Nothing Special   »   [go: up one dir, main page]

WO2020196649A1 - Cell production device, cell production method, and server, system and device to be used therefor - Google Patents

Cell production device, cell production method, and server, system and device to be used therefor Download PDF

Info

Publication number
WO2020196649A1
WO2020196649A1 PCT/JP2020/013406 JP2020013406W WO2020196649A1 WO 2020196649 A1 WO2020196649 A1 WO 2020196649A1 JP 2020013406 W JP2020013406 W JP 2020013406W WO 2020196649 A1 WO2020196649 A1 WO 2020196649A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
cells
cell
discharge
coordinates
Prior art date
Application number
PCT/JP2020/013406
Other languages
French (fr)
Japanese (ja)
Inventor
直希 西下
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021509524A priority Critical patent/JP7483687B2/en
Publication of WO2020196649A1 publication Critical patent/WO2020196649A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/06Tissue, human, animal or plant cell, or virus culture apparatus with filtration, ultrafiltration, inverse osmosis or dialysis means

Definitions

  • the present invention relates to a cell manufacturing apparatus, a cell manufacturing method, and a server, a system, and an apparatus used therein.
  • Non-Patent Document 1 The treatment of collecting cells from the body fluids and tissues of the patient or the donor, amplifying and processing them in culture, and transplanting them to the affected area, so-called regenerative medicine and cell medicine, is for diseases that are difficult to treat with conventional technology. It has the potential to provide new treatments and is attracting attention. (See, for example, Non-Patent Document 1.).
  • personalized medicine that collects cells from the body fluids and tissues of the patient or the donor, elucidates the cause of the disease from the cells amplified and processed by culturing, and develops new drugs. It is receiving a lot of attention.
  • the manufacturing process of products containing cells used in drug discovery research for regenerative medicine / cell medicine and personalized medicine described above spans multiple steps. For example, a step of collecting cells from a tissue or the like, a step of culturing and amplifying the obtained cells (expansion culture), a step of culturing cells and processing them into target cells (differentiation induction culture), etc. can be mentioned. Also in the process, a step of collecting the target cells is required. For example, in the step of collecting cells from a tissue or the like, it is necessary to remove impurities contained in the tissue from the tissue. Further, it is known that during differentiation-inducing culture, pluripotent stem cells such as ES cells and iPS cells induce differentiation into various cells while forming cell aggregates over time.
  • pluripotent stem cells such as ES cells and iPS cells induce differentiation into various cells while forming cell aggregates over time.
  • Patent Document 1 a factor introduction device, a cell mass preparation device, an initialization culture device, an expansion culture device for expanding and culturing a plurality of cell clusters, and a medium supply device for supplying a medium are provided to establish stem cells.
  • a manufacturing apparatus that packages from to expanded culture is disclosed.
  • a filter is provided in the liquid feeding path for the purpose of removing dead cell clumps.
  • the culture solution is applied to the entire surface of the filter at once, so that the inside of the filter is used. Cultured debris, contaminants, and dead cell clumps are deposited and clogged. Therefore, it is not possible to efficiently recover only the target cells, and the recovery rate and recovery efficiency are significantly lowered. Further, if the feeding rate of the culture solution is increased in order to improve the recovery rate, the damage when the filter and the cells collide with each other increases, cell death occurs, and the quality of the recovered target cells deteriorates. Therefore, it is an object of the present invention to provide a cell production apparatus, a cell production method, and a server, a system, and an apparatus used for the cell production apparatus and the cell production method for improving the recovery rate and quality of the target cells to be recovered.
  • the present invention that solves the above problems is an apparatus for producing a product containing a target cell, which is a means for discharging a raw material liquid containing the target cell to a cell filtration filter and a target cell obtained by the cell filtration filter. It is a device including means for collecting the filtered liquid containing the above-mentioned material and means for variably regulating the operating conditions of the coordinates with respect to the filter for discharging.
  • an apparatus for producing a product containing a target cell in one embodiment, an apparatus further comprising means for variably regulating the operating conditions of the discharge rate is shown.
  • an apparatus for producing a product containing a target cell in one embodiment, an apparatus further comprising means for variably regulating the liquid passing time of the cell filtration filter is shown.
  • one or more additional operating conditions selected from the group consisting of the number of times of the discharge, the number of the means for discharging and the discharge pressure.
  • a device further comprising means for variably or non-variably regulating.
  • the operating conditions are variable, and the apparatus detects the number of cells contained in the filtered liquid and based on the detection.
  • a device further comprising means for adjusting the operating conditions is shown.
  • the operating conditions are variable, and the apparatus causes the accumulation of filters in coordinates with respect to the discharging filter or an event correlating therewith.
  • An apparatus further comprising a means for detecting and a means for adjusting the operating condition based on the detection is shown.
  • an apparatus for producing a product containing a target cell in one embodiment, an apparatus further comprising means for attaching the cell filtration filter to the opening of a container for collecting the filtered liquid is shown.
  • the mounting means is a means for gripping two or more of the cell filtration filters or a support for supporting the container, and the gripping means.
  • a device comprising a means of transporting a support and aligning the two or more cell filtration filters with an opening of the container is shown.
  • an apparatus for producing a product containing a target cell in one embodiment, an apparatus further comprising means for removing the cell filtration filter from the opening of a container for collecting the filtered liquid is shown.
  • an apparatus for producing a product containing a target cell in one embodiment, an apparatus further comprising a means for recovering the target cell by solid-liquid separation from the filtered liquid is further shown.
  • the solid-liquid separation is centrifugal separation
  • the collecting means is a means for closing the opening of the container in which the filtered liquid is collected.
  • a device comprising means for applying centrifugal force to the container.
  • the present invention that solves the above-mentioned problems is a method for manufacturing the above-mentioned product by using the above-mentioned apparatus for manufacturing the product containing the target cell.
  • the present invention which solves the above-mentioned problems, refers to a database that stores data relating to the correspondence between the coordinates of the discharging filter and the recovery rate of the target cells in the product, and the required recovery by referring to the database.
  • a server including means for selecting operating conditions of coordinates for the filter performing the ejection for achieving the rate, and means for transmitting information on the selected operating conditions to the device for manufacturing a product containing the target cells described above. Is.
  • the database further stores data relating to the correspondence between the discharge rate and the viability of the target cell in the product, and the means of selection is the required said.
  • the means for selecting and transmitting the operating conditions of the discharge rate for achieving the survival rate is indicated by a server that transmits the information to the device for manufacturing the product containing the target cells described above.
  • the present invention that solves the above-mentioned problems is a system including the above-mentioned apparatus for manufacturing a product containing a target cell and the above-mentioned server.
  • the apparatus manufactures the product based on operating conditions of information transmitted from the server, resulting in the rate of discharge and the survival rate of the target cells in the product.
  • the actual data regarding the correspondence relationship with the server or the correspondence relationship between the coordinates for the filter performing the discharge and the recovery rate of the target cells in the product is transmitted to the server, and the database additionally stores the actual data.
  • the system to do is shown.
  • the required recovery is performed with reference to a database that stores data relating to the correspondence between the coordinates of the discharging filter and the recovery rate of the target cells in the product, and the database.
  • a device further provided with means for selecting the operating conditions of the coordinates for achieving the rate and for the discharging filter is shown.
  • the database further stores data relating to the correspondence between the rate of discharge and the viability of the target cell in the product, and the means of choice is the required survival.
  • An apparatus is shown which selects the operating conditions of the discharge rate to achieve the rate.
  • the working efficiency is maximized while improving the survival rate and recovery rate of the target cells by variably regulating the operating conditions of the coordinates for the filter that discharges the raw material liquid to the cell filtration filter. be able to.
  • FIG. 1 It is a perspective view of the cell production apparatus which concerns on one Embodiment of this invention. It is a figure which shows typically the state and operation at the time of discharging a raw material liquid on a cell filtration filter.
  • the cell manufacturing apparatus of the present invention it is a figure schematically showing an example of a place on a filter to which a raw material liquid is applied, corresponding to coordinates with respect to a filtration filter from which the raw material liquid is discharged.
  • FIG. 1 shows the flow of cell production which concerns on one Embodiment of this invention.
  • FIG. 1 shows the flow of cell production which concerns on one Embodiment of this invention.
  • the cell manufacturing apparatus is an apparatus for producing a product containing target cells, and includes means for discharging a raw material liquid containing target cells to a cell filtration filter and target cells obtained by the cell filtration filter.
  • a means for collecting the filtered liquid and a means for variably regulating the operating conditions of the coordinates with respect to the filter for discharging the filtered liquid are provided.
  • the "coordinates" with respect to the filter for discharging means the position of the place where the raw material liquid is discharged from the discharging means relative to the filter.
  • the first axis in the plane when the filter is viewed in a plane is the X axis and the second axis in the plane intersecting the first axis is the Y axis
  • the X-axis coordinates and the Y-axis coordinates are used. It may include the coordinates represented.
  • the coordinates may include the distance between the place where the raw material liquid is discharged by the discharging means and the surface of the filter (the coordinates of the Z axis which is the orthogonal direction with respect to the plane).
  • a plurality of coordinates can be selected and the coordinates do not change randomly without reproducibility, and reproducibility with a width is allowed. Further, it is sufficient if a plurality of coordinates can be set before or during the operation of the device, and the coordinates do not necessarily have to be variable (typically feedback control) during the operation. Therefore, it suffices that the range of motion of the means for discharging the raw material liquid is restricted mechanically or mechanically by electrical control, and the relative positions can be determined in a plurality of ways.
  • the cell manufacturing apparatus of the present invention comprises a means for discharging a raw material liquid containing target cells supplied from the upstream side to a cell filtration filter, and a means for collecting a filtered liquid containing target cells obtained by the cell filtration filter.
  • a means for variably regulating the operating conditions of the coordinates with respect to the filter that performs the discharge, the mechanism, configuration, etc. before and after that are arbitrary.
  • the raw material liquid may be prepared manually or in an automatic incubator or the like.
  • the automatic culture device refers to a device that automatically or semi-automatically performs all or part of the cell culture operation that is normally performed manually by substituting a machine or an instrument.
  • Examples of the cell culture operation include a medium exchange, cell recovery, and washing operation. Specific examples include, for example, Aastrom Replicell System (manufactured by Aastrom Bioscience), and culture devices disclosed by JP-A-2004-344128, JP-A-2004-89095, and JP-A-2001-275569.
  • FIG. 1 is a perspective view of a cell manufacturing apparatus according to an embodiment of the present invention.
  • a pipette tip 40 attached to the tip of the dispensing pipette is provided as a means for discharging the raw material liquid containing the target cells to the cell filtration filter 11, a cell filtration filter 11 below the pipette tip 40, and a cell filtration filter 11 below the pipette tip 40.
  • a dispensing head 42 communicated with a raw material liquid source (not shown) is fixed to a head drive device 70 (Z-axis drive mechanism 73 in this figure) including an X-axis drive mechanism 71, a Y-axis drive mechanism 72, and a Z-axis drive mechanism 73.
  • the pipette tip 40 is detachably fixed to the tip of the dispensing head 42.
  • the cell filtration filter 11 is installed parallel to the planes of the X-axis and the Y-axis, and horizontally in this embodiment.
  • the X-axis drive mechanism 71 and the Y-axis drive mechanism 72 are slidably connected to each other, the trajectory of the tip of the pipette tip 40 and the relative position of the tip of the pipette tip 40 with respect to the filter are restricted to be reproducible. Will be done. As a result, the operating conditions of the coordinates with respect to the filter to which the raw material liquid naturally falls from the pipette tip 40 are variably regulated. As described above, in the present embodiment, the X-axis drive mechanism 71 and the Y-axis drive mechanism 72 correspond to the regulatory means.
  • the means for discharging the raw material liquid containing the target cells to the cell filtration filter 11 is not limited to the above-mentioned dispensing pipette, and an appropriate discharging means may be used according to the size of the filter or the container for collecting the filtrate. , Pipettes, micropipettes, syringes and the like.
  • the diameter of the discharge portion of the discharge means is not particularly limited as long as the raw material liquid can be discharged, but the inner diameter is, for example, 0.03 mm or more, 0.05 mm or more, 0.15 mm or more, 0.56 mm or more as the lower limit. It is preferably 1.00 mm or more and 2.50 mm or more, and the upper limit is preferably 8.00 mm or less, 5.00 mm or less, and 4.00 mm or less.
  • FIG. 2 schematically shows a state and an operation when the raw material liquid is discharged onto the cell filtration filter.
  • the filtered liquid containing the target cells that have passed through the cell filtration filter 11 is collected in the container 30 (a).
  • the cell filtration filter 11 is basically designed to allow cells of interest to pass through, while filtering out other cells, cell clumps, debris, impurities, etc. without passing through.
  • the filter medium 5 at the place of the filter 11 corresponding to the coordinates becomes larger and begins to trap the target cells to be passed (b). The present inventor has found that.
  • This trap phenomenon is a factor that reduces the recovery rate of target cells.
  • the discharge amount of the raw material liquid per place of the filter 11 is reduced, and the trap phenomenon is suppressed.
  • the trap phenomenon is suppressed reproducibly and the recovery rate of the target cells is improved.
  • the method of variably regulating the operating conditions of the coordinates with respect to the filter is not particularly limited, and may be appropriately set by comprehensively considering the recovery rate of the target cells and the simplicity of the device configuration and operating conditions. ..
  • FIG. 3 schematically shows an example of a location on the filter to which the raw material liquid is applied, corresponding to the coordinates with respect to the filtration filter from which the raw material liquid is discharged in one embodiment of the cell manufacturing apparatus of the present invention.
  • the solid circles are virtual marks for illustrating the location (coordinates) on the filter to which the raw material liquid is applied.
  • the number of coordinates (locations on the filter) in the plan view of the filter is not particularly limited, but the lower limit of the number of coordinates is one or more, preferably two or more, or three or more. ..
  • the upper limit of the number of coordinates is not particularly limited, but is, for example, 20 or less, 15 or less, and 10 or less.
  • the number of distances (Z-axis coordinates) between the filter and the discharging means described later is two or more, even if the number of coordinates (locations on the filter) in the plan view plane of the filter is one. It may be two or more places.
  • the number of coordinates (locations on the filter) in the plan view plane of the filter is two or more.
  • the coordinates may be separated from each other (the intervals may be equal or unequal), and may be adjacent or connected.
  • the fine movement of the discharge opening caused by the unintentional fine movement of the discharge means is not treated as the difference in coordinates.
  • the coordinates adjacent to or connected to each other are not separated from each other, but the coordinates in the plan view of the filter are the area of the orbit to which the discharge opening of the pipette tip 40 (an example of the discharge means) has moved.
  • the discharge opening area of the pipette tip 40 As long as it is at least twice the discharge opening area of the pipette tip 40, it is considered to be two or more points in the present invention (in other words, the area of the trajectory to which the discharge opening of the pipette tip 40 has moved is 2 of the discharge opening area of the pipette tip 40. If it is less than double, the number of coordinates is considered to be one). Further, the arrangement of the coordinates is not particularly limited, and may be symmetric (point symmetric or line symmetric), asymmetric, aligned or not.
  • the method of discharging the raw material liquid is not particularly limited, and the discharge rate may be constant or non-constant, and may be intermittent or continuous.
  • the pipette tip 40 moves between the coordinates, but the discharge speed at that time is when it is located at the coordinates (or when it is stopped). It may be the same or different when it is located between the coordinates (or when it is moved) (it is not necessary to discharge when it is positioned or moved between the coordinates).
  • FIGS. 3 (j) and 3 (k) show a zigzag shape and a spiral shape as the movement trajectory of the pipette tip 40 between the coordinates represented by the solid circles, which are represented by the circles.
  • the discharge rate may be the same or different depending on whether it is located at the coordinates or between the coordinates (it is not necessary to discharge when it is located between the coordinates).
  • the Z-axis drive mechanism 73 is slidably connected to the Y-axis drive mechanism 72 (however, it may be to the X-axis drive mechanism 71), and the pipette tip 40
  • the distance (Z-axis coordinates) between the tip and the cell filtration filter 11 can be adjusted reproducibly.
  • the linear velocity of the raw material liquid when applied to the filter 11 can be reproducibly adjusted, and the quality (particularly the survival rate) such as the recovery rate and the survival rate of the target cells in the filtered liquid can be reproducibly improved. ..
  • the tendency is that the linear velocity decreases during the free fall of the raw material liquid into the filter by increasing the distance to some extent.
  • the Z-axis drive mechanism 73 is also a means for variably regulating the coordinates with respect to the filter, and is also an example of a means (described later) for variably regulating the operating conditions of the discharge speed.
  • the number of distances (Z-axis coordinates) between the filter and the discharge means is not particularly limited, and may be one or two or more. It may be.
  • such regulatory means is controlled by a computer programmed to move the coordinates relative to the discharging filter by a discharging means such as a pipette tip 40.
  • a discharging means such as a pipette tip 40.
  • such regulatory measures are manually manipulated.
  • a robot arm arranged in the closed system so as to move the coordinates of the raw material liquid containing the target cells with respect to the filter. Etc. may be operated by a joystick or the like controlled by the user from a position outside the closed system.
  • the distance (Z-axis coordinates) between the filter and the discharging means differs by, for example, 2 mm or more (preferably 5 mm or more), it is considered to be two or more in the present invention (in other words, if the difference is less than 2 mm, the Z-axis coordinates). The number is considered to be one).
  • the fine movement of the discharge opening caused by the unintentional fine movement of the discharge means is not treated as the difference in coordinates.
  • the pipette tip 40 moves between the coordinates, but the discharge speed at that time is when it is located at the coordinates. It may be the same or different when it is located between the coordinates (or when it is stopped) and when it is located between the coordinates (or when it is moved) (it is not necessary to discharge when it is positioned or moved between the coordinates).
  • a means for variably regulating the operating conditions of the discharge rate may be further provided.
  • the rate of discharge affects the recovery rate of target cells (particularly viable target cells) and the survival rate of target cells. Therefore, by variably regulating the operating conditions of the discharge rate, the quality such as the recovery rate and the survival rate of the target cells (particularly the surviving target cells) can be improved with reproducibility.
  • any known mechanism can be used, for example, a stage (for example, x stage, xy stage or xyz stage), a valve (for example, electromagnetic valves or air valves), gears, motors (eg electric motors or stepping motors), pistons, brakes, cables, ball screw assemblies, rack and pinion mechanisms, grippers, arms, pivot points, joints, translational elements, or It may include one or more elements such as other mechanical or electrical elements.
  • the structure supporting the discharging means may include one or more robot elements.
  • the structure supporting the discharge means may include a robot arm that can be freely displaced in the xy direction or the xy direction.
  • the mechanism that variably regulates the operating conditions of the discharge speed is not particularly limited to the Z-axis drive mechanism 73, and for example, a pump whose delivery pressure is variable by a control signal sent from a controller controlled by a computer or the like. It may be.
  • the means for collecting the filtered liquid containing the target cells is not particularly limited as long as it can temporarily accept the filtered liquid, and may be various containers or channels.
  • Examples of the container body as a means for collecting the filtered liquid containing the target cells include a centrifuge tube, a test tube, a beaker, a flask, a tube, a vial for freezing, a cell culture container (including a multi-well plate and a petri dish), and a nano.
  • Examples include micro / micro porous non-woven fabrics (filter paper), funnels, clock plates, cell counter plates, RNA recovery / purification kits, filtrate recovery spoons, and cell seeding reservoirs.
  • Examples of the material of the container include polystyrene, polypropylene, polyethylene, glass, acrylic, and the like. If it is necessary to observe the cells in the filtrate, polystyrene having excellent transparency is preferable.
  • the shape and size of the container are not particularly limited.
  • the cell production apparatus may further include means for variably regulating the liquid passage time of the cell filtration filter.
  • the liquid passing time in the present invention is the time required for the raw material liquid to pass through a certain point on the filtration filter.
  • the liquid passing time can be determined by changing the coordinates of the Z axis, changing the discharge speed, changing the linear velocity, the shape of the discharge means, the hole diameter of the discharge part, the number of discharge means, and the material and structure of the filtration filter. By changing to a filtration filter with different properties, it can be regulated variably. By regulating the liquid passing time, it is possible to improve the survival rate of the cells contained in the filtrate and improve the recovery rate of the cells contained in the filtrate.
  • the linear velocity in the present invention is the velocity of the content liquid when the raw material liquid passes through a certain point on the filtration filter.
  • the linear velocity may be appropriately set and set according to other conditions and is not limited to a specific numerical range.
  • the lower limit is 50 mm / sec or more, 500 mm / sec or more, 1000 mm / sec.
  • 3000 mm / sec or more is preferable, and the upper limit is preferably 5000 mm / sec or less.
  • the discharge rate is not limited to a specific numerical range as long as it is appropriately set and set according to other conditions, but for example, the lower limit is 2 ⁇ L / sec or more, 10 ⁇ L / sec or more, 100 ⁇ L /.
  • the material of the filtration filter is not particularly limited, and examples thereof include Polytetherafluoroethylene (PTFE), Polyvinylidene Fluoride (PVDF), and cellulose mixed ester.
  • PTFE Polytetherafluoroethylene
  • PVDF Polyvinylidene Fluoride
  • Examples of the structure of the filtration filter include a filter hole diameter, a pore diameter gradient, and a filter thickness.
  • the filter hole diameter has, for example, 0.1 ⁇ m or more, 0.2 ⁇ m or more, 0.4 ⁇ m or more, and 0.
  • the filtration filter may be given hydrophilic or hydrophobic properties, for example, by subjecting it to a surface treatment.
  • a surface treatment By applying a surface treatment to the early filtration filter, the wettability and water contact angle of the filter can be adjusted.
  • the water contact angle ⁇ is preferably larger than 1 ° and smaller than 80 °.
  • the water contact angle in the present invention refers to the angle at which the liquid surface forms the solid surface at the boundary line where the three phases come into contact when the solid surface is in contact with the liquid and the gas.
  • the filtration filter may be a single layer or a plurality of layers, and can be appropriately selected depending on the type and amount of the target cell and the raw material liquid.
  • the number of times of the discharge, the number of the discharge means (for example, the pipette tip 40) used, or the discharge is performed. It may have means for variably or non-variably regulating one or more additional operating conditions such as discharge pressure at the time of operation.
  • the number of discharges determines the amount of the raw material liquid discharged to the cell filtration filter when the maximum amount of the raw material liquid discharged at one time is determined. Therefore, by regulating the number of discharges, the amount of the raw material liquid discharged to the cell filtration filter can be set to be reproducible.
  • the number of means for discharging is useful when the production time of the target cell product is shortened when the discharge rate cannot be increased due to restrictions such as the type of target cells and desired performance (for example, survival rate). That is, by regulating the number of discharge means used, it is possible to set the discharge amount of the raw material liquid to the cell filtration filter per hour without depending on the discharge rate. Specific examples of the discharging means are as described above.
  • the discharge pressure can be variably regulated by changing the structure of the discharge means, the surface area of the tip portion, and the pressure of the pump of the device for controlling the discharge, for example, the pipette tip 40. By regulating the discharge pressure, the discharge speed can also be variably regulated.
  • the discharge pressure may be appropriately set according to the characteristics of the target cells contained in the raw material liquid, the viscosity and composition of the raw material liquid, and is not particularly limited. For example, the lower limit is 0.1 MPa or more, 0. 5 MPa and 1 MPa are preferable, and the upper limit of the discharge pressure is not particularly limited as long as the target cell does not cause cell death, but for example, 10 MPa or less and 5 MPa or less are preferable.
  • the characteristics of the target cell include, for example, resistance to shear stress.
  • the operating conditions of the coordinates for the filter that discharges may be variable and feedback control may be performed.
  • the cell manufacturing apparatus includes means for detecting the number of cells contained in the filtered liquid and means for adjusting the operating conditions based on the detection, in which the operating conditions of the coordinates are variable.
  • the number of cells contained in the filtered liquid is ideally proportional to the amount of the raw material liquid supplied to the cell filtration filter, but when the above-mentioned trap phenomenon occurs, the number of cells in the filtered liquid is compared with the amount of the raw material liquid supplied. It is accompanied by a phenomenon that the number of cells in the cell is difficult to increase.
  • the presence or absence and degree of the trap phenomenon can be estimated by detecting the number of cells contained in the filtered liquid, and if the operating conditions are adjusted during operation based on this, the prevention or deterioration of the trap phenomenon can be efficiently prevented.
  • Examples of the detection of the number of cells contained in the filtered liquid include a method of irradiating the filtered liquid in the container with measurement light from the inside or the outside of the container 30 and measuring the turbidity with a spectrophotometer.
  • the operating conditions are preferably adjusted in consideration of not only the number of cells contained in the filtered liquid but also the supply amount of the raw material liquid to the cell filtration filter, but the supply amount of the raw material liquid to the cell filtration filter. May be measured directly with a flow meter or the like, or may be calculated indirectly by measuring the supply time if the supply amount per unit time is constant.
  • the operating conditions of the coordinates are variable, and the means for detecting the accumulation of the filter matter in the coordinates with respect to the filter performing the discharge or the event correlating with the accumulation, and the operating conditions based on the detection. It is provided with a means for adjusting.
  • the presence or absence and degree of the trap phenomenon can be grasped by the detection, and if the operating conditions are adjusted during the operation based on the detection, the trap phenomenon can be effectively prevented or deteriorated.
  • the event that correlates with the accumulation of the filter in coordinates with respect to the filter is not particularly limited, and may be the presence or absence and size of the accumulated filter (reference numeral 5 in FIG. 2), the weight increase of the filter due to the accumulation, and the like. ..
  • the accumulated filter matter can be detected, for example, by imaging the surface of the filter continuously or at regular intervals and analyzing the image.
  • FIG. 4 is a diagram showing a flow of cell production according to an embodiment of the present invention.
  • the manufacturing apparatus may include means for attaching the cell filtration filter 11 to the opening of the container 30.
  • the device By mechanically mounting the filter by the device, not only the discharge and recovery steps, but also the effect that the previous filter mounting may have on the target cells should be eliminated, and the entire process should be performed in a clean environment. Is also possible.
  • the mounting means corresponds to the means 20 for gripping the support 12 for supporting the two or more cell filtration filters 11 or the container 30 and the means for transporting the gripped support 12 and corresponding to the two or more cell filtration filters 11. It may be provided with means for aligning the positions with the openings of the two or more containers 30. In order to increase the number of target cells in the filtered liquid while reducing the discharge amount of the raw material liquid per coordinate of the cell filtration filter 11, the number of cell filtering filters 11 is increased and the raw material liquid is applied to each filter 11 in parallel. It is useful to discharge.
  • the manufacturing apparatus may include means for detaching the cell filtration filter 11 from the opening of the container 30.
  • means for detaching the cell filtration filter 11 from the opening of the container 30 By mechanically removing the filter by the device, not only the discharge and recovery steps but also the effect that the subsequent removal of the filter can have on the target cells (for example, failure to mix the filter medium on the filter) is eliminated. However, it is also possible to carry out the entire process in a clean environment.
  • the cell filtration filter 11 is provided with a filtration membrane at the bottom of a tubular object having a collar. Two or more of the cell filtration filters 11 are inserted into holes substantially matching the cross-sectional shape of the tubular object, and are locked and supported by the support 12 by the collar portion.
  • the support 12 in this state is gripped by the cell filtration filter unit gripping arm 20 which is freely movable in each direction of the XYZ axes, and the upper position of the opening of the container 30 (determined by the X-axis and the Y-axis constituting the horizontal plane). And then to the height of the opening (Z-axis) of the container 30, and the cell filtration filter 11 is fitted into the opening. At this point, if the cell filtration filter 11 is perfectly and accurately aligned with the opening, the cell filtration filter 11 is mounted in the opening in the correct orientation (typically horizontal).
  • the filter 11 is caught on the edge of the opening of the container 30 during fitting and is mounted in an inclined state. Therefore, it is preferable to move the filter 11 finely in the horizontal direction while the cell filtration filter 11 is fitted to the opening of the container 30. As a result, the filter 11 that is not mounted in the correct posture is also correctly aligned while being finely moved, and the possibility that the filter 11 is mounted in the correct posture is increased.
  • the cell filtration filter 11 and the opening of the container 30 are aligned, and the cell filtration filter 11 is attached to the opening (ab). Since the alignment means itself is well known, the description thereof will be omitted.
  • the raw material liquid is discharged from the pipette tip 40 to each cell filtration filter 11 to perform filtration (c).
  • the pipette tip 40 there is one pipette tip 40 that discharges to the plurality of filters 11, but the number of pipette tips 40 can be appropriately set as described above.
  • the cell filtration filter unit gripping arm 20 is operated in the reverse procedure to the mounting operation described above to separate the cell filtration filter 11 from the opening of the container 30.
  • the support 12 in FIG. 4 supports two or more filters 11, two or more containers 30 may be supported.
  • the cell production apparatus may further include means for recovering target cells by solid-liquid separation from the collected filtered liquid.
  • means for recovering target cells by solid-liquid separation from the collected filtered liquid By mechanically performing the recovery process of the target cells by the apparatus, it is possible to eliminate the influence that the recovery step may have on the target cells and to perform all the steps in a clean environment.
  • the means for recovering the target cells by solid-liquid separation is not particularly limited, and examples thereof include centrifugation and sorting with hollow threads. Of these, centrifugation is preferred because it is simple and efficient.
  • the recovery means includes a means for closing the opening of the container and a means for applying a centrifugal force to the container with the closed opening so that the filtered liquid and the target cells do not flow out from the container in the process of centrifugation. Is preferable.
  • FIG. 5 shows the flow of cell production according to the embodiment of the present invention.
  • a gripping arm 22 similar to that shown in FIG. 4 moves the lid 50 from above the opening to bring it into close contact with the container 30 containing the filtrate containing the target cells 1, and closes the opening (a to b). ).
  • the lid 50 in FIG. 5 is a flat plate and has a sufficient area to cover the openings of a plurality of containers 30. From the viewpoint of closing the opening with high accuracy, it is preferable that the lid 50 is provided with a recess that substantially matches the outer shape of the opening, and the opening of the container 30 is fitted into the recess.
  • the target cells 1 are separated from the liquid component of the filtered liquid by means 60 for applying centrifugal force to the container 30 (b). If necessary, the washing liquid may be added to the target cells of the container 30 to disperse the cells, and the washing liquid may be removed by centrifugation again.
  • the pharmaceutically acceptable medium is not particularly limited as long as it is a solution used in human treatment, and for example, physiological saline solution, 5% dextrose solution, Ringer's solution, Ringer's lactate, Ringer's acetate solution, and the like. Examples include solution (No. 1 solution), dehydration replenishment solution (No. 2 solution), maintenance infusion solution (No. 3 solution), and postoperative recovery solution (No. 4 solution).
  • DMSO dimethyl methacrylate
  • glycerol polyethylene glycol
  • propylene glycol propylene glycol
  • glycerin polyvinylpyrrolidone
  • sorbitol dextran trehalose
  • HES dextran trehalose
  • the apparatus further refers to a database that stores data relating to the correspondence between the coordinates of the discharging filter and the recovery rate of target cells in the product, and the required database. Further means may be provided for selecting the operating conditions of the coordinates for achieving the recovery rate and for the discharging filter. By discharging by utilizing the stored correspondence data, the target cells can be recovered with a higher expected value and a required recovery rate.
  • the apparatus further stores data relating to the correspondence between the discharge rate and the survival rate of target cells in the product, and the means of selection is the required survival rate.
  • the operating conditions of the discharge rate for achieving the above may be selected.
  • the target cell is not particularly limited, and has properties (size and filter affinity) that can be separated from other components (cells and cell masses other than the target cell, cultured debris (cell debris), contaminants, etc.) by filter filtration. ) And may be any cell that requires isolation.
  • cells derived from all living organisms such as animals, plants, and insects or artificial cells can be mentioned, cells derived from animals, particularly cells derived from humans, are preferable because of the great need for the effects of the present invention.
  • cells collected from animal body fluids and tissues, artificially cancerous strained cells, and those obtained by culturing these cells in vitro are mentioned, and preferably collected from human body fluids and tissues.
  • Cells or cultured cells such as human bone marrow fluid, blood (including peripheral blood, G-CSF mobilized peripheral blood, etc.), umbilical cord blood, menstrual blood, adipose tissue, liver tissue, pancreatic tissue, heart tissue, Includes cells collected from nerve tissue, tumor tissue, etc. or cultured cells.
  • the colony forming cells are not particularly limited as long as they form colonies when the cells are cultured in vitro under arbitrary conditions, and examples thereof include progenitor cells and stem cells.
  • progenitor cells include progenitor cells such as vascular endothelial progenitor cells, neural progenitor cells, and hepatic progenitor cells.
  • stem cells include hematopoietic stem cells, mesenchymal stem cells or adipose-derived stem cells, somatic stem cells such as cancer stem cells, and pluripotent stem cells such as ES cells or iPS cells.
  • Adhesive colony-forming cells refer to cells that adhere to and proliferate on arbitrary scaffolds when the cells proliferate, such as vascular endothelial progenitor cells, neural progenitor cells, and hepatic progenitor cells. Examples thereof include progenitor cells, somatic stem cells such as mesenchymal stem cells and adipose-derived stem cells, and pluripotent stem cells such as ES cells and iPS cells, but the present invention is not particularly limited.
  • Non-adhesive (floating) colony-forming cells refer to cells that can proliferate without adhering to a scaffold when the cells proliferate, such as somatic stem cells such as cancer stem cells and neural stem cells. Examples thereof include pluripotent stem cells such as ES cells and iPS cells.
  • the target cell in the present invention may be a differentiated cell obtained by inducing differentiation of a pluripotent stem cell.
  • the differentiated cells include endoderm cells, mesoderm cells, ectoderm cells, and somatic cells.
  • Endodermal cells are tissues of organs such as the digestive tract, lungs, thyroid, pancreas, and liver, cells of secretory glands that open into the digestive tract, peritoneum, thoracic membrane, laryngeal, ear canal, trachea, bronchi, and urethra (bladder, It has the ability to differentiate into most of the urethra, part of the urethra, etc., and is commonly referred to as the germ layer (DE). Differentiation from pluripotent stem cells to endoderm cells can be confirmed by measuring the expression level of genes specific to endoderm cells. Examples of genes specific to endoderm cells include SOX17, FOXA2, CXCR4, AFP, GATA4, EOMES and the like.
  • Mesothelial cells include the mesothelium and the mesothelium, muscles, skeleton, cutaneous dermis, connective tissue, heart, blood vessels (including vascular endothelium), blood (including blood cells), lymph vessels, spleen, kidneys, which support the body cavity. It differentiates into the ureter and gonads (testis, uterus, gonad epithelium). Examples of genes specific to mesoderm cells include MESS1, MESS2, FOXF1, BRACHYURY, HAND1, EVX1, IRX3, CDX2, TBX6, MIXL1, ISL1, NSAI2, FOXC1 and PDGFR ⁇ .
  • Ectoderm cells include the epidermis of the skin and the epithelium of the terminal urinary tract of men, hair, nails, skin glands (including mammary glands and sweat glands), and sensory organs (including the epithelium of the oral cavity, pharynx, nose, and terminal end of the rectum. (Salivary gland) Form the crystalline lens. Some ectoderm cells invade into grooves during development to form neural tubes, and are also the source of neurons and melanocytes in the central nervous system such as the brain and spinal cord. It also forms the peripheral nervous system. Examples of genes specific to ectoderm cells include FGF5, OTX2, SOX1, PAX6 and the like.
  • somatic cells in the present invention are not particularly limited as long as they can induce differentiation from pluripotent stem cells and can exist in vivo, but for example, somatic stem cells (bone marrow, adipose tissue, dental pulp, placenta, etc.) Membranous stem cells, neural stem cells, etc.
  • glial cells derived from egg membrane, umbilical cord blood, sheep membrane, chorionic villi, etc.
  • nerve cells glial cells, oligodendrocytes, Schwan cells, myocardial cells, myocardial progenitor cells, hepatocytes, liver progenitor cells , ⁇ cells, ⁇ cells, fibroblasts, cartilage cells, corneal cells, vascular endothelial cells, vascular endothelial precursor cells, peri-cells, skeletal muscle cells, giant nuclei, hematopoietic stem cells, airway epithelial cells, germ cells, dendritic cells, Examples thereof include eosinophils, obese cells, T cells, erythropoietin-producing cells, intestinal epithelium, alveolar epithelial cells, kidney cells, etc., and the cells are in a gene-introduced form or a form in which a target gene on the genome is knocked down. It may be.
  • Cancer stem cells like stem cells, are pluripotent and have the ability to proliferate indefinitely, and are resistant to therapeutic agents.
  • the liquid contained in the raw material liquid containing the target cells is not particularly limited as long as it is a liquid exhibiting fluidity, and examples thereof include liquids such as physiological saline, buffer solution, medium, and washing solution.
  • a basal medium may be used, or an additive may be added to the basal medium.
  • the basal medium for example, Neurobasal medium, NeuroProgenitor Basal medium, NS-A medium, BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium EM medium, Medium , ⁇ MEM medium, DMEM medium, DMEM / F12 medium, ham medium, RPMI 1640 medium, Fisher's medium, and a mixed medium thereof, which are not particularly limited as long as they can be used for culturing animal cells.
  • a mixture of Neurobasal medium and DMEM / F12 is preferably used.
  • Additives are not particularly limited, but are serum, retinoic acid, Wnt, BMP, bFGF, EGF, HGF, Sonic hedgehog (Sh), neurotrophic factor family, insulin-like growth factor 1 (IGF1), amino acids, vitamins, inter. Examples thereof include substances necessary for cell proliferation or survival such as leukins, insulin, transferase, heparin, heparan sulfate, collagen, fibronectin, progesterone, selenite, B27-supplement, N2-supplement, ITS-supplement, and antibiotics. When culturing iN or iMN, retinoic acid, Sh, BDNF, GDNF, NT-3, B27-supplement and N2-supplement are preferably used. These additives may be added all at once, or may be changed stepwise according to the manufacturing process of the product containing the target cells.
  • the washing solution is not particularly limited as long as it can wash away cells, cell clumps, cultured debris (cell debris) and impurities to be removed, but for example, physiological saline, Ringer's solution, medium used for cell culture, phosphate buffer, etc. Examples include a general buffer solution of the above, or a solution obtained by adding serum or protein to these solutions.
  • the method for producing a cell product according to the present invention includes a step of producing a cell product using the cell production apparatus as described above.
  • the quality of the target cells to be recovered and the recovery rate thereof can be improved.
  • the method for producing a cell product may include a step of isolating cells from a tissue.
  • the method for producing a cell product may include a step of culturing cells.
  • the method for producing a cell product may include a step of mixing cultured cells with a pharmaceutically acceptable medium or medium to formulate the cells.
  • the method for producing a cell product may include a step of cryopreserving cultured cells or a formulated cell preparation.
  • suitable culturing conditions may be appropriately selected according to the type of cells, a conventional culturing method can be used, or new culturing conditions can be set.
  • the cell is not particularly limited as long as it can produce the target cell contained in the cell product, and examples thereof include the above-mentioned cell.
  • the steps that require filtration with a cell filtration filter are not particularly limited, but for example, a step of isolating cells from a tissue, a step of culturing cells, a formulation step, a cryopreservation step, a commercialization step, and a characteristic analysis of target cells.
  • a step of isolating cells from a tissue a tissue
  • a step of culturing cells a formulation step
  • a cryopreservation step a commercialization step
  • a characteristic analysis of target cells include gene analysis, RNA extraction, chromosome analysis, FACS, and intracellular metabolism analysis.
  • the server refers to a database that stores data relating to the correspondence between the coordinates of the filter for discharging and the recovery rate of target cells in the product, and the database to obtain the required recovery rate.
  • the database further stores data relating to the correspondence between the discharge rate and the viability of the target cell in the product, and the means of selection is the required said.
  • the means for selecting and transmitting the operating conditions of the discharge rate for achieving the survival rate may transmit the information to a cell manufacturing apparatus that variably regulates the discharge rate. By discharging using the stored correspondence data, it is possible to recover the target cells having the required survival rate with a higher expected value. Further, by centrally managing data on a server physically separated from the cell manufacturing apparatus serving as a terminal, the terminal of the cell manufacturing apparatus can be simplified.
  • the data in the database is classified according to the type of target cell and the type of filter. As a result, the required quality such as recovery rate and survival rate can be realized with higher expected values.
  • the server hardware is not particularly limited, and a conventionally known general-purpose server device can be used.
  • the cell manufacturing system includes an apparatus for manufacturing a product containing the above-mentioned target cells and the above-mentioned server.
  • the apparatus manufactures the product based on the operating conditions of the information transmitted from the server, and as a result, the discharge rate and the viability of the target cells in the product.
  • the actual data regarding the correspondence relationship between the above or the coordinates with respect to the filter performing the discharge and the correspondence relationship between the recovery rate of the target cells in the product is transmitted to the server, and the database additionally stores the actual data. Has a configuration. As the amount and type of data stored in the database increases, the accuracy of the operating conditions of coordinates or discharge rates recommended based on the data can continue to improve.
  • Example 1 In the cell filtration step, it was confirmed whether or not the cell recovery amount was affected by the coordinates with respect to the filter when the raw material liquid containing the iPS cells (target cells) was discharged to the cell filtration filter.
  • the coordinates of the filter in the plan view were changed, and the distance between the ejection means and the filter was fixed.
  • the experiment was carried out according to the following procedure. 1.
  • the frozen solution of iPS cells (RPC-SF-iM strain) was thawed in a constant temperature bath at 37 ° C. 2.
  • the thawed solution was diluted in 5 mL StemFit medium and centrifuged at 1500 rpm for 3 min. 3.
  • the iPS cells cell suspension (raw material liquid) was prepared in 950uL at a concentration of 1.44x10 5 cells / mL, on a cell strainer filter than the discharge means (pipette tip 40) Discharged.
  • the discharge rate of the cell suspension was set to either 100 ⁇ L / sec, 500 ⁇ L / sec, or 900 ⁇ L / sec.
  • the method of discharging the raw material liquid is as follows: (1) the total amount to one coordinate on the filter (cell strainer 100 ⁇ m mesh) as shown in FIG. 3 (b), and (2) on the filter as shown in FIG. 3 (c). Half amount to 2 coordinates (repeat twice), (3) 1/4 amount to 4 coordinates on the filter as shown in Fig. 3 (g) (however, 2 pipette tips 40 are used together and 2 coordinates The discharge is repeated twice at the same time). 4. Measure the number of cells and cell viability contained in the filtered liquid. 5. Based on the formula below, the ratio (%) of the number of cells captured by the filter (the number of uncollected target cells) to the number of uncollected cells was calculated.
  • the number and proportion of uncollected cells and the recovery rate of target cells changed significantly depending on the coordinates of the filter that discharges the raw material liquid (coordinates of the filter in the plan view). Specifically, it was found that by increasing the number of coordinates and reducing the discharge amount of the raw material liquid for each coordinate, the target cells captured on the filter decrease and the target cells contained in the filtered liquid increase. That is, it was found that the recovery rate of the target cells can be reproducibly improved by variably regulating the operating conditions of the coordinates.
  • Example 2 In the cell filtration step, it was confirmed whether or not the height at which the raw material liquid was discharged (the distance from the discharge port of the discharge means to the surface of the cell filtration filter) affected the target cells to be recovered.
  • the coordinates of the filter in the plan view were fixed, and the distance between the ejection means and the filter was changed.
  • the experiment was carried out according to the following procedure. That is, the raw material liquid (1.44x10 5 cells / mL) was prepared in the same manner as steps 1-3 of Example 1, the discharge means the same as that used from (pipette tip 40) in cell strainer filter (Example 1 ) Discharged on.
  • the discharge rate of the cell suspension was 900 ⁇ L / sec.
  • the height of the discharge port of the discharge means from the filter surface was set to 0 mm under condition 1, 20 mm under condition 2, and 100 mm under condition 3, and the raw material liquid was dropped to one place on the filter.
  • the total number of cells (recovery rate) in the filtered liquid, the survival rate of the target cells, and the number of the target cells that survive vary greatly depending on the distance from the discharge port of the discharge means to the surface of the cell filtration filter. It was. From this, it was found that the recovery rate and the survival rate of the target cells can be reproducibly improved by variably regulating the operating conditions of the coordinates (distance between the filter and the discharge position) with respect to the filter. It is presumed that the distance affects the linear velocity of the raw material liquid with respect to the filter, and as a result, affects the recovery rate and the survival rate of the target cells.
  • Example 3 In the cell filtration step, it was confirmed whether the discharge rate of the cell suspension affects the viability of the recovered cells.
  • the experiment was carried out according to the following procedure. 1. 1. That is, the raw material liquid (1.40 x 10 5 cells / mL) was prepared in the same manner as in steps 1 to 3 in Example 1, and 10 ⁇ L / sec, 100 ⁇ L / sec, 500 ⁇ L / sec, from the discharging means (pipette tip 40). The cells were discharged onto a cell filtration filter (same as that used in Example 1) at a discharge rate of 900 ⁇ L / sec and 2000 ⁇ L / sec. 2. 2. After collecting the filtered liquid, the total number of cells and the number of viable cells in the filtered liquid were measured, and the survival rate was calculated.
  • the total number of cells contained in the filtrate was substantially constant regardless of the discharge rate.
  • the cell viability was extremely high when the discharge rate was 500 ⁇ L / sec or less, but decreased when the discharge rate was 900 ⁇ L / sec or more. From this, it was found that the viability of the target cells and the yield of the surviving target cells can be reproducibly improved by variably regulating the discharge rate of the raw material liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Water Supply & Treatment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

To provide a cell production device, etc. whereby the qualities of target cells to be collected and yield thereof can be reproducibly improved. A device for producing a product containing target cells, said device comprising: a means for discharging a target cell-containing starting liquid material to a cell filtration filter; a means for collecting the target cell-containing filtrate obtained by the cell filtration filter; and a means for variably regulating the operating conditions of the coordinates for the filter that conducts the discharge. Preferably, this device further comprises a means for variably regulating the operation conditions of the discharge speed.

Description

細胞製造装置、細胞製造方法並びにこれに用いられるサーバ、システムおよび装置Cell manufacturing equipment, cell manufacturing methods, and servers, systems and equipment used for them.
 本発明は、細胞製造装置、細胞製造方法並びにこれに用いられるサーバ、システムおよび装置に関する。 The present invention relates to a cell manufacturing apparatus, a cell manufacturing method, and a server, a system, and an apparatus used therein.
 患者本人又は提供者の体液や組織から細胞を採取し、それらを培養にて増幅・加工して患部へ移植する治療、いわゆる再生医療・細胞医療は従来の技術では治療困難とされた疾患に対して新たな治療法を提供できる可能性があり、注目を集めている。(例えば、非特許文献1参照。)。上記に加え、患者本人又は提供者の体液や組織から細胞を採取し、それらを培養にて増幅・加工した細胞から疾患原因を解明し、新薬開発を行う個別化医療に向けた創薬研究も大変注目されている。 The treatment of collecting cells from the body fluids and tissues of the patient or the donor, amplifying and processing them in culture, and transplanting them to the affected area, so-called regenerative medicine and cell medicine, is for diseases that are difficult to treat with conventional technology. It has the potential to provide new treatments and is attracting attention. (See, for example, Non-Patent Document 1.). In addition to the above, we also conduct drug discovery research for personalized medicine that collects cells from the body fluids and tissues of the patient or the donor, elucidates the cause of the disease from the cells amplified and processed by culturing, and develops new drugs. It is receiving a lot of attention.
 上述した再生医療・細胞医療や個別化医療に向けた創薬研究で使用する細胞を含む製品の製造工程は複数工程に渡る。例えば、細胞を組織等から採取する工程、取得した細胞を培養して増幅させる工程(拡大培養)、細胞を培養して目的細胞へ加工する工程(分化誘導培養)等が挙げられるが、いずれの工程においても、対象とする細胞を回収する工程が必要である。
 例えば、細胞を組織等から採取する工程においては、組織中に含まれる夾雑物を組織から除去する必要がある。また、分化誘導培養時には、例えばES細胞やiPS細胞等の多能性幹細胞は、時間経過とともに細胞凝集塊を形成しつつ、様々な細胞へと分化誘導することが知られている。そのため、高純度の目的細胞を回収する為には、目的細胞から、それ以外の細胞や細胞塊、培養時に発生する細胞破片物(培養デブリスともいう)や夾雑物等を除去し、目的の細胞のみを回収する必要がある。
 一般的に、このような回収操作は、細胞懸濁液を濾過フィルタ等平膜型の細胞濾過分離器具で濾過することにより行われる。
The manufacturing process of products containing cells used in drug discovery research for regenerative medicine / cell medicine and personalized medicine described above spans multiple steps. For example, a step of collecting cells from a tissue or the like, a step of culturing and amplifying the obtained cells (expansion culture), a step of culturing cells and processing them into target cells (differentiation induction culture), etc. can be mentioned. Also in the process, a step of collecting the target cells is required.
For example, in the step of collecting cells from a tissue or the like, it is necessary to remove impurities contained in the tissue from the tissue. Further, it is known that during differentiation-inducing culture, pluripotent stem cells such as ES cells and iPS cells induce differentiation into various cells while forming cell aggregates over time. Therefore, in order to recover high-purity target cells, other cells, cell clusters, cell debris (also referred to as cultured debris), impurities, etc. generated during culture are removed from the target cells, and the target cells are removed. Only need to be recovered.
Generally, such a recovery operation is performed by filtering the cell suspension with a flat membrane type cell filtration / separation device such as a filtration filter.
 一方、近年、細胞を含む製品を効率的に製造すべく、細胞の播種、培地交換等の培養操作から製剤化、製品化までを機械化した装置が開発されている。
例えば特許文献1では、因子導入装置と、細胞塊作製装置と、初期化培養装置と、複数の細胞塊を拡大培養する拡大培養装置と、培地を補給する培地補給装置とを備え、幹細胞の樹立から拡大培養までをパッケージ化した製造装置が開示されている。
On the other hand, in recent years, in order to efficiently produce products containing cells, devices have been developed that mechanize from culture operations such as cell seeding and medium exchange to formulation and commercialization.
For example, in Patent Document 1, a factor introduction device, a cell mass preparation device, an initialization culture device, an expansion culture device for expanding and culturing a plurality of cell clusters, and a medium supply device for supplying a medium are provided to establish stem cells. A manufacturing apparatus that packages from to expanded culture is disclosed.
特開2017-221187号公報Japanese Unexamined Patent Publication No. 2017-22187
 特許文献1では、死細胞塊を除去することを目的として送液路にフィルタが設けられている。しかしながら、送液路に設けられたフィルタによって、培養液から死細胞塊を除去し、目的細胞のみを分離しようとする場合、前記培養液をフィルタの全面に一度に適用するため、前記フィルタの内部に培養デブリスや夾雑物、死細胞塊が沈着し、目詰まりする。そのため、目的の細胞のみを効率的に回収することができず、回収率や回収効率が著しく低下する。また、回収率を向上させようと、培養液の送液速度を上げると、フィルタと細胞とが衝突する際のダメージも大きくなり、細胞死が起こり、回収した目的細胞の品質が低下する。
 従って、本発明は、回収される目的細胞の回収率や品質を改善する細胞製造装置、細胞製造方法並びにこれに用いられるサーバ、システムおよび装置を提供することを課題とする。
In Patent Document 1, a filter is provided in the liquid feeding path for the purpose of removing dead cell clumps. However, when the dead cell mass is removed from the culture solution and only the target cells are to be separated by the filter provided in the liquid feeding path, the culture solution is applied to the entire surface of the filter at once, so that the inside of the filter is used. Cultured debris, contaminants, and dead cell clumps are deposited and clogged. Therefore, it is not possible to efficiently recover only the target cells, and the recovery rate and recovery efficiency are significantly lowered. Further, if the feeding rate of the culture solution is increased in order to improve the recovery rate, the damage when the filter and the cells collide with each other increases, cell death occurs, and the quality of the recovered target cells deteriorates.
Therefore, it is an object of the present invention to provide a cell production apparatus, a cell production method, and a server, a system, and an apparatus used for the cell production apparatus and the cell production method for improving the recovery rate and quality of the target cells to be recovered.
 本発明者らは、上記課題を解決するために鋭意検討および研究を行った結果、細胞濾過フィルタへの原料液体の吐出を行うフィルタに対する座標が目的細胞の生存率や収率に影響を与えることを見出し、本発明を完成するに至った。 As a result of diligent studies and researches to solve the above problems, the present inventors have found that the coordinates of the filter for discharging the raw material liquid to the cell filtration filter affect the viability and yield of the target cells. The present invention has been completed.
 すなわち、上記課題を解決する本発明は、目的細胞を含む製品を製造する装置であって、目的細胞を含む原料液体を細胞濾過フィルタへ吐出する手段と、前記細胞濾過フィルタによって得られた目的細胞を含む濾過液体を回収する手段と、前記吐出を行うフィルタに対する座標の動作条件を可変的に規制する手段と、を備える装置である。 That is, the present invention that solves the above problems is an apparatus for producing a product containing a target cell, which is a means for discharging a raw material liquid containing the target cell to a cell filtration filter and a target cell obtained by the cell filtration filter. It is a device including means for collecting the filtered liquid containing the above-mentioned material and means for variably regulating the operating conditions of the coordinates with respect to the filter for discharging.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、前記吐出の速度の動作条件を可変的に規制する手段と、を更に備える装置が示される。 In one embodiment of an apparatus for producing a product containing a target cell according to the present invention, an apparatus further comprising means for variably regulating the operating conditions of the discharge rate is shown.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、また前記細胞濾過フィルタの通液時間を可変的に規制する手段と、を更に備える装置が示される。 In one embodiment of an apparatus for producing a product containing a target cell according to the present invention, an apparatus further comprising means for variably regulating the liquid passing time of the cell filtration filter is shown.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、また、前記吐出の回数、前記吐出をする手段の使用本数および吐出圧力からなる群より選ばれる1以上の追加動作条件を可変的または非可変的に規制する手段と、を更に備える装置が示される。 In one embodiment of the apparatus for producing a product containing the target cells according to the present invention, one or more additional operating conditions selected from the group consisting of the number of times of the discharge, the number of the means for discharging and the discharge pressure. A device further comprising means for variably or non-variably regulating.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、前記動作条件が可変であり、前記装置が、濾過液体中に含まれる細胞数を検知する手段と、前記検知に基づき前記動作条件を調節する手段と、を更に備える装置が示される。 In one embodiment of an apparatus for producing a product containing a target cell according to the present invention, the operating conditions are variable, and the apparatus detects the number of cells contained in the filtered liquid and based on the detection. A device further comprising means for adjusting the operating conditions is shown.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、前記動作条件が可変であり、前記装置は、前記吐出を行うフィルタに対する座標における濾物の蓄積またはそれに相関する事象を検知する手段と、前記検知に基づき前記動作条件を調節する手段と、を更に備える装置が示される。 In one embodiment of an apparatus for producing a product containing a target cell according to the present invention, the operating conditions are variable, and the apparatus causes the accumulation of filters in coordinates with respect to the discharging filter or an event correlating therewith. An apparatus further comprising a means for detecting and a means for adjusting the operating condition based on the detection is shown.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、前記細胞濾過フィルタを、前記濾過液体を回収する容器の開口部に装着する手段を更に備える装置が示される。 In one embodiment of an apparatus for producing a product containing a target cell according to the present invention, an apparatus further comprising means for attaching the cell filtration filter to the opening of a container for collecting the filtered liquid is shown.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、前記装着する手段は、2以上の前記細胞濾過フィルタまたは前記容器を支持する支持体を把持する手段と、前記把持した支持体を搬送し、前記2以上の細胞濾過フィルタと前記容器の開口部との位置をあわせる手段と、を備える装置が示される。 In one embodiment of an apparatus for producing a product containing a target cell according to the present invention, the mounting means is a means for gripping two or more of the cell filtration filters or a support for supporting the container, and the gripping means. A device comprising a means of transporting a support and aligning the two or more cell filtration filters with an opening of the container is shown.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、前記細胞濾過フィルタを、前記濾過液体を回収する容器の開口部から離脱する手段を更に備える装置が示される。 In one embodiment of an apparatus for producing a product containing a target cell according to the present invention, an apparatus further comprising means for removing the cell filtration filter from the opening of a container for collecting the filtered liquid is shown.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、前記濾過液体から固液分離で目的細胞を回収する手段を更に備える装置がさらに示される。 In one embodiment of an apparatus for producing a product containing a target cell according to the present invention, an apparatus further comprising a means for recovering the target cell by solid-liquid separation from the filtered liquid is further shown.
 本発明に係る目的細胞を含む製品を製造する装置の一実施形態においては、前記固液分離が遠心分離であり、前記回収する手段は、前記濾過液体を回収した容器の開口部を閉鎖する手段と、前記容器に対して遠心力を負荷する手段と、を備える装置が示される。 In one embodiment of the apparatus for producing a product containing the target cells according to the present invention, the solid-liquid separation is centrifugal separation, and the collecting means is a means for closing the opening of the container in which the filtered liquid is collected. And a device comprising means for applying centrifugal force to the container.
 上記課題を解決する本発明は、また上述した目的細胞を含む製品を製造する装置を用い、前記製品を製造する方法である。 The present invention that solves the above-mentioned problems is a method for manufacturing the above-mentioned product by using the above-mentioned apparatus for manufacturing the product containing the target cell.
 上記課題を解決する本発明は、前記吐出を行うフィルタに対する座標と、前記製品における目的細胞の回収率との対応関係、に関するデータを記憶するデータベースと、前記データベースを参照して、所要の前記回収率を達成するための前記吐出を行うフィルタに対する座標の動作条件を選択する手段と、前記選択した動作条件の情報を上述した目的細胞を含む製品を製造する装置に送信する手段と、を備えるサーバである。 The present invention, which solves the above-mentioned problems, refers to a database that stores data relating to the correspondence between the coordinates of the discharging filter and the recovery rate of the target cells in the product, and the required recovery by referring to the database. A server including means for selecting operating conditions of coordinates for the filter performing the ejection for achieving the rate, and means for transmitting information on the selected operating conditions to the device for manufacturing a product containing the target cells described above. Is.
 本発明に係るサーバの一実施形態においては、前記データベースは、前記吐出の速度と、前記製品における目的細胞の生存率との対応関係に関するデータをさらに記憶し、前記選択する手段は、所要の前記生存率を達成するための前記吐出の速度の動作条件を選択し、前記送信する手段は、前記情報を上述した目的細胞を含む製品を製造する装置に送信するものであるサーバが示される。 In one embodiment of the server according to the invention, the database further stores data relating to the correspondence between the discharge rate and the viability of the target cell in the product, and the means of selection is the required said. The means for selecting and transmitting the operating conditions of the discharge rate for achieving the survival rate is indicated by a server that transmits the information to the device for manufacturing the product containing the target cells described above.
 上記課題を解決する本発明は、上述した目的細胞を含む製品を製造する装置と、上述したサーバとを備えるシステムである。 The present invention that solves the above-mentioned problems is a system including the above-mentioned apparatus for manufacturing a product containing a target cell and the above-mentioned server.
 上記システムの一実施形態においては、前記装置は、前記サーバから送信された情報の動作条件に基づき前記製品を製造し、その結果としての、前記吐出の速度と、前記製品における目的細胞の生存率との対応関係、または前記吐出を行うフィルタに対する座標と、前記製品における目的細胞の回収率との対応関係、に関する実績データを前記サーバへ送信し、前記データベースは、前記実績データを追加的に記憶するシステムが示される。 In one embodiment of the system, the apparatus manufactures the product based on operating conditions of information transmitted from the server, resulting in the rate of discharge and the survival rate of the target cells in the product. The actual data regarding the correspondence relationship with the server or the correspondence relationship between the coordinates for the filter performing the discharge and the recovery rate of the target cells in the product is transmitted to the server, and the database additionally stores the actual data. The system to do is shown.
 上記装置の一実施形態においては、前記吐出を行うフィルタに対する座標と、前記製品における目的細胞の回収率との対応関係、に関するデータを記憶するデータベースと、前記データベースを参照して、所要の前記回収率を達成するための及び前記吐出を行うフィルタに対する座標の動作条件を選択する手段をさらに備える装置が示される。 In one embodiment of the above apparatus, the required recovery is performed with reference to a database that stores data relating to the correspondence between the coordinates of the discharging filter and the recovery rate of the target cells in the product, and the database. A device further provided with means for selecting the operating conditions of the coordinates for achieving the rate and for the discharging filter is shown.
 上記装置の一実施形態においては、さらに、前記データベースは、前記吐出の速度と、前記製品における目的細胞の生存率との対応関係に関するデータをさらに記憶し、前記選択する手段は、所要の前記生存率を達成するための前記吐出の速度の動作条件を選択する装置が示される。 In one embodiment of the apparatus, the database further stores data relating to the correspondence between the rate of discharge and the viability of the target cell in the product, and the means of choice is the required survival. An apparatus is shown which selects the operating conditions of the discharge rate to achieve the rate.
 本発明によれば、細胞濾過フィルタへの原料液体の吐出を行うフィルタに対する座標の動作条件を可変的に規制することで、目的細胞の生存率や回収率を向上しながら作業効率を最大化することができる。 According to the present invention, the working efficiency is maximized while improving the survival rate and recovery rate of the target cells by variably regulating the operating conditions of the coordinates for the filter that discharges the raw material liquid to the cell filtration filter. be able to.
本発明の一実施形態に係る細胞製造装置の斜視図である。It is a perspective view of the cell production apparatus which concerns on one Embodiment of this invention. 細胞濾過フィルタ上への原料液体の吐出を行う際の様子および動作を模式的に示す図である。It is a figure which shows typically the state and operation at the time of discharging a raw material liquid on a cell filtration filter. 本発明の細胞製造装置の一実施形態において、原料液体が吐出される濾過フィルタに対する座標に対応し、原料液体が適用されるフィルタ上の場所の例を模式的に示す図である。In one embodiment of the cell manufacturing apparatus of the present invention, it is a figure schematically showing an example of a place on a filter to which a raw material liquid is applied, corresponding to coordinates with respect to a filtration filter from which the raw material liquid is discharged. 本発明の一実施形態に係る細胞製造の流れを示す図である。It is a figure which shows the flow of cell production which concerns on one Embodiment of this invention. 本発明の一実施形態に係る細胞製造の流れを示す図である。It is a figure which shows the flow of cell production which concerns on one Embodiment of this invention.
 以下、本発明の実施形態に基づき詳細に説明する。 Hereinafter, a detailed description will be given based on the embodiment of the present invention.
(細胞製造装置)
 本発明に係る細胞製造装置は、目的細胞を含む製品を製造する装置であって、目的細胞を含む原料液体を細胞濾過フィルタへ吐出する手段と、前記細胞濾過フィルタによって得られた目的細胞を含む濾過液体を回収する手段と、前記吐出を行うフィルタに対する座標の動作条件を可変的に規制する手段と、を備える。
(Cell manufacturing equipment)
The cell manufacturing apparatus according to the present invention is an apparatus for producing a product containing target cells, and includes means for discharging a raw material liquid containing target cells to a cell filtration filter and target cells obtained by the cell filtration filter. A means for collecting the filtered liquid and a means for variably regulating the operating conditions of the coordinates with respect to the filter for discharging the filtered liquid are provided.
 本明細書において、吐出を行うフィルタに対する「座標」とは、吐出手段から原料液体が吐出される場所の、フィルタに対する相対的な位置を意味する。簡便には、フィルタを平面視したときの平面内の第1軸をX軸、第1軸と交わる平面内の第2軸をY軸とした場合に、このX軸座標とY軸座標とで表される座標を含んでよい。また、座標は、吐出手段により原料液体が吐出開始する場所と、フィルタ表面との距離(前記平面に対する直行方向であるZ軸の座標)を含んでもよい。 In the present specification, the "coordinates" with respect to the filter for discharging means the position of the place where the raw material liquid is discharged from the discharging means relative to the filter. Simply, when the first axis in the plane when the filter is viewed in a plane is the X axis and the second axis in the plane intersecting the first axis is the Y axis, the X-axis coordinates and the Y-axis coordinates are used. It may include the coordinates represented. Further, the coordinates may include the distance between the place where the raw material liquid is discharged by the discharging means and the surface of the filter (the coordinates of the Z axis which is the orthogonal direction with respect to the plane).
 座標の動作条件を「可変的に規制する」とは、複数の座標を選択可能であり、かつ、座標が再現性なくランダムに変化しなければ足り、幅をもった再現性を許容する。また、装置の動作前または動作中に複数の座標を設定可能であれば足り、必ずしも動作中に座標が可変(典型的にはフィードバック制御)でなくてもよい。
 このため、原料液体を吐出する手段の可動域を機械構造的または機械電気制御的に制約し、かつ上記相対位置を複数通りに決定することができればよい。
To "variably regulate" the operating conditions of the coordinates, it is sufficient that a plurality of coordinates can be selected and the coordinates do not change randomly without reproducibility, and reproducibility with a width is allowed. Further, it is sufficient if a plurality of coordinates can be set before or during the operation of the device, and the coordinates do not necessarily have to be variable (typically feedback control) during the operation.
Therefore, it suffices that the range of motion of the means for discharging the raw material liquid is restricted mechanically or mechanically by electrical control, and the relative positions can be determined in a plurality of ways.
 本発明の細胞製造装置は、上流側より供給される目的細胞を含む原料液体を、細胞濾過フィルタへ吐出する手段と、前記細胞濾過フィルタによって得られた目的細胞を含む濾過液体を回収する手段と、前記吐出を行うフィルタに対する座標の動作条件を可変的に規制する手段とを有する限り、その前後における機構、構成等は任意である。 The cell manufacturing apparatus of the present invention comprises a means for discharging a raw material liquid containing target cells supplied from the upstream side to a cell filtration filter, and a means for collecting a filtered liquid containing target cells obtained by the cell filtration filter. As long as there is a means for variably regulating the operating conditions of the coordinates with respect to the filter that performs the discharge, the mechanism, configuration, etc. before and after that are arbitrary.
 例えば、原料液体は、手作業あるいは自動培養装置等において調製されてよい。 For example, the raw material liquid may be prepared manually or in an automatic incubator or the like.
 自動培養装置は、通常は手作業によっておこなう細胞培養操作の全部または一部を、機械または器具で代替することにより自動または半自動的に行う装置のことを指す。細胞培養操作とは、例えば培地の交換や細胞回収、洗浄の操作等が挙げられる。具体例としては、例えば、Aastrom Replicell System(Aastrom Bioscience社製)、また、特開2004-344128、特開2004-89095、特開2001-275659により開示されている培養装置等が挙げられる。 The automatic culture device refers to a device that automatically or semi-automatically performs all or part of the cell culture operation that is normally performed manually by substituting a machine or an instrument. Examples of the cell culture operation include a medium exchange, cell recovery, and washing operation. Specific examples include, for example, Aastrom Replicell System (manufactured by Aastrom Bioscience), and culture devices disclosed by JP-A-2004-344128, JP-A-2004-89095, and JP-A-2001-275569.
 図1は本発明の一実施形態に係る細胞製造装置の斜視図である。
 目的細胞を含む原料液体を細胞濾過フィルタ11へ吐出する手段として、分注ピペット先端に装着されたピペットチップ40が設けられており、ピペットチップ40の下方には細胞濾過フィルタ11、さらにその下方には目的細胞を含む濾過液体を回収する手段として容器30が設けられている。
FIG. 1 is a perspective view of a cell manufacturing apparatus according to an embodiment of the present invention.
A pipette tip 40 attached to the tip of the dispensing pipette is provided as a means for discharging the raw material liquid containing the target cells to the cell filtration filter 11, a cell filtration filter 11 below the pipette tip 40, and a cell filtration filter 11 below the pipette tip 40. Is provided with a container 30 as a means for collecting the filtered liquid containing the target cells.
 X軸駆動機構71、Y軸駆動機構72及びZ軸駆動機構73からなるヘッド駆動装置70(この図ではZ軸駆動機構73)に、図示しない原料液体源に連通された分注ヘッド42が固定され、さらにこの分注ヘッド42の先端にピペットチップ40が着脱可能に固定されている。また、細胞濾過フィルタ11がX軸およびY軸の平面に対し平行、この実施形態では水平に設置されている。 A dispensing head 42 communicated with a raw material liquid source (not shown) is fixed to a head drive device 70 (Z-axis drive mechanism 73 in this figure) including an X-axis drive mechanism 71, a Y-axis drive mechanism 72, and a Z-axis drive mechanism 73. Further, the pipette tip 40 is detachably fixed to the tip of the dispensing head 42. Further, the cell filtration filter 11 is installed parallel to the planes of the X-axis and the Y-axis, and horizontally in this embodiment.
 ここで、X軸駆動機構71およびY軸駆動機構72が互いに摺動可能に連結されているから、ピペットチップ40の先端の軌道、並びにピペットチップ40の先端のフィルタに対する相対位置が再現可能に制約される。この結果、ピペットチップ40から原料液体が自然落下して適用されるフィルタに対する座標の動作条件が、可変的に規制されている。このように、本実施形態では、X軸駆動機構71およびY軸駆動機構72が規制手段に対応する。 Here, since the X-axis drive mechanism 71 and the Y-axis drive mechanism 72 are slidably connected to each other, the trajectory of the tip of the pipette tip 40 and the relative position of the tip of the pipette tip 40 with respect to the filter are restricted to be reproducible. Will be done. As a result, the operating conditions of the coordinates with respect to the filter to which the raw material liquid naturally falls from the pipette tip 40 are variably regulated. As described above, in the present embodiment, the X-axis drive mechanism 71 and the Y-axis drive mechanism 72 correspond to the regulatory means.
 前記目的細胞を含む原料液体を細胞濾過フィルタ11へ吐出する手段としては、上述した分注ピペットに限定されず、フィルタや濾液を回収する容器の大きさに応じて適当な吐出手段を用いればよく、ピペット、マイクロピペット、注射器等が挙げられる。吐出手段の吐出部分の口径は、原料液体を吐出することが出来れば特に限定されないが、内径が例えば下限としては、0.03mm以上、0.05mm以上、0.15mm以上、0.56mm以上、1.00mm以上、2.50mm以上が好ましく、上限としては、8.00mm以下、5.00mm以下、4.00mm以下が好ましい。 The means for discharging the raw material liquid containing the target cells to the cell filtration filter 11 is not limited to the above-mentioned dispensing pipette, and an appropriate discharging means may be used according to the size of the filter or the container for collecting the filtrate. , Pipettes, micropipettes, syringes and the like. The diameter of the discharge portion of the discharge means is not particularly limited as long as the raw material liquid can be discharged, but the inner diameter is, for example, 0.03 mm or more, 0.05 mm or more, 0.15 mm or more, 0.56 mm or more as the lower limit. It is preferably 1.00 mm or more and 2.50 mm or more, and the upper limit is preferably 8.00 mm or less, 5.00 mm or less, and 4.00 mm or less.
 図2は、細胞濾過フィルタ上への原料液体の吐出を行う際の様子および動作を模式的に示す。細胞濾過フィルタ11上へピペットチップ40より原料液体の吐出を行うと、細胞濾過フィルタ11を通過した目的細胞を含む濾過液体が容器30内に回収される(a)。このとき、細胞濾過フィルタ11は、基本的に、目的細胞を通過させる一方、それ以外の細胞や細胞塊、デブリス、夾雑物等を通過させずに濾別するように設計される。しかし、フィルタ11上のある箇所への原料液体の吐出量が増すにつれ、当該座標に対応するフィルタ11の場所での濾物5が大型化し、通過させるべき目的細胞をもトラップし始める(b)ことを、本発明者は見出した。
 このトラップ現象は、目的細胞の回収率を低下する要因である。本発明では、フィルタ11に対するピペットチップ40の相対位置を可変化することで、フィルタ11の一場所あたりの原料液体の吐出量を低減して、上記トラップ現象を抑制する。さらに、上記相対位置の可変化を再現可能に制約し、吐出を行うフィルタ11に対する座標の動作条件を可変的に規制することで、トラップ現象を再現可能に抑制し、目的細胞の回収率を向上させる。
FIG. 2 schematically shows a state and an operation when the raw material liquid is discharged onto the cell filtration filter. When the raw material liquid is discharged from the pipette tip 40 onto the cell filtration filter 11, the filtered liquid containing the target cells that have passed through the cell filtration filter 11 is collected in the container 30 (a). At this time, the cell filtration filter 11 is basically designed to allow cells of interest to pass through, while filtering out other cells, cell clumps, debris, impurities, etc. without passing through. However, as the amount of the raw material liquid discharged to a certain place on the filter 11 increases, the filter medium 5 at the place of the filter 11 corresponding to the coordinates becomes larger and begins to trap the target cells to be passed (b). The present inventor has found that.
This trap phenomenon is a factor that reduces the recovery rate of target cells. In the present invention, by varying the relative position of the pipette tip 40 with respect to the filter 11, the discharge amount of the raw material liquid per place of the filter 11 is reduced, and the trap phenomenon is suppressed. Further, by restricting the variability of the relative position to be reproducible and variably restricting the operating conditions of the coordinates with respect to the filter 11 for discharging, the trap phenomenon is suppressed reproducibly and the recovery rate of the target cells is improved. Let me.
 座標の数が多くなると、一座標あたりの原料液体の適用量が低減して目的細胞の回収率が改善する。一方で、座標の数が多くなると、原料液体の吐出手段の個数の増加、吐出手段の位置を再現可能に変動させるために稼働条件が複雑化するという不利益が生じ得る。そこで、フィルタに対する座標の動作条件の可変的な規制の仕方については、特に限定されず、目的細胞の回収率と、装置構成や稼働条件の簡便さを総合的に考慮して適宜設定すればよい。 As the number of coordinates increases, the amount of raw material liquid applied per coordinate decreases and the recovery rate of target cells improves. On the other hand, when the number of coordinates is large, there may be disadvantages that the number of raw material liquid discharging means is increased and the operating conditions are complicated because the position of the discharging means is reproducibly changed. Therefore, the method of variably regulating the operating conditions of the coordinates with respect to the filter is not particularly limited, and may be appropriately set by comprehensively considering the recovery rate of the target cells and the simplicity of the device configuration and operating conditions. ..
 図3は、本発明の細胞製造装置の一実施形態において、原料液体が吐出される濾過フィルタに対する座標に対応し、原料液体が適用されるフィルタ上の場所の例を模式的に示す。なお、図3(b)~(k)および前述した図2(c)において、中実の丸印は、原料液体が適用されるフィルタ上の場所(座標)を図示するための仮想上の印である。
 フィルタの平面視平面での座標(フィルタ上の場所)の数は特に限定されないが、前記座標の数の下限としては、1箇所以上であり、好ましくは例えば、2箇所以上、3箇所以上である。また、前記座標の数の上限としては、特に限定されないが、例えば20箇所以下、15箇所以下、10箇所以下である。なお、後述のフィルタと吐出手段との距離(Z軸の座標)の数が2通り以上である場合、フィルタの平面視平面での座標(フィルタ上の場所)の数は1箇所であってもよいし、2箇所以上であってもよい。他方、後述のフィルタと吐出手段との距離(Z軸の座標)の数が1通りである場合、フィルタの平面視平面での座標(フィルタ上の場所)の数は2箇所以上である。
FIG. 3 schematically shows an example of a location on the filter to which the raw material liquid is applied, corresponding to the coordinates with respect to the filtration filter from which the raw material liquid is discharged in one embodiment of the cell manufacturing apparatus of the present invention. In FIGS. 3 (b) to 3 (k) and FIG. 2 (c) described above, the solid circles are virtual marks for illustrating the location (coordinates) on the filter to which the raw material liquid is applied. Is.
The number of coordinates (locations on the filter) in the plan view of the filter is not particularly limited, but the lower limit of the number of coordinates is one or more, preferably two or more, or three or more. .. The upper limit of the number of coordinates is not particularly limited, but is, for example, 20 or less, 15 or less, and 10 or less. When the number of distances (Z-axis coordinates) between the filter and the discharging means described later is two or more, even if the number of coordinates (locations on the filter) in the plan view plane of the filter is one. It may be two or more places. On the other hand, when the number of distances (Z-axis coordinates) between the filter and the discharging means described later is one, the number of coordinates (locations on the filter) in the plan view plane of the filter is two or more.
 座標同士は、互いに離間していてもよい(間隔は等間隔でも、不等間隔でもよい)し、隣接または結合していてもよい。なお、本明細書において、吐出手段の意図的でない微動(技術的に制動しきれない微動)に起因する吐出開口の微動は、座標の相違とは扱われない。具体的には、互いに隣接または結合する座標は、互いに離隔していないが、フィルタの平面視平面での座標については、ピペットチップ40(吐出手段の一例)の吐出開口が移動した軌道の面積がピペットチップ40の吐出開口面積の2倍以上である限りにおいて、本発明では2箇所以上とみなす(換言すると、ピペットチップ40の吐出開口が移動した軌道の面積がピペットチップ40の吐出開口面積の2倍未満の場合、座標数は1個とみなす)。また、座標の配置も特に限定されず、対称(点対称、または線対称)でも、非対称でもよいし、整列していてもそうでなくてもよい。 The coordinates may be separated from each other (the intervals may be equal or unequal), and may be adjacent or connected. In the present specification, the fine movement of the discharge opening caused by the unintentional fine movement of the discharge means (the fine movement that cannot be technically braked) is not treated as the difference in coordinates. Specifically, the coordinates adjacent to or connected to each other are not separated from each other, but the coordinates in the plan view of the filter are the area of the orbit to which the discharge opening of the pipette tip 40 (an example of the discharge means) has moved. As long as it is at least twice the discharge opening area of the pipette tip 40, it is considered to be two or more points in the present invention (in other words, the area of the trajectory to which the discharge opening of the pipette tip 40 has moved is 2 of the discharge opening area of the pipette tip 40. If it is less than double, the number of coordinates is considered to be one). Further, the arrangement of the coordinates is not particularly limited, and may be symmetric (point symmetric or line symmetric), asymmetric, aligned or not.
 原料液体の吐出の仕方も、特に限定されず、吐出速度が一定または不一定のいずれでもよく、間欠または連続のいずれでもよい。また、ピペットチップ40 1本あたり2カ所以上の座標で吐出を行う場合、ピペットチップ40が座標間を移動することになるが、そのときの吐出速度は、座標に位置する時(または停止時)と座標間に位置する時(または移動時)とで同じでも異なってもよい(座標間に位置または移動時は吐出しなくてもよい)。例えば図3(j)、(k)は、中実の丸印で表される座標同士の間でのピペットチップ40の移動軌道として、ジグザグ形、渦巻き形を示すが、丸印で表される座標に位置する時と、座標間に位置する時とで、吐出速度が同じでも異なってもよい(座標間に位置する時には吐出しなくてもよい)。 The method of discharging the raw material liquid is not particularly limited, and the discharge rate may be constant or non-constant, and may be intermittent or continuous. In addition, when discharging at two or more coordinates per pipette tip 40, the pipette tip 40 moves between the coordinates, but the discharge speed at that time is when it is located at the coordinates (or when it is stopped). It may be the same or different when it is located between the coordinates (or when it is moved) (it is not necessary to discharge when it is positioned or moved between the coordinates). For example, FIGS. 3 (j) and 3 (k) show a zigzag shape and a spiral shape as the movement trajectory of the pipette tip 40 between the coordinates represented by the solid circles, which are represented by the circles. The discharge rate may be the same or different depending on whether it is located at the coordinates or between the coordinates (it is not necessary to discharge when it is located between the coordinates).
 図1に戻って、Z軸駆動機構73は、Y軸駆動機構72に対して(ただし、X軸駆動機構71に対して、でも構わない)摺動可能に連結されており、ピペットチップ40の先端と細胞濾過フィルタ11との距離(Z軸の座標)を再現可能に調整することができる。これにより、フィルタ11に適用される時の原料液体の線速度が再現可能に調整され、濾過液体中の目的細胞の回収率および生存率等の品質(特に生存率)を再現可能に改善し得る。なお、傾向としては、距離をある程度あけることで、フィルタへの原料液体の自然落下中に線速度が低下する。このように、Z軸駆動機構73は、フィルタに対する座標を可変的に規制する手段でもあり、かつ、吐出の速度の動作条件を可変的に規制する手段(後述)の一例でもある。 Returning to FIG. 1, the Z-axis drive mechanism 73 is slidably connected to the Y-axis drive mechanism 72 (however, it may be to the X-axis drive mechanism 71), and the pipette tip 40 The distance (Z-axis coordinates) between the tip and the cell filtration filter 11 can be adjusted reproducibly. As a result, the linear velocity of the raw material liquid when applied to the filter 11 can be reproducibly adjusted, and the quality (particularly the survival rate) such as the recovery rate and the survival rate of the target cells in the filtered liquid can be reproducibly improved. .. The tendency is that the linear velocity decreases during the free fall of the raw material liquid into the filter by increasing the distance to some extent. As described above, the Z-axis drive mechanism 73 is also a means for variably regulating the coordinates with respect to the filter, and is also an example of a means (described later) for variably regulating the operating conditions of the discharge speed.
 本実施形態では、XY座標が2通り以上であり得るため、フィルタと吐出手段との距離(Z軸の座標)の数は、特に限定されず、1通りであってもよいし、2通り以上であってもよい。 In the present embodiment, since the XY coordinates can be two or more, the number of distances (Z-axis coordinates) between the filter and the discharge means is not particularly limited, and may be one or two or more. It may be.
 好ましい一実施形態では、このような規制手段は、ピペットチップ40等の吐出する手段により吐出を行うフィルタに対する座標を移動させるようにプログラムされたコンピュータによって制御される。また、別の一実施形態では、このような規制手段は、手動で操作される。例えば、完全閉鎖系の自動培養装置において、前記吐出手段および記細胞濾過フィルタが組み込まれている場合、目的細胞を含む原料液体のフィルタに対する座標を移動させるように閉鎖系内に配置されたロボットアーム等の規制手段は、閉鎖系の外部の位置からユーザが制御するジョイスティック等によって操作されてもよい。 In one preferred embodiment, such regulatory means is controlled by a computer programmed to move the coordinates relative to the discharging filter by a discharging means such as a pipette tip 40. Also, in another embodiment, such regulatory measures are manually manipulated. For example, in a completely closed system automatic culture device, when the discharge means and the cell filtration filter are incorporated, a robot arm arranged in the closed system so as to move the coordinates of the raw material liquid containing the target cells with respect to the filter. Etc. may be operated by a joystick or the like controlled by the user from a position outside the closed system.
 フィルタと吐出手段との距離(Z軸の座標)は、例えば2mm以上(好ましくは5mm以上)異なる限りにおいて、本発明では2通り以上とみなす(換言すると、2mm未満の差の場合、Z軸座標数は1通りとみなす)。なお、本明細書において、吐出手段の意図的でない微動(技術的に制動しきれない微動)に起因する吐出開口の微動は、座標の相違とは扱われない。具体的には、ピペットチップ40 1本あたり2カ所以上のZ軸座標で吐出を行う場合、ピペットチップ40が座標間を移動することになるが、そのときの吐出速度は、座標に位置する時(または停止時)と座標間に位置する時(または移動時)とで同じでも異なってもよい(座標間に位置または移動時は吐出しなくてもよい)。 As long as the distance (Z-axis coordinates) between the filter and the discharging means differs by, for example, 2 mm or more (preferably 5 mm or more), it is considered to be two or more in the present invention (in other words, if the difference is less than 2 mm, the Z-axis coordinates). The number is considered to be one). In the present specification, the fine movement of the discharge opening caused by the unintentional fine movement of the discharge means (the fine movement that cannot be technically braked) is not treated as the difference in coordinates. Specifically, when discharging at two or more Z-axis coordinates per pipette tip 40, the pipette tip 40 moves between the coordinates, but the discharge speed at that time is when it is located at the coordinates. It may be the same or different when it is located between the coordinates (or when it is stopped) and when it is located between the coordinates (or when it is moved) (it is not necessary to discharge when it is positioned or moved between the coordinates).
 また、本発明に係る細胞製造装置の好ましい一実施形態においては、吐出の速度の動作条件を可変的に規制する手段をさらに備えてよい。吐出の速度は、目的細胞(特に生存する目的細胞)の回収率および目的細胞の生存率に影響する。したがって、吐出の速度の動作条件を可変的に規制することによって、目的細胞(特に生存する目的細胞)の回収率および生存率等の品質を再現性をもって改善し得る。 Further, in a preferred embodiment of the cell manufacturing apparatus according to the present invention, a means for variably regulating the operating conditions of the discharge rate may be further provided. The rate of discharge affects the recovery rate of target cells (particularly viable target cells) and the survival rate of target cells. Therefore, by variably regulating the operating conditions of the discharge rate, the quality such as the recovery rate and the survival rate of the target cells (particularly the surviving target cells) can be improved with reproducibility.
 X軸駆動機構71、Y軸駆動機構72及びZ軸駆動機構73は、公知のいずれの機構を用いることも可能であり、例えば、ステージ(例えば、xステージ、xyステージ又はxyzステージ)、弁(例えば、電磁弁又は空気弁)、ギヤ、モータ(例えば、電気モータ又はステッピングモータ)、ピストン、ブレーキ、ケーブル、ボールスクリューアセンブリ、ラックアンドピニオン機構、グリッパ、アーム、ピボットポイント、ジョイント、並進要素、又は他の機械的若しくは電気的要素などの1つ以上の要素を含んでよい。また、例えば、吐出手段を支持する構造が1つ以上のロボット要素を含んでもよい。例えば、吐出手段を支持する構造がxy方向又はxyz方向に自在に変位させることが可能なロボットアームを含んでもよい。 As the X-axis drive mechanism 71, the Y-axis drive mechanism 72, and the Z-axis drive mechanism 73, any known mechanism can be used, for example, a stage (for example, x stage, xy stage or xyz stage), a valve ( For example, electromagnetic valves or air valves), gears, motors (eg electric motors or stepping motors), pistons, brakes, cables, ball screw assemblies, rack and pinion mechanisms, grippers, arms, pivot points, joints, translational elements, or It may include one or more elements such as other mechanical or electrical elements. Further, for example, the structure supporting the discharging means may include one or more robot elements. For example, the structure supporting the discharge means may include a robot arm that can be freely displaced in the xy direction or the xy direction.
 吐出の速度の動作条件を可変的に規制する機構としては、Z軸駆動機構73に特に限定されず、例えば、コンピュータにより制御されたコントローラより送られてくる制御信号により送出圧を可変なポンプ等であってもよい。 The mechanism that variably regulates the operating conditions of the discharge speed is not particularly limited to the Z-axis drive mechanism 73, and for example, a pump whose delivery pressure is variable by a control signal sent from a controller controlled by a computer or the like. It may be.
 なお、目的細胞を含む濾過液体を回収する手段は、濾過液体を一時的に受容できるものであれば特に限定されず、各種の容器体または流路等であってよい。 The means for collecting the filtered liquid containing the target cells is not particularly limited as long as it can temporarily accept the filtered liquid, and may be various containers or channels.
 前記、目的細胞を含む濾過液体を回収する手段としての容器体としては、例えば、遠心管、試験管、ビーカー、フラスコ、チューブ、凍結用バイアル、細胞培養容器(マルチウェルプレートやシャーレ含む)、ナノ状/マイクロ状の多孔質不織布(濾紙)、漏斗、時計皿、細胞カウンタープレート、RNA回収・精製キット、濾液回収さじ、細胞播種用リザーバーが挙げられる。また、前記容器体の材質としては、ポリスチレン、ポリプロピレン、ポリエチレン、ガラス、アクリル、等が挙げられる。濾液中の細胞を観察が必要であれば、透明性に優れているポリスチレンが好ましい。なお、前記容器体の形状や大きさについては、特に限定はない。 Examples of the container body as a means for collecting the filtered liquid containing the target cells include a centrifuge tube, a test tube, a beaker, a flask, a tube, a vial for freezing, a cell culture container (including a multi-well plate and a petri dish), and a nano. Examples include micro / micro porous non-woven fabrics (filter paper), funnels, clock plates, cell counter plates, RNA recovery / purification kits, filtrate recovery spoons, and cell seeding reservoirs. Examples of the material of the container include polystyrene, polypropylene, polyethylene, glass, acrylic, and the like. If it is necessary to observe the cells in the filtrate, polystyrene having excellent transparency is preferable. The shape and size of the container are not particularly limited.
 本発明の一実施態様に係る細胞製造装置は、前記細胞濾過フィルタの通液時間を可変的に規制する手段をさらに備えてよい。
 本発明における通液時間とは、原料液体が濾過フィルタ上のある一点を通過する際に要する時間である。通液時間は吐出過程において上記Z軸の座標を変更したり、吐出速度の変更、線速度の変更、吐出する手段の形状や吐出部分の孔径、吐出する手段の個数、濾過フィルタを材質、構造、性質の異なる濾過フィルタへと変更することで、可変的に規制することができる。前記通液時間を規制することによって、濾液中に含まれる細胞の生存率を向上させて、濾液中に含まれる細胞の回収率を向上させることが可能となる。
 本発明における線速度とは、原料液体が濾過フィルタ上のある一点を通過する際の含量液体の速度である。前記線速度は、その他の条件に応じて適宜設定設定されればよく特定の数値範囲に限定されるものではないが、例えば、下限としては、50mm/sec以上、500mm/sec以上、1000mm/sec以上、3000mm/sec以上が好ましく、上限としては、5000mm/sec以下が好ましい。
 また、吐出速度は、その他の条件に応じて適宜設定設定されればよく特定の数値範囲に限定されるものではないが、例えば、下限としては、2μL/sec以上、10μL/sec以上、100μL/sec以上、250μL/sec以上、500μL/sec以上が好ましく、上限としては、5000μL/sec以下、2000μL/sec以下、1000μL/sec以下、850μL/sec以下が好ましい。濾過フィルタの材質は、特に限定されないが、例えば、Polytetrafluoroethylene(PTFE)、Polyvinylidene Fluoride(PVDF)、セルロース混合エステルなどが挙げられる。
 濾過フィルタの構造は、例えば、フィルタ孔径、孔径の勾配、フィルタの厚みが挙げられ、前記フィルタ孔径は、例えば、下限としては、0.1μm以上、0.2μm以上、0.4μm以上、0.8μm以上が好ましい。
 また、濾過フィルタは、表面処理を施すことによって、例えば親水性や疎水性の性質を与えても良い。前期濾過フィルタに表面処理を施すことによって、フィルタの濡れ性や水接触角を調整することができる。目的細胞を良好な生存率と回収率で濾過するという観点においては、水接触角θは、1°より大きく、80°より小さいことが好ましい。なお、本発明における水接触角とは、固体表面が液体及び気体と接触しているとき、前記3相の接触する境界線において液体面が固体面と成す角度のことをいう。
 また、前記濾過フィルタは単層でもよいし、複数の層であってもよく、目的細胞や原料液体の種類や量に応じて、適宜選択できる。
The cell production apparatus according to one embodiment of the present invention may further include means for variably regulating the liquid passage time of the cell filtration filter.
The liquid passing time in the present invention is the time required for the raw material liquid to pass through a certain point on the filtration filter. The liquid passing time can be determined by changing the coordinates of the Z axis, changing the discharge speed, changing the linear velocity, the shape of the discharge means, the hole diameter of the discharge part, the number of discharge means, and the material and structure of the filtration filter. By changing to a filtration filter with different properties, it can be regulated variably. By regulating the liquid passing time, it is possible to improve the survival rate of the cells contained in the filtrate and improve the recovery rate of the cells contained in the filtrate.
The linear velocity in the present invention is the velocity of the content liquid when the raw material liquid passes through a certain point on the filtration filter. The linear velocity may be appropriately set and set according to other conditions and is not limited to a specific numerical range. For example, the lower limit is 50 mm / sec or more, 500 mm / sec or more, 1000 mm / sec. As mentioned above, 3000 mm / sec or more is preferable, and the upper limit is preferably 5000 mm / sec or less.
Further, the discharge rate is not limited to a specific numerical range as long as it is appropriately set and set according to other conditions, but for example, the lower limit is 2 μL / sec or more, 10 μL / sec or more, 100 μL /. It is preferably sec or more, 250 μL / sec or more, and 500 μL / sec or more, and the upper limit is preferably 5000 μL / sec or less, 2000 μL / sec or less, 1000 μL / sec or less, and 850 μL / sec or less. The material of the filtration filter is not particularly limited, and examples thereof include Polytetherafluoroethylene (PTFE), Polyvinylidene Fluoride (PVDF), and cellulose mixed ester.
Examples of the structure of the filtration filter include a filter hole diameter, a pore diameter gradient, and a filter thickness. The filter hole diameter has, for example, 0.1 μm or more, 0.2 μm or more, 0.4 μm or more, and 0. 8 μm or more is preferable.
Further, the filtration filter may be given hydrophilic or hydrophobic properties, for example, by subjecting it to a surface treatment. By applying a surface treatment to the early filtration filter, the wettability and water contact angle of the filter can be adjusted. From the viewpoint of filtering the target cells with a good survival rate and recovery rate, the water contact angle θ is preferably larger than 1 ° and smaller than 80 °. The water contact angle in the present invention refers to the angle at which the liquid surface forms the solid surface at the boundary line where the three phases come into contact when the solid surface is in contact with the liquid and the gas.
Further, the filtration filter may be a single layer or a plurality of layers, and can be appropriately selected depending on the type and amount of the target cell and the raw material liquid.
 本発明の一実施態様に係る細胞製造装置は、目的細胞を含む原料液体を細胞濾過フィルタにかける操作において、前記吐出の回数、前記吐出する手段(例えばピペットチップ40)の使用個数、又は吐出をする際の吐出圧力等の1以上の追加動作条件を可変的または非可変的に規制する手段を有してよい。
 吐出の回数は、一回当たりの原料液体の吐出最大量が定まっているときに、細胞濾過フィルタへの原料液体の吐出量を決定する。したがって、吐出の回数を規制することで、細胞濾過フィルタへの原料液体の吐出量を再現可能に設定することができる。
 吐出する手段の使用個数は、目的細胞の種類や所望される性能(例えば生存率)等の制約によって吐出速度を増加できない場合に、目的細胞製品の製造時間を短縮するときに有用である。つまり、吐出する手段の使用個数を規制することで、吐出速度に依存せずに、細胞濾過フィルタへの原料液体の時間あたり吐出量を設定することができる。なお、吐出する手段の具体例については前述したとおりである。
In the cell manufacturing apparatus according to the embodiment of the present invention, in the operation of applying the raw material liquid containing the target cells to the cell filtration filter, the number of times of the discharge, the number of the discharge means (for example, the pipette tip 40) used, or the discharge is performed. It may have means for variably or non-variably regulating one or more additional operating conditions such as discharge pressure at the time of operation.
The number of discharges determines the amount of the raw material liquid discharged to the cell filtration filter when the maximum amount of the raw material liquid discharged at one time is determined. Therefore, by regulating the number of discharges, the amount of the raw material liquid discharged to the cell filtration filter can be set to be reproducible.
The number of means for discharging is useful when the production time of the target cell product is shortened when the discharge rate cannot be increased due to restrictions such as the type of target cells and desired performance (for example, survival rate). That is, by regulating the number of discharge means used, it is possible to set the discharge amount of the raw material liquid to the cell filtration filter per hour without depending on the discharge rate. Specific examples of the discharging means are as described above.
 吐出圧力は、吐出する手段の構造や先端部の表面積や吐出を制御する装置、例えばピペットチップ40のポンプの圧力を変更することによって可変的に規制することができる。
 吐出圧力を規制することで、吐出速度も可変的に規制できる。また、前記吐出圧力は、原料液体に含まれる目的細胞の特性、原料液体の粘度や組成などに応じて適宜設定すればよく特に限定されないが、例えば、下限としては、0.1MPa以上、0.5MPa、1MPaが好ましく、前記吐出圧力の上限としては、目的細胞が細胞死を起こさない圧力であれば特に限定されないが、例えば10MPa以下、5MPa以下が好ましい。
 前記目的細胞の特性としては、例えば、シェアストレスに対する耐性が挙げられる。
 上記のように、吐出圧力を規制することで、目的細胞の生存率や回収率を向上させることができる。
The discharge pressure can be variably regulated by changing the structure of the discharge means, the surface area of the tip portion, and the pressure of the pump of the device for controlling the discharge, for example, the pipette tip 40.
By regulating the discharge pressure, the discharge speed can also be variably regulated. The discharge pressure may be appropriately set according to the characteristics of the target cells contained in the raw material liquid, the viscosity and composition of the raw material liquid, and is not particularly limited. For example, the lower limit is 0.1 MPa or more, 0. 5 MPa and 1 MPa are preferable, and the upper limit of the discharge pressure is not particularly limited as long as the target cell does not cause cell death, but for example, 10 MPa or less and 5 MPa or less are preferable.
The characteristics of the target cell include, for example, resistance to shear stress.
By regulating the discharge pressure as described above, the survival rate and recovery rate of the target cells can be improved.
 本発明の細胞製造装置の一実施形態においては、吐出を行うフィルタに対する座標の動作条件を可変とし、フィードバック制御してもよい。 In one embodiment of the cell manufacturing apparatus of the present invention, the operating conditions of the coordinates for the filter that discharges may be variable and feedback control may be performed.
 一実施形態に係る細胞製造装置において、座標の動作条件が可変であり、濾過液体中に含まれる細胞数を検知する手段と、前記検知に基づき前記動作条件を調節する手段とを備える。濾過液体中に含まれる細胞数は、理想的には、細胞濾過フィルタへの原料液体の供給量に比例するが、前述のトラップ現象が生じると、原料液体の供給量に比して濾過液体中の細胞数が増えにくくなるという現象を伴う。したがって、濾過液体中に含まれる細胞数を検知することで、トラップ現象の有無や程度を推定することができ、それに基づき動作条件を動作中に調節すれば、トラップ現象の予防又は悪化防止を効率的に行うことができる。
 濾過液体中に含まれる細胞数の検知は、例えば、容器30の内部または外部より容器中の濾過液体に対して測定光を照射し、分光吸光光度計で濁度を測定する方法が挙げられる。
 また、動作条件の調節は、濾過液体中に含まれる細胞数だけでなく、細胞濾過フィルタへの原料液体の供給量を考慮して行うのが好ましいところ、細胞濾過フィルタへの原料液体の供給量は、流量計等で直接的に測定してもよいし、単位時間当たりの供給量が一定であれば供給時間を測定し、間接的に算出してもよい。
The cell manufacturing apparatus according to one embodiment includes means for detecting the number of cells contained in the filtered liquid and means for adjusting the operating conditions based on the detection, in which the operating conditions of the coordinates are variable. The number of cells contained in the filtered liquid is ideally proportional to the amount of the raw material liquid supplied to the cell filtration filter, but when the above-mentioned trap phenomenon occurs, the number of cells in the filtered liquid is compared with the amount of the raw material liquid supplied. It is accompanied by a phenomenon that the number of cells in the cell is difficult to increase. Therefore, the presence or absence and degree of the trap phenomenon can be estimated by detecting the number of cells contained in the filtered liquid, and if the operating conditions are adjusted during operation based on this, the prevention or deterioration of the trap phenomenon can be efficiently prevented. Can be done
Examples of the detection of the number of cells contained in the filtered liquid include a method of irradiating the filtered liquid in the container with measurement light from the inside or the outside of the container 30 and measuring the turbidity with a spectrophotometer.
Further, the operating conditions are preferably adjusted in consideration of not only the number of cells contained in the filtered liquid but also the supply amount of the raw material liquid to the cell filtration filter, but the supply amount of the raw material liquid to the cell filtration filter. May be measured directly with a flow meter or the like, or may be calculated indirectly by measuring the supply time if the supply amount per unit time is constant.
 別の実施形態に係る細胞製造装置において、座標の動作条件は可変であり、前記吐出を行うフィルタに対する座標における濾物の蓄積またはそれに相関する事象を検知する手段と、前記検知に基づき前記動作条件を調節する手段とを備える。
 検知によってトラップ現象の有無や程度を把握することができ、それに基づき動作条件を動作中に調節すれば、トラップ現象の予防又は悪化防止を効率的に行うことができる。
 なお、フィルタに対する座標における濾物の蓄積それに相関する事象は、特に限定されず、蓄積した濾物(図2の符号5)の存否や大きさ、蓄積に伴うフィルタの重量増加等であってよい。
 蓄積した濾物の検知は、例えば、フィルタ表面を連続的ないしは一定間隔で撮像し、その画像解析によって行うことができる。
In the cell manufacturing apparatus according to another embodiment, the operating conditions of the coordinates are variable, and the means for detecting the accumulation of the filter matter in the coordinates with respect to the filter performing the discharge or the event correlating with the accumulation, and the operating conditions based on the detection. It is provided with a means for adjusting.
The presence or absence and degree of the trap phenomenon can be grasped by the detection, and if the operating conditions are adjusted during the operation based on the detection, the trap phenomenon can be effectively prevented or deteriorated.
The event that correlates with the accumulation of the filter in coordinates with respect to the filter is not particularly limited, and may be the presence or absence and size of the accumulated filter (reference numeral 5 in FIG. 2), the weight increase of the filter due to the accumulation, and the like. ..
The accumulated filter matter can be detected, for example, by imaging the surface of the filter continuously or at regular intervals and analyzing the image.
 図4は、本発明の一実施形態に係る細胞製造の流れを示す図である。例えば図4に示されるように、一実施形態に係る製造装置は、前記細胞濾過フィルタ11を、容器30の開口部に装着する手段を備えてよい。フィルタの装着を装置が機械的に行うことで、吐出および回収の工程だけでなく、その前に行うフィルタの装着が目的細胞に与え得る影響を排除し、また全工程をクリーン環境中で行うことも可能である。 FIG. 4 is a diagram showing a flow of cell production according to an embodiment of the present invention. For example, as shown in FIG. 4, the manufacturing apparatus according to one embodiment may include means for attaching the cell filtration filter 11 to the opening of the container 30. By mechanically mounting the filter by the device, not only the discharge and recovery steps, but also the effect that the previous filter mounting may have on the target cells should be eliminated, and the entire process should be performed in a clean environment. Is also possible.
 前記装着する手段は、2以上の前記細胞濾過フィルタ11または容器30を支持する支持体12を把持する手段20と、前記把持した支持体12を搬送し、前記2以上の細胞濾過フィルタ11と対応する2以上の前記容器30の開口部との位置をあわせる手段とを備えてよい。
 細胞濾過フィルタ11の1座標あたりの原料液体の吐出量を減らしつつ、濾過液体中の目的細胞数を増やすためには、細胞ろ過フィルタ11の数を増やし、各フィルタ11に並行的に原料液体を吐出するのが有用である。しかし、フィルタ11および各フィルタ11が装着される容器30の数が増すにつれ、装着の作業量と困難性(例えば、フィルタ11を水平に装着することの失敗が生じやすい)が増し、フィルタの装着が目的細胞に与え得る影響も大きくなりやすい。
 上記実施形態によれば、この工程を、位置合わせを含めて装置が機械的に行うことで、目的細胞に与え得る影響を排除しつつ、目的細胞製品の製造効率を向上し得る。
The mounting means corresponds to the means 20 for gripping the support 12 for supporting the two or more cell filtration filters 11 or the container 30 and the means for transporting the gripped support 12 and corresponding to the two or more cell filtration filters 11. It may be provided with means for aligning the positions with the openings of the two or more containers 30.
In order to increase the number of target cells in the filtered liquid while reducing the discharge amount of the raw material liquid per coordinate of the cell filtration filter 11, the number of cell filtering filters 11 is increased and the raw material liquid is applied to each filter 11 in parallel. It is useful to discharge. However, as the number of filters 11 and the containers 30 to which each of the filters 11 is mounted increases, the amount of work and difficulty of mounting (for example, failure to mount the filter 11 horizontally) increases, and the filters are mounted. Can have a large effect on the target cells.
According to the above embodiment, by performing this step mechanically by the apparatus including alignment, it is possible to improve the production efficiency of the target cell product while eliminating the influence that may be given to the target cell.
 一実施形態に係る製造装置は、前記細胞濾過フィルタ11を、容器30の開口部から離脱する手段を備えてよい。フィルタの離脱を装置が機械的に行うことで、吐出および回収の工程だけでなく、その後に行うフィルタの離脱が目的細胞に与え得る影響(例えばフィルタ上の濾物を混入させる失敗等)を排除し、また全工程をクリーン環境中で行うことも可能である。 The manufacturing apparatus according to one embodiment may include means for detaching the cell filtration filter 11 from the opening of the container 30. By mechanically removing the filter by the device, not only the discharge and recovery steps but also the effect that the subsequent removal of the filter can have on the target cells (for example, failure to mix the filter medium on the filter) is eliminated. However, it is also possible to carry out the entire process in a clean environment.
 図4を用いて細胞製造の流れを説明すると、細胞濾過フィルタ11は、鍔部を有する筒状物の底に濾過膜が設けられている。この細胞濾過フィルタ11の2以上が、筒状物の断面形に略一致した穴に挿入され、鍔部によって支持体12に係止され、支持されている。この状態の支持体12を、XYZ軸の各方向に自在に可動な細胞濾過フィルタユニット把持アーム20によって把持し、容器30の開口部の上部位置(水平面を構成するX軸およびY軸によって定まる)へと移動させ、さらに容器30の開口部の高さ(Z軸)へと移動させ、細胞濾過フィルタ11を開口部に嵌合させる。この時点で、細胞濾過フィルタ11が開口部に対して完全に正確に位置合わせされていれば、細胞濾過フィルタ11が開口部に正しい姿勢(典型的には水平)で装着される。 Explaining the flow of cell production with reference to FIG. 4, the cell filtration filter 11 is provided with a filtration membrane at the bottom of a tubular object having a collar. Two or more of the cell filtration filters 11 are inserted into holes substantially matching the cross-sectional shape of the tubular object, and are locked and supported by the support 12 by the collar portion. The support 12 in this state is gripped by the cell filtration filter unit gripping arm 20 which is freely movable in each direction of the XYZ axes, and the upper position of the opening of the container 30 (determined by the X-axis and the Y-axis constituting the horizontal plane). And then to the height of the opening (Z-axis) of the container 30, and the cell filtration filter 11 is fitted into the opening. At this point, if the cell filtration filter 11 is perfectly and accurately aligned with the opening, the cell filtration filter 11 is mounted in the opening in the correct orientation (typically horizontal).
 しかし、本実施形態のように同時に装着するフィルタ11の数が多くなるにつれ、すべてのフィルタ11の装着を一度の位置合わせで成功することは難しくなる。装着失敗の典型例では、フィルタ11が嵌合途中で容器30の開口部の縁にひっかかり、傾斜した状態で装着される。そこで、細胞濾過フィルタ11を容器30の開口部に対して嵌合させた状態で、フィルタ11を水平方向に関して微細に動かすことが好ましい。これにより、正しい姿勢で装着されていないフィルタ11も、微細に動かされる中で正しく位置合わせされ、正しい姿勢で装着される可能性が高まる。 However, as the number of filters 11 to be mounted at the same time increases as in the present embodiment, it becomes difficult to successfully mount all the filters 11 in one alignment. In a typical example of mounting failure, the filter 11 is caught on the edge of the opening of the container 30 during fitting and is mounted in an inclined state. Therefore, it is preferable to move the filter 11 finely in the horizontal direction while the cell filtration filter 11 is fitted to the opening of the container 30. As a result, the filter 11 that is not mounted in the correct posture is also correctly aligned while being finely moved, and the possibility that the filter 11 is mounted in the correct posture is increased.
 このようにして、細胞濾過フィルタ11と容器30の開口部とを位置合わせし、細胞濾過フィルタ11を開口部に装着する(a~b)。位置合わせの手段自体は周知であるため、説明を省略する。 In this way, the cell filtration filter 11 and the opening of the container 30 are aligned, and the cell filtration filter 11 is attached to the opening (ab). Since the alignment means itself is well known, the description thereof will be omitted.
 次に、各細胞濾過フィルタ11へとピペットチップ40から原料液体を吐出して濾過を行う(c)。なお、図4(c)では、複数のフィルタ11に対し吐出を行うピペットチップ40が1つであるが、その数を適宜設定可能であることは前述の通りである。 Next, the raw material liquid is discharged from the pipette tip 40 to each cell filtration filter 11 to perform filtration (c). In FIG. 4C, there is one pipette tip 40 that discharges to the plurality of filters 11, but the number of pipette tips 40 can be appropriately set as described above.
 各容器30へと濾過液体の回収を終えた後、前記した装着動作とは逆手順で細胞濾過フィルタユニット把持アーム20を動作することで、容器30の開口部から細胞濾過フィルタ11を離脱させる。 After collecting the filtered liquid into each container 30, the cell filtration filter unit gripping arm 20 is operated in the reverse procedure to the mounting operation described above to separate the cell filtration filter 11 from the opening of the container 30.
 なお、図4の支持体12は2以上のフィルタ11を支持するが、2以上の容器30を支持しても構わない。 Although the support 12 in FIG. 4 supports two or more filters 11, two or more containers 30 may be supported.
 本発明の一実施形態に係る細胞製造装置は、回収した濾過液体から固液分離で目的細胞を回収する手段を更に備えてもよい。目的細胞の回収工程をも装置が機械的に行うことで、回収工程が目的細胞に与え得る影響を排除し、また全工程をクリーン環境中で行うことも可能である。 The cell production apparatus according to the embodiment of the present invention may further include means for recovering target cells by solid-liquid separation from the collected filtered liquid. By mechanically performing the recovery process of the target cells by the apparatus, it is possible to eliminate the influence that the recovery step may have on the target cells and to perform all the steps in a clean environment.
 固液分離で目的細胞を回収する手段としては、特に限定されないが、例えば、遠心分離や中空糸による分取が挙げられる。中でも、遠心分離は簡単で効率的であるために好ましい。遠心分離の過程で容器から濾過液体や目的細胞が流失しないよう、回収手段は、容器の開口部を閉鎖する手段と、開口部が閉鎖された容器に対して遠心力を負荷する手段とを備えることが好ましい。 The means for recovering the target cells by solid-liquid separation is not particularly limited, and examples thereof include centrifugation and sorting with hollow threads. Of these, centrifugation is preferred because it is simple and efficient. The recovery means includes a means for closing the opening of the container and a means for applying a centrifugal force to the container with the closed opening so that the filtered liquid and the target cells do not flow out from the container in the process of centrifugation. Is preferable.
 図5を用いて、本発明の一実施形態に係る細胞製造の流れを示す。目的細胞1を含む濾過液を収容した容器30に対し、図4に示したものと同様の把持アーム22が開口部上方から蓋50を移動させて密着させ、開口部を閉鎖する(a~b)。 FIG. 5 shows the flow of cell production according to the embodiment of the present invention. A gripping arm 22 similar to that shown in FIG. 4 moves the lid 50 from above the opening to bring it into close contact with the container 30 containing the filtrate containing the target cells 1, and closes the opening (a to b). ).
 図5の蓋50は、平板状物であり、複数の容器30の開口部を被覆するのに十分な面積を有する。開口部の閉鎖を高確度に行う観点で、蓋50には開口部の外形に略一致する凹部が設けられ、凹部に容器30の開口部を嵌合させることが好ましい。 The lid 50 in FIG. 5 is a flat plate and has a sufficient area to cover the openings of a plurality of containers 30. From the viewpoint of closing the opening with high accuracy, it is preferable that the lid 50 is provided with a recess that substantially matches the outer shape of the opening, and the opening of the container 30 is fitted into the recess.
 次に、容器30に対して遠心力を負荷する手段60によって、目的細胞1を濾過液体の液体成分から分離する(b)。必要に応じ、容器30の目的細胞に洗浄液を添加して分散させ、再度、遠心分離を行って、洗浄液を除去してもよい。 Next, the target cells 1 are separated from the liquid component of the filtered liquid by means 60 for applying centrifugal force to the container 30 (b). If necessary, the washing liquid may be added to the target cells of the container 30 to disperse the cells, and the washing liquid may be removed by centrifugation again.
 次に、容器30に製薬上許容し得る媒体や培地を添加し、目的細胞1を懸濁させて製品を作製した(c)後、蓋50を取り外して、容器30の開口部を開放する(d)。なお、蓋50の取外し動作は、取付け動作の逆手順であってよい。
 本発明において、製薬上許容し得る媒体としては、ヒトの治療の際に用いられる溶液であれば特に限定されないが、例えば、生理食塩液、5%ブドウ糖液、リンゲル液、乳酸リンゲル液、酢酸リンゲル液、開始液(1号液)、脱水補給液(2号液)、維持輸液(3号液)、術後回復液(4号液)を挙げることができる。
 また、容器30には、例えば、DMSO、グリセロール、ポリエチレングリコール、プロピレングリコール、グリセリン、ポリビニルピロリドン、ソルビトール、デキストラントレハロース、HESなども添加し、目的細胞1を懸濁させて製品を作成することができる。
Next, a pharmaceutically acceptable medium or medium is added to the container 30 to suspend the target cells 1 to prepare a product (c), and then the lid 50 is removed to open the opening of the container 30 (). d). The removal operation of the lid 50 may be the reverse procedure of the attachment operation.
In the present invention, the pharmaceutically acceptable medium is not particularly limited as long as it is a solution used in human treatment, and for example, physiological saline solution, 5% dextrose solution, Ringer's solution, Ringer's lactate, Ringer's acetate solution, and the like. Examples include solution (No. 1 solution), dehydration replenishment solution (No. 2 solution), maintenance infusion solution (No. 3 solution), and postoperative recovery solution (No. 4 solution).
Further, for example, DMSO, glycerol, polyethylene glycol, propylene glycol, glycerin, polyvinylpyrrolidone, sorbitol, dextran trehalose, HES and the like can be added to the container 30 to suspend the target cells 1 to prepare a product. ..
 一実施形態に係る装置は、さらに、前記吐出を行うフィルタに対する座標と、前記製品における目的細胞の回収率との対応関係、に関するデータを記憶するデータベースと、前記データベースを参照して、所要の前記回収率を達成するための及び前記吐出を行うフィルタに対する座標の動作条件を選択する手段をさらに備えてよい。記憶済みの対応関係データを活用して吐出を行うことで、より高い期待値で、所要の回収率で目的細胞を回収することができる。 The apparatus according to one embodiment further refers to a database that stores data relating to the correspondence between the coordinates of the discharging filter and the recovery rate of target cells in the product, and the required database. Further means may be provided for selecting the operating conditions of the coordinates for achieving the recovery rate and for the discharging filter. By discharging by utilizing the stored correspondence data, the target cells can be recovered with a higher expected value and a required recovery rate.
 一実施形態に係る装置は、さらに、前記データベースは、前記吐出の速度と、前記製品における目的細胞の生存率との対応関係に関するデータをさらに記憶し、前記選択する手段は、所要の前記生存率を達成するための前記吐出の速度の動作条件を選択してよい。記憶済みの対応関係データを活用して吐出を行うことで、より高い期待値で、所要の生存率の目的細胞を回収することができる。 The apparatus according to one embodiment further stores data relating to the correspondence between the discharge rate and the survival rate of target cells in the product, and the means of selection is the required survival rate. The operating conditions of the discharge rate for achieving the above may be selected. By discharging using the stored correspondence data, it is possible to recover the target cells having the required survival rate with a higher expected value.
 本発明において目的細胞は、特に限定されず、フィルタ濾過によって他成分(目的細胞以外の細胞や細胞塊、培養デブリス(細胞破片物)や夾雑物等)から分離可能な性質(サイズやフィルタ親和性)を有し、かつ分離を要する任意の細胞であってよい。動物、植物、昆虫等のあらゆる生物由来の細胞または人工的な細胞が挙げられるが、本発明の効果に対するニーズの大きさから、動物由来の細胞、特にヒト由来の細胞が好ましい。 In the present invention, the target cell is not particularly limited, and has properties (size and filter affinity) that can be separated from other components (cells and cell masses other than the target cell, cultured debris (cell debris), contaminants, etc.) by filter filtration. ) And may be any cell that requires isolation. Although cells derived from all living organisms such as animals, plants, and insects or artificial cells can be mentioned, cells derived from animals, particularly cells derived from humans, are preferable because of the great need for the effects of the present invention.
 例えば、動物の体液や組織から採取した細胞、人工的に癌化させた株化細胞、さらにはこれらの細胞を生体外で培養したもの等が挙げられ、好ましくはヒトの体液や組織から採取した細胞またはその細胞を培養したもの、例えば、ヒトの骨髄液、血液(末梢血、G-CSF動員末梢血等を含む)、臍帯血液、月経血液、脂肪組織、肝臓組織、膵臓組織、心臓組織、神経組織、腫瘍組織等から採取した細胞またはその細胞を培養したものを含む。 For example, cells collected from animal body fluids and tissues, artificially cancerous strained cells, and those obtained by culturing these cells in vitro are mentioned, and preferably collected from human body fluids and tissues. Cells or cultured cells, such as human bone marrow fluid, blood (including peripheral blood, G-CSF mobilized peripheral blood, etc.), umbilical cord blood, menstrual blood, adipose tissue, liver tissue, pancreatic tissue, heart tissue, Includes cells collected from nerve tissue, tumor tissue, etc. or cultured cells.
 コロニー形成細胞は、生体外において任意条件の下で細胞を培養すると、コロニーを形成する細胞であれば特に限定されないが、例えば前駆細胞や幹細胞を挙げることができる。前駆細胞としては、例えば血管内皮前駆細胞、神経前駆細胞、肝前駆細胞等の前駆細胞が挙げられる。また、幹細胞としては、造血幹細胞、間葉系幹細胞または脂肪由来幹細胞、癌幹細胞等の体性幹細胞、ES細胞またはiPS細胞等の多能性幹細胞が挙げられる。 The colony forming cells are not particularly limited as long as they form colonies when the cells are cultured in vitro under arbitrary conditions, and examples thereof include progenitor cells and stem cells. Examples of progenitor cells include progenitor cells such as vascular endothelial progenitor cells, neural progenitor cells, and hepatic progenitor cells. Examples of stem cells include hematopoietic stem cells, mesenchymal stem cells or adipose-derived stem cells, somatic stem cells such as cancer stem cells, and pluripotent stem cells such as ES cells or iPS cells.
 接着性のコロニー形成細胞とは、該細胞が増殖していく際に、任意の足場に接着して増殖していく細胞を指し、例えば、血管内皮前駆細胞、神経前駆細胞、肝前駆細胞等の前駆細胞、間葉系幹細胞や脂肪由来幹細胞等の体性幹細胞、ES細胞やiPS細胞等の多能性幹細胞を挙げることができるが特にこれには限定されない。 Adhesive colony-forming cells refer to cells that adhere to and proliferate on arbitrary scaffolds when the cells proliferate, such as vascular endothelial progenitor cells, neural progenitor cells, and hepatic progenitor cells. Examples thereof include progenitor cells, somatic stem cells such as mesenchymal stem cells and adipose-derived stem cells, and pluripotent stem cells such as ES cells and iPS cells, but the present invention is not particularly limited.
 非接着性(浮遊性)のコロニー形成細胞とは、該細胞が増殖していく際に、足場に接着しなくても増殖できる細胞を指し、例えば、癌幹細胞、神経幹細胞などの体性幹細胞やES細胞やiPS細胞等の多能性幹細胞を挙げることができる。 Non-adhesive (floating) colony-forming cells refer to cells that can proliferate without adhering to a scaffold when the cells proliferate, such as somatic stem cells such as cancer stem cells and neural stem cells. Examples thereof include pluripotent stem cells such as ES cells and iPS cells.
 また、本発明における目的細胞としては、多能性幹細胞を分化誘導させた分化細胞でもよい。前記分化細胞としては、例えば内胚葉系細胞、中胚葉系細胞、外胚葉系細胞、体細胞が挙げられる。 Further, the target cell in the present invention may be a differentiated cell obtained by inducing differentiation of a pluripotent stem cell. Examples of the differentiated cells include endoderm cells, mesoderm cells, ectoderm cells, and somatic cells.
 内胚葉系細胞は、消化管、肺、甲状腺、膵臓、肝臓などの器官の組織、消化管に開口する分泌腺の細胞、腹膜、胸膜、喉頭、耳管、気管、気管支、尿路(膀胱、尿道の大部分、尿管の一部)などへと分化する能力を有し、一般的に、胚体内胚葉(DE)と言われることがある。多能性幹細胞から内胚葉系細胞への分化は、内胚葉系細胞に特異的な遺伝子の発現量を測定することにより確認することができる。内胚葉系細胞に特異的な遺伝子としては、例えば、SOX17、FOXA2、CXCR4、AFP、GATA4、EOMES等を挙げることができる。 Endodermal cells are tissues of organs such as the digestive tract, lungs, thyroid, pancreas, and liver, cells of secretory glands that open into the digestive tract, peritoneum, thoracic membrane, laryngeal, ear canal, trachea, bronchi, and urethra (bladder, It has the ability to differentiate into most of the urethra, part of the urethra, etc., and is commonly referred to as the germ layer (DE). Differentiation from pluripotent stem cells to endoderm cells can be confirmed by measuring the expression level of genes specific to endoderm cells. Examples of genes specific to endoderm cells include SOX17, FOXA2, CXCR4, AFP, GATA4, EOMES and the like.
 中胚葉系細胞は、体腔及びそれを裏打ちする中皮、筋肉、骨格、皮膚真皮、結合組織、心臓、血管(血管内皮も含む)、血液(血液細胞も含む)、リンパ管、脾臓、腎臓、尿管、性腺(精巣、子宮、性腺上皮)などへと分化する。中胚葉系細胞に特異的な遺伝子としては、例えば、MESP1、MESP2、FOXF1、BRACHYURY、HAND1、EVX1、IRX3、CDX2、TBX6、MIXL1、ISL1、SNAI2、FOXC1及びPDGFRα等を挙げることができる。 Mesothelial cells include the mesothelium and the mesothelium, muscles, skeleton, cutaneous dermis, connective tissue, heart, blood vessels (including vascular endothelium), blood (including blood cells), lymph vessels, spleen, kidneys, which support the body cavity. It differentiates into the ureter and gonads (testis, uterus, gonad epithelium). Examples of genes specific to mesoderm cells include MESS1, MESS2, FOXF1, BRACHYURY, HAND1, EVX1, IRX3, CDX2, TBX6, MIXL1, ISL1, NSAI2, FOXC1 and PDGFRα.
 外胚葉系細胞は、皮膚の表皮や男性の尿道末端部の上皮、毛髪、爪、皮膚腺(乳腺、汗腺を含む)、感覚器(口腔、咽頭、鼻、直腸の末端部の上皮を含む、唾液腺)水晶体などを形成する。外胚葉系細胞の一部は発生過程で溝状に陥入して神経管を形成し、脳や脊髄などの中枢神経系のニューロンやメラノサイトなどの元にもなる。また末梢神経系も形成する。外胚葉系細胞に特異的な遺伝子としては、例えば、FGF5、OTX2、SOX1、PAX6等を挙げることができる。 Ectoderm cells include the epidermis of the skin and the epithelium of the terminal urinary tract of men, hair, nails, skin glands (including mammary glands and sweat glands), and sensory organs (including the epithelium of the oral cavity, pharynx, nose, and terminal end of the rectum. (Salivary gland) Form the crystalline lens. Some ectoderm cells invade into grooves during development to form neural tubes, and are also the source of neurons and melanocytes in the central nervous system such as the brain and spinal cord. It also forms the peripheral nervous system. Examples of genes specific to ectoderm cells include FGF5, OTX2, SOX1, PAX6 and the like.
 本発明における体細胞は、多能性幹細胞から分化誘導することができ、生体内に存在し得る体細胞であれば特に限定されないが、例えば、体性幹細胞(骨髄、脂肪組織、歯髄、胎盤、卵膜、臍帯血、羊膜、絨毛膜等に由来する間葉系幹細胞、神経幹細胞等)、神経細胞、グリア細胞、オリゴデンドロサイト、シュワン細胞、心筋細胞、心筋前駆細胞、肝細胞、肝臓前駆細胞、α細胞、β細胞、繊維芽細胞、軟骨細胞、角膜細胞、血管内皮細胞、血管内皮前駆細胞、周細胞、骨格筋細胞、巨核球、造血幹細胞、気道上皮細胞、生殖細胞、樹状細胞、好酸球、肥満細胞、T細胞、エリスロポエチン産生細胞、腸管上皮、肺胞上皮細胞、腎臓細胞等が例示でき、前記細胞は遺伝子導入された形態やゲノム上の対象遺伝子などをノックダウンされた形態でもよい。 The somatic cells in the present invention are not particularly limited as long as they can induce differentiation from pluripotent stem cells and can exist in vivo, but for example, somatic stem cells (bone marrow, adipose tissue, dental pulp, placenta, etc.) Membranous stem cells, neural stem cells, etc. derived from egg membrane, umbilical cord blood, sheep membrane, chorionic villi, etc.), nerve cells, glial cells, oligodendrocytes, Schwan cells, myocardial cells, myocardial progenitor cells, hepatocytes, liver progenitor cells , Α cells, β cells, fibroblasts, cartilage cells, corneal cells, vascular endothelial cells, vascular endothelial precursor cells, peri-cells, skeletal muscle cells, giant nuclei, hematopoietic stem cells, airway epithelial cells, germ cells, dendritic cells, Examples thereof include eosinophils, obese cells, T cells, erythropoietin-producing cells, intestinal epithelium, alveolar epithelial cells, kidney cells, etc., and the cells are in a gene-introduced form or a form in which a target gene on the genome is knocked down. It may be.
 癌幹細胞は、幹細胞と同様に多分化能と無制限に増殖する能力を有しており、治療薬への耐性を有する細胞である。 Cancer stem cells, like stem cells, are pluripotent and have the ability to proliferate indefinitely, and are resistant to therapeutic agents.
 目的細胞を含む原料液体中に含まれる液体とは、流動性を示す液体であれば特に限定されないが、例えば生理食塩水、緩衝液、培地、及び洗浄液等の液状物が挙げられる。 The liquid contained in the raw material liquid containing the target cells is not particularly limited as long as it is a liquid exhibiting fluidity, and examples thereof include liquids such as physiological saline, buffer solution, medium, and washing solution.
 培地は、基礎培地を用いてもよく、当該基礎培地に添加剤を加えて用いることもできる。基礎培地としては、例えば、Neurobasal培地、Neural Progenitor Basal培地、NS-A培地、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、αMEM培地、DMEM培地、DMEM/F12培地、ハム培地、RPMI 1640培地、Fischer’s培地、及びこれらの混合培地など、動物細胞の培養に用いることのできる培地であれば特に限定されない。iNまたはiMNを培養する場合において、Neurobasal培地及びDMEM/F12の混合物が好適に用いられる。 As the medium, a basal medium may be used, or an additive may be added to the basal medium. As the basal medium, for example, Neurobasal medium, NeuroProgenitor Basal medium, NS-A medium, BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium EM medium, Medium , ΑMEM medium, DMEM medium, DMEM / F12 medium, ham medium, RPMI 1640 medium, Fisher's medium, and a mixed medium thereof, which are not particularly limited as long as they can be used for culturing animal cells. When culturing iN or iMN, a mixture of Neurobasal medium and DMEM / F12 is preferably used.
 添加剤は、特に限定されないが、血清、レチノイン酸、Wnt、BMP、bFGF、EGF、HGF、Sonic hedgehog (Shh)、神経栄養因子ファミリー、インスリン様増殖因子1(IGF1)、アミノ酸、ビタミン類、インターロイキン類、インスリン、トランスフェリン、ヘパリン、ヘパラン硫酸、コラーゲン、フィブロネクチン、プロゲステロン、セレナイト、B27-サプリメント、N2-サプリメント、ITS-サプリメント、抗生物質など細胞の増殖または生存に必要な物質が挙げられる。iNまたはiMNを培養する場合において、レチノイン酸、Shh、BDNF、GDNF、NT-3、B27-サプリメント及びN2-サプリメントが好適に用いられる。
これらの添加剤は、一度に添加してもよいし、目的細胞を含む製品の製造の経過に併せて段階的に変化させてもよい。
Additives are not particularly limited, but are serum, retinoic acid, Wnt, BMP, bFGF, EGF, HGF, Sonic hedgehog (Sh), neurotrophic factor family, insulin-like growth factor 1 (IGF1), amino acids, vitamins, inter. Examples thereof include substances necessary for cell proliferation or survival such as leukins, insulin, transferase, heparin, heparan sulfate, collagen, fibronectin, progesterone, selenite, B27-supplement, N2-supplement, ITS-supplement, and antibiotics. When culturing iN or iMN, retinoic acid, Sh, BDNF, GDNF, NT-3, B27-supplement and N2-supplement are preferably used.
These additives may be added all at once, or may be changed stepwise according to the manufacturing process of the product containing the target cells.
 洗浄液は、除去目的とする細胞、細胞塊、培養デブリス(細胞破片物)や夾雑物を洗い流すことができれば特に限定されないが、例えば生理食塩水、リンゲル液、細胞培養に用いる培地、リン酸緩衝液等の一般的な緩衝液、あるいはこれら溶液に血清やタンパク質を添加した溶液が挙げられる。 The washing solution is not particularly limited as long as it can wash away cells, cell clumps, cultured debris (cell debris) and impurities to be removed, but for example, physiological saline, Ringer's solution, medium used for cell culture, phosphate buffer, etc. Examples include a general buffer solution of the above, or a solution obtained by adding serum or protein to these solutions.
 (細胞製品の製造方法)
 本発明に係る細胞製品の製造方法は、上記したような細胞製造装置を用い、細胞製品を製造する工程を有する。回収される目的細胞の品質やその回収率を改善し得る。
(Manufacturing method of cell products)
The method for producing a cell product according to the present invention includes a step of producing a cell product using the cell production apparatus as described above. The quality of the target cells to be recovered and the recovery rate thereof can be improved.
 上記細胞製品の製造方法は、組織から細胞を単離する工程を含んでもよい。また、前記細胞製品の製造方法は、細胞を培養する工程を含んでもよい。さらに前記細胞製品の製造方法は、培養した細胞を製薬上許容し得る媒体や培地と混合して製剤化する工程を含んでもよい。また、前記細胞製品の製造方法は、培養した細胞や製剤化された細胞製剤を凍結保存する工程を含んでもよい。
 前記培養工程における培養方法は、細胞の種類に応じて適宜適した培養条件を選択すればよく、従来の培養方法も使用できるし、新たな培養条件を設定することもできる。
 前記細胞は、細胞製品に含まれる目的細胞を製造できれば特に限定されないが、例えば上記した細胞が挙げられる。
The method for producing a cell product may include a step of isolating cells from a tissue. In addition, the method for producing a cell product may include a step of culturing cells. Further, the method for producing a cell product may include a step of mixing cultured cells with a pharmaceutically acceptable medium or medium to formulate the cells. In addition, the method for producing a cell product may include a step of cryopreserving cultured cells or a formulated cell preparation.
As the culturing method in the culturing step, suitable culturing conditions may be appropriately selected according to the type of cells, a conventional culturing method can be used, or new culturing conditions can be set.
The cell is not particularly limited as long as it can produce the target cell contained in the cell product, and examples thereof include the above-mentioned cell.
 細胞濾過フィルタによる濾過が必要となる工程は特に限定されないが、例えば組織から細胞を単離する工程、細胞を培養する工程、製剤化工程、凍結保存工程、製品化工程、目的細胞の特性解析時が挙げられる。なお、前記目的細胞の特性解析としては、遺伝子解析、RNA抽出、染色体の解析、FACS、細胞内代謝の解析などが挙げられる。 The steps that require filtration with a cell filtration filter are not particularly limited, but for example, a step of isolating cells from a tissue, a step of culturing cells, a formulation step, a cryopreservation step, a commercialization step, and a characteristic analysis of target cells. Can be mentioned. Examples of the characteristic analysis of the target cell include gene analysis, RNA extraction, chromosome analysis, FACS, and intracellular metabolism analysis.
 (サーバ)
 本発明に係るサーバは、前記吐出を行うフィルタに対する座標と、前記製品における目的細胞の回収率との対応関係、に関するデータを記憶するデータベースと、前記データベースを参照して、所要の前記回収率を達成するための前記吐出を行うフィルタに対する座標の動作条件を選択する手段と、前記選択した動作条件の情報を上述した目的細胞を含む製品を製造する装置に送信する手段と、を備える。記憶済みの対応関係データを活用して吐出を行うことで、より高い期待値で、所要の回収率で目的細胞を回収することができる。また、端末となる細胞製造装置から物理的に分離したサーバにてデータを集中管理することで、細胞製造装置の端末を簡素化できる。
(server)
The server according to the present invention refers to a database that stores data relating to the correspondence between the coordinates of the filter for discharging and the recovery rate of target cells in the product, and the database to obtain the required recovery rate. A means for selecting an operating condition of coordinates with respect to the filter for discharging to achieve the above, and a means for transmitting information on the selected operating condition to an apparatus for manufacturing a product containing the target cell described above. By discharging by utilizing the stored correspondence data, the target cells can be recovered with a higher expected value and a required recovery rate. Further, by centrally managing data on a server physically separated from the cell manufacturing apparatus serving as a terminal, the terminal of the cell manufacturing apparatus can be simplified.
 本発明に係るサーバの一実施形態においては、前記データベースは、前記吐出の速度と、前記製品における目的細胞の生存率との対応関係に関するデータをさらに記憶し、前記選択する手段は、所要の前記生存率を達成するための前記吐出の速度の動作条件を選択し、前記送信する手段は、前記情報を、吐出速度を可変的に規制する細胞製造装置に送信してよい。記憶済みの対応関係データを活用して吐出を行うことで、より高い期待値で、所要の生存率の目的細胞を回収することができる。また、端末となる細胞製造装置から物理的に分離したサーバにてデータを集中管理することで、細胞製造装置の端末を簡素化できる。 In one embodiment of the server according to the invention, the database further stores data relating to the correspondence between the discharge rate and the viability of the target cell in the product, and the means of selection is the required said. The means for selecting and transmitting the operating conditions of the discharge rate for achieving the survival rate may transmit the information to a cell manufacturing apparatus that variably regulates the discharge rate. By discharging using the stored correspondence data, it is possible to recover the target cells having the required survival rate with a higher expected value. Further, by centrally managing data on a server physically separated from the cell manufacturing apparatus serving as a terminal, the terminal of the cell manufacturing apparatus can be simplified.
 データベース中のデータは、目的細胞の種類やフィルタの種類によって分類されていることが好ましい。これにより、所要とされる回収率や生存率等の品質を、更に高い期待値で実現し得る。 It is preferable that the data in the database is classified according to the type of target cell and the type of filter. As a result, the required quality such as recovery rate and survival rate can be realized with higher expected values.
 なお、サーバのハードウェアとしては、特に限定されず、従来公知の汎用のサーバ装置を用いることが可能である。 The server hardware is not particularly limited, and a conventionally known general-purpose server device can be used.
 (システム)
 本発明に係る細胞製造システムは、上述した目的細胞を含む製品を製造する装置と、上述したサーバとを備える。
(system)
The cell manufacturing system according to the present invention includes an apparatus for manufacturing a product containing the above-mentioned target cells and the above-mentioned server.
 一実施形態に係るシステムにおいて、前記装置は、前記サーバから送信された情報の動作条件に基づき前記製品を製造し、その結果としての、前記吐出の速度と、前記製品における目的細胞の生存率との対応関係、または前記吐出を行うフィルタに対する座標と、前記製品における目的細胞の回収率との対応関係、に関する実績データを前記サーバへ送信し、前記データベースは、前記実績データを追加的に記憶する構成を有する。データベースに記憶されるデータの量と種類が増すにつれ、データに基づき推奨される座標または吐出速度の動作条件の精度が改善し続けることができる。 In the system according to one embodiment, the apparatus manufactures the product based on the operating conditions of the information transmitted from the server, and as a result, the discharge rate and the viability of the target cells in the product. The actual data regarding the correspondence relationship between the above or the coordinates with respect to the filter performing the discharge and the correspondence relationship between the recovery rate of the target cells in the product is transmitted to the server, and the database additionally stores the actual data. Has a configuration. As the amount and type of data stored in the database increases, the accuracy of the operating conditions of coordinates or discharge rates recommended based on the data can continue to improve.
 以下、実施例により本発明をさらに詳しく説明するが、本発明はかかる実施例に限定されるものではない。なお、実施例において示した特性値の評価は、それぞれ以下の方法によって測定された。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to such Examples. The evaluation of the characteristic values shown in the examples was measured by the following methods.
 実施例1
 細胞濾過工程において、iPS細胞(目的細胞)を含む原料液体を細胞濾過フィルタに吐出するときのフィルタに対する座標によって、細胞回収量が影響を受けるか否かを確認した。なお、この実施例では、フィルタの平面視平面での座標を変化させ、吐出手段とフィルタとの距離は固定した。
Example 1
In the cell filtration step, it was confirmed whether or not the cell recovery amount was affected by the coordinates with respect to the filter when the raw material liquid containing the iPS cells (target cells) was discharged to the cell filtration filter. In this embodiment, the coordinates of the filter in the plan view were changed, and the distance between the ejection means and the filter was fixed.
 実験は次の手順により実施した。
1. iPS細胞(RPC-SF-iM株)の凍結液を37℃恒温槽で解凍した。
2. 解凍した液を5mL StemFit培地に希釈し、1500rpm、3minで遠心分離した。
3. 培養上清を除去してから、iPS細胞を1.44x10cells/mLの濃度で含む950uLの細胞懸濁液(原料液体)を調製し、吐出手段(ピペットチップ40)より細胞濾過フィルタ上に吐出した。細胞懸濁液の吐出速度は、100μL/sec、500μL/sec、または900μL/secのいずれかに設定した。
 また、原料液体の吐出の仕方は、(1)図3(b)のようにフィルタ(セルストレーナ 100μmメッシュ)上の1座標へと全量、(2)図3(c)のようにフィルタ上の2座標へと半分量ずつ(2回繰り返す)、(3)図3(g)のようにフィルタ上の4座標へと1/4量ずつ(ただし、2つのピペットチップ40を併用し、2座標へ同時に吐出を2回繰り返す)とした。
4. 濾過液体中に含まれる細胞数・細胞生存率を計測する。
5. 下の式に基づき、フィルタに捕捉された細胞数(未回収の目的細胞数)と未回収の細胞数の割合(%)を算出した。
 (未回収の細胞数)=(濾過前の総細胞数)-(濾過後の総細胞数)
 (未回収の細胞の割合)(%)=(未回収細胞数)/(濾過前の総細胞数)×100
 得られた結果を表1に示す。
The experiment was carried out according to the following procedure.
1. 1. The frozen solution of iPS cells (RPC-SF-iM strain) was thawed in a constant temperature bath at 37 ° C.
2. 2. The thawed solution was diluted in 5 mL StemFit medium and centrifuged at 1500 rpm for 3 min.
3. 3. Following removal of culture supernatant, the iPS cells cell suspension (raw material liquid) was prepared in 950uL at a concentration of 1.44x10 5 cells / mL, on a cell strainer filter than the discharge means (pipette tip 40) Discharged. The discharge rate of the cell suspension was set to either 100 μL / sec, 500 μL / sec, or 900 μL / sec.
The method of discharging the raw material liquid is as follows: (1) the total amount to one coordinate on the filter (cell strainer 100 μm mesh) as shown in FIG. 3 (b), and (2) on the filter as shown in FIG. 3 (c). Half amount to 2 coordinates (repeat twice), (3) 1/4 amount to 4 coordinates on the filter as shown in Fig. 3 (g) (however, 2 pipette tips 40 are used together and 2 coordinates The discharge is repeated twice at the same time).
4. Measure the number of cells and cell viability contained in the filtered liquid.
5. Based on the formula below, the ratio (%) of the number of cells captured by the filter (the number of uncollected target cells) to the number of uncollected cells was calculated.
(Number of uncollected cells) = (Total number of cells before filtration)-(Total number of cells after filtration)
(Percentage of uncollected cells) (%) = (Number of uncollected cells) / (Total number of cells before filtration) x 100
The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、原料液体を吐出するフィルタに対する座標(フィルタの平面視平面での座標)によって、未回収細胞の数や割合、並びに目的細胞の回収率が大きく変わった。具体的には、座標の数を増し、座標ごとの原料液体の吐出量を減らすことで、フィルタ上に捕捉される目的細胞が減り、濾過液体に含まれる目的細胞が増加することが分かった。つまり、座標の動作条件を可変的に規制することで、目的細胞の回収率を再現可能に改善し得ることが分かった。 As shown in Table 1, the number and proportion of uncollected cells and the recovery rate of target cells changed significantly depending on the coordinates of the filter that discharges the raw material liquid (coordinates of the filter in the plan view). Specifically, it was found that by increasing the number of coordinates and reducing the discharge amount of the raw material liquid for each coordinate, the target cells captured on the filter decrease and the target cells contained in the filtered liquid increase. That is, it was found that the recovery rate of the target cells can be reproducibly improved by variably regulating the operating conditions of the coordinates.
 実施例2
 細胞濾過工程において、原料液体を吐出する高さ(吐出手段の吐出口より細胞濾過フィルタ表面までの距離)が回収される目的細胞に影響するか否かを確認した。なお、この実施例では、フィルタの平面視平面での座標を固定し、吐出手段とフィルタとの距離を変化させた。
Example 2
In the cell filtration step, it was confirmed whether or not the height at which the raw material liquid was discharged (the distance from the discharge port of the discharge means to the surface of the cell filtration filter) affected the target cells to be recovered. In this embodiment, the coordinates of the filter in the plan view were fixed, and the distance between the ejection means and the filter was changed.
 実験は次の手順により実施した。
 すなわち、実施例1における手順1~3と同様にして原料液体(1.44x10cells/mL)を調製し、吐出手段(ピペットチップ40)より細胞濾過フィルタ(実施例1で用いたものと同じ)上に吐出した。
 細胞懸濁液の吐出速度は、900μL/secとした。
 フィルタ表面からの吐出手段の吐出口の高さを、条件1においては0mm、条件2においては20mm、条件3においては100mmと設定し、原料液体をフィルタ上の1箇所へと落下させた。なお、目的細胞の生存率は下の式に基づき算出した。
 (濾過液体中の細胞生存率)(%)=(濾過液体中の生細胞数)/(濾過液体中の総細胞数)×100
 得られた結果を表2に示す。
The experiment was carried out according to the following procedure.
That is, the raw material liquid (1.44x10 5 cells / mL) was prepared in the same manner as steps 1-3 of Example 1, the discharge means the same as that used from (pipette tip 40) in cell strainer filter (Example 1 ) Discharged on.
The discharge rate of the cell suspension was 900 μL / sec.
The height of the discharge port of the discharge means from the filter surface was set to 0 mm under condition 1, 20 mm under condition 2, and 100 mm under condition 3, and the raw material liquid was dropped to one place on the filter. The survival rate of the target cells was calculated based on the following formula.
(Cell viability in filtered liquid) (%) = (Number of viable cells in filtered liquid) / (Total number of cells in filtered liquid) x 100
The results obtained are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、吐出手段の吐出口より細胞濾過フィルタ表面までの距離によって、濾過液体中の総細胞数(回収率)ならびに、目的細胞の生存率および生存する目的細胞の数が大きく変わった。これにより、フィルタに対する座標(フィルタと吐出位置との距離)の動作条件を可変的に規制することで、目的細胞の回収率及び生存率を再現可能に改善し得ることが分かった。なお、距離は、原料液体のフィルタに対する線速度に影響し、結果的に目的細胞の回収率と生存率に影響を与えると推測される。 As shown in Table 2, the total number of cells (recovery rate) in the filtered liquid, the survival rate of the target cells, and the number of the target cells that survive vary greatly depending on the distance from the discharge port of the discharge means to the surface of the cell filtration filter. It was. From this, it was found that the recovery rate and the survival rate of the target cells can be reproducibly improved by variably regulating the operating conditions of the coordinates (distance between the filter and the discharge position) with respect to the filter. It is presumed that the distance affects the linear velocity of the raw material liquid with respect to the filter, and as a result, affects the recovery rate and the survival rate of the target cells.
 実施例3
 細胞濾過工程において、細胞懸濁液の吐出速度が回収細胞の生存率に影響を与えるか否かを確認した。
 実験は次の手順により実施した。
1. すなわち、実施例1における手順1~3と同様にして原料液体(1.40x10cells/mL)を調製し、吐出手段(ピペットチップ40)より、10μL/sec、100μL/sec、500μL/sec、900μL/sec、2000μL/secの吐出速度で、細胞濾過フィルタ(実施例1で用いたものと同じ)上に吐出した。
2.濾過液体を回収後、濾過液体中の総細胞数および生存細胞数を計測し、生存率を算出した。
Example 3
In the cell filtration step, it was confirmed whether the discharge rate of the cell suspension affects the viability of the recovered cells.
The experiment was carried out according to the following procedure.
1. 1. That is, the raw material liquid (1.40 x 10 5 cells / mL) was prepared in the same manner as in steps 1 to 3 in Example 1, and 10 μL / sec, 100 μL / sec, 500 μL / sec, from the discharging means (pipette tip 40). The cells were discharged onto a cell filtration filter (same as that used in Example 1) at a discharge rate of 900 μL / sec and 2000 μL / sec.
2. 2. After collecting the filtered liquid, the total number of cells and the number of viable cells in the filtered liquid were measured, and the survival rate was calculated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、濾過液中に含まれる総細胞数は、吐出速度にかかわらず略一定であった。一方、細胞の生存率は、吐出速度が500μL/sec以下では極めて高かったが、900μL/sec以上になると低下した。これにより、原料液体の吐出速度を可変的に規制することで、目的細胞の生存率および生存する目的細胞の収率を再現可能に改善し得ることが分かった。 As shown in Table 3, the total number of cells contained in the filtrate was substantially constant regardless of the discharge rate. On the other hand, the cell viability was extremely high when the discharge rate was 500 μL / sec or less, but decreased when the discharge rate was 900 μL / sec or more. From this, it was found that the viability of the target cells and the yield of the surviving target cells can be reproducibly improved by variably regulating the discharge rate of the raw material liquid.
 10 細胞濾過フィルタユニット
 11 細胞濾過フィルタ
 12 支持体
 20 細胞濾過フィルタユニット把持アーム
 30 容器
 40 ピペットチップ
10 Cell Filtration Filter Unit 11 Cell Filtration Filter 12 Support 20 Cell Filtration Filter Unit Grip Arm 30 Container 40 Pipette Tip

Claims (18)

  1.  目的細胞を含む製品を製造する装置であって、
     目的細胞を含む原料液体を細胞濾過フィルタへ吐出する手段と、
     前記細胞濾過フィルタによって得られた目的細胞を含む濾過液体を回収する手段と、
     前記吐出を行うフィルタに対する座標の動作条件を可変的に規制する手段と、
     を備える装置。
    A device for manufacturing products containing target cells.
    A means for discharging the raw material liquid containing the target cells to the cell filtration filter,
    A means for collecting the filtered liquid containing the target cells obtained by the cell filtration filter, and
    A means for variably regulating the operating conditions of the coordinates for the filter that discharges,
    A device equipped with.
  2.  前記吐出の速度の動作条件を可変的に規制する手段と、
    を更に備える請求項1に記載の装置。
    A means for variably regulating the operating conditions of the discharge speed, and
    The device according to claim 1, further comprising.
  3.  前記細胞濾過フィルタの通液時間を可変的に規制する手段と、
    を更に備える請求項1または2に記載の装置。
    A means for variably regulating the liquid passing time of the cell filtration filter and
    The device according to claim 1 or 2, further comprising.
  4.  前記吐出の回数、前記吐出する手段の使用個数および吐出圧力からなる群より選ばれる1以上の追加動作条件を可変的または非可変的に規制する手段と、
    を更に備える請求項1から3いずれかに記載の装置。
    A means for variably or non-variably regulating one or more additional operating conditions selected from the group consisting of the number of discharges, the number of discharge means used, and the discharge pressure.
    The device according to any one of claims 1 to 3, further comprising.
  5.  前記動作条件が可変であり、
     前記装置は、濾過液体中に含まれる細胞数を検知する手段と、前記検知に基づき前記動作条件を調節する手段と、を更に備える請求項1から4いずれかに記載の装置。
    The operating conditions are variable
    The device according to any one of claims 1 to 4, further comprising a means for detecting the number of cells contained in the filtered liquid and a means for adjusting the operating conditions based on the detection.
  6.  前記動作条件が可変であり、
     前記装置は、前記吐出を行うフィルタに対する座標における濾物の蓄積またはそれに相関する事象を検知する手段と、前記検知に基づき前記動作条件を調節する手段と、を更に備える請求項1から5いずれか記載の装置。
    The operating conditions are variable
    Any of claims 1 to 5, wherein the device further comprises means for detecting the accumulation of filters or an event correlating with them in coordinates with respect to the filter performing the discharge, and means for adjusting the operating conditions based on the detection. The device described.
  7.  前記細胞濾過フィルタを、前記濾過液体を回収する容器の開口部に装着する手段を更に備える請求項1から6いずれか記載の装置。 The device according to any one of claims 1 to 6, further comprising a means for attaching the cell filtration filter to the opening of a container for collecting the filtered liquid.
  8.  前記装着する手段は、2以上の前記細胞濾過フィルタまたは前記容器を支持する支持体を把持する手段と、
     前記把持した支持体を搬送し、前記2以上の細胞濾過フィルタと前記容器の開口部との位置をあわせる手段と、を備える請求項7記載の装置。
    The mounting means include means for gripping two or more of the cell filtration filters or a support supporting the container.
    The device according to claim 7, further comprising means for transporting the gripped support and aligning the two or more cell filtration filters with the opening of the container.
  9.  前記細胞濾過フィルタを、前記濾過液体を回収する容器の開口部から離脱する手段を更に備える請求項1から8いずれか記載の装置。 The device according to any one of claims 1 to 8, further comprising a means for separating the cell filtration filter from the opening of the container for collecting the filtered liquid.
  10.  前記濾過液体から固液分離で目的細胞を回収する手段を更に備える請求項1から9いずれか記載の装置。 The device according to any one of claims 1 to 9, further comprising a means for recovering target cells by solid-liquid separation from the filtered liquid.
  11.  前記固液分離が遠心分離であり、
     前記回収する手段は、前記濾過液体を回収した容器の開口部を閉鎖する手段と、前記容器に対して遠心力を負荷する手段と、を備える請求項10記載の装置。
    The solid-liquid separation is centrifugation,
    The device according to claim 10, wherein the collecting means includes a means for closing the opening of the container in which the filtered liquid is collected and a means for applying a centrifugal force to the container.
  12.  請求項1から11いずれか記載の装置を用い、前記製品を製造する方法。 A method for manufacturing the product using the device according to any one of claims 1 to 11.
  13.  前記吐出を行うフィルタに対する座標と、前記製品における目的細胞の回収率との対応関係、に関するデータを記憶するデータベースと、
     前記データベースを参照して、所要の前記回収率を達成するための前記吐出を行うフィルタに対する座標の動作条件を選択する手段と、
     前記選択した動作条件の情報を請求項1から11いずれか記載の装置に送信する手段と、を備えるサーバ。
    A database that stores data on the correspondence between the coordinates of the discharging filter and the recovery rate of target cells in the product.
    With reference to the database, means for selecting the operating conditions of the coordinates for the filter performing the discharge in order to achieve the required recovery rate, and
    A server including means for transmitting information on the selected operating conditions to the apparatus according to any one of claims 1 to 11.
  14.  前記データベースは、前記吐出の速度と、前記製品における目的細胞の生存率との対応関係に関するデータをさらに記憶し、
     前記選択する手段は、所要の前記生存率を達成するための前記吐出の速度の動作条件を選択し、
     前記送信する手段は、前記情報を請求項2記載の装置に送信する請求項13記載のサーバ。
    The database further stores data on the correspondence between the rate of discharge and the viability of the target cells in the product.
    The selecting means selects the operating conditions of the discharge rate to achieve the required survival rate.
    The server according to claim 13, wherein the transmitting means transmits the information to the apparatus according to claim 2.
  15.  請求項1から10いずれか記載の装置と、請求項13または14記載のサーバと、を備えるシステム。 A system including the device according to any one of claims 1 to 10 and the server according to claim 13 or 14.
  16.  前記装置は、前記サーバから送信された情報の動作条件に基づき前記製品を製造し、
     その結果としての、前記吐出の速度と、前記製品における目的細胞の生存率との対応関係、または前記吐出を行うフィルタに対する座標と、前記製品における目的細胞の回収率との対応関係、に関する実績データを前記サーバへ送信し、
     前記データベースは、前記実績データを追加的に記憶する請求項15記載のシステム。
    The device manufactures the product based on the operating conditions of the information transmitted from the server.
    As a result, actual data on the correspondence between the discharge rate and the survival rate of the target cells in the product, or the correspondence between the coordinates for the filter performing the discharge and the recovery rate of the target cells in the product. To the server
    The system according to claim 15, wherein the database additionally stores the actual data.
  17.  前記吐出を行うフィルタに対する座標と、前記製品における目的細胞の回収率との対応関係、に関するデータを記憶するデータベースと、
     前記データベースを参照して、所要の前記回収率を達成するための及び前記吐出を行うフィルタに対する座標の動作条件を選択する手段をさらに備える請求項1から11のいずれかに記載の装置。
    A database that stores data on the correspondence between the coordinates of the discharging filter and the recovery rate of target cells in the product.
    The apparatus according to any one of claims 1 to 11, further comprising means for selecting the operating conditions of the coordinates for achieving the required recovery rate and for the discharging filter with reference to the database.
  18.  前記データベースは、前記吐出の速度と、前記製品における目的細胞の生存率との対応関係に関するデータをさらに記憶し、
     前記選択する手段は、所要の前記生存率を達成するための前記吐出の速度の動作条件を選択する請求項17に記載の装置。
    The database further stores data on the correspondence between the rate of discharge and the viability of the target cells in the product.
    17. The apparatus of claim 17, wherein the means of selection is the operating conditions of the discharge rate to achieve the required survival rate.
PCT/JP2020/013406 2019-03-27 2020-03-25 Cell production device, cell production method, and server, system and device to be used therefor WO2020196649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509524A JP7483687B2 (en) 2019-03-27 2020-03-25 Cell manufacturing device, cell manufacturing method, and server, system, and device used therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061785 2019-03-27
JP2019061785 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196649A1 true WO2020196649A1 (en) 2020-10-01

Family

ID=72608533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013406 WO2020196649A1 (en) 2019-03-27 2020-03-25 Cell production device, cell production method, and server, system and device to be used therefor

Country Status (2)

Country Link
JP (1) JP7483687B2 (en)
WO (1) WO2020196649A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065590A (en) * 2010-09-24 2012-04-05 Olympus Corp Cell treatment apparatus
JP2013034436A (en) * 2011-08-09 2013-02-21 Kaneka Corp Method for concentrating cell suspension
WO2015056603A1 (en) * 2013-10-18 2015-04-23 株式会社カネカ Novel cell separation filter material and filter obtained by layering same
JP2017021187A (en) * 2015-07-10 2017-01-26 キヤノン株式会社 Electronic device and imaging device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255447A (en) 2012-06-12 2013-12-26 Nippon Koden Corp Cell isolation apparatus
US11286454B2 (en) 2015-08-31 2022-03-29 I Peace, Inc. Pluripotent stem cell manufacturing system and method for producing induced pluripotent stem cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012065590A (en) * 2010-09-24 2012-04-05 Olympus Corp Cell treatment apparatus
JP2013034436A (en) * 2011-08-09 2013-02-21 Kaneka Corp Method for concentrating cell suspension
WO2015056603A1 (en) * 2013-10-18 2015-04-23 株式会社カネカ Novel cell separation filter material and filter obtained by layering same
JP2017021187A (en) * 2015-07-10 2017-01-26 キヤノン株式会社 Electronic device and imaging device

Also Published As

Publication number Publication date
JPWO2020196649A1 (en) 2020-10-01
JP7483687B2 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
JP6928598B2 (en) Human and large mammalian lung bioreactors
JP6518879B2 (en) Method for purification of retinal pigment epithelial cells
US10752879B2 (en) Culture method and cell cluster
JP6580329B2 (en) Method for obtaining differentiated cells and / or products of differentiated cells from undifferentiated cells
CN111542350B (en) Systems and methods for preparing adipose-derived stem cells
CN109136185B (en) Preparation method and application of brain-like organ device
Wanner An in vitro trauma model to study rodent and human astrocyte reactivity
Kim et al. Isolation and culture of neurons and astrocytes from the mouse brain cortex
JP6326827B2 (en) Cell culture device and cell culture method
JP5388297B2 (en) Adipo cluster
CN115353951A (en) Total aorta organoid chip model constructed based on induced pluripotent stem cells and application thereof
WO2020196649A1 (en) Cell production device, cell production method, and server, system and device to be used therefor
WO2019124540A1 (en) Cell culturing apparatus, culture solution aspirator, and cell culturing method
CN112852709B (en) Method for culturing mouse lung organoid
Wichterle et al. Xenotransplantation of embryonic stem cell-derived motor neurons into the developing chick spinal cord
CN111575227B (en) Method for establishing human-derived diabetic cardiomyopathy model
Brevini et al. Use of a super-hydrophobic microbioreactor to generate and boost pancreatic mini-organoids
CN116836934B (en) Osteosarcoma organoid culture solution, culture reagent combination and culture method
CN109153963B (en) Method for changing cell culture in adhesion state
CN114729323B (en) Rotationally aggregated neural microsphere and application thereof
Asashima et al. Elucidation of the role of activin in organogenesis using a multiple organ induction system with amphibian and mouse undifferentiated cells in vitro
Iyer et al. Organotypic explants of the embryonic rodent hippocampus: An accessible system for transgenesis
Blümke et al. Differentiation and Characterization of Osteoclasts from Human Induced Pluripotent Stem Cells
Ibrahim et al. Construction and application of a microprojectile system for the transfection of organotypic brain slices
US20230295577A1 (en) Method of culturing stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509524

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779741

Country of ref document: EP

Kind code of ref document: A1