Nothing Special   »   [go: up one dir, main page]

WO2020191751A1 - 波束失败恢复方法、装置和通信系统 - Google Patents

波束失败恢复方法、装置和通信系统 Download PDF

Info

Publication number
WO2020191751A1
WO2020191751A1 PCT/CN2019/080216 CN2019080216W WO2020191751A1 WO 2020191751 A1 WO2020191751 A1 WO 2020191751A1 CN 2019080216 W CN2019080216 W CN 2019080216W WO 2020191751 A1 WO2020191751 A1 WO 2020191751A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
response
beam failure
terminal device
failure recovery
Prior art date
Application number
PCT/CN2019/080216
Other languages
English (en)
French (fr)
Inventor
陈哲
宋磊
杨现俊
张磊
王昕�
Original Assignee
富士通株式会社
陈哲
宋磊
杨现俊
张磊
王昕�
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 陈哲, 宋磊, 杨现俊, 张磊, 王昕� filed Critical 富士通株式会社
Priority to CN201980093876.6A priority Critical patent/CN113557686B/zh
Priority to PCT/CN2019/080216 priority patent/WO2020191751A1/zh
Priority to KR1020217030789A priority patent/KR20210132149A/ko
Priority to JP2021556932A priority patent/JP7306474B2/ja
Priority to EP19922042.7A priority patent/EP3952175A4/en
Publication of WO2020191751A1 publication Critical patent/WO2020191751A1/zh
Priority to US17/481,386 priority patent/US12107717B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of communications, and in particular to a beam failure recovery method, device, and communication system.
  • Beam Failure mainly refers to that in the high-frequency communication scenario, the communication link is easily affected by physical conditions, such as weather, obstacles, changes in direction and angle, etc., so that transmission fails in the original beam direction.
  • the beam failure recovery (BFR) technology mainly refers to, in the case of a beam failure, using the measurement results of the beam power in different directions to quickly locate a new and reliable beam direction, thereby completing the rapid recovery of the link.
  • the terminal device detects the reference signal (RS) associated with the downlink control channel (PDCCH) to determine whether a beam failure occurs; when it is determined that the beam failure occurs, it sends a beam failure request to the network device and listens to the network device for the beam failure request
  • RS reference signal
  • BFR response beam failure recovery-related response
  • DCI downlink control information
  • the inventor of the present application found that in the existing beam failure recovery technology, the resources used to receive the response related to beam failure recovery (BFR response) are the same as the control channel resources reset after the beam recovery is successful, but, When the above two are not the same, how the terminal device resets the spatial direction of the downlink is not described.
  • the inventor of the present application also discovered that the existing beam failure recovery technology can only be used for one carrier.
  • the existing beam failure recovery technology can only be used for one carrier.
  • BFR response beam failure recovery response
  • one sub-carrier may not be used for receiving control channel resources, and how to reset the spatial direction of the data channel of the sub-carrier is currently not clearly defined.
  • a terminal device may be configured with up to 32 subcarriers. Performing beam failure measurement and recovery on each subcarrier may cause the terminal to interact with the network side too frequently. Currently, there is no reliable method to solve this problem.
  • embodiments of the present application provide a beam failure recovery method, device, and communication system.
  • the terminal device receives information related to beam failure recovery. After a period of time for the response (BFR response), the beam direction is switched. Therefore, even when the control channel resource for receiving the BFR response is different from the reset control channel resource, or in the scenario of multiple carriers, the terminal The equipment can have enough time to switch the beam direction reliably, thereby improving system performance.
  • a beam failure recovery device which is provided in a terminal device, and the device includes: a receiving unit, when the terminal device receives a beam failure recovery related response (BFR response) for a period of time After that, until activation or reconfiguration signaling, the receiving unit is quasi-co-located in the first cell of the terminal device according to the same antenna as the selected reference signal (q_new) or the reference signal (q_new) indicated by the higher layer (Quasi-co-located, QCL) parameters monitor and/or receive downlink signals.
  • BFR response beam failure recovery related response
  • a beam failure recovery device which is applied to a network device, and the device includes: a first instruction unit that sends to a terminal device for instructing one of two or more cells of the terminal device Or, the device includes: a second indicating unit, which sends to the terminal equipment the cell for instructing to monitor and/or receive the downlink signal, and/or the bandwidth part, and/or Control resource set (CORESET) signaling.
  • a first instruction unit that sends to a terminal device for instructing one of two or more cells of the terminal device
  • the device includes: a second indicating unit, which sends to the terminal equipment the cell for instructing to monitor and/or receive the downlink signal, and/or the bandwidth part, and/or Control resource set (CORESET) signaling.
  • CORESET Control resource set
  • the beam failure recovery method is applied to a terminal device, and the method includes: after the terminal device receives a beam failure recovery-related response (BFR response) for a period of time, until activation or reconfiguration signaling, the terminal device A cell monitors and/or receives downlink signals according to the same antenna quasi-co-located (QCL) parameters as the selected reference signal (q_new) or the reference signal (q_new) indicated by the higher layer.
  • BFR response beam failure recovery-related response
  • QCL quasi-co-located
  • a communication system includes a terminal device and a network device.
  • the terminal device includes the beam failure recovery apparatus described in the first aspect of the above-mentioned embodiment.
  • the beneficial effect of the embodiments of the present application is that the terminal device switches the beam direction after a period of time after receiving the response (BFR response) related to beam failure recovery. Therefore, the terminal device can have enough time to reliably perform the beam. The direction is switched to improve system performance.
  • Figure 1 is a schematic diagram of the communication system of the present application.
  • FIG. 2 is a schematic diagram of the beam failure recovery method of Embodiment 1 of the present application.
  • FIG. 3(A) is a schematic diagram of the beam failure recovery method of Embodiment 1 of the present application applied to a single carrier scenario;
  • FIG. 3(B) is a schematic diagram of the beam failure recovery method of Embodiment 1 of the present application applied to a multi-carrier scenario;
  • FIG. 4 is a schematic diagram of a beam failure recovery apparatus of Embodiment 2 of the present application.
  • FIG. 5 is a schematic diagram of a terminal device according to Embodiment 3 of the present application.
  • FIG. 6 is a schematic diagram of a beam failure recovery method according to Embodiment 4 of the present application.
  • FIG. 7 is a schematic diagram of a beam failure recovery method according to Embodiment 5 of the present application.
  • FIG. 8 is a schematic diagram of a beam failure recovery apparatus of Embodiment 6 of the present application.
  • FIG. 9 is a schematic diagram of a beam failure recovery apparatus according to Embodiment 7 of the present application.
  • FIG. 10 is a schematic diagram of a network device according to Embodiment 8 of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the terms, but they do not indicate the spatial arrangement or temporal order of these elements. These elements should not be used by these terms. Limited.
  • the term “and/or” includes any and all combinations of one or more of the associated listed terms.
  • the terms “comprising”, “including”, “having” and the like refer to the existence of the stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • the term “communication network” or “wireless communication network” may refer to a network that meets any of the following communication standards, such as Long Term Evolution (LTE), and Enhanced Long Term Evolution (LTE-A, LTE-A). Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Enhanced Long Term Evolution
  • LTE-A LTE-A
  • Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • HSPA High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other currently known or future communication protocols.
  • Network device refers to, for example, a device in a communication system that connects a terminal device to a communication network and provides services for the terminal device.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller), etc.
  • the base station may include but is not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), 5G base station (gNB), etc., and may also include remote radio head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femto, pico, etc.
  • base station can include some or all of their functions, and each base station can provide communication coverage for a specific geographic area.
  • the term "cell” may refer to a base station and/or its coverage area, depending on the context in which the term is used.
  • the term "User Equipment” (UE, User Equipment) or “Terminal Equipment” (TE, Terminal Equipment) refers to, for example, equipment that accesses a communication network through a network device and receives network services.
  • the terminal device may be fixed or mobile, and may also be called a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • terminal devices may include but are not limited to the following devices: cellular phones (Cellular Phone), personal digital assistants (PDAs, Personal Digital Assistant), wireless modems, wireless communication devices, handheld devices, machine-type communication devices, laptop computers, Cordless phones, smart phones, smart watches, digital cameras, etc.
  • cellular phones Cellular Phone
  • PDAs personal digital assistants
  • wireless modems wireless communication devices
  • handheld devices machine-type communication devices
  • laptop computers Cordless phones
  • smart phones smart watches, digital cameras, etc.
  • a terminal device may also be a machine or device that performs monitoring or measurement.
  • it may include, but is not limited to: Machine Type Communication (MTC) terminals, Vehicle-mounted communication terminals, device to device (D2D, Device to Device) terminals, machine to machine (M2M, Machine to Machine) terminals, etc.
  • MTC Machine Type Communication
  • D2D Device to Device
  • M2M Machine to Machine
  • FIG. 1 is a schematic diagram of the communication system of the present application, schematically illustrating the case of taking terminal equipment and network equipment as an example.
  • the communication system 100 may include a network equipment 101 and a terminal equipment 102 (for simplicity, Figure 1 only takes one terminal device as an example for illustration).
  • eMBB enhanced mobile broadband
  • mMTC large-scale machine type communication
  • URLLC Ultra-Reliable and Low- Latency Communication
  • the terminal device 102 can send data to the network device 101, for example, using an authorized or unauthorized transmission mode.
  • the terminal device 101 may receive data sent by one or more terminal devices 102, and feedback information to the terminal device 102, such as acknowledgement ACK/non-acknowledgement NACK information, etc.
  • the terminal device 102 may confirm the end of the transmission process according to the feedback information, or may also Perform new data transmission, or data retransmission can be performed.
  • the network device 101 may send information related to system information to the terminal device 102, and the terminal device 102 detects the received information to achieve downlink synchronization and communicate with the network device 101. establish connection.
  • the following description takes the network device in the communication system as the sending end and the terminal device as the receiving end as an example, but the application is not limited to this, and the sending end and/or the receiving end may also be other devices.
  • this application is not only applicable to signal transmission between network equipment and terminal equipment, but also applicable to signal transmission between two terminal equipment.
  • Embodiment 1 of the present application provides a beam failure recovery (BFR) method, which may be executed by a terminal device.
  • BFR beam failure recovery
  • FIG. 2 is a schematic diagram of the beam failure recovery method of this embodiment. As shown in Figure 2, the method includes:
  • Step 201 After the terminal device receives a beam failure recovery-related response (BFR response) for a period of time, until activation or reconfiguration signaling, the terminal device in the first cell is based on the selected or high-level instructions
  • the same antenna quasi-co-located (QCL) parameter with the same reference signal (q_new) monitors and/or receives the downlink signal.
  • the terminal equipment in the first cell monitors and/or receives the downlink signal according to the same antenna quasi-co-located (QCL) parameter as the selected or high-level-indicated reference signal q_new, yes It means that the terminal device switches the beam direction to the beam direction corresponding to the reference signal q_new, thereby realizing the switching of the beam direction.
  • QCL quasi-co-located
  • the terminal device switches the beam direction after a period of time after receiving the beam failure recovery-related response (BFR response). Therefore, in a single carrier scenario, if the beam failure recovery-related response (BFR The control channel resource of the response) is different from the control channel resource reset by the terminal device after receiving the response.
  • the terminal device can perform corresponding signal processing in this period of time, so that there is enough time to adjust the beam direction, so it can be reliably Switch the beam direction; in addition, in the scenario of multiple carriers (for example, more than 2 carriers), the terminal device can also have enough time to reliably switch the beam direction, thereby improving system performance.
  • Figure 3(A) is a schematic diagram of the beam failure recovery method of this embodiment applied to a single carrier scenario.
  • the terminal device receives a response related to beam failure recovery (BFR response) at time t1, after a period of time k and before receiving activation or reconfiguration signaling at time t2
  • the terminal device adjusts the antenna quasi-co-located (QCL) parameter to be the same as the selected or high-level-indicated reference signal q_new, thereby switching the beam direction, and in the switched beam direction Up-monitoring and/or receiving downstream signals.
  • BFR response beam failure recovery
  • the terminal device adjusts the antenna quasi-co-located (QCL) parameter to be the same as the selected or high-level-indicated reference signal q_new, thereby switching the beam direction, and in the switched beam direction Up-monitoring and/or receiving downstream signals.
  • QCL antenna quasi-co-located
  • the downlink control information (DCI) used when detecting whether beam failure occurs is different from the downlink control information (DCI) used in the response (BFR response) related to receiving beam failure recovery.
  • the terminal device can perform corresponding signal processing in this period of time k, so that there is enough time to adjust the direction of the beam. Therefore, in the period of time k1, it can reliably monitor and control the beam direction after the switch. / Or receive the downlink signal.
  • the signal processing performed by the terminal device in the period of time k includes, for example, demodulating (decoding) the received BFR response, and then preparing for adjusting the corresponding downlink receive beam according to the reference signal q_new.
  • the period of time k is the time required for the terminal device to apply the QCL information corresponding to q_new after receiving the BFR response.
  • the cell where the terminal device receives the response (BFR response) related to beam failure recovery and the cell that monitors and/or receives the downlink signal are the same cell, such as cell 300.
  • FIG. 3(B) is a schematic diagram of the beam failure recovery method of this embodiment applied to a multi-carrier scenario.
  • the terminal device receives a beam failure recovery-related response (BFR response) at time t1, after a period of time k and before the time t2 when the activation or reconfiguration signaling is received
  • BFR response beam failure recovery-related response
  • the terminal device adjusts the antenna quasi-co-located (QCL) parameter to be the same as the selected or high-level-indicated reference signal q_new, thereby switching the beam direction, and in the switched beam direction Up-monitoring and/or receiving downstream signals.
  • QCL antenna quasi-co-located
  • the terminal device may receive a beam failure recovery-related response (BFR response) in the second cell 302, and monitor and/or receive downlink signals in the first cell 301.
  • BFR response beam failure recovery-related response
  • the second cell 302 and the first cell 301 may be different.
  • the second cell 302 is the primary cell PCell or the secondary cell SCell#0
  • the first cell 301 is the secondary cell SCell#1.
  • the terminal device when the first cell is different from the second cell, the terminal device can perform corresponding signal processing in this period of time k, so that there is enough time to adjust the beam direction. Therefore, the downlink signal can be reliably monitored and/or received in the beam direction after the handover in the time period k1.
  • the signal processing performed by the terminal device in the period of time k includes, for example, demodulating (decoding) the received BFR response, and then preparing for adjusting the corresponding downlink receive beam according to the reference signal q_new.
  • the period of time k is the time required for the terminal device to apply the QCL information corresponding to q_new after receiving the BFR response.
  • the first cell 301 and the second cell 302 belong to the same cell group (Cell Group), and the cell group may be, for example, a primary cell group (MCG) or a secondary cell group (SCG).
  • MCG primary cell group
  • SCG secondary cell group
  • the downlink signal monitored or received by the terminal device includes at least one of the following signals: physical downlink control channel (PDCCH), physical downlink data channel (PDSCH), channel state information reference signal (CSI- RS), and synchronization signal block (SSB).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink data channel
  • CSI- RS channel state information reference signal
  • SSB synchronization signal block
  • this embodiment may not be limited to this, and the downlink signal may also be other signals.
  • the downstream signal is a physical downlink control channel (PDCCH) and/or a physical downlink data channel (PDSCH) as an example to illustrate the beam failure recovery method of this embodiment in a multi-carrier scenario.
  • the downlink signal is a channel state information reference signal (CSI-RS) or a synchronization signal block (SSB)
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the terminal device can monitor the physical downlink control channel (PDCCH) in the first cell. For example, when there is an opportunity to monitor the physical downlink control channel (PDCCH) in the first cell, the terminal device monitors the physical downlink control channel (PDCCH) in the first cell, or monitors the physical downlink control channel (PDCCH) in the first cell. Physical downlink control channel (PDCCH) and receive physical downlink data channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink data channel
  • the terminal device does not monitor the physical downlink control channel (PDCCH) in the first cell.
  • the control resource set (CORESET) or search space (search space) corresponding to the PDCCH can satisfy at least one of the following conditions :
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is the default control resource set (CORESET) or search space (search space), where the default control
  • the resource set (CORESET) or search space (search space) can be, for example, a control resource set (CORESET) or search space (search space) with the smallest identification code (ID) or the largest identification code (ID);
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is the control resource set (CORESET) or search space (search space) indicated by the radio resource control (RRC) signaling. space).
  • the physical downlink data channel (PDSCH) received by the terminal device in the first cell may be at least one of the following:
  • the physical downlink data channel (PDSCH) in the first cell where the physical downlink data channel (PDSCH) may be predetermined, for example, all physical downlink data channels (PDSCH) in the first cell;
  • PDSCH physical downlink data channel scheduled by the physical downlink control channel (PDCCH) that receives the response (BFR response) related to beam failure recovery.
  • the format of the response (BFR response) related to beam failure recovery may be, for example, the downlink control signaling (DCI) format scrambled by the cell radio network temporary identity (C-RNTI); or , Modulation and coding strategy Cell Radio Network Temporary Identity (MCS-C-RNTI) Cyclic Redundancy Check (Cyclic Redundancy Check) scrambled downlink control signaling (DCI) format.
  • DCI downlink control signaling
  • C-RNTI cell radio network temporary identity
  • MCS-C-RNTI Modulation and coding strategy Cell Radio Network Temporary Identity
  • Cyclic Redundancy Check Cyclic Redundancy Check
  • the response related to beam failure recovery is detected in the search space (search space) of the random access response (BFR RAR) for beam failure recovery, for example, related to beam failure
  • the recovery-related response is the first physical downlink control channel (PDCCH) in the search space (search space).
  • the search space may be configured by radio resource control (RRC) signaling, and the name of the radio resource control (RRC) signaling may be, for example, a recovery search space identification code (recovery search space ID).
  • RRC radio resource control
  • the search space may be the search space of the first cell 301, for example, the search space of the second secondary cell SCell#1; the search space may also be the search space of the second cell 302, for example, the search space of the primary cell PCell Or the search space of the first secondary cell SCell#0.
  • the length of the period of time k can be expressed as: absolute time, for example, 3 milliseconds (ms); or, the time slot (slot) or symbol (symbol) related to the subcarrier interval (SCS)
  • ⁇ DCI refers to the sub-carrier spacing corresponding to the BFR response
  • ⁇ DL refers to the sub-carrier spacing corresponding to the downlink signal
  • m refers to the normalized length of k
  • the sub-carrier spacing may include: the sub-carrier spacing of the first cell 301; or, the sub-carrier spacing of the cell where the response (BFR response) related to beam failure recovery is received, for example, the first cell
  • the length of the period of time k may be related to the capability of the terminal device.
  • the level of capability (capability) of the terminal device is different, and the length of the corresponding time k (on the corresponding subcarrier) is also different.
  • the higher the level of capability (capability) of the terminal device the terminal device The faster the processing speed, the shorter the length of the corresponding time k.
  • the starting point T1 of the period k may be any of the following situations:
  • the end point T2 of the period of time k can be any of the following situations:
  • the time slot used to receive the downlink signal If the downlink signal occupies only one time slot in the time domain, the end of the period of time k can be the time slot in which the downlink signal is located. Occupies multiple time slots in the time domain (for example, the downlink signal is PDSCH, and the value of the RRC signaling pdsch-AggregationFactor corresponding to the PDSCH transmission is greater than 1), then the end of the period of time k may be in the multiple time slots The first time slot;
  • control resource set CORESET
  • search space search space for monitoring PDCCH described in (3) above satisfies at least one of the following conditions:
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is the default control resource set (CORESET) or search space (search space), where the default control
  • the resource set (CORESET) or search space (search space) can be, for example, a control resource set (CORESET) or search space (search space) with the smallest identification code (ID) or the largest identification code (ID);
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is the control resource set (CORESET) or search space (search space) indicated by the radio resource control (RRC) signaling. space).
  • the activation or reconfiguration signaling received at time t2 may include: activation or reconfiguration signaling for the first cell 301; or activation for the second cell 302 associated with the first cell 301 Or reconfiguration signaling, where the second cell 302 may be a secondary cell SCell#0, and the first cell 301 and the second cell 302 jointly perform a beam failure recovery (BFR) process, or jointly perform beam failure Recovery measurement; or, activation or reconfiguration signaling for the primary cell PCell of the terminal device, where the primary cell PCell and the first cell 301 jointly perform beam failure recovery (BFR) procedures, or jointly perform beam failure Recovered measurement.
  • BFR beam failure recovery
  • the activation or reconfiguration signaling may include: media access control layer control for activating the transmission configuration indication (Transmission Configuration Indication, TCI) state of the control resource set (CORESET) corresponding to the downlink signal Unit (MAC-CE) signaling, the downlink signal is, for example, PDCCH; or, the media access control layer control unit (MAC-CE) signaling used to activate the TCI state set corresponding to the downlink signal, the downlink signal is, for example, PDSCH
  • the radio resource control (RRC) signaling is, for example It can be tci-StatesPDCCH-ToAddList or tci-StatesPDCCH-ToReleaseList; or, radio resource control (RRC) signaling used to reconfigure the TCI state set corresponding to the downlink signal,
  • the first cell 301 may include: the cell corresponding to the cell information reported by the terminal device to the network device.
  • the reporting of the cell information may occur after beam failure.
  • the terminal device may report the first cell.
  • the identification code (ID) of the cell 301, the cell 301 is detected to have failed to transmit the beam; or, the cell associated with the second cell 302 corresponding to the cell information reported by the terminal device to the network device, for example, the terminal device can report The identification code (ID) of the second cell 302, the second cell 302 is associated with the first cell 301, and the cell 302 is detected to have failed to transmit the beam; or the cell indicated by the upper layer of the terminal device, for example,
  • the cell where the beam failure occurs as indicated by the MAC layer of the terminal device; or the cell associated with the second cell 302 indicated by the upper layer of the terminal device, for example, is controlled by the terminal device's medium access control
  • the secondary cell SCell#1 associated with the secondary cell SCell#0 whose beam failed as indicated by the (MAC
  • the association between the second cell 302 and the first cell 301 can be configured by radio resource control (RRC) signaling, for example, the radio resource control (RRC) signaling is configured as the secondary cell SCell of the first cell 301 #1 performs beam failure recovery (BFR) jointly with the secondary cell Scell#0 or the primary cell PCell as the second cell 302.
  • RRC radio resource control
  • the reference signal q_new may be a selected reference signal or a reference signal indicated by a higher layer.
  • the selected reference signal q_new may be a reference signal selected by the terminal equipment from a list of reference signals (RS) used to determine a beam failure recovery candidate beam (BFR candidate beam);
  • the reference signal indicated by a higher layer may be It is the reference signal last indicated to the physical layer by the upper layer (for example, MAC layer) of the terminal device.
  • the beam failure recovery method further includes:
  • Step 202 The terminal device reports the information of the selected reference signal q_new to the network device.
  • the information of the selected reference signal q_new may be, for example, the identification code (ID) of the reference signal q_new.
  • the terminal device may use a medium access control layer control unit message (MAC-CE message), a physical uplink control channel (PUCCH), or a physical random access channel (PRACH) to obtain the selected reference signal q_new.
  • the information is reported to the network device.
  • the medium access control layer control unit message (MAC-CE message) can be sent through the physical uplink data channel (PUSCH); the information of q_new can also be transmitted using the time-frequency resource location corresponding to the PUCCH or the resource ID of the PUCCH; in addition, Different PRACH resources can also be associated with different candidate RSs used for BFR. According to the RS resources corresponding to the transmitted PRACH resources, the network side can learn the corresponding q_new.
  • MAC-CE message medium access control layer control unit message
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • step 202 may be performed before step 201, for example.
  • the first cell 301 may not be configured to receive the random access response (RAR) search space of the response (BFR response) related to beam failure recovery.
  • the terminal The device may perform beam failure recovery in the manner shown in (B) of FIG. 3, and receive a response (BFR response) related to beam failure recovery in the second cell 302.
  • the first cell 301 may also be configured to receive a random access response (RAR) search space of a response (BFR response) related to beam failure recovery, in this case :
  • RAR random access response
  • BFR response response related to beam failure recovery
  • the terminal device can use the method shown in Figure 3(A) to perform beam failure recovery, that is, receive a beam failure recovery-related response (BFR response) in the same cell, and monitor and/or receive downlink signals, and, After a period of time k after receiving a response (BFR response) related to beam failure recovery, the terminal device monitors and/or receives a downlink signal in a period of time k1 before receiving activation or reconfiguration signaling t2;
  • the terminal device may receive a response related to beam failure recovery (BFR response) in the same cell, and monitor and/or receive downlink signals, and after the terminal device receives the response related to beam failure recovery (BFR response) , Until the time period before the activation or reconfiguration signaling t2 is received, the downlink signal is monitored and/or received, that is, the search space used for monitoring the PDCCH is the same as the search space used for receiving the BFR response. This period of time k may be unnecessary.
  • BFR response response related to beam failure recovery
  • the terminal device switches the beam direction after a period of time after receiving the beam failure recovery-related response (BFR response). Therefore, in a single carrier scenario, if the beam failure recovery-related response (BFR The control channel resource of the response) is different from the control channel resource reset by the terminal device after receiving the response.
  • the terminal device can perform corresponding signal processing in this period of time, so that there is enough time to adjust the beam direction, so it can be reliable
  • the beam direction is switched on the ground; in addition, in a scenario of multiple carriers (for example, more than two carriers), the terminal device can also have enough time to reliably switch the beam direction, thereby improving system performance.
  • the second embodiment provides a beam failure recovery device. Since the principle of the device to solve the problem is similar to the method of embodiment 1, its specific implementation can refer to the implementation of the method of embodiment 1, and the same content will not be repeated.
  • FIG. 4 is a schematic diagram of the beam failure recovery device of the second embodiment.
  • the apparatus 400 includes: a receiving unit 401.
  • the receiving unit 401 may be in the first cell of the terminal device
  • the downlink signal is monitored and/or received according to the same antenna quasi-co-located (QCL) parameter as the selected reference signal q_new or the reference signal q_new indicated by the higher layer.
  • QCL quasi-co-located
  • the downlink signal includes at least one of the following signals:
  • Physical downlink control channel (PDCCH), physical downlink data channel (PDSCH), channel state information reference signal (CSI-RS), and synchronization signal block (SSB).
  • PDCCH Physical downlink control channel
  • PDSCH physical downlink data channel
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the receiving unit 401 monitors the physical downlink control channel (PDCCH) in the first cell.
  • the control resource set (CORESET) or search space (search space) corresponding to the PDCCH can satisfy at least one of the following conditions :
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is the default control resource set (CORESET) or search space (search space), where the default control
  • the resource set (CORESET) or search space (search space) can be, for example, a control resource set (CORESET) or search space (search space) with the smallest identification code (ID) or the largest identification code (ID);
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is the control resource set (CORESET) or search space (search space) indicated by the radio resource control (RRC) signaling. space).
  • the physical downlink data channel includes:
  • the physical downlink data channel (PDSCH) in the first cell or, if there is an opportunity to monitor the physical downlink control channel (PDCCH) in the first cell, the monitored physical downlink control channel
  • the format of the response (BFR response) related to beam failure recovery may be, for example, the format of the Cell Radio Network Temporary Identity (C-RNTI) or the Modulation and Coding Strategy Cell Radio Network Temporary Identity (MCS- C-RNTI) Cyclic Redundancy Check (Cyclic Redundancy Check) scrambled downlink control signaling (DCI) format.
  • C-RNTI Cell Radio Network Temporary Identity
  • MCS- C-RNTI Modulation and Coding Strategy Cell Radio Network Temporary Identity
  • Cyclic Redundancy Check Cyclic Redundancy Check
  • DCI downlink control signaling
  • the response (BFR response) related to beam failure recovery is detected in the search space (search space) of the random access response (BFR RAR) used for beam failure recovery.
  • the response related to beam failure recovery (BFR response) is the first physical downlink control channel (PDCCH) in the search space.
  • the period of time k may be expressed as: absolute time; or, the number of time slots or symbols related to the subcarrier interval.
  • the subcarrier interval includes: the subcarrier interval of the first cell; or, the subcarrier interval of the cell where the response related to beam failure recovery (BFR response) is received.
  • the length of the period of time k is related to the performance of the terminal device. For example, the higher the performance level of the terminal device, the shorter the period of time k.
  • the starting point T1 of the period of time is: the time slot (slot) in which the terminal device receives the response related to beam failure recovery (BFR response); or, the response related to beam failure recovery (BFR response) The last symbol (symbol) of ); or, the terminal device receives the last symbol (symbol) in the control resource set (CORESET) of the response (BFR response) related to beam failure recovery.
  • the end point T2 of the period of time is: the time slot used to receive the downlink signal; or, the control resource set (CORESET) or search space (search space) used to monitor the downlink signal (for example, PDCCH) space) the first symbol (the first symbol); or, the first symbol (the first symbol) of the downlink signal.
  • CORESET control resource set
  • search space search space used to monitor the downlink signal (for example, PDCCH) space) the first symbol (the first symbol); or, the first symbol (the first symbol) of the downlink signal.
  • the control resource set (CORESET) or search space (search space) used to monitor the downlink signal meets at least one of the following conditions:
  • CORESET All control resource sets (CORESET) or all search spaces (search space) corresponding to the physical downlink control channel (PDCCH) on the active bandwidth part (BWP) in the first cell 301;
  • PDCCH physical downlink control channel
  • BWP active bandwidth part
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is the default control resource set (CORESET) or search space (search space);
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is the control resource set (CORESET) or search space (search space) indicated by radio resource control (RRC) signaling.
  • CORESET control resource set
  • RRC radio resource control
  • the activation or reconfiguration signaling may be: activation or reconfiguration signaling for the first cell; or activation or reconfiguration signaling for the second cell associated with the first cell; or , For the activation or reconfiguration signaling of the primary cell of the terminal device.
  • the activation or reconfiguration signaling can be used to: activate the MAC-CE signaling of the TCI state of the control resource set (CORESET) corresponding to the downlink signal; or, to activate the MAC-CE signaling corresponding to the downlink signal MAC-CE signaling of the TCI state set; or, reconfigure the radio resource control (RRC) signaling of the TCI state set of the control resource set (CORESET) corresponding to the downlink signal; or, reconfigure the downlink signal The radio resource control (RRC) signaling of the corresponding TCI state set.
  • CORESET control resource set
  • RRC radio resource control
  • the first cell includes: the cell corresponding to the cell information reported by the terminal device to the network device; or, the cell associated with the cell corresponding to the cell information reported by the terminal device to the network device; or, The cell indicated by the upper layer of the terminal device; or, the cell associated with the cell indicated by the upper layer of the terminal device; or, the cell associated with the cell that receives the beam failure recovery related response (BFR response).
  • BFR response beam failure recovery related response
  • the cell corresponding to the cell information reported by the terminal device to the network device and the association relationship between the cells associated with the cell are configured by radio resource control (RRC) signaling.
  • RRC radio resource control
  • the association relationship between the cell indicated by the upper layer of the terminal device and the cell associated with the cell is configured by radio resource control (RRC) signaling.
  • RRC radio resource control
  • the selected reference signal (q_new) is selected from a list of reference signals (RS) used to determine a beam failure recovery candidate beam (BFR candidate beam).
  • the reference signal indicated by the higher layer is the reference signal (q_new) last indicated by the higher layer (for example, the MAC layer of the terminal device).
  • the apparatus 400 may further include: a sending unit 402.
  • the sending unit 402 is configured to report the information of the selected reference signal q_new to the network device.
  • the sending unit 402 reports the information of the selected reference signal (q_new) to the network through a MAC-CE message (message), a physical uplink control channel (PUCCH), or a physical random access channel (PRACH) equipment.
  • a MAC-CE message (message), a physical uplink control channel (PUCCH), or a physical random access channel (PRACH) equipment.
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • the information of the selected reference signal q_new may be, for example, the identification code of the selected reference signal q_new.
  • the first cell may not be configured to receive the RAR search space (search space) of the response (BFR response) related to beam failure recovery.
  • the first cell may also be configured to receive a RAR search space (search space) of a response (BFR response) related to beam failure recovery.
  • search space search space
  • BFR response response
  • the terminal device switches the beam direction after a period of time after receiving the response (BFR response) related to beam failure recovery. Therefore, the terminal device can have enough time to reliably switch the beam direction. Thereby improving system performance.
  • This embodiment 3 provides a terminal device. Since the principle of the device to solve the problem is similar to the method of embodiment 1, the specific implementation can refer to the method of embodiment 1, and the same content will not be repeated.
  • FIG. 5 is a schematic diagram of the structure of a terminal device according to an embodiment of the present application.
  • the terminal device 500 may include: a central processing unit (CPU) 501 and a memory 502; the memory 502 is coupled to the central processing unit 501.
  • the memory 502 can store various data; in addition, it also stores a data processing program, and the program is executed under the control of the central processing unit 501 to instruct the terminal device according to the received signaling.
  • the functions of the apparatus 400 of Embodiment 2 may be integrated into the central processing unit 501 of the terminal device 500.
  • the central processing unit 501 may be configured to implement the beam failure recovery method described in Embodiment 1.
  • the central processing unit 501 may be configured to perform control so that the terminal device 500 executes the method of Embodiment 1.
  • the above device 400 can be configured separately from the central processing unit 501.
  • the device 400 can be configured as a chip connected to the central processing unit 501, as shown in FIG. Control to realize the functions of the device 400.
  • the terminal device 500 may also have a communication module 503, an input unit 504, a display 506, an audio processor 505, an antenna 507, a power supply 508, and the like.
  • the terminal device can have enough time to reliably switch the beam direction, thereby improving system performance.
  • Embodiment 4 of the present application provides a beam failure recovery method, which may be executed by a network device.
  • FIG. 6 is a schematic diagram of the beam failure recovery method of this embodiment. As shown in FIG. 6, the method includes:
  • Step 601 The network device sends to the terminal device the first signaling used to indicate the beam failure recovery process between the two or more cells of the terminal device.
  • the first signaling in step 601 may be, for example, RRC signaling.
  • the network device can associate two or more carriers through the first signaling, so that their beam failure recovery (BFR) process is associated.
  • BFR beam failure recovery
  • these multiple carriers with similar spatial characteristics
  • RS reference signal
  • the terminal device may reset the receiving spatial direction of the downlink signal of the carrier indicated by the first signaling. This avoids the problem of too frequent interaction between the terminal device and the network device that may be caused when the beam failure measurement and recovery are performed on each subcarrier.
  • the method may further include:
  • Step 602 The network device sends a response (BFR response) related to beam failure recovery to the terminal device.
  • the network device may send the response related to beam failure recovery (BFR response) to the terminal device.
  • BFR response beam failure recovery
  • the terminal device may select a reference signal ( q_new) or the same antenna quasi-co-located (QCL) parameter as the reference signal (q_new) indicated by the higher layer to monitor and/or receive the downlink signal.
  • a reference signal q_new
  • QCL quasi-co-located
  • Embodiment 5 of the present application provides a beam failure recovery method, which may be executed by a network device.
  • FIG. 7 is another schematic diagram of the beam failure recovery method of this embodiment. As shown in FIG. 7, the method may include:
  • Step 603 The network device sends to the terminal device second signaling used to indicate the cell to monitor and/or receive the downlink signal, and/or the bandwidth part, and/or the control resource set (CORESET) or search space.
  • CORESET control resource set
  • the second signaling in step 603 may be, for example, RRC signaling.
  • the terminal device may receive the downlink signal according to the indication of the second signaling.
  • the second signaling includes the mapping relationship between the cell, and/or BWP, and/or control resource set (CORESET) or search space.
  • the terminal device can receive the downlink signal on the corresponding CORESET or search space in combination with the cell information indicated by the high-level signaling and the activated BWP on the cell according to the mapping relationship.
  • the second signaling includes the following mapping relationship:
  • the method may further include:
  • Step 602 The network device sends a response (BFR response) related to beam failure recovery to the terminal device.
  • step 602 For the description of step 602, reference may be made to the description of Embodiment 4 above.
  • step 603 may be performed before step 602, for example.
  • the sixth embodiment provides a beam failure recovery device. Since the principle of the device to solve the problem is similar to the method of embodiment 4, its specific implementation can refer to the implementation of the method of embodiment 4, and the same contents will not be repeated.
  • FIG. 8 is a schematic diagram of the beam failure recovery device of the sixth embodiment. As shown in FIG. 8, the device 700 includes: a first instruction unit 701.
  • the first instructing unit 701 sends to the terminal device first signaling for instructing two or more cells of the terminal device to jointly perform beam failure recovery.
  • multiple carriers with similar spatial characteristics can use the same reference signal (RS) for BFR measurement.
  • RS reference signal
  • the terminal device recovers from the beam failure (after the reception of BFR response)
  • the terminal device The downlink signal receiving spatial directions of the multiple carriers can be reset at the same time. This avoids the problem of too frequent interaction between the terminal device and the network device that may be caused when the beam failure measurement and recovery are performed on each subcarrier.
  • the device 700 further includes:
  • the third instruction unit 703 sends a response related to beam failure recovery (BFR response) to the terminal device.
  • BFR response beam failure recovery
  • the network device may send the response related to beam failure recovery (BFR response) to the terminal device.
  • BFR response beam failure recovery
  • the seventh embodiment provides a beam failure recovery device. Since the principle of the device to solve the problem is similar to the method of embodiment 5, its specific implementation can refer to the method of embodiment 5, and the same contents will not be repeated.
  • FIG. 9 is a schematic diagram of the beam failure recovery device of the seventh embodiment. As shown in FIG. 9, the device 700a includes:
  • the second instructing unit 702 sends to the terminal device signaling for instructing the cell that monitors and/or receives the downlink signal, and/or the bandwidth part, and/or the control resource set (CORESET) or search space.
  • CORESET control resource set
  • the terminal device may determine which cell, which BWP, which control resource set (CORESET) or search space is to receive the downlink signal according to the indication of the second signaling.
  • CORESET control resource set
  • the second signaling includes the mapping relationship between the cell, and/or BWP, and/or control resource set (CORESET) or search space.
  • the terminal device can receive the downlink signal on the corresponding CORESET or search space in combination with the cell information indicated by the high-level signaling and the activated BWP on the cell according to the mapping relationship.
  • the device 700a further includes:
  • the third instruction unit 703 sends a response related to beam failure recovery (BFR response) to the terminal device.
  • BFR response beam failure recovery
  • the description of the third instruction unit 703 is the same as that of the sixth embodiment.
  • This embodiment 8 provides a network device. Since the principle of the device to solve the problem is similar to the method of embodiment 4 or 5, its specific implementation can refer to the method of embodiment 4 or 5, and the same content will not be repeated. Description.
  • Fig. 8 is a schematic diagram of the structure of a network device according to an embodiment of the present invention.
  • the terminal device 800 may include: a central processing unit (CPU) 801 and a memory 802; the memory 802 is coupled to the central processing unit 801.
  • the memory 802 can store various data; in addition, it also stores data processing programs, which are executed under the control of the central processing unit 801.
  • the functions of the apparatus 700 or 700a of Embodiment 6 or 7 may be integrated into the central processing unit 801.
  • the central processing unit 801 may be configured to implement the method described in Embodiment 4 or 5.
  • the central processing unit 801 may be configured to perform control so that the network device 800 executes the method of Embodiment 4 or 5.
  • the above-mentioned device 700 or 700a can be configured separately from the central processing unit 801.
  • the device 700 or 700a can be configured as a chip connected to the central processing unit 801, such as the unit shown in FIG.
  • the processor 801 is controlled to realize the functions of the apparatus 700 or 700a.
  • the terminal device 800 may also include a transceiver 803, an antenna 804, a display, an audio processor, and a power supply. Among them, the functions of the above-mentioned components are similar to those of the prior art, and will not be repeated here. It should be noted that the network device 800 does not necessarily include all the components shown in FIG. 8; in addition, the network device 800 may also include components not shown in FIG. 8, and the prior art can be referred to.
  • Embodiment 9 provides a communication system, which includes at least the network device in Embodiment 8 and the terminal device 500 in Embodiment 3. The contents of Embodiment 3 and Embodiment 8 are combined here, and will not be repeated here.
  • An embodiment of the present invention also provides a storage medium storing a computer-readable program, wherein the computer-readable program causes the beam failure recovery apparatus or terminal device to execute the beam failure recovery method described in Embodiment 1.
  • An embodiment of the present invention also provides a computer-readable program, wherein when the program is executed in the beam failure recovery apparatus or terminal equipment, the program causes the beam failure recovery apparatus or terminal equipment to perform the beam failure recovery described in Embodiment 1. method.
  • An embodiment of the present invention also provides a storage medium storing a computer-readable program, wherein the computer-readable program causes the beam failure recovery apparatus or network device to execute the beam failure recovery method described in Embodiment 4 or 5.
  • the embodiment of the present invention also provides a computer-readable program, wherein when the program is executed in the beam failure recovery apparatus or the network equipment, the program causes the beam failure recovery apparatus or the network equipment to execute the beam described in embodiment 4 or 5. Failure recovery method.
  • the above devices and methods of the present invention can be implemented by hardware, or by hardware combined with software.
  • the present invention relates to such a computer-readable program, when the program is executed by a logic component, the logic component can realize the above-mentioned device or constituent component, or the logic component can realize the above-mentioned various methods Or steps.
  • the present invention also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memory, and the like.
  • the processing methods in the devices described in conjunction with the embodiments of the present invention may be directly embodied in hardware, software modules executed by a processor, or a combination of the two.
  • one or more of the functional block diagrams shown in FIGS. 4, 8, and 9 and/or one or more combinations of the functional block diagrams may correspond to each software module of the computer program flow, or may correspond to each hardware Module.
  • These software modules can respectively correspond to the steps shown in FIG. 2.
  • These hardware modules can be implemented by curing these software modules by using a field programmable gate array (FPGA), for example.
  • FPGA field programmable gate array
  • the software module can be located in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, register, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium may be coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium; or the storage medium may be a component of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or a large-capacity flash memory device.
  • One or more of the functional block diagrams described in FIGS. 4, 8, and 9 and/or one or more combinations of the functional block diagrams can be implemented as a general-purpose processor or digital signal processor for performing the functions described in this application ( DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any suitable combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional block diagrams described in FIGS. 4, 8, and 9 and/or one or more combinations of the functional block diagrams can also be implemented as a combination of computing devices, for example, a combination of DSP and microprocessor, multiple A microprocessor, one or more microprocessors in communication with the DSP, or any other such configuration.
  • a beam failure recovery method applied to terminal equipment comprising:
  • the terminal device After the terminal device receives the response (BFR response) related to beam failure recovery for a period of time, until activation or reconfiguration signaling, the terminal device selects the reference signal (q_new) or The same antenna quasi-co-located (QCL) parameter with the same reference signal (q_new) indicated by the higher layer monitors and/or receives the downlink signal.
  • the reference signal q_new
  • QCL quasi-co-located
  • the downlink signal includes at least one of the following signals:
  • Physical downlink control channel (PDCCH), physical downlink data channel (PDSCH), channel state information reference signal (CSI-RS), and synchronization signal block (SSB).
  • PDCCH Physical downlink control channel
  • PDSCH physical downlink data channel
  • CSI-RS channel state information reference signal
  • SSB synchronization signal block
  • the terminal device monitors the physical downlink control channel (PDCCH) in the first cell.
  • the physical downlink data channel includes:
  • the physical downlink data channel (PDSCH) in the first cell in the first cell; or
  • PDSCH physical downlink data channel scheduled by the physical downlink control channel (PDCCH) that receives the response (BFR response) related to beam failure recovery.
  • the response (BFR response) related to beam failure recovery has a cyclic redundancy check (C-RNTI) of a cell radio network temporary identification (C-RNTI) or a modulation and coding strategy cell radio network temporary identification (MCS-C-RNTI) ( Cyclic Redundancy Check) scrambled downlink control signaling (DCI) format.
  • C-RNTI cyclic redundancy check
  • MCS-C-RNTI modulation and coding strategy cell radio network temporary identification
  • DCI downlink control signaling
  • the response (BFR response) related to beam failure recovery is detected in the search space (search space) of the random access response (BFR RAR) used for beam failure recovery.
  • the response (BFR response) related to beam failure recovery is the first physical downlink control channel (PDCCH) in the search space.
  • PDCCH physical downlink control channel
  • the period of time is expressed as:
  • the number of slots or symbols related to subcarrier spacing is the number of slots or symbols related to subcarrier spacing.
  • the subcarrier interval includes:
  • the subcarrier interval of the first cell or,
  • the subcarrier interval of the cell where the response (BFR response) related to beam failure recovery is received is received.
  • the length of the period of time is related to the performance of the terminal device.
  • the starting point (T1) of the period of time is:
  • the end point (T2) of the period of time is:
  • the first symbol (the first symbol) in the control resource set (CORESET) or search space (search space) used to monitor the downlink signal; or
  • the first symbol (the first symbol) of the downlink signal is the first symbol (the first symbol) of the downlink signal.
  • the downlink signal includes a physical downlink control channel (PDCCH), which is used to monitor the control resource set (CORESET) or search space ( search space) Meet at least one of the following conditions:
  • PDCCH physical downlink control channel
  • CORESET All control resource sets (CORESET) or all search spaces (search space) corresponding to the physical downlink control channel (PDCCH) on the active bandwidth part (BWP) in the first cell;
  • PDCCH physical downlink control channel
  • BWP active bandwidth part
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is a default control resource set (CORESET) or search space (search space);
  • the control resource set (CORESET) or search space (search space) corresponding to the physical downlink control channel (PDCCH) is the control resource set (CORESET) or search space (search space) indicated by the radio resource control (RRC) signaling .
  • CORESET control resource set
  • RRC radio resource control
  • the activation or reconfiguration signaling includes:
  • the activation or reconfiguration signaling includes:
  • MAC-CE signaling used to activate the TCI state of the control resource set (CORESET) corresponding to the downlink signal
  • Radio Resource Control used to reconfigure the TCI state set of the control resource set (CORESET) corresponding to the downlink signal
  • Radio Resource Control (RRC) signaling used to reconfigure the TCI state set corresponding to the downlink signal.
  • the first cell includes:
  • the cell corresponding to the cell information reported by the terminal device to the network device or
  • a cell associated with the cell indicated by the upper layer of the terminal device or
  • the cell corresponding to the cell information reported by the terminal device to the network device and the association relationship between the cells associated with the cell are configured by radio resource control (RRC) signaling.
  • RRC radio resource control
  • the cell indicated by the upper layer of the terminal device and the association relationship between the cells associated with the cell are configured by radio resource control (RRC) signaling.
  • RRC radio resource control
  • the selected reference signal (q_new) is selected from a list of reference signals (RS) used to determine a beam failure recovery candidate beam (BFR candidate beam).
  • RS reference signals
  • the terminal device reports the information of the selected reference signal (q_new) to the network device.
  • the terminal device reports the information of the selected reference signal (q_new) to the network device through a MAC-CE message (message), a physical uplink control channel (PUCCH), or a physical random access channel (PRACH).
  • a MAC-CE message (message), a physical uplink control channel (PUCCH), or a physical random access channel (PRACH).
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • the reference signal indicated by the higher layer is the reference signal (q_new) last indicated by the higher layer.
  • the first cell is not configured to receive the RAR search space (search space) of the response (BFR response) related to beam failure recovery.
  • the first cell is configured to receive an RAR search space (search space) of a response (BFR response) related to beam failure recovery.
  • search space search space
  • BFR response response
  • a beam failure recovery method applied to a network device, the method comprising:
  • the network device sends to the terminal device the first signaling used to instruct the two or more cells of the terminal device to jointly perform beam failure recovery.
  • a beam failure recovery method applied to a network device, the method comprising:
  • the network device sends to the terminal device second signaling used to indicate a cell to monitor and/or receive a downlink signal, and/or a bandwidth part (BWP), and/or a control resource set (CORESET).
  • BWP bandwidth part
  • CORESET control resource set
  • the second signaling includes the mapping relationship between the cell, and/or BWP, and/or control resource set (CORESET) or search space.
  • CORESET control resource set
  • the network device sends a response (BFR response) related to beam failure recovery to the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种波束失败恢复方法、装置和通信系统,该装置包括:接收单元,在终端设备接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,直至激活或重配置信令之前,所述接收单元在所述终端设备的第一小区中根据与选择出的参考信号(q_new)或高层指示的参考信号(q_new)相同的天线准共址(QCL)参数监听和/或接收下行信号。根据本申请,终端设备能有足够的时间可靠地进行波束方向的切换,从而提升系统性能。

Description

波束失败恢复方法、装置和通信系统 技术领域
本申请涉及通信领域,特别涉及一种波束失败恢复方法、装置和通信系统。
背景技术
波束失败(Beam Failure)主要是指在高频通信场景下,通信链路容易受到物理条件,例如天气,障碍物,方向角度的变化等因素的影响,从而在原有的波束方向上传输失败。
波束失败恢复(Beam Failure Recovery,BFR)技术主要是指,在波束失败的情况下,利用对不同方向波束功率的测量结果,迅速定位新的可靠的波束方向,从而完成对链路的快速恢复。
终端设备检测与下行控制信道(PDCCH)相关联的参考信号(RS),从而确定是否发生波束失败;在确定波束失败发生时,向网络设备发送波束失败请求,并监听网络设备对于该波束失败请求的反馈;当终端设备通过下行控制信息(DCI)接收到网络设备发送的与波束失败恢复相关的响应(BFR response)后,将原有的用于数据接收的波束的方向切换到另一个候选的波束的方向,由此,能够快速地恢复失败的链路,减少链路失败所带来的时延和系统吞吐量的下降。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
本申请的发明人发现,在现有的波束失败恢复技术中,接收波束失败恢复相关的响应(BFR response)所使用的资源与波束恢复成功后所重置的控制信道资源是相同的,但是,当上述两者不相同时,终端设备如何重置下行链路的空间方向并没有做出描述。
此外,本申请的发明人还发现,现有的波束失败恢复技术仅能用于一个载波。在多载波场景下,在某一时刻,不同的载波上的连接可能仅有一部分发生波束失败,在 这种情况下,终端设备在接收到波束失败恢复相关的响应(BFR response)后,如何设置下行链路的空间方向并没有明确的规定。
另外,在多载波场景中,一个子载波中可能没有用于接收控制信道资源,如何重置该子载波的数据信道的空间方向,目前也没有明确的规定。
另外一个场景是,一个终端设备最多有可能配置32个子载波,对每个子载波分别进行波束失败测量、恢复可能会导致终端与网络侧过于频繁地交互,目前还没有可靠的方法解决此问题。
为了解决上述技术问题中的至少一者,本申请实施例提供一种波束失败恢复方法、装置和通信系统,在本实施例的波束失败恢复方法中,终端设备在接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,对波束方向进行切换,因而,即使在接收BFR response的控制信道资源与重置的控制信道资源不相同的情况下,或者在多个载波的场景下,终端设备都能有足够的时间可靠地进行波束方向的切换,从而提升系统性能。
根据本申请实施例的第一方面,提供了一种波束失败恢复装置,设置于终端设备,该装置包括:接收单元,在终端设备接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,直至激活或重配置信令之前,所述接收单元在所述终端设备的第一小区中根据与选择出的参考信号(q_new)或高层指示的参考信号(q_new)相同的天线准共址(Quasi-co-located,QCL)参数监听和/或接收下行信号。
根据本申请实施例的第二方面,提供一种波束失败恢复装置,应用于网络设备,该装置包括:第一指示单元,其向终端设备发送用于指示所述终端设备的两个以上小区之间联合进行波束失败恢复的信令;或者,该装置包括:第二指示单元,其向所述终端设备发送用于指示监听和/或接收下行信号的小区、和/或带宽部分、和/或控制资源集(CORESET)的信令。
波束失败恢复方法,应用于终端设备,该方法包括:在终端设备接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,直至激活或重配置信令之前,所述终端设备在第一小区中根据与选择出的参考信号(q_new)或高层指示的参考信号(q_new)相同的天线准共址(Quasi-co-located,QCL)参数监听和/或接收下行信号。
根据本申请实施例的第三方面,提供了一种通信系统,该通信系统包括终端设备和网络设备,该终端设备包括如上述实施例的第一方面所述的波束失败恢复装置。
本申请实施例的有益效果在于:终端设备在接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,对波束方向进行切换,因而,终端设备都能有足够的时间可靠地进行波束方向的切换,从而提升系统性能。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
在本申请实施例的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请的通信系统的一个示意图;
图2是本申请实施例1的波束失败恢复方法的一个示意图;
图3的(A)是本申请实施例1的波束失败恢复方法应用于单载波场景的一个示意图;
图3的(B)是本申请实施例1的波束失败恢复方法应用于多载波场景的一个示意图;
图4是本申请实施例2的波束失败恢复装置的一个示意图;
图5是本申请实施例3的终端设备的一个示意图;
图6是本申请实施例4的波束失败恢复方法的一个示意图;
图7是本申请实施例5的波束失败恢复方法的一个示意图;
图8是本申请实施例6的波束失败恢复装置的一个示意图;
图9是本申请实施例7的波束失败恢复装置的一个示意图;
图10是本申请实施例8的网络设备的一个示意图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。下面结合附图对本申请的各种实施方式进行说明。这些实施方式只是示例性的,不是对本申请的限制。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“该”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将终端设备接入通信网 络并为该终端设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME,Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”(UE,User Equipment)或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。终端设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,终端设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,终端设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
以下通过示例对本申请实施例的场景进行说明,但本申请不限于此。
图1是本申请的通信系统的一示意图,示意性说明了以终端设备和网络设备为例的情况,如图1所示,通信系统100可以包括网络设备101和终端设备102(为简单起见,图1仅以一个终端设备为例进行说明)。
在本申请实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced  Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。
其中,终端设备102可以向网络设备101发送数据,例如使用授权或免授权传输方式。终端设备101可以接收一个或多个终端设备102发送的数据,并向终端设备102反馈信息,例如确认ACK/非确认NACK信息等,终端设备102根据反馈信息可以确认结束传输过程、或者还可以再进行新的数据传输,或者可以进行数据重传。
此外,在终端设备102接入网络设备101之前,网络设备101可以向终端设备102发送与系统信息有关的信息,终端设备102对接收到的信息进行检测,以实现下行同步,并与网络设备101建立连接。
以下以将通信系统中的网络设备作为发送端,将终端设备作为接收端为例进行说明,但本申请不限于此,发送端和/或接收端还可以是其他的设备。例如,本申请不仅适用于网络设备和终端设备之间的信号传输,还可以适用于两个终端设备之间的信号传输。
实施例1
本申请实施例1提供一种波束失败恢复(Beam Failure Recovery,BFR)方法,该方法可以由终端设备执行。
图2是本实施例的波束失败恢复方法的一个示意图,如图2所示,该方法包括:
步骤201、在终端设备接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,直至激活或重配置信令之前,该终端设备在第一小区中根据与选择出的或高层指示的参考信号(q_new)相同的天线准共址(Quasi-co-located,QCL)参数监听和/或接收下行信号。
在本实施例中,终端设备在第一小区中根据与选择出的或高层指示的参考信号q_new相同的天线准共址(Quasi-co-located,QCL)参数监听和/或接收下行信号,是指终端设备将波束方向切换到与参考信号q_new对应的波束方向,由此,实现波束方向的切换。
根据本实施例,终端设备在接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,对波束方向进行切换,因而,在单载波场景下,如果接收波束失败 恢复相关的响应(BFR response)的控制信道资源不同于收到该响应后终端设备重置的控制信道资源终端设备能在该一段时间中进行相应的信号处理,从而有足够的时间来调整波束的方向,因而能够可靠地进行波束方向的切换;此外,在多个载波(例如,2个以上的载波)的场景下,终端设备也能有足够的时间可靠地进行波束方向的切换,从而提升系统性能。
图3的(A)是本实施例的波束失败恢复方法应用于单载波场景的一个示意图。如图3的(A)所示,终端设备在时刻t1收到与波束失败恢复相关的响应(BFR response),在一段时间k之后且在收到激活或重配置信令的时刻t2之前的时间段k1中,该终端设备将天线准共址(Quasi-co-located,QCL)参数调节为与选择出的或高层指示的参考信号q_new相同,从而切换波束的方向,并且在切换后的波束方向上监听和/或接收下行信号。
如图3的(A)所示,在检测是否发生波束失败时所使用的下行控制信息(DCI)与接收波束失败恢复相关的响应(BFR response)所使用的下行控制信息(DCI)不相同的情况下,终端设备能在该一段时间k中进行相应的信号处理,从而有足够的时间来调整波束的方向,由此,能够在时间段k1中,在切换后的波束方向上可靠地监听和/或接收下行信号。其中,终端设备在该一段时间k中进行的信号处理例如包括:对收到的该BFR response进行解调(decoding),之后根据该参考信号q_new为调整相应的下行接收波束做准备。或者,可以说该一段时间k是,收到BFR response之后,终端设备用于应用q_new所对应的QCL信息所需的时间。
如图3的(A)所示,终端设备接收与波束失败恢复相关的响应(BFR response)的小区与监听和/或接收下行信号的小区为同一小区,例如小区300。
图3的(B)是本实施例的波束失败恢复方法应用于多载波场景的一个示意图。如图3的(B)所示,终端设备在时刻t1收到与波束失败恢复相关的响应(BFR response),在一段时间k之后且在收到激活或重配置信令的时刻t2之前的时间段k1中,该终端设备将天线准共址(Quasi-co-located,QCL)参数调节为与选择出的或高层指示的参考信号q_new相同,从而切换波束的方向,并且在切换后的波束方向上监听和/或接收下行信号。
如图3的(B)所示,终端设备可以在第二小区302接收与波束失败恢复相关的响应(BFR response),在第一小区301监听和/或接收下行信号。第二小区302和第 一小区301可以不同,例如,第二小区302为主小区PCell或辅小区SCell#0,第一小区301为辅小区SCell#1。
如图3的(B)所示,在第一小区与第二小区不同的情况下,终端设备能在该一段时间k中进行相应的信号处理,从而有足够的时间来调整波束的方向,由此,能够在时间段k1中,在切换后的波束方向上可靠地监听和/或接收下行信号。其中,终端设备在该一段时间k中进行的信号处理例如包括:对收到的该BFR response进行解调(decoding),之后根据该参考信号q_new为调整相应的下行接收波束做准备。或者,可以说该一段时间k是,收到BFR response之后,终端设备用于应用q_new所对应的QCL信息所需的时间。
在本实施例中,第一小区301和第二小区302属于相同的小区组(Cell Group),该小区组例如可以是主小区组(MCG)或辅小区组(SCG)。
在本实施例中,该终端设备所监听或接收的下行信号包括下述信号中的至少一种:物理下行控制信道(PDCCH)、物理下行数据信道(PDSCH)、信道状态信息参考信号(CSI-RS)、以及同步信号块(SSB)。此外,本实施例可以不限于此,下行信号也可以是其它信号。
在本实施例的下述说明中,将以下行信号是物理下行控制信道(PDCCH)和/或物理下行数据信道(PDSCH)为例来说明在多载波场景下本实施例的波束失败恢复方法。此外,对于下行信号是信道状态信息参考信号(CSI-RS)或同步信号块(SSB)情况下波束失败恢复方法的说明,可以参考物理下行控制信道(PDCCH)或物理下行数据信道(PDSCH)对应的波束失败恢复方法的说明。
在本实施例中,在该第一小区中有监听物理下行控制信道(PDCCH)的机会的情况下,终端设备才能够在该第一小区中监听该物理下行控制信道(PDCCH)。例如,在该第一小区中有监听物理下行控制信道(PDCCH)的机会的情况下,终端设备在该第一小区中监听该物理下行控制信道(PDCCH),或者在该第一小区中监听该物理下行控制信道(PDCCH)并且接收物理下行数据信道(PDSCH)。
此外,如果该第一小区中没有监听物理下行控制信道(PDCCH)的机会(opptunity/occasion),则终端设备不在该第一小区中监听物理下行控制信道(PDCCH)。
在本实施例中,终端设备在第一小区中监听物理下行控制信道(PDCCH)的情 况下,该PDCCH对应的控制资源集(CORESET)或搜索空间(search space)可以满足如下条件的至少之一:
(1)在该第一小区301中的激活带宽部分(BWP)上的、该物理下行控制信道(PDCCH)所对应的所有控制资源集(CORESET)或所有搜索空间(search space);
(2)该物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是默认的控制资源集(CORESET)或搜索空间(search space),其中,该默认的控制资源集(CORESET)或搜索空间(search space)例如可以是识别标码(ID)最小的或识别标码(ID)最大的控制资源集(CORESET)或搜索空间(search space);
(3)该物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是由无线资源控制(RRC)信令指示的控制资源集(CORESET)或搜索空间(search space)。
在本实施例中,终端设备在第一小区中接收的物理下行数据信道(PDSCH)可以是如下的至少一种:
(1)该第一小区中的物理下行数据信道(PDSCH),其中,物理下行数据信道(PDSCH)可以是预定的,例如,该第一小区中的所有的物理下行数据信道(PDSCH);
(2)在该第一小区中有监听物理下行控制信道(PDCCH)的机会的情况下,由被监听的物理下行控制信道(PDCCH)所调度的物理下行数据信道(PDSCH);
(3)由接收该与波束失败恢复相关的响应(BFR response)的物理下行控制信道(PDCCH)所调度的物理下行数据信道(PDSCH)。
在本实施例中,与波束失败恢复相关的响应(BFR response)的格式(format)例如可以是:被小区无线网络临时标识(C-RNTI)加扰的下行控制信令(DCI)格式;或者,被调制与编码策略小区无线网络临时标识(MCS-C-RNTI)循环冗余校验(Cyclic Redundancy Check)加扰的下行控制信令(DCI)格式。
在本实施例中,与波束失败恢复相关的响应(BFR response)是在用于波束失败恢复的随机接入响应(BFR RAR)的搜索空间(search space)中检测到的,例如,与波束失败恢复相关的响应(BFR response)是该搜索空间(search space)中的第一个物理下行控制信道(PDCCH)。
在本实施例中,该搜索空间可以由无线资源控制(RRC)信令配置,该无线资源 控制(RRC)信令的名称例如可以是恢复搜索空间识别码(recovery Search Space Id)。此外,该搜索空间可以是第一小区301的搜索空间,例如,第二辅小区SCell#1的搜索空间;该搜索空间也可以是第二小区302的搜索空间,例如,主小区PCell的搜索空间或第一辅小区SCell#0的搜索空间。
在本实施例中,该一段时间k的长度可以被表示为:绝对时间,例如,3毫秒(ms);或者,与子载波间隔(SCS)相关的时隙(slot)或符号(symbol)的数量,例如,对于15kHz与30kHz而言,k=14个符号,对于60kHz与120kHz而言,k=28个符号。再例如,
Figure PCTCN2019080216-appb-000001
个符号(symbol),其中,μ cell是指该下行信号所对应的子载波间隔,μ 15kHz是指15kHz所对应的子载波间隔,m是指k的归一化长度,m可以是自然数,例如m=28。另外一个例子是,
Figure PCTCN2019080216-appb-000002
个符号(symbol),其中,μ DCI是指该BFR response所对应的子载波间隔,μ DL是指该下行信号所对应的子载波间隔,m是指k的归一化长度,m可以是自然数,例如m=28。
在本实施例中,该子载波间隔(SCS)可以包括:第一小区301的子载波间隔;或者,接收与波束失败恢复相关的响应(BFR response)所在的小区的子载波间隔,例如,第二小区302的子载波间隔。
在本实施例中,该一段时间k的长度可以与该终端设备的性能(capability)相关。其中,该终端设备的性能(capability)的等级不同,所对应的时间k的长度(在相应的子载波上)也不同,例如,该终端设备的性能(capability)的等级越高,该终端设备的处理速度越快,所对应的时间k的长度可以越短。
在本实施例中,该一段时间k的起点T1可以是下述情况中的任一者:
(1)接收到与波束失败恢复相关的响应(BFR response)的时隙(slot);
(2)与波束失败恢复相关的响应(BFR response)的最后一个符号(symbol);
(3)接收到与波束失败恢复相关的响应(BFR response)的控制资源集(CORESET)中的最后一个符号(symbol)。
在本实施例中,该一段时间k的终点T2可以是下述情况中的任一者:
(1)用于接收该下行信号的时隙,其中,如果该下行信号在时域上仅占一个时隙,则该一段时间k的终点可以是该下行信号所在的时隙,如果该下行信号在时域上占据多个时隙(例如,下行信号是PDSCH,该PDSCH传输所对应的RRC信令 pdsch-AggregationFactor的值大于1),则该一段时间k的终点可以是该多个时隙中的第一个时隙;
(2)下行信号的第一个符号(the first symbol);
(3)用于监听该下行信号的控制资源集(CORESET)或搜索空间(search space)中的第一个符号(the first symbol),例如,用于监听PDCCH的控制资源集(CORESET)或搜索空间(search space)中的第一个符号(the first symbol)。
其中,上述(3)所述的用于监听PDCCH的控制资源集(CORESET)或搜索空间(search space)满足如下条件的至少之一:
(1)在该第一小区301中的激活带宽部分(BWP)上的、该物理下行控制信道(PDCCH)所对应的所有控制资源集(CORESET)或所有搜索空间(search space);
(2)该物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是默认的控制资源集(CORESET)或搜索空间(search space),其中,该默认的控制资源集(CORESET)或搜索空间(search space)例如可以是识别标码(ID)最小的或识别标码(ID)最大的控制资源集(CORESET)或搜索空间(search space);
(3)该物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是由无线资源控制(RRC)信令指示的控制资源集(CORESET)或搜索空间(search space)。
在本实施例中,在时刻t2收到的激活或重配置信令可以包括:针对第一小区301的激活或重配置信令;或者,针对与第一小区301关联的第二小区302的激活或重配置信令,其中,该第二小区302可以是辅小区SCell#0,并且,该第一小区301与该第二小区302联合进行波束失败恢复(BFR)过程,或是联合进行波束失败恢复的测量;或者,针对该终端设备的主小区PCell的激活或重配置信令,其中,该主小区PCell与该第一小区301联合进行波束失败恢复(BFR)过程,或是联合进行波束失败恢复的测量。
在本实施例中,该激活或重配置信令中可以具有:用于激活该下行信号所对应的控制资源集(CORESET)的传输配置指示(Transmission Configuration Indication,TCI)状态的介质访问控制层控制单元(MAC-CE)信令,该下行信号例如是PDCCH;或者,用于激活下行信号所对应的TCI状态集合的介质访问控制层控制单元(MAC-CE) 信令,该下行信号例如是PDSCH;或者,用于重配置该下行信号所对应的控制资源集(CORESET)的TCI状态集合的无线资源控制(RRC)信令,该下行信号例如是PDCCH,该无线资源控制(RRC)信令例如可以是tci-StatesPDCCH-ToAddList、或tci-StatesPDCCH-ToReleaseList;或者,用于重配置下行信号所对应的TCI状态集合的无线资源控制(RRC)信令,该下行信号例如是PDSCH,该无线资源控制(RRC)信令例如可以是tci-StatesToAddModList、或tci-StatesToReleaseList。
在本实施例中,第一小区301可以包括:该终端设备向网络设备上报的小区信息所对应的小区,其中,该小区信息的上报可以发生在波束失败之后,例如,终端设备可以上报第一小区301的识别码(ID),该小区301被检测到发送波束失败;或者,与该终端设备向网络设备上报的小区信息所对应的第二小区302相关联的小区,例如,终端设备可以上报第二小区302的识别码(ID),该第二小区302与第一小区301相关联,该小区302被检测到发送波束失败;或者,由该终端设备的高层指示的小区,例如,由该终端设备的介质接入控制(MAC)层指示的发生波束失败的小区;或者,与该终端设备的高层所指示的第二小区302相关联的小区,例如,由该终端设备的介质接入控制(MAC)层指示的波束失败的辅小区SCell#0所关联的辅小区SCell#1;或者,接收与波束失败恢复相关的响应(BFR response)的第二小区302所关联的小区。
在本实施例中,第二小区302与第一小区301的关联可以由无线资源控制(RRC)信令进行配置,例如,无线资源控制(RRC)信令配置作为第一小区301的辅小区SCell#1与作为第二小区302的辅小区Scell#0或主小区PCell联合进行波束失败恢复(BFR)。
在本实施例中,参考信号q_new可以是选择出的参考信号或高层指示的参考信号。其中,选择出的参考信号q_new可以是该终端设备从包含一组用于确定波束失败恢复候选波束(BFR candidate beam)的参考信号(RS)列表中选择出的参考信号;高层指示的参考信号可以是该终端设备的高层(例如,MAC层)最近一次向物理层指示的参考信号。
在本实施例中,如图2所示,该波束失败恢复方法还包括:
步骤202、终端设备将选择出的参考信号q_new的信息报告给网络设备。
其中,选择出的参考信号q_new的信息例如可以是参考信号q_new的识别码(ID)。
在步骤202中,该终端设备可以通过介质访问控制层控制单元消息(MAC-CE message)、物理上行控制信道(PUCCH)、或物理随机接入信道(PRACH)将该选择出的参考信号q_new的信息报告给网络设备。其中,介质访问控制层控制单元消息(MAC-CE message)可以通过物理上行数据信道(PUSCH)发送;q_new的信息也可以使用PUCCH所对应的时频资源位置,或PUCCH的资源ID传递;另外,不同的PRACH资源也可以与不同的用于BFR的candidate RS相关联,根据传输的PRACH资源的所对应的RS资源,网络侧可以得知相应的q_new。
在本实施例的一个具体实施方式中,步骤202例如可以在步骤201之前进行。
在本实施例中,第一小区301可以不被配置用于接收与波束失败恢复相关的响应(BFR response)的随机接入响应(RAR)搜索空间(search space),在这种情况下,终端设备可以采用图3的(B)所示的方式进行波束失败恢复,在第二小区302接收与波束失败恢复相关的响应(BFR response)。
此外,在本实施例中,第一小区301也可以被配置用于接收与波束失败恢复相关的响应(BFR response)的随机接入响应(RAR)搜索空间(search space),在这种情况下:
终端设备可以采用图3的(A)所示的方式进行波束失败恢复,即,在同一小区中接收与波束失败恢复相关的响应(BFR response),并监听和/或接收下行信号,并且,在终端设备接收到与波束失败恢复相关的响应(BFR response)的一段时间k之后,直至接收到激活或重配置信令t2之前的时间段k1中,监听和/或接收下行信号;
或者,终端设备可以在同一小区中接收与波束失败恢复相关的响应(BFR response),并监听和/或接收下行信号,并且,在终端设备接收到与波束失败恢复相关的响应(BFR response)之后,直至接收到激活或重配置信令t2之前的时间段中,监听和/或接收下行信号,即,监听PDCCH所使用的搜索空间(search space)与接收BFR response所使用的搜索空间相同,因而可以无需该一段时间k。
根据本实施例,终端设备在接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,对波束方向进行切换,因而,在单载波场景下,如果接收波束失败恢复相关的响应(BFR response)的控制信道资源不同于收到该响应后终端设备重置的控制信道资源,终端设备能在该一段时间中进行相应的信号处理,从而有足够的时间来调整波束的方向,因而能够可靠地进行波束方向的切换;此外,在多个载波(例 如,2个以上的载波)的场景下,终端设备也能有足够的时间可靠地进行波束方向的切换,从而提升系统性能。
实施例2
本实施例2提供一种波束失败恢复装置。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参考实施例1的方法的实施,内容相同之处不再重复说明。
图4是本实施例2的波束失败恢复装置的一个示意图。如图4所示,装置400包括:接收单元401。
在本实施例中,在终端设备接收到与波束失败恢复相关的响应(BFR response)的一段时间k之后,直至激活或重配置信令之前,接收单元401可以在该终端设备的第一小区中根据与选择出的参考信号q_new或高层指示的参考信号q_new相同的天线准共址(Quasi-co-located,QCL)参数监听和/或接收下行信号。
在本实施例中,所述下行信号包括下述信号中的至少一种:
物理下行控制信道(PDCCH)、物理下行数据信道(PDSCH)、信道状态信息参考信号(CSI-RS)、以及同步信号块(SSB)。
在本实施例中,在该第一小区中有监听所述物理下行控制信道(PDCCH)的机会的情况下,接收单元401在该第一小区中监听该物理下行控制信道(PDCCH)。
在本实施例中,终端设备在第一小区中监听物理下行控制信道(PDCCH)的情况下,该PDCCH对应的控制资源集(CORESET)或搜索空间(search space)可以满足如下条件的至少之一:
(1)在该第一小区301中的激活带宽部分(BWP)上的、该物理下行控制信道(PDCCH)所对应的所有控制资源集(CORESET)或所有搜索空间(search space);
(2)该物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是默认的控制资源集(CORESET)或搜索空间(search space),其中,该默认的控制资源集(CORESET)或搜索空间(search space)例如可以是识别标码(ID)最小的或识别标码(ID)最大的控制资源集(CORESET)或搜索空间(search space);
(3)该物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜 索空间(search space)是由无线资源控制(RRC)信令指示的控制资源集(CORESET)或搜索空间(search space)。
在本实施例中,所述物理下行数据信道(PDSCH)包括:
所述第一小区中的物理下行数据信道(PDSCH);或者,在所述第一小区中有监听所述物理下行控制信道(PDCCH)的机会的情况下,由被监听的所述物理下行控制信道(PDCCH)所调度的物理下行数据信道(PDSCH);或者,由接收所述与波束失败恢复相关的响应(BFR response)的物理下行控制信道(PDCCH)所调度的物理下行数据信道(PDSCH)。
在本实施例中,与波束失败恢复相关的响应(BFR response)的格式例如可以是:被小区无线网络临时标识(C-RNTI)格式、或者被调制与编码策略小区无线网络临时标识(MCS-C-RNTI)循环冗余校验(Cyclic Redundancy Check)加扰的下行控制信令(DCI)格式。
在本实施例中,该与波束失败恢复相关的响应(BFR response)是在用于波束失败恢复的随机接入响应(BFR RAR)的搜索空间(search space)中被检测到的。其中,该与波束失败恢复相关的响应(BFR response)是该搜索空间中的第一个物理下行控制信道(PDCCH)。
在本实施例中,该一段时间k可以被表示为:绝对时间;或者,与子载波间隔相关的时隙或符号的数量。
其中,该子载波间隔包括:该第一小区的子载波间隔;或者,接收与波束失败恢复相关的响应(BFR response)所在的小区的子载波间隔。
在本实施例中,该一段时间k的长度与该终端设备的性能相关。例如终端设备的性能等级越高,该一段时间k越短。
在本实施例中,该一段时间的起点T1为:所述终端设备接收到与波束失败恢复相关的响应(BFR response)的时隙(slot);或者,与波束失败恢复相关的响应(BFR response)的最后一个符号(symbol);或者,所述终端设备接收到与波束失败恢复相关的响应(BFR response)的控制资源集(CORESET)中的最后一个符号(symbol)。
在本实施例中,该一段时间的终点T2为:用于接收所述下行信号的时隙;或者,用于监听该下行信号(例如,PDCCH)的控制资源集(CORESET)或搜索空间(search space)中的第一个符号(the first symbol);或者,该下行信号的第一个符号(the first  symbol)。
其中,当下行信号是物理下行控制信道(PDCCH)的情况下,用于监听该下行信号的控制资源集(CORESET)或搜索空间(search space)满足如下条件的至少之一:
在该第一小区301中的激活带宽部分(BWP)上的、物理下行控制信道(PDCCH)所对应的所有控制资源集(CORESET)或所有搜索空间(search space);
物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是默认的控制资源集(CORESET)或搜索空间(search space);
该物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是由无线资源控制(RRC)信令指示的控制资源集(CORESET)或搜索空间(search space)。
在本实施例中,激活或重配置信令可以是:针对该第一小区的激活或重配置信令;或者,针对与该第一小区关联的第二小区的激活或重配置信令;或者,针对该终端设备的主小区的激活或重配置信令。
在本实施例中,该激活或重配置信令可以用于:激活所述下行信号所对应的控制资源集(CORESET)的TCI状态的MAC-CE信令;或者,激活所述下行信号所对应的TCI状态集合的MAC-CE信令;或者,重配置所述下行信号所对应的控制资源集(CORESET)的TCI状态集合的无线资源控制(RRC)信令;或者,重配置所述下行信号所对应的TCI状态集合的无线资源控制(RRC)信令。
在本实施例中,第一小区包括:终端设备向网络设备上报的小区信息所对应的小区;或者,与所述终端设备向网络设备上报的小区信息所对应的小区相关联的小区;或者,由该终端设备的高层指示的小区;或者,与该终端设备的高层所指示的小区相关联的小区;或者,接收与所述波束失败恢复相关的响应(BFR response)的小区所关联的小区。
在本实施例中,该终端设备向网络设备上报的小区信息所对应的小区,以及与该小区相关联的小区之间的关联关系是由无线资源控制(RRC)信令配置的。
在本实施例中,该终端设备的高层所指示的小区,以及与该小区相关联的小区之间的关联关系是由无线资源控制(RRC)信令配置的。
在本实施例中,该选择出的参考信号(q_new)是从包含一组用于确定波束失败 恢复候选波束(BFR candidate beam)的参考信号(RS)列表中选择出的。该高层所指示的参考信号是高层(例如,终端设备的MAC层)最近一次指示的参考信号(q_new)。
如图4所示,该装置400还可以包括:发送单元402。
其中,发送单元402用于将选择出的参考信号q_new的信息报告给网络设备。
例如,该发送单元402通过MAC-CE消息(message)、物理上行控制信道(PUCCH)、或物理随机接入信道(PRACH)将所述选择出的参考信号(q_new)的信息报告给所述网络设备。
该选择出的参考信号q_new的信息例如可以是该选择出的参考信号q_new的识别码。
在本实施例中,第一小区可以没有被配置用于接收与波束失败恢复相关的响应(BFR response)的RAR搜索空间(search space)。
此外,在本实施例中,该第一小区也可以被配置用于接收与波束失败恢复相关的响应(BFR response)的RAR搜索空间(search space)。
根据本实施例,终端设备在接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,对波束方向进行切换,因而,终端设备都能有足够的时间可靠地进行波束方向的切换,从而提升系统性能。
实施例3
本实施例3提供一种终端设备,由于该设备解决问题的原理与实施例1的方法类似,因此其具体的实施可以参考实施例1的方法实施,内容相同之处不再重复说明。
图5是本申请实施例的终端设备的构成示意图。如图5所示,终端设备500可以包括:中央处理器(CPU)501和存储器502;存储器502耦合到中央处理器501。其中该存储器502可存储各种数据;此外还存储数据处理的程序,并且在中央处理器501的控制下执行该程序,以根据接收的信令对终端设备进行指示。
在一个实施方式中,实施例2的装置400的功能可以被集成到终端设备500的中央处理器501中。其中,中央处理器501可以被配置为实现实施例1所述的波束失败恢复方法。
例如,中央处理器501可以被配置为进行控制,以使终端设备500执行实施例1的方法。
另外,该中央处理器501的其他配置方式可以参考实施例1,此处不再赘述。
在另一个实施方式中,上述装置400可以与中央处理器501分开配置,例如,可以将装置400配置为与中央处理器501连接的芯片,如图5所示的单元,通过中央处理器501的控制来实现装置400的功能。
此外,如图5所示,终端设备500还可以具有通信模块503、输入单元504、显示器506、音频处理器505、天线507、和电源508等。
根据本实施例,终端设备能有足够的时间可靠地进行波束方向的切换,从而提升系统性能。
实施例4
本申请实施例4提供一种波束失败恢复方法,该方法可以由网络设备执行。
图6是本实施例的波束失败恢复方法的一个示意图,如图6所示,该方法包括:
步骤601、网络设备向终端设备发送用于指示所述终端设备的两个以上小区之间波束失败恢复过程相关联的第一信令。
步骤601中的该第一信令例如可以是RRC信令等。
根据本实施,网络设备可以通过该第一信令将两个或两个以上的载波相关联,从而使得它们的波束失败恢复(BFR)过程相关联。由此,这些(多个空间特性相近的)载波可以使用相同的参考信号(RS)进行BFR测量,当发生波束失败且该终端设备从该波束失败中恢复之后(after the reception of BFR response),该终端设备可以重置该第一信令所指示的载波的下行信号接收空间方向。从而避免对每个子载波分别进行波束失败测量和恢复时可能导致的终端设备与网络设备过于频繁地交互的问题。
在本实施例中,如图6所示,所述方法还可以包括:
步骤602、网络设备向终端设备发送与波束失败恢复相关的响应(BFR response)。
在本实施例中,当终端设备确定了波束失败,并向网络设备发送了波束失败请求的情况下,网络设备可以向终端设备发送该与波束失败恢复相关的响应(BFR response)。
该终端设备接收到该与波束失败恢复相关的响应(BFR response)的一段时间k之后,直至激活或重配置信令之前,可以在该终端设备的第一小区中根据与选择出的参考信号(q_new)或高层指示的参考信号(q_new)相同的天线准共址(Quasi-co-located, QCL)参数监听和/或接收下行信号。其中,关于该终端设备监听和/或接收下行信号的详细说明,可以参考实施例1。
实施例5
本申请实施例5提供一种波束失败恢复方法,该方法可以由网络设备执行。
图7是本实施例的波束失败恢复方法的另一个示意图,如图7所示,所述方法可以包括:
步骤603、网络设备向终端设备发送用于指示监听和/或接收下行信号的小区、和/或带宽部分、和/或控制资源集(CORESET)或搜索空间的第二信令。
步骤603中的该第二信令例如可以是RRC信令等。
终端设备可以根据该第二信令的指示,接收该下行信号。
其中,该第二信令包含小区,和/或BWP,和/或控制资源集(CORESET)或搜索空间之间的映射关系。终端设备可以根据该映射关系,再结合高层信令指示的小区信息以及在该小区上的激活BWP,在相应的CORESET或搜索空间上接收该下行信号。例如,该第二信令包含以下映射关系:
映射关系1.小区#1→BWP#1→CORESET#2。
映射关系2.小区#1→BWP#2→CORESET#4。
映射关系3.小区#3→BWP#1→CORESET#1。
基于上述的映射关系1,当终端设备收到高层关于小区的指示时(小区ID=1),且该小区激活的BWP是BWP#1时,该终端设备在小区#1的BWP#1的CORESET#2中,接收PDCCH,即,依据q_new的QCL参数接收该PDCCH。
基于上述的映射关系2,当终端设备收到高层关于小区的指示时(小区ID=1),且该小区激活的BWP是BWP#2时,该终端设备在小区#1的BWP#2的CORESET#4中,接收PDCCH,即,依据q_new的QCL参数接收该PDCCH。
基于上述的映射关系3,当终端设备收到高层关于小区的指示时(小区ID=3),且该小区激活的BWP是BWP#1时,该终端设备在小区#3的BWP#1的CORESET#1中,接收PDCCH,即,依据q_new的QCL参数接收该PDCCH。
在本实施例中,如图7所示,所述方法还可以包括:
步骤602、网络设备向终端设备发送与波束失败恢复相关的响应(BFR response)。
关于步骤602的说明可以参考上述实施例4的说明。
在本实施例的一个具体实施方式中,步骤603例如可以在步骤602之前进行。
实施例6
本实施例6提供一种波束失败恢复装置。由于该装置解决问题的原理与实施例4的方法类似,因此其具体的实施可以参考实施例4的方法的实施,内容相同之处不再重复说明。
图8是本实施例6的波束失败恢复装置的一个示意图。如图8所示,装置700包括:第一指示单元701。
其中,第一指示单元701向终端设备发送用于指示该终端设备的两个以上小区之间联合进行波束失败恢复的第一信令。
由此,多个空间特性相近的载波可以使用相同的参考信号(RS)进行BFR测量,当发生波束失败且该终端设备从该波束失败中恢复之后(after the reception of BFR response),该终端设备可以同时重置该多个载波的下行信号接收空间方向。从而避免对每个子载波分别进行波束失败测量和恢复时可能导致的终端设备与网络设备过于频繁地交互的问题。
如图8所示,该装置700还包括:
第三指示单元703,其向所述终端设备发送与波束失败恢复相关的响应(BFR response)。
在本实施例中,当终端设备确定了波束失败,并向网络设备发送了波束失败请求的情况下,网络设备可以向终端设备发送该与波束失败恢复相关的响应(BFR response)。
实施例7
本实施例7提供一种波束失败恢复装置。由于该装置解决问题的原理与实施例5的方法类似,因此其具体的实施可以参考实施例5的方法的实施,内容相同之处不再重复说明。
图9是本实施例7的波束失败恢复装置的一个示意图。如图9所示,该装置700a包括:
第二指示单元702,其向该终端设备发送用于指示监听和/或接收下行信号的小区、和/或带宽部分、和/或控制资源集(CORESET)或搜索空间的信令。
终端设备可以根据该第二信令的指示,确定在哪个小区,哪个BWP,哪个控制资源集(CORESET)或搜索空间上接收该下行信号。
例如,该第二信令包含小区,和/或BWP,和/或控制资源集(CORESET)或搜索空间之间的映射关系。终端设备可以根据该映射关系,再结合高层信令指示的小区信息以及在该小区上的激活BWP,在相应的CORESET或搜索空间上接收该下行信号。
此外,如图9所示,该装置700a还包括:
第三指示单元703,其向所述终端设备发送与波束失败恢复相关的响应(BFR response)。
关于第三指示单元703的说明与上述实施例6相同。
实施例8
本实施例8提供一种网络设备,由于该设备解决问题的原理与实施例4或5的方法类似,因此其具体的实施可以参考实施例4或5的方法实施,内容相同之处不再重复说明。
图8是本发明实施例的网络设备构成示意图。如图8所示,终端设备800可以包括:中央处理器(CPU)801和存储器802;存储器802耦合到中央处理器801。其中该存储器802可存储各种数据;此外还存储数据处理的程序,并且在中央处理器801的控制下执行该程序。
在一个实施方式中,实施例6或7的装置700或700a的功能可以被集成到中央处理器801中。其中,中央处理器801可以被配置为实现实施例4或5所述的方法。
例如,中央处理器801可以被配置为进行控制,以使网络设备800执行实施例4或5的方法。
另外,该中央处理器801的其他配置方式可以参考实施例4或5,此处不再赘述。
在另一个实施方式中,上述装置700或700a可以与中央处理器801分开配置,例如,可以将装置700或700a配置为与中央处理器801连接的芯片,如图8所示的 单元,通过中央处理器801的控制来实现装置700或700a的功能。
此外,如图8所示,终端设备800还可以包括收发机803、天线804、显示器、音频处理器和电源等。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备800也并不是必须要包括图8中所示的所有部件;此外,网络设备800还可以包括图8中没有示出的部件,可以参考现有技术。
实施例9
本实施例9提供一种通信系统,其至少包括实施例8中的网络设备以及实施例3中的终端设备500。实施例3和实施例8的内容被合并于此,此处不再赘述。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中该计算机可读程序使得波束失败恢复装置或终端设备执行实施例1所述的波束失败恢复方法。
本发明实施例还提供一种计算机可读程序,其中当在波束失败恢复装置或终端设备中执行该程序时,该程序使得该波束失败恢复装置或终端设备执行实施例1所述的波束失败恢复方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中该计算机可读程序使得波束失败恢复装置或网络设备执行实施例4或5所述的波束失败恢复方法。
本发明实施例还提供一种计算机可读程序,其中当在波束失败恢复装置或网络设备中执行该程序时,该程序使得该波束失败恢复装置或网络设备执行实施例4或5所述的波束失败恢复方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本发明实施例描述的在各装置中的各处理方法可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图4、8、9中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图2所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM 存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(例如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图4、8、9描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑器件、分立门或晶体管逻辑器件、分立硬件组件、或者其任意适当组合。针对图4、8、9描述的功能框图中的一个或多个和/或功能框图的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。
本申请还提供如下的附记:
1.一种波束失败恢复方法,应用于终端设备,该方法包括:
在终端设备接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,直至激活或重配置信令之前,所述终端设备在第一小区中根据与选择出的参考信号(q_new)或高层指示的参考信号(q_new)相同的天线准共址(Quasi-co-located,QCL)参数监听和/或接收下行信号。
2.如附记1所述的方法,其中,
所述下行信号包括下述信号中的至少一种:
物理下行控制信道(PDCCH)、物理下行数据信道(PDSCH)、信道状态信息参考信号(CSI-RS)、以及同步信号块(SSB)。
3.如附记2所述的方法,其中,
在所述第一小区中有监听所述物理下行控制信道(PDCCH)的机会的情况下, 所述终端设备在所述第一小区中监听所述物理下行控制信道(PDCCH)。
4.如附记2所述的方法,其中,
所述物理下行数据信道(PDSCH)包括:
所述第一小区中的物理下行数据信道(PDSCH);或者
在所述第一小区中有监听所述物理下行控制信道(PDCCH)的机会的情况下,由被监听的所述物理下行控制信道(PDCCH)所调度的物理下行数据信道(PDSCH);或者
由接收所述与波束失败恢复相关的响应(BFR response)的物理下行控制信道(PDCCH)所调度的物理下行数据信道(PDSCH)。
5.如附记1~4中任一项所述的方法,其中,
所述与波束失败恢复相关的响应(BFR response)具有被小区无线网络临时标识(C-RNTI)、或者被调制与编码策略小区无线网络临时标识(MCS-C-RNTI)循环冗余校验(Cyclic Redundancy Check)加扰的下行控制信令(DCI)格式。
6.如附记1~5中任一项所述的方法,其中,
所述与波束失败恢复相关的响应(BFR response)是在用于波束失败恢复的随机接入响应(BFR RAR)的搜索空间(search space)中被检测到的。
7.如附记6所述的方法,其中,
所述与波束失败恢复相关的响应(BFR response)是所述搜索空间中的第一个物理下行控制信道(PDCCH)。
8.如附记1~7中任一项所述的方法,其中,
所述一段时间被表示为:
绝对时间;或者
与子载波间隔相关的时隙或符号的数量。
9.如附记8所述的方法,其中,
所述子载波间隔包括:
所述第一小区的子载波间隔;或者,
接收所述与波束失败恢复相关的响应(BFR response)所在的小区的子载波间隔。
10.如附记8所述的方法,其中,
所述一段时间的长度与所述终端设备的性能相关。
11.如附记1~10中任一项所述的方法,其中,
所述一段时间的起点(T1)为:
接收到与波束失败恢复相关的响应(BFR response)的时隙(slot);或者
与波束失败恢复相关的响应(BFR response)的最后一个符号(symbol);或者
接收到与波束失败恢复相关的响应(BFR response)的控制资源集(CORESET)中的最后一个符号(symbol)。
12.如附记1~11中任一项所述的方法,其中,
所述一段时间的终点(T2)为:
用于接收所述下行信号的时隙;或者
用于监听所述下行信号的控制资源集(CORESET)或搜索空间(search space)中的第一个符号(the first symbol);或者
所述下行信号的第一个符号(the first symbol)。
13.如附记1~12中任一项所述的方法,其中,所述下行信号包括物理下行控制信道(PDCCH),用于监听所述下行信号的控制资源集(CORESET)或搜索空间(search space)满足如下条件的至少之一:
在该第一小区中的激活带宽部分(BWP)上的、所述物理下行控制信道(PDCCH)所对应的所有控制资源集(CORESET)或所有搜索空间(search space);
所述物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是默认的控制资源集(CORESET)或搜索空间(search space);
所述物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是由无线资源控制(RRC)信令指示的控制资源集(CORESET)或搜索空间(search space)。
14.如附记1~13中任一项所述的方法,其中,
所述激活或重配置信令包括:
针对所述第一小区的激活或重配置信令;或者
针对与所述第一小区关联的第二小区的激活或重配置信令;或者
针对所述终端设备的主小区的激活或重配置信令。
15.如附记1~14中任一项所述的方法,其中,
所述激活或重配置信令包括:
用于激活所述下行信号所对应的控制资源集(CORESET)的TCI状态的MAC-CE信令;或者
用于激活所述下行信号所对应的TCI状态集合的MAC-CE信令;或者
用于重配置所述下行信号所对应的控制资源集(CORESET)的TCI状态集合的无线资源控制(RRC)信令;或者
用于重配置所述下行信号所对应的TCI状态集合的无线资源控制(RRC)信令。
16.如附记1~15中任一项所述的方法,其中,
所述第一小区包括:
所述终端设备向网络设备上报的小区信息所对应的小区;或者
与所述终端设备向网络设备上报的小区信息所对应的小区相关联的小区;或者
由所述终端设备的高层指示的小区;或者
与所述终端设备的高层所指示的小区相关联的小区;或者
接收与所述波束失败恢复相关的响应(BFR response)的小区所关联的小区。
17.如附记16所述的方法,其中,
所述终端设备向网络设备上报的小区信息所对应的小区,以及与该小区相关联的小区之间的关联关系是由无线资源控制(RRC)信令配置的。
18.如附记16所述的方法,其中,
所述终端设备的高层所指示的小区,以及与该小区相关联的小区之间的关联关系是由无线资源控制(RRC)信令配置的。
19.如附记1~18中任一项所述的方法,其中,
所述选择出的参考信号(q_new)是从包含一组用于确定波束失败恢复候选波束(BFR candidate beam)的参考信号(RS)列表中选择出的。
20.如附记1~19中任一项所述的方法,其中,所述方法还包括:
所述终端设备将所述选择出的参考信号(q_new)的信息报告给网络设备。
21.如附记20所述的方法,其中,
所述终端设备通过MAC-CE消息(message)、物理上行控制信道(PUCCH)、或物理随机接入信道(PRACH)将所述选择出的参考信号(q_new)的信息报告给所述网络设备。
22.如附记1~21中任一项所述的方法,其中,
所述高层所指示的参考信号是所述高层最近一次指示的参考信号(q_new)。
23.如附记1-22中任一项所述的方法,其中,
所述第一小区没有被配置用于接收与波束失败恢复相关的响应(BFR response)的RAR搜索空间(search space)。
24.如附记1-22中任一项所述的方法,其中,
所述第一小区被配置用于接收与波束失败恢复相关的响应(BFR response)的RAR搜索空间(search space)。
25.一种波束失败恢复方法,应用于网络设备,该方法包括:
网络设备向终端设备发送用于指示所述终端设备的两个以上小区之间联合进行波束失败恢复的第一信令。
26.一种波束失败恢复方法,应用于网络设备,该方法包括:
所述网络设备向所述终端设备发送用于指示监听和/或接收下行信号的小区、和/或带宽部分(BWP)、和/或控制资源集(CORESET)的第二信令。
27.如附记26所述的方法,其中,
该第二信令包含小区、和/或BWP、和/或控制资源集(CORESET)或搜索空间之间的映射关系。
28.如附记25~27中任一项所述的方法,其中,所述方法还包括:
所述网络设备向所述终端设备发送与波束失败恢复相关的响应(BFR response)。

Claims (20)

  1. 一种波束失败恢复装置,设置于终端设备,该装置包括:
    接收单元,在终端设备接收到与波束失败恢复相关的响应(BFR response)的一段时间之后,直至激活或重配置信令之前,所述接收单元在所述终端设备的第一小区中根据与选择出的参考信号(q_new)或高层指示的参考信号(q_new)相同的天线准共址(Quasi-co-located,QCL)参数监听和/或接收下行信号。
  2. 如权利要求1所述的装置,其中,
    所述下行信号包括下述信号中的至少一种:
    物理下行控制信道(PDCCH)、物理下行数据信道(PDSCH)、信道状态信息参考信号(CSI-RS)、以及同步信号块(SSB)。
  3. 如权利要求2所述的装置,其中,
    在所述第一小区中有监听所述物理下行控制信道(PDCCH)的机会的情况下,所述接收单元在所述第一小区中监听所述物理下行控制信道(PDCCH)。
  4. 如权利要求2所述的装置,其中,
    所述物理下行数据信道(PDSCH)包括:
    所述第一小区中的物理下行数据信道(PDSCH);或者
    在所述第一小区中有监听所述物理下行控制信道(PDCCH)的机会的情况下,由被监听的所述物理下行控制信道(PDCCH)所调度的物理下行数据信道(PDSCH);或者
    由接收所述与波束失败恢复相关的响应(BFR response)的物理下行控制信道(PDCCH)所调度的物理下行数据信道(PDSCH)。
  5. 如权利要求1所述的装置,其中,
    所述与波束失败恢复相关的响应(BFR response)具有被小区无线网络临时标识(C-RNTI)、或者被调制与编码策略小区无线网络临时标识(MCS-C-RNTI)循环冗余校验(Cyclic Redundancy Check)加扰的下行控制信令(DCI)格式。
  6. 如权利要求1所述的装置,其中,
    所述与波束失败恢复相关的响应(BFR response)是在用于波束失败恢复的随机接入响应(BFR RAR)的搜索空间(search space)中被检测到的。
  7. 如权利要求6所述的装置,其中,
    所述与波束失败恢复相关的响应(BFR response)是所述搜索空间中的第一个物理下行控制信道(PDCCH)。
  8. 如权利要求1所述的装置,其中,
    所述一段时间被表示为:
    绝对时间;或者
    与子载波间隔相关的时隙或符号的数量。
  9. 如权利要求8所述的装置,其中,
    所述子载波间隔包括:
    所述第一小区的子载波间隔;或者,
    接收所述与波束失败恢复相关的响应(BFR response)所在的小区的子载波间隔。
  10. 如权利要求1所述的装置,其中,
    所述一段时间的起点(T1)为:
    所述终端设备接收到与波束失败恢复相关的响应(BFR response)的时隙(slot);或者
    与波束失败恢复相关的响应(BFR response)的最后一个符号(symbol);或者
    所述终端设备接收到与波束失败恢复相关的响应(BFR response)的控制资源集(CORESET)中的最后一个符号(symbol)。
  11. 如权利要求1所述的装置,其中,
    所述一段时间的终点(T2)为:
    用于接收所述下行信号的时隙;或者
    用于监听所述下行信号的控制资源集(CORESET)或搜索空间(search space)中的第一个符号(the first symbol);或者
    所述下行信号的第一个符号(the first symbol)。
  12. 如权利要求1所述的装置,其中,所述下行信号包括物理下行控制信道(PDCCH),用于监听所述下行信号的控制资源集(CORESET)或搜索空间(search space)满足如下条件的至少之一:
    在该第一小区中的激活带宽部分(BWP)上的、所述物理下行控制信道(PDCCH)所对应的所有控制资源集(CORESET)或所有搜索空间(search space);
    所述物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是默认的控制资源集(CORESET)或搜索空间(search space);
    所述物理下行控制信道(PDCCH)所对应的控制资源集(CORESET)或搜索空间(search space)是由无线资源控制(RRC)信令指示的控制资源集(CORESET)或搜索空间(search space)。
  13. 如权利要求1所述的装置,其中,
    所述激活或重配置信令包括:
    针对所述第一小区的激活或重配置信令;或者
    针对与所述第一小区关联的第二小区的激活或重配置信令;或者
    针对所述终端设备的主小区的激活或重配置信令。
  14. 如权利要求1所述的装置,其中,
    所述激活或重配置信令包括:
    用于激活所述下行信号所对应的控制资源集(CORESET)的TCI状态的MAC-CE信令;或者
    用于激活所述下行信号所对应的TCI状态集合的MAC-CE信令;或者
    用于重配置所述下行信号所对应的控制资源集(CORESET)的TCI状态集合的无线资源控制(RRC)信令;或者
    用于重配置所述下行信号所对应的TCI状态集合的无线资源控制(RRC)信令。
  15. 如权利要求1所述的装置,其中,
    所述第一小区包括:
    所述终端设备向网络设备上报的小区信息所对应的小区;或者
    与所述终端设备向网络设备上报的小区信息所对应的小区相关联的小区;或者
    由所述终端设备的高层指示的小区;或者
    与所述终端设备的高层所指示的小区相关联的小区;或者
    接收与所述波束失败恢复相关的响应(BFR response)的小区所关联的小区。
  16. 如权利要求1所述的装置,其中,
    所述高层所指示的参考信号是所述高层最近一次指示的参考信号(q_new)。
  17. 一种波束失败恢复装置,应用于网络设备,该装置包括:
    第一指示单元,其向终端设备发送用于指示所述终端设备的两个以上小区之间联 合进行波束失败恢复的信令。
  18. 一种波束失败恢复装置,应用于网络设备,该装置包括:
    第二指示单元,其向所述终端设备发送用于指示监听和/或接收下行信号的小区、和/或带宽部分、和/或控制资源集(CORESET)的信令。
  19. 如权利要求18所述的装置,其中,
    该第二信令包含小区、和/或BWP、和/或控制资源集(CORESET)或搜索空间之间的映射关系。
  20. 如权利要求17所述的装置,其中,所述装置还包括:
    第三指示单元,其向所述终端设备发送与波束失败恢复相关的响应(BFR response)。
PCT/CN2019/080216 2019-03-28 2019-03-28 波束失败恢复方法、装置和通信系统 WO2020191751A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980093876.6A CN113557686B (zh) 2019-03-28 2019-03-28 波束失败恢复方法、装置和通信系统
PCT/CN2019/080216 WO2020191751A1 (zh) 2019-03-28 2019-03-28 波束失败恢复方法、装置和通信系统
KR1020217030789A KR20210132149A (ko) 2019-03-28 2019-03-28 빔 실패 회복 방법 및 디바이스 및 통신 시스템
JP2021556932A JP7306474B2 (ja) 2019-03-28 2019-03-28 ビーム失敗回復方法、装置及び通信システム
EP19922042.7A EP3952175A4 (en) 2019-03-28 2019-03-28 METHOD AND DEVICE FOR BEAM FAILURE RECOVERY AND COMMUNICATION SYSTEM
US17/481,386 US12107717B2 (en) 2019-03-28 2021-09-22 Beam failure recovery method and device and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/080216 WO2020191751A1 (zh) 2019-03-28 2019-03-28 波束失败恢复方法、装置和通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/481,386 Continuation US12107717B2 (en) 2019-03-28 2021-09-22 Beam failure recovery method and device and communication system

Publications (1)

Publication Number Publication Date
WO2020191751A1 true WO2020191751A1 (zh) 2020-10-01

Family

ID=72609574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080216 WO2020191751A1 (zh) 2019-03-28 2019-03-28 波束失败恢复方法、装置和通信系统

Country Status (6)

Country Link
US (1) US12107717B2 (zh)
EP (1) EP3952175A4 (zh)
JP (1) JP7306474B2 (zh)
KR (1) KR20210132149A (zh)
CN (1) CN113557686B (zh)
WO (1) WO2020191751A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151214A1 (zh) * 2021-01-14 2022-07-21 华为技术有限公司 波束失败恢复方法、装置及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11974344B2 (en) * 2019-11-15 2024-04-30 Qualcomm Incorporated Beam failure report response receiving cell restriction rule
US11849473B2 (en) * 2019-12-13 2023-12-19 Qualcomm Incorporated Beam ready time for downlink control information based beam activation command

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032882A1 (en) * 2017-08-09 2019-02-14 Idac Holdings, Inc. METHODS AND SYSTEMS FOR RECOVERING AND BEAM MANAGEMENT
CN109391409A (zh) * 2017-08-10 2019-02-26 维沃移动通信有限公司 一种波束失败恢复方法和用户终端
CN109391405A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院 波束失败的恢复方法、装置、终端及网络设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151869B (zh) * 2017-06-19 2021-12-14 维沃移动通信有限公司 一种随机接入资源的配置方法、终端及网络设备
KR102573235B1 (ko) * 2017-08-11 2023-09-01 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
US10873866B2 (en) * 2017-09-27 2020-12-22 Electronics And Telecommunications Research Institute Method for managing radio resources in communication system and apparatus for the same
JP7059373B2 (ja) * 2017-11-17 2022-04-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてビーム失敗復旧を行う方法及びそのための装置
EP3735019A4 (en) * 2017-12-27 2021-08-04 NTT DoCoMo, Inc. USER TERMINAL DEVICE AND RADIO COMMUNICATION PROCEDURES
EP3547566B1 (en) * 2018-03-30 2023-07-05 Comcast Cable Communications, LLC Configuration for beam failure recovery
US11569889B2 (en) * 2018-04-05 2023-01-31 Nokia Technologies Oy User equipment receiver spatial filter configuration during secondary cell beam failure recovery
US11324064B2 (en) * 2018-09-24 2022-05-03 Comcast Cable Communications, Llc Beam failure recovery procedures
US11343735B2 (en) * 2018-09-25 2022-05-24 Comcast Cable Communications, Llc Beam configuration for secondary cells
EP3860295B1 (en) * 2018-09-26 2023-11-22 Fujitsu Limited Signal sending method, and signal receiving method and device
US11489638B2 (en) * 2018-12-05 2022-11-01 Qualcomm Incorporated Measurement report triggering techniques for multiple component carriers
WO2020167814A1 (en) * 2019-02-11 2020-08-20 Apple Inc. Measurement gap design for ne-dc mode
KR20240008412A (ko) * 2019-02-14 2024-01-18 애플 인크. 뉴 라디오(nr)에서의 2차 셀 빔 실패 복구 동작
CA3072491A1 (en) * 2019-02-14 2020-08-14 Comcast Cable Communications, Llc Transmission/reception management in wireless communication
JP7342139B2 (ja) * 2019-02-18 2023-09-11 アップル インコーポレイテッド セカンダリセルビーム回復のための方法及びシステム
US10813157B1 (en) * 2019-10-04 2020-10-20 Qualcomm Incorporated Beam failure recovery and related timing determination techniques
US11659416B2 (en) * 2019-11-15 2023-05-23 Qualcomm Incorporated Beam reset rule in case of group component carrier based beam update

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019032882A1 (en) * 2017-08-09 2019-02-14 Idac Holdings, Inc. METHODS AND SYSTEMS FOR RECOVERING AND BEAM MANAGEMENT
CN109391409A (zh) * 2017-08-10 2019-02-26 维沃移动通信有限公司 一种波束失败恢复方法和用户终端
CN109391405A (zh) * 2017-08-10 2019-02-26 电信科学技术研究院 波束失败的恢复方法、装置、终端及网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on Beam Failure Recovery", 3GPP TSG RAN WG1 MEETING #91, R1-1719619, 17 November 2017 (2017-11-17), XP051368832, DOI: 20190422144118A *
See also references of EP3952175A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151214A1 (zh) * 2021-01-14 2022-07-21 华为技术有限公司 波束失败恢复方法、装置及系统

Also Published As

Publication number Publication date
EP3952175A4 (en) 2022-04-27
US20220006686A1 (en) 2022-01-06
US12107717B2 (en) 2024-10-01
EP3952175A1 (en) 2022-02-09
JP7306474B2 (ja) 2023-07-11
JP2022528626A (ja) 2022-06-15
KR20210132149A (ko) 2021-11-03
CN113557686A (zh) 2021-10-26
CN113557686B (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11889530B2 (en) Scheduling wireless communications
US11770870B2 (en) Methods and apparatus related to beam recovery in the secondary cell
KR102716805B1 (ko) 스케줄링 요청 기반 빔 장애 복구
US20230337242A1 (en) Transmission and Reception Point Configuration for Beam Failure Recovery
US20210100059A1 (en) Beam Management and Failure Recovery for Communications
CN112136357B (zh) 带宽部分指示的配置方法、装置和通信系统
US11582713B2 (en) System information and paging monitoring for multiple synchronization signal blocks
US11729637B2 (en) Enhancement to expedite secondary cell (SCell) or primary SCell (PSCell) addition or activation
WO2020061844A1 (zh) 信号发送方法、信号接收方法及装置
US12107717B2 (en) Beam failure recovery method and device and communication system
WO2020037458A1 (zh) 下行信号的监听和发送方法、参数配置方法以及装置
US12132576B2 (en) HARQ retransmission termination based on lost redundancy version
JP7413349B2 (ja) ランダムアクセス方法、データ受信方法及びその装置、通信システム
US20240049094A1 (en) Mobility robustness optimization enhancement using fallback indications for inter-system handover reports
US20240031899A1 (en) Mobility in Radio Access Network
WO2020061729A1 (zh) 信号收发方法、天线面板的指示方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556932

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217030789

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019922042

Country of ref document: EP

Effective date: 20211028