Nothing Special   »   [go: up one dir, main page]

WO2020189873A1 - 반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법 - Google Patents

반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법 Download PDF

Info

Publication number
WO2020189873A1
WO2020189873A1 PCT/KR2019/014463 KR2019014463W WO2020189873A1 WO 2020189873 A1 WO2020189873 A1 WO 2020189873A1 KR 2019014463 W KR2019014463 W KR 2019014463W WO 2020189873 A1 WO2020189873 A1 WO 2020189873A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
adhesive layer
base film
semiconductor package
terminated
Prior art date
Application number
PCT/KR2019/014463
Other languages
English (en)
French (fr)
Inventor
최병연
이승열
강숙희
윤경주
Original Assignee
주식회사 모두테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190030488A external-priority patent/KR102198323B1/ko
Priority claimed from KR1020190070137A external-priority patent/KR102267636B1/ko
Priority claimed from KR1020190119666A external-priority patent/KR102282519B1/ko
Application filed by 주식회사 모두테크 filed Critical 주식회사 모두테크
Priority to US17/440,049 priority Critical patent/US20220220345A1/en
Publication of WO2020189873A1 publication Critical patent/WO2020189873A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/50Adhesives in the form of films or foils characterised by a primer layer between the carrier and the adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane

Definitions

  • the present invention relates to an adhesive tape for a semiconductor package manufacturing process, and more particularly, to protect a plurality of protruding electrodes formed on a lower surface of a semiconductor package and a lower surface of a semiconductor package during the process of forming an EMI (Electro Magnetic Interference) shielding layer of a semiconductor package.
  • the present invention relates to an adhesive tape for a semiconductor package manufacturing process and a method of manufacturing the same.
  • BGA Bit Grid Array
  • CSP Chip Scale Package
  • the demand to increase the size of the battery and the demand to reduce the size of the terminal at the same time meet the demand to relatively reduce the size of the PCB occupied by the terminal. If the size of the PCB is reduced, the gap between the semiconductor devices included in the PCB is narrowed, and errors due to electromagnetic interference between the semiconductor devices inevitably occur.
  • a technology for forming a shielding metal coating on the outer surface of the device by a method of covering a device shielding cap (CAP) or an EMI sputtering technology has been developed and introduced.
  • the metal coating technology for shielding by sputtering refers to forming a metal thin film for shielding electromagnetic waves on the entire outer surface of the semiconductor device except for the connection terminal through a sputtering process.
  • a BGA semiconductor package it is a method of not affecting the connection terminals during the sputtering process for shielding electromagnetic waves.
  • the method of applying sputtering by placing the semiconductor package in a tape with holes the size of a semiconductor package and exposing only the upper surface of the package Patent Registration No. 10-1662068) has been proposed, but not only incurs excessive cost to form a hole in the tape, but also a problem in which a thin film due to sputtering is poorly deposited when the semiconductor package is not correctly placed in the hole. There is.
  • An object of the present invention is to provide an adhesive tape for a semiconductor package manufacturing process and a method of manufacturing the same that can protect a lower surface of a semiconductor package and a plurality of protruding electrodes formed on the lower surface of a semiconductor package during a semiconductor package manufacturing process having a plurality of protruding electrodes. There is this.
  • another object of the present invention is to provide an adhesive tape for a semiconductor package manufacturing process and a method for manufacturing the same that can be easily separated from a semiconductor package without residue after completing a predetermined manufacturing process.
  • an adhesive tape for a semiconductor package manufacturing process attached to a lower surface of a semiconductor package in which a plurality of protruding electrodes are formed a first formed on a first base film Adhesive layer; A second base film formed on the first adhesive layer, the shape of which is deformed to correspond to the topology of the lower surface of the semiconductor package when attached to the lower surface of the semiconductor package, and contains a metal element so as to independently maintain the deformed shape between processes; And a second adhesive layer formed on the second base film, having a thickness thinner than that of the first adhesive layer, and having an adhesive force less than that of the first adhesive layer, wherein each of the first adhesive layer and the second adhesive layer An adhesive tape having a molecular structure having a spiral network structure and comprising a first adhesive composition containing silicone is provided.
  • the release film may have an adhesive strength in the range of 3 gf / 25mm to 8 gf / 25mm.
  • the first intermediate layer inserted between the first base film and the first adhesive layer; And a second intermediate layer inserted between the second base film and the second adhesive layer, wherein each of the first intermediate layer and the second intermediate layer has a helical network structure in a molecular structure and contains silicon.
  • It includes an adhesive composition, and may have a basis weight in the range of 0.2 g/m 2 to 0.5 g/m 2 .
  • the second adhesive composition is toluene, siloxane and silicone, di-methyl, hydroxy-terminated (Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8), and xylene ( Xylene), trimethylated silica, and ethylbenzene may be mixed.
  • the first base film has a multilayer structure in which any one single layer or two or more are stacked selected from the group consisting of polyethylene terephthalate (PET), polyimide (PI), and polyolefin (PO), 10 It may have a thickness in the range of ⁇ m to 150 ⁇ m.
  • PET polyethylene terephthalate
  • PI polyimide
  • PO polyolefin
  • a surface in contact with the first adhesive layer may be surface-treated using a corona discharge treatment method or an ion assist reaction method.
  • the first base film is modified in shape to correspond to the topology of the bottom surface of the semiconductor package when attached to the bottom of the semiconductor package, and contains a metal element to independently maintain the modified shape between processes.
  • Each of the first base film and the second base film contains at least 99 wt% or more of aluminum (Al), and each of the first base film and the second base film containing aluminum is 6 kgf/mm 2 to 12 kgf It has a tensile strength in the range of /mm 2 and an elongation in the range of 8% to 16%, and may have a thickness in the range of 10 ⁇ m to 35 ⁇ m.
  • each of the first base film and the second base film contains at least 99 wt% or more of copper (Cu), and each of the first base film and the second base film containing copper is 10 kgf/mm 2 to It has a tensile strength in the range of 26 kgf/mm 2 and an elongation in the range of 4% to 12%, and may have a thickness in the range of 10 ⁇ m to 35 ⁇ m.
  • Cu copper
  • the second base film has a thickness in the range of 10 ⁇ m to 35 ⁇ m, and as the size of the protruding electrode increases, the thickness of the second base film decreases within a set thickness range, and between the protruding electrodes As the spacing of is increased, the thickness of the second base film may increase within a set thickness range.
  • the second base film is regularly arranged and includes a plurality of perforations penetrating through the second base film, and each of the plurality of perforations is selected from the group consisting of a polygonal, elliptical, or circular triangular or more It has a single plane shape, and the first adhesive layer and the second adhesive layer may be in direct contact through the plurality of perforations.
  • the first adhesive layer may have a thickness in the range of 100 ⁇ m to 700 ⁇ m and an adhesive strength of at least 500 gf/25 mm
  • the second adhesive layer may have a thickness in the range of 10 ⁇ m to 50 ⁇ m and a thickness of 200 gf/25 mm to It can have an adhesive strength in the range of 300 gf/25mm.
  • the first adhesive layer has a thickness in the range of 100 ⁇ m to 700 ⁇ m, and as the size of the protruding electrode increases, the thickness of the first adhesive layer decreases within a set thickness range, and the gap between the protruding electrodes As this increases, the thickness of the first adhesive layer increases within a set thickness range, and the second adhesive layer has a thickness in the range of 10 ⁇ m to 50 ⁇ m, and as the size of the protruding electrode increases, the second adhesive layer increases within the set thickness range. As the thickness of the adhesive layer increases and the distance between the protruding electrodes increases, the thickness of the second adhesive layer may decrease within a set thickness range.
  • the first adhesive composition may include an adhesive agent in which trimethylated silica, dimethyl siloxane copolymer, and ethylbenzene are mixed.
  • the first adhesive composition may further include 0.5 to 1.5 parts by weight of a crosslinking agent, 0.5 to 1.5 parts by weight of an anchorage additive, and 0.5 to 1.8 parts by weight of a catalyst based on 100 parts by weight of the adhesive subject, and the adhesive subject is xylene.
  • Xylene trimethylated silica, ethylbenzene and siloxane and silicone, di-methyl, vinyl group-terminated (Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083) -19-2) may include a mixed mixture.
  • the first adhesive composition is 0.5 to 1.5 parts by weight of a crosslinking agent, 0.5 to 1.5 parts by weight of an anchorage additive, and a catalyst based on 100 parts by weight of the adhesive subject in which the first and second subjects are mixed in a ratio of 95:5 to 99:1. It may further contain 0.5 to 1.5 parts by weight, and the first subject is xylene, trimethylated silica, ethylbenzene, siloxane and silicon, di-methyl, vinyl group-terminated (Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No.
  • 68083-19-2) may contain a mixture, and the second subject is siloxane and silicone, di-methyl, vinyl group-terminated
  • the second subject is siloxane and silicone, di-methyl, vinyl group-terminated
  • a mixture of shoes Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2) and 1-Ethynylcyclohexanol (CAS No. 78-27-3). It may include.
  • the crosslinking agent may include a mixture of heptane, siloxane, silicon, and methyl hydrogen (Siloxanes and Silicones, Me hydrogen; CAS No. 63148-57-2), and the anchorage additive is trimethoxy[3 -(Oxiranylmethoxy)propyl]silane (Silane, trimethoxy[3-(oxiranylmethoxy)propyl]-; CAS No.
  • trimethoxy[(3-oxiranylmethoxy)propyl]silane Siloxanes and Silicones di-Me, Me vinyl, hydroxy-terminated reaction products with trimethoxy[3-oxiranylmethoxy)propyl]silane combined with siloxanes and silicones, di-methyl, di-vinyl, hydroxy-terminated reaction products with trimethoxy[3-oxiranylmethoxy)propyl]silane ; CAS No. 102782-94-5), methanol (Methanol) and divinyl hexamethyl cyclotetrasiloxane (Divinyl hexamethyl cyclotetrasiloxane; CAS No.
  • 17980-61-9) may be a mixture of a mixture, the catalyst is platinum, 1, 3-diethenyl-1,1,3,3-tetramethyldisiloxane complexes (Platinium 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complexes; CAS No. 68478-92-2), with siloxane Silicon, di-methyl, vinyl group-terminated (Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2), Tetramethyldivinyldisiloxane (CAS No. 2627-95) -4) and a mixture of siloxane and silicone, di-methyl, and hydroxy-terminated (Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8).
  • platinum 1, 3-diethenyl-1,1,3,3-tetramethyldisiloxane complexes
  • the first adhesive composition may further include 0.5 to 3 parts by weight of a polymerization initiator with respect to 100 parts by weight of the adhesive subject in which the third and fourth subjects are mixed in a ratio of 50:50 to 80:20, and the third The subject is xylene, ethylbenzene, toluene, siloxane and silicon, di-methyl, hydroxy-terminated reaction products of chlorotrimethylsilane, hydrochloric acid, isopropyl alcohol and sodium silicate (Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate; CAS No.
  • 68440-70-0 may contain a mixture, and the fourth topic is Toluene, siloxane and silicone, di-methyl, hydroxy-terminated (Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8), Xylene, trimethylated
  • the polymerization initiator may include benzoyl peroxide.
  • the first adhesive composition may further include 0.5 to 3 parts by weight of a polymerization initiator with respect to 100 parts by weight of the adhesive subject in which the third and fifth subjects are mixed in a ratio of 50:50 to 80:20, and the third The subject is xylene, ethylbenzene, toluene, siloxane and silicon, di-methyl, hydroxy-terminated reaction products of chlorotrimethylsilane, hydrochloric acid, isopropyl alcohol and sodium silicate (Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate; CAS No.
  • 68440-70-0 may contain a mixture, and the fifth topic is Toluene, siloxane and silicone, di-methyl, methyl vinyl, vinyl group-terminated (Siloxanes and Silicones, di-Me, Me vinyl, vinyl groupterminated; CAS No. 68083-18-1), Xylene ), Trimethylated silica, Ethylbenzene, siloxane and silicone, di-methyl, methyl vinyl, hydroxy-terminated (Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated; CAS) No. 67923-19-7) and 1-Ethynylcyclohexanol (1-Ethynylcyclohexanol; CAS No. 78-27-3) may contain a mixture, the polymerization initiator is benzoyl peroxide (Benzoyl Peroxide) It may include.
  • a first base film comprising a polymer material or a metal material, a first adhesive layer having a helical network structure in a molecular structure and containing silicon, and fluorine are contained.
  • Manufacturing a second tape comprising a second base film comprising a metallic material, a second adhesive layer having a helical network structure in a molecular structure, a second adhesive layer containing silicon, and a second release film containing fluorine are sequentially stacked; Removing the first release film from the first tape; And laminating the first tape and the second tape so that the first adhesive layer and the second base film are in contact with each other.
  • the adhesive tape for a semiconductor package manufacturing process and a method of manufacturing the same according to the present invention provides the following effects.
  • the adhesive tape for a semiconductor package manufacturing process according to the present invention has a very simple structure in which a first base film, a first adhesive layer, a second base film, and a second adhesive layer are sequentially stacked, so that productivity and price competitiveness can be improved. There is an effect.
  • the first base film includes a single layer selected from the group consisting of polyethylene terephthalate (PET), polyimide (PI), and polyolefin (PO), or a multilayer in which two or more are stacked, the EMI shielding layer formation process There is an effect of easily securing the stress characteristics required in the adhesive tape for the semiconductor package manufacturing process used in the process.
  • PET polyethylene terephthalate
  • PI polyimide
  • PO polyolefin
  • the first base film is made of a polymer material
  • surface treatment is performed on one surface of the first base film in contact with the first adhesive layer, so that even if a silicone material is used as the first adhesive layer, adhesion between them can be improved. There is an effect.
  • the first base film has a thickness in the range of 10 ⁇ m to 150 ⁇ m, it has the effect of effectively maintaining a stress balance and facilitating handling of the adhesive tape in response to the topology of the lower surface of the semiconductor package in which a plurality of protruding electrodes are formed.
  • the second base film is a semiconductor package
  • its shape is transformed to correspond to the topology, and since it contains metal elements to independently maintain the transformed form between processes, it is used in the process of forming an EMI shielding layer.
  • the adhesive properties and retention properties required by the adhesive tape.
  • the first base film contains the same metal element as the second base film, there is an effect of more easily securing the above-described adhesive properties and retention properties.
  • the second base film containing the metal element has a very thin thickness in the range of 10 ⁇ m to 35 ⁇ m, there is an effect of effectively maintaining a stress balance corresponding to the topology of the bottom surface of a semiconductor package in which a plurality of protruding electrodes are formed.
  • each of the first adhesive layer and the second adhesive layer contains an adhesive theme in which trimethylated silica, dimethylsiloxane copolymer and ethylbenzene are mixed, there is no physical property modification due to heat generated during the EMI shielding layer formation process, and the semiconductor package manufacturing process There is an effect of easily securing the adhesive properties, retention properties, separation properties and stress properties required in the adhesive tape.
  • each of the first adhesive layer and the second adhesive layer has a helical network structure based on a siloxane bond as a basic skeleton, even if a gap occurs between the semiconductor package and the adhesive tape in the area where the lower surface of the semiconductor package and the protruding electrode contact, the manufacturing process There is an effect of preventing excessive expansion of the voids (especially during processing in a high vacuum environment).
  • the second adhesive layer has a very thin thickness in the range of 10 ⁇ m to 50 ⁇ m, it is easy to adhere and adhere according to the topology of the bottom surface of the semiconductor package in which a plurality of protruding electrodes are formed. There is an effect that can prevent this rising phenomenon.
  • each of the first and second adhesive layers and the thickness of each of the first and second base films optimized for the size and spacing of the protruding electrodes of the semiconductor package, it is used in the process of forming the EMI shielding layer. There is an effect of more effectively securing adhesive properties, retention properties, separation properties, and stress properties required in an adhesive tape for a semiconductor package manufacturing process.
  • the first and second tapes are laminated at the site where the semiconductor package manufacturing process is carried out to manufacture an adhesive tape, making it easy to transport and store.
  • the quality of the tape can be improved, and there is an effect of improving the yield of the semiconductor package manufacturing process.
  • FIG. 1 is a schematic cross-sectional view of an adhesive tape for a semiconductor package manufacturing process according to a first embodiment of the present invention.
  • FIG. 2 is a view showing a cross-sectional shape of an adhesive tape for a semiconductor package manufacturing process according to a first embodiment of the present invention adhered to a lower surface of a semiconductor package.
  • 3A and 3B are views showing a planar shape of a second base film applicable to the adhesive tape for a semiconductor package manufacturing process according to the first and second embodiments of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an adhesive tape for a semiconductor package manufacturing process according to a second embodiment of the present invention.
  • FIG. 5 is a flow chart illustrating a manufacturing process of an adhesive tape for a semiconductor package manufacturing process according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a manufacturing process of a first tape and a second tape in an adhesive tape for a semiconductor package manufacturing process according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. These terms are used only for the purpose of distinguishing one component from another component.
  • An embodiment of the present invention to be described later is to provide an adhesive tape for a semiconductor package manufacturing process, and more particularly, of a semiconductor package having a plurality of protruding electrodes such as a ball grid array (BGA) and a land grid array (LGA).
  • the purpose of the present invention is to provide an adhesive tape for a semiconductor package manufacturing process and a method of manufacturing the same that can protect a lower surface of a semiconductor package and a plurality of protruding electrodes formed on the lower surface of a semiconductor package during an EMI (Electro Magnetic Interference) shielding layer forming process.
  • EMI Electro Magnetic Interference
  • the adhesive tape for a semiconductor package manufacturing process commonly used in the process of forming an EMI shielding layer has an adhesion characteristic and a retention characteristic. ), there is a need to secure a remove characteristic and a stress characteristic.
  • the base film and adhesive layer of the adhesive tape protrude regardless of the size (e.g., diameter or height) of the protruding electrode so that no air gap occurs in the area where the lower surface of the semiconductor package and the protruding electrode contact. It should be possible to adhere and adhere to the semiconductor package including the electrode and the protruding electrode corresponding to the topology of the bottom surface.
  • the protruding electrode in a process environment for forming the EMI shielding layer, for example, in a high temperature and high vacuum environment, the protruding electrode must be adhered well without being pushed out. In other words, even in the process environment for forming the EMI shielding layer, the adhesive ability and adhesion ability must be maintained continuously.
  • the adhesive tape when the adhesive tape is separated from the semiconductor package at room temperature and atmospheric pressure after completing the process of forming the EMI shielding layer, it is easily separated with little force, and at the same time, the lower surface of the semiconductor package and the protruding electrode No adhesive material should remain on the surface.
  • it must have an adhesive force that can be easily separated through an automated facility that automatically separates the semiconductor package (or chip) from the adhesive tape, and is applied to a vacuum chuck or lift pin used in an automated facility. There should be no holes or tears.
  • the maximum endurance tension of an automated facility that automatically separates a semiconductor package (or semiconductor chip) from an adhesive tape is around 500 gf/25mm, so it would be preferable in terms of separation characteristics that an adhesive tape has a lower adhesive strength.
  • the EMI shielding layer is maintained in a state where the distance between adjacent semiconductor chips is kept constant.
  • An appropriate level of tensile stress and compressive stress must be secured so that the formation process can proceed. That is, the adhesive tape must be able to stably maintain the stretched state and maintain a stress balance corresponding to the topology of the bottom surface of the semiconductor package including the protruding electrode.
  • an embodiment of the present invention to be described later provides an adhesive tape for a semiconductor package manufacturing process capable of satisfying the adhesive properties, retention properties, separation properties, and stress properties required during the semiconductor package manufacturing process, in particular, the EMI shielding layer forming process.
  • the adhesive tape for a semiconductor package according to an embodiment of the present invention may have a simple structure in which a base film and an adhesive layer are stacked in order to secure productivity and price competitiveness.
  • the adhesive layer maintains chemical resistance, heat resistance, and cold resistance, has no outgassing, has a thickness that can be adhered and adhered according to the topology of the bottom of the semiconductor package in which a plurality of protruding electrodes are formed, and is soft and non-denatured for impregnation of the protruding electrodes.
  • It can be made of a silicone material so that the residue is not transferred during desorption.
  • the base film can stably maintain the tensioned state without stretching between the semiconductor package manufacturing processes, and at the same time, its shape can be deformed in response to the topology of the adherend surface, and the shape can be self-maintained between processes, high temperature and high vacuum. It can be made of a metal material so that degeneration and deformation do not occur in the environment.
  • FIG. 1 is a schematic cross-sectional view of an adhesive tape for a semiconductor package manufacturing process according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of an adhesive tape for a semiconductor package manufacturing process according to a first embodiment of the present invention. It is a view showing a cross-sectional shape adhered to the lower surface of.
  • 3A and 3B are views showing a planar shape of a second base film applicable to the adhesive tape for a semiconductor package manufacturing process according to the first and second embodiments of the present invention.
  • the adhesive tape 10 for the manufacturing process of the semiconductor package 400 according to the first embodiment of the present invention includes a first tape 100 and a second tape 200 stacked. It can have a shape.
  • the first tape 100 and the second tape 200 may be separately manufactured to facilitate transportation and storage, and the first tape 100 and the second tape 200 at the site during the semiconductor package 400 manufacturing process By laminating the adhesive tape 10 can be manufactured and used.
  • the second tape 200 may be in contact with the lower surface of the semiconductor package 400 on which the plurality of protruding electrodes 410 are formed, and the plurality of protruding electrodes 410 formed on the lower surface of the semiconductor package 400 are formed by the second tape 200.
  • the EMI shielding layer may be formed on the front surface of the semiconductor package 400 excluding the lower surface, that is, the upper surface and the side surface of the semiconductor package 400.
  • the first tape 100 may serve to prevent the second tape 200 from being damaged between processes.
  • the first tape 100 may also play a role of preventing a process failure from occurring even if the second tape 200 is partially damaged between processes.
  • the protruding electrodes 410 in the process of pressing the semiconductor package 400 with the adhesive tape 10 to attach and adhere the adhesive tape 10 to the lower surface of the semiconductor package 400 on which the plurality of protruding electrodes 410 are formed, the protruding electrodes 410 ) Or/and the adhesive tape 10 may be torn by the edge of the semiconductor package 400.
  • the adhesive tape 10 according to the first embodiment has a form in which the first tape 100 and the second tape 200 are stacked, it is possible to prevent the adhesive tape 10 from being damaged during the pressing process. .
  • the second tape 200 having a relatively thin thickness compared to the first tape 100 is torn during the pressing process, the first tape 100 compensates for this, thereby preventing a process failure from occurring.
  • the first tape 100 includes a first base film 110 including a polymer material or a metal material and a first adhesive layer 120 containing silicon.
  • the second tape 200 may have a form in which a second base film 210 including a metal material and a second adhesive layer 220 containing silicon are sequentially stacked.
  • one side and the other side of the second base film 210 may contact the first adhesive layer 120 and the second adhesive layer 220, respectively, and have a shape inserted therebetween.
  • the first base film 110 when the first base film 110 includes a material different from that of the second base film 210, the first base film 110 may include a polymer material. Specifically, the first base film 110 stably maintains the tensioned state without stretching between the processes of the semiconductor package 400 and corresponds to the topology of the bottom surface of the semiconductor package 400 in which a plurality of protruding electrodes 410 are formed. It is possible to maintain the stress balance, and may include a polymer material that does not denature or deform in a high temperature and high vacuum environment. Accordingly, the first base film 110 is a single layer selected from the group consisting of polyethylene terephthalate (PET), polyimide (PI), and polyolefine (PO), or a multilayer in which two or more are stacked. It can have a structure.
  • PET polyethylene terephthalate
  • PI polyimide
  • PO polyolefine
  • the first base film 110 including a polymer material may have a thickness in the range of 10 ⁇ m to 150 ⁇ m.
  • the thickness of the first base film 110 is less than 10 ⁇ m, it may be very difficult for the user to handle the adhesive tape 10, and when the thickness of the first base film 110 exceeds 150 ⁇ m, a plurality of It may be difficult to maintain a stress balance corresponding to the topology of the bottom surface of the semiconductor package 400 on which the protruding electrode 410 is formed.
  • the stress balance is not maintained, the repulsive force between the semiconductor package 400 and the adhesive tape 10 increases, which causes the adhesion and adhesion between the semiconductor package 400 and the adhesive tape 10 to decrease. Can act as
  • one surface of the first base film 110 in contact with the first adhesive layer 120 may be surface-treated to improve adhesion therebetween.
  • the silicone material used as the first adhesive layer 120 is not easily mixed with, agitated, and adhered to different materials due to its unique chemical stability, so the surface of the first base film 110, which is not surface-treated, and the adhesive strength are low, and thus it is lifted. A phenomenon may occur or a defect in the form of transferring the adhesive material to the adherend may occur.
  • the surface treatment is to prevent the occurrence of the above-described defects, and may use a corona discharge treatment method or an ion assisted reaction method.
  • the surface-treated first base film 110 may have fine concave-convex formations, and due to the fine concave-convexity, the surface area and roughness of one surface of the first base film 110 may be increased.
  • a dipole is formed inside the surface-treated first base film 110, and one surface of the first base film 110 in contact with the first adhesive layer 120 may have a state charged by the dipole. have.
  • free-radicals having unpaired electrons may be attached to one surface of the surface-treated first base film 110. In this way, the surface area and roughness of one surface of the surface-treated first base film 110 increase, have a charged surface due to the dipole formed inside the first base film 110, and free electrons having unpaired electrons on the surface.
  • the radicals are attached, even if the first adhesive layer 120 is formed using a silicone material, the adhesive strength between the first base film 110 and the first adhesive layer 120 can be effectively improved. That is, it is possible to prevent the first adhesive layer 120 containing silicon from peeling off from the first base film 110 through the surface treatment.
  • the second base film 210 in the second tape 200 stably maintains a tensioned state without stretching between processes of the semiconductor package 400 and at the same time, a plurality of protruding electrodes 410
  • the stress balance may be maintained, and may be made of a material that does not undergo degeneration or deformation in a high temperature and high vacuum environment.
  • the shape may be modified to correspond to the topology of the bottom surface of the semiconductor package 400, and the modified shape to correspond to the topology of the bottom surface of the semiconductor package 400 between processes is independently maintained. I can.
  • the second base film 210 may contain 99 wt% or more of metal elements.
  • the second base film 210 may include 99 wt% or more of aluminum (Al).
  • the second base film 210 contains an additive of 1 wt% or less in order to control the properties of the second base film 210, such as tensile strength and elongation.
  • the additive may include any one or two or more selected from the group consisting of silicon (Si), iron (Fe), manganese (Mn), magnesium (Mg), zinc (Zn), and titanium (Ti).
  • the second base film 210 is 99.35 wt% or more aluminum, 0.15 wt% or less silicon, 0.42 wt% or less iron, 0.05 wt% or less copper, 0.05 wt% or less manganese, 0.05 wt% or less Of magnesium, 0.1 wt% or less of zinc, and 0.06 wt% or less of titanium.
  • 99.35 wt% or more of aluminum may refer to a weight ratio of 99.35 wt% or more and less than 100 wt%
  • 0.15 wt% or less of silicon may refer to a weight ratio of 0.15 wt% or less and more than 0 wt% .
  • the range of weight ratios of iron, copper, manganese, magnesium, zinc, and titanium can also be interpreted as in the above-described silicon.
  • the above-described second base film 210 containing more than 99 wt% of aluminum has a shape so as to stably maintain a tightly pulled state without stretching between the processes of the semiconductor package 400 and at the same time respond to the topology of the bottom surface of the semiconductor package 400. It may be deformed, and may have a tensile strength of at least 6 kgf/mm 2 or more and an elongation of at least 8% so as to independently maintain the deformed shape between processes. More specifically, the second base film 210 containing 99 wt% or more of aluminum may have a tensile strength in the range of 6 kgf/mm 2 to 12 kgf/mm 2 , and an elongation in the range of 8% to 16%. I can.
  • the tensile strength of the second base film 210 is determined by the Korean Industrial Standard KS B 0801 No. It may be measured based on 5, and the annual room rate may be measured based on Korean Industrial Standard KS B 0802.
  • the second base film 210 may include 99 wt% or more of copper (Cu).
  • the second base film 210 may include 99 wt% or more of copper, as well as an additive of 1 wt% or less to control properties of the second base film 210, such as tensile strength and elongation.
  • the additive may include any one or two or more selected from the group consisting of silicon (Si), iron (Fe), manganese (Mn), magnesium (Mg), zinc (Zn), and titanium (Ti). More specifically, the second base film 210 may include 99.9 wt% or more of aluminum and 0.1 wt% or less of zinc.
  • 99.9 wt% or more of aluminum may refer to a weight ratio of 99.9 wt% or more and less than 100 wt%
  • 0.1 wt% or less of zinc may refer to a weight ratio of 0.1 wt% or less and more than 0 wt%.
  • the second base film 210 containing 99 wt% or more of copper described above stably maintains a tightly pulled state without stretching between the processes of the semiconductor package 400 and has a shape corresponding to the bottom topology of the semiconductor package 400. It may be deformed, and may have a tensile strength of at least 10 kgf/mm 2 or more and an elongation of at least 4% so as to independently maintain the deformed shape between processes. More specifically, the second base film 210 containing 99 wt% or more of copper may have a tensile strength in the range of 10 kgf/mm 2 to 26 kgf/mm 2 , and an elongation in the range of 4% to 12%. I can.
  • the tensile strength of the second base film 210 is determined by the Korean Industrial Standard KS B 0801 No. It may be measured based on 5, and the annual room rate may be measured based on Korean Industrial Standard KS B 0802.
  • the second base film 210 may have a surface tension in the range of 56 Dyne/cm to 72 Dyne/cm, and may have a surface roughness in the range of 0.3 ⁇ m to 0.4 ⁇ m.
  • the surface tension is less than 56 Dyne/cm, the adhesion between the first adhesive layer 120 and the second adhesive layer 220 and the second base film 210 may be reduced, and the target of the second adhesive layer 220 It can be difficult to achieve the thickness.
  • 72 Dyne/cm it may be difficult to form the second adhesive layer 220 having a uniform thickness.
  • the adhesion between the first adhesive layer 120 and the second adhesive layer 220 and the second base film 210 may decrease, and when the surface roughness exceeds 0.4 ⁇ m, the second base film It is possible to reduce the tensile strength and elongation of (210).
  • the tensile strength, elongation and surface tension of the second base film 210 are determined by the composition of the material constituting the second base film 210, that is, 99 wt% or more of metal elements and 1 wt% or less of additive content (or weight ratio). Can be controlled by adjusting.
  • the second base film 210 may have a thickness in the range of 10 ⁇ m to 35 ⁇ m.
  • the thickness of the second base film 210 is less than 10 ⁇ m, it may be very difficult for the user to handle the adhesive tape 10, whereas, when the thickness of the second base film 210 exceeds 35 ⁇ m, In response to the topology of the bottom surface of the semiconductor package 400 on which the plurality of protruding electrodes 410 are formed, it may be difficult to deform a shape and maintain a stress balance.
  • the repulsive force between the semiconductor package 400 and the second adhesive layer 220 increases, so that the semiconductor package 400 It may act as a cause of lowering the adhesion and adhesion between the and the second adhesive layer 220.
  • the second base film ( 210) can be reduced in thickness. That is, an inverse relationship may be established between the thickness of the second base film 210 and the size of the protruding electrode 410.
  • the thickness of the second base film 210 may increase within a set thickness range. That is, a proportional relationship may be established between the thickness of the second base film 210 and the spacing between the adjacent protruding electrodes 410.
  • the second base film 210 can independently deform and maintain the deformed shape, the thickness is adjusted in response to the change in size and spacing of the protruding electrode 410 together with the second adhesive layer 220. Stress characteristics, adhesive characteristics, and retention characteristics of the adhesive tape 10 for the semiconductor package 400 manufacturing process may be more effectively improved.
  • the second base film 210 since the second base film 210 includes a plurality of metal elements, the shape can be changed in response to the topology of the bottom surface of the semiconductor package 400, and the shape modified by the second adhesive layer 220 is maintained between processes. At the same time, the second base film 210 may maintain its own deformed shape. Accordingly, it is possible to further improve the adhesive properties and retention properties of the adhesive tape 10. That is, the second base film 210 plays a role of preventing the second adhesive layer 220 from being pushed out of the protruding electrode 410 between processes, so that the second base film 210 has the adhesive strength of the second adhesive layer 220 Can be supplemented and improved.
  • the adhesive force of the second adhesive layer 220 is lower than the normally required adhesive force (e.g., 500 gf/25mm) to facilitate separation of the adhesive tape 10 from the semiconductor package 400 after the predetermined process is completed. Even if set, this can be supplemented through the second base film 210.
  • the shape of the base film is changed in response to the topology of the bottom surface of the semiconductor package 400, but this is due to the adhesive layer, and the shape of the polymer material is not independently modified.
  • the second base film 210 has a flat shape of a flat plate, or, as shown in Fig. 3b, a plurality of perforations passing through the second base film 210 ( 212) may have a planar shape in the form of a mesh.
  • the plurality of perforations 212 are regularly arranged on the second base film 210, and the size of each of the plurality of perforations 212 is the physical property of the second base film 210 required by the adhesive tape 10 For example, it may have a range of 1% to 3% of the size of the protruding electrode 410 so as not to deteriorate the tensile strength and elongation.
  • the planar shape of each of the plurality of perforations 212 may have any one shape selected from the group consisting of a triangular or more polygonal, elliptical, or circular shape.
  • the second base film 210 includes a plurality of perforations 212
  • the first adhesive layer 120 and the second adhesive layer 220 are formed on the second base film 210.
  • Direct contact may be made through a plurality of perforations 212.
  • the adhesive strength between the first tape 100 and the second tape 200 is improved, and at the same time, the semiconductor package 400 and the adhesive tape are in contact with the lower surface of the semiconductor package 400 and the protruding electrode 410. 10)
  • Even if a void occurs between processes it is possible to effectively prevent the void from excessively expanding between processes (especially during processes in a high vacuum environment). This is because continuity of a molecular structure, that is, a spiral network structure, between the first adhesive layer 120 and the second adhesive layer 220 can be provided through the plurality of perforations 212.
  • the base film contains a polymer material
  • separate surface treatment for the base film is performed because mixing, agitation and adhesion with dissimilar materials are not easy due to the unique chemical stability of the silicone material used as the adhesive layer.
  • the second base film 210 contains a plurality of metal elements, it has a high adhesion to the first adhesive layer 120 and the second adhesive layer 220 containing silicon, and does not require a separate surface treatment. . Through this, productivity can be improved and process cost can be reduced.
  • the first tape 100 prevents damage to the second tape 200 between processes, facilitates handling of the second tape 200 having a relatively thin thickness, and provides a cushion for the protruding electrode 410
  • the first adhesive layer 120 may have a thicker thickness than the second adhesive layer 220 because it performs a role of.
  • the adhesive force of the first adhesive layer 120 may be greater than that of the second adhesive layer 220.
  • the first adhesive layer 120 has a thickness in the range of 100 ⁇ m to 700 ⁇ m and an adhesive force of at least 500 gf/25mm or more, such as 500 gf/25mm to 2500 gf/25mm so that the protruding electrode 410 can be impregnated therein. It can have a range of adhesion.
  • the second adhesive layer 220 may have a thickness in the range of 10 ⁇ m to 50 ⁇ m and an adhesive force in the range of 200 gf/25mm to 300 gf/25mm.
  • the thickness of the first adhesive layer 120 is less than 100 ⁇ m, the ability of the adhesive tape 10 to impregnate the protruding electrode 410 to provide a cushion for the protruding electrode 410 between processes may decrease, and 700 ⁇ m If it exceeds, the adhesive ability, sealing ability, and retention property between the lower surface of the semiconductor package 400 and the adhesive tape 10 may be deteriorated. And, when the adhesive force of the first adhesive layer 120 is less than 500 gf/25mm, when the adhesive tape 10 is removed from the semiconductor package, the first tape 100 is peeled off from the second tape 200. Can occur.
  • the adhesive force of the first adhesive layer 120 exceeds 2500 gf/25mm, it may be difficult to implement the thickness of the first adhesive layer 120 required by the adhesive tape 10. This is because the adhesive strength of the adhesive layer containing silicon is discontinuously proportional to the thickness of the adhesive layer.
  • the adhesive force of the first adhesive layer 120 may mean an initial adhesive force on the bonding surface where the first adhesive layer 120 and the second base film 210 contact each other.
  • the first adhesive layer 120 has a thickness in the range of 100 ⁇ m to 700 ⁇ m, and as the size of the protruding electrode 410 increases, the thickness of the first adhesive layer 120 may be reduced within a set thickness range. This is because, as the size of the protruding electrode 410 increases, the surface area of the protruding electrode 410 increases, so that the second tape 200 is particularly applied during the pressing process to attach and adhere the semiconductor package 400 and the adhesive tape 10. This is because the possibility of damage to the second base film 210 made of a thin metal thin film is lowered.
  • the first adhesive layer 120 has a thickness in the range of 100 ⁇ m to 700 ⁇ m, and as the distance between the protruding electrodes 410 increases, the thickness of the first adhesive layer 120 may be increased within a set thickness range. This is because, as the distance between the protruding electrodes 410 increases, an external force, that is, a pressure applied when pressing to attach and close the semiconductor package 400 and the adhesive tape 10 must be increased. That is, as the external force applied during pressurization increases, the likelihood of damage to the second tape 200, particularly the second base film 210 made of a thin metal thin film, increases.
  • the second adhesive layer 220 may have a thickness in the range of 10 ⁇ m to 50 ⁇ m so that adhesion can be performed without gaps along the bottom topology of the semiconductor package 400 on which the protruding electrode 410 is formed.
  • the thickness of the second adhesive layer 220 is less than 10 ⁇ m, it may be difficult to secure the required adhesive force, and when it exceeds 50 ⁇ m, it is difficult to remove the adhesive tape 10 after the process is completed, or The second adhesive layer 220 may be pushed toward the side of the semiconductor package 400 by the pressing pressure, resulting in poor deposition of the EMI shielding layer.
  • the second adhesive layer 220 may have a thickness in the range of 10 ⁇ m to 50 ⁇ m, and through this, the stress balance in the second adhesive layer 220 can be maintained to improve adhesive properties and retention properties. It is possible to prevent a gap between the semiconductor package 400 and the adhesive tape 10 in a region where the lower surface of the package 400 and the protruding electrode 410 contact each other.
  • the second adhesive layer 220 has a thickness in the range of 10 ⁇ m to 50 ⁇ m, but as the size of the protruding electrode 410 increases, the thickness may increase within a set range, and the distance between the protruding electrodes 410 is As it increases, the thickness may decrease within a set range.
  • the second adhesive layer 220 may have an adhesive strength in the range of 200 gf/25mm to 300 gf/25mm in order to secure adhesive properties, retention properties, and separation properties.
  • the adhesive force of the second adhesive layer 220 is less than 200 gf/25mm
  • the second adhesive layer 220 is formed in a process environment for forming the EMI shielding layer, for example, in a high temperature and high vacuum environment.
  • a phenomenon of being pushed out of the plurality of protruding electrodes 410 formed on the lower surface of the package 400 may occur, or gas and particles may penetrate between the adhesive tape 10 and the adhesive surface of the semiconductor package 400 during processes.
  • the adhesive tape 10 is removed when the adhesive tape 10 is removed at room temperature and atmospheric pressure after completing the process of forming the EMI shielding layer. Is not easily removed, or an adhesive material may remain on the lower surface of the semiconductor package 400 and the surface of the protruding electrode 410.
  • each of the first adhesive layer 120 and the second adhesive layer 220 maintains chemical resistance, heat resistance, and cold resistance, and at the same time, there is no outgassing, soft and non-denatured for impregnation of the protruding electrode 410, and is detachable. It can be made of a silicone material so that the residue is not transferred. Specifically, each of the first adhesive layer 120 and the second adhesive layer 220 containing silicon may have a siloxane bond as a basic skeleton.
  • the first adhesive layer 120 and the second adhesive layer 220 have a siloxane bond as a basic skeleton, but adhere to the semiconductor package 400 in a region where the lower surface of the semiconductor package 400 and the protruding electrode 410 contact each other. Even if voids are generated between the tapes 10, the molecular structure may have a spiral network structure to prevent excessive expansion of the voids between processes (especially during processing in a high vacuum environment).
  • the first adhesive layer 120 and the second adhesive layer 220 which have a siloxane bond as a basic skeleton, are spiral networks having a wide spacing between molecules depending on the number and type of functional groups bonded to the side chain of the siloxane bond. Since the structure can be implemented, it is possible to prevent excessive expansion of the voids in a high vacuum environment through the space between molecules in addition to the spiral network structure.
  • siloxane bond silicon (Si) and oxygen (O) are interconnected, and since the bonding energy between silicon (Si) and oxygen (O) is large, excellent heat resistance and chemical resistance can be secured.
  • the siloxane bond has a low glass transition point because it has amorphous properties that make it difficult to form a crystal structure due to its molecular structure, so excellent cold resistance can be secured.
  • a pulling force acts between molecules to form a kind of bonding state. Since the attraction between these molecules is small, siloxane bonds can have a low glass transition point.
  • the first adhesive layer 120 and the second adhesive layer 220 which have a siloxane bond as a basic skeleton, are difficult to harden, and the viscosity change according to temperature is small, so that stable physical properties can be exhibited over a wide temperature range.
  • the first adhesive layer 120 and the second adhesive layer 220 are trimethylated silica (Trimethylated silica).
  • a dimethyl siloxane copolymer, and ethylbenzene may be mixed with an adhesive composition including an adhesive subject matter.
  • the dimethylsiloxane copolymer may also include a dimethylsiloxane block copolymer.
  • trimethylated silica may play a role of controlling adhesion according to the content
  • the dimethylsiloxane copolymer may play a role of providing a basic skeleton of a siloxane bond.
  • ethylbenzene may play a role of generating an intermediate product to facilitate bonding between trimethylated silica, dimethylsiloxane copolymer, and other additives.
  • the first adhesive layer 120 and the second adhesive layer 220 of the adhesive tape 10 may be a single layer composed of any one of the first to sixth adhesive compositions to be described later, or may have a multilayer structure in which two or more are stacked.
  • the first adhesive composition may include 0.5 to 1.5 parts by weight of a crosslinker, 0.5 to 1.5 parts by weight of an anchorage additive, and 0.5 to 1.5 parts by weight of a catalyst based on 100 parts by weight of the first adhesive agent. have.
  • the first adhesive layer 120 and the second adhesive layer 220 are formed to have a thickness ranging from 100 ⁇ m to 250 ⁇ m and a thickness ranging from 10 ⁇ m to 20 ⁇ m, the first adhesive composition may be used.
  • the first adhesive subject is Toluene, Xylene, Ethylbenzene, 1-Ethynylcyclohexanol; CAS No. 78-27-3, trimethylated Silica (Trimethylated silica), siloxane and silicone, di-methyl, vinyl group-terminated (Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No.
  • 1-ethynylcyclohexanol may play a role of controlling the curing rate, and toluene and xylene may be used as solvents.
  • siloxane and silicone di-methyl, vinyl group-terminated, dimethyl, methylvinylsiloxane, hydroxy, vinyl-terminated, dimethyl, methylvinylsiloxane, dimethylvinyl-terminated and siloxane and silicone, di-methyl,
  • the methylvinyl, hydroxy-terminated may be a dimethylsiloxane copolymer.
  • toluene is in the range of 20% to 25%
  • xylene is in the range of 10% to 20%
  • ethylbenzene is in the range of 2.5% to 10%
  • 1-ethynylcyclo Hexanol is in the range of 0.1% to 1%
  • trimethylated silica is in the range of 30% to 40%
  • siloxane and silicone di-methyl, vinyl group-terminated in the range of 10% to 20%, dimethyl , Methylvinylsiloxane, hydroxy, vinyl-terminated in a ratio ranging from 1% to 10%, dimethyl, methylvinylsiloxane, dimethylvinyl-terminated in a proportion ranging from 1% to 10%
  • siloxane and silicone di-methyl , Methylvinyl, and hydroxy-terminated may each account for a proportion ranging from 1% to 10%.
  • the crosslinking agent reacts with the adhesive subject to control the crosslinking and curing reaction, and may play a role of helping to more easily form a spiral network structure in the adhesive composition.
  • a crosslinking mixture in which heptane, siloxane, silicon, and methyl hydrogen (Siloxanes and Silicones, Me hydrogen; CAS No. 63148-57-2) are mixed in a predetermined ratio may be used.
  • heptane may occupy a proportion in the range of 0.25% to 1%
  • siloxane, silicon, and methyl hydrogen may occupy 99% to 99.75%.
  • the anchorage additive may serve to provide adhesion between the silicone and the substrate.
  • Anchorage additives include trimethoxy[3-(oxiranylmethoxy)propyl]silane (Silane, trimethoxy[3-(oxiranylmethoxy)propyl]-; CAS No. 2530-83-8), trimethoxy[(3- Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated reaction products with siloxanes and silicones, di-methyl, di-vinyl, and hydroxy-terminated reaction products combined with oxyranylmethoxy) propyl] silane trimethoxy[3-oxiranylmethoxy)propyl]silane; CAS No.
  • trimethoxy[3-(oxiranylmethoxy)propyl]silane is in the range of 30% to 40%
  • trimethoxy[(3-oxiranylmethoxy)propyl]silane and bound siloxanes and Silicones di-methyl, di-vinyl, hydroxy-terminated reaction products are in the range of 60% to 70%
  • methanol is in the range of 1% to 3%
  • divinylhexamethylcyclotetrasiloxane is in the range of 1%
  • the catalyst may reduce the activation energy of the reaction, thereby helping the reaction, curing, and crosslinking operation to proceed even under low temperature or mild conditions.
  • a platinum catalyst can be used.
  • platinum 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complexes (Platinium 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complexes; CAS No. 68478-92-2), siloxane and silicone, di-methyl, vinyl group-terminated (Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No.
  • platinum, 1,3-dietenyl-1,1,3,3-tetramethyldisiloxane complex is in the range of 1% to 10%, siloxane and silicon, di-methyl, vinyl group-terminated Is in the range of 90% to 99%, tetramethyldivinyldisiloxane is in the range of 1% to 10%, siloxane and silicone, di-methyl, hydroxy-terminated is in the range of 1% to 10%, respectively Can occupy.
  • the second adhesive composition may include 0.5 to 1.5 parts by weight of a crosslinking agent, 0.5 to 1.5 parts by weight of an anchorage additive, and 0.5 to 1.5 parts by weight of a catalyst based on 100 parts by weight of the second adhesive subject.
  • the crosslinking agent, the anchorage additive and the catalyst may be the same as those described above.
  • a second adhesive composition may be used.
  • the second adhesive subject is xylene, trimethylated silica, ethylbenzene, siloxane and silicone, di-methyl, vinyl group-terminated (Siloxanes and Silicones, di-Me).
  • vinyl group-terminated (CAS No. 68083-19-2) may contain a mixture in a predetermined ratio.
  • xylene may be used as a solvent
  • siloxane and silicone, di-methyl, and vinyl group-terminated may be a dimethylsiloxane copolymer.
  • xylene is in the range of 29% to 37%
  • trimethylated silica is in the range of 29% to 34%
  • ethylbenzene is in the range of 9% to 11%
  • siloxane and Silicon di-methyl
  • vinyl group-terminated may each account for a proportion ranging from 21% to 24%.
  • the third adhesive composition may include 0.5 to 1.5 parts by weight of a crosslinking agent, 0.5 to 1.5 parts by weight of an anchorage additive, and 0.8 to 1.8 parts by weight of a catalyst based on 100 parts by weight of the second adhesive agent.
  • the crosslinking agent, the anchorage additive and the catalyst may be the same as those described above.
  • a third adhesive composition may be used.
  • the fourth adhesive composition is 0.5 to 1.5 parts by weight of a crosslinking agent, 0.5 to 1.5 parts by weight of an anchorage additive, and 100 parts by weight of the third adhesive subject in which the first and second subjects are mixed in a ratio of 95:1 to 99:1. It may contain 0.5 to 1.5 parts by weight of a catalyst.
  • the crosslinking agent, the anchorage additive and the catalyst may be the same as those described above.
  • the first subject is xylene, trimethylated silica, ethylbenzene, siloxane and silicon, di-methyl, vinyl group-terminated (Siloxanes and Silicones).
  • di-Me vinyl group-terminated; CAS No. 68083-19-2) may include a mixture in a predetermined ratio.
  • xylene may be used as a solvent
  • siloxane and silicone, di-methyl, and vinyl group-terminated may be a dimethylsiloxane copolymer.
  • xylene is in the range of 29% to 37%
  • trimethylated silica is in the range of 29% to 34%
  • ethylbenzene is in the range of 9% to 11%
  • siloxane and silicone Di-methyl, vinyl group-terminated may account for a ratio in the range of 21% to 24%, respectively.
  • the second topic can play a role in controlling adhesion, and siloxanes and silicones, di-methyl, and vinyl group-terminated (Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2) and 1-Ethynylcyclohexanol (CAS No. 78-27-3) may be mixed in a predetermined ratio.
  • 1-ethynylcyclohexanol may play a role of controlling the curing rate
  • siloxane and silicone, di-methyl, and vinyl group-terminated may be a dimethylsiloxane copolymer.
  • siloxane and silicone, di-methyl, and vinyl group-terminated in the entire second subject may occupy a ratio in the range of 99% to 99.9%, and 1-ethynylcyclohexanol in the range of 0.1% to 1% It can occupy a percentage of.
  • the fifth adhesive composition may include 0.5 to 3 parts by weight of a polymerization initiator based on 100 parts by weight of the fourth adhesive subject in which the third and fourth subjects are mixed in a ratio of 50:50 to 80:20.
  • the fifth thickness may be in the range of 20 ⁇ m to 40 ⁇ m.
  • a fifth adhesive composition may be used.
  • the third subject is the hydroxy-terminated reaction product of xylene, ethylbenzene, toluene, siloxane and silicone, di-methyl, and chlorotrimethylsilane, and hydrochloric acid.
  • Isopropyl alcohol and sodium silicate Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate; CAS No. 68440-70-0
  • the hydroxy-terminated reaction product of siloxane and silicone, di-methyl, chlorotrimethylsilane, hydrochloric acid, isopropyl alcohol, and sodium silicate are reaction products in which trimethylated silica and dimethylsiloxane copolymer are bonded in a crosslinked form. I can.
  • xylene is in the range of 30% to 40%
  • ethylbenzene is in the range of 2.5% to 10%
  • toluene is in the range of 0.1% to 0.25%
  • siloxane and silicone di- Hydroxy-terminated reaction products of methyl and chlorotrimethylsilane, hydrochloric acid, isopropyl alcohol, and sodium silicate may each occupy a proportion in the range of 50% to 60%.
  • the fourth topic can play a role in controlling adhesion, and toluene, siloxane and silicone, di-methyl, and hydroxy-terminated (Siloxanes and Silicones, di-Me, hydroxy-terminated) ; CAS No. 70131-67-8), xylene, trimethylated silica, and ethylbenzene may be mixed in a predetermined ratio.
  • toluene and xylene may be used as a solvent
  • siloxane and silicone, di-methyl, and hydroxy-terminated may be a dimethylsiloxane copolymer.
  • toluene is in the range of 70% to 80%
  • siloxane and silicone di-methyl, hydroxy-terminated in the range of 10% to 20%
  • xylene is in the range of 1% to 10 % Range
  • trimethylated silica may occupy a ratio of 1% to 10%
  • ethylbenzene may occupy a ratio of 0.25% to 1%, respectively.
  • the polymerization initiator refers to a substance that causes a chain polymerization reaction, and benzoyl peroxide may be used.
  • the sixth adhesive composition may include 0.5 to 3 parts by weight of a polymerization initiator based on 100 parts by weight of the fifth adhesive subject in which the third and fifth subjects are mixed in a ratio of 50:50 to 80:20.
  • Benzoyl peroxide may be used as the polymerization initiator.
  • the sixth adhesive composition may be used.
  • the third topic is the hydroxy-terminated reaction product of xylene, ethylbenzene, toluene, siloxane and silicone, di-methyl, and chlorotrimethylsilane, hydrochloric acid.
  • Isopropyl alcohol and sodium silicate Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate
  • the hydroxy-terminated reaction product of siloxane and silicone, di-methyl, chlorotrimethylsilane, hydrochloric acid, isopropyl alcohol, and sodium silicate are reaction products in which trimethylated silica and dimethylsiloxane copolymer are bonded in a crosslinked form. I can.
  • xylene is in the range of 30% to 40%
  • ethylbenzene is in the range of 2.5% to 10%
  • toluene is in the range of 0.1% to 0.25%
  • siloxane and silicone di- Hydroxy-terminated reaction products of methyl and chlorotrimethylsilane, hydrochloric acid, isopropyl alcohol, and sodium silicate may each occupy a proportion in the range of 50% to 60%.
  • the fifth topic can play a role in controlling adhesion, and toluene, siloxane and silicone, di-methyl, methyl vinyl, vinyl group-terminated (Siloxanes and Silicones, di-Me, Me vinyl, vinyl groupterminated; CAS No.68083-18-1), xylene, trimethylated silica, ethylbenzene, siloxane and silicone, di-methyl, methylvinyl, hydroxy -Terminated (Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated; CAS No. 67923-19-7) and 1-Ethynylcyclohexanol; CAS No.
  • siloxane and silicone di-methyl, methylvinyl, vinyl group-terminated and siloxane and silicone, di-methyl, methylvinyl, and hydroxy-terminated may be a dimethylsiloxane copolymer.
  • toluene is in a proportion ranging from 47% to 63%, siloxane and silicone, di-methyl, methylvinyl, vinyl group-terminated in a proportion ranging from 21% to 31%, xylene in a proportion ranging from 2.3% to 3.1%
  • the ratio of, trimethylated silica is in the range of 10% to 14%
  • ethylbenzene is in the range of 0.44% to 0.6%
  • siloxane and silicone di-methyl, methylvinyl, hydroxy-terminated is 2.2% to 3 % Range
  • 1-ethynylcyclohexanol may occupy a proportion of 0.14% to 0.18%, respectively.
  • the adhesive tape 10 for the manufacturing process of the semiconductor package 400 according to the first embodiment includes the first base film 110, the first adhesive layer 120, the second base film 210, and the second base film. Since the adhesive layer 220 has a very simple structure in which the adhesive layer 220 is sequentially stacked, productivity and price competitiveness can be improved.
  • the first base film 110 includes a single layer selected from the group consisting of polyethylene terephthalate (PET), polyimide (PI), and polyolefin (PO), or a multilayer in which two or more are stacked, EMI shielding It is possible to easily secure the stress characteristics required in the adhesive tape 10 for manufacturing the semiconductor package 400 used in the layer forming process.
  • PET polyethylene terephthalate
  • PI polyimide
  • PO polyolefin
  • the first base film 110 including a polymer material is made of a polymer material
  • the first adhesive layer is subjected to surface treatment on one surface of the first base film 110 in contact with the first adhesive layer 120. Even if a silicone material is used as 120, the adhesion between them can be improved.
  • the second base film 210 is the semiconductor package 400
  • its shape is deformed to correspond to the topology, and it is used in the EMI shielding layer formation process because it contains metal elements to independently maintain the deformed shape between processes. It is possible to easily secure adhesive properties and retention properties required in the adhesive tape 10 for the manufacturing process of the semiconductor package 400 to be used.
  • the first base film 110 contains the same metal element as the second base film 210, the above-described adhesive properties and retention properties can be more easily secured.
  • the stress balance corresponds to the bottom topology of the semiconductor package 400 in which a plurality of protruding electrodes 410 are formed. Can be maintained effectively.
  • each of the first adhesive layer 120 and the second adhesive layer 220 contains an adhesive topic in which trimethylated silica, dimethylsiloxane copolymer, and ethylbenzene are mixed, physical properties are modified by heat generated during the process of forming the EMI shielding layer. There is no adhesive property, retention property, separation property, and stress property required in the adhesive tape 10 for the semiconductor package 400 manufacturing process can be easily secured.
  • each of the first adhesive layer 120 and the second adhesive layer 220 has a helical network structure with a siloxane bond as a basic skeleton, the semiconductor package in a region where the lower surface of the semiconductor package 400 and the protruding electrode 410 contact each other. Even if a void occurs between the 400) and the adhesive tape 10, it is possible to prevent the void from excessively expanding between processes (especially during a process in a high vacuum environment).
  • the second adhesive layer 220 has a very thin thickness in the range of 10 ⁇ m to 50 ⁇ m, it is easy to adhere and adhere according to the topology of the bottom surface of the semiconductor package 400 in which a plurality of protruding electrodes 410 are formed. It is possible to prevent a phenomenon in which the second adhesive layer 220 is pushed up toward the edge side of the semiconductor package 400.
  • each of the first adhesive layer 120 and the second adhesive layer 220 and the first base film 110 and the second base film optimized to correspond to the size and spacing of the protruding electrode 410 of the semiconductor package 400 (210) By providing each thickness, it is possible to more effectively secure the adhesive properties, retention properties, separation properties, and stress properties required in the adhesive tape 10 for the manufacturing process of the semiconductor package 400 used in the process of forming the EMI shielding layer. I can.
  • the size of the protruding electrode 410 is larger than the size of the protruding electrode 410 so that the plurality of protruding electrodes 410 are impregnated on the semiconductor wafer on which the plurality of protruding electrodes 410 are formed.
  • UV irradiation is performed to control the adhesion of the UV curing tape.
  • sawing is performed on the UV curing tape as well as the semiconductor wafer to separate each individual die, that is, the semiconductor package 400.
  • each individual semiconductor package 400 separated from the dicing tape is approximately 2 mm apart so that the UV curing tape contacts the adhesive surface of the heat-resistant tape.
  • pre-baking is performed to remove impurities remaining in the UV curing tape.
  • the impurity refers to a material outgassed from the UV curing tape in a process environment for subsequent EMI shielding layer deposition, that is, a high temperature and high vacuum environment, because the UV curing tape is composed of acrylic polymer as a basis.
  • Prebaking is a process for removing these impurities in advance. Subsequently, after the EMI shielding layer deposition process, that is, sputtering process, is performed while the semiconductor package 400 is attached to the heat-resistant tape, a plurality of protruding electrodes 410 are formed using a vacuum chuck or a lift pin provided in an automated facility. A series of processes of removing the UV curing tape and heat-resistant tape attached to the lower surface of the formed semiconductor package 400 are performed.
  • the opposite surface of the semiconductor wafer having a plurality of protruding electrodes 410 formed on one surface that is, .
  • sawing is performed only on the semiconductor wafer to separate each individual die, that is, the semiconductor package 400.
  • each individual semiconductor package separated from the dicing tape so that the protruding electrode 410 is in contact with the adhesive surface of the adhesive tape 10 ( 400) is attached at approximately 2mm intervals.
  • a plurality of protruding electrodes A series of process steps for removing the adhesive tape 10 attached to the lower surface of the semiconductor package 400 on which the 410 is formed is performed.
  • the process of forming the EMI shielding layer of the semiconductor package 400 using the adhesive tape 10 according to the first embodiment of the present invention does not require a conventional UV curing tape, thus reducing consumption of consumables.
  • the process step can be reduced.
  • FIG. 4 is a schematic cross-sectional view of an adhesive tape for a semiconductor package manufacturing process according to a second embodiment of the present invention.
  • the same reference numerals are used for the same configurations as those of the first embodiment, and detailed descriptions will be omitted.
  • the adhesive tape 20 for the semiconductor package 400 manufacturing process according to the second embodiment of the present invention includes a first base film 110, a first intermediate layer 130, and a first adhesive layer ( 120), the second base film 210, the second intermediate layer 230, the second adhesive layer 220, and the release film 300 may be sequentially stacked.
  • the first base film 110, the first adhesive layer 120, the second base film 210, the second adhesive layer 220 and the release film 300 are the same configuration as in the first embodiment, A detailed description will be omitted.
  • the base film to be described later may refer to both the first base film 110 and the second base film 210
  • the adhesive layer may refer to both the first adhesive layer 120 and the second adhesive layer 220. .
  • Each of the first intermediate layer 130 and the second intermediate layer 230 is an intermediate material inserted between the base film made of a different material and the adhesive layer, and may serve to improve adhesion between the base film and the adhesive layer. Accordingly, each of the first intermediate layer 130 and the second intermediate layer 230 may use an adhesive composition having excellent physical and chemical bonding strength with both a base film including a polymer material or a metal material, and an adhesive layer containing silicon.
  • the adhesive composition used for each of the first intermediate layer 130 and the second intermediate layer 230 may have a molecular structure similar to the first adhesive layer 120 and the second adhesive layer 220 and have a spiral network structure, It may contain silicone. More specifically, the adhesive composition used for each of the first intermediate layer 130 and the second intermediate layer 230 is toluene, siloxane and silicon, di-methyl, hydroxy-terminated (Siloxanes and Silicones, di-Me). , hydroxy-terminated; CAS No. 70131-67-8), xylene, trimethylated silica, and ethylbenzene may be mixed with a primer mixture.
  • toluene is in the range of 70% to 80%
  • siloxane and silicone di-methyl, hydroxy-terminated in the range of 10% to 20%
  • xylene is in the range of 1% to 2.5%.
  • the ratio, trimethylated silica may occupy a ratio in the range of 1% to 10%
  • ethylbenzene may occupy a ratio in the range of 0.25% to 1%, respectively.
  • Each of the first intermediate layer 130 and the second intermediate layer 230 may have a basis weight in the range of 0.2 g/m 2 to 0.5 g/m 2 on the base film.
  • the basis weight of each of the first intermediate layer 130 and the second intermediate layer 230 is less than 0.2 g/m 2 , it may not be able to provide sufficient adhesive strength to each of the base film and the adhesive layer, and when it exceeds 0.5 g/m 2
  • the adhesive tape 20 is removed, a defect in which the base film and the adhesive layer are separated based on the first intermediate layer 130 and the second intermediate layer 230 may occur.
  • the adhesive tape 20 according to the second embodiment of the present invention further includes the first intermediate layer 130 and the second intermediate layer 230, so that even if a silicone material is used as the adhesive layer, the base film and the adhesive layer are It can further improve the adhesion of.
  • FIG. 5 is a flow chart illustrating a manufacturing process of an adhesive tape for a semiconductor package manufacturing process according to an embodiment of the present invention
  • FIG. 6 is a first tape and a second tape in the adhesive tape for a semiconductor package manufacturing process according to an embodiment of the present invention. It is a flow chart for explaining the manufacturing process of the tape.
  • FIG. 1 For convenience of description, an example of a method of manufacturing the adhesive tape according to the first embodiment shown in FIG. 1 will be described. Therefore, the same reference numerals are used for the same configurations as those of the first embodiment, and detailed descriptions will be omitted.
  • a first base film 110, a first adhesive layer 120, and a first release film are sequentially stacked to produce a first tape 100.
  • the first base film 110 may include a polymer material or a metal material.
  • the first base film 110 may have a thickness in the range of 10 ⁇ m to 150 ⁇ m, and one surface in contact with the first adhesive layer 120 is surface-treated. I can.
  • the first base film 110 may have a thickness in the range of 10 ⁇ m to 35 ⁇ m.
  • PET polyethylene terephthalate
  • PI polyimide
  • PO polyolefin
  • Al aluminum
  • Cu copper
  • the first adhesive layer 120 may be made of a silicon material, and the molecular structure may have a spiral network structure.
  • the first adhesive layer 120 may have a thickness ranging from 80 ⁇ m to 120 ⁇ m and an adhesive strength ranging from 500 gf/25mm to 1500 gf/25mm.
  • the first adhesive layer 120 may include an adhesive subject in which trimethylated silica, a dimethyl siloxane copolymer, and ethylbenzene are mixed.
  • the first adhesive layer 120 may be a single layer composed of any one of the first to sixth adhesive compositions described above, or may have a multilayer structure in which two or more are stacked.
  • the first release film 300 may contain fluorine, and may have an adhesive strength in the range of 3 gf/25mm to 8 gf/25mm.
  • a second base film 210, a second adhesive layer 220, and a second release film 300 are sequentially stacked to prepare a second tape 200.
  • the second base film 210 may include a metal material and may have a thickness in the range of 10 ⁇ m to 35 ⁇ m.
  • a metal material a metal film containing 99 wt% or more of aluminum (Al) or copper (Cu) may be used.
  • the second adhesive layer 220 may be made of a silicon material, and a molecular structure may have a spiral network structure.
  • the second adhesive layer 220 may have a thickness in the range of 10 ⁇ m to 50 ⁇ m and an adhesive force in the range of 200 gf/25mm to 300 gf/25mm.
  • the second adhesive layer 220 may include an adhesive subject in which trimethylated silica, a dimethyl siloxane copolymer, and ethylbenzene are mixed.
  • the second adhesive layer 220 may be a single layer composed of any one of the first to sixth adhesive compositions described above, or may have a multilayer structure in which two or more are stacked.
  • the second release film 300 may contain fluorine, and may have an adhesive strength in the range of 3 gf/25mm to 8 gf/25mm.
  • first tape 100 and the second tape 200 may be manufactured through separate processes. A method of manufacturing the first tape 100 and the second tape 200 will be described later with reference to FIG. 6.
  • the first adhesive layer 120 and the second base film 210 are laminated so that they are in contact with each other.
  • the adhesive tape 10 is prepared.
  • a subsequent process for example, a process of forming an EMI shielding layer, may be performed using the adhesive tape 10 manufactured at the site where the semiconductor package 400 manufacturing process is performed.
  • the first tape 100 and the second tape 200 are manufactured through individual processes, and the first tape 100 and the first tape 100 and the second tape are manufactured at the site where the semiconductor package 400 manufacturing process is performed.
  • the adhesive tape 10 is Damage can be prevented at the source, and the yield can be improved as the process proceeds using the high-quality adhesive tape 10.
  • the first tape 100 and the second tape 200 will be described in detail with reference to FIG. 6.
  • the first tape 100 may be manufactured by the same method as the method of manufacturing the second tape 200 to be described later.
  • a second base film 210 is prepared.
  • the second base film 210 may contain 99 wt% or more of aluminum or copper.
  • the second base film 210 may have a thickness in the range of 10 ⁇ m to 35 ⁇ m.
  • an adhesive composition for forming the second adhesive layer 220 is prepared.
  • the adhesive composition may be formed by injecting and mixing predetermined substances in a mixing container at a predetermined ratio. For example, 0.5 to 1.5 parts by weight of a crosslinking agent, 0.5 to 1.5 parts by weight of an anchorage additive based on 100 parts by weight of an adhesive agent in which trimethylated silica, dimethyl siloxane copolymer, and ethylbenzene are mixed.
  • An adhesive composition may be prepared by mixing parts and 0.5 to 1.8 parts by weight of a catalyst.
  • the prepared adhesive composition is stabilized. Stabilization of the adhesive composition is to induce chemical stability and even polymerization reaction of the adhesive composition while removing air bubbles in the adhesive composition.
  • the adhesive composition prepared for 4 to 12 hours for stabilization of the adhesive composition may be rested in a thermal equilibrium state.
  • ultrasonic treatment or vacuum suction is performed to remove air bubbles in the adhesive composition, but since the adhesive composition according to the embodiment of the present invention contains a silicone component, in order to secure chemical stability and prevent rapid polymerization reaction It is preferable to proceed in thermal equilibrium.
  • the thermal equilibrium state may refer to a stabilized state in which no external stimulus or external force acts.
  • a second adhesive layer 220 is formed by applying a stabilized adhesive composition on the second base film 210 using a comma coater.
  • the comma coater may apply the adhesive composition to the second base film 210 to be thicker than the target thickness (ie, the final thickness) of the second adhesive layer 220.
  • the comma coater may apply the adhesive composition to a thickness of 2.5 to 3.5 times greater than the target thickness of the second adhesive layer 220.
  • the target thickness of the second adhesive layer 220 is 30 ⁇ m
  • the comma coater may apply the adhesive composition to have a thickness in the range of 75 ⁇ m to 105 ⁇ m.
  • the thickness of the second adhesive layer 220 may gradually decrease during a subsequent drying heat treatment and curing process to reach a target thickness.
  • the second adhesive layer 220 may be formed through a spin coating method or a spray method.
  • the first drying heat treatment is for removing the solvent in the adhesive composition and activating the polymerization reaction at the same time, and may be performed using an infrared lamp, and may be performed at a temperature in the range of 60°C to 80°C for 3 to 6 minutes.
  • a second dry heat treatment is performed on the second adhesive layer 220 following the first dry heat treatment.
  • the secondary drying heat treatment is for activating the polymerization reaction while removing the solvent in the adhesive composition, like the first drying heat treatment, and can be performed using an infrared lamp.
  • the second dry heat treatment may be performed at a higher temperature than the first dry heat treatment, and may be performed for the same time as the first dry heat treatment.
  • the secondary drying heat treatment may be performed for 3 minutes to 6 minutes at a temperature in the range of 160°C to 180°C.
  • a third dry heat treatment is performed on the second adhesive layer 220 following the second dry heat treatment.
  • the third dry heat treatment is also for activating the polymerization reaction while removing the solvent in the adhesive composition, like the first and second dry heat treatments, and can be performed using an infrared lamp.
  • the third dry heat treatment may be performed at a higher temperature than the second dry heat treatment, and may be performed for a longer time than the second dry heat treatment.
  • the third drying heat treatment may be performed at a temperature in the range of 190°C to 210°C for 9 to 18 minutes.
  • the second adhesive layer 220 is cured and stabilized at room temperature for 12 to 24 hours. That is, the polymerization reaction in the second adhesive layer 220 is stably finished through a pause that slowly cools the second base film 210 and the second adhesive layer 220 heated to room temperature during the first to third dry heat treatment process. At the same time, the second adhesive layer 220 may be cured to have a required hardness.
  • drying the second adhesive layer 220 while increasing the temperature step by step in the first to third drying heat treatment process is to prevent the second adhesive layer 220 from drying and curing from the surface. Air bubbles in the adhesive layer 220 can be easily removed.
  • the temperature is gradually reduced to room temperature, thereby implementing the second adhesive layer 220 having a more stable state and even thickness.
  • the second adhesive layer 220 may have a target thickness.
  • the release film 300 may contain fluorine to facilitate protection and separation of the second adhesive layer 220 containing silicon, and may have an adhesive strength in the range of 3 gf/25mm to 8 gf/25mm.
  • the second tape 200 may be completed through the above-described process process.
  • the first tape 100 may be manufactured in the same manner as the method for manufacturing the second tape 200.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Adhesive Tapes (AREA)

Abstract

본 기술은 복수의 돌출전극을 구비한 반도체 패키지 제조공정시 반도체 패키지의 하면 및 반도체 패키지 하면에 형성된 복수의 돌출전극을 보호할 수 있고, 소정의 제조공정을 완료한 후 잔류물없이 손쉽게 반도체 패키지로부터 분리할 수 있는 반도체 패키지 제조공정용 접착 테이프를 제공하기 위한 것으로, 복수의 돌출전극이 형성된 반도체 패키지의 하면에 부착되는 반도체 패키지 제조공정용 접착 테이프에 있어서, 제1기저필름의 상에 형성된 제1접착층; 상기 제1접착층 상에 형성되며, 상기 반도체 패키지 하면 부착시 상기 반도체 패키지의 하면 토폴로지에 대응하도록 형태가 변형되고, 공정간 변형된 형태를 독자적으로 유지하도록 금속원소가 함유된 제2기저필름; 및 상기 제2기저필름 상에 형성되고, 상기 제1접착층보다 얇은 두께를 가지며, 상기 제1접착층의 접착력보다 작은 접착력을 갖는 제2접착층을 포함하고, 상기 제1접착층 및 상기 제2접착층 각각은 분자구조가 나선형 망상구조를 갖고, 실리콘이 함유된 제1접착조성물을 포함하는 접착 테이프가 제공된다.

Description

반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법
본 발명은 반도체 패키지 제조공정을 위한 접착 테이프에 관한 것으로, 더욱 상세하게는 반도체 패키지의 EMI(Electro Magnetic Interference) 차폐층 형성공정시 반도체 패키지의 하면 및 반도체 패키지의 하면에 형성된 복수의 돌출전극을 보호할 수 있는 반도체 패키지 제조공정용 접착 테이프 및 그 제조방법에 관한 것이다.
반도체 패키지의 한 종류로서, BGA(Ball Grid Array)가 많이 사용되고 있다. BGA는 솔더볼(Solder Ball)에 의하여 반도체 패키지의 외부 단자접촉을 달성함으로써, 리드 프레임 타입 패키지에서 단면, 양면, 4면으로 신호전달하는 대신에 바닥면에 노출된 수많은 돌출전극 즉, 솔더볼로 대체하여 더 많은 신호 전달을 가능하게 하였다. 이러한 BGA 패키지는 차세대 고속메모리의 주력 패키지로 생산되고 있고, 이동전화나 디지털카메라 등 휴대형 정보통신기기에 한정돼 있던 CSP(Chip Scale Package) 사용 분야를 PC나 워크스테이션 등의 컴퓨터 영역으로까지 확장하고 있다.
한편, 모바일 분야에서 배터리 수명을 증가시키기 위하여 배터리의 크기를 키워야 하는 요구와 단말기의 크기를 줄여야 하는 두 가지의 요구를 동시에 달성하기 위하여 상대적으로 단말기에서 차지하는 PCB의 크기를 줄여야 하는 요구에 직면하게 되었고, PCB의 크기가 줄어들면 PCB에 포함된 반도체 소자 사이의 간격이 좁아지면서 반도체 소자 상호간 전자파 간섭에 의한 에러가 발생할 수밖에 없다. 이러한 소자간 전자파 간섭을 억제하기 위하여, 소자 차폐용 캡(CAP)을 씌우는 방법이나 EMI 스퍼터링 기술에 의하여 소자의 외면에 차폐용 금속코팅을 형성하는 기술이 개발 및 도입되었다.
이 중에서 스퍼터링에 의한 차폐용 금속 코팅 기술은 반도체 소자의 접속단자를 제외한 전체 외면에 전자파 차폐를 위한 금속 박막을 스퍼터링 공정을 통해 형성하는 것을 지칭한다. BGA 반도체 패키지의 경우, 전자파 차폐를 위한 스퍼터링 공정시 접속단자에 영향을 주지 않도록 하는 방법으로서, 반도체 패키지 크기의 구멍이 형성된 테이프에 반도체 패키지를 수납하여 패키지의 상부면만 노출시켜 스퍼터링을 적용하는 방법(등록특허 제10-1662068호 참조)이 제안된 바 있으나, 테이프에 구멍을 형성하는데 비용이 과다하게 발생할 뿐만 아니라, 구멍에 반도체 패키지를 정확하게 배치하지 못하였을 때에 스퍼터링에 의한 박막이 불량하게 증착되는 문제가 있다.
본 발명은 복수의 돌출전극을 구비한 반도체 패키지 제조공정시 반도체 패키지의 하면 및 반도체 패키지 하면에 형성된 복수의 돌출전극을 보호할 수 있는 반도체 패키지 제조공정용 접착 테이프 및 그 제조방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 소정의 제조공정을 완료한 후 잔류물없이 손쉽게 반도체 패키지로부터 분리할 수 있는 반도체 패키지 제조공정용 접착 테이프 및 그 제조방법을 제공하는데 다른 목적이 있다.
본 발명의 해결과제는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 본 발명의 목적들을 달성하기 위한 본 발명의 일 관점에 따르면, 복수의 돌출전극이 형성된 반도체 패키지의 하면에 부착되는 반도체 패키지 제조공정용 접착 테이프에 있어서, 제1기저필름의 상에 형성된 제1접착층; 상기 제1접착층 상에 형성되며, 상기 반도체 패키지 하면 부착시 상기 반도체 패키지의 하면 토폴로지에 대응하도록 형태가 변형되고, 공정간 변형된 형태를 독자적으로 유지하도록 금속원소가 함유된 제2기저필름; 및 상기 제2기저필름 상에 형성되고, 상기 제1접착층보다 얇은 두께를 가지며, 상기 제1접착층의 접착력보다 작은 접착력을 갖는 제2접착층을 포함하고, 상기 제1접착층 및 상기 제2접착층 각각은 분자구조가 나선형 망상구조를 갖고, 실리콘이 함유된 제1접착조성물을 포함하는 접착 테이프가 제공된다.
본 발명에 있어서, 상기 제2접착층 상에 부착되고, 불소가 함유된 이형필름을 더 포함할 수 있고, 상기 이형필름은 3 gf/25mm 내지 8 gf/25mm 범위의 접착력을 가질 수 있다.
본 발명에 있어서, 상기 제1기저필름과 상기 제1접착층 사이에 삽입된 제1중간층; 및 상기 제2기저필름과 상기 제2접착층 사이에 삽입된 제2중간층을 더 포함할 수 있고, 상기 제1중간층 및 상기 제2중간층 각각은 분자구조가 나선형 망상구조를 갖고, 실리콘이 함유된 제2접착조성물을 포함하며, 0.2 g/m2 내지 0.5 g/m2 범위의 평량을 가질 수 있다. 상기 제2접착조성물은 톨루엔(Toluene), 실록산과 실리콘, 디-메틸, 하이드록시-말단화(Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8), 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica) 및 에틸벤젠(Ethylbenzene)이 혼합된 것을 포함할 수 있다.
본 발명에 있어서, 상기 제1기저필름은 폴리에틸렌테레프탈레이트(PET), 폴리이미드(PI) 및 폴리올레핀(PO)으로 이루어진 그룹으로부터 선택된 어느 하나의 단일층 또는 둘 이상이 적층된 다층 구조를 갖고, 10㎛ 내지 150㎛ 범위의 두께를 가질 수 있다. 상기 제1기저필름은 상기 제1접착층과 접하는 표면이 코로나 방전 처리법 또는 이온 보조 반응법을 이용하여 표면처리된 것일 수 있다.
본 발명에 있어서, 상기 제1기저필름은 상기 반도체 패키지 하면 부착시 상기 반도체 패키지의 하면 토폴로지에 대응하도록 형태가 변형되고, 공정간 변형된 형태를 독자적으로 유지하도록 금속원소가 함유된 것을 포함할 수 있다. 상기 제1기저필름 및 상기 제2기저필름 각각은 적어도 99 wt% 이상의 알루미늄(Al)을 포함하고, 상기 알루미늄이 함유된 제1기저필름 및 제2기저필름 각각은 6 kgf/mm2 내지 12 kgf/mm2 범위의 인장강도 및 8% 내지 16% 범위의 연신율을 가지며, 10㎛ 내지 35㎛ 범위의 두께를 가질 수 있다. 또한, 상기 제1기저필름 및 상기 제2기저필름 각각은 적어도 99 wt% 이상의 구리(Cu)를 포함하고, 상기 구리가 함유된 제1기저필름 및 제2기저필름 각각은 10 kgf/mm2 내지 26 kgf/mm2 범위의 인장강도 및 4% 내지 12% 범위의 연신율을 가지며, 10㎛ 내지 35㎛ 범위의 두께를 가질 수 있다.
본 발명에 있어서, 상기 제2기저필름은 10㎛ 내지 35㎛ 범위의 두께를 갖되, 상기 돌출전극의 사이즈가 증가할수록 설정된 두께 범위내에서 상기 제2기저필름의 두께가 감소하고, 상기 돌출전극 사이의 간격이 증가할수록 설정된 두께 범위내에서 상기 제2기저필름의 두께가 증가할 수 있다.
본 발명에 있어서, 상기 제2기저필름에서 규칙적으로 배열되고, 상기 제2기저필름을 관통하는 복수의 타공을 포함하며, 상기 복수의 타공 각각은 삼각형 이상의 다각형, 타원형 또는 원형으로 이루어진 그룹으로부터 선택된 어느 하나의 평면형상을 갖고, 상기 복수의 타공을 통해 상기 제1접착층과 상기 제2접착층이 다이렉트 컨택될 수 있다.
본 발명에 있어서, 상기 제1접착층은 100㎛ 내지 700㎛ 범위의 두께 및 적어도 500 gf/25mm 이상의 접착력을 가질 수 있고, 상기 제2접착층은 10㎛ 내지 50㎛ 범위의 두께 및 200 gf/25mm 내지 300 gf/25mm 범위의 접착력을 가질 수 있다.
본 발명에 있어서, 상기 제1접착층은 100㎛ 내지 700㎛ 범위의 두께를 갖되, 상기 돌출전극의 사이즈가 증가할수록 설정된 두께 범위내에서 상기 제1접착층의 두께가 감소하고, 상기 돌출전극 사이의 간격이 증가할수록 설정된 두께 범위내에서 상기 제1접착층의 두께가 증가하며, 상기 제2접착층은 10㎛ 내지 50㎛ 범위의 두께를 갖되, 상기 돌출전극의 사이즈가 증가할수록 설정된 두께 범위내에서 상기 제2접착층의 두께가 증가하고, 상기 돌출전극 사이의 간격이 증가할수록 설정된 두께 범위내에서 상기 제2접착층의 두께가 감소할 수 있다.
본 발명에 있어서, 상기 제1접착조성물은 트리메틸레이티드 실리카(Trimethylated silica), 디메틸실록산 공중합체(Dimethyl Siloxane copolymer) 및 에틸벤젠(Ethylbenzene)이 혼합된 접착주제를 포함할 수 있다.
구체적으로, 상기 제1접착조성물은 상기 접착주제 100 중량부에 대해 가교제 0.5 내지 1.5 중량부, 앵커리지 첨가제 0.5 내지 1.5 중량부 및 촉매제 0.5 내지 1.8 중량부를 더 포함할 수 있고, 상기 접착주제는 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica), 에틸벤젠(Ethylbenzene) 및 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2)가 혼합된 혼합물을 포함할 수 있다.
또한, 상기 제1접착조성물은 제1주제와 제2주제가 95:5 내지 99:1 비율로 혼합된 상기 접착주제 100 중량부에 대해 가교제 0.5 내지 1.5 중량부, 앵커리지 첨가제 0.5 내지 1.5 중량부 및 촉매제 0.5 내지 1.5 중량부를 더 포함할 수 있고, 상기 제1주제는 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica), 에틸벤젠(Ethylbenzene) 및 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2)가 혼합된 혼합물을 포함할 수 있으며, 상기 제2주제는 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2)와 1-에티닐사이클로헥산올(1-Ethynylcyclohexanol; CAS No. 78-27-3)이 혼합된 혼합물을 포함할 수 있다.
상기 가교제는 헵탄(Heptane) 및 실록산과 실리콘, 메틸수소(Siloxanes and Silicones, Me hydrogen; CAS No. 63148-57-2)가 혼합된 혼합물을 포함할 수 있고, 상기 앵커리지 첨가제는 트라이메톡시[3-(옥시라닐메톡시)프로필]실란(Silane, trimethoxy[3-(oxiranylmethoxy)propyl]-; CAS No. 2530-83-8), 트라이메톡시[(3-옥시란일메톡시)프로필]실레인과 결합한 실록산류와 실리콘류, 디-메틸, 디-비닐, 하이드록시-말단화 반응 생성물(Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated reaction products with trimethoxy[3-oxiranylmethoxy)propyl]silane; CAS No. 102782-94-5), 메탄올(Methanol) 및 디비닐헥사메틸시클로테트라실록산(Divinyl hexamethyl cyclotetrasiloxane; CAS No. 17980-61-9)이 혼합된 혼합물을 포함할 수 있으며, 상기 촉매제는 백금, 1,3-다이에텐일-1,1,3,3-테트라메틸다이실록산 착물(Platinium 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complexes; CAS No. 68478-92-2), 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2), 테트라메틸디비닐디실록산(Tetramethyldivinyldisiloxane; CAS No. 2627-95-4) 및 실록산과 실리콘, 디-메틸, 하이드록시-말단화(Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8)가 혼합된 혼합물을 포함할 수 있다.
또한, 상기 제1접착조성물은 제3주제와 제4주제가 50:50 내지 80:20 비율로 혼합된 상기 접착주제 100 중량부에 대해 중합개시제 0.5 내지 3 중량부를 더 포함할 수 있고, 상기 제3주제는 자일렌(Xylene), 에틸벤젠(Ethylbenzene), 톨루엔(Toluene) 및 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트(Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate; CAS No. 68440-70-0)가 혼합된 혼합물을 포함할 수 있으며, 상기 제4주제는 톨루엔(Toluene), 실록산과 실리콘, 디-메틸, 하이드록시-말단화(Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8), 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica) 및 에틸벤젠(Ethylbenzene)이 혼합된 혼합물을 포함할 수 있고, 상기 중합개시제는 과산화벤조일(Benzoyl Peroxide)을 포함할 수 있다.
또한, 상기 제1접착조성물은 제3주제와 제5주제가 50:50 내지 80:20 비율로 혼합된 상기 접착주제 100 중량부에 대해 중합개시제 0.5 내지 3 중량부를 더 포함할 수 있고, 상기 제3주제는 자일렌(Xylene), 에틸벤젠(Ethylbenzene), 톨루엔(Toluene) 및 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트(Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate; CAS No. 68440-70-0)가 혼합된 혼합물을 포함할 수 있으며, 상기 제5주제는 톨루엔(Toluene), 실록산과 실리콘, 디-메틸, 메틸비닐, 비닐기-말단화(Siloxanes and Silicones, di-Me, Me vinyl, vinyl groupterminated; CAS No. 68083-18-1), 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica), 에틸벤젠(Ethylbenzene), 실록산과 실리콘, 디-메틸, 메틸비닐, 하이드록시-말단화(Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated; CAS No. 67923-19-7) 및 1-에티닐사이클로헥산올(1-Ethynylcyclohexanol; CAS No. 78-27-3)이 혼합된 혼합물을 포함할 수 있고, 상기 중합개시제는 과산화벤조일(Benzoyl Peroxide)을 포함할 수 있다.
상기 본 발명의 목적들을 달성하기 위한 본 발명의 다른 일 관점에 따르면, 고분자 소재 또는 금속 소재를 포함하는 제1기저필름, 분자구조가 나선형 망상구조를 갖고 실리콘이 함유된 제1접착층 및 불소가 함유된 제1이형필름이 순차적으로 적층된 제1테이프를 제조하는 단계; 금속 소재를 포함하는 제2기저필름, 분자구조가 나선형 망상구조를 갖고 실리콘이 함유된 제2접착층 및 불소가 함유된 제2이형필름이 순차적으로 적층된 제2테이프를 제조하는 단계; 상기 제1테이프에서 상기 제1이형필름을 제거하는 단계; 및 상기 제1접착층과 상기 제2기저필름이 접하도록 상기 제1테이프와 상기 제2테이프를 합지하는 단계를 포함하는 접착 테이프 제조방법이 제공된다.
본 발명에 따른 반도체 패키지 제조공정용 접착 테이프 및 그 제조방법은 다음과 같은 효과를 제공한다.
먼저, 본 발명에 따른 반도체 패키지 제조공정용 접착 테이프는 제1기저필름, 제1접착층, 제2기저필름 및 제2접착층이 순차적으로 적층된 매우 단순한 구조를 갖기 때문에 생산성 및 가격경쟁력을 향상시킬 수 있는 효과가 있다.
또한, 제1기저필름이 폴리에틸렌테레프탈레이트(PET), 폴리이미드(PI) 및 폴리올레핀(PO)으로 이루어진 그룹으로부터 선택된 어느 하나의 단일층 또는 둘 이상이 적층된 다층을 포함하기 때문에 EMI 차폐층 형성공정시 사용되는 반도체 패키지 제조공정용 접착 테이프에서 요구되는 응력특성을 용이하게 확보할 수 있는 효과가 있다.
또한, 제1기저필름이 고분자 소재로 구성되는 경우, 제1접착층과 접하는 제1기저필름의 일면에 대해 표면처리를 진행함에 따라 제1접착층으로 실리콘 소재를 사용하더라도 이들 사이의 접착력을 향상시킬 수 있는 효과가 있다.
또한, 제1기저필름은 10㎛ 내지 150㎛ 범위의 두께를 갖기 때문에 복수의 돌출전극이 형성된 반도체 패키지의 하면 토폴로지에 대응하여 응력 균형을 효과적으로 유지함과 동시에 접착 테이프의 핸들링을 용이하다는 효과가 있다.
또한, 제2기저필름이 반도체 패키지 하면 토폴로지에 대응하도록 형태가 변형되고, 공정간 변형된 형태를 독자적으로 유지할 수 있도록 금속원소를 함유하고 있기 때문에 EMI 차폐층 형성공정시 사용되는 반도체 패키지 제조공정용 접착 테이프에서 요구되는 접착특성 및 유지특성을 용이하게 확보할 수 있는 효과가 있다. 아울러, 제1기저필름이 제2기저필름과 동일하게 금속원소를 함유하는 경우에는 상술한 접착특성 및 유지특성을 보다 용이하게 확보할 수 있는 효과가 있다.
또한, 금속원소가 함유된 제2기저필름은 10㎛ 내지 35㎛ 범위의 매우 얇은 두께를 갖기 때문에 복수의 돌출전극이 형성된 반도체 패키지의 하면 토폴로지에 대응하여 응력 균형을 효과적으로 유지할 수 있는 효과가 있다.
또한, 제2기저필름에 형성된 복수의 타공을 통해 제1접착층과 제2접착층 사이의 분자구조 연속성을 구현함으로써, 반도체 패키지의 하면과 돌출전극이 접하는 영역에서 반도체 패키지와 접착 테이프 사이에 공극이 발생하더라도, 제조공정간(특히, 고진공 환경의 공정시) 공극이 과도하게 팽창하는 것을 방지할 수 있는 효과가 있다.
또한, 제1접착층 및 제2접착층 각각이 트리메틸레이티드 실리카, 디메틸실록산 공중합체 및 에틸벤젠이 혼합된 접착주제를 포함함으로써, EMI 차폐층 형성공정시 발생되는 열에 의한 물성 변형이 없고 반도체 패키지 제조공정용 접착 테이프에서 요구되는 접착특성, 유지특성, 분리특성 및 응력특성을 용이하게 확보할 수 있는 효과가 있다.
또한, 제1접착층 및 제2접착층 각각이 실록산 결합을 기본 골격으로 나선형 망상구조를 가짐으로써, 반도체 패키지의 하면과 돌출전극이 접하는 영역에서 반도체 패키지와 접착 테이프 사이에 공극이 발생하더라도, 제조공정간(특히, 고진공 환경의 공정시) 공극이 과도하게 팽창하는 것을 방지할 수 있는 효과가 있다.
또한, 제2접착층이 10㎛ 내지 50㎛ 범위의 매우 얇을 두께를 갖기 때문에 복수의 돌출전극이 형성된 반도체 패키지의 하면 토폴로지를 따라 접착 및 밀착이 용이하고, 부착시 반도체 패키지의 가장자리 측면으로 제2접착층이 밀려올라가는 현상을 방지할 수 있는 효과가 있다.
또한, 반도체 패키지의 돌출전극 사이즈 및 간격에 대응하여 최적화된 제1접착층 및 제2접착층 각각의 두께 및 제1기저필름 및 제2기저필름 각각의 두께를 제공함에 따라 EMI 차폐층 형성공정시 사용되는 반도체 패키지 제조공정용 접착 테이프에서 요구되는 접착특성, 유지특성, 분리특성 및 응력특성을 보다 효과적으로 확보할 수 있는 효과가 있다.
또한, 종래의 반도체 패지지의 EMI 차폐층 형성공정 대비 공정스탭 및 소모품의 소비를 감소시킬 수 있기 때문에 반도체 패키지의 생산성을 향상시킬 수 있는 효과가 있다.
또한, 제1테이프 및 제2테이프를 각각 개별적으로 제조한 후, 반도체 패키지 제조공정이 진행되는 현장에서 제1테이프와 제2테이프를 합지하여 접착 테이프를 제조함에 따라 운송 및 보관이 용이하고, 접착 테이프의 품질을 향상시킬 수 있으며, 반도체 패키지 제조공정의 수율을 향상시키 수 있는 효과가 있다.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 제1실시예에 따른 반도체 패키지 제조공정용 접착 테이프의 단면을 간략히 도시한 도면이다.
도 2는 본 발명의 제1실시예에 따른 반도체 패키지 제조공정용 접착 테이프가 반도체 패키지의 하면에 접착된 단면 형상을 도시한 도면이다.
도 3a 및 도 3b는 본 발명의 제1실시예 및 제2실시예에 따른 반도체 패키지 제조공정용 접착 테이프에서 적용 가능한 제2기저필름의 평면형상을 도시한 도면이다.
도 4는 본 발명의 제2실시예에 따른 반도체 패키지 제조공정용 접착 테이프의 단면을 간략히 도시한 도면이다.
도 5는 본 발명의 실시예에 따른 반도체 패키지 제조공정용 접착 테이프 제조공정을 설명하기 위한 순서도이다.
도 6은 본 발명의 실시예에 따른 반도체 패키지 제조공정용 접착 테이프에서 제1테이프 및 제2테이프의 제조공정을 설명하기 위한 순서도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
이하, 첨부한 도면들을 참조하여 본 발명에 따른 실시예들을 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어 도면 부호에 상관없이 동일하거나 대응하는 구성 요소는 동일한 참조번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 그리고, 본 명세서에서 CAS No.에 따른 물질의 명칭은 화학물질종합정보시스템(URL : https://icis.me.go.kr/)에서 제공하는 명칭을 사용하기로 한다.
후술하는 본 발명의 실시예는 반도체 패키지 제조공정용 접착 테이프를 제공하기 위한 것으로, 더욱 상세하게는 BGA(Ball Grid Array), LGA(Land Grid Array)와 같이 복수의 돌출전극을 구비하는 반도체 패키지의 EMI(Electro Magnetic Interference) 차폐층 형성공정시 반도체 패키지의 하면 및 반도체 패키지 하면에 형성된 복수의 돌출전극을 보호할 수 있는 반도체 패키지 제조공정용 접착 테이프 및 그 제조방법을 제공하기 위한 것이다.
본 발명의 실시예에 따른 반도체 패키지 제조공정용 접착 테이프를 설명하기에 앞서, 통상적으로 EMI 차폐층 형성공정시 사용되는 반도체 패키지 제조공정용 접착 테이프는 접착특성(adhesion characteristic), 유지특성(retention characteristic), 분리특성(remove characteristic) 및 응력특성(stress characteristic)을 확보할 필요성이 있다.
먼저, 접착특성 측면에서 살펴보면 접착 테이프의 기저필름 및 접착층은 반도체 패키지의 하면과 돌출전극이 접하는 영역에서 공극(air gap)이 발생하지 않도록 돌출전극의 사이즈(예컨대, 직경 또는 높이)에 관계없이 돌출전극 및 돌출전극을 포함하는 반도체 패키지의 하면 토폴로지(topology)에 대응하여 접착 및 밀착이 가능하여야 한다. 아울러, EMI 차폐층을 형성하기 위한 공정환경 예컨대, 고온 및 고진공 환경에서 돌출전극을 밀어내지 않고 잘 붙어 있어야 한다. 즉, EMI 차폐층을 형성하기 위한 공정환경에서도 접착능력 및 밀착능력을 지속적으로 유지할 있어야 한다.
다음으로, 유지특성 측면에서 살펴보면, EMI 차폐층을 형성하기 위한 공정조건하에서 자체 변성이나, 변형, 변색 및 아웃개싱(outgassing) 없이 원형 형태를 유지함과 동시에 공정간 가스 및 파티클이 접착 테이프와 반도체 패키지 접착면 사이로 침투하는 것을 방지할 수 있도록 접착능력 및 밀폐능력을 유지할 수 있어야 한다. 아울러, 반도체 패키지의 하면과 돌출전극이 접하는 영역에서 공극이 발생할 경우 공정간(특히, 고진공 환경의 공정시) 공극이 과도하게 팽창하는 것을 방지할 수 있어야 한다.
다음으로, 분리특성 측면에서 살펴보면, EMI 차폐층을 형성공정을 완료한 후 상온 및 대기압 상태에서 반도체 패키지로부터 접착 테이프를 분리했을 때, 적은 힘으로도 쉽게 분리됨과 동시에 반도체 패키지의 하면 및 돌출전극의 표면에 접착물질이 잔류하지 않아야 한다. 특히, 접착 테이프에서 반도체 패키지(또는 칩)을 자동으로 분리하는 자동화 설비를 통해 용이하게 분리가 가능한 접착력을 구비하여야 하고, 자동화 설비에서 사용되는 진공척(vacuum chuck) 또는 리프트핀(lift pin)에 의하여 구멍이 생기거나, 찢어지지 않아야 한다. 통상적으로, 접착 테이프에서 반도체 패키지(또는 반도체 칩)을 자동으로 분리하는 자동화 설비의 최대 인내 장력은 500 gf/25mm 내외이기 때문에 접착 테이프는 이보다 낮은 접착력을 갖는 것이 분리특성 측면에서 바람직하다 할 것이다.
그리고, 응력특성 측면에서 살펴보면, EMI 차폐층 형성공정시 접착 테이프 상에 복수의 반도체 패키지 즉, 복수의 반도체 칩이 안착 및 접착되기 때문에 인접한 반도체 칩 사이의 간격을 일정하게 유지한 상태에서 EMI 차폐층 형성공정을 진행할 수 있도록 적정 수준의 인장응력 및 압축응력을 확보하여야 한다. 즉, 접착 테이프는 팽팽히 펴진 상태를 안정적으로 유지함과 동시에 돌출전극을 포함하는 반도체 패키지의 하면 토폴로지에 대응하여 응력 균형(stress balance)을 유지할 수 있어야 한다.
따라서, 후술하는 본 발명의 실시예는 반도체 패키지 제조공정 특히, EMI 차폐층 형성공정시 요구되는 접착특성, 유지특성, 분리특성 및 응력특성을 충족시킬 수 있는 반도체 패키지 제조공정용 접착 테이프를 제공한다. 이를 위해, 본 발명의 실시예에 따른 반도체 패키지용 접착 테이프는 생산성 및 가격경쟁력을 확보하기 위해 기저필름과 접착층이 적층된 단순한 구조를 가질 수 있다. 접착층은 내화학성, 내열성 및 내한성을 유지함과 동시에 아웃개싱이 없고, 복수의 돌출전극이 형성된 반도체 패키지 하면의 토폴로지를 따라 접착 및 밀착이 가능한 두께를 가지며, 돌출전극의 함침을 위해 부드럽고 변성이 없으며, 탈착시 잔류물이 전사되지 않도록 실리콘 소재로 구성될 수 있다. 그리고, 기저필름은 반도체 패키지 제조공정간 늘어남없이 팽팽하게 당겨진 상태를 안정적으로 유지함과 동시에 피착면의 토폴로지에 대응하여 형태가 변형될 수 있고, 공정간 변형된 형태를 스스로 유지할 수 있으며, 고온 및 고진공 환경에서 변성 및 변형이 발생하지 않도록 금속 소재로 구성될 수 있다.
이하, 도면을 참조하여 본 발명의 실시예들에 따른 반도체 패키지용 접착 테이프에 대해 상세히 설명하기로 한다.
도 1은 본 발명의 제1실시예에 따른 반도체 패키지 제조공정용 접착 테이프의 단면을 간략히 도시한 도면이고, 도 2는 본 발명의 제1실시예에 따른 반도체 패키지 제조공정용 접착 테이프가 반도체 패키지의 하면에 접착된 단면 형상을 도시한 도면이다. 그리고, 도 3a 및 도 3b는 본 발명의 제1실시예 및 제2실시예에 따른 반도체 패키지 제조공정용 접착 테이프에서 적용 가능한 제2기저필름의 평면형상을 도시한 도면이다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 제1실시예에 따른 반도체 패키지(400) 제조공정용 접착 테이프(10)는 제1테이프(100)와 제2테이프(200)가 적층된 형태를 가질 수 있다. 제1테이프(100) 및 제2테이프(200)는 운송 및 보관이 용이하도록 각각 별도로 제작될 수 있고, 반도체 패키지(400) 제조공정시 현장에서 제1테이프(100)와 제2테이프(200)를 합지하여 접착 테이프(10)를 제조 및 사용할 수 있다. 제2테이프(200)는 복수의 돌출전극(410)이 형성된 반도체 패키지(400)의 하면에 접할 수 있고, 반도체 패키지(400)의 하면에 형성된 복수의 돌출전극(410)은 제2테이프(200)에 의해 감싸진 형태를 가짐과 동시에 제1테이프(100)에 함침된 형태를 가질 수 있다. 참고로, 도면에 도시하지는 않았지만, EMI 차폐층은 반도체 패키지(400)의 하면을 제외한 전면 즉, 반도체 패키지(400)의 상면 및 측면 상에 형성될 수 있다.
제1실시예에 따른 접착 테이프(10)에서 제1테이프(100)는 제2테이프(200)가 공정간 손상되는 것을 방지하는 역할을 수행할 수 있다. 아울러, 제1테이프(100)는 공정간 제2테이프(200)가 일부 손상되더라도 공정 페일이 발생하는 것을 방지하는 역할도 수행할 수 있다. 참고로, 복수의 돌출전극(410)이 형성된 반도체 패키지(400) 하면에 접착 테이프(10)를 부착 및 밀착시키기 위해 반도체 패키지(400)를 접착 테이프(10)로 가압하는 과정에서 돌출전극(410) 또는/및 반도체 패키지(400)의 모서리에 의해 접착 테이프(10)가 찢어지는 현상이 발생할 수 있다. 그러나, 제1실시예에 따른 접착 테이프(10)는 제1테이프(100)와 제2테이프(200)가 적층된 형태를 갖기 때문에 가압과정에서 접착 테이프(10)가 손상되는 것을 방지할 수 있다. 아울러, 가압과정에서 제1테이프(100) 대비 상대적으로 얇은 두께를 갖는 제2테이프(200)가 찢어지더라도 제1테이프(100)가 이를 보완하여 공정 페일이 발생하는 것을 방지할 수 있다.
구체적으로, 제1실시예에 따른 접착 테이프(10)에서 제1테이프(100)는 고분자 소재 또는 금속 소재를 포함하는 제1기저필름(110)과 실리콘이 함유된 제1접착층(120)이 순차적으로 적층된 형태를 가질 수 있고, 제2테이프(200)는 금속 소재를 포함하는 제2기저필름(210)과 실리콘이 함유된 제2접착층(220)이 순차적으로 적층된 형태를 가질 수 있다. 여기서, 제2기저필름(210)의 일면 및 타면은 각각 제1접착층(120) 및 제2접착층(220)에 접하여 이들 사이에 삽입된 형태를 가질 수 있다.
제1실시예에서 제1기저필름(110)은 제2기저필름(210)과 상이한 물질을 포함하거나, 또는 동일한 물질을 포함할 수 있디. 전자의 경우, 제1기저필름(110)은 고분자 소재를 포함할 수 있고, 제2기저필름(210)은 금속 소재를 포함할 수 있다. 후자의 경우, 제1기저필름(110) 및 제2기저필름(210) 금속 소재를 포함할 수 있다.
먼저, 제1기저필름(110)이 제2기저필름(210)과 상이한 물질을 포함하는 경우, 제1기저필름(110)은 고분자 소재를 포함할 수 있다. 구체적으로, 제1기저필름(110)은 반도체 패키지(400) 공정간 늘어남없이 팽팽하게 당겨진 상태를 안정적으로 유지함과 동시에 복수의 돌출전극(410)이 형성된 반도체 패키지(400) 하면의 토폴로지에 대응하여 응력 균형을 유지할 수 있으며, 고온 및 고진공 환경에서 변성 및 변형이 발생하지 않은 고분자 소재를 포함할 수 있다. 따라서, 제1기저필름(110)은 폴리에틸렌테레프탈레이트(polyethylentherephthalate, PET), 폴리이미드(polyimide, PI) 및 폴리올레핀(polyolefine, PO)으로 이루어진 그룹으로부터 선택된 어느 하나의 단일층 또는 둘 이상이 적층된 다층 구조를 가질 수 있다.
고분자 소재를 포함하는 제1기저필름(110)은 10㎛ 내지 150㎛ 범위의 두께를 가질 수 있다. 여기서, 제1기저필름(110)의 두께가 10㎛ 미만일 경우에는 사용자가 접착 테이프(10)를 핸들링하기 매우 어려울 수 있고, 제1기저필름(110)의 두께가 150㎛를 초과하는 경우에는 복수의 돌출전극(410)이 형성된 반도체 패키지(400) 하면의 토폴로지에 대응하여 응력 균형을 유지하기 어려울 수 있다. 참고로, 응력 균형을 유지하지 못하는 경우 반도체 패키지(400)와 접착 테이프(10) 사이의 반발력이 증가하기 때문에 반도체 패키지(400)와 접착 테이프(10) 사이의 접착능력 및 밀착능력을 저하시키는 원인으로 작용할 수 있다.
고분자 소재를 포함하는 제1기저필름(110)에서 제1접착층(120)과 접하는 제1기저필름(110)의 일면은 이들 사이의 접착력을 향상시키기 위해 표면처리된 것일 수 있다. 제1접착층(120)으로 사용된 실리콘 소재는 특유의 화학적 안정성으로 인해 이종 물질과의 혼합, 교반 및 접착이 용이하지 않기 때문에 표면처리되지 않은 제1기저필름(110)의 표면과 접착력이 낮아 들뜸 현상이 발생하거나, 접착물질이 피착면으로 전사되는 형태의 불량이 발생할 수 있다. 표면처리는 상술한 불량 발생을 원천적으로 방지하기 위한 것으로, 코로나 방전 처리법(Corona Discharge Treatment) 또는 이온 보조 반응법(Ion Assisted Reation)을 사용할 수 있다. 표면처리된 제1기저필름(110)의 일면에는 미세요철이 형성될 수 있으며, 미세요철에 기인하여 제1기저필름(110) 일면의 표면적 및 러프니스(roughness)를 증가시킬 수 있다. 또한, 표면처리된 제1기저필름(110)의 내부에는 다이폴(dipole)이 형성되고, 제1접착층(120)과 접하는 제1기저필름(110)의 일면은 다이폴에 의해 대전된 상태를 가질 수 있다. 또한, 표면처리된 제1기저필름(110)의 일면에는 홀전자(unpaired electron)를 갖는 프리-라디컬(free-radical)이 부착될 수 있다. 이처럼, 표면처리된 제1기저필름(110)의 일면은 표면적 및 러프니스가 증가하고, 제1기저필름(110) 내부에 형성된 다이폴에 기인하여 대전된 표면을 가지며, 표면에 홀전자를 갖는 프리-라디컬이 부착됨에 따라 실리콘 소재를 사용하여 제1접착층(120)을 형성하더라도 제1기저필름(110)과 제1접착층(120) 사이의 접착력을 효과적으로 향상시킬 수 있다. 즉, 표면처리를 통해 제1기저필름(110)으로부터 실리콘이 함유된 제1접착층(120)이 박리되는 것을 방지할 수 있다.
다음으로, 제1기저필름(110) 및 제2기저필름(210)이 동일한 물질을 포함하는 경우, 제1기저필름(110) 및 제2기저필름(210) 각각은 금속 소재를 포함할 수 있다. 이하, 설명의 편의를 위해 제2기저필름(210)을 예시하여 금속 소재를 포함하는 기저필름에 대해 상세히 설명하기로 한다.
제2테이프(200)에서 제2기저필름(210)은 제1기저필름(110)과 마찬가지로 반도체 패키지(400) 공정간 늘어남없이 팽팽하게 당겨진 상태를 안정적으로 유지함과 동시에 복수의 돌출전극(410)이 형성된 반도체 패키지(400) 하면의 토폴로지에 대응하여 응력 균형을 유지할 수 있으며, 고온 및 고진공 환경에서 변성 및 변형이 발생하지 않은 소재로 구성될 수 있다. 특히, 제2기저필름(210)은 부착시 반도체 패키지(400)의 하면 토폴로지에 대응하도록 형태가 변형될 수 있고, 공정간 반도체 패키지(400)의 하면 토폴로지에 대응하도록 변형된 형태를 독자적으로 유지할 수 있다. 이를 위해, 제2기저필름(210)은 99 wt% 이상의 금속원소를 포함할 수 있다.
일례로, 제2기저필름(210)은 99 wt% 이상의 알루미늄(Al)을 포함할 수 있다. 아울러, 제2기저필름(210)은 99 wt% 이상의 알루미늄과 더불어서 제2기저필름(210)의 특성 예컨대, 인장강도(tensile strength) 및 연신율(elongation)을 제어하기 위해 1 wt% 이하의 첨가물을 포함할 수 있다. 첨가물은 실리콘(Si), 철(Fe), 망간(Mn), 마그네슘(Mg), 아연(Zn) 및 티타늄(Ti)으로 이루어진 그룹으로부터 선택된 어느 하나 또는 둘 이상을 포함할 수 있다. 보다 구체적으로, 제2기저필름(210)은 99.35 wt% 이상의 알루미늄, 0.15 wt% 이하의 실리콘, 0.42 wt% 이하의 철, 0.05 wt% 이하의 구리, 0.05 wt% 이하의 망간, 0.05 wt% 이하의 마그네슘, 0.1 wt% 이하의 아연, 0.06 wt% 이하의 티타늄을 포함할 수 있다. 여기서, 99.35 wt% 이상의 알루미늄은 99.35 wt% 이상 및 100 wt% 미만의 중량비를 지칭하는 것일 수 있고, 0.15 wt% 이하의 실리콘은 0.15 wt% 이하 및 0 wt% 초과의 중량비를 지칭하는 것일 수 있다. 그 외, 철, 구리, 망간, 마그네슘, 아연 및 티타늄의 중량비 범위도 상술한 실리콘과 같이 해석할 수 있다.
상술한 99 wt% 이상의 알루미늄이 함유된 제2기저필름(210)은 반도체 패키지(400) 공정간 늘어남없이 팽팽하게 당겨진 상태를 안정적으로 유지함과 동시에 반도체 패키지(400)의 하면 토폴로지에 대응하도록 형태가 변형될 수 있고, 공정간 변형된 형태를 독자적으로 유지할 수 있도록 적어도 6 kgf/mm2 이상의 인장강도 및 적어도 8% 이상의 연신율을 가질 수 있다. 보다 구체적으로, 99 wt% 이상의 알루미늄이 함유된 제2기저필름(210)은 6 kgf/mm2 내지 12 kgf/mm2 범위의 인장강도를 가질 수 있고, 8% 내지 16% 범위의 연신율을 가질 수 있다. 여기서, 인장강도가 6 kgf/mm2 미만인 경우에는 접착 테이프(10) 제조공정 및 반도체 패키지(400) 제조공정시 가해지는 외력에 의해 제2기저필름(210)이 끊어지거나, 찢어지는 현상이 발생할 수 있고, 12 kgf/mm2 초과인 경우에는 반도체 패키지(400)의 하면 토폴로지에 대응하여 형태 변형이 어려울 수 있다. 그리고, 연신율이 8% 미만인 경우에는 반도체 패키지(400)의 하면 토폴로지에 대응하여 형태 변형이 어려울 수 있고, 12% 초과인 경우에는 공정간 변형된 형태를 지속적으로 유지하기 어려울 수 있다. 한편, 제2기저필름(210)의 인장강도는 한국산업규격 KS B 0801 No. 5에 근거하여 측정된 것일 수 있고, 연실율은 한국산업규격 KS B 0802에 근거하여 측정된 것일 수 있다.
다른 일례로, 제2기저필름(210)은 99 wt% 이상의 구리(Cu)을 포함할 수 있다. 아울러, 제2기저필름(210)은 99 wt% 이상의 구리과 더불어서 제2기저필름(210)의 특성 예컨대, 인장강도 및 연신율을 제어하기 위해 1 wt% 이하의 첨가물을 포함할 수 있다. 첨가물은 실리콘(Si), 철(Fe), 망간(Mn), 마그네슘(Mg), 아연(Zn) 및 티타늄(Ti)으로 이루어진 그룹으로부터 선택된 어느 하나 또는 둘 이상을 포함할 수 있다. 보다 구체적으로, 제2기저필름(210)은 99.9 wt% 이상의 알루미늄, 0.1 wt% 이하의 아연을 포함할 수 있다. 여기서, 99.9 wt% 이상의 알루미늄은 99.9 wt% 이상 및 100 wt% 미만의 중량비를 지칭하는 것일 수 있고, 0.1 wt% 이하의 아연은 0.1 wt% 이하 및 0 wt% 초과의 중량비를 지칭하는 것일 수 있다.
상술한 99 wt% 이상의 구리가 함유된 제2기저필름(210)은 반도체 패키지(400) 공정간 늘어남없이 팽팽하게 당겨진 상태를 안정적으로 유지함과 동시에 반도체 패키지(400)의 하면 토폴로지에 대응하도록 형태가 변형될 수 있고, 공정간 변형된 형태를 독자적으로 유지할 수 있도록 적어도 10 kgf/mm2 이상의 인장강도 및 적어도 4% 이상의 연신율을 가질 수 있다. 보다 구체적으로, 99 wt% 이상의 구리가 함유된 제2기저필름(210)은 10 kgf/mm2 내지 26 kgf/mm2 범위의 인장강도를 가질 수 있고, 4% 내지 12% 범위의 연신율을 가질 수 있다. 여기서, 인장강도가 10 kgf/mm2 미만인 경우에는 접착 테이프(10) 제조공정 및 반도체 패키지(400) 제조공정시 가해지는 외력에 의해 제2기저필름(210)이 끊어지거나, 찢어지는 현상이 발생할 수 있고, 26 kgf/mm2 초과인 경우에는 반도체 패키지(400)의 하면 토폴로지에 대응하여 형태 변형이 어려울 수 있다. 그리고, 연신율이 4% 미만인 경우에는 반도체 패키지(400)의 하면 토폴로지에 대응하여 형태 변형이 어려울 수 있고, 12% 초과인 경우에는 공정간 변형된 형태를 지속적으로 유지하기 어려울 수 있다. 한편, 제2기저필름(210)의 인장강도는 한국산업규격 KS B 0801 No. 5에 근거하여 측정된 것일 수 있고, 연실율은 한국산업규격 KS B 0802에 근거하여 측정된 것일 수 있다.
또한, 제2기저필름(210)은 제1접착층(120)과 제2기저필름(210) 사이의 접착력 향상, 제2접착층(220)과 제2기저필름(210) 사이의 접착력 향상, 제2기저필름(210) 상에 형성되는 제2접착층(220)의 균일한 두께 구현 및 제2접착층(220)의 목표 두께를 용이하게 구현하기 위해 적어도 56 Dyne/cm 이상의 표면장력 및 0.4㎛ 이하의 표면거칠기(Ra)를 가질 수 있다. 여기서, 표면장력 및 표면거칠기는 제1접착층(120)과 접하는 제2기저필름(210)의 타면 및 제2접착층(220)과 접하는 제2기저필름(210)의 일면에 대한 것이며, 표면거칠기는 산술 평균 거칠기를 의미한다.
보다 구체적으로, 제2기저필름(210)의 56 Dyne/cm 내지 72 Dyne/cm 범위의 표면장력을 가질 수 있고, 0.3㎛ 내지 0.4㎛ 범위의 표면거칠기를 가질 수 있다. 여기서, 표면장력이 56 Dyne/cm 미만인 경우에는 제1접착층(120) 및 제2접착층(220)과 제2기저필름(210) 사이의 접착력이 저하될 수 있고, 제2접착층(220)의 목표 두께를 구현하기 어려울 수 있다. 반면, 표면장력이 72 Dyne/cm 초과하는 경우에는 균일한 두께의 제2접착층(220)을 형성하기 어려울 수 있다. 그리고, 표면거칠기가 0.3㎛ 미만인 경우에는 제1접착층(120) 및 제2접착층(220)과 제2기저필름(210) 사이의 접착력이 저하될 수 있고, 0.4㎛ 초과인 경우에는 제2기저필름(210)의 인장강도 및 연신율을 저하시킬 수 있다. 제2기저필름(210)의 인장강도, 연신율 및 표면장력은 제2기저필름(210)을 구성하는 물질의 조성 즉, 99 wt% 이상의 금속원소 및 1 wt% 이하의 첨가물 함량(또는 중량비)을 조절하여 제어할 수 있다.
또한, 제2기저필름(210)은 10㎛ 내지 35㎛ 범위의 두께를 가질 수 있다. 제2기저필름(210)의 두께가 10㎛ 미만은 경우에는 사용자가 접착 테이프(10)를 핸들링하기 매우 어려울 수 있다, 반면, 제2기저필름(210)의 두께가 35㎛를 초과하는 경우에는 복수의 돌출전극(410)이 형성된 반도체 패키지(400) 하면의 토폴로지에 대응하여 형태 변형이 어렵고, 응력 균형을 유지하기 어려울 수 있다. 참고로, 응력 균형을 유지하지 못하는 경우 반도체 패키지(400)에 접착 테이프(10)를 접착한 후, 반도체 패키지(400)와 제2접착층(220) 사이의 반발력이 증가하기 때문에 반도체 패키지(400)와 제2접착층(220) 사이의 접착능력 및 밀착능력을 저하시키는 원인으로 작용할 수 있다.
또한, 제2기저필름(210)에 기인한 접착 테이프(10)의 특성을 더욱더 향상시키기 위해 돌출전극(410)의 사이즈 예컨대, 숄더볼의 직경이 증가할수록 설정된 두께 범위내에서 제2기저필름(210)의 두께가 감소할 수 있다. 즉, 제2기저필름(210)의 두께와 돌출전극(410)의 사이즈 사이에는 반비례 관계가 성립될 수 있다. 반면에, 돌출전극(410) 사이의 간격이 증가할수록 설정된 두께 범위내에서 제2기저필름(210)의 두께가 증가할 수 있다. 즉, 제2기저필름(210)의 두께와 인접한 돌출전극(410) 사이의 간격 사이에는 비례 관계가 성립될 수 있다. 이를 통해, 제2기저필름(210)이 독자적으로 형태 변형 및 변형된 형태 유지가 가능하기 때문에 제2접착층(220)과 더불어서 돌출전극(410)의 사이즈 및 간격 변화에 대응하여 두께를 조절하는 것으로 반도체 패키지(400) 제조공정용 접착 테이프(10)의 응력특성, 접착특성 및 유지특성을 보다 효과적으로 향상시킬 수 있다.
또한, 제2기저필름(210)은 복수의 금속원소를 포함하기 때문에 반도체 패키지(400)의 하면 토폴로지에 대응하여 형태 변형이 가능하고, 공정간 제2접착층(220)에 의하여 변형된 형태를 유지함과 동시에 제2기저필름(210) 스스로 변형된 형태를 유지할 수 있다. 이로써, 접착 테이프(10)의 접착특성 및 유지특성을 더욱더 향상시킬 수 있다. 즉, 제2기저필름(210)이 공정간 제2접착층(220)이 돌출전극(410)으로부터 밀려나는 것을 방지하는 역할을 수행하여 제2기저필름(210)이 제2접착층(220)의 접착력을 보완 및 향상시킬 수 있다. 이를 통해, 소정의 공정이 완료된 이후 반도체 패키지(400)로부터 접착 테이프(10)의 분리가 용이하도록 제2접착층(220)의 접착력을 통상적으로 요구되는 접착력(예컨대, 500 gf/25mm 내외)보다 낮게 설정하더라도, 제2기저필름(210)을 통해 이를 보완할 수 있다. 참고로, 고분자 소재를 포함하는 기저필름도 부착시 반도체 패키지(400)의 하면 토폴로지에 대응하여 기저필름의 형태가 변형되나, 이는 접착층에 기인한 것으로 고분자 소재 독자적으로 형태가 변형된 것이 아니다.
또한, 도 3a에 도시된 바와 같이, 제2기저필름(210)은 평판형태의 평면형상을 갖거나, 또는 도 3b에 도시된 바와 같이, 제2기저필름(210)을 관통하는 복수의 타공(212)을 포함하는 메쉬형태의 평면형상을 가질 수 있다. 여기서, 복수의 타공(212)은 제2기저필름(210)에 규칙적으로 배열되고, 복수의 타공(212) 각각의 크기는 접착 테이프(10)에서 요구되는 제2기저필름(210)의 물리적 특성 예컨대, 인장강도 및 연신율이 열화되지 않도록 돌출전극(410)의 사이즈 대비 1% 내지 3% 범위를 가질 수 있다. 그리고, 복수의 타공(212) 각각의 평면형상은 삼각형 이상의 다각형, 타원형 또는 원형으로 이루어진 그룹으로부터 선택된 어느 하나의 형상을 가질 수 있다.
도 3b에 도시된 바와 같이, 제2기저필름(210)이 복수의 타공(212)을 구비하는 경우, 제1접착층(120) 및 제2접착층(220)은 제2기저필름(210)에 형성된 복수의 타공(212)을 통해 다이렉트 컨택될 수 있다. 이를 통해, 제1테이프(100)와 제2테이프(200) 사이의 접착력을 향상시킴과 동시에 반도체 패키지(400)의 하면과 돌출전극(410)이 접하는 영역에서 반도체 패키지(400)와 접착 테이프(10) 사이에 공극이 발생하더라도, 공정간(특히, 고진공 환경의 공정시) 공극이 과도하게 팽창하는 것을 효과적으로 방지할 수 있다. 이는, 제1접착층(120)과 제2접착층(220) 사이의 분자구조 즉, 나선형 망상구조의 연속성을 복수의 타공(212)을 통해 제공할 수 있기 때문이다.
한편, 기저필름이 고분자 소재를 포함하는 경우, 접착층으로 사용되는 실리콘 소재가 갖는 특유의 화학적 안정성으로 인해 이종 물질과의 혼합, 교반 및 접착이 용이하지 않기 때문에 기저필름에 대한 별도의 표면처리를 진행하였으나, 제2기저필름(210)은 복수의 금속원소를 포함하기 때문에 실리콘이 함유된 제1접착층(120) 및 제2접착층(220)과 높은 접착력을 가지며, 별도의 표면처리를 필요로하지 않는다. 이를 통해, 생산성을 향상시킬 수 있고, 공정비용을 절감할 수 있다.
제1실시예에서 제1접착층(120) 및 제2접착층(220)은 복수의 돌출전극(410)이 형성된 반도체 패키지(400)의 하면 토폴로지를 따라 최대한 일정한 두께를 유지하면서 반도체 패키지(400) 하면 토폴로지를 따라 접착된 형태를 가질 수 있다. 보다 구체적으로, 제1접착층(120) 및 제2접착층(220)은 복수의 돌출전극(410)이 형성된 반도체 패키지(400)의 하면 토폴로지를 따라 접착되되, 제1접착층(120)은 내부에 복수의 돌출전극(410)이 함침되는 형태를 가질 수 있고, 제2접착층(220)은 복수의 돌출전극(410)을 감싸는 형태를 가질 수 있다.
제1테이프(100)는 공정간 제2테이프(200)의 손상을 방지하고, 상대적으로 얇은 두께를 갖는 제2테이프(200)의 핸들링을 용이하게 하며, 돌출전극(410)에 대한 쿠션을 제공하는 역할을 수행하기 때문에 제1접착층(120)은 제2접착층(220)보다 두꺼운 두께를 가질 수 있다. 아울러, 제1테이프(100)는 실질적으로 제2테이프(200)에 대한 기저필름으로 작용하기 때문에 제1접착층(120)의 접착력은 제2접착층(220)의 접착력보다 클 수 있다. 보다 구체적으로, 제1접착층(120)은 돌출전극(410)을 내부에 함침할 수 있도록 100㎛ 내지 700㎛ 범위의 두께 및 적어도 500 gf/25mm 이상의 접착력 예컨대, 500 gf/25mm 내지 2500 gf/25mm 범위의 접착력을 가질 수 있다. 그리고, 제2접착층(220)은 10㎛ 내지 50㎛ 범위의 두께 및 200 gf/25mm 내지 300 gf/25mm 범위의 접착력을 가질 수 있다.
제1접착층(120)의 두께가 100㎛ 미만일 경우에는 접착 테이프(10)가 돌출전극(410)을 함침하여 공정간 돌출전극(410)에 대한 쿠션을 제공하는 능력이 저하될 수 있고, 700㎛를 초과할 경우에는 반도체 패키지(400)의 하면과 접착 테이프(10) 사이의 접착능력, 밀폐능력 및 유지특성이 열화될 수 있다. 그리고, 제1접착층(120)의 접착력이 500 gf/25mm 미만일 경우에는 반도체 패지키로부터 접착 테이프(10)를 제거할 때, 제2테이프(200)로부터 제1테이프(100)가 박리되는 불량이 발생할 수 있다. 반면, 제1접착층(120)의 접착력이 2500 gf/25mm를 초과하는 경우에는 접착 테이프(10)에서 요구되는 제1접착층(120)의 두께를 구현하기 어려울 수 있다. 이는, 실리콘이 함유된 접착층의 접착력은 접착층의 두께와 불연속적으로 비례하는 특성을 갖기 때문이다. 참고로, 제1접착층(120)의 접착력은 제1접착층(120)과 제2기저필름(210)이 접하는 접합면에서의 초기 접착력을 의미할 수 있다.
제1접착층(120)은 100㎛ 내지 700㎛ 범위의 두께를 갖되, 돌출전극(410)의 사이즈가 증가할수록 설정된 두께 범위내에서 제1접착층(120)의 두께를 감소시킬 수 있다. 이는, 돌출전극(410)의 사이즈가 증가할수록 돌출전극(410)의 표면적이 증가하기 때문에 반도체 패키지(400)와 접착 테이프(10)를 부착 및 밀착시키기 위한 가압과정에서 제2테이프(200) 특히, 얇은 금속박막으로 구성되는 제2기저필름(210)이 손상될 가능성이 낮아지기 때문이다. 반면, 제1접착층(120)은 100㎛ 내지 700㎛ 범위의 두께를 갖되, 돌출전극(410) 사이의 간격이 증가할수록 설정된 두께 범위내에서 제1접착층(120)의 두께를 증가시킬 수 있다. 이는, 돌출전극(410) 사이의 간격이 증가할수록 반도체 패키지(400)와 접착 테이프(10)를 부착 및 밀착시키기 위한 가압시 인가되는 외력 즉, 압력을 증가시켜야하기 때문이다. 즉, 가압시 인가되는 외력에 증가할수록 제2테이프(200) 특히, 얇은 금속박막으로 구성되는 제2기저필름(210)이 손상될 가능성이 증가하기 때문이다.
제2접착층(220)은 돌출전극(410)이 형성된 반도체 패키지(400)의 하면 토폴로지를 따라 빈틈없이 접착이 가능하도록 10㎛ 내지 50㎛ 범위의 두께를 가질 수 있다. 여기서, 제2접착층(220)의 두께가 10㎛ 미만인 경우에는 필요로하는 접착력을 확보하기 어려울 수 있고, 50㎛를 초과하는 경우에는 공정완료 후 접착 테이프(10)를 제거하기 어렵거나, 부착시 눌림 압력에 의해 반도체 패키지(400)의 측면으로 제2접착층(220)이 밀려나와 EMI 차폐층의 증착 불량을 야기할 수 있다. 이처럼, 제2접착층(220)은 10㎛ 내지 50㎛ 범위의 두께를 가질 수 있고, 이를 통해 제2접착층(220) 내에서의 응력 균형을 유지하여 접착특성 및 유지특성을 향상시킬 수 있으며, 반도체 패키지(400)의 하면과 돌출전극(410)이 접하는 영역에서 반도체 패키지(400)와 접착 테이프(10) 사이에 공극이 발생하는 것을 방지할 수 있다.
또한, 제2접착층(220)은 10㎛ 내지 50㎛ 범위의 두께를 갖되, 돌출전극(410)의 사이즈가 증가할수록 설정된 범위내에서 두께가 증가할 수 있고, 돌출전극(410) 사이의 간격이 증가할수록 설정된 범위내에서 두께가 감소할 수 있다. 돌출전극(410)의 사이즈 및 간격 변화에 대응하여 제2접착층(220)의 두께를 조절하는 것으로 반도체 패키지(400) 제조공정용 접착 테이프(10)의 접착특성, 분리특성 및 유지특성을 보다 효과적으로 향상시킬 수 있다.
또한, 제2접착층(220)은 접착특성, 유지특성 및 분리특성을 확보하기 위해 200 gf/25mm 내지 300 gf/25mm 범위의 접착력을 가질 수 있다. 여기서, 제2접착층(220)의 접착력이 200 gf/25mm 미만인 경우에는 EMI 차폐층을 형성하기 위한 공정환경 예컨대, 고온 및 고진공 환경에서 제2접착층(220)이 반도체 패키지(400)의 하면 및 반도체 패키지(400)의 하면에 형성된 복수의 돌출전극(410)으로부터 밀려나는 현상이 발생하거나, 또는 공정간 가스 및 파티클이 접착 테이프(10)와 반도체 패키지(400) 접착면 사이로 침투할 수 있다. 반면에, 제2접착층(220)의 접착력이 300 gf/25mm를 초과하는 경우에는 EMI 차폐층을 형성공정을 완료한 후 상온 및 대기압 상태에서 접착 테이프(10)를 제거할 때 접착 테이프(10)가 쉽게 제거되지 않거나, 또는 반도체 패키지(400)의 하면 및 돌출전극(410)의 표면에 접착물질이 잔류할 수 있다.
제1실시예에서 제1접착층(120) 및 제2접착층(220) 각각은 내화학성, 내열성 및 내한성을 유지함과 동시에 아웃개싱이 없고, 돌출전극(410)의 함침을 위해 부드럽고 변성이 없으며, 탈착시 잔류물이 전사되지 않도록 실리콘 소재로 구성될 수 있다. 구체적으로, 실리콘이 함유된 제1접착층(120) 및 제2접착층(220) 각각은 실록산(siloxane) 결합을 기본 골격으로 할 수 있다. 보다 구체적으로, 제1접착층(120) 및 제2접착층(220)은 실록산 결합을 기본 골격으로 하되, 반도체 패키지(400)의 하면과 돌출전극(410)이 접하는 영역에서 반도체 패키지(400)와 접착 테이프(10) 사이에 공극이 발생하더라도, 공정간(특히, 고진공 환경의 공정시) 공극이 과도하게 팽창하는 것을 방지할 수 있도록 분자구조가 나선형 망상구조(spiral network structure)를 가질 수 있다. 참고로, 실록산 결합을 기본 골격으로 하는 제1접착층(120) 및 제2접착층(220)은 실록산 결합의 측쇄(side chain)에 결합되는 작용기의 개수 및 종류에 따라 분자간의 넓은 간격을 갖는 나선형 망상구조를 구현할 수 있기 때문에 나선형 망상구조와 더불어서 분자 사이의 공간을 통해 고진공 환경에서 공극이 과도하는 팽창하는 것을 방지할 수 있다.
여기서, 실록산 결합은 실리콘(Si)과 산소(O)가 상호 연결된 것으로 실리콘(Si)과 산소(O) 사이의 결합 에너지가 크기 때문에 우수한 내열성 및 내화학성을 확보할 수 있다. 또한, 실록산 결합은 분자구조상 결정구조를 만들기 어려운 비결정성을 갖기 때문에 유리전이점이 낮아 우수한 내한성을 확보할 수 있다. 분자끼리 접근하면 분자간에 끌어당기는 힘이 작용하여 일종의 결합상태를 이루는데, 실록산 결합은 이러한 분자간의 인력이 작기 때문에 낮은 유리전이점을 가질 수 있다. 이러한 분자구조로 인하여 실록산 결합을 기본 골격으로 하는 제1접착층(120) 및 제2접착층(220)은 딱딱해지기 어렵고, 온도에 따른 점도변화가 작아서 넓은 온도범위에 걸쳐서 안정된 물성을 발휘할 수 있다.
상술한 제1접착층(120) 및 제2접착층(220) 각각의 두께, 접착력 및 분자구조를 용이하게 구현하기 위해 제1접착층(120) 및 제2접착층(220)은 트리메틸레이티드 실리카(Trimethylated silica), 디메틸실록산 공중합체(Dimethyl Siloxane copolymer) 및 에틸벤젠(Ethylbenzene)이 혼합된 접착주제를 포함하는 접착조성물을 포함할 수 있다. 여기서, 디메틸실록산 공중합체는 디메틸실록산 블록 공중합체(Dimethyl Siloxane block copolymer)도 포함할 수 있다. 접착주제에서 트리메틸레이티드 실리카는 함량에 따라 접착력을 제어하는 역할을 수행할 수 있고, 디메틸실록산 공중합체는 실록산 결합의 기본 골격을 제공하는 역할을 수행할 수 있다. 그리고, 에틸벤젠은 트리메틸레이티드 실리카, 디메틸실록산 공중합체 및 기타 첨가물들 간의 결합이 용이하도록 중간산물을 생성하는 역할을 수행할 수 있다.
이하, 본 발명의 실시예에 따른 접착 테이프(10)의 제1접착층(120) 및 제2접착층(220)으로 적용가능한 복수의 접착조성물 즉, 제1접착조성물 내지 제6접착조성물에 대해 상세히 설명하기로 한다. 여기서, 제1접착층(120) 및 제2접착층(220)은 후술하는 제1접착조성물 내지 제6접착조성물 중 어느 하나로 구성된 단일층이거나, 또는 둘 이상이 적층된 다층 구조를 가질 수 있다.
먼저, 제1접착조성물은 제1접착주제 100 중량부에 대해 가교제(crosslinker) 0.5 내지 1.5 중량부, 앵커리지 첨가제(anchorage additive) 0.5 내지 1.5 중량부 및 촉매제(catalist) 0.5 내지 1.5 중량부를 포함할 수 있다. 제1접착층(120) 및 제2접착층(220)을 각각 100㎛ 내지 250㎛ 범위의 두께 및 10㎛ 내지 20㎛ 범위의 두께로 형성하는 경우 제1접착조성물을 사용할 수 있다.
구체적으로, 제1접착주제는 톨루엔(Toluene), 자일렌(Xylene), 에틸벤젠(Ethylbenzene), 1-에티닐사이클로헥산올(1-Ethynylcyclohexanol; CAS No. 78-27-3), 트리메틸레이티드 실리카(Trimethylated silica), 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2), 디메틸, 메틸비닐실록산, 하이드록시, 비닐-말단화(Dimethyl, methylvinyl siloxane, hydroxy-, vinyl-terminated; CAS No. 없음), 디메틸, 메틸비닐실록산, 디메틸비닐-말단화(Dimethyl, methylvinyl siloxane, dimethylvinyl-terminated; CAS. N. 68083-18-1) 및 실록산과 실리콘, 디-메틸, 메틸비닐, 하이드록시-말단화(Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated; CAS No. 67923-19-7)가 소정의 비율로 혼합된 혼합물을 포함할 수 있다. 여기서, 1-에티닐사이클로헥산올은 경화 속도를 조절하는 역할을 수행할 수 있으며, 톨루엔 및 자일렌은 용매로 사용될 수 있다. 그리고, 실록산과 실리콘, 디-메틸, 비닐기-말단화, 디메틸, 메틸비닐실록산, 하이드록시, 비닐-말단화, 디메틸, 메틸비닐실록산, 디메틸비닐-말단화 및 실록산과 실리콘, 디-메틸, 메틸비닐, 하이드록시-말단화는 디메틸실록산 공중합체일 수 있다.
보다 구체적으로, 제1접착주제 전체에서 톨루엔은 20% 내지 25% 범위의 비율, 자일렌은 10% 내지 20% 범위의 비율, 에틸벤젠은 2.5% 내지 10% 범위의 비율, 1-에티닐사이클로헥산올은 0.1% 내지 1% 범위의 비율, 트리메틸레이티드 실리카는 30% 내지 40% 범위의 비율, 실록산과 실리콘, 디-메틸, 비닐기-말단화는 10% 내지 20% 범위의 비율, 디메틸, 메틸비닐실록산, 하이드록시, 비닐-말단화는 1% 내지 10% 범위의 비율, 디메틸, 메틸비닐실록산, 디메틸비닐-말단화는 1% 내지 10% 범위의 비율, 실록산과 실리콘, 디-메틸, 메틸비닐, 하이드록시-말단화는 1% 내지 10% 범위의 비율을 각각 차지할 수 있다.
가교제는 접착주제와 반응하여 가교 및 경화 반응을 제어하고, 접착조성물에서 나선형 망상구조를 보다 용이하게 형성할 수 있도록 도와주는 역할을 수행할 수 있다. 가교제로는 헵탄(Heptane) 및 실록산과 실리콘, 메틸수소(Siloxanes and Silicones, Me hydrogen; CAS No. 63148-57-2)가 소정의 비율로 혼합된 가교 혼합물을 사용할 수 있다. 가교 혼합물 전체에서 헵탄은 0.25% 내지 1% 범위의 비율을 차지할 수 있고, 실록산과 실리콘, 메틸수소는 99% 내지 99.75%를 차지할 수 있다.
앵커리지 첨가제는 실리콘과 기재 사이의 밀착력을 제공하는 역할을 수행수 있다. 앵커리지 첨가제로는 트라이메톡시[3-(옥시라닐메톡시)프로필]실란(Silane, trimethoxy[3-(oxiranylmethoxy)propyl]-; CAS No. 2530-83-8), 트라이메톡시[(3-옥시란일메톡시)프로필]실레인과 결합한 실록산류와 실리콘류, 디-메틸, 디-비닐, 하이드록시-말단화 반응 생성물(Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated reaction products with trimethoxy[3-oxiranylmethoxy)propyl]silane; CAS No. 102782-94-5), 메탄올(Methanol) 및 디비닐헥사메틸시클로테트라실록산(Divinyl hexamethyl cyclotetrasiloxane; CAS No. 17980-61-9)이 소정의 비율로 혼합된 앵커리지 혼합물을 사용할 수 있다. 앵커리지 혼합물 전체에서 트라이메톡시[3-(옥시라닐메톡시)프로필]실란은 30% 내지 40% 범위의 비율, 트라이메톡시[(3-옥시란일메톡시)프로필]실레인과 결합한 실록산류와 실리콘류, 디-메틸, 디-비닐, 하이드록시-말단화 반응 생성물은 60% 내지 70% 범위의 비율, 메탄올은 1% 내지 3% 범위의 비율, 디비닐헥사메틸시클로테트라실록산은 1% 내지 2.5% 범위의 비율을 각각 차지할 수 있다.
촉매제는 반응 활성화 에너지를 감소시켜 낮은 온도 또는 가벼운(Mild) 조건에서도 반응, 경화 및 가교 작업이 진행될 수 있도록 도와주는 역할을 수행할 수 있다. 촉매제로는 백금 촉매를 사용할 수 있다. 구체적으로, 촉매제로는 백금, 1,3-다이에텐일-1,1,3,3-테트라메틸다이실록산 착물(Platinium 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complexes; CAS No. 68478-92-2), 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2), 테트라메틸디비닐디실록산(Tetramethyldivinyldisiloxane; CAS No. 2627-95-4) 및 실록산과 실리콘, 디-메틸, 하이드록시-말단화(Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8)가 소정의 비율로 혼합된 촉매 혼합물을 사용할 수 있다. 촉매혼합물 전체에서 백금, 1,3-다이에텐일-1,1,3,3-테트라메틸다이실록산 착물은 1% 내지 10% 범위의 비율, 실록산과 실리콘, 디-메틸, 비닐기-말단화는 90% 내지 99% 범위의 비율, 테트라메틸디비닐디실록산은 1% 내지 10% 범위의 비율, 실록산과 실리콘, 디-메틸, 하이드록시-말단화는 1% 내지 10% 범위의 비율을 각각 차지할 수 있다.
다음으로, 제2접착조성물은 제2접착주제 100 중량부에 대해 가교제 0.5 내지 1.5 중량부, 앵커리지 첨가제 0.5 내지 1.5 중량부 및 촉매제 0.5 내지 1.5 중량부를 포함할 수 있다. 여기서, 가교제, 앵커리지 첨가제 및 촉매제를 상술한 것과 동일한 것을 사용할 수 있다. 제1접착층(120) 및 제2접착층(220)을 각각 200㎛ 내지 400㎛ 범위의 두께 및 20㎛ 내지 30㎛ 범위의 두께로 형성하는 경우 제2접착조성물을 사용할 수 있다.
구체적으로, 제2접착주제는 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica), 에틸벤젠(Ethylbenzene) 및 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2)가 소정의 비율로 혼합된 혼합물을 포함할 수 있다. 여기서, 자일렌은 용매로 사용될 수 있고, 실록산과 실리콘, 디-메틸, 비닐기-말단화는 디메틸실록산 공중합체일 수 있다. 보다 구체적으로, 제2접착주제 전체에서 자일렌은 29% 내지 37% 범위의 비율, 트리메틸레이티드 실리카는 29% 내지 34% 범위의 비율, 에틸벤젠은 9% 내지 11% 범위의 비율, 실록산과 실리콘, 디-메틸, 비닐기-말단화는 21% 내지 24% 범위의 비율을 각각 차지할 수 있다.
다음으로, 제3접착조성물은 제2접착주제 100 중량부에 대해 가교제 0.5 내지 1.5 중량부, 앵커리지 첨가제 0.5 내지 1.5 중량부 및 촉매제 0.8 내지 1.8 중량부를 포함할 수 있다. 여기서, 가교제, 앵커리지 첨가제 및 촉매제를 상술한 것과 동일한 것을 사용할 수 있다. 제1접착층(120) 및 제2접착층(220)을 각각 400㎛ 내지 550㎛ 범위의 두께 및 30㎛ 내지 40㎛ 범위의 두께로 형성하는 경우 제3접착조성물을 사용할 수 있다.
다음으로, 제4접착조성물은 제1주제와 제2주제가 95:1 내지 99:1 비율로 혼합된 제3접착주제 100 중량부에 대해 가교제 0.5 내지 1.5 중량부, 앵커리지 첨가제 0.5 내지 1.5 중량부 및 촉매제 0.5 내지 1.5 중량부를 포함할 수 있다. 여기서, 가교제, 앵커리지 첨가제 및 촉매제를 상술한 것과 동일한 것을 사용할 수 있다. 제1접착층(120) 및 제2접착층(220)을 각각 550㎛ 내지 700㎛ 범위의 두께 및 40㎛ 내지 50㎛ 범위의 두께로 형성하는 경우 제4접착조성물을 사용할 수 있다.
구체적으로, 제3접착주제에서 제1주제는 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica), 에틸벤젠(Ethylbenzene) 및 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2)가 소정의 비율로 혼합된 혼합물을 포함할 수 있다. 여기서, 자일렌은 용매로 사용될 수 있고, 실록산과 실리콘, 디-메틸, 비닐기-말단화는 디메틸실록산 공중합체일 수 있다. 보다 구체적으로, 제1주제 전체에서 자일렌은 29% 내지 37% 범위의 비율, 트리메틸레이티드 실리카는 29% 내지 34% 범위의 비율, 에틸벤젠은 9% 내지 11% 범위의 비율, 실록산과 실리콘, 디-메틸, 비닐기-말단화는 21% 내지 24% 범위의 비율을 각각 차지할 수 있다.
제3접착주제에서 제2주제는 접착력을 조절하는 역할을 수행할 수 있고, 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2)와 1-에티닐사이클로헥산올(1-Ethynylcyclohexanol; CAS No. 78-27-3)이 소정의 비율로 혼합된 혼합물을 포함할 수 있다. 여기서, 1-에티닐사이클로헥산올은 경화 속도를 조절하는 역할을 수행할 수 있고, 실록산과 실리콘, 디-메틸, 비닐기-말단화는 디메틸실록산 공중합체일 수 있다. 보다 구체적으로, 제2주제 전체에서 실록산과 실리콘, 디-메틸, 비닐기-말단화는 99% 내지 99.9% 범위의 비율을 차지할 수 있고, 1-에티닐사이클로헥산올은 0.1% 내지 1% 범위의 비율을 차지할 수 있다.
다음으로, 제5접착조성물은 제3주제와 제4주제가 50:50 내지 80:20 비율로 혼합된 제4접착주제 100 중량부에 대해 중합개시제 0.5 내지 3 중량부를 포함할 수 있다. 일례로, 제5두께는 20㎛ 내지 40㎛ 범위의 두께일 수 있다. 제1접착층(120) 및 제2접착층(220)을 각각 250㎛ 내지 550㎛ 범위의 두께 및 20㎛ 내지 40㎛ 범위의 두께로 형성하는 경우 제5접착조성물을 사용할 수 있다.
구체적으로, 제4접착주제에서 제3주제는 자일렌(Xylene), 에틸벤젠(Ethylbenzene), 톨루엔(Toluene) 및 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트(Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate; CAS No. 68440-70-0)가 소정의 비율로 혼합된 혼합물을 포함할 수 있다. 여기서, 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트는 트리메틸레이티드 실리카와 디메틸실록산 공중합체가 선가교 형태로 결합된 반응 생성물일 수 있다. 보다 구체적으로, 제1주제 전체에서 자일렌은 30% 내지 40% 범위의 비율, 에틸벤젠은 2.5% 내지 10% 범위의 비율, 톨루엔은 0.1% 내지 0.25% 범위의 비율, 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트는 50% 내지 60% 범위의 비율을 각각 차지할 수 있다.
제4접착주제에서 제4주제는 접착력을 조절하는 역할을 수행할 수 있고, 톨루엔(Toluene), 실록산과 실리콘, 디-메틸, 하이드록시-말단화(Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8), 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica) 및 에틸벤젠(Ethylbenzene)이 소정의 비율로 혼합된 혼합물을 포함할 수 있다. 여기서, 톨루엔과 자일렌은 용매로 사용될 수 있고, 실록산과 실리콘, 디-메틸, 하이드록시-말단화는 디메틸실록산 공중합체일 수 있다. 보다 구체적으로, 제2주제 전체에서 톨루엔은 70% 내지 80% 범위의 비율, 실록산과 실리콘, 디-메틸, 하이드록시-말단화는 10% 내지 20% 범위의 비율, 자일렌은 1% 내지 10% 범위의 비율, 트리메틸레이티드 실리카는 1% 내지 10% 범위의 비율, 에틸벤젠은 0.25% 내지 1% 범위의 비율을 각각 차지할 수 있다.
중합개시제는 연쇄 중합반응을 일으키는 물질을 지칭하며, 과산화벤조일(Benzoyl Peroxide)을 사용할 수 있다.
다음으로, 제6접착조성물은 제3주제와 제5주제가 50:50 내지 80:20 비율로 혼합된 제5접착주제 100 중량부에 대해 중합개시제 0.5 내지 3 중량부를 포함할 수 있다. 중합개시제로는 과산화벤조일을 사용할 수 있다. 제1접착층(120) 및 제2접착층(220)을 각각 250㎛ 내지 550㎛ 범위의 두께 및 20㎛ 내지 40㎛ 범위의 두께로 형성하는 경우 제6접착조성물을 사용할 수 있다.
구체적으로, 제5접착주제에서 제3주제는 자일렌(Xylene), 에틸벤젠(Ethylbenzene), 톨루엔(Toluene) 및 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트(Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate)가 소정의 비율로 혼합된 혼합물을 포함할 수 있다. 여기서, 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트는 트리메틸레이티드 실리카와 디메틸실록산 공중합체가 선가교 형태로 결합된 반응 생성물일 수 있다. 보다 구체적으로, 제3주제 전체에서 자일렌은 30% 내지 40% 범위의 비율, 에틸벤젠은 2.5% 내지 10% 범위의 비율, 톨루엔은 0.1% 내지 0.25% 범위의 비율, 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트는 50% 내지 60% 범위의 비율을 각각 차지할 수 있다.
제5접착주제에서 제5주제는 접착력을 조절하는 역할을 수행할 수 있고, 톨루엔(Toluene), 실록산과 실리콘, 디-메틸, 메틸비닐, 비닐기-말단화(Siloxanes and Silicones, di-Me, Me vinyl, vinyl groupterminated; CAS No. 68083-18-1), 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica), 에틸벤젠(Ethylbenzene), 실록산과 실리콘, 디-메틸, 메틸비닐, 하이드록시-말단화(Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated; CAS No. 67923-19-7) 및 1-에티닐사이클로헥산올(1-Ethynylcyclohexanol; CAS No. 78-27-3)이 소정의 비율로 혼합된 혼합물을 포함할 수 있다. 여기서, 실록산과 실리콘, 디-메틸, 메틸비닐, 비닐기-말단화와 실록산과 실리콘, 디-메틸, 메틸비닐, 하이드록시-말단화는 디메틸실록산 공중합체일 수 있다. 보다 구체적으로, 톨루엔은 47% 내지 63% 범위의 비율, 실록산과 실리콘, 디-메틸, 메틸비닐, 비닐기-말단화는 21% 내지 31% 범위의 비율, 자일렌은 2.3% 내지 3.1% 범위의 비율, 트리메틸레이티드 실리카는 10% 내지 14% 범위의 비율, 에틸벤젠은 0.44% 내지 0.6% 범위의 비율, 실록산과 실리콘, 디-메틸, 메틸비닐, 하이드록시-말단화는 2.2% 내지 3% 범위의 비율, 1-에티닐사이클로헥산올은 0.14% 내지 0.18% 범위의 비율을 각각 차지할 수 있다.
제1실시예에 따른 접착 테이프(10)는 제2접착층(220) 상에 부착된 이형필름(300)을 포함할 수 있다. 이형필름(300)은 접착 테이프(10)의 보관 및 이송을 용이하게 하고, 반도체 패키지(400) 제조공정 이전까지 제2접착층(220)을 보호하는 역할을 수행할 수 있다. 이형필름(300)은 실리콘이 함유된 제2접착층(220)의 보호 및 제2접착층(220)으로부터 분리가 용이하도록 불소가 함유된 것일 수 있으며, 3 gf/25mm 내지 8 gf/25mm 범위의 접착력을 가질 수 있다. 이형필름(300)의 접착력이 3 gf/25mm 미만인 경우에는 자연적으로 이형필름(300)이 벗겨질 우려가 있고, 8 gf/25mm 초과인 경우에는 접착 테이프(10)에서 이형필름(300)을 제거하는 과정에서 접착 테이프(10)가 손상되거나, 이형필름(300)의 제거가 어려울 수 있다.
상술한 바와 같이, 제1실시예에 따른 반도체 패키지(400) 제조공정용 접착 테이프(10)는 제1기저필름(110), 제1접착층(120), 제2기저필름(210) 및 제2접착층(220)이 순차적으로 적층된 매우 단순한 구조를 갖기 때문에 생산성 및 가격경쟁력을 향상시킬 수 있다.
또한, 제1기저필름(110)이 폴리에틸렌테레프탈레이트(PET), 폴리이미드(PI) 및 폴리올레핀(PO)으로 이루어진 그룹으로부터 선택된 어느 하나의 단일층 또는 둘 이상이 적층된 다층을 포함하기 때문에 EMI 차폐층 형성공정시 사용되는 반도체 패키지(400) 제조공정용 접착 테이프(10)에서 요구되는 응력특성을 용이하게 확보할 수 있다.
또한, 고분자 소재를 포함하는 제1기저필름(110)이 고분자 소재로 구성되는 경우, 제1접착층(120)과 접하는 제1기저필름(110)의 일면에 대해 표면처리를 진행함에 따라 제1접착층(120)으로 실리콘 소재를 사용하더라도 이들 사이의 접착력을 향상시킬 수 있다.
또한, 고분자 소재를 포함하는 제1기저필름(110)은 10㎛ 내지 150㎛ 범위의 두께를 갖기 때문에 복수의 돌출전극(410)이 형성된 반도체 패키지(400)의 하면 토폴로지에 대응하여 응력 균형을 효과적으로 유지함과 동시에 접착 테이프(10)의 핸들링을 용이하다는 장점이 있다.
또한, 제2기저필름(210)이 반도체 패키지(400) 하면 토폴로지에 대응하도록 형태가 변형되고, 공정간 변형된 형태를 독자적으로 유지할 수 있도록 금속원소를 함유하고 있기 때문에 EMI 차폐층 형성공정시 사용되는 반도체 패키지(400) 제조공정용 접착 테이프(10)에서 요구되는 접착특성 및 유지특성을 용이하게 확보할 수 있다. 아울러, 제1기저필름(110)이 제2기저필름(210)과 동일하게 금속원소를 함유하는 경우에는 상술한 접착특성 및 유지특성을 보다 용이하게 확보할 수 있다.
또한, 금속원소가 함유된 제2기저필름(210)은 10㎛ 내지 35㎛ 범위의 매우 얇은 두께를 갖기 때문에 복수의 돌출전극(410)이 형성된 반도체 패키지(400)의 하면 토폴로지에 대응하여 응력 균형을 효과적으로 유지할 수 있다.
또한, 제2기저필름(210)에 형성된 복수의 타공(212)을 통해 제1접착층(120)과 제2접착층(220) 사이의 분자구조 연속성을 구현함으로써, 반도체 패키지(400)의 하면과 돌출전극(410)이 접하는 영역에서 반도체 패키지(400)와 접착 테이프(10) 사이에 공극이 발생하더라도, 공정간(특히, 고진공 환경의 공정시) 공극이 과도하게 팽창하는 것을 방지할 수 있다.
또한, 제1접착층(120) 및 제2접착층(220) 각각이 트리메틸레이티드 실리카, 디메틸실록산 공중합체 및 에틸벤젠이 혼합된 접착주제를 포함함으로써, EMI 차폐층 형성공정시 발생되는 열에 의한 물성 변형이 없고 반도체 패키지(400) 제조공정용 접착 테이프(10)에서 요구되는 접착특성, 유지특성, 분리특성 및 응력특성을 용이하게 확보할 수 있다.
또한, 제1접착층(120) 및 제2접착층(220) 각각이 실록산 결합을 기본 골격으로 나선형 망상구조를 가짐으로써, 반도체 패키지(400)의 하면과 돌출전극(410)이 접하는 영역에서 반도체 패키지(400)와 접착 테이프(10) 사이에 공극이 발생하더라도, 공정간(특히, 고진공 환경의 공정시) 공극이 과도하게 팽창하는 것을 방지할 수 있다.
또한, 제2접착층(220)이 10㎛ 내지 50㎛ 범위의 매우 얇을 두께를 갖기 때문에 복수의 돌출전극(410)이 형성된 반도체 패키지(400)의 하면 토폴로지를 따라 접착 및 밀착이 용이하고, 부착시 반도체 패키지(400)의 가장자리 측면으로 제2접착층(220)이 밀려올라가는 현상을 방지할 수 있다.
또한, 반도체 패키지(400)의 돌출전극(410) 사이즈 및 간격에 대응하여 최적화된 제1접착층(120) 및 제2접착층(220) 각각의 두께 및 제1기저필름(110) 및 제2기저필름(210) 각각의 두께를 제공함에 따라 EMI 차폐층 형성공정시 사용되는 반도체 패키지(400) 제조공정용 접착 테이프(10)에서 요구되는 접착특성, 유지특성, 분리특성 및 응력특성을 보다 효과적으로 확보할 수 있다.
또한, 종래의 반도체 패키지(400) EMI 차폐층 형성공정 대비 공정스탭 및 소모품의 소비를 감소시킬 수 있기 때문에 반도체 패키지(400)의 생산성을 향상시킬 수 있다.
참고로, 종래의 반도체 패키지(400) EMI 차폐층 형성공정을 살펴보면, 복수의 돌출전극(410)이 형성된 반도체 웨이퍼 상에 복수의 돌출전극(410)이 함침되도록 돌출전극(410)의 사이즈보다 큰 두께를 갖는 두꺼운 UV 경화 테이프를 부착 후 UV 경화 테이프의 접착력을 조절하기 위한 UV 조사를 진행한다. 이어서, UV 경화 테이프 상에 재차 다이싱 테이프를 부착한 후, 반도체 웨이퍼와 더불어서 UV 경화 테이프까지 소잉(sawing)을 진행하여 각각의 개별 다이(die) 즉, 반도체 패키지(400)로 분리한다. 즉, 소잉공정이 완료된 시점에는 두꺼운 UV 경화 테이프가 부착된 상태를 갖는다. 이어서, 별도의 프레임에 단면접착형 내열테이프(또는 케리어 테이프)를 고정한 후, 내열테이프의 접착면에 UV 경화 테이프가 접하도록 다이싱 테이프로부터 분리된 각각의 개별 반도체 패키지(400)를 대략 2mm 간격으로 접착한 후, UV 경화 테이프 내에 잔류하는 불순물을 제거하기 위한 프리베이킹(Pre-Baking)을 진행한다. 이때, 불순물은 후속 EMI 차폐층 증착을 위한 공정환경 즉, 고온 및 고진공 환경에서 UV 경화 테이프로부터 아웃개싱되는 물질을 지칭하며, 이는 UV 경화 테이프가 아크릴계 고분자를 기본으로 구성되기 때문이다. 프리베이킹은 이러한 불순물을 사전에 제거하기 위한 공정이다. 이어서, 반도체 패키지(400)가 내열테이프에 부착된 상태로 EMI 차폐층 증착공정 즉, 스퍼터링 공정을 진행한 후, 자동화 설비에 구비된 진공척 또는 리프트핀을 이용하여 복수의 돌출전극(410)이 형성된 반도체 패키지(400)의 하면에 부착된 UV 경화 테이프 및 내열테이프를 제거하는 제거하는 일련의 공정과정을 거치게 된다.
이에 반해, 상술한 제1실시예에 따른 접착 테이프(10)를 활용한 반도체 패키지(400) EMI 차폐층 형성공정을 살펴보면, 일면에 복수의 돌출전극(410)이 형성된 반도체 웨이퍼의 대향면(즉, 일면에 대향하는 면)에 다이싱 테이프를 부착한 후, 반도체 웨이퍼에 대해서만 소잉(sawing)을 진행하여 각각의 개별 다이(die) 즉, 반도체 패키지(400)로 분리한다. 이어서, 별도의 프레임에 본 발명의 실시예에 따른 접착 테이프(10)를 고정한 후, 접착 테이프(10) 접착면에 돌출전극(410)이 접하도록 다이싱 테이프로부터 분리된 각각의 개별 반도체 패키지(400)를 대략 2mm 간격으로 접착한다. 이어서, 반도체 패키지(400)가 접착 테이프(10)에 부착된 상태로 EMI 차폐층 증착공정 즉, 스퍼터링 공정을 진행한 후, 자동화 설비에 구비된 진공척 또는 리프트핀을 이용하여 복수의 돌출전극(410)이 형성된 반도체 패키지(400) 하면에 부착된 접착 테이프(10)를 제거하는 일련의 공정과정을 거치게 된다.
즉, 상술한 바와 같이, 본 발명의 제1실시예에 따른 접착 테이프(10)를 활용한 반도체 패키지(400) EMI 차폐층 형성공정은 기존의 UV 경화 테이프를 필요로하지 않기 때문에 소모품의 소비를 감소시켜 원가를 절감할 수 있으며, 프리베이킹 공정을 생략할 수 있기 때문에 공정스탭을 감소시킬 수 있다.
도 4는 본 발명의 제2실시예에 따른 반도체 패키지 제조공정용 접착 테이프의 단면을 간략히 도시한 도면이다. 이하에서는, 설명의 편의를 위해 상술한 제1실시예와 동일한 구성에 대해서는 동일한 도면부호를 사용하고 상세한 설명을 생략하기로 한다.
도 4에 도시된 바와 같이, 본 발명의 제2실시예에 따른 반도체 패키지(400) 제조공정용 접착 테이프(20)는 제1기저필름(110), 제1중간층(130), 제1접착층(120), 제2기저필름(210), 제2중간층(230), 제2접착층(220) 및 이형필름(300)이 순차적으로 적층된 구조를 가질 수 있다. 여기서, 제1기저필름(110), 제1접착층(120), 제2기저필름(210), 제2접착층(220) 및 이형필름(300)은 상술한 제1실시예와 동일한 구성인 바, 상세한 설명을 생략하기로 한다. 아울러, 후술하는 기저필름은 제1기저필름(110) 및 제2기저필름(210)을 모두 지칭할 수 있고, 접착층은 제1접착층(120) 및 제2접착층(220)을 모두 지칭할 수 있다.
제1중간층(130) 및 제2중간층(230) 각각은 이종 물질로 구성되는 기저필름과 접착층 사이에 삽입되는 중간재로서, 기저필름과 접착층 사이의 접착력을 향상시키는 역할을 수행할 수 있다. 따라서, 제1중간층(130) 및 제2중간층(230) 각각은 고분자 소재 또는 금속 소재를 포함하는 기저필름 및 실리콘이 함유된 접착층 모두와 물리화학적 결합력이 우수한 접착조성물을 사용할 수 있다.
구체적으로, 제1중간층(130) 및 제2중간층(230) 각각에 사용되는 접착조성물은 제1접착층(120) 및 제2접착층(220)과 동일하게 분자구조가 나선형 망상구조를 가질 수 있고, 실리콘이 함유된 것일 수 있다. 보다 구체적으로, 제1중간층(130) 및 제2중간층(230) 각각에 사용되는 접착조성물은 톨루엔(Toluene), 실록산과 실리콘, 디-메틸, 하이드록시-말단화(Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8), 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica) 및 에틸벤젠(Ethylbenzene)이 혼합된 프라이머 혼합물을 사용할 수 있다. 여기서, 프라이머 혼합물 전체에서 톨루엔은 70% 내지 80% 범위의 비율, 실록산과 실리콘, 디-메틸, 하이드록시-말단화는 10% 내지 20% 범위의 비율, 자일렌은 1% 내지 2.5% 범위의 비율, 트리메틸레이티드 실리카는 1% 내지 10% 범위의 비율, 에틸벤젠은 0.25% 내지 1% 범위의 비율을 각각 차지할 수 있다.
제1중간층(130) 및 제2중간층(230) 각각은 기저필름 상에서 0.2 g/m2 내지 0.5 g/m2 범위의 평량을 가질 수 있다. 제1중간층(130) 및 제2중간층(230) 각각의 평량이 0.2 g/m2 미만일 경우에는 기저필름과 접착층 각각에 충분한 접착력을 제공하지 못할 수 있고, 0.5 g/m2 를 초과하는 경우에는 접착 테이프(20) 제거시 제1중간층(130) 및 제2중간층(230)을 기준으로 기저필름과 접착층이 분리되는 불량이 발생할 수 있다.
상술한 바와 같이, 본 발명의 제2실시예에 따른 접착 테이프(20)는 제1중간층(130) 및 제2중간층(230)을 더 포함함으로써, 접착층으로 실리콘 소재를 사용하더라도 기저필름과 접착층 사이의 접착력을 더욱더 향상시킬 수 있다.
도 5는 본 발명의 실시예에 따른 반도체 패키지 제조공정용 접착 테이프 제조공정을 설명하기 위한 순서도이고, 도 6은 본 발명의 실시예에 따른 반도체 패키지 제조공정용 접착 테이프에서 제1테이프 및 제2테이프의 제조공정을 설명하기 위한 순서도이다. 이하에서는, 설명의 편의를 위해 도 1에 도시된 제1실시예에 따른 접착 테이프의 제조방법에 대한 일례를 설명하기로 한다. 따라서, 상술한 제1실시예와 동일한 구성에 대해서는 동일한 도면부호를 사용하며, 상세한 설명을 생략하기로 한다.
먼저, 도 5에 도시된 바와 같이, 제1기저필름(110), 제1접착층(120) 및 제1이형필름이 순차적으로 적층된 제1테이프(100)를 제조한다.
제1기저필름(110)은 고분자 소재 또는 금속 소재를 포함할 수 있다. 제1기저필름(110)이 고분자 소재를 포함하는 경우에 제1기저필름(110)은 10㎛ 내지 150㎛ 범위의 두께를 가질 수 있고, 제1접착층(120)과 접하는 일면이 표면처리된 것일 수 있다. 반면, 제1기저필름(110)이 금속 소재를 포함하는 경우에 제1기저필름(110)은 10㎛ 내지 35㎛ 범위의 두께를 가질 수 있다. 고분자 소재로는 폴리에틸렌테레프탈레이트(PET), 폴리이미드(PI) 및 폴리올레핀(PO)으로 이루어진 그룹으로부터 선택된 어느 하나 또는 둘 이상을 사용할 수 있고, 금속 소재로는 알루미늄(Al) 또는 구리(Cu)가 99 wt% 이상으로 함유된 금속필름을 사용할 수 있다.
제1접착층(120)은 실리콘 소재로 구성될 수 있고, 분자구조가 나선형 망상구조를 가질 수 있다. 제1접착층(120)은 80㎛ 내지 120㎛ 범위의 두께 및 500 gf/25mm 내지 1500 gf/25mm 범위의 접착력을 가질 수 있다. 제1접착층(120)은 트리메틸레이티드 실리카(Trimethylated silica), 디메틸실록산 공중합체(Dimethyl Siloxane copolymer) 및 에틸벤젠(Ethylbenzene)이 혼합된 접착주제를 포함할 수 있다. 그리고, 제1접착층(120)은 상술한 제1접착조성물 내지 제6접착조성물 중 어느 하나로 구성된 단일층이거나, 또는 둘 이상이 적층된 다층 구조를 가질 수 있다.
제1이형필름(300)은 불소가 함유된 것일 수 있고, 3 gf/25mm 내지 8 gf/25mm 범위의 접착력을 가질 수 있다.
다음으로, 제2기저필름(210), 제2접착층(220) 및 제2이형필름(300)이 순차적으로 적층된 제2테이프(200)를 제조한다.
제2기저필름(210)은 금속 소재를 포함할 수 있고, 10㎛ 내지 35㎛ 범위의 두께를 가질 수 있다. 금속 소재로는 알루미늄(Al) 또는 구리(Cu)가 99 wt% 이상으로 함유된 금속필름을 사용할 수 있다.
제2접착층(220)은 실리콘 소재로 구성될 수 있고, 분자구조가 나선형 망상구조를 가질 수 있다. 제2접착층(220)은 10㎛ 내지 50㎛ 범위의 두께 및 200 gf/25mm 내지 300 gf/25mm 범위의 접착력을 가질 수 있다. 제2접착층(220)은 트리메틸레이티드 실리카(Trimethylated silica), 디메틸실록산 공중합체(Dimethyl Siloxane copolymer) 및 에틸벤젠(Ethylbenzene)이 혼합된 접착주제를 포함할 수 있다. 그리고, 제2접착층(220)은 상술한 제1접착조성물 내지 제6접착조성물 중 어느 하나로 구성된 단일층이거나, 또는 둘 이상이 적층된 다층 구조를 가질 수 있다.
제2이형필름(300)은 불소가 함유된 것일 수 있고, 3 gf/25mm 내지 8 gf/25mm 범위의 접착력을 가질 수 있다.
상술한 바와 같이, 분리된 개별 공정을 통해 제1테이프(100) 및 제2테이프(200)를 제조할 수 있다. 제1테이프(100) 및 제2테이프(200)의 제조방법에 대해서는 도 6을 참조하여 후술하기로 한다.
다음으로, 반도체 패키지(400) 제조공정 직전에 제1테이프(100)에서 제1이형필름(300)을 제거한 후, 제1접착층(120)과 제2기저필름(210)이 서로 접하도록 합지하여 접착 테이프(10)를 제조한다.
이어서, 반도체 패키지(400) 제조공정이 진행되는 현장에서 제작된 접착 테이프(10)를 활용하여 후속 공정 예컨대, EMI 차폐층 형성공정을 진행할 수 있다.
상술한 바와 같이, 본 발명은 각각 개별 공정을 통해 제1테이프(100) 및 제2테이프(200)를 제조하고, 반도체 패키지(400) 제조공정이 진행되는 현장에서 제1테이프(100)와 제2테이프(200)를 합지하여 접착 테이프(10)를 제작함으로써, 제1테이프(100) 및 제2테이프(200) 각각의 운송 및 보관이 용이하고, 운송 및 보관 과정에서 접착 테이프(10)가 손상되는 것을 원천적으로 방지할 수 있으며, 양질의 접착 테이프(10)를 활용하여 공정을 진행함에 따라 수율을 향상시킬 수 있다.
이어서, 도 6을 참조하여 제1테이프(100) 및 제2테이프(200)의 제조방법에 대해 상세히 설명하기로 한다. 이하에서는, 설명의 편의를 위해 제2테이프(200)의 제조방법에 대한 일례를 설명하기로 한다. 즉, 후술하는 제2테이프(200) 제조방법과 동일한 방법으로 제1테이프(100)를 제조할 수 있다.
먼저, 도 6에 도시된 바와 같이, 제2기저필름(210)을 준비한다. 제2기저필름(210)은 알루미늄 또는 구리가 99 wt% 이상 함유된 것일 수 있다. 이때, 제2기저필름(210)은 10㎛ 내지 35㎛ 범위의 두께를 가질 수 있다.
다음으로, 제2접착층(220)을 형성하기 위한 접착조성물을 제조한다. 접착조성물은 혼합용기에 예정된 물질들을 기 설정된 비율로 주입 및 혼합하여 형성할 수 있다. 일례로, 트리메틸레이티드 실리카(Trimethylated silica), 디메틸실록산 공중합체(Dimethyl Siloxane copolymer) 및 에틸벤젠(Ethylbenzene)이 혼합된 접착주제 100 중량부에 대해 가교제 0.5 내지 1.5 중량부, 앵커리지 첨가제 0.5 내지 1.5 중량부 및 촉매제 0.5 내지 1.8 중량부를 혼합하여 접착조성물을 제조할 수 있다.
다음으로, 제조된 접착조성물을 안정화시킨다. 접착조성물의 안정화는 접착조성물 내 기포를 제거함과 동시에 접착조성물의 화학적 안정성 및 고른 중합 반응을 유도하기 위한 것이다. 구체적으로, 접착조성물의 안정화를 위해 4시간 내지 12시간 동안 제조된 접착조성물을 열적 평형상태에서 휴지시킬 수 있다. 통상적으로, 접착조성물 내 기포를 제거하기 위해서는 초음파 처리 또는 진공흡입을 진행하나, 본 발명의 실시예에 따른 접착조성물은 실리콘 성분을 포함하기 있기 때문에 화학적 안정성을 확보하고, 급격한 중합 반응을 방지하기 위해 열적 평형상태에서 진행하는 것이 바람직하다. 참고로, 열적 평형상태는 외부에서 그 어떠한 자극 또는 외력이 작용하지 않는 안정화된 상태를 지칭할 수 있다.
다음으로, 콤마 코터(comma coater)를 이용하여 제2기저필름(210) 상에 안정화된 접착조성물을 도포하여 제2접착층(220)을 형성한다. 이때, 콤마 코터는 제2접착층(220)의 목표 두께(즉, 최종 두께)보다 더 두껍게 접착조성물을 제2기저필름(210) 상에 도포할 수 있다. 구체적으로, 콤마 코터는 제2접착층(220)의 목표 두께 대비 2.5배 내지 3.5배 더 두껍게 접착조성물을 도포할 수 있다. 예를 들어, 제2접착층(220)의 목표 두께가 30㎛인 경우 콤마 코터는 75㎛ 내지 105㎛ 범위의 두께를 갖도록 접착조성물을 도포할 수 있다. 후술하겠지만, 제2접착층(220)은 후속 건조 열처리 및 경화 과정에서 점차 두께가 감소하여 목표 두께에 도달할 수 있다.
한편, 본 실시예에서는 콤마 코터를 이용하여 제2접착층(220)을 형성하는 경우를 예시하였으나, 제2접착층(220)은 얇은 두께를 갖기 때문에 공지된 다양한 공정방법을 사용할 수 있다. 변형예로서, 제2접착층(220)은 스핀코팅법 또는 스프레이법을 통해 형성할 수도 있다.
다음으로, 제2접착층(220)에 대한 1차 건조 열처리를 진행한다. 1차 건조 열처리를 접착조성물 내 용매를 제거함과 동시에 중합 반응을 활성화시키기 위한 것으로, 적외선 램프를 이용하여 진행할 수 있으며, 60℃ 내지 80℃ 범위의 온도에서 3분 내지 6분간 진행할 수 있다.
다음으로, 1차 건조 열처리에 연속하여 제2접착층(220)에 대한 2차 건조 열처리를 진행한다. 2차 건조 열처리는 1차 건조 열처리와 마찬가지로 접착조성물 내 용매를 제거함과 동시에 중합 반응을 활성화시키기 위한 것으로, 적외선 램프를 이용하여 진행할 수 있다. 2차 건조 열처리를 1차 건조 열처리보다 높은 온도에서 진행할 수 있으며, 1차 건조 열처리와 동일한 시간동안 진행할 수 있다. 예를 들어, 2차 건조 열처리는 160℃ 내지 180℃ 범위의 온도에서 3분 내지 6분간 진행할 수 있다.
다음으로, 2차 건조 열처리에 연속하여 제2접착층(220)에 대한 3차 건조 열처리를 진행한다. 3차 건조 열처리도 1차 및 2차 건조 열처리와 마찬가지로 접착조성물 내 용매를 제거함과 동시에 중합 반응을 활성화시키기 위한 것으로, 적외선 램프를 이용하여 진행할 수 있다. 3차 건조 열처리를 2차 건조 열처리보다 높은 온도에서 진행할 수 있으며, 2차 건조 열처리보다 긴 시간동안 진행할 수 있다. 예를 들어, 3차 건조 열처리를 190℃ 내지 210℃ 범위의 온도에서 9분 내지 18분 동안 진행할 수 있다.
다음으로, 상온에서 12시간 내지 24시간동안 제2접착층(220)을 경화 및 안정화시킨다. 즉, 1차 내지 3차 건조 열처리 과정에서 뜨거워진 제2기저필름(210) 및 제2접착층(220)을 상온까지 천천히 식혀주는 휴지기를 통해 제2접착층(220) 내 중합 반응을 안정적으로 마무리함과 동시에 제2접착층(220)이 요구되는 경도를 갖도록 경화시킬 수 있다.
여기서, 1차 내지 3차 건조 열처리 과정에서 단계적으로 온도를 상승시키면서 제2접착층(220)을 건조시키는 것은 제2접착층(220)이 표면부터 건조 및 경화되는 것을 방지하기 위한 것으로, 이를 통해 제2접착층(220) 내 기포를 용이하게 제거할 수 있다. 아울러, 3차 건조 열처리를 진행한 후, 상온까지 서서히 온도를 감소시켜 줌으로써 보다 안정적인 상태 및 고른 두께를 갖는 제2접착층(220)을 구현할 수 있다.
상술한 1차 내지 3차 건조 열처리 및 상온에서의 안정화가 완료된 시점에서 제2접착층(220)은 목표 두께를 가질 수 있다.
다음으로, 제2접착층(220) 상에 불소가 함유된 제2이형필름(300)을 부착한다. 이형필름(300)은 실리콘이 함유된 제2접착층(220)의 보호 및 분리가 용이하도록 불소가 함유된 것일 수 있으며, 3 gf/25mm 내지 8 gf/25mm 범위의 접착력을 가질 수 있다.
상술한 공정과정을 통해 제2테이프(200)를 완성할 수 있다. 아울러, 전술한 바와 같이 제2테이프(200) 제조방법과 동일한 방법으로 제1테이프(100)를 제조할 수 있다.
본 명세서에서 설명되는 실시예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서, 본 명세서에 개시된 실시 예는 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아님은 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시 예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 복수의 돌출전극이 형성된 반도체 패키지의 하면에 부착되는 반도체 패키지 제조공정용 접착 테이프에 있어서,
    제1기저필름의 상에 형성된 제1접착층;
    상기 제1접착층 상에 형성되며, 상기 반도체 패키지 하면 부착시 상기 반도체 패키지의 하면 토폴로지에 대응하도록 형태가 변형되고, 공정간 변형된 형태를 독자적으로 유지하도록 금속원소가 함유된 제2기저필름; 및
    상기 제2기저필름 상에 형성되고, 상기 제1접착층보다 얇은 두께를 가지며, 상기 제1접착층의 접착력보다 작은 접착력을 갖는 제2접착층을 포함하고,
    상기 제1접착층 및 상기 제2접착층 각각은 분자구조가 나선형 망상구조를 갖고, 실리콘이 함유된 제1접착조성물을 포함하는 접착 테이프.
  2. 제1항에 있어서,
    상기 제2접착층 상에 부착되고, 불소가 함유된 이형필름을 더 포함하고,
    상기 이형필름은 3 gf/25mm 내지 8 gf/25mm 범위의 접착력을 갖는 접착 테이프.
  3. 제1항에 있어서,
    상기 제1기저필름과 상기 제1접착층 사이에 삽입된 제1중간층; 및
    상기 제2기저필름과 상기 제2접착층 사이에 삽입된 제2중간층을 더 포함하고,
    상기 제1중간층 및 상기 제2중간층 각각은 분자구조가 나선형 망상구조를 갖고, 실리콘이 함유된 제2접착조성물을 포함하며, 0.2 g/m2 내지 0.5 g/m2 범위의 평량을 갖는 접착 테이프.
  4. 제3항에 있어서,
    상기 제2접착조성물은 톨루엔(Toluene), 실록산과 실리콘, 디-메틸, 하이드록시-말단화(Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8), 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica) 및 에틸벤젠(Ethylbenzene)이 혼합된 것을 포함하는 접착 테이프.
  5. 제1항에 있어서,
    상기 제1기저필름은 폴리에틸렌테레프탈레이트(PET), 폴리이미드(PI) 및 폴리올레핀(PO)으로 이루어진 그룹으로부터 선택된 어느 하나의 단일층 또는 둘 이상이 적층된 다층 구조를 갖고, 10㎛ 내지 150㎛ 범위의 두께를 갖는 접착 테이프.
  6. 제5항에 있어서,
    상기 제1기저필름은 상기 제1접착층과 접하는 표면이 코로나 방전 처리법 또는 이온 보조 반응법을 이용하여 표면처리된 접착 테이프.
  7. 제1항에 있어서,
    상기 제1기저필름은 상기 반도체 패키지 하면 부착시 상기 반도체 패키지의 하면 토폴로지에 대응하도록 형태가 변형되고, 공정간 변형된 형태를 독자적으로 유지하도록 금속원소가 함유된 것을 포함하는 접착 테이프.
  8. 제7항에 있어서,
    상기 제1기저필름 및 상기 제2기저필름 각각은 적어도 99 wt% 이상의 알루미늄(Al)을 포함하고, 상기 알루미늄이 함유된 제1기저필름 및 제2기저필름 각각은 6 kgf/mm2 내지 12 kgf/mm2 범위의 인장강도 및 8% 내지 16% 범위의 연신율을 가지며, 10㎛ 내지 35㎛ 범위의 두께를 갖는 접착 테이프.
  9. 제7항에 있어서,
    상기 제1기저필름 및 상기 제2기저필름 각각은 적어도 99 wt% 이상의 구리(Cu)를 포함하고, 상기 구리가 함유된 제1기저필름 및 제2기저필름 각각은 10 kgf/mm2 내지 26 kgf/mm2 범위의 인장강도 및 4% 내지 12% 범위의 연신율을 가지며, 10㎛ 내지 35㎛ 범위의 두께를 갖는 접착 테이프.
  10. 제1항에 있어서,
    상기 제2기저필름은 10㎛ 내지 35㎛ 범위의 두께를 갖되, 상기 돌출전극의 사이즈가 증가할수록 설정된 두께 범위내에서 상기 제2기저필름의 두께가 감소하고, 상기 돌출전극 사이의 간격이 증가할수록 설정된 두께 범위내에서 상기 제2기저필름의 두께가 증가하는 접착 테이프.
  11. 제1항에 있어서,
    상기 제2기저필름에서 규칙적으로 배열되고, 상기 제2기저필름을 관통하는 복수의 타공을 포함하며, 상기 복수의 타공 각각은 삼각형 이상의 다각형, 타원형 또는 원형으로 이루어진 그룹으로부터 선택된 어느 하나의 평면형상을 갖고, 상기 복수의 타공을 통해 상기 제1접착층과 상기 제2접착층이 다이렉트 컨택되는 접착 테이프.
  12. 제1항에 있어서,
    상기 제1접착층은 100㎛ 내지 700㎛ 범위의 두께 및 적어도 500 gf/25mm 이상의 접착력을 갖고,
    상기 제2접착층은 10㎛ 내지 50㎛ 범위의 두께 및 200 gf/25mm 내지 300 gf/25mm 범위의 접착력을 갖는 접착 테이프.
  13. 제1항에 있어서,
    상기 제1접착층은 100㎛ 내지 700㎛ 범위의 두께를 갖되, 상기 돌출전극의 사이즈가 증가할수록 설정된 두께 범위내에서 상기 제1접착층의 두께가 감소하고, 상기 돌출전극 사이의 간격이 증가할수록 설정된 두께 범위내에서 상기 제1접착층의 두께가 증가하며,
    상기 제2접착층은 10㎛ 내지 50㎛ 범위의 두께를 갖되, 상기 돌출전극의 사이즈가 증가할수록 설정된 두께 범위내에서 상기 제2접착층의 두께가 증가하고, 상기 돌출전극 사이의 간격이 증가할수록 설정된 두께 범위내에서 상기 제2접착층의 두께가 감소하는 접착 테이프.
  14. 제1항에 있어서,
    상기 제1접착조성물은 트리메틸레이티드 실리카(Trimethylated silica), 디메틸실록산 공중합체(Dimethyl Siloxane copolymer) 및 에틸벤젠(Ethylbenzene)이 혼합된 접착주제를 포함하는 접착 테이프.
  15. 제14항에 있어서,
    상기 제1접착조성물은 상기 접착주제 100 중량부에 대해 가교제 0.5 내지 1.5 중량부, 앵커리지 첨가제 0.5 내지 1.5 중량부 및 촉매제 0.5 내지 1.8 중량부를 더 포함하고,
    상기 접착주제는 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica), 에틸벤젠(Ethylbenzene) 및 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2)가 혼합된 혼합물을 포함하는 접착 테이프.
  16. 제14항에 있어서,
    상기 제1접착조성물은 제1주제와 제2주제가 95:5 내지 99:1 비율로 혼합된 상기 접착주제 100 중량부에 대해 가교제 0.5 내지 1.5 중량부, 앵커리지 첨가제 0.5 내지 1.5 중량부 및 촉매제 0.5 내지 1.5 중량부를 더 포함하고,
    상기 제1주제는 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica), 에틸벤젠(Ethylbenzene) 및 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2)가 혼합된 혼합물을 포함하며,
    상기 제2주제는 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2)와 1-에티닐사이클로헥산올(1-Ethynylcyclohexanol; CAS No. 78-27-3)이 혼합된 혼합물을 포함하는 접착 테이프.
  17. 제15항 또는 제16항에 있어서,
    상기 가교제는 헵탄(Heptane) 및 실록산과 실리콘, 메틸수소(Siloxanes and Silicones, Me hydrogen; CAS No. 63148-57-2)가 혼합된 혼합물을 포함하고,
    상기 앵커리지 첨가제는 트라이메톡시[3-(옥시라닐메톡시)프로필]실란(Silane, trimethoxy[3-(oxiranylmethoxy)propyl]-; CAS No. 2530-83-8), 트라이메톡시[(3-옥시란일메톡시)프로필]실레인과 결합한 실록산류와 실리콘류, 디-메틸, 디-비닐, 하이드록시-말단화 반응 생성물(Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated reaction products with trimethoxy[3-oxiranylmethoxy)propyl]silane; CAS No. 102782-94-5), 메탄올(Methanol) 및 디비닐헥사메틸시클로테트라실록산(Divinyl hexamethyl cyclotetrasiloxane; CAS No. 17980-61-9)이 혼합된 혼합물을 포함하며,
    상기 촉매제는 백금, 1,3-다이에텐일-1,1,3,3-테트라메틸다이실록산 착물(Platinium 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complexes; CAS No. 68478-92-2), 실록산과 실리콘, 디-메틸, 비닐기-말단화(Siloxanes and Silicones, di-Me, vinyl group-terminated; CAS No. 68083-19-2), 테트라메틸디비닐디실록산(Tetramethyldivinyldisiloxane; CAS No. 2627-95-4) 및 실록산과 실리콘, 디-메틸, 하이드록시-말단화(Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8)가 혼합된 혼합물을 포함하는 접착 테이프.
  18. 제14항에 있어서,
    상기 제1접착조성물은 제3주제와 제4주제가 50:50 내지 80:20 비율로 혼합된 상기 접착주제 100 중량부에 대해 중합개시제 0.5 내지 3 중량부를 더 포함하고,
    상기 제3주제는 자일렌(Xylene), 에틸벤젠(Ethylbenzene), 톨루엔(Toluene) 및 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트(Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate; CAS No. 68440-70-0)가 혼합된 혼합물을 포함하며,
    상기 제4주제는 톨루엔(Toluene), 실록산과 실리콘, 디-메틸, 하이드록시-말단화(Siloxanes and Silicones, di-Me, hydroxy-terminated; CAS No. 70131-67-8), 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica) 및 에틸벤젠(Ethylbenzene)이 혼합된 혼합물을 포함하고,
    상기 중합개시제는 과산화벤조일(Benzoyl Peroxide)을 포함하는 접착 테이프.
  19. 제14항에 있어서,
    상기 제1접착조성물은 제3주제와 제5주제가 50:50 내지 80:20 비율로 혼합된 상기 접착주제 100 중량부에 대해 중합개시제 0.5 내지 3 중량부를 더 포함하고,
    상기 제3주제는 자일렌(Xylene), 에틸벤젠(Ethylbenzene), 톨루엔(Toluene) 및 실록산과 실리콘, 디-메틸, 클로로트리메틸실란의 하이드록시-말단화 반응 생성물, 염산, 이소프로필알콜과 소듐 실리케이트(Siloxanes and silicones, di-Me, hydroxy-terminated reaction products with chlorotrimethylsilane, hydrochloric acid, iso-Pr alc. and sodium silicate; CAS No. 68440-70-0)가 혼합된 혼합물을 포함하고,
    상기 제5주제는 톨루엔(Toluene), 실록산과 실리콘, 디-메틸, 메틸비닐, 비닐기-말단화(Siloxanes and Silicones, di-Me, Me vinyl, vinyl groupterminated; CAS No. 68083-18-1), 자일렌(Xylene), 트리메틸레이티드 실리카(Trimethylated silica), 에틸벤젠(Ethylbenzene), 실록산과 실리콘, 디-메틸, 메틸비닐, 하이드록시-말단화(Siloxanes and Silicones, di-Me, Me vinyl, hydroxy-terminated; CAS No. 67923-19-7) 및 1-에티닐사이클로헥산올(1-Ethynylcyclohexanol; CAS No. 78-27-3)이 혼합된 혼합물을 포함하며,
    상기 중합개시제는 과산화벤조일(Benzoyl Peroxide)을 포함하는 접착 테이프.
  20. 고분자 소재 또는 금속 소재를 포함하는 제1기저필름, 분자구조가 나선형 망상구조를 갖고 실리콘이 함유된 제1접착층 및 불소가 함유된 제1이형필름이 순차적으로 적층된 제1테이프를 제조하는 단계;
    금속 소재를 포함하는 제2기저필름, 분자구조가 나선형 망상구조를 갖고 실리콘이 함유된 제2접착층 및 불소가 함유된 제2이형필름이 순차적으로 적층된 제2테이프를 제조하는 단계;
    상기 제1테이프에서 상기 제1이형필름을 제거하는 단계; 및
    상기 제1접착층과 상기 제2기저필름이 접하도록 상기 제1테이프와 상기 제2테이프를 합지하는 단계
    를 포함하는 접착 테이프 제조방법.
PCT/KR2019/014463 2019-03-18 2019-10-30 반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법 WO2020189873A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/440,049 US20220220345A1 (en) 2019-03-18 2019-10-30 Adhesive tape for semiconductor package manufacturing process, and method for manufacturing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020190030488A KR102198323B1 (ko) 2019-03-18 2019-03-18 반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법
KR10-2019-0030488 2019-03-18
KR1020190070137A KR102267636B1 (ko) 2019-06-13 2019-06-13 반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법
KR10-2019-0070137 2019-06-13
KR1020190119666A KR102282519B1 (ko) 2019-09-27 2019-09-27 반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법
KR10-2019-0119666 2019-09-27

Publications (1)

Publication Number Publication Date
WO2020189873A1 true WO2020189873A1 (ko) 2020-09-24

Family

ID=72519285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014463 WO2020189873A1 (ko) 2019-03-18 2019-10-30 반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법

Country Status (3)

Country Link
US (1) US20220220345A1 (ko)
TW (1) TWI717094B (ko)
WO (1) WO2020189873A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114620488B (zh) * 2022-03-24 2023-06-02 业泓科技(成都)有限公司 电子组件模块的取片治具及其操作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120050136A (ko) * 2010-11-10 2012-05-18 (주)엘지하우시스 재박리성 및 상용성이 우수한 윈도우 필름용 실리콘계 점착제 조성물 및 이를 이용한 윈도우 필름
KR20140013039A (ko) * 2011-03-21 2014-02-04 애버리 데니슨 코포레이션 비-유동 실리콘 접착제
KR20180112536A (ko) * 2017-04-04 2018-10-12 (주)엘지하우시스 광고용 필름
KR20180118628A (ko) * 2016-02-22 2018-10-31 린텍 가부시키가이샤 보호막 형성용 시트, 보호막 형성용 시트의 제조 방법 및 반도체 장치의 제조 방법
JP2019038907A (ja) * 2017-08-23 2019-03-14 住友ベークライト株式会社 仮固定用テープ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5736046B2 (ja) * 2010-06-23 2015-06-17 インクテック カンパニー リミテッド 電磁波シールドフィルムの製造方法及びこれにより製造された電磁波シールドフィルム
KR20140109340A (ko) * 2013-03-05 2014-09-15 주식회사 잉크테크 전자파 차폐 필름 및 그 제조방법
KR102006728B1 (ko) * 2013-12-02 2019-08-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제조방법
KR101896435B1 (ko) * 2016-11-09 2018-09-07 엔트리움 주식회사 전자파차폐용 전자부품 패키지 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120050136A (ko) * 2010-11-10 2012-05-18 (주)엘지하우시스 재박리성 및 상용성이 우수한 윈도우 필름용 실리콘계 점착제 조성물 및 이를 이용한 윈도우 필름
KR20140013039A (ko) * 2011-03-21 2014-02-04 애버리 데니슨 코포레이션 비-유동 실리콘 접착제
KR20180118628A (ko) * 2016-02-22 2018-10-31 린텍 가부시키가이샤 보호막 형성용 시트, 보호막 형성용 시트의 제조 방법 및 반도체 장치의 제조 방법
KR20180112536A (ko) * 2017-04-04 2018-10-12 (주)엘지하우시스 광고용 필름
JP2019038907A (ja) * 2017-08-23 2019-03-14 住友ベークライト株式会社 仮固定用テープ

Also Published As

Publication number Publication date
US20220220345A1 (en) 2022-07-14
TW202035608A (zh) 2020-10-01
TWI717094B (zh) 2021-01-21

Similar Documents

Publication Publication Date Title
TWI225088B (en) Method of separating and recovering cut workpieces
WO2015009129A1 (ko) 봉지 조성물
WO2011126263A2 (ko) 점착제 조성물, 점착시트 및 터치 패널
WO2013073846A1 (ko) 접착 필름 및 이를 이용한 유기전자장치의 봉지 방법
WO2009113831A2 (ko) 반도체 패키징용 복합기능 테이프 및 이를 이용한 반도체 소자의 제조방법
WO2012138153A2 (ko) 간극 충진용 스웰링 테이프
WO2009131405A2 (ko) 에폭시계 조성물, 접착 필름, 다이싱 다이본딩 필름 및 반도체 장치
WO2011046238A1 (ko) 다이어태치 필름
WO2011126265A2 (ko) 터치 패널용 점착 필름 및 터치 패널
WO2021215741A1 (ko) Led칩 전사용 감광성 전사 수지, 그 감광성 전사 수지를 이용한 led칩 전사 방법 및 이를 이용한 디스플레이 장치의 제조 방법
WO2020105953A1 (ko) 폴더블 백플레이트 필름 및 폴더블 백플레이트 필름의 제조방법
WO2010147356A2 (ko) 웨이퍼 가공용 기재
WO2010147363A2 (ko) 웨이퍼 가공용 시트
WO2020189873A1 (ko) 반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법
WO2021187772A1 (ko) 발포체와 감광성 수지를 이용한 led칩 전사 방법 및 장치, 이를 이용한 디스플레이 장치의 제조 방법
WO2015064953A1 (ko) 전자 부품의 제조 방법
WO2019045336A1 (ko) 무기재형 실리콘 점착필름
WO2019083246A2 (ko) 광학 필름, 광학 필름 제조 방법 및 유기 발광 전자 장치 제조 방법
WO2016052916A1 (ko) 터치패널용 점착제 조성물, 점착 필름 및 터치 패널
WO2020105923A1 (ko) 폴더블 백플레이트, 폴더블 백플레이트의 제조방법 및 이를 포함하는 폴더블 디스플레이 장치
KR102267636B1 (ko) 반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법
WO2021095990A1 (ko) 초경박리 이형필름
KR102282519B1 (ko) 반도체 패키지 제조공정을 위한 접착 테이프 및 그 제조방법
WO2013094930A1 (ko) 비자외선형 다이싱 다이본딩 필름
WO2020085770A1 (ko) 반도체 회로 접속용 접착제 조성물 및 이를 포함한 접착 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920569

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19920569

Country of ref document: EP

Kind code of ref document: A1