前記キャリア設定情報を生成する矩形波制御キャリア情報生成ステップを行うことを特徴とするモータ制御方法。
    An inverter that causes a three-phase AC drive current to flow down to the PM motor,
    A drive current detector that acquires the value of the drive current;
    An angle detector for acquiring the electrical angle of the PM motor,
    A three-phase / dq converter that converts the drive current acquired by the drive current detector based on the electrical angle into a d-axis feedback current value and a q-axis feedback current value;
    A rectangle that sets a voltage phase based on an external torque command value and the d-axis feedback current value and the q-axis feedback current value, and generates a d-axis voltage command value and a q-axis voltage command value based on the voltage phase. A wave controller,
    a dq / 3-phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into a three-phase voltage command value,
    A motor control method for a motor control device, comprising: a drive signal generation unit that compares a triangular wave of a predetermined cycle based on carrier setting information with the three-phase voltage command value to generate a drive signal for switching the inverter. ,
    The rectangular wave control unit,
    A voltage phase setting unit that acquires a voltage phase based on the torque command value from the outside, the d-axis feedback current value, and the q-axis feedback current value;
    A voltage command generator that generates a d-axis voltage command value and a q-axis voltage command value based on the voltage phase output by the voltage phase setting unit;
    A correction unit that outputs a d-axis voltage command correction value and a q-axis voltage command correction value based on the d-axis feedback current value, the q-axis feedback current value, and the d-axis voltage command value and the q-axis voltage command value. ,
    A rectangular wave mode synchronization control unit for generating the carrier setting information,
    The motor control method, wherein the rectangular wave mode synchronization control unit performs a rectangular wave control carrier information generation step of generating the carrier setting information based on the voltage phase output by the voltage phase setting unit.
PCT/JP2019/039931 2018-11-15 2019-10-10 Motor control device and motor control method WO2020100478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018214270A JP7094859B2 (en) 2018-11-15 2018-11-15 Motor control device and motor control method
JP2018-214270 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020100478A1 true WO2020100478A1 (en) 2020-05-22

Family

ID=70731803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039931 WO2020100478A1 (en) 2018-11-15 2019-10-10 Motor control device and motor control method

Country Status (2)

Country Link
JP (1) JP7094859B2 (en)
WO (1) WO2020100478A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598662A (en) * 2020-09-07 2022-03-09 Univ Jiangsu Variable voltage stability enhancement control system and merthod for ultra-high-speed electric air compressor for improving wide-range speed regulation respo
WO2023171703A1 (en) * 2022-03-11 2023-09-14 ニデック株式会社 Motor control device, motor module, motor control program, and motor control method
CN117155207A (en) * 2023-10-31 2023-12-01 奥铄动力科技(天津)有限公司 Motor control method and power supply method based on d-axis and q-axis current control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285288A (en) * 1998-03-26 1999-10-15 Toyota Motor Corp Motor control device and method therefor
JP2000050686A (en) * 1998-07-29 2000-02-18 Toyota Motor Corp Drive control equipment of ac motor
JP2008265730A (en) * 2007-03-24 2008-11-06 Hitachi Ltd Electric brake device and method of controlling electric brake device
JP2013005618A (en) * 2011-06-17 2013-01-07 Toyota Motor Corp Inverter control device and vehicle
JP2016226191A (en) * 2015-06-01 2016-12-28 株式会社デンソー Control apparatus of rotary electric machine
JP2018019496A (en) * 2016-07-27 2018-02-01 株式会社東芝 Device for motor control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299439B2 (en) * 2009-01-29 2013-09-25 トヨタ自動車株式会社 AC motor control device
JP6754661B2 (en) * 2016-10-11 2020-09-16 日立オートモティブシステムズ株式会社 AC motor control device and control method, and AC motor drive system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285288A (en) * 1998-03-26 1999-10-15 Toyota Motor Corp Motor control device and method therefor
JP2000050686A (en) * 1998-07-29 2000-02-18 Toyota Motor Corp Drive control equipment of ac motor
JP2008265730A (en) * 2007-03-24 2008-11-06 Hitachi Ltd Electric brake device and method of controlling electric brake device
JP2013005618A (en) * 2011-06-17 2013-01-07 Toyota Motor Corp Inverter control device and vehicle
JP2016226191A (en) * 2015-06-01 2016-12-28 株式会社デンソー Control apparatus of rotary electric machine
JP2018019496A (en) * 2016-07-27 2018-02-01 株式会社東芝 Device for motor control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2598662A (en) * 2020-09-07 2022-03-09 Univ Jiangsu Variable voltage stability enhancement control system and merthod for ultra-high-speed electric air compressor for improving wide-range speed regulation respo
GB2598662B (en) * 2020-09-07 2023-01-04 Univ Jiangsu Variable voltage stability enhancement control system and method for ultra-high-speed electric air compressor for improving wide-range speed regulation
WO2023171703A1 (en) * 2022-03-11 2023-09-14 ニデック株式会社 Motor control device, motor module, motor control program, and motor control method
CN117155207A (en) * 2023-10-31 2023-12-01 奥铄动力科技(天津)有限公司 Motor control method and power supply method based on d-axis and q-axis current control
CN117155207B (en) * 2023-10-31 2024-01-26 奥铄动力科技(天津)有限公司 Motor control method and power supply method based on d-axis and q-axis current control

Also Published As

Publication number Publication date
JP7094859B2 (en) 2022-07-04
JP2020088880A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP4909797B2 (en) Motor control device
US9112436B2 (en) System for controlling controlled variable of rotary machine
US20020180402A1 (en) Drive control apparatus and method of alternating current motor
WO2020100478A1 (en) Motor control device and motor control method
WO2008156194A1 (en) Ac motor drive controller
JP7126910B2 (en) MOTOR CONTROL DEVICE AND MOTOR CONTROL METHOD
JP2004064909A (en) Motor control device
JP7280170B2 (en) Motor control device, motor control method, hybrid system, boost converter system, electric power steering system
JP2002223600A (en) Motor controller
JP6293401B2 (en) Motor controller for air conditioner and air conditioner
US20120242262A1 (en) Control apparatus for electric motor
JP3547117B2 (en) Torque detection device and drive control device for AC motor
JP5135794B2 (en) Motor control method
WO2019087644A1 (en) Motor control device and motor control method
US9960719B1 (en) Variable frequency electrostatic drive
JP3214371B2 (en) Synchronous generator control system and hybrid electric vehicle
JP2017205017A (en) Motor control device of air conditioner, and air conditioner
JP7042568B2 (en) Motor control device and motor control method
JP2006074951A (en) Controller for ac motor
WO2020262269A1 (en) Control device for electric motor
JP2005168140A (en) Motor controller and its control method
JP2000324879A (en) Motor controller
JP2010252523A (en) Control apparatus and control method for ac motor
JP2006121855A (en) Ac motor control device
JP7431346B2 (en) Motor control devices, mechanical and electrical integrated units, hybrid systems, and electric power steering systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885821

Country of ref document: EP

Kind code of ref document: A1