WO2020184300A1 - Wheel control system and wheel control method - Google Patents
Wheel control system and wheel control method Download PDFInfo
- Publication number
- WO2020184300A1 WO2020184300A1 PCT/JP2020/008930 JP2020008930W WO2020184300A1 WO 2020184300 A1 WO2020184300 A1 WO 2020184300A1 JP 2020008930 W JP2020008930 W JP 2020008930W WO 2020184300 A1 WO2020184300 A1 WO 2020184300A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel
- vehicle
- steering
- wheels
- failure
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2036—Electric differentials, e.g. for supporting steering vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0084—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/1755—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/1755—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
- B60T8/17557—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for lane departure prevention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/26—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels
- B60T8/262—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves with stepped characteristics
- B60T8/265—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels using valves with stepped characteristics for hydraulic brake systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/42—Electrical machine applications with use of more than one motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/44—Wheel Hub motors, i.e. integrated in the wheel hub
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/22—Yaw angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/24—Steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/40—Failsafe aspects of brake control systems
- B60T2270/402—Back-up
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Definitions
- the present disclosure relates to the control of wheels driven by an electric motor.
- a microcontroller as a control unit that controls actuators installed in the vehicle and a microcontroller monitoring unit as a monitoring unit that monitors the occurrence of abnormalities in the microcontroller, and executes file safe when an abnormality occurs inside the microcontroller.
- a microcontroller monitoring unit as a monitoring unit that monitors the occurrence of abnormalities in the microcontroller, and executes file safe when an abnormality occurs inside the microcontroller.
- Patent Document 1 a technique (so-called in-wheel motor) has been proposed in which electric motors as actuators are arranged on the left and right wheels of a vehicle, and each electric motor drives the left and right wheels. Further, in such a technique, two control circuits may be used as control units for controlling the two left and right electric motors, respectively.
- the running stability of the vehicle may be impaired.
- a normal control circuit directs the torque to move forward to the motor to be controlled
- a failure control circuit directs the torque to move backward to the motor to be controlled, and as a result, the vehicle spins.
- the running stability may be impaired.
- the measures (file-safe) to be taken when one of the control circuits fails has not been sufficiently studied. Therefore, in a configuration including two electric motors for driving two left and right wheels and two control circuits for controlling each electric motor, it is desired to realize fail-safe when one of the control circuits fails. ing.
- an electric motor arranged on each wheel constituting at least one drive wheel of a pair of front wheels and a pair of rear wheels of the vehicle to drive the wheels, and the drive wheels are configured.
- Wheel control that is mounted on the vehicle and has a control circuit that is arranged corresponding to each wheel and controls the electric motor that drives the wheels, and controls the operation of the pair of front wheels and the pair of rear wheels.
- the system is provided.
- This wheel control system controls an electric motor control device that controls the control circuit arranged corresponding to each wheel constituting the drive wheel, and brakes of the pair of front wheels and the pair of rear wheels. It is provided with a brake control device capable of communicating with an electric motor control device.
- the electric motor control device includes a target torque indicating unit that instructs a target torque to the control circuit corresponding to each wheel constituting the drive wheel, and the control circuit corresponding to each wheel constituting the drive wheel.
- a target torque indicating unit that instructs a target torque to the control circuit corresponding to each wheel constituting the drive wheel
- the control circuit corresponding to each wheel constituting the drive wheel is used.
- the failure occurrence identification unit that identifies the failure occurrence of any of the control circuits
- the acceleration sensor mounted on the vehicle to detect the lateral acceleration.
- the detection result acquisition unit that acquires at least one of the detection results, the vehicle speed sensor mounted on the vehicle to detect the vehicle speed, and the steering angle sensor mounted on the vehicle to detect the steering angle are used.
- It has a target value calculation unit that calculates a target value that is at least one of a target yaw rate and a target lateral acceleration of the vehicle.
- the target torque indicator unit instructs the failure identification control circuit, which is the control circuit in which the failure occurrence is specified, to have zero as the target torque.
- the brake control device acquires the detection result for a wheel different from the driving wheel among the wheels constituting the pair of front wheels and the pair of rear wheels. The brake is applied so that the detection result acquired by the unit approaches the calculated target value.
- the wheel control system of the above embodiment when a failure is identified, zero is instructed as a target torque to the failure identification control circuit, and of the pair of front wheels and the pair of wheels constituting the rear wheels. Since the brake is applied to the wheels different from the drive wheels so that the detection result acquired by the detection result acquisition unit approaches the target value, the two electric motors that drive the two left and right wheels and each electric motor are controlled. In the configuration including the two control circuits, it is possible to suppress the deterioration of the running stability of the vehicle when a failure occurs in one of the control circuits, and it is possible to realize fail-safety.
- This disclosure can also be realized in various forms other than the wheel control system.
- it can be realized in the form of a vehicle equipped with a wheel control system, a wheel control method, a computer program for realizing these devices and methods, a storage medium for storing the computer program, and the like.
- FIG. 1 is an explanatory view showing a schematic configuration of a vehicle equipped with a wheel control system as an embodiment of the present disclosure.
- FIG. 2 is a block diagram showing a functional configuration of the electric motor control device and the control circuit according to the first embodiment.
- FIG. 3 is an explanatory diagram showing an example of the setting contents of the torque map.
- FIG. 4 is an explanatory diagram showing a torque distribution rate determination map.
- FIG. 5 is an explanatory diagram showing a target yaw rate map.
- FIG. 6 is a flowchart showing the procedure of the lane deviation hazard detection process.
- FIG. 7 is a flowchart showing the procedure of the target torque determination process at the time of failure.
- FIG. 8 is a flowchart showing the procedure of the brake control process.
- FIG. 9 is a flowchart showing the procedure of the brake control process.
- FIG. 10 is an explanatory diagram showing an example of the operation of the vehicle when traveling straight when the control circuit on the right side fails.
- FIG. 11 is an explanatory diagram showing an example of the operation of the vehicle when turning right when the control circuit on the right side fails.
- FIG. 12 is a flowchart showing the procedure of the steering control process in the second embodiment.
- FIG. 13 is an explanatory diagram showing an example of the setting contents of the steering angle map.
- FIG. 14 is an explanatory view showing a schematic configuration of a vehicle equipped with the wheel control system according to the third embodiment.
- FIG. 15 is a block diagram showing a functional configuration of the electric motor control device and the control circuit according to the second embodiment.
- FIG. 16 is a flowchart showing the procedure of the brake control process in the third embodiment.
- FIG. 17 is a flowchart showing the procedure of the brake control process in the third embodiment.
- the wheel control system 100 of the present embodiment is mounted on a vehicle 200, which is a four-wheeled vehicle, and constitutes a pair of front wheels 201, 202, and a driven wheel that form a driving wheel of the vehicle 200. It controls the operation of the pair of rear wheels 203 and 204.
- the vehicle 200 uses two electric motors 30R and 30L driven by power supply from a battery (not shown) mounted on the vehicle 200 as a drive source.
- the electric motor 30R is attached to the front wheel 201, and the electric motor 30L is a so-called in-wheel motor attached to the front wheel 202.
- the wheel control system 100 includes an electric motor control device 10 and a brake control device 120 that can communicate with each other.
- the electric motor control device 10 controls two control circuits 31R and 31L.
- the control circuit 31R is arranged corresponding to the front wheel 201 and controls the electric motor 30R.
- the control circuit 31L is arranged corresponding to the front wheel 202 and controls the electric motor 30L. The detailed configuration of the electric motor control device 10 and the two control circuits 31R and 31L will be described later.
- the brake control device 120 controls the brakes of the pair of front wheels 201 and 202 and the pair of rear wheels 203 and 204 by controlling the operations of the four brake devices 51, 52, 53 and 54.
- the braking device 51 realizes braking of the front wheels 201.
- the brake device 52 brakes the front wheels 202
- the brake device 53 brakes the rear wheels 203
- the brake device 54 brakes the rear wheels 204.
- Each of the four brake devices 51 to 54 has a brake rotor, a brake pad, a hydraulic actuator for operating the brake pad, and the like, and brakes each wheel 201 to 204 according to a command from the brake control device 120. To realize.
- Both the electric motor control device 10 and the brake control device 120 are configured to be able to communicate with each other via the in-vehicle network 220.
- the in-vehicle network 220 any type of network such as CAN (Controller Area Network), LIN (Local Interconnect Network), and Ethernet (registered trademark) may be used.
- the vehicle 200 includes an EPS (Electronic Power Steering) control device 110 and an EPS actuator 111.
- EPS Electronic Power Steering
- the steering gear 211, the steering wheel 210, the accelerator opening sensor 41, the steering angle sensor 42, the range sensor 43, the vehicle speed sensor 44, and the yaw rate sensor 45 are provided.
- the EPS (Electronic Power Steering) control device 110 controls the operation of the EPS actuator 111.
- the EPS control device 110 is composed of an ECU.
- the EPS control device 110 realizes so-called electric power steering.
- the EPS actuator 111 includes a fluid (oil), an oil pump for flowing the fluid, and the like, and generates hydraulic pressure according to a command from the EPS control device 110 to assist the operation of the handle 210.
- the steering gear 211 transmits the movement of the steering wheel 210 to the pair of front wheels 201 and 202.
- the accelerator opening sensor 41 detects the amount of depression of the accelerator pedal (not shown) included in the vehicle 200 as the accelerator opening, that is, the rotation angle of the motor for opening and closing the throttle valve.
- the steering angle sensor 42 is electrically connected to the EPS actuator 111 by a dedicated cable, and detects the steering angle of the vehicle 200 by the steering wheel 210 by using a signal output according to the operation of the EPS actuator 111.
- the steering angle sensor 42 is electrically connected to the EPS control device 110 by a dedicated cable, and notifies the EPS control device 110 of the detected steering angle.
- the range sensor 43 detects a shift range specified by a shift lever (not shown) included in the vehicle 200.
- the range sensor 43 is electrically connected to the electric motor control device 10 by a dedicated cable, and notifies the electric motor control device 10 of the detected shift range.
- the vehicle speed sensor 44 detects the rotational speed of each wheel 201 to 204.
- the vehicle speed sensor 44 is electrically connected to the electric motor control device 10 by a dedicated cable.
- the vehicle speed signal output from the vehicle speed sensor 44 is a voltage value proportional to the wheel speed or a pulse wave indicating an interval corresponding to the wheel speed, and is notified to the electric motor control device 10 via a dedicated cable.
- the yaw rate sensor 45 detects the yaw rate when the vehicle 200 is traveling.
- the yaw rate sensor 45 is electrically connected to the electric motor control device 10 by a dedicated cable, and notifies the electric motor control device 10 of the detected yaw rate.
- the electric motor control device 10 includes an accelerator opening degree specifying unit 11, a vehicle speed specifying unit 12, a shift range specifying unit 13, a steering angle specifying unit 14, a yaw rate specifying unit 15, and a target torque instruction.
- a unit 16, a monitoring unit 17, a comparator 18, a target yaw rate calculation unit 19, a comparator 20, and a failure occurrence identification unit 21 are provided.
- the electric motor control device 10 is composed of an ECU.
- the accelerator opening degree specifying unit 11 specifies the accelerator opening degree by receiving a signal indicating the accelerator opening degree notified from the accelerator opening degree sensor 41.
- the vehicle speed specifying unit 12 identifies the vehicle speed of the vehicle 200 by receiving a signal indicating the vehicle speed notified from the vehicle speed sensor 44.
- the shift range specifying unit 13 specifies the shift range by receiving a signal indicating the shift range notified from the range sensor 43.
- the steering angle specifying unit 14 identifies the steering angle by receiving a signal indicating the steering angle notified from the steering angle sensor 42.
- the yaw rate specifying unit 15 identifies the yaw rate by receiving a signal indicating the yaw rate notified from the yaw rate sensor 45.
- the target torque indicating unit 16 determines the target torque and instructs the two control circuits 31R and 31L, respectively. A method for determining such a target torque will be described.
- the target torque indicator 16 calculates the target torque (hereinafter, referred to as "overall target torque") to be output by the two electric motors 30R and 30L as a whole.
- the target torque indicating unit 16 includes an accelerator opening degree specified by the accelerator opening degree specifying unit 11, a vehicle speed specified by the vehicle speed specifying unit 12, and a shift range specified by the shift range specifying unit 13. Based on the above, the target torque is calculated with reference to the torque map shown in FIG.
- Such a torque map is a map in which the accelerator opening degree and the target torque are associated with each vehicle speed.
- a positive target torque means that the shift range is the drive (D) range
- a negative target torque means that the shift range is the backward (R) range.
- the target torque indicator 16 determines the distribution rate when distributing the calculated overall target torque to the left and right electric motors 30R and 30L, and sends a signal indicating the target torque according to the determined distribution rate. Notify the two control circuits 31R and 31L, respectively, and output to the comparator 18.
- the target torque distribution rate is determined using the torque distribution rate determination map shown in FIG. 4 based on the vehicle speed specified by the vehicle speed specifying unit 12 and the steering angle specified by the steering angle specifying unit 14.
- This torque distribution rate determination map is a map in which the steering angle and the torque distribution rate are associated with each vehicle speed.
- the target torque of the electric motor 30L is indicated by a thick solid line L1
- the target torque of the electric motor 30R is indicated by a thin solid line L2.
- the distribution ratio is set so that the target torque of the electric motor 30L and the target torque of the electric motor 30R are 1: 1.
- the distribution ratio is such that the target torque of the electric motor 30L and the target torque of the electric motor 30R are 1: 0.5, that is, 2: 1.
- FIG. 4 shows only three maps when the vehicle speed V is v1, v2, and v3, but in the present embodiment, four or more maps are prepared in advance.
- the monitoring unit 17 shown in FIG. 2 monitors the failure of the target torque indicating unit 16. If the target torque indicator 16 fails, an erroneous value may be calculated as the overall target torque, or an erroneous distribution rate may be calculated. Therefore, in the electric motor control device 10, a monitoring unit 17 is provided to monitor whether or not the target torque indicating unit 16 has a failure.
- the monitoring unit 17 has the same configuration as the target torque indicating unit 16, determines the overall target torque and the distribution rate when distributing to the left and right electric motors 30R and 30L, and determines the distribution rate according to the determined distribution rate. Is output to the comparator 18.
- the comparator 18 inputs signals indicating the target torque from the target torque indicating unit 16 and the monitoring unit 17, compares the target torques indicated by these two signals, and determines the comparison result, that is, the difference between the target torques, as a failure occurrence identification unit. Notify 21.
- the target yaw rate calculation unit 19 calculates the target yaw rate with reference to the target yaw rate map shown in FIG. 5 based on the vehicle speed specified by the vehicle speed specifying unit 12 and the steering angle specified by the steering angle specifying unit 14.
- the target yaw rate map is a map in which the steering angle and the target torque are associated with each vehicle speed.
- the horizontal axis represents the steering angle and the vertical axis represents the target yaw rate.
- the target yaw rate is zero when the steering angle is zero, and the curve Ly1 in which the target yaw rate gradually increases as the steering angle increases to the left or right is set as the target yaw rate map. ..
- the target yaw rate when the steering angle is zero is the same as the target yaw rate map Ly1 and is set to zero. Further, in the target yaw rate map Lyn, similarly to the target yaw rate map Ly1, the target yaw rate is set to gradually increase as the absolute value of the steering angle increases. In the target yaw rate map Lyn when the vehicle speed V is vn, the target yaw rate map Ly1 is represented by a broken line for easy comparison.
- the target yaw rate calculation unit 19 notifies the comparator 20 of the target yaw rate calculated using the target yaw rate map.
- the comparator 20 inputs and compares the yaw rate specified by the yaw rate specifying unit 15 and the yaw rate calculated by the target yaw rate calculating unit 19, and compares the comparison result, that is, the difference between these two yaw rates (hereinafter, "yaw rate"). "Difference”) is notified to the failure occurrence specifying unit 21, the target torque indicating unit 16, and the monitoring unit 17.
- the yaw rate difference is used in the lane deviation hazard detection process and the brake control process, which will be described later.
- the failure occurrence identification unit 21 identifies the failure of the target torque indicator 16 and the failure occurrence of the two control circuits 31R and 31L. Specifically, the failure occurrence specifying unit 21 identifies the occurrence of a failure of the target torque indicating unit 16 when the difference between the target torques received from the comparator 18 is equal to or greater than a predetermined threshold value. When the shift range is backward (R), the occurrence of a failure may be specified when the magnitude (absolute value) of the target torque output from the target torque indicator 16 is equal to or greater than a predetermined threshold value. Good.
- the failure occurrence identification unit 21 also receives at least one of the two control circuits 31R and 31L when a signal indicating the occurrence of a failure (hereinafter referred to as a “failure occurrence signal”) is received from the two control circuits 31R and 31L. Identify the occurrence of one of the failures. When the failure occurrence identification unit 21 identifies the failure occurrence as described above, the failure occurrence identification unit 21 notifies the target torque indicating unit 16 and the monitoring unit 17 of a signal indicating that the failure has occurred.
- the target torque indicating unit 16 and the monitoring unit 17 that have received the notification of the occurrence of a failure have a torque different from the normal target torque (normal target torque described later) when there is no failure, that is, the above-mentioned.
- a torque different from the target torque determined in this manner is notified to the two control circuits 31R and 31L as the target torque.
- the control circuit 31R shown in FIG. 2 includes a driver IC 32R, an actual torque calculation unit 33R, a comparator 34R, and an operation monitoring unit 35R.
- the driver IC 32R supplies the drive voltage to the electric motor 30R according to the target torque notified from the target torque indicating unit 16.
- the actual torque calculation unit 33R detects the current value of the current flowing through the electric motor 30R and the rotation speed of the electric motor 30R, and based on these current values and the rotation speed, the torque actually output by the electric motor 30R (hereinafter, "actual torque"). ) Is calculated.
- the value of the target torque notified from the target torque indicating unit 16 and the value of the actual torque calculated by the actual torque calculation unit 33R are input to the comparator 34R.
- the comparator 34R compares the values of these two input torques, and outputs the comparison result, that is, the difference in torque to the operation monitoring unit 35R.
- the operation monitoring unit 35R identifies the operation of the driver IC 32R. Specifically, the operation monitoring unit 35R identifies a failure of the driver IC 32R when the comparison result input from the comparator 34R is equal to or higher than a predetermined threshold value, and outputs a failure occurrence signal to the motor control device 10 (failure occurrence identification unit 21). ). If the comparison result is less than the threshold value, the driver IC 32R is operating normally, and the operation monitoring unit 35R does not output a failure occurrence signal.
- the control circuit 31L has the same configuration as the control circuit 31R. That is, it includes a driver IC 32L, an actual torque calculation unit 33L, a comparator 34L, and an operation monitoring unit 35L.
- the operation monitoring unit 35L identifies a failure of the driver IC 32L and notifies the electric motor control device 10 (failure occurrence specifying unit 21) of a failure occurrence signal.
- a lane deviation hazard detection process In the wheel control system 100 having the above configuration, a lane deviation hazard detection process, a failure target torque determination process, and a brake control process, which will be described later, are executed, whereby one of the two control circuits 31R and 31L is executed. Even if a failure occurs, it is possible to prevent the vehicle 200 from deteriorating in running stability.
- Lane deviation hazard detection process The lane deviation hazard detection process shown in FIG. 6 is executed when the start button of the vehicle 200 is pressed and the power of the electric motor control device 10 is turned on.
- the lane deviation detection process is a process for detecting that a hazard that causes the vehicle 200 to deviate from the lane in which the vehicle is traveling may occur due to a failure of one of the two control circuits 31R and 31L.
- the wheel control system 100 is first activated, the lane deviation hazard flag XF, the evacuation travel flag XR, and the normal side determination flag NF, which will be described later, are all set to "0". These flags can be set to different values after the first boot.
- the set values of these flags XF, XR, and NF are written in a writable non-volatile memory of the motor control device 10, for example, EEPROM, and the value described in the non-volatile memory is used at the next start. Referenced. The details of these flags XF, XR, and NF will be described later.
- the electric motor control device 10 determines whether or not the lane deviation hazard flag XF is on (step S105).
- the target yaw rate calculation unit 19 calculates the target yaw rate Yt from the vehicle speed specified by the vehicle speed specifying unit 12 and the steering angle specified by the steering angle specifying unit 14 (step S110).
- the comparator 20 acquires the detection result of the yaw rate sensor 45, that is, the actually measured value Y of the yaw rate via the yaw rate specifying unit 15 (step S115).
- the failure occurrence identification unit 21 is the absolute value of the yaw rate difference notified from the comparator 20, that is, the absolute value of the difference between the target yaw rate Yt calculated in step S110 and the measured yaw rate Y acquired in step S115. Is larger than the predetermined threshold value ⁇ (step S120).
- the threshold value ⁇ is the absolute value of the yaw rate difference when the measured value Y of the yaw rate deviates from the target yaw rate Yt because one of the two control circuits 31R and 31L has failed, and the absolute value of the yaw rate difference is obtained from the obtained value.
- the failure of one of the two control circuits 31R and 31L is set as an estimated value.
- the failure occurrence identification unit 21 sets the time counter C to zero (step S125).
- the time-lapse counter C is a counter value corresponding to the elapsed time from the start of determination that the absolute value of the yaw rate difference is larger than the threshold value ⁇ .
- the initial value of the time-lapse counter C is zero.
- the failure occurrence identification unit 21 determines whether or not the value of the time-lapse counter C is larger than the threshold value Cth (step S135).
- the threshold value Cth is set in advance by experiments or the like as a counter value corresponding to a time at which one of the two control circuits 31R and 31L can be estimated to have a high possibility of failure.
- step S135: NO the process returns to step S105 described above.
- step S135: YES the failure occurrence identification unit 21 sets the lane deviation hazard flag XF to "1" and turns it on.
- Step S140 That is, according to steps S135 and S140 described above, the lane departure hazard flag XF is turned on when a predetermined time has elapsed since the absolute value of the yaw rate difference began to be determined to be larger than the threshold value ⁇ . After the completion of step S140, the process returns to step S105 described above.
- the yaw rate specifying unit 15 corresponds to a subordinate concept of the detection result acquisition unit of the present disclosure.
- the target yaw rate calculation unit 19 corresponds to a subordinate concept of the target value calculation unit of the present disclosure.
- Target torque determination process at the time of failure The failure target torque determination process shown in FIG. 7 is executed when the start button of the vehicle 200 is pressed and the power of the electric motor control device 10 is turned on.
- the failure target torque determination process is a process for determining a target torque to be instructed to each of the control circuits 31R and 31L when one of the two control circuits 31R and 31L has a failure.
- the failure occurrence identification unit 21 determines whether or not the lane deviation hazard flag XF is turned on (step S205). If it is determined that the lane departure hazard flag XF is not turned on (step S205: NO), step S205 is executed again. That is, the failure occurrence identification unit 21 waits until the lane deviation hazard flag XF is turned on. On the other hand, when it is determined that the lane deviation hazard flag XF is ON (step S205: YES), the target torque indicating unit 16 specifies the accelerator opening degree and the vehicle speed specified by the accelerator opening degree specifying unit 11. The overall target torque To is calculated from the vehicle speed specified by the unit 12 and the shift range specified by the shift range specifying unit 13 (step S210). The target torque indicating unit 16 determines the torque distribution rate to the left and right wheels 201 and 202 by referring to the torque distribution rate map shown in FIG. 4 using the vehicle speed and the steering angle specified by the steering angle specifying unit 14. (Step S215).
- the failure occurrence identification unit 21 identifies the normality of the left and right control circuits 31R and 31L (step S220). Specifically, as described above, the normality of the control circuits 31R and 31L, that is, the presence or absence of the failure occurrence can be specified by whether or not the failure occurrence signal is received from the control circuit 31R and the control circuit 31L.
- the target torque indicator 16 obtains the target torque (hereinafter referred to as “right target torque”) TR instructed to the control circuit 31R in step S210.
- the target torque determined by applying the torque distribution rate determined in step S215 to the overall target torque (hereinafter referred to as “normal target torque") is set, and the target torque instructed to the control circuit 31L (hereinafter, ""
- the TL (referred to as “left side target torque") is set to zero, and the normal side determination flag NF is set to "-1" (step S225).
- the normal side determination flag is a flag indicating which of the control circuit 31R and the control circuit 31L is normal, "-1" is the right side (control circuit 31R), and "+1” is the left side (control). Circuit 31L) indicates that both "0 (zero)" are not normal.
- the target torque indicator 16 sets the right target torque to zero, sets the left target torque to the normal target torque, and sets the normal side determination flag to "+1". "(Step S230).
- the target torque indicator 16 sets the right target torque to zero, sets the left target torque to zero, and determines the normal side. “0 (zero)” is set in the flag (step S235).
- the target torques determined in steps S225, S230, and S235 described above are instructed by the control circuits 31R and 31L, respectively. Therefore, for at least one of the pair of front wheels 201 and 202, which are the driving wheels, the target torque becomes zero, so that the vehicle speed gradually decreases.
- the failure occurrence identification unit 21 determines whether or not the evacuation travel flag XR is on (step S240).
- the evacuation running flag XR is a flag indicating whether or not the evacuation running should be performed, and when it is on, it indicates that the evacuation running should be performed.
- the evacuation running is a running different from the running in a situation where the control circuit 31R or the control circuit 31L is not abnormal (hereinafter, referred to as "normal running"), and is a running that suppresses the deterioration of the running stability of the vehicle 200. Means.
- the failure occurrence identification unit 21 determines whether or not the vehicle speed is zero (step S245).
- the failure occurrence identification unit 21 sets the evacuation travel flag XR to "1" and turns it on (step S250).
- step S235 After executing the above-mentioned step S235, the process returns to the above-mentioned step S205. Further, when it is determined that the evacuation running flag XR is ON in step S240 described above (step S240: YES), and when it is determined that the vehicle speed is not zero in step S245 described above (step S245: NO). In each case, the process returns to step S205 described above. Therefore, when at least one of the control circuits 31R and 31L becomes abnormal while the evacuation travel flag XR is off, the evacuation travel flag XR is turned on when the vehicle speed decreases and becomes zero. It becomes.
- Brake control process The brake control process shown in FIGS. 8 and 9 is executed when the start button of the vehicle 200 is pressed and the power of the brake control device 120 is turned on.
- the brake control process is a process of controlling the operation of the brake devices 51 to 54.
- the brake control device 120 acquires the set values of three types of flags, the lane deviation hazard flag XF, the evacuation running flag XR, and the normal side determination flag NF, from the electric motor control device 10 via the vehicle-mounted network 220 (step S305). ..
- the brake control device 120 determines whether or not the lane departure hazard flag XF is on (step S310). When it is determined that the lane departure hazard flag XF is not on (step S310: NO), the brake control device 120 executes brake control according to the normal brake operation amount by the driver for the brake devices 51 to 54. (Step S315).
- step S310: YES When it is determined that the lane departure hazard flag XF is ON (step S310: YES), the brake control device 120 determines whether or not the evacuation travel flag XR is ON (step S320). If it is determined that the evacuation running flag XR is not on (step S310: NO), the above-mentioned step S315 is executed. The case where it is determined that the evacuation running flag XR is not on means that the steps S225 to S230 of the above-mentioned failure target torque determination process are being executed and the vehicle 200 has not stopped yet. .. In this case, brake control is executed according to the amount of brake operation by the driver.
- step S320 when it is determined that the evacuation travel flag XR is ON (step S320: YES), the brake control device 120 acquires the vehicle speed and steering angle from the electric motor control device 10 via the vehicle-mounted network 220, and obtains the vehicle speed and the steering angle.
- the target yaw rate Yt is calculated from the steering angle (step S325).
- the target yaw rate Yt which is the result calculated in step S110 of the lane deviation hazard detection process, may be acquired from the electric motor control device 10 via the in-vehicle network 220.
- the brake control device 120 acquires the detection result of the yaw rate sensor 45 from the electric motor control device 10 via the in-vehicle network 220, that is, the measured value Y of the yaw rate (step S330).
- the brake control device 120 calculates an absolute value (
- the brake control device 120 determines whether or not the vehicle 200 is traveling straight from the vehicle speed and steering angle acquired in step S325 (step S340). When it is determined that the vehicle 200 is traveling straight (step S340: YES), the brake control device 120 identifies the normal side determination flag NF (step S345) as shown in FIG.
- the brake control device 120 When the normal side determination flag NF is "+1", that is, when the control circuit 31R is abnormal and the control circuit 31L is normal, the brake control device 120 operates the brake device 54 of the left rear wheel 204 (step S350). ). At this time, the braking force is a positive value obtained by multiplying the absolute value (
- the coefficient k is a coefficient derived from a braking force obtained in advance by an experiment or the like so that the measured value Y of the yaw rate approaches the target yaw rate Yt when the braking device 53 is operated. is there.
- the brake control device 120 is set on the right rear wheel 203.
- the brake device 53 is operated (step S355).
- the braking force is a positive value obtained by multiplying the absolute value (
- step S340 When it is determined in step S340 described above that the vehicle 200 is not traveling straight (step S340: NO), as shown in FIG. 9, the brake control device 120 is located on the inner wheel side of the pair of rear wheels 203 and 204.
- the wheel braking device is activated (step S360).
- the braking force is a positive value obtained by multiplying the absolute value (
- the control circuit 31R fails when the vehicle 200 turns to the right, the target torque of the front wheels 201 becomes zero, so that the left side of the two front wheels 201 and 202 that are the driving wheels Only the front wheels 202 of the vehicle are driven, and the vehicle 200 is suppressed from turning right around the center of gravity C1, which may cause so-called understeer.
- the brake device 53 of the right rear wheel 203 which is the brake device on the inner wheel side, is activated, the right turning operation of the vehicle 200 is promoted. Therefore, even after the control circuit 31R is generated, it is possible to suppress the deterioration of the running stability of the vehicle 200, and the measured value Y of the yaw rate approaches the target yaw rate Yt.
- step S345 the value of the normal side determination flag NF specified in step S345 described above is other than "+1" and "-1", that is, when it is "0 (zero)"
- step S315 described above is executed. Brake control is executed according to the normal amount of brake operation.
- the wheel control system 100 of the first embodiment described above zero is instructed as the target torque for the control circuit in which the failure occurrence is specified, and one of the pair of rear wheels 203 and 204 that are the driven wheels.
- the brake is applied so that the measured value Y of the yaw rate approaches the target yaw rate Yt, the two electric motors 30R and 30L for driving the two front wheels 201 and 202 on the left and right and the electric motors 30R and 30L are controlled.
- the configuration including the two control circuits 31R and 31L it is possible to suppress the deterioration of the running stability of the vehicle 200 when a failure occurs in one of the control circuits, and it is possible to realize fail-safety.
- a control circuit in which the failure is identified across the center of gravity C1 of the vehicle 200 among the pair of rear wheels 203 and 204. Since the brake is applied to the wheel arranged at a position symmetrical to the wheel corresponding to the above, the vehicle 200 is caused by driving only one of the pair of front wheels 201 and 202, which are the driving wheels. Can be suppressed from turning.
- the brake is applied to the inner wheel side of the pair of rear wheels 203 and 204, so that the vehicle is driven. Since only one of the pair of front wheels 201 and 202, which are wheels, is driven, the turning operation is hindered and so-called understeer can be suppressed.
- Second embodiment Since the device configuration of the wheel control system 100 of the second embodiment is the same as that of the wheel control system 100 of the first embodiment, the same components are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the wheel control system 100 of the second embodiment executes a lane deviation hazard detection process, a failure target torque determination process, and a brake control process by the same procedure as the wheel control system 100 of the first embodiment. The wheel control system 100 of the second embodiment is different from the wheel control system 100 of the first embodiment in that steering control processing is additionally executed.
- the steering control process according to the second embodiment shown in FIG. 12 is executed when the start button of the vehicle 200 is pressed and the power of the EPS control device 110 is turned on.
- the operation control process is a process for controlling the steering of the vehicle 200.
- the EPS control device 110 acquires the set values of three types of flags, the lane deviation hazard flag XF, the evacuation running flag XR, and the normal side determination flag NF, from the electric motor control device 10 via the vehicle-mounted network 220 (step S405). ..
- the control device 110 determines whether or not the lane departure hazard flag XF is on (step S410). When it is determined that the lane departure hazard flag XF is not on (step S410: NO), the EPS control device 110 executes operation control according to the normal steering amount by the driver (step S415).
- step S410: YES When it is determined that the lane departure hazard flag XF is ON (step S410: YES), the EPS control device 110 determines whether or not the evacuation travel flag XR is ON (step S420). If it is determined that the evacuation running flag XR is not on (step S410: NO), the above-mentioned step S415 is executed. The case where it is determined that the evacuation running flag XR is not on means that the steps S225 to S230 of the above-mentioned failure target torque determination process are being executed and the vehicle 200 has not stopped yet. .. In this case, steering control according to the steering amount by the driver is executed.
- the EPS control device 110 acquires the set value of the normal side determination flag NF from the electric motor control device 10 via the in-vehicle network 220. (Step S425).
- the EPS control device 110 controls the steering angle on the wheel side corresponding to the control circuit in which the failure has been identified to an angle obtained by reducing the offset amount from the normal steering angle (hereinafter referred to as "normal steering angle"). (Step S430). Such control is realized by determining the steering angle with reference to the steering angle map described later based on the normal side determination flag NF identified in step S425 and controlling the steering angle. Such control will be described with reference to FIG.
- FIG. 13 shows two steering angle maps Lsr1 and Lsl1 as steering angle maps when the vehicle speed V is v1, and two steering angle maps Lsrn and Lsln as steering angle maps when the vehicle speed V is vn. Is represented.
- the steering angle map Ls0 in the normal state that is, the steering angle map referred to when the failure occurrence is not specified in any of the two control circuits 31R and 31L is represented by a thin solid line. ..
- the horizontal axis represents the amount of steering of the steering wheel 210 by the driver
- the vertical axis represents the steering angle.
- the steering angle map Ls0 when the steering amount is zero, the steering angle is set to zero. Therefore, in the normal state, when the steering amount is zero, the vehicle 200 goes straight.
- the steering angle map Lsl1 when the vehicle speed V represented by the thick solid line is v1 is a steering angle map referred to when the control circuit 31R is abnormal and the control circuit 31L is normal.
- the steering angle map Lsr1 when the vehicle speed V represented by the thick broken line is v1 is a steering angle map referred to when the control circuit 31R is normal and the control circuit 31L is abnormal.
- the angle in the right direction is reduced by a predetermined offset amount and the angle in the left direction is increased when the steering amount is the same as compared with the steering angle map Ls0.
- the vehicle 200 tries to perform a right-turning operation centered on its own center of gravity C1, so that the steering amount is higher than in the normal state.
- the rightward angle is reduced and set in the same case so that the vehicle 200 can go straight when the steering amount, that is, the operation amount of the steering wheel 210 is zero.
- the angle in the left direction is reduced by a predetermined offset amount and the angle in the right direction is increased when the steering amount is the same as compared with the steering angle map Ls0.
- the vehicle 200 tries to perform a left-turning operation centered on its own center of gravity C1, so that the steering amount is larger than in the normal state.
- the leftward angle is reduced and set so that the vehicle 200 can go straight when the steering amount, that is, the operation amount of the steering wheel 210 is zero.
- the larger the vehicle speed the larger the offset amount is set.
- the larger the vehicle speed V the larger the vehicle 200 is likely to turn due to a slight change in the steering amount.
- the higher the vehicle speed the more certain that the vehicle 200 will perform a turning operation, in other words, it will not go straight if a larger value is set as the offset amount described above. This is because it can be suppressed.
- the wheel control system 100 of the second embodiment described above has the same effect as the wheel control system 100 of the first embodiment.
- the target steering angle is set to an angle obtained by reducing the offset amount from the steering angle with respect to the steering amount (steering wheel steering amount) in the normal state, so that the steering amount is zero.
- the steering of the vehicle since the steering of the vehicle is controlled so that the vehicle travels straight, it is possible to suppress the vehicle 200 from turning even though the steering amount is zero.
- the vehicle speed V is large, a larger value is set as the offset amount as compared with the case where the vehicle speed V is small. Therefore, since the vehicle speed V is large, the vehicle 200 becomes large due to a slight change in the steering amount. Even in a situation where it is easy to turn, it is possible to more reliably suppress the vehicle 200 from turning when the steering amount is zero.
- the vehicle 200a of the third embodiment is provided with the acceleration sensor 46 instead of the yaw rate sensor 45 and the wheel control system 100a instead of the wheel control system 100. It is different from the vehicle 200 of the form. Since the other configurations of the vehicle 200a are the same as those of the vehicle 200, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
- the acceleration sensor 46 detects the lateral acceleration of the vehicle 200 (hereinafter, referred to as “lateral acceleration”), in other words, the lateral acceleration.
- the acceleration sensor 46 is composed of a three-axis sensor.
- the wheel control system 100a is different from the wheel control system 100 of the first embodiment in that the electric motor control device 10a is provided in place of the electric motor control device 10. Since the other configurations in the wheel control system 100a are the same as those in the wheel control system 100, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
- the electric motor control device 10a of the third embodiment shown in FIG. 15 is provided with an acceleration specifying unit 15a instead of the yaw rate specifying unit 15 and a target acceleration calculating unit 19a instead of the target yaw rate calculating unit 19. It is different from the electric motor control device 10 of the first embodiment. Since the other configurations of the electric motor control device 10a are the same as those of the electric motor control device 10, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
- the acceleration specifying unit 15a identifies the lateral acceleration by receiving a signal indicating the lateral acceleration notified from the acceleration sensor 46.
- the target acceleration calculation unit 19a sets a target value of lateral acceleration (hereinafter, referred to as “target acceleration”) based on the vehicle speed specified by the vehicle speed specifying unit 12 and the steering angle specified by the steering angle specifying unit 14. calculate.
- target acceleration a target value of lateral acceleration
- a map similar to the target yaw rate map shown in FIG. 5 may be set in advance, and the lateral acceleration may be specified based on the vehicle speed and the steering angle with reference to the map.
- the lane deviation hazard detection process and the failure target torque determination process are executed by the same procedure as that of the first embodiment.
- the procedure of the brake control process of the third embodiment is different from that of the brake control process of the first embodiment.
- the brake control process of the third embodiment replaces steps S325, S330, S335, S350, and S355 with steps S325a, S330a, S335a, S350a, and It differs from the brake control process of the first embodiment in that S355a is executed. Since the other procedures of the brake control process of the third embodiment are the same as those of the brake control process of the first embodiment, the same procedures are designated by the same reference numerals and detailed description thereof will be omitted.
- step S320 when it is determined in step S320 that the retracted travel flag XR is ON (step S320: YES), the brake control device 120 is subjected to vehicle speed and vehicle speed from the electric motor control device 10 via the vehicle-mounted network 220.
- the steering angle is acquired, and the target acceleration Gt in the lateral direction is calculated from the vehicle speed and the steering angle (step S325a).
- the brake control device 120 acquires the detection result of the acceleration sensor 46 from the electric motor control device 10 via the vehicle-mounted network 220, that is, the measured value G of the lateral acceleration (step S330a).
- the brake control device 120 calculates an absolute value (
- the brake control device 120 is the brake device of the left rear wheel 204. 54 is operated (step S350a).
- the braking force is a positive value obtained by multiplying the absolute value (
- the coefficient m is derived from the braking force obtained in advance by experiments or the like so that the measured value G of the lateral acceleration approaches the target acceleration Gt when the braking device 54 is operated. It is a coefficient.
- the brake control device 120 When the normal side determination flag NF is "-1", that is, when the control circuit 31R is normal and the control circuit 31L is abnormal, the brake control device 120 operates the brake device 53 of the rear wheel 203 on the right side ( Step S355a). At this time, the braking force is a positive value obtained by multiplying the absolute value (
- step S340 When it is determined in step S340 described above that the vehicle 200 is not traveling straight (step S340: NO), as shown in FIG. 17, the brake control device 120 is located on the inner wheel side of the pair of rear wheels 203 and 204.
- the wheel braking device is activated (step S360a).
- the braking force is a positive value obtained by multiplying the absolute value (
- step S345 When the value of the normal side determination flag NF specified in step S345 described above is other than "+1" and "-1", that is, when it is "0 (zero)", step S315 described above is executed. Brake control is executed according to the normal amount of brake operation.
- steps S350, S355, S360, and S350a, S355a, S360a are executed. It was premised that the evacuation running flag XR was turned on. That is, these processes were executed after the lane departure hazard flag XF was turned on and the vehicle speed became zero, but the present disclosure is not limited to this. For example, these processes may be executed only on the condition that the lane departure hazard flag XF is turned on. In this case, these processes are executed even during the period from the occurrence of the failure to the time when the vehicle speed becomes zero.
- the target torque determined in steps S225, S230, and S235 is immediately applied, but the present disclosure is not limited to this.
- the target torques of the two control circuits 31R and 31L are both zero. May be instructed.
- the target torques determined in steps S225, S230, and S235 are instructed to the two control circuits 31R and 31L. You may try to do it.
- steps S340 and S360 may be omitted.
- steps S340 and S360a may be omitted.
- steps S340, S360a may be omitted.
- steps S340, S350, and S355 may be omitted.
- steps S360 and S360a will be executed after the completion of steps S335 and S335a.
- the steering angle is not zero and the driver tries to turn the vehicles 200 and 200a.
- the steering angle map is set with a larger value as the offset amount when the vehicle speed V is large than when it is small, but the present disclosure is not limited to this. Regardless of the size of the vehicle speed V, only one map may be set as the steering angle map. Further, the steering angle maps Lsl1, Lsr1, Lsln, and Lsrn are set so that the steering angle changes continuously as the steering amount changes, but they may be set to change stepwise. ..
- the driving wheels of the vehicles 200 and 200a were a pair of front wheels 201 and 202, but instead of the pair of front wheels 201 and 202, or a pair of front wheels 201 and 202.
- the pair of rear wheels 203, 204 may be drive wheels.
- electric motors are attached to the pair of rear wheels 203 and 204, respectively, and control circuits are installed corresponding to the electric motors.
- the target torque is set for the control circuit in which the failure occurrence (abnormality) is specified among the two control circuits 31R and 31L.
- the present disclosure is not limited to this. For example, by disconnecting the relay provided in the power supply circuit connecting the failure identification control circuit and the battery to cut off the power supply from the battery to the failure identification control circuit, the operation of the corresponding electric motor 30R or 30L can be performed. You may stop it.
- the configurations of the wheel control systems 100 and 100a of each embodiment are merely examples and can be changed in various ways.
- at least one of the two motors 30R and 30L may be a motor generator.
- the motor generator corresponds to the subordinate concept of the generator in the present disclosure.
- the vehicles 200 and 200a are configured to be equipped with both the yaw rate sensor 45 and the acceleration sensor 46, and the brake control process is executed using the detection results of the two sensors 45 and 46. May be good.
- the braking force operated in steps S350, S355, S360, and S350a, S355a, S360a is multiplied by a predetermined coefficient by the value obtained by multiplying the absolute value of the yaw rate difference and the absolute value of the acceleration difference. You may ask for it.
- the failure of the two control circuits 31R and 31L means the failure of the driver ICs 32R and 32L, but the present disclosure is not limited to this.
- it may be a failure of any component constituting the control circuits 31R and 31L, such as the actual torque calculation units 33R and 33L, the comparators 34R and 34L, and the operation monitoring units 35R and 35L.
- the two control circuits 31R and 31L are configured to periodically notify the motor control devices 10 and 10a of the normality, respectively, and when an abnormality is notified in such communication or when such notification does not arrive, 2 It may be configured to identify the failure of the two control circuits 31R and 31L. According to such a configuration, the electric motor control devices 10 and 10a can identify the occurrence of a failure of any component constituting the control circuits 31R and 31L, not limited to the failure of the driver ICs 32R and 32L.
- the motor control devices 10, 10a, brake control device 120, and methods thereof described in the present disclosure include a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by a dedicated computer provided by configuring. Alternatively, the motor control devices 10, 10a, brake control device 120 and methods thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Good. Alternatively, the motor control devices 10, 10a, brake control device 120 and methods thereof described in the present disclosure include a processor and memory programmed to perform one or more functions and one or more hardware logic circuits. It may be realized by one or more dedicated computers configured in combination with a processor configured by. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
- the present disclosure is not limited to the above-described embodiments, and can be realized with various configurations without departing from the spirit of the present disclosure.
- the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Regulating Braking Force (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
A wheel control system (100) comprises: a motor control device (10) that controls control circuits; and a brake control device (120) that controls a brake of each wheel. The motor control device includes: a target torque instruction unit (16) that instructs a target torque to the control circuits; a failure occurrence identification unit (21) that identifies a failure occurrence in any of the control circuits; a detection result acquisition unit that acquires a detection result of at least one of a yaw rate and a lateral acceleration; and a target value calculation unit (19, 19a) that calculates a target value using detection results of a vehicle speed sensor (44) and a steering angle sensor (42). If a failure occurrence has been identified, the target torque instruction unit instructs zero as the target torque to the control circuit in which the failure has been identified, and the brake control device applies the brake to a wheel different from a driving wheel so that the detection results approach the target value.
Description
本出願は、2019年3月11日に出願された日本出願番号2019-43265号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Application No. 2019-43265 filed on March 11, 2019, and the contents of the description are incorporated herein by reference.
本開示は、電動機により駆動される車輪の制御に関する。
The present disclosure relates to the control of wheels driven by an electric motor.
車両に設けられるアクチュエータを制御する制御部としてのマイクロコントローラと、マイクロコントローラにおける異常発生を監視する監視部としてのマイクロコントローラ監視部とを備え、マイクロコントローラ内部に異常が発生した場合にファイルセーフを実行する技術が知られている(例えば、特許文献1)。近年、アクチュエータとしての電動機を車両の左右の車輪にそれぞれ配置して各電動機により左右の各車輪を駆動する技術(いわゆるインホイールモータ)が提案されている。また、このような技術においては、左右2つの電動機をそれぞれ制御する制御部として、2つの制御回路が用いられる場合がある。
It is equipped with a microcontroller as a control unit that controls actuators installed in the vehicle and a microcontroller monitoring unit as a monitoring unit that monitors the occurrence of abnormalities in the microcontroller, and executes file safe when an abnormality occurs inside the microcontroller. (For example, Patent Document 1). In recent years, a technique (so-called in-wheel motor) has been proposed in which electric motors as actuators are arranged on the left and right wheels of a vehicle, and each electric motor drives the left and right wheels. Further, in such a technique, two control circuits may be used as control units for controlling the two left and right electric motors, respectively.
上記技術において、2つの制御回路のうちの一方に故障が発生すると、車両の走行安定性が損なわれるおそれがある。例えば、正常の制御回路は、前進するためのトルクを制御対象の電動機に指示し、故障の制御回路は、後退するためのトルクを制御対象の電動機に指示し、その結果、車両がスピンするなど走行安定性が損なわれるおそれがある。しかし、従来においては、いずれか一方の制御回路に故障が生じた場合の対応(ファイルセーフ)については、十分に検討されていないのが実情である。このため、左右2つの車輪を駆動する2つの電動機と、各電動機を制御する2つの制御回路とを備える構成において、いずれか一方の制御回路に故障が発生した場合のフェイルセーフの実現が望まれている。
In the above technology, if one of the two control circuits fails, the running stability of the vehicle may be impaired. For example, a normal control circuit directs the torque to move forward to the motor to be controlled, and a failure control circuit directs the torque to move backward to the motor to be controlled, and as a result, the vehicle spins. The running stability may be impaired. However, in the past, the actual situation is that the measures (file-safe) to be taken when one of the control circuits fails has not been sufficiently studied. Therefore, in a configuration including two electric motors for driving two left and right wheels and two control circuits for controlling each electric motor, it is desired to realize fail-safe when one of the control circuits fails. ing.
本開示は、以下の形態として実現することが可能である。
This disclosure can be realized in the following forms.
本開示の一形態として、車両が有する一対の前方車輪と一対の後方車輪とのうちの少なくとも一方の駆動輪を構成する各車輪に配置されて該車輪を駆動する電動機と、前記駆動輪を構成する各車輪に対応して配置され、該車輪を駆動する前記電動機を制御する制御回路と、を有する前記車両に搭載され、前記一対の前方車輪および前記一対の後方車輪の動作を制御する車輪制御システムが提供される。この車輪制御システムは、前記駆動輪を構成する各車輪に対応して配置された前記制御回路を制御する電動機制御装置と、前記一対の前方車輪および前記一対の後方車輪のブレーキを制御し、前記電動機制御装置と通信可能なブレーキ制御装置と、を備える。前記電動機制御装置は、前記駆動輪を構成する各車輪に対応する前記制御回路に対して、目標トルクを指示する目標トルク指示部と、前記駆動輪を構成する各車輪に対応する前記制御回路のうち、いずれかの前記制御回路の故障発生を特定する故障発生特定部と、前記車両に搭載されヨーレートを検出するヨーレートセンサと、前記車両に搭載され横方向加速度を検出する加速度センサとのうちの少なくとも一方の検出結果を取得する検出結果取得部と、前記車両に搭載され車速を検出する車速センサと、前記車両に搭載され操舵角を検出する操舵角センサと、の検出結果を利用して前記車両の目標ヨーレートと目標横方向加速度とのうちの少なくとも一方である目標値を算出する目標値算出部と、を有する。前記目標トルク指示部は、前記故障発生が特定された場合に、前記故障発生が特定された前記制御回路である故障特定制御回路に対して、前記目標トルクとしてゼロを指示する。前記ブレーキ制御装置は、前記故障発生が特定された場合に、前記一対の前方車輪および前記一対の後方車輪を構成する各車輪のうち、前記駆動輪とは異なる車輪に対して、前記検出結果取得部により取得された前記検出結果が、算出された前記目標値に近づくようにブレーキをかける。
As one embodiment of the present disclosure, an electric motor arranged on each wheel constituting at least one drive wheel of a pair of front wheels and a pair of rear wheels of the vehicle to drive the wheels, and the drive wheels are configured. Wheel control that is mounted on the vehicle and has a control circuit that is arranged corresponding to each wheel and controls the electric motor that drives the wheels, and controls the operation of the pair of front wheels and the pair of rear wheels. The system is provided. This wheel control system controls an electric motor control device that controls the control circuit arranged corresponding to each wheel constituting the drive wheel, and brakes of the pair of front wheels and the pair of rear wheels. It is provided with a brake control device capable of communicating with an electric motor control device. The electric motor control device includes a target torque indicating unit that instructs a target torque to the control circuit corresponding to each wheel constituting the drive wheel, and the control circuit corresponding to each wheel constituting the drive wheel. Of the failure occurrence identification unit that identifies the failure occurrence of any of the control circuits, the yaw rate sensor mounted on the vehicle to detect the yaw rate, and the acceleration sensor mounted on the vehicle to detect the lateral acceleration. The detection result acquisition unit that acquires at least one of the detection results, the vehicle speed sensor mounted on the vehicle to detect the vehicle speed, and the steering angle sensor mounted on the vehicle to detect the steering angle are used. It has a target value calculation unit that calculates a target value that is at least one of a target yaw rate and a target lateral acceleration of the vehicle. When the failure occurrence is specified, the target torque indicator unit instructs the failure identification control circuit, which is the control circuit in which the failure occurrence is specified, to have zero as the target torque. When the failure occurrence is specified, the brake control device acquires the detection result for a wheel different from the driving wheel among the wheels constituting the pair of front wheels and the pair of rear wheels. The brake is applied so that the detection result acquired by the unit approaches the calculated target value.
上記形態の車輪制御システムによれば、故障発生が特定された場合に、故障特定制御回路に対して目標トルクとしてゼロが指示され、一対の前方車輪および一対の後方車輪を構成する各車輪のうち、駆動輪とは異なる車輪に対して、検出結果取得部により取得された検出結果が目標値に近づくようにブレーキがかけられるので、左右2つの車輪を駆動する2つの電動機と、各電動機を制御する2つの制御回路とを備える構成において、いずれか一方の制御回路に故障が発生した場合に車両の走行安定性が低下することを抑制でき、フェイルセーフを実現できる。
According to the wheel control system of the above embodiment, when a failure is identified, zero is instructed as a target torque to the failure identification control circuit, and of the pair of front wheels and the pair of wheels constituting the rear wheels. Since the brake is applied to the wheels different from the drive wheels so that the detection result acquired by the detection result acquisition unit approaches the target value, the two electric motors that drive the two left and right wheels and each electric motor are controlled. In the configuration including the two control circuits, it is possible to suppress the deterioration of the running stability of the vehicle when a failure occurs in one of the control circuits, and it is possible to realize fail-safety.
本開示は、車輪制御システム以外の種々の形態で実現することも可能である。例えば、車輪制御システムを搭載した車両や、車輪制御方法や、これらの装置や方法を実現するためのコンピュータプログラム、かかるコンピュータプログラムを記憶した記憶媒体等の形態で実現することができる。
This disclosure can also be realized in various forms other than the wheel control system. For example, it can be realized in the form of a vehicle equipped with a wheel control system, a wheel control method, a computer program for realizing these devices and methods, a storage medium for storing the computer program, and the like.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の一実施形態としての車輪制御システムを搭載した車両の概略構成を示す説明図であり、
図2は、第1実施形態における電動機制御装置および制御回路の機能的構成を示すブロック図であり、
図3は、トルクマップの設定内容の一例を示す説明図であり、
図4は、トルク分配率決定マップを示す説明図であり、
図5は、目標ヨーレートマップを示す説明図であり、
図6は、車線逸脱ハザード検出処理の手順を示すフローチャートであり、
図7は、故障時目標トルク決定処理の手順を示すフローチャートであり、
図8は、ブレーキ制御処理の手順を示すフローチャートであり、
図9は、ブレーキ制御処理の手順を示すフローチャートであり、
図10は、右側の制御回路が故障した場合における直進時の車両の動作の一例を示す説明図であり、
図11は、右側の制御回路が故障した場合における右旋回時の車両の動作の一例を示す説明図であり、
図12は、第2実施形態における操舵制御処理の手順を示すフローチャートであり、
図13は、操舵角マップの設定内容の一例を示す説明図であり、
図14は、第3実施形態における車輪制御システムを搭載した車両の概略構成を示す説明図であり、
図15は、第2実施形態における電動機制御装置および制御回路の機能的構成を示すブロック図であり、
図16は、第3実施形態におけるブレーキ制御処理の手順を示すフローチャートであり、
図17は、第3実施形態におけるブレーキ制御処理の手順を示すフローチャートである。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an explanatory view showing a schematic configuration of a vehicle equipped with a wheel control system as an embodiment of the present disclosure. FIG. 2 is a block diagram showing a functional configuration of the electric motor control device and the control circuit according to the first embodiment. FIG. 3 is an explanatory diagram showing an example of the setting contents of the torque map. FIG. 4 is an explanatory diagram showing a torque distribution rate determination map. FIG. 5 is an explanatory diagram showing a target yaw rate map. FIG. 6 is a flowchart showing the procedure of the lane deviation hazard detection process. FIG. 7 is a flowchart showing the procedure of the target torque determination process at the time of failure. FIG. 8 is a flowchart showing the procedure of the brake control process. FIG. 9 is a flowchart showing the procedure of the brake control process. FIG. 10 is an explanatory diagram showing an example of the operation of the vehicle when traveling straight when the control circuit on the right side fails. FIG. 11 is an explanatory diagram showing an example of the operation of the vehicle when turning right when the control circuit on the right side fails. FIG. 12 is a flowchart showing the procedure of the steering control process in the second embodiment. FIG. 13 is an explanatory diagram showing an example of the setting contents of the steering angle map. FIG. 14 is an explanatory view showing a schematic configuration of a vehicle equipped with the wheel control system according to the third embodiment. FIG. 15 is a block diagram showing a functional configuration of the electric motor control device and the control circuit according to the second embodiment. FIG. 16 is a flowchart showing the procedure of the brake control process in the third embodiment. FIG. 17 is a flowchart showing the procedure of the brake control process in the third embodiment.
A.第1実施形態:
A1.装置構成:
図1に示すように、本実施形態の車輪制御システム100は、四輪車である車両200に搭載され、車両200の駆動輪を構成する一対の前方車輪201、202、および従動輪を構成する一対の後方車輪203、204の動作を制御する。車両200は、搭載されている図示しないバッテリからの給電により駆動する2つの電動機30R、30Lを駆動源とする。電動機30Rは前方車輪201に取り付けられ、電動機30Lは前方車輪202に取り付けられたいわゆるインホイールモータである。車輪制御システム100は、互いに通信可能な電動機制御装置10とブレーキ制御装置120とを備える。 A. First Embodiment:
A1. Device configuration:
As shown in FIG. 1, thewheel control system 100 of the present embodiment is mounted on a vehicle 200, which is a four-wheeled vehicle, and constitutes a pair of front wheels 201, 202, and a driven wheel that form a driving wheel of the vehicle 200. It controls the operation of the pair of rear wheels 203 and 204. The vehicle 200 uses two electric motors 30R and 30L driven by power supply from a battery (not shown) mounted on the vehicle 200 as a drive source. The electric motor 30R is attached to the front wheel 201, and the electric motor 30L is a so-called in-wheel motor attached to the front wheel 202. The wheel control system 100 includes an electric motor control device 10 and a brake control device 120 that can communicate with each other.
A1.装置構成:
図1に示すように、本実施形態の車輪制御システム100は、四輪車である車両200に搭載され、車両200の駆動輪を構成する一対の前方車輪201、202、および従動輪を構成する一対の後方車輪203、204の動作を制御する。車両200は、搭載されている図示しないバッテリからの給電により駆動する2つの電動機30R、30Lを駆動源とする。電動機30Rは前方車輪201に取り付けられ、電動機30Lは前方車輪202に取り付けられたいわゆるインホイールモータである。車輪制御システム100は、互いに通信可能な電動機制御装置10とブレーキ制御装置120とを備える。 A. First Embodiment:
A1. Device configuration:
As shown in FIG. 1, the
電動機制御装置10は、2つの制御回路31R、31Lを制御する。制御回路31Rは、前方車輪201に対応して配置され、電動機30Rを制御する。制御回路31Lは、前方車輪202に対応して配置され、電動機30Lを制御する。電動機制御装置10および2つの制御回路31R、31Lの詳細構成については、後述する。
The electric motor control device 10 controls two control circuits 31R and 31L. The control circuit 31R is arranged corresponding to the front wheel 201 and controls the electric motor 30R. The control circuit 31L is arranged corresponding to the front wheel 202 and controls the electric motor 30L. The detailed configuration of the electric motor control device 10 and the two control circuits 31R and 31L will be described later.
ブレーキ制御装置120は、4つのブレーキ装置51、52、53、54の動作を制御することにより、一対の前方車輪201、202および一対の後方車輪203、204のブレーキを制御する。ブレーキ装置51は、前方車輪201の制動を実現する。同様に、ブレーキ装置52は前方車輪202の制動を、ブレーキ装置53は後方車輪203の制動を、ブレーキ装置54は後方車輪204の制動を、それぞれ実現する。4つのブレーキ装置51~54の構成は、それぞれ、ブレーキロータや、ブレーキパッドや、かかるブレーキパッドを動作させる油圧アクチュエータなどを有し、ブレーキ制御装置120からの指令により、各車輪201~204の制動を実現する。
The brake control device 120 controls the brakes of the pair of front wheels 201 and 202 and the pair of rear wheels 203 and 204 by controlling the operations of the four brake devices 51, 52, 53 and 54. The braking device 51 realizes braking of the front wheels 201. Similarly, the brake device 52 brakes the front wheels 202, the brake device 53 brakes the rear wheels 203, and the brake device 54 brakes the rear wheels 204. Each of the four brake devices 51 to 54 has a brake rotor, a brake pad, a hydraulic actuator for operating the brake pad, and the like, and brakes each wheel 201 to 204 according to a command from the brake control device 120. To realize.
電動機制御装置10とブレーキ制御装置120とは、いずれも車載ネットワーク220を介して互いに通信可能に構成されている。車載ネットワーク220として、例えば、CAN(Controller Area Network)や、LIN(Local Interconnect Network)や、Ethernet(登録商標)など、任意の方式のネットワークを用いてもよい。
Both the electric motor control device 10 and the brake control device 120 are configured to be able to communicate with each other via the in-vehicle network 220. As the in-vehicle network 220, any type of network such as CAN (Controller Area Network), LIN (Local Interconnect Network), and Ethernet (registered trademark) may be used.
車両200には、上述の車輪制御システム100、車載ネットワーク220、4つのブレーキ装置51~54および2つの制御回路31R、31Lに加えて、EPS(Electronic Power Steering)制御装置110と、EPSアクチュエータ111と、操舵ギア211と、ハンドル210と、アクセル開度センサ41と、操舵角センサ42と、レンジセンサ43と、車速センサ44と、ヨーレートセンサ45とを備える。
In addition to the wheel control system 100, the vehicle-mounted network 220, the four braking devices 51 to 54, and the two control circuits 31R and 31L, the vehicle 200 includes an EPS (Electronic Power Steering) control device 110 and an EPS actuator 111. The steering gear 211, the steering wheel 210, the accelerator opening sensor 41, the steering angle sensor 42, the range sensor 43, the vehicle speed sensor 44, and the yaw rate sensor 45 are provided.
EPS(Electronic Power Steering)制御装置110は、EPSアクチュエータ111の動作を制御する。本実施形態において、EPS制御装置110は、ECUにより構成されている。EPS制御装置110は、いわゆる電動パワーステアリングを実現する。EPSアクチュエータ111は、フルード(オイル)と、かかるフルードを流動させるオイルポンプなどを有し、EPS制御装置110からの指令により油圧を発生させ、ハンドル210の操作を補助する。
The EPS (Electronic Power Steering) control device 110 controls the operation of the EPS actuator 111. In the present embodiment, the EPS control device 110 is composed of an ECU. The EPS control device 110 realizes so-called electric power steering. The EPS actuator 111 includes a fluid (oil), an oil pump for flowing the fluid, and the like, and generates hydraulic pressure according to a command from the EPS control device 110 to assist the operation of the handle 210.
操舵ギア211は、ハンドル210の動きを一対の前方車輪201、202に伝達する。アクセル開度センサ41は、車両200が備える図示しないアクセルペダルの踏み込み量を、アクセル開度、すなわち、スロットルバルブを開閉するためのモータの回転角度として検出する。操舵角センサ42は、EPSアクチュエータ111に専用ケーブルにより電気的に接続され、EPSアクチュエータ111の動作に応じて出力される信号を利用してハンドル210による車両200の操舵角を検出する。操舵角センサ42はEPS制御装置110に専用ケーブルにより電気的に接続され、検出した操舵角をEPS制御装置110に通知する。レンジセンサ43は、車両200が備える図示しないシフトレバーにより指定されたシフトレンジを検出する。レンジセンサ43は、電動機制御装置10に専用ケーブルにより電気的に接続され、検出したシフトレンジを電動機制御装置10に通知する。車速センサ44は、各車輪201~204の回転速度を検出する。車速センサ44は、電動機制御装置10に専用ケーブルにより電気的に接続されている。車速センサ44から出力される車速を示す信号は、車輪速度に比例する電圧値または車輪速度に応じた間隔を示すパルス波であり、専用ケーブルを介して電動機制御装置10に通知される。ヨーレートセンサ45は、車両200の走行時のヨーレートを検出する。ヨーレートセンサ45は、電動機制御装置10に専用ケーブルにより電気的に接続され、検出したヨーレートを電動機制御装置10に通知する。
The steering gear 211 transmits the movement of the steering wheel 210 to the pair of front wheels 201 and 202. The accelerator opening sensor 41 detects the amount of depression of the accelerator pedal (not shown) included in the vehicle 200 as the accelerator opening, that is, the rotation angle of the motor for opening and closing the throttle valve. The steering angle sensor 42 is electrically connected to the EPS actuator 111 by a dedicated cable, and detects the steering angle of the vehicle 200 by the steering wheel 210 by using a signal output according to the operation of the EPS actuator 111. The steering angle sensor 42 is electrically connected to the EPS control device 110 by a dedicated cable, and notifies the EPS control device 110 of the detected steering angle. The range sensor 43 detects a shift range specified by a shift lever (not shown) included in the vehicle 200. The range sensor 43 is electrically connected to the electric motor control device 10 by a dedicated cable, and notifies the electric motor control device 10 of the detected shift range. The vehicle speed sensor 44 detects the rotational speed of each wheel 201 to 204. The vehicle speed sensor 44 is electrically connected to the electric motor control device 10 by a dedicated cable. The vehicle speed signal output from the vehicle speed sensor 44 is a voltage value proportional to the wheel speed or a pulse wave indicating an interval corresponding to the wheel speed, and is notified to the electric motor control device 10 via a dedicated cable. The yaw rate sensor 45 detects the yaw rate when the vehicle 200 is traveling. The yaw rate sensor 45 is electrically connected to the electric motor control device 10 by a dedicated cable, and notifies the electric motor control device 10 of the detected yaw rate.
図2に示すように、電動機制御装置10は、アクセル開度特定部11と、車速特定部12と、シフトレンジ特定部13と、操舵角特定部14と、ヨーレート特定部15と、目標トルク指示部16と、監視部17と、比較器18と、目標ヨーレート算出部19と、比較器20と、故障発生特定部21とを備える。本実施形態において、電動機制御装置10は、ECUにより構成されている。
As shown in FIG. 2, the electric motor control device 10 includes an accelerator opening degree specifying unit 11, a vehicle speed specifying unit 12, a shift range specifying unit 13, a steering angle specifying unit 14, a yaw rate specifying unit 15, and a target torque instruction. A unit 16, a monitoring unit 17, a comparator 18, a target yaw rate calculation unit 19, a comparator 20, and a failure occurrence identification unit 21 are provided. In the present embodiment, the electric motor control device 10 is composed of an ECU.
アクセル開度特定部11は、アクセル開度センサ41から通知されるアクセル開度を示す信号を受信することにより、アクセル開度を特定する。車速特定部12は、車速センサ44から通知される車速を示す信号を受信することにより、車両200の車速を特定する。シフトレンジ特定部13は、レンジセンサ43から通知されるシフトレンジを示す信号を受信することにより、シフトレンジを特定する。操舵角特定部14は、操舵角センサ42から通知される操舵角を示す信号を受信することにより、操舵角を特定する。ヨーレート特定部15は、ヨーレートセンサ45から通知されるヨーレートを示す信号を受信することにより、ヨーレートを特定する。
The accelerator opening degree specifying unit 11 specifies the accelerator opening degree by receiving a signal indicating the accelerator opening degree notified from the accelerator opening degree sensor 41. The vehicle speed specifying unit 12 identifies the vehicle speed of the vehicle 200 by receiving a signal indicating the vehicle speed notified from the vehicle speed sensor 44. The shift range specifying unit 13 specifies the shift range by receiving a signal indicating the shift range notified from the range sensor 43. The steering angle specifying unit 14 identifies the steering angle by receiving a signal indicating the steering angle notified from the steering angle sensor 42. The yaw rate specifying unit 15 identifies the yaw rate by receiving a signal indicating the yaw rate notified from the yaw rate sensor 45.
目標トルク指示部16は、目標トルクを決定して2つの制御回路31R、31Lにそれぞれ指示する。かかる目標トルクの決定方法について説明する。まず、目標トルク指示部16は、2つの電動機30R、30Lが全体として出力すべき目標トルク(以下、「全体目標トルク」と呼ぶ)を算出する。具体的には、目標トルク指示部16は、アクセル開度特定部11により特定されるアクセル開度と、車速特定部12により特定される車速と、シフトレンジ特定部13により特定されるシフトレンジとに基づき、図3に示すトルクマップを参照して目標トルクを算出する。かかるトルクマップは、車速毎に、アクセル開度と目標トルクとが対応付けられているマップである。目標トルクの大きさ(絶対値)として、アクセル開度が大きくなるについて大きな値が設定されている。なお、目標トルクがプラスであるのは、シフトレンジがドライブ(D)レンジである場合を意味し、目標トルクがマイナスであるのは、シフトレンジが後退(R)レンジであることを意味する。なお、図3では、車速Vが、v1、v2、v3の場合の3つのマップのみを表しているが、本実施形態では、4以上のマップが予め用意されている。次に、目標トルク指示部16は、算出された全体目標トルクを、左右の電動機30R、30Lに分配する際の分配率を決定し、決定された分配率に応じた目標トルクを示す信号を、2つの制御回路31R、31Lにそれぞれ通知し、また、比較器18に出力する。目標トルクの分配率は、車速特定部12により特定される車速と、操舵角特定部14により特定される操舵角とに基づき、図4に示すトルク分配率決定マップを用いて決定される。このトルク分配率決定マップは、車速毎に、操舵角とトルク分配率とが対応付けられているマップである。図4では、電動機30Lの目標トルクを太い実線の線L1により示し、電動機30Rの目標トルクを細い実線L2により示している。例えば、操舵角が0°、すなわち車両200が直進している場合、電動機30Lの目標トルクと電動機30Rの目標トルクとは、1:1となるように分配率が定められている。また、例えば、操舵角が右側に曲がる際の或る角度である場合、電動機30Lの目標トルクと電動機30Rの目標トルクとは、1:0.5、すなわち、2:1となるように分配率が定められている。右に旋回する場合、電動機30Rに比べて電動機30Lにより大きなトルクを出力させ、前方車輪201に比べて前方車輪202をより高い速度で回転させる必要があるからである。なお、図4では、車速Vが、v1、v2、v3の場合の3つのマップのみを表しているが、本実施形態では、4以上のマップが予め用意されている。
The target torque indicating unit 16 determines the target torque and instructs the two control circuits 31R and 31L, respectively. A method for determining such a target torque will be described. First, the target torque indicator 16 calculates the target torque (hereinafter, referred to as "overall target torque") to be output by the two electric motors 30R and 30L as a whole. Specifically, the target torque indicating unit 16 includes an accelerator opening degree specified by the accelerator opening degree specifying unit 11, a vehicle speed specified by the vehicle speed specifying unit 12, and a shift range specified by the shift range specifying unit 13. Based on the above, the target torque is calculated with reference to the torque map shown in FIG. Such a torque map is a map in which the accelerator opening degree and the target torque are associated with each vehicle speed. As the magnitude (absolute value) of the target torque, a large value is set for increasing the accelerator opening. A positive target torque means that the shift range is the drive (D) range, and a negative target torque means that the shift range is the backward (R) range. In FIG. 3, only three maps are shown when the vehicle speed V is v1, v2, and v3, but in the present embodiment, four or more maps are prepared in advance. Next, the target torque indicator 16 determines the distribution rate when distributing the calculated overall target torque to the left and right electric motors 30R and 30L, and sends a signal indicating the target torque according to the determined distribution rate. Notify the two control circuits 31R and 31L, respectively, and output to the comparator 18. The target torque distribution rate is determined using the torque distribution rate determination map shown in FIG. 4 based on the vehicle speed specified by the vehicle speed specifying unit 12 and the steering angle specified by the steering angle specifying unit 14. This torque distribution rate determination map is a map in which the steering angle and the torque distribution rate are associated with each vehicle speed. In FIG. 4, the target torque of the electric motor 30L is indicated by a thick solid line L1, and the target torque of the electric motor 30R is indicated by a thin solid line L2. For example, when the steering angle is 0 °, that is, when the vehicle 200 is traveling straight, the distribution ratio is set so that the target torque of the electric motor 30L and the target torque of the electric motor 30R are 1: 1. Further, for example, when the steering angle is a certain angle when turning to the right, the distribution ratio is such that the target torque of the electric motor 30L and the target torque of the electric motor 30R are 1: 0.5, that is, 2: 1. Is stipulated. This is because when turning to the right, it is necessary to output a larger torque to the electric motor 30L than to the electric motor 30R and to rotate the front wheel 202 at a higher speed than the front wheel 201. Note that FIG. 4 shows only three maps when the vehicle speed V is v1, v2, and v3, but in the present embodiment, four or more maps are prepared in advance.
図2に示す監視部17は、目標トルク指示部16の故障を監視する。目標トルク指示部16が故障した場合、全体目標トルクとして誤った値が算出されたり、誤った分配率が算出されたりするおそれがある。そこで、電動機制御装置10では、目標トルク指示部16の故障の有無を、監視部17を設けて監視するようにしている。監視部17は、目標トルク指示部16と同様な構成を有し、全体目標トルクと、左右の電動機30R、30Lに分配する際の分配率を決定し、決定された分配率に応じた目標トルクを示す信号を、比較器18に出力する。
The monitoring unit 17 shown in FIG. 2 monitors the failure of the target torque indicating unit 16. If the target torque indicator 16 fails, an erroneous value may be calculated as the overall target torque, or an erroneous distribution rate may be calculated. Therefore, in the electric motor control device 10, a monitoring unit 17 is provided to monitor whether or not the target torque indicating unit 16 has a failure. The monitoring unit 17 has the same configuration as the target torque indicating unit 16, determines the overall target torque and the distribution rate when distributing to the left and right electric motors 30R and 30L, and determines the distribution rate according to the determined distribution rate. Is output to the comparator 18.
比較器18は、目標トルク指示部16および監視部17から目標トルクを示す信号を入力し、これら2つの信号の示す目標トルク同士を比較し、比較結果、すなわち目標トルクの差分を故障発生特定部21に通知する。
The comparator 18 inputs signals indicating the target torque from the target torque indicating unit 16 and the monitoring unit 17, compares the target torques indicated by these two signals, and determines the comparison result, that is, the difference between the target torques, as a failure occurrence identification unit. Notify 21.
目標ヨーレート算出部19は、車速特定部12により特定される車速と、操舵角特定部14により特定される操舵角とに基づき、図5に示す目標ヨーレートマップを参照して目標ヨーレートを算出する。かかる目標ヨーレートマップは、車速毎に、操舵角と目標トルクとが対応付けられているマップである。図5において、横軸は操舵角を示し、縦軸は目標ヨーレートを示す。車速Vがv1である場合、操舵角がゼロの場合に目標ヨーレートはゼロであり、操舵角が左または右に大きくなるにつれて次第に目標ヨーレートが大きくなる曲線Ly1が、目標ヨーレートマップとして設定されている。車速Vがv1よりも大きなvnである場合の目標ヨーレートマップLynでは、操舵角がゼロの場合の目標ヨーレートは目標ヨーレートマップLy1と同じであり、ゼロに設定されている。また、かかる目標ヨーレートマップLynでは、目標ヨーレートマップLy1と同様に、操舵角の絶対値が大きくにつれて目標ヨーレートが次第に大きくなるように設定されている。なお、車速Vがvnである場合の目標ヨーレートマップLynには、比較し易いように、目標ヨーレートマップLy1を破線で表わしている。
The target yaw rate calculation unit 19 calculates the target yaw rate with reference to the target yaw rate map shown in FIG. 5 based on the vehicle speed specified by the vehicle speed specifying unit 12 and the steering angle specified by the steering angle specifying unit 14. The target yaw rate map is a map in which the steering angle and the target torque are associated with each vehicle speed. In FIG. 5, the horizontal axis represents the steering angle and the vertical axis represents the target yaw rate. When the vehicle speed V is v1, the target yaw rate is zero when the steering angle is zero, and the curve Ly1 in which the target yaw rate gradually increases as the steering angle increases to the left or right is set as the target yaw rate map. .. In the target yaw rate map Lyn when the vehicle speed V is vn larger than v1, the target yaw rate when the steering angle is zero is the same as the target yaw rate map Ly1 and is set to zero. Further, in the target yaw rate map Lyn, similarly to the target yaw rate map Ly1, the target yaw rate is set to gradually increase as the absolute value of the steering angle increases. In the target yaw rate map Lyn when the vehicle speed V is vn, the target yaw rate map Ly1 is represented by a broken line for easy comparison.
図5において実線の目標ヨーレートマップLynのマップと破線の目標ヨーレートマップLy1とを比較して理解できるように、本実施形態では、操舵角の絶対値が同じ場合、車速がより大きいほど、目標ヨーレートとして小さな値が設定されている。目標ヨーレート算出部19は、目標ヨーレートマップを用いて算出した目標ヨーレートを、比較器20に通知する。
As can be understood by comparing the solid line target yaw rate map Lyn map and the broken line target yaw rate map Ly1 in FIG. 5, in the present embodiment, when the absolute values of the steering angles are the same, the larger the vehicle speed, the higher the target yaw rate. A small value is set as. The target yaw rate calculation unit 19 notifies the comparator 20 of the target yaw rate calculated using the target yaw rate map.
比較器20は、ヨーレート特定部15により特定されるヨーレートと、目標ヨーレート算出部19により算出されるヨーレートとを入力して比較し、比較結果、すなわち、これら2つのヨーレートの差分(以下、「ヨーレート差分」と呼ぶ)を、故障発生特定部21、目標トルク指示部16および監視部17に通知する。ヨーレート差分は、後述の車線逸脱ハザード検出処理およびブレーキ制御処理において用いられる。
The comparator 20 inputs and compares the yaw rate specified by the yaw rate specifying unit 15 and the yaw rate calculated by the target yaw rate calculating unit 19, and compares the comparison result, that is, the difference between these two yaw rates (hereinafter, "yaw rate"). "Difference") is notified to the failure occurrence specifying unit 21, the target torque indicating unit 16, and the monitoring unit 17. The yaw rate difference is used in the lane deviation hazard detection process and the brake control process, which will be described later.
故障発生特定部21は、目標トルク指示部16の故障、および2つの制御回路31R、31Lの故障発生を特定する。具体的には、故障発生特定部21は、比較器18から受信する目標トルクの差分が所定の閾値以上の場合に目標トルク指示部16の故障の発生を特定する。なお、シフトレンジが後退(R)の場合には、目標トルク指示部16から出力される目標トルクの大きさ(絶対値)が所定の閾値以上の場合に故障の発生を特定するようにしてもよい。故障発生特定部21は、また、2つの制御回路31R、31Lから故障発生を示す信号(以下、「故障発生信号」と呼ぶ)を受信した場合に、2つの制御回路31R、31Lのうちの少なくとも一方の故障の発生を特定する。故障発生特定部21は、上述のようにして故障発生を特定した場合、故障が発生したことを示す信号を目標トルク指示部16および監視部17に通知する。後述のように、故障発生の通知を受信した目標トルク指示部16および監視部17は、故障発生が無い場合の通常時の目標トルク(後述の正常目標トルク)とは異なるトルク、すなわち、上述のようにして決定される目標トルクとは異なるトルクを、目標トルクとして、2つの制御回路31R、31Lに通知する。
The failure occurrence identification unit 21 identifies the failure of the target torque indicator 16 and the failure occurrence of the two control circuits 31R and 31L. Specifically, the failure occurrence specifying unit 21 identifies the occurrence of a failure of the target torque indicating unit 16 when the difference between the target torques received from the comparator 18 is equal to or greater than a predetermined threshold value. When the shift range is backward (R), the occurrence of a failure may be specified when the magnitude (absolute value) of the target torque output from the target torque indicator 16 is equal to or greater than a predetermined threshold value. Good. The failure occurrence identification unit 21 also receives at least one of the two control circuits 31R and 31L when a signal indicating the occurrence of a failure (hereinafter referred to as a “failure occurrence signal”) is received from the two control circuits 31R and 31L. Identify the occurrence of one of the failures. When the failure occurrence identification unit 21 identifies the failure occurrence as described above, the failure occurrence identification unit 21 notifies the target torque indicating unit 16 and the monitoring unit 17 of a signal indicating that the failure has occurred. As will be described later, the target torque indicating unit 16 and the monitoring unit 17 that have received the notification of the occurrence of a failure have a torque different from the normal target torque (normal target torque described later) when there is no failure, that is, the above-mentioned. A torque different from the target torque determined in this manner is notified to the two control circuits 31R and 31L as the target torque.
図2に示す制御回路31Rは、ドライバIC32Rと、実トルク算出部33Rと、比較器34Rと、動作監視部35Rとを備える。ドライバIC32Rは、目標トルク指示部16から通知される目標トルクに応じて駆動電圧を電動機30Rに供給する。実トルク算出部33Rは、電動機30Rを流れる電流の電流値と電動機30Rの回転数を検出し、これらの電流値および回転数に基づき、電動機30Rが実際に出力するトルク(以下、「実トルク」と呼ぶ)の値を算出する。比較器34Rには、目標トルク指示部16から通知される目標トルクの値と、実トルク算出部33Rにより算出された実トルクの値とが入力される。比較器34Rは、入力されたこれら2つのトルクの値を比較し、比較結果、すなわちトルクの差分を動作監視部35Rに出力する。動作監視部35Rは、ドライバIC32Rの動作を特定する。具体的には、動作監視部35Rは、比較器34Rから入力する比較結果が所定の閾値以上の場合に、ドライバIC32Rの故障を特定し、故障発生信号を電動機制御装置10(故障発生特定部21)に通知する。なお、比較結果が閾値未満の場合、ドライバIC32Rは正常に動作しており、動作監視部35Rは、故障発生信号を出力しない。
The control circuit 31R shown in FIG. 2 includes a driver IC 32R, an actual torque calculation unit 33R, a comparator 34R, and an operation monitoring unit 35R. The driver IC 32R supplies the drive voltage to the electric motor 30R according to the target torque notified from the target torque indicating unit 16. The actual torque calculation unit 33R detects the current value of the current flowing through the electric motor 30R and the rotation speed of the electric motor 30R, and based on these current values and the rotation speed, the torque actually output by the electric motor 30R (hereinafter, "actual torque"). ) Is calculated. The value of the target torque notified from the target torque indicating unit 16 and the value of the actual torque calculated by the actual torque calculation unit 33R are input to the comparator 34R. The comparator 34R compares the values of these two input torques, and outputs the comparison result, that is, the difference in torque to the operation monitoring unit 35R. The operation monitoring unit 35R identifies the operation of the driver IC 32R. Specifically, the operation monitoring unit 35R identifies a failure of the driver IC 32R when the comparison result input from the comparator 34R is equal to or higher than a predetermined threshold value, and outputs a failure occurrence signal to the motor control device 10 (failure occurrence identification unit 21). ). If the comparison result is less than the threshold value, the driver IC 32R is operating normally, and the operation monitoring unit 35R does not output a failure occurrence signal.
制御回路31Lは、制御回路31Rと同様な構成を有する。すなわち、ドライバIC32Lと、実トルク算出部33Lと、比較器34Lと、動作監視部35Lとを備える。動作監視部35Lは、比較器34Lから入力する比較結果が所定の閾値以上の場合に、ドライバIC32Lの故障を特定し、故障発生信号を電動機制御装置10(故障発生特定部21)に通知する。
The control circuit 31L has the same configuration as the control circuit 31R. That is, it includes a driver IC 32L, an actual torque calculation unit 33L, a comparator 34L, and an operation monitoring unit 35L. When the comparison result input from the comparator 34L is equal to or greater than a predetermined threshold value, the operation monitoring unit 35L identifies a failure of the driver IC 32L and notifies the electric motor control device 10 (failure occurrence specifying unit 21) of a failure occurrence signal.
上記構成を有する車輪制御システム100では、後述の車線逸脱ハザード検出処理と、故障時目標トルク決定処理と、ブレーキ制御処理とが実行され、これにより、2つの制御回路31R、31Lのいずれか一方が故障した場合でも、車両200の走行安定性が低下することが抑制される。
In the wheel control system 100 having the above configuration, a lane deviation hazard detection process, a failure target torque determination process, and a brake control process, which will be described later, are executed, whereby one of the two control circuits 31R and 31L is executed. Even if a failure occurs, it is possible to prevent the vehicle 200 from deteriorating in running stability.
A2.車線逸脱ハザード検出処理:
図6に示す車線逸脱ハザード検出処理は、車両200のスタートボタンが押下されて電動機制御装置10の電源がオンすると実行される。車線逸脱検出処理とは、2つの制御回路31R、31Lのうちの一方の故障に起因して車両200が走行中の車線を逸脱するハザードが生じる可能性があることを検出する処理である。なお、車輪制御システム100が最初に起動する際には、後述の車線逸脱ハザードフラグXFと、退避走行フラグXRと、正常側判定フラグNFには、いずれも「0」が設定されている。これらのフラグは、最初に起動した後に異なる値に設定され得る。また、これらフラグXF、XR、NFの設定値は、電動機制御装置10が有する書き込み可能な不揮発性メモリ、例えば、EEPROMに書き込まれており、次回始動時には、かかる不揮発性メモリに記載された値が参照される。なお、これらのフラグXF、XR、NFの詳細については、後述する。 A2. Lane deviation hazard detection process:
The lane deviation hazard detection process shown in FIG. 6 is executed when the start button of thevehicle 200 is pressed and the power of the electric motor control device 10 is turned on. The lane deviation detection process is a process for detecting that a hazard that causes the vehicle 200 to deviate from the lane in which the vehicle is traveling may occur due to a failure of one of the two control circuits 31R and 31L. When the wheel control system 100 is first activated, the lane deviation hazard flag XF, the evacuation travel flag XR, and the normal side determination flag NF, which will be described later, are all set to "0". These flags can be set to different values after the first boot. Further, the set values of these flags XF, XR, and NF are written in a writable non-volatile memory of the motor control device 10, for example, EEPROM, and the value described in the non-volatile memory is used at the next start. Referenced. The details of these flags XF, XR, and NF will be described later.
図6に示す車線逸脱ハザード検出処理は、車両200のスタートボタンが押下されて電動機制御装置10の電源がオンすると実行される。車線逸脱検出処理とは、2つの制御回路31R、31Lのうちの一方の故障に起因して車両200が走行中の車線を逸脱するハザードが生じる可能性があることを検出する処理である。なお、車輪制御システム100が最初に起動する際には、後述の車線逸脱ハザードフラグXFと、退避走行フラグXRと、正常側判定フラグNFには、いずれも「0」が設定されている。これらのフラグは、最初に起動した後に異なる値に設定され得る。また、これらフラグXF、XR、NFの設定値は、電動機制御装置10が有する書き込み可能な不揮発性メモリ、例えば、EEPROMに書き込まれており、次回始動時には、かかる不揮発性メモリに記載された値が参照される。なお、これらのフラグXF、XR、NFの詳細については、後述する。 A2. Lane deviation hazard detection process:
The lane deviation hazard detection process shown in FIG. 6 is executed when the start button of the
電動機制御装置10は、車線逸脱ハザードフラグXFがオンであるか否かを判定する(ステップS105)。目標ヨーレート算出部19は、車速特定部12により特定された車速と、操舵角特定部14により特定された操舵角から、目標ヨーレートYtを算出する(ステップS110)。比較器20は、ヨーレート特定部15を介してヨーレートセンサ45の検出結果、すなわち、ヨーレートの実測値Yを取得する(ステップS115)。故障発生特定部21は、比較器20から通知されるヨーレート差分の絶対値、すなわち、ステップS110により算出された目標ヨーレートYtと、ステップS115により取得されたヨーレートの実測値Yとの差分の絶対値が、予め定められた閾値αよりも大きいか否かを判定する(ステップS120)。閾値αは、2つの制御回路31R、31Lのうちの一方が故障したために、ヨーレートの実測値Yが目標ヨーレートYtからずれる場合のヨーレート差分の絶対値を実験やシミュレーションにより求め、求められた値から、2つの制御回路31R、31Lのうちの一方の故障が推定される値として設定されている。
The electric motor control device 10 determines whether or not the lane deviation hazard flag XF is on (step S105). The target yaw rate calculation unit 19 calculates the target yaw rate Yt from the vehicle speed specified by the vehicle speed specifying unit 12 and the steering angle specified by the steering angle specifying unit 14 (step S110). The comparator 20 acquires the detection result of the yaw rate sensor 45, that is, the actually measured value Y of the yaw rate via the yaw rate specifying unit 15 (step S115). The failure occurrence identification unit 21 is the absolute value of the yaw rate difference notified from the comparator 20, that is, the absolute value of the difference between the target yaw rate Yt calculated in step S110 and the measured yaw rate Y acquired in step S115. Is larger than the predetermined threshold value α (step S120). The threshold value α is the absolute value of the yaw rate difference when the measured value Y of the yaw rate deviates from the target yaw rate Yt because one of the two control circuits 31R and 31L has failed, and the absolute value of the yaw rate difference is obtained from the obtained value. The failure of one of the two control circuits 31R and 31L is set as an estimated value.
ヨーレート差分の絶対値が閾値αよりも大きくないと判定された場合(ステップS120:NO)、故障発生特定部21は、経時カウンタCをゼロに設定する(ステップS125)。経時カウンタCとは、ヨーレート差分の絶対値が閾値αよりも大きいと判定され始めてからの経過時間に対応するカウンタ値である。なお、経時カウンタCの初期値はゼロである。ヨーレート差分の絶対値が閾値αよりも大きいと判定された場合(ステップS120:YES)、故障発生特定部21は、経時カウンタCを1増加させる(ステップS130)。
When it is determined that the absolute value of the yaw rate difference is not larger than the threshold value α (step S120: NO), the failure occurrence identification unit 21 sets the time counter C to zero (step S125). The time-lapse counter C is a counter value corresponding to the elapsed time from the start of determination that the absolute value of the yaw rate difference is larger than the threshold value α. The initial value of the time-lapse counter C is zero. When it is determined that the absolute value of the yaw rate difference is larger than the threshold value α (step S120: YES), the failure occurrence specifying unit 21 increments the time counter C by 1 (step S130).
故障発生特定部21は、経時カウンタCの値が閾値Cthよりも大きいか否かを判定する(ステップS135)。閾値Cthは、2つの制御回路31R、31Lのうちの一方の故障の可能性が高いと推定可能な時間に対応するカウンタ値として、予め実験等により定めて設定されている。経時カウンタCの値が閾値Cthよりも大きくないと判定された場合(ステップS135:NO)、上述のステップS105に戻る。これに対して、経時カウンタCの値が閾値Cthよりも大きいと判定された場合(ステップS135:YES)、故障発生特定部21は、車線逸脱ハザードフラグXFを「1」に設定してオンする(ステップS140)。つまり、上述のステップS135およびS140によれば、ヨーレート差分の絶対値が閾値αよりも大きいと判定され始めてから所定の時間が経過した場合に、車線逸脱ハザードフラグXFがオンされることとなる。ステップS140の完了後、上述のステップS105に戻る。
The failure occurrence identification unit 21 determines whether or not the value of the time-lapse counter C is larger than the threshold value Cth (step S135). The threshold value Cth is set in advance by experiments or the like as a counter value corresponding to a time at which one of the two control circuits 31R and 31L can be estimated to have a high possibility of failure. When it is determined that the value of the time-lapse counter C is not larger than the threshold value Cth (step S135: NO), the process returns to step S105 described above. On the other hand, when it is determined that the value of the time-lapse counter C is larger than the threshold value Cth (step S135: YES), the failure occurrence identification unit 21 sets the lane deviation hazard flag XF to "1" and turns it on. (Step S140). That is, according to steps S135 and S140 described above, the lane departure hazard flag XF is turned on when a predetermined time has elapsed since the absolute value of the yaw rate difference began to be determined to be larger than the threshold value α. After the completion of step S140, the process returns to step S105 described above.
なお、ヨーレート特定部15は、本開示の検出結果取得部の下位概念に相当する。また、目標ヨーレート算出部19は、本開示の目標値算出部の下位概念に相当する。
The yaw rate specifying unit 15 corresponds to a subordinate concept of the detection result acquisition unit of the present disclosure. Further, the target yaw rate calculation unit 19 corresponds to a subordinate concept of the target value calculation unit of the present disclosure.
A3.故障時目標トルク決定処理:
図7に示す故障時目標トルク決定処理は、車両200のスタートボタンが押下されて電動機制御装置10の電源がオンすると実行される。故障時目標トルク決定処理とは、2つの制御回路31R、31Lのいずれか一方に故障が生じている場合に各制御回路31R、31Lに指示すべき目標トルクを決定するための処理である。 A3. Target torque determination process at the time of failure:
The failure target torque determination process shown in FIG. 7 is executed when the start button of thevehicle 200 is pressed and the power of the electric motor control device 10 is turned on. The failure target torque determination process is a process for determining a target torque to be instructed to each of the control circuits 31R and 31L when one of the two control circuits 31R and 31L has a failure.
図7に示す故障時目標トルク決定処理は、車両200のスタートボタンが押下されて電動機制御装置10の電源がオンすると実行される。故障時目標トルク決定処理とは、2つの制御回路31R、31Lのいずれか一方に故障が生じている場合に各制御回路31R、31Lに指示すべき目標トルクを決定するための処理である。 A3. Target torque determination process at the time of failure:
The failure target torque determination process shown in FIG. 7 is executed when the start button of the
故障発生特定部21は、車線逸脱ハザードフラグXFがオンしているか否かを判定する(ステップS205)。車線逸脱ハザードフラグXFがオンしていないと判定された場合(ステップS205:NO)、再びステップS205が実行される。つまり、故障発生特定部21は、車線逸脱ハザードフラグXFがオンになるまで待機している。これに対して、車線逸脱ハザードフラグXFがオンしていると判定された場合(ステップS205:YES)、目標トルク指示部16は、アクセル開度特定部11により特定されるアクセル開度、車速特定部12により特定される車速、およびシフトレンジ特定部13により特定されるシフトレンジから、全体目標トルクToを算出する(ステップS210)。目標トルク指示部16は、車速および操舵角特定部14により特定される操舵角を用いて、図4に示すトルク分配率マップを参照して、左右の車輪201、202へのトルク分配率を決定する(ステップS215)。
The failure occurrence identification unit 21 determines whether or not the lane deviation hazard flag XF is turned on (step S205). If it is determined that the lane departure hazard flag XF is not turned on (step S205: NO), step S205 is executed again. That is, the failure occurrence identification unit 21 waits until the lane deviation hazard flag XF is turned on. On the other hand, when it is determined that the lane deviation hazard flag XF is ON (step S205: YES), the target torque indicating unit 16 specifies the accelerator opening degree and the vehicle speed specified by the accelerator opening degree specifying unit 11. The overall target torque To is calculated from the vehicle speed specified by the unit 12 and the shift range specified by the shift range specifying unit 13 (step S210). The target torque indicating unit 16 determines the torque distribution rate to the left and right wheels 201 and 202 by referring to the torque distribution rate map shown in FIG. 4 using the vehicle speed and the steering angle specified by the steering angle specifying unit 14. (Step S215).
故障発生特定部21は、左右の制御回路31R、31Lの正常性を特定する(ステップS220)。具体的には、上述のように、制御回路31Rおよび制御回路31Lから故障発生信号を受信したか否かにより、制御回路31Rおよび31Lの正常性、すなわち、故障発生の有無を特定できる。
The failure occurrence identification unit 21 identifies the normality of the left and right control circuits 31R and 31L (step S220). Specifically, as described above, the normality of the control circuits 31R and 31L, that is, the presence or absence of the failure occurrence can be specified by whether or not the failure occurrence signal is received from the control circuit 31R and the control circuit 31L.
制御回路31Rは正常であり、制御回路31Lが異常の場合、目標トルク指示部16は、制御回路31Rに指示する目標トルク(以下、「右側目標トルク」と呼ぶ)TRを、ステップS210で求めた全体目標トルクに対しステップS215で決定されたトルク分配率を適用して決定される目標トルク(以下、「正常目標トルク」と呼ぶ)に設定し、制御回路31Lに指示する目標トルク(以下、「左側目標トルク」と呼ぶ)TLをゼロに設定し、また、正常側判定フラグNFに「-1」を設定する(ステップS225)。正常側判定フラグとは、制御回路31Rと制御回路31Lとのうち、いずれが正常であるかを示すフラグであり、「-1」が右側(制御回路31R)を、「+1」が左側(制御回路31L)を、「0(ゼロ)」が両方とも正常では無いことを、それぞれ示す。
When the control circuit 31R is normal and the control circuit 31L is abnormal, the target torque indicator 16 obtains the target torque (hereinafter referred to as “right target torque”) TR instructed to the control circuit 31R in step S210. The target torque determined by applying the torque distribution rate determined in step S215 to the overall target torque (hereinafter referred to as "normal target torque") is set, and the target torque instructed to the control circuit 31L (hereinafter, "" The TL (referred to as "left side target torque") is set to zero, and the normal side determination flag NF is set to "-1" (step S225). The normal side determination flag is a flag indicating which of the control circuit 31R and the control circuit 31L is normal, "-1" is the right side (control circuit 31R), and "+1" is the left side (control). Circuit 31L) indicates that both "0 (zero)" are not normal.
制御回路31Rが異常であり、制御回路31Lが正常の場合、目標トルク指示部16は、右側目標トルクをゼロに設定し、左側目標トルクを正常目標トルクに設定し、正常側判定フラグに「+1」を設定する(ステップS230)。
When the control circuit 31R is abnormal and the control circuit 31L is normal, the target torque indicator 16 sets the right target torque to zero, sets the left target torque to the normal target torque, and sets the normal side determination flag to "+1". "(Step S230).
それ以外の場合、すなわち、2つの制御回路31R、31Lのいずれも異常である場合、目標トルク指示部16は、右側目標トルクをゼロに設定し、左側目標トルクをゼロに設定し、正常側判定フラグに「0(ゼロ)」を設定する(ステップS235)。なお、上述のステップS225、S230、およびS235で決定された目標トルクは、制御回路31R、31Lにそれぞれ指示される。このため、駆動輪である一対の前方車輪201、202のうちの少なくとも一方については、目標トルクがゼロになるため、車速は次第に低下することとなる。
In other cases, that is, when both of the two control circuits 31R and 31L are abnormal, the target torque indicator 16 sets the right target torque to zero, sets the left target torque to zero, and determines the normal side. “0 (zero)” is set in the flag (step S235). The target torques determined in steps S225, S230, and S235 described above are instructed by the control circuits 31R and 31L, respectively. Therefore, for at least one of the pair of front wheels 201 and 202, which are the driving wheels, the target torque becomes zero, so that the vehicle speed gradually decreases.
上述のステップS225およびS230の完了後、故障発生特定部21は、退避走行フラグXRはオンであるか否かを判定する(ステップS240)。退避走行フラグXRとは、退避走行を行うべき状況であるか否かを示すフラグであり、オンの場合、退避走行を行うべき状況であることを示す。退避走行とは、制御回路31Rまたは制御回路31Lが異常でない状況における走行(以下、「通常走行」と呼ぶ)とは異なる走行であって、車両200の走行安定性が低下することを抑制する走行を意味する。退避走行フラグXRがオンでない場合(ステップS240:NO)、故障発生特定部21は、車速がゼロであるか否かを判定する(ステップS245)。車速がゼロであると判定された場合(ステップS245:YES)、故障発生特定部21は、退避走行フラグXRに「1」を設定しオンする(ステップS250)。
After the completion of steps S225 and S230 described above, the failure occurrence identification unit 21 determines whether or not the evacuation travel flag XR is on (step S240). The evacuation running flag XR is a flag indicating whether or not the evacuation running should be performed, and when it is on, it indicates that the evacuation running should be performed. The evacuation running is a running different from the running in a situation where the control circuit 31R or the control circuit 31L is not abnormal (hereinafter, referred to as "normal running"), and is a running that suppresses the deterioration of the running stability of the vehicle 200. Means. When the evacuation running flag XR is not turned on (step S240: NO), the failure occurrence identification unit 21 determines whether or not the vehicle speed is zero (step S245). When it is determined that the vehicle speed is zero (step S245: YES), the failure occurrence identification unit 21 sets the evacuation travel flag XR to "1" and turns it on (step S250).
上述のステップS235の実行後、上述のステップS205に戻る。また、上述のステップS240において退避走行フラグXRはオンであると判定された場合(ステップS240:YES)、および、上述のステップS245において車速がゼロでないと判定された場合(ステップS245:NO)、いずれも上述のステップS205に戻る。したがって、退避走行フラグXRがオフの状態において制御回路31R、31Lのうちの少なくとも一方が異常となった場合には、車速が低下していきゼロになった場合に退避走行フラグXRがオンすることとなる。
After executing the above-mentioned step S235, the process returns to the above-mentioned step S205. Further, when it is determined that the evacuation running flag XR is ON in step S240 described above (step S240: YES), and when it is determined that the vehicle speed is not zero in step S245 described above (step S245: NO). In each case, the process returns to step S205 described above. Therefore, when at least one of the control circuits 31R and 31L becomes abnormal while the evacuation travel flag XR is off, the evacuation travel flag XR is turned on when the vehicle speed decreases and becomes zero. It becomes.
A4.ブレーキ制御処理:
図8および図9に示すブレーキ制御処理は、車両200のスタートボタンが押下されてブレーキ制御装置120の電源がオンすると実行される。ブレーキ制御処理とは、ブレーキ装置51~54の動作を制御する処理である。 A4. Brake control process:
The brake control process shown in FIGS. 8 and 9 is executed when the start button of thevehicle 200 is pressed and the power of the brake control device 120 is turned on. The brake control process is a process of controlling the operation of the brake devices 51 to 54.
図8および図9に示すブレーキ制御処理は、車両200のスタートボタンが押下されてブレーキ制御装置120の電源がオンすると実行される。ブレーキ制御処理とは、ブレーキ装置51~54の動作を制御する処理である。 A4. Brake control process:
The brake control process shown in FIGS. 8 and 9 is executed when the start button of the
ブレーキ制御装置120は、電動機制御装置10から車線逸脱ハザードフラグXF、退避走行フラグXR、および正常側判定フラグNFの3種類のフラグの設定値を、車載ネットワーク220を介して取得する(ステップS305)。
The brake control device 120 acquires the set values of three types of flags, the lane deviation hazard flag XF, the evacuation running flag XR, and the normal side determination flag NF, from the electric motor control device 10 via the vehicle-mounted network 220 (step S305). ..
ブレーキ制御装置120は、車線逸脱ハザードフラグXFはオンであるか否かを判定する(ステップS310)。車線逸脱ハザードフラグXFはオンでないと判定された場合(ステップS310:NO)、ブレーキ制御装置120は、ブレーキ装置51~54を対象に、運転者による通常のブレーキ操作量に応じたブレーキ制御を実行する(ステップS315)。
The brake control device 120 determines whether or not the lane departure hazard flag XF is on (step S310). When it is determined that the lane departure hazard flag XF is not on (step S310: NO), the brake control device 120 executes brake control according to the normal brake operation amount by the driver for the brake devices 51 to 54. (Step S315).
車線逸脱ハザードフラグXFはオンであると判定された場合(ステップS310:YES)、ブレーキ制御装置120は、退避走行フラグXRはオンであるか否かを判定する(ステップS320)。退避走行フラグXRはオンでないと判定された場合(ステップS310:NO)、上述のステップS315が実行される。退避走行フラグXRはオンでないと判定された場合とは、すなわち、上述の故障時目標トルク決定処理のステップS225~S230が実行中であり、且つ、未だ車両200が停止していない場合を意味する。この場合は、運転者によるブレーキ操作量に応じたブレーキ制御が実行される。
When it is determined that the lane departure hazard flag XF is ON (step S310: YES), the brake control device 120 determines whether or not the evacuation travel flag XR is ON (step S320). If it is determined that the evacuation running flag XR is not on (step S310: NO), the above-mentioned step S315 is executed. The case where it is determined that the evacuation running flag XR is not on means that the steps S225 to S230 of the above-mentioned failure target torque determination process are being executed and the vehicle 200 has not stopped yet. .. In this case, brake control is executed according to the amount of brake operation by the driver.
他方、退避走行フラグXRはオンであると判定された場合(ステップS320:YES)、ブレーキ制御装置120は、車載ネットワーク220を介して電動機制御装置10から車速および操舵角を取得し、かかる車速および操舵角から目標ヨーレートYtを算出する(ステップS325)。なお、車線逸脱ハザード検出処理のステップS110により算出された結果である目標ヨーレートYtを、電動機制御装置10から車載ネットワーク220を介して取得してもよい。
On the other hand, when it is determined that the evacuation travel flag XR is ON (step S320: YES), the brake control device 120 acquires the vehicle speed and steering angle from the electric motor control device 10 via the vehicle-mounted network 220, and obtains the vehicle speed and the steering angle. The target yaw rate Yt is calculated from the steering angle (step S325). The target yaw rate Yt, which is the result calculated in step S110 of the lane deviation hazard detection process, may be acquired from the electric motor control device 10 via the in-vehicle network 220.
ブレーキ制御装置120は、車載ネットワーク220を介して電動機制御装置10からヨーレートセンサ45の検出結果、すなわち、ヨーレートの実測値Yを取得する(ステップS330)。ブレーキ制御装置120は、ステップS330により取得されたヨーレートの実測値Yと、ステップS325により算出された目標ヨーレートYtとの差分(ヨーレート差分)の絶対値(|Y-Yt|)を算出する(ステップS335)。
The brake control device 120 acquires the detection result of the yaw rate sensor 45 from the electric motor control device 10 via the in-vehicle network 220, that is, the measured value Y of the yaw rate (step S330). The brake control device 120 calculates an absolute value (| Y-Yt |) of the difference (yaw rate difference) between the actually measured value Y of the yaw rate acquired in step S330 and the target yaw rate Yt calculated in step S325 (step). S335).
ブレーキ制御装置120は、ステップS325で取得された車速および操舵角から、車両200が直進しているか否かを判定する(ステップS340)。車両200が直進していると判定された場合(ステップS340:YES)、図9に示すように、ブレーキ制御装置120は、正常側判定フラグNFを特定する(ステップS345)。
The brake control device 120 determines whether or not the vehicle 200 is traveling straight from the vehicle speed and steering angle acquired in step S325 (step S340). When it is determined that the vehicle 200 is traveling straight (step S340: YES), the brake control device 120 identifies the normal side determination flag NF (step S345) as shown in FIG.
正常側判定フラグNFが「+1」の場合、すなわち、制御回路31Rが異常であり、制御回路31Lが正常の場合、ブレーキ制御装置120は、左側後方車輪204のブレーキ装置54を作動させる(ステップS350)。このとき、ブレーキ力は、ステップS335で算出されたヨーレート差分の絶対値(|Y-Yt|)に対して、所定の係数kを乗じて得られる正の値である。つまり、ヨーレート差分の絶対値に比例する大きさのブレーキ力でブレーキ装置54が作動されることとなる。本実施形態において、係数kは、ブレーキ装置53が作動された場合に、ヨーレートの実測値Yが目標ヨーレートYtに近づくようなブレーキ力を予め実験等により求め、かかるブレーキ力から導き出された係数である。
When the normal side determination flag NF is "+1", that is, when the control circuit 31R is abnormal and the control circuit 31L is normal, the brake control device 120 operates the brake device 54 of the left rear wheel 204 (step S350). ). At this time, the braking force is a positive value obtained by multiplying the absolute value (| Y-Yt |) of the yaw rate difference calculated in step S335 by a predetermined coefficient k. That is, the braking device 54 is operated with a braking force having a magnitude proportional to the absolute value of the yaw rate difference. In the present embodiment, the coefficient k is a coefficient derived from a braking force obtained in advance by an experiment or the like so that the measured value Y of the yaw rate approaches the target yaw rate Yt when the braking device 53 is operated. is there.
図10に示すように、制御回路31Rが故障した場合に車両200が直進すると、前方車輪201の目標トルクはゼロになるため、駆動輪である2つの前方車輪201、202のうち、左側の前方車輪202のみが駆動し、車両200は、自身の重心C1を中心とした右旋回動作を行おうとする。しかし、この場合、上述のステップS355が実行されて、ブレーキ装置54が作動するので、車両200の右旋回動作を抑制できる。このため、制御回路31Rの故障が発生した後であっても、車両200の走行安定性が低下することを抑制でき、また、ヨーレートの実測値Yは、目標ヨーレートYtに近づくこととなる。なお、図10では、電動機制御装置10や、車載ネットワーク220や、EPS制御装置110など、図1に示す一部の構成要素は、説明の便宜上省略されている。
As shown in FIG. 10, when the vehicle 200 goes straight when the control circuit 31R fails, the target torque of the front wheels 201 becomes zero, so that the front left side of the two front wheels 201 and 202, which are the driving wheels. Only the wheels 202 are driven, and the vehicle 200 attempts to make a right turn operation centered on its own center of gravity C1. However, in this case, since the above-mentioned step S355 is executed and the brake device 54 is activated, the right turning operation of the vehicle 200 can be suppressed. Therefore, even after the failure of the control circuit 31R occurs, it is possible to suppress the deterioration of the running stability of the vehicle 200, and the measured value Y of the yaw rate approaches the target yaw rate Yt. In FIG. 10, some components shown in FIG. 1, such as the electric motor control device 10, the in-vehicle network 220, and the EPS control device 110, are omitted for convenience of explanation.
図9に示すように、正常側判定フラグNFが「-1」の場合、すなわち、制御回路31Rは正常であり、制御回路31Lが異常の場合、ブレーキ制御装置120は、右側の後方車輪203のブレーキ装置53を作動させる(ステップS355)。このとき、ブレーキ力は、ステップS335で算出されたヨーレート差分の絶対値(|Y-Yt|)に対して、所定の係数kを乗じて得られる正の値である。つまり、ヨーレート差分の絶対値に比例する大きさのブレーキ力でブレーキ装置53が作動されることとなる。ステップS355の係数kは、ステップS350の係数kと同じであるので、詳細な説明を省略する。
As shown in FIG. 9, when the normal side determination flag NF is "-1", that is, when the control circuit 31R is normal and the control circuit 31L is abnormal, the brake control device 120 is set on the right rear wheel 203. The brake device 53 is operated (step S355). At this time, the braking force is a positive value obtained by multiplying the absolute value (| Y-Yt |) of the yaw rate difference calculated in step S335 by a predetermined coefficient k. That is, the braking device 53 is operated with a braking force having a magnitude proportional to the absolute value of the yaw rate difference. Since the coefficient k in step S355 is the same as the coefficient k in step S350, detailed description thereof will be omitted.
上述のステップS340において車両200が直進していないと判定された場合(ステップS340:NO)、図9に示すように、ブレーキ制御装置120は、一対の後方車輪203、204のうち、内輪側の車輪のブレーキ装置を作動させる(ステップS360)。このとき、ブレーキ力は、ステップS335で算出されたヨーレート差分の絶対値(|Y-Yt|)に対して、所定の係数kを乗じて得られる正の値である。つまり、ヨーレート差分の絶対値に比例する大きさのブレーキ力で内輪側の車輪のブレーキ装置が作動されることとなる。
When it is determined in step S340 described above that the vehicle 200 is not traveling straight (step S340: NO), as shown in FIG. 9, the brake control device 120 is located on the inner wheel side of the pair of rear wheels 203 and 204. The wheel braking device is activated (step S360). At this time, the braking force is a positive value obtained by multiplying the absolute value (| Y-Yt |) of the yaw rate difference calculated in step S335 by a predetermined coefficient k. That is, the braking device for the wheels on the inner wheel side is operated with a braking force having a magnitude proportional to the absolute value of the yaw rate difference.
図11に示すように、例えば、車両200が右旋回時に制御回路31Rが故障すると、前方車輪201の目標トルクはゼロになるため、駆動輪である2つの前方車輪201、202のうち、左側の前方車輪202のみが駆動し、車両200は、重心C1を中心とした右旋回動作が抑制され、いわゆるアンダーステアになるおそれがある。しかし、この場合、上述のステップS360が実行されて、内輪側のブレーキ装置である右側の後方車輪203のブレーキ装置53が作動するので、車両200の右旋回動作が促進される。このため、制御回路31Rが発生した後であっても、車両200の走行安定性が低下することを抑制でき、また、ヨーレートの実測値Yは、目標ヨーレートYtに近づくこととなる。
As shown in FIG. 11, for example, if the control circuit 31R fails when the vehicle 200 turns to the right, the target torque of the front wheels 201 becomes zero, so that the left side of the two front wheels 201 and 202 that are the driving wheels Only the front wheels 202 of the vehicle are driven, and the vehicle 200 is suppressed from turning right around the center of gravity C1, which may cause so-called understeer. However, in this case, since the above-mentioned step S360 is executed and the brake device 53 of the right rear wheel 203, which is the brake device on the inner wheel side, is activated, the right turning operation of the vehicle 200 is promoted. Therefore, even after the control circuit 31R is generated, it is possible to suppress the deterioration of the running stability of the vehicle 200, and the measured value Y of the yaw rate approaches the target yaw rate Yt.
図8および図9に示すように、ステップS350、S355およびS360の完了後、ステップS305に戻る。上述のステップS345で特定される正常側判定フラグNFの値が、「+1」および「-1」以外である場合、すなわち、「0(ゼロ)」である場合、上述のステップS315が実行され、通常のブレーキ操作量に応じたブレーキ制御が実行される。
As shown in FIGS. 8 and 9, after the completion of steps S350, S355 and S360, the process returns to step S305. When the value of the normal side determination flag NF specified in step S345 described above is other than "+1" and "-1", that is, when it is "0 (zero)", step S315 described above is executed. Brake control is executed according to the normal amount of brake operation.
以上説明した第1実施形態の車輪制御システム100によれば、故障発生が特定された制御回路に対して目標トルクとしてゼロが指示され、従動輪である一対の後方車輪203、204のうちの一方に対して、ヨーレートの実測値Yが目標ヨーレートYtに近づくようにブレーキがかけられるので、左右2つの前方車輪201、202を駆動する2つの電動機30R、30Lと、各電動機30R、30Lを制御する2つの制御回路31R、31Lとを備える構成において、いずれか一方の制御回路に故障が発生した場合に車両200の走行安定性が低下することを抑制でき、フェイルセーフを実現できる。
According to the wheel control system 100 of the first embodiment described above, zero is instructed as the target torque for the control circuit in which the failure occurrence is specified, and one of the pair of rear wheels 203 and 204 that are the driven wheels. On the other hand, since the brake is applied so that the measured value Y of the yaw rate approaches the target yaw rate Yt, the two electric motors 30R and 30L for driving the two front wheels 201 and 202 on the left and right and the electric motors 30R and 30L are controlled. In the configuration including the two control circuits 31R and 31L, it is possible to suppress the deterioration of the running stability of the vehicle 200 when a failure occurs in one of the control circuits, and it is possible to realize fail-safety.
また、車両200が直進していると判定される状況において故障発生が特定された場合に、一対の後方車輪203、204のうち、車両200の重心C1を挟んで故障発生が特定された制御回路に対応する車輪と対称の位置に配置されている車輪に対しブレーキをかけるので、駆動輪である一対の前方車輪201、202のうちの一方の車輪のみが駆動されることに起因して車両200が旋回することを抑制できる。
Further, when a failure is identified in a situation where it is determined that the vehicle 200 is traveling straight, a control circuit in which the failure is identified across the center of gravity C1 of the vehicle 200 among the pair of rear wheels 203 and 204. Since the brake is applied to the wheel arranged at a position symmetrical to the wheel corresponding to the above, the vehicle 200 is caused by driving only one of the pair of front wheels 201 and 202, which are the driving wheels. Can be suppressed from turning.
また、車両200が旋回動作を行っていると判断される状況において故障発生が特定された場合に、一対の後方車輪203、204のうち、内輪側となる車輪に対してブレーキをかけるので、駆動輪である一対の前方車輪201、202のうちの一方の車輪のみが駆動されることに起因して旋回動作が妨げられて、いわゆるアンダーステアになることを抑制できる。
Further, when a failure is identified in a situation where it is determined that the vehicle 200 is performing a turning operation, the brake is applied to the inner wheel side of the pair of rear wheels 203 and 204, so that the vehicle is driven. Since only one of the pair of front wheels 201 and 202, which are wheels, is driven, the turning operation is hindered and so-called understeer can be suppressed.
B.第2実施形態:
第2実施形態の車輪制御システム100の装置構成は、第1実施形態の車輪制御システム100と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。また、第2実施形態の車輪制御システム100は、第1実施形態の車輪制御システム100と同じ手順により、車線逸脱ハザード検出処理と、故障時目標トルク決定処理と、ブレーキ制御処理とを実行する。第2実施形態の車輪制御システム100は、操舵制御処理を追加して実行する点において、第1実施形態の車輪制御システム100と異なる。 B. Second embodiment:
Since the device configuration of thewheel control system 100 of the second embodiment is the same as that of the wheel control system 100 of the first embodiment, the same components are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the wheel control system 100 of the second embodiment executes a lane deviation hazard detection process, a failure target torque determination process, and a brake control process by the same procedure as the wheel control system 100 of the first embodiment. The wheel control system 100 of the second embodiment is different from the wheel control system 100 of the first embodiment in that steering control processing is additionally executed.
第2実施形態の車輪制御システム100の装置構成は、第1実施形態の車輪制御システム100と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。また、第2実施形態の車輪制御システム100は、第1実施形態の車輪制御システム100と同じ手順により、車線逸脱ハザード検出処理と、故障時目標トルク決定処理と、ブレーキ制御処理とを実行する。第2実施形態の車輪制御システム100は、操舵制御処理を追加して実行する点において、第1実施形態の車輪制御システム100と異なる。 B. Second embodiment:
Since the device configuration of the
図12に示す第2実施形態における操舵制御処理は、車両200のスタートボタンが押下されてEPS制御装置110の電源がオンすると実行される。操作制御処理とは、車両200の操舵を制御する処理である。
The steering control process according to the second embodiment shown in FIG. 12 is executed when the start button of the vehicle 200 is pressed and the power of the EPS control device 110 is turned on. The operation control process is a process for controlling the steering of the vehicle 200.
EPS制御装置110は、電動機制御装置10から車線逸脱ハザードフラグXF、退避走行フラグXR、および正常側判定フラグNFの3種類のフラグの設定値を、車載ネットワーク220を介して取得する(ステップS405)。
The EPS control device 110 acquires the set values of three types of flags, the lane deviation hazard flag XF, the evacuation running flag XR, and the normal side determination flag NF, from the electric motor control device 10 via the vehicle-mounted network 220 (step S405). ..
制御装置110は、車線逸脱ハザードフラグXFはオンであるか否かを判定する(ステップS410)。車線逸脱ハザードフラグXFはオンでないと判定された場合(ステップS410:NO)、EPS制御装置110は、運転者による通常の操舵量に応じた操作制御を実行する(ステップS415)。
The control device 110 determines whether or not the lane departure hazard flag XF is on (step S410). When it is determined that the lane departure hazard flag XF is not on (step S410: NO), the EPS control device 110 executes operation control according to the normal steering amount by the driver (step S415).
車線逸脱ハザードフラグXFはオンであると判定された場合(ステップS410:YES)、EPS制御装置110は、退避走行フラグXRはオンであるか否かを判定する(ステップS420)。退避走行フラグXRはオンでないと判定された場合(ステップS410:NO)、上述のステップS415が実行される。退避走行フラグXRはオンでないと判定された場合とは、すなわち、上述の故障時目標トルク決定処理のステップS225~S230が実行中であり、且つ、未だ車両200が停止していない場合を意味する。この場合は、運転者による操舵量に応じた操舵制御が実行される。
When it is determined that the lane departure hazard flag XF is ON (step S410: YES), the EPS control device 110 determines whether or not the evacuation travel flag XR is ON (step S420). If it is determined that the evacuation running flag XR is not on (step S410: NO), the above-mentioned step S415 is executed. The case where it is determined that the evacuation running flag XR is not on means that the steps S225 to S230 of the above-mentioned failure target torque determination process are being executed and the vehicle 200 has not stopped yet. .. In this case, steering control according to the steering amount by the driver is executed.
他方、退避走行フラグXRはオンであると判定された場合(ステップS420:YES)、EPS制御装置110は、車載ネットワーク220を介して電動機制御装置10から正常側判定フラグNFの設定値を取得して特定する(ステップS425)。
On the other hand, when it is determined that the evacuation travel flag XR is ON (step S420: YES), the EPS control device 110 acquires the set value of the normal side determination flag NF from the electric motor control device 10 via the in-vehicle network 220. (Step S425).
EPS制御装置110は、故障発生が特定された制御回路に対応する車輪側の操舵角について、正常時の操舵角(以下、「正常操舵角」と呼ぶ)からオフセット量を低減させた角度に制御する(ステップS430)。かかる制御は、ステップS425で特定された正常側判定フラグNFに基づき、後述する操舵角マップを参照して操舵角を決定し、かかる操舵角に制御することにより実現される。かかる制御について、図13を用いて説明する。
The EPS control device 110 controls the steering angle on the wheel side corresponding to the control circuit in which the failure has been identified to an angle obtained by reducing the offset amount from the normal steering angle (hereinafter referred to as "normal steering angle"). (Step S430). Such control is realized by determining the steering angle with reference to the steering angle map described later based on the normal side determination flag NF identified in step S425 and controlling the steering angle. Such control will be described with reference to FIG.
図13には、車速Vがv1である場合の操舵角マップとして、2つの操舵角マップLsr1、Lsl1と、車速Vがvnである場合の操舵角マップとして、2つの操舵角マップLsrn、Lslnとが表されている。なお、理解を助けるために、正常時の操舵角マップLs0、すなわち、2つの制御回路31R、31Lのいずれにおいても故障発生が特定されない場合に参照される操舵角マップを、細い実線で表している。図13において、横軸は運転者によるハンドル210の操舵量を示し、縦軸は操舵角を示す。操舵角マップLs0では、操舵量がゼロの場合には、操舵角はゼロが設定されている。したがって、正常時には、操舵量がゼロの場合、車両200は直進することとなる。
FIG. 13 shows two steering angle maps Lsr1 and Lsl1 as steering angle maps when the vehicle speed V is v1, and two steering angle maps Lsrn and Lsln as steering angle maps when the vehicle speed V is vn. Is represented. In order to help understanding, the steering angle map Ls0 in the normal state, that is, the steering angle map referred to when the failure occurrence is not specified in any of the two control circuits 31R and 31L is represented by a thin solid line. .. In FIG. 13, the horizontal axis represents the amount of steering of the steering wheel 210 by the driver, and the vertical axis represents the steering angle. In the steering angle map Ls0, when the steering amount is zero, the steering angle is set to zero. Therefore, in the normal state, when the steering amount is zero, the vehicle 200 goes straight.
太い実線で表された車速Vがv1である場合の操舵角マップLsl1は、制御回路31Rが異常であり、制御回路31Lが正常の場合に参照される操舵角マップである。他方、太い破線で表された車速Vがv1である場合の操舵角マップLsr1は、制御回路31Rが正常であり、制御回路31Lが異常の場合に参照される操舵角マップである。
The steering angle map Lsl1 when the vehicle speed V represented by the thick solid line is v1 is a steering angle map referred to when the control circuit 31R is abnormal and the control circuit 31L is normal. On the other hand, the steering angle map Lsr1 when the vehicle speed V represented by the thick broken line is v1 is a steering angle map referred to when the control circuit 31R is normal and the control circuit 31L is abnormal.
操舵角マップLsl1では、操舵角マップLs0と比べて、操舵量が同じ場合に所定のオフセット量だけ右方向の角度を低減させ左方向の角度を増加させた値に設定されている。これは、制御回路31Rが異常であり、制御回路31Lが正常である場合には、車両200は、自身の重心C1を中心とした右旋回動作を行おうとするため、正常時に比べて操舵量が同じ場合に右向きの角度を低減させて設定することで、操舵量、すなわちハンドル210の操作量がゼロの場合に車両200が直進させるようにするためである。
In the steering angle map Lsl1, the angle in the right direction is reduced by a predetermined offset amount and the angle in the left direction is increased when the steering amount is the same as compared with the steering angle map Ls0. This is because when the control circuit 31R is abnormal and the control circuit 31L is normal, the vehicle 200 tries to perform a right-turning operation centered on its own center of gravity C1, so that the steering amount is higher than in the normal state. This is because the rightward angle is reduced and set in the same case so that the vehicle 200 can go straight when the steering amount, that is, the operation amount of the steering wheel 210 is zero.
操舵角マップLsr1では、操舵角マップLs0と比べて、操舵量が同じ場合に所定のオフセット量だけ左方向の角度を低減させ右方向の角度を増加させた値に設定されている。これは、制御回路31Rが正常であり、制御回路31Lが異常である場合には、車両200は、自身の重心C1を中心とした左旋回動作を行おうとするため、正常時に比べて操舵量が同じ場合に左向きの角度を低減させて設定することで、操舵量、すなわちハンドル210の操作量がゼロの場合に車両200が直進させるようにするためである。
In the steering angle map Lsr1, the angle in the left direction is reduced by a predetermined offset amount and the angle in the right direction is increased when the steering amount is the same as compared with the steering angle map Ls0. This is because when the control circuit 31R is normal and the control circuit 31L is abnormal, the vehicle 200 tries to perform a left-turning operation centered on its own center of gravity C1, so that the steering amount is larger than in the normal state. In the same case, the leftward angle is reduced and set so that the vehicle 200 can go straight when the steering amount, that is, the operation amount of the steering wheel 210 is zero.
このような傾向は、車速Vがvnである場合の操舵角マップLsln、Lsrnにおいても同様である。但し、本実施形態においては、車速がより大きなほど、上述のオフセット量としてより大きな値が設定されている。車速Vが大きいほど、操舵量のわずかな変化に起因して車両200が大きく旋回し易くなる。しかし、上述のように、車速がより大きなほど、上述のオフセット量としてより大きな値が設定されていれば、車両200が旋回動作を行うことを、換言すれば、直進しなくなることを、より確実に抑制できるからである。
Such a tendency is the same in the steering angle maps Lsln and Lsrn when the vehicle speed V is vn. However, in the present embodiment, the larger the vehicle speed, the larger the offset amount is set. The larger the vehicle speed V, the larger the vehicle 200 is likely to turn due to a slight change in the steering amount. However, as described above, the higher the vehicle speed, the more certain that the vehicle 200 will perform a turning operation, in other words, it will not go straight if a larger value is set as the offset amount described above. This is because it can be suppressed.
以上説明した第2実施形態の車輪制御システム100は、第1実施形態の車輪制御システム100と同様な効果を有する。加えて、故障発生が特定された場合に、目標の操舵角を、正常時における操舵量(ハンドル操舵量)に対する操舵角からオフセット量を低減させた角度にすることにより、ハンドル操舵量がゼロの場合に車両が直進するように車両の操舵を制御するので、操舵量がゼロであるにも関わらず車両200が旋回動作を行うことを抑制できる。また、車速Vが大きい場合に、該車速Vが小さい場合に比べてより大きな値を、オフセット量として設定するので、車速Vが大きいために操舵量のわずかな変化に起因して車両200が大きく旋回し易い状況においても、操舵量がゼロの場合に車両200が旋回運動を行うことをより確実に抑制できる。
The wheel control system 100 of the second embodiment described above has the same effect as the wheel control system 100 of the first embodiment. In addition, when the occurrence of a failure is identified, the target steering angle is set to an angle obtained by reducing the offset amount from the steering angle with respect to the steering amount (steering wheel steering amount) in the normal state, so that the steering amount is zero. In this case, since the steering of the vehicle is controlled so that the vehicle travels straight, it is possible to suppress the vehicle 200 from turning even though the steering amount is zero. Further, when the vehicle speed V is large, a larger value is set as the offset amount as compared with the case where the vehicle speed V is small. Therefore, since the vehicle speed V is large, the vehicle 200 becomes large due to a slight change in the steering amount. Even in a situation where it is easy to turn, it is possible to more reliably suppress the vehicle 200 from turning when the steering amount is zero.
C.第3実施形態:
図14に示すように、第3実施形態の車両200aは、ヨーレートセンサ45に代えて加速度センサ46を備える点と、車輪制御システム100に代えて車輪制御システム100aを備える点とにおいて、第1実施形態の車両200と異なる。車両200aのその他の構成は、車両200と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。加速度センサ46は、車両200の横方向の加速度(以下、「横方向加速度」と呼ぶ)、換言すると幅方向の加速度を検出する。本実施形態において、加速度センサ46は、三軸センサにより構成されている。車輪制御システム100aは、電動機制御装置10に代えて電動機制御装置10aを備える点において、第1実施形態の車輪制御システム100と異なる。車輪制御システム100aにおけるその他の構成は、車輪制御システム100と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。 C. Third embodiment:
As shown in FIG. 14, thevehicle 200a of the third embodiment is provided with the acceleration sensor 46 instead of the yaw rate sensor 45 and the wheel control system 100a instead of the wheel control system 100. It is different from the vehicle 200 of the form. Since the other configurations of the vehicle 200a are the same as those of the vehicle 200, the same components are designated by the same reference numerals, and detailed description thereof will be omitted. The acceleration sensor 46 detects the lateral acceleration of the vehicle 200 (hereinafter, referred to as “lateral acceleration”), in other words, the lateral acceleration. In the present embodiment, the acceleration sensor 46 is composed of a three-axis sensor. The wheel control system 100a is different from the wheel control system 100 of the first embodiment in that the electric motor control device 10a is provided in place of the electric motor control device 10. Since the other configurations in the wheel control system 100a are the same as those in the wheel control system 100, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
図14に示すように、第3実施形態の車両200aは、ヨーレートセンサ45に代えて加速度センサ46を備える点と、車輪制御システム100に代えて車輪制御システム100aを備える点とにおいて、第1実施形態の車両200と異なる。車両200aのその他の構成は、車両200と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。加速度センサ46は、車両200の横方向の加速度(以下、「横方向加速度」と呼ぶ)、換言すると幅方向の加速度を検出する。本実施形態において、加速度センサ46は、三軸センサにより構成されている。車輪制御システム100aは、電動機制御装置10に代えて電動機制御装置10aを備える点において、第1実施形態の車輪制御システム100と異なる。車輪制御システム100aにおけるその他の構成は、車輪制御システム100と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。 C. Third embodiment:
As shown in FIG. 14, the
図15に示す第3実施形態の電動機制御装置10aは、ヨーレート特定部15に代えて加速度特定部15aを備える点と、目標ヨーレート算出部19に代えて目標加速度算出部19aを備える点とにおいて、第1実施形態の電動機制御装置10と異なる。電動機制御装置10aにおけるその他の構成は、電動機制御装置10と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。
The electric motor control device 10a of the third embodiment shown in FIG. 15 is provided with an acceleration specifying unit 15a instead of the yaw rate specifying unit 15 and a target acceleration calculating unit 19a instead of the target yaw rate calculating unit 19. It is different from the electric motor control device 10 of the first embodiment. Since the other configurations of the electric motor control device 10a are the same as those of the electric motor control device 10, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
加速度特定部15aは、加速度センサ46から通知される横方向加速度を示す信号を受信することにより、横方向加速度を特定する。目標加速度算出部19aは、車速特定部12により特定される車速と、操舵角特定部14により特定される操舵角とに基づき、横方向加速度の目標値(以下、「目標加速度」と呼ぶ)を算出する。例えば、図5に示す目標ヨーレートマップと同様なマップを予め設定しておき、かかるマップを参照して、車速および操舵角とに基づき、横方向加速度を特定してもよい。
The acceleration specifying unit 15a identifies the lateral acceleration by receiving a signal indicating the lateral acceleration notified from the acceleration sensor 46. The target acceleration calculation unit 19a sets a target value of lateral acceleration (hereinafter, referred to as “target acceleration”) based on the vehicle speed specified by the vehicle speed specifying unit 12 and the steering angle specified by the steering angle specifying unit 14. calculate. For example, a map similar to the target yaw rate map shown in FIG. 5 may be set in advance, and the lateral acceleration may be specified based on the vehicle speed and the steering angle with reference to the map.
第3実施形態の車輪制御システム100aでは、第1実施形態と同じ手順により、車線逸脱ハザード検出処理と、故障時目標トルク決定処理とが実行される。他方、第3実施形態のブレーキ制御処理の手順は、第1実施形態のブレーキ制御処理と異なる。
In the wheel control system 100a of the third embodiment, the lane deviation hazard detection process and the failure target torque determination process are executed by the same procedure as that of the first embodiment. On the other hand, the procedure of the brake control process of the third embodiment is different from that of the brake control process of the first embodiment.
具体的には、図16および図17に示すように、第3実施形態のブレーキ制御処理は、ステップS325、S330、S335、S350、およびS355に代えて、ステップS325a、S330a、S335a、S350a、およびS355aを実行する点において、第1実施形態のブレーキ制御処理と異なる。第3実施形態のブレーキ制御処理のその他の手順は、第1実施形態のブレーキ制御処理と同じであるので、同一の手順には同一の符号を付し、その詳細な説明を省略する。
Specifically, as shown in FIGS. 16 and 17, the brake control process of the third embodiment replaces steps S325, S330, S335, S350, and S355 with steps S325a, S330a, S335a, S350a, and It differs from the brake control process of the first embodiment in that S355a is executed. Since the other procedures of the brake control process of the third embodiment are the same as those of the brake control process of the first embodiment, the same procedures are designated by the same reference numerals and detailed description thereof will be omitted.
図16に示すように、ステップS320において、退避走行フラグXRはオンであると判定された場合(ステップS320:YES)、ブレーキ制御装置120は、車載ネットワーク220を介して電動機制御装置10から車速および操舵角を取得し、かかる車速および操舵角から横方向の目標加速度Gtを算出する(ステップS325a)。
As shown in FIG. 16, when it is determined in step S320 that the retracted travel flag XR is ON (step S320: YES), the brake control device 120 is subjected to vehicle speed and vehicle speed from the electric motor control device 10 via the vehicle-mounted network 220. The steering angle is acquired, and the target acceleration Gt in the lateral direction is calculated from the vehicle speed and the steering angle (step S325a).
ブレーキ制御装置120は、車載ネットワーク220を介して電動機制御装置10から加速度センサ46の検出結果、すなわち、横方向加速度の実測値Gを取得する(ステップS330a)。ブレーキ制御装置120は、ステップS330により取得された横方向加速度の実測値Gと、ステップS325により算出された目標加速度Gtとの差分(加速度差分)の絶対値(|G-Gt|)を算出する(ステップS335a)。
The brake control device 120 acquires the detection result of the acceleration sensor 46 from the electric motor control device 10 via the vehicle-mounted network 220, that is, the measured value G of the lateral acceleration (step S330a). The brake control device 120 calculates an absolute value (| G—Gt |) of the difference (acceleration difference) between the measured value G of the lateral acceleration acquired in step S330 and the target acceleration Gt calculated in step S325. (Step S335a).
図17に示すように、正常側判定フラグNFが「+1」の場合、すなわち、制御回路31Rが異常であり、制御回路31Lが正常の場合、ブレーキ制御装置120は、左側後方車輪204のブレーキ装置54を作動させる(ステップS350a)。このとき、ブレーキ力は、ステップS335aで算出された加速度差分の絶対値(|G-Gt|)に対して、所定の係数mを乗じて得られる正の値である。つまり、加速度差分の絶対値に比例する大きさのブレーキ力でブレーキ装置54が作動されることとなる。本実施形態において、係数mは、ブレーキ装置54が作動された場合に、横方向加速度の実測値Gが目標加速度Gtに近づくようなブレーキ力を予め実験等により求め、かかるブレーキ力から導き出された係数である。
As shown in FIG. 17, when the normal side determination flag NF is "+1", that is, when the control circuit 31R is abnormal and the control circuit 31L is normal, the brake control device 120 is the brake device of the left rear wheel 204. 54 is operated (step S350a). At this time, the braking force is a positive value obtained by multiplying the absolute value (| G—Gt |) of the acceleration difference calculated in step S335a by a predetermined coefficient m. That is, the braking device 54 is operated with a braking force having a magnitude proportional to the absolute value of the acceleration difference. In the present embodiment, the coefficient m is derived from the braking force obtained in advance by experiments or the like so that the measured value G of the lateral acceleration approaches the target acceleration Gt when the braking device 54 is operated. It is a coefficient.
正常側判定フラグNFが「-1」の場合、すなわち、制御回路31Rは正常であり、制御回路31Lが異常の場合、ブレーキ制御装置120は、右側の後方車輪203のブレーキ装置53を作動させる(ステップS355a)。このとき、ブレーキ力は、ステップS335aで算出された加速度差分の絶対値(|G-Gt|)に対して、所定の係数mを乗じて得られる正の値である。つまり、加速度差分の絶対値に比例する大きさのブレーキ力でブレーキ装置53が作動されることとなる。ステップS355aの係数mは、ステップS350aの係数mと同じであるので、詳細な説明を省略する。
When the normal side determination flag NF is "-1", that is, when the control circuit 31R is normal and the control circuit 31L is abnormal, the brake control device 120 operates the brake device 53 of the rear wheel 203 on the right side ( Step S355a). At this time, the braking force is a positive value obtained by multiplying the absolute value (| G—Gt |) of the acceleration difference calculated in step S335a by a predetermined coefficient m. That is, the braking device 53 is operated with a braking force having a magnitude proportional to the absolute value of the acceleration difference. Since the coefficient m in step S355a is the same as the coefficient m in step S350a, detailed description thereof will be omitted.
上述のステップS340において車両200が直進していないと判定された場合(ステップS340:NO)、図17に示すように、ブレーキ制御装置120は、一対の後方車輪203、204のうち、内輪側の車輪のブレーキ装置を作動させる(ステップS360a)。このとき、ブレーキ力は、ステップS335aで算出された速度差分の絶対値(|G-Gt|)に対して、所定の係数mを乗じて得られる正の値である。つまり、加速度差分の絶対値に比例する大きさのブレーキ力で内輪側の車輪のブレーキ装置が作動されることとなる。
When it is determined in step S340 described above that the vehicle 200 is not traveling straight (step S340: NO), as shown in FIG. 17, the brake control device 120 is located on the inner wheel side of the pair of rear wheels 203 and 204. The wheel braking device is activated (step S360a). At this time, the braking force is a positive value obtained by multiplying the absolute value (| G—Gt |) of the speed difference calculated in step S335a by a predetermined coefficient m. That is, the braking device for the wheels on the inner ring side is operated with a braking force having a magnitude proportional to the absolute value of the acceleration difference.
ステップS350a、S355aおよびS360aの完了後、ステップS305に戻る。上述のステップS345で特定される正常側判定フラグNFの値が、「+1」および「-1」以外である場合、すなわち、「0(ゼロ)」である場合、上述のステップS315が実行され、通常のブレーキ操作量に応じたブレーキ制御が実行される。
After the completion of steps S350a, S355a and S360a, the process returns to step S305. When the value of the normal side determination flag NF specified in step S345 described above is other than "+1" and "-1", that is, when it is "0 (zero)", step S315 described above is executed. Brake control is executed according to the normal amount of brake operation.
以上説明した第3実施形態の車輪制御システム100aによれば、第1実施形態の車輪制御システム100と同様な効果を有する。
According to the wheel control system 100a of the third embodiment described above, it has the same effect as the wheel control system 100 of the first embodiment.
D.他の実施形態:
(D1)各実施形態のブレーキ制御処理において、通常のブレーキ操作量に応じたブレーキ制御(ステップS315)以外の処理、具体的には、ステップS350、S355、S360、およびS350a、S355a、S360aが実行されるのは、退避走行フラグXRがオンになっていることが前提であった。すなわち、車線逸脱ハザードフラグXFがオンになり、且つ、車速がゼロになった後に、これらの処理が実行されていたが、本開示はこれに限定されない。例えば、車線逸脱ハザードフラグXFがオンになったことのみを条件として、これらの処理が実行されてもよい。この場合、故障発生してから車速がゼロになるまでの期間においても、これらの処理が実行されることになる。 D. Other embodiments:
(D1) In the brake control process of each embodiment, processes other than the brake control (step S315) according to the normal brake operation amount, specifically, steps S350, S355, S360, and S350a, S355a, S360a are executed. It was premised that the evacuation running flag XR was turned on. That is, these processes were executed after the lane departure hazard flag XF was turned on and the vehicle speed became zero, but the present disclosure is not limited to this. For example, these processes may be executed only on the condition that the lane departure hazard flag XF is turned on. In this case, these processes are executed even during the period from the occurrence of the failure to the time when the vehicle speed becomes zero.
(D1)各実施形態のブレーキ制御処理において、通常のブレーキ操作量に応じたブレーキ制御(ステップS315)以外の処理、具体的には、ステップS350、S355、S360、およびS350a、S355a、S360aが実行されるのは、退避走行フラグXRがオンになっていることが前提であった。すなわち、車線逸脱ハザードフラグXFがオンになり、且つ、車速がゼロになった後に、これらの処理が実行されていたが、本開示はこれに限定されない。例えば、車線逸脱ハザードフラグXFがオンになったことのみを条件として、これらの処理が実行されてもよい。この場合、故障発生してから車速がゼロになるまでの期間においても、これらの処理が実行されることになる。 D. Other embodiments:
(D1) In the brake control process of each embodiment, processes other than the brake control (step S315) according to the normal brake operation amount, specifically, steps S350, S355, S360, and S350a, S355a, S360a are executed. It was premised that the evacuation running flag XR was turned on. That is, these processes were executed after the lane departure hazard flag XF was turned on and the vehicle speed became zero, but the present disclosure is not limited to this. For example, these processes may be executed only on the condition that the lane departure hazard flag XF is turned on. In this case, these processes are executed even during the period from the occurrence of the failure to the time when the vehicle speed becomes zero.
(D2)各実施形態の故障時目標トルク決定処理では、ステップS225、S230、S235において決定される目標トルクは、即時適用されていたが、本開示はこれに限定されない。例えば、車速がゼロになるまでは、2つの制御回路31R、31Lのうちの少なくとも一方の故障発生が特定された場合には、2つの制御回路31R、31Lに対して、いずれも目標トルクとしてゼロを指示するようにしてもよい。また、かかる構成において、車速がゼロになった後に、車両200の走行が再開された場合に、ステップS225、S230、S235において決定された目標トルクを、2つの制御回路31R、31Lに対して指示するようにしてもよい。
(D2) In the failure target torque determination process of each embodiment, the target torque determined in steps S225, S230, and S235 is immediately applied, but the present disclosure is not limited to this. For example, until the vehicle speed becomes zero, if at least one of the two control circuits 31R and 31L is identified as having a failure, the target torques of the two control circuits 31R and 31L are both zero. May be instructed. Further, in such a configuration, when the running of the vehicle 200 is restarted after the vehicle speed becomes zero, the target torques determined in steps S225, S230, and S235 are instructed to the two control circuits 31R and 31L. You may try to do it.
(D3)第1および第2実施形態のブレーキ制御処理において、ステップS340およびS360を省略してもよい。同様に、第3実施形態のブレーキ制御処理において、ステップS340およびS360aを省略してもよい。これらの構成においても、2つの制御回路31R、31Lのうちの少なくとも一方に故障が発生している状況において、操舵角がゼロであり、運転者が車両200、200aを直進させようとする場合に、車両200、200aが旋回動作を行うことを抑制できる。上記とは異なり、第1および第2実施形態のブレーキ制御処理において、ステップS340、S350、S355を省略してもよい。同様に、第3実施形態のブレーキ制御処理において、ステップS340、S350a、S355aを省略してもよい。これらの構成においては、ステップS335、S335aの完了後、ステップS360、S360aが実行されることになる。これらの構成においても、2つの制御回路31R、31Lのうちの少なくとも一方に故障が発生している状況において、操舵角がゼロでなく、運転者が車両200、200aを旋回動作させようとする場合に、車両200、200aがいわゆるアンダーステアになることを抑制できる。
(D3) In the brake control process of the first and second embodiments, steps S340 and S360 may be omitted. Similarly, in the brake control process of the third embodiment, steps S340 and S360a may be omitted. Even in these configurations, when at least one of the two control circuits 31R and 31L has a failure, the steering angle is zero and the driver intends to drive the vehicles 200 and 200a straight. , Vehicles 200, 200a can be suppressed from turning. Unlike the above, in the brake control process of the first and second embodiments, steps S340, S350, and S355 may be omitted. Similarly, in the brake control process of the third embodiment, steps S340, S350a, and S355a may be omitted. In these configurations, steps S360 and S360a will be executed after the completion of steps S335 and S335a. Even in these configurations, in a situation where at least one of the two control circuits 31R and 31L has a failure, the steering angle is not zero and the driver tries to turn the vehicles 200 and 200a. In addition, it is possible to prevent the vehicles 200 and 200a from becoming so-called understeer.
(D4)第2実施形態において、操舵角マップには、車速Vが大きな場合に、小さな場合に比べて、オフセット量としてより大きな値が設定されていたが、本開示はこれに限定されない。車速Vに大きさに関わらず、操舵角マップとして1つのマップのみが設定されていてもよい。また、各操舵角マップLsl1、Lsr1、Lsln、Lsrnは、操舵量の変化に伴い連続的に操舵角が変化するように設定されていたが、段階的に変化するように設定されていてもよい。
(D4) In the second embodiment, the steering angle map is set with a larger value as the offset amount when the vehicle speed V is large than when it is small, but the present disclosure is not limited to this. Regardless of the size of the vehicle speed V, only one map may be set as the steering angle map. Further, the steering angle maps Lsl1, Lsr1, Lsln, and Lsrn are set so that the steering angle changes continuously as the steering amount changes, but they may be set to change stepwise. ..
(D5)各実施形態では、車両200、200aの駆動輪は、一対の前方車輪201、202であったが、一対の前方車輪201、202に代えて、或いは、一対の前方車輪201、202に加えて、一対の後方車輪203、204が駆動輪であってもよい。この構成においては、一対の後方車輪203、204にそれぞれ電動機が取り付けられ、各電動機に対応して制御回路が設置される。
(D5) In each embodiment, the driving wheels of the vehicles 200 and 200a were a pair of front wheels 201 and 202, but instead of the pair of front wheels 201 and 202, or a pair of front wheels 201 and 202. In addition, the pair of rear wheels 203, 204 may be drive wheels. In this configuration, electric motors are attached to the pair of rear wheels 203 and 204, respectively, and control circuits are installed corresponding to the electric motors.
(D6)各実施形態の故障時目標トルク決定処理では、ステップS225、S230、S235において、2つの制御回路31R、31Lのうち、故障発生(異常)が特定された制御回路に対して目標トルクをゼロに設定することにより、対応する電動機30Rまたは30Lの動作を停止させていたが、本開示はこれに限定されない。例えば、故障特定制御回路とバッテリとを接続する給電回路に設けられているリレーを切断動作させて、バッテリから故障特定制御回路への給電を遮断することにより、対応する電動機30Rまたは30Lの動作を停止させてもよい。
(D6) In the failure target torque determination process of each embodiment, in steps S225, S230, and S235, the target torque is set for the control circuit in which the failure occurrence (abnormality) is specified among the two control circuits 31R and 31L. By setting it to zero, the operation of the corresponding electric motor 30R or 30L was stopped, but the present disclosure is not limited to this. For example, by disconnecting the relay provided in the power supply circuit connecting the failure identification control circuit and the battery to cut off the power supply from the battery to the failure identification control circuit, the operation of the corresponding electric motor 30R or 30L can be performed. You may stop it.
(D7)各実施形態の車輪制御システム100、100aの構成は、あくまでも一例であり、種々変更可能である。例えば、各実施形態において、2つの電動機30R、30Lのうちの少なくとも1つを、電動発電機としてもよい。かかる構成においては、電動発電機は、本開示における発電機の下位概念に相当する。また、各実施形態において、車両200、200aがヨーレートセンサ45と加速度センサ46とをいずれも搭載する構成とし、これら2つのセンサ45、46の検出結果をいずれも用いてブレーキ制御処理を実行してもよい。例えば、ステップS350、S355、S360、およびS350a、S355a、S360aで作動させるブレーキ力を、ヨーレート差分の絶対値と、加速度差分の絶対値とを掛け合わせて得られた値に所定の係数を掛け合わせて求めるようにしてもよい。
(D7) The configurations of the wheel control systems 100 and 100a of each embodiment are merely examples and can be changed in various ways. For example, in each embodiment, at least one of the two motors 30R and 30L may be a motor generator. In such a configuration, the motor generator corresponds to the subordinate concept of the generator in the present disclosure. Further, in each embodiment, the vehicles 200 and 200a are configured to be equipped with both the yaw rate sensor 45 and the acceleration sensor 46, and the brake control process is executed using the detection results of the two sensors 45 and 46. May be good. For example, the braking force operated in steps S350, S355, S360, and S350a, S355a, S360a is multiplied by a predetermined coefficient by the value obtained by multiplying the absolute value of the yaw rate difference and the absolute value of the acceleration difference. You may ask for it.
(D8)各実施形態では、2つの制御回路31R、31Lの故障は、ドライバIC32R、32Lの故障を意味していたが、本開示はこれに限定されない。例えば、実トルク算出部33R、33Lや、比較器34R、34Lや、動作監視部35R、35Lといった、制御回路31R、31Lを構成する任意の構成要素の故障であってもよい。例えば、2つの制御回路31R、31Lがそれぞれ定期的に電動機制御装置10、10aに正常性を通知する構成とし、かかる通信において異常が通知された場合、或いは、かかる通知が届かない場合に、2つの制御回路31R、31Lの故障を特定する構成としてもよい。かかる構成によれば、電動機制御装置10、10aは、ドライバIC32R、32Lの故障に限らず、制御回路31R、31Lを構成する任意の構成要素の故障の発生を特定できる。
(D8) In each embodiment, the failure of the two control circuits 31R and 31L means the failure of the driver ICs 32R and 32L, but the present disclosure is not limited to this. For example, it may be a failure of any component constituting the control circuits 31R and 31L, such as the actual torque calculation units 33R and 33L, the comparators 34R and 34L, and the operation monitoring units 35R and 35L. For example, the two control circuits 31R and 31L are configured to periodically notify the motor control devices 10 and 10a of the normality, respectively, and when an abnormality is notified in such communication or when such notification does not arrive, 2 It may be configured to identify the failure of the two control circuits 31R and 31L. According to such a configuration, the electric motor control devices 10 and 10a can identify the occurrence of a failure of any component constituting the control circuits 31R and 31L, not limited to the failure of the driver ICs 32R and 32L.
(D9)本開示に記載の電動機制御装置10、10a、ブレーキ制御装置120及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の電動機制御装置10、10a、ブレーキ制御装置120及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の電動機制御装置10、10a、ブレーキ制御装置120及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
(D9) The motor control devices 10, 10a, brake control device 120, and methods thereof described in the present disclosure include a processor and memory programmed to perform one or more functions embodied by a computer program. It may be realized by a dedicated computer provided by configuring. Alternatively, the motor control devices 10, 10a, brake control device 120 and methods thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Good. Alternatively, the motor control devices 10, 10a, brake control device 120 and methods thereof described in the present disclosure include a processor and memory programmed to perform one or more functions and one or more hardware logic circuits. It may be realized by one or more dedicated computers configured in combination with a processor configured by. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
The present disclosure is not limited to the above-described embodiments, and can be realized with various configurations without departing from the spirit of the present disclosure. For example, the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.
Claims (7)
- 車両(200、200a)が有する一対の前方車輪(201、202)と一対の後方車輪(203、204)とのうちの少なくとも一方の駆動輪を構成する各車輪に配置されて該車輪を駆動する電動機(30R、30L)と、前記駆動輪を構成する各車輪に対応して配置され、該車輪を駆動する前記電動機を制御する制御回路(31R、31L)と、を有する前記車両に搭載され、前記一対の前方車輪および前記一対の後方車輪の動作を制御する車輪制御システム(100)であって、
前記駆動輪を構成する各車輪に対応して配置された前記制御回路を制御する電動機制御装置(10)と、
前記一対の前方車輪および前記一対の後方車輪のブレーキを制御し、前記電動機制御装置と通信可能なブレーキ制御装置(120)と、
を備え、
前記電動機制御装置は、
前記駆動輪を構成する各車輪に対応する前記制御回路に対して、目標トルクを指示する目標トルク指示部(16)と、
前記駆動輪を構成する各車輪に対応する前記制御回路のうち、いずれかの前記制御回路の故障発生を特定する故障発生特定部(21)と、
前記車両に搭載されヨーレートを検出するヨーレートセンサ(46)と、前記車両に搭載され横方向加速度を検出する加速度センサ(46)とのうちの少なくとも一方の検出結果を取得する検出結果取得部(15、15a)と、
前記車両に搭載され車速を検出する車速センサ(44)と、前記車両に搭載され操舵角を検出する操舵角センサ(42)と、の検出結果を利用して前記車両の目標ヨーレートと目標横方向加速度とのうちの少なくとも一方である目標値を算出する目標値算出部(19、19a)と、
を有し、
前記目標トルク指示部は、前記故障発生が特定された場合に、前記故障発生が特定された前記制御回路である故障特定制御回路に対して、前記目標トルクとしてゼロを指示し、
前記ブレーキ制御装置は、前記故障発生が特定された場合に、前記一対の前方車輪および前記一対の後方車輪を構成する各車輪のうち、前記駆動輪とは異なる車輪に対して、前記検出結果取得部により取得された前記検出結果が、算出された前記目標値に近づくようにブレーキをかける、
車輪制御システム。 It is arranged on each wheel constituting at least one of the pair of front wheels (201, 202) and the pair of rear wheels (203, 204) of the vehicle (200, 200a) to drive the wheels. It is mounted on the vehicle having an electric motor (30R, 30L) and a control circuit (31R, 31L) arranged corresponding to each wheel constituting the driving wheel and controlling the electric motor for driving the wheel. A wheel control system (100) that controls the operation of the pair of front wheels and the pair of rear wheels.
An electric motor control device (10) that controls the control circuit arranged corresponding to each wheel constituting the drive wheel, and an electric motor control device (10).
A brake control device (120) that controls the brakes of the pair of front wheels and the pair of rear wheels and can communicate with the electric motor control device.
With
The electric motor control device is
A target torque indicator (16) for instructing a target torque to the control circuit corresponding to each wheel constituting the drive wheel,
Among the control circuits corresponding to the wheels constituting the drive wheels, a failure occurrence specifying unit (21) for specifying the failure occurrence of any one of the control circuits, and
A detection result acquisition unit (15) that acquires the detection result of at least one of the yaw rate sensor (46) mounted on the vehicle and detecting the yaw rate and the acceleration sensor (46) mounted on the vehicle and detecting the lateral acceleration. , 15a) and
The target yaw rate and the target lateral direction of the vehicle are used by using the detection results of the vehicle speed sensor (44) mounted on the vehicle to detect the vehicle speed and the steering angle sensor (42) mounted on the vehicle to detect the steering angle. A target value calculation unit (19, 19a) that calculates a target value that is at least one of the accelerations,
Have,
When the failure occurrence is specified, the target torque indicator unit instructs the failure identification control circuit, which is the control circuit in which the failure occurrence is specified, to have zero as the target torque.
When the failure occurrence is specified, the brake control device acquires the detection result for a wheel different from the driving wheel among the wheels constituting the pair of front wheels and the pair of rear wheels. The brake is applied so that the detection result acquired by the unit approaches the calculated target value.
Wheel control system. - 請求項1に記載の車輪制御システムにおいて、
前記ブレーキ制御装置は、取得された前記検出結果に基づき前記車両が直進していると判断される状況において、前記故障発生が特定された場合に、前記駆動輪とは異なる2つの車輪のうち、前記車両の重心位置を挟んで前記故障特定制御回路に対応する車輪と対称の位置に配置されている車輪に対し、ブレーキをかける、
車輪制御システム。 In the wheel control system according to claim 1,
The brake control device is one of two wheels different from the driving wheels when the occurrence of the failure is identified in a situation where it is determined that the vehicle is traveling straight based on the acquired detection result. The brake is applied to the wheels arranged at positions symmetrical with the wheels corresponding to the failure identification control circuit with the position of the center of gravity of the vehicle in between.
Wheel control system. - 請求項1または請求項2に記載の車輪制御システムにおいて、
前記ブレーキ制御装置は、取得された前記検出結果に基づき前記車両が旋回動作を行っていると判断される状況において、前記故障発生が特定された場合に、前記駆動輪とは異なる2つの車輪のうち、内輪側となる車輪に対し、ブレーキをかける、
車輪制御システム。 In the wheel control system according to claim 1 or 2.
In a situation where it is determined that the vehicle is turning based on the acquired detection result, the brake control device has two wheels different from the driving wheels when the failure occurs. Of these, apply the brakes to the wheels on the inner ring side.
Wheel control system. - 請求項1から請求項3までのいずれか一項に記載の車輪制御システムにおいて、
前記車両の操舵を制御する操舵制御装置(110)であって、前記電動機制御装置と通信可能に構成され、前記車両に搭載されたハンドル(210)の操作量であるハンドル操舵量を取得し、取得された前記ハンドル操舵量と、前記車速と、に応じて前記車両の操舵を制御する操舵制御装置を、さらに備え、
前記操舵制御装置は、前記故障発生が特定された場合に、前記ハンドル操舵量に対する操舵角であって前記故障特定制御回路に対応する車輪側への操舵角を、前記故障発生が特定されない場合における前記ハンドル操舵量に対する操舵角からオフセット量を低減させた角度にすることにより、前記ハンドル操舵量がゼロの場合に前記車両が直進するように前記車両の操舵を制御する、
車輪制御システム。 In the wheel control system according to any one of claims 1 to 3.
The steering control device (110) that controls the steering of the vehicle, is configured to be communicable with the electric motor control device, and acquires the steering amount of the steering wheel, which is the operation amount of the steering wheel (210) mounted on the vehicle. Further, a steering control device for controlling the steering of the vehicle according to the acquired steering amount of the steering wheel and the vehicle speed is further provided.
When the failure occurrence is specified, the steering control device determines the steering angle to the wheel side corresponding to the failure identification control circuit, which is the steering angle with respect to the steering amount of the steering wheel, when the failure occurrence is not specified. By setting the steering angle to an angle obtained by reducing the offset amount from the steering angle with respect to the steering amount of the steering wheel, the steering of the vehicle is controlled so that the vehicle goes straight when the steering amount of the steering wheel is zero.
Wheel control system. - 請求項4に記載の車輪制御システムにおいて、
前記操舵制御装置は、前記車速センサにより検出された前記車速が大きい場合に、該車速が小さい場合に比べてより大きな値を、前記オフセット量として設定する、
車輪制御システム。 In the wheel control system according to claim 4,
When the vehicle speed detected by the vehicle speed sensor is high, the steering control device sets a larger value as the offset amount than when the vehicle speed is low.
Wheel control system. - 請求項4または請求項5に記載の車輪制御システムにおいて、
前記目標トルク指示部は、前記故障発生が特定された場合に、前記故障特定制御回路に加えて、前記駆動輪を構成する各車輪に対応するすべての前記制御回路に対して、前記目標トルクとしてゼロを指示し、
前記目標トルク指示部は、前記故障発生が特定され、且つ、前記車速がゼロとなった後に、前記車両の前進または後退が指示された場合に、前記駆動輪を構成する各車輪に対応する前記制御回路のうち、前記故障特定制御回路に対して前記目標トルクとしてゼロを指示し、他の前記制御回路に対して、前記車速と、前記車両のアクセル開度を検出するアクセル開度センサの検出結果と、前記車両のシフトレンジの位置を検出するレンジセンサ(43)の検出結果と、を利用して算出されるトルクを、前記目標トルクとして指示し、
前記操舵制御装置は、前記故障発生が特定され、且つ、前記車速がゼロとなった後に、前記車両の前進または後退が指示された場合に、前記ハンドル操舵量に対する操舵角であって前記故障特定制御回路に対応する車輪側への操舵角を、前記故障発生が特定されない場合における前記ハンドル操舵量に対する操舵角から前記オフセット量を低減させた角度にすることにより、前記ハンドル操舵量がゼロの場合に前記車両が直進するように前記車両の操舵を制御する、
車輪制御システム。 In the wheel control system according to claim 4 or 5.
When the failure occurrence is specified, the target torque indicator unit sets the target torque for all the control circuits corresponding to the wheels constituting the drive wheels in addition to the failure identification control circuit. Point to zero,
The target torque indicating unit corresponds to each wheel constituting the driving wheel when the occurrence of the failure is identified and the vehicle is instructed to move forward or backward after the vehicle speed becomes zero. Among the control circuits, the detection of the accelerator opening sensor that indicates the failure identification control circuit to zero as the target torque and detects the vehicle speed and the accelerator opening of the vehicle to the other control circuits. The torque calculated by using the result and the detection result of the range sensor (43) that detects the position of the shift range of the vehicle is instructed as the target torque.
The steering control device identifies the failure as a steering angle with respect to the steering amount of the steering wheel when the vehicle is instructed to move forward or backward after the occurrence of the failure is specified and the vehicle speed becomes zero. When the steering wheel steering amount is zero by setting the steering angle to the wheel side corresponding to the control circuit to an angle obtained by reducing the offset amount from the steering angle with respect to the steering wheel steering amount when the failure occurrence is not specified. Control the steering of the vehicle so that the vehicle travels straight.
Wheel control system. - 車両(200、200a)が有する一対の前方車輪(201、202)と一対の後方車輪(203、204)とのうちの少なくとも一方の駆動輪と、前記駆動輪を構成する各車輪に配置されて該車輪を駆動する電動機(30R、30L)と、前記駆動輪を構成する各車輪に対応して配置され、該車輪を駆動する前記電動機を制御する制御回路(31R、31L)と、を有する前記車両において、前記一対の前方車輪および前記一対の後方車輪の動作を、車輪制御システムを用いて制御する車輪制御方法であって、
前記車輪制御システムにおいて、前記駆動輪を構成する各車輪に対応する前記制御回路のうち、いずれかの前記制御回路の故障発生を特定する工程と、
前記車輪制御システムにおいて、前記車両に搭載されたヨーレートセンサ(46)と、前記車両に搭載された横方向加速度を検出する加速度センサ(46)とのうちの少なくとも一方の検出結果を取得する工程と、
前記車輪制御システムにおいて、前記車両に搭載された車速センサ(44)と、前記車両に搭載された操舵角センサ(42)と、の検出結果を利用して前記車両の目標ヨーレートと目標横方向加速度とのうちの少なくとも一方である目標値を算出する工程と、
前記車輪制御システムにおいて、前記故障発生が特定された場合に、前記故障発生が特定された前記制御回路である故障特定制御回路に対して、目標トルクとしてゼロを指示する工程と、
前記車輪制御システムにおいて、前記故障発生が特定された場合に、前記一対の前方車輪および前記一対の後方車輪を構成する各車輪のうち、前記駆動輪とは異なる車輪に対して、取得された前記検出結果が、算出された前記目標値に近づくようにブレーキをかける工程と、
を備える、車輪制御方法。 It is arranged on at least one drive wheel of the pair of front wheels (201, 202) and the pair of rear wheels (203, 204) of the vehicle (200, 200a) and each wheel constituting the drive wheel. The said motor having an electric motor (30R, 30L) for driving the wheel and a control circuit (31R, 31L) arranged corresponding to each wheel constituting the driving wheel and controlling the electric motor for driving the wheel. A wheel control method for controlling the operation of the pair of front wheels and the pair of rear wheels in a vehicle by using a wheel control system.
In the wheel control system, a step of identifying a failure occurrence of any one of the control circuits corresponding to each wheel constituting the drive wheel, and
In the wheel control system, a step of acquiring the detection result of at least one of a yaw rate sensor (46) mounted on the vehicle and an acceleration sensor (46) mounted on the vehicle to detect lateral acceleration. ,
In the wheel control system, the target yaw rate and the target lateral acceleration of the vehicle are used by using the detection results of the vehicle speed sensor (44) mounted on the vehicle and the steering angle sensor (42) mounted on the vehicle. The process of calculating the target value, which is at least one of
In the wheel control system, when the failure occurrence is specified, a step of instructing zero as a target torque to the failure identification control circuit, which is the control circuit in which the failure occurrence is specified,
When the failure occurrence is specified in the wheel control system, the acquired wheel is obtained for a wheel different from the driving wheel among the wheels constituting the pair of front wheels and the pair of rear wheels. The process of braking so that the detection result approaches the calculated target value, and
A wheel control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112020001169.0T DE112020001169T5 (en) | 2019-03-11 | 2020-03-03 | Wheel control system and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-043265 | 2019-03-11 | ||
JP2019043265A JP7287011B2 (en) | 2019-03-11 | 2019-03-11 | Wheel control system and wheel control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020184300A1 true WO2020184300A1 (en) | 2020-09-17 |
Family
ID=72427936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/008930 WO2020184300A1 (en) | 2019-03-11 | 2020-03-03 | Wheel control system and wheel control method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7287011B2 (en) |
DE (1) | DE112020001169T5 (en) |
WO (1) | WO2020184300A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3136058B1 (en) * | 2022-05-24 | 2024-04-12 | Psa Automobiles Sa | METHOD FOR MONITORING MOTOR TORQUE OF AN ELECTRIC TRACTION MACHINE |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011120390A (en) * | 2009-12-04 | 2011-06-16 | Sak:Kk | Controller of electric vehicle and electric vehicle provided with controller |
JP5893486B2 (en) * | 2012-04-13 | 2016-03-23 | Ntn株式会社 | Electric car |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007147585A (en) | 2005-03-17 | 2007-06-14 | Kagoshima Univ | Apparatus for measuring liquid refractive index |
JP2019043265A (en) | 2017-08-31 | 2019-03-22 | シロキ工業株式会社 | Reclining device |
-
2019
- 2019-03-11 JP JP2019043265A patent/JP7287011B2/en active Active
-
2020
- 2020-03-03 WO PCT/JP2020/008930 patent/WO2020184300A1/en active Application Filing
- 2020-03-03 DE DE112020001169.0T patent/DE112020001169T5/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011120390A (en) * | 2009-12-04 | 2011-06-16 | Sak:Kk | Controller of electric vehicle and electric vehicle provided with controller |
JP5893486B2 (en) * | 2012-04-13 | 2016-03-23 | Ntn株式会社 | Electric car |
Also Published As
Publication number | Publication date |
---|---|
JP2020147049A (en) | 2020-09-17 |
DE112020001169T5 (en) | 2021-12-02 |
JP7287011B2 (en) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8855833B2 (en) | Vehicle dynamic control platform between application and controlled object | |
WO2019116870A1 (en) | Vehicle, and control system and control method therefor | |
JP5830554B2 (en) | Control method for four-wheel steering vehicle | |
US8423257B2 (en) | System for and method of maintaining a driver intended path | |
JP5229341B2 (en) | Accelerator pedal misoperation device and program for accelerator pedal misoperation device | |
CN114537339B (en) | Vehicle tire burst control method and device and vehicle | |
US20200023860A1 (en) | Integrated control apparatus and method for vehicle | |
CN112550430B (en) | Vehicle stability control method and system | |
US20180029593A1 (en) | Driving control system for vehicle | |
KR20150021401A (en) | Active Rear Wheel Steering Apparatus Control Method | |
JP2007045332A (en) | Vehicle control system | |
WO2020184300A1 (en) | Wheel control system and wheel control method | |
US20210394621A1 (en) | Electric motor control device and method of electric motor control | |
JP6401541B2 (en) | Vehicle fail-safe control device | |
JP4412476B2 (en) | Travel control device for a four-wheel independent drive vehicle | |
KR20240021346A (en) | Apparatus for controlling a vehicle and method thereof | |
KR20240020953A (en) | Apparatus for controlling a vehicle and method thereof | |
JP2005343248A (en) | Parking assist brake controlling device | |
US11760366B2 (en) | Vehicle control apparatus, vehicle, vehicle control method, and non transitory computer readable storage medium | |
JP2009035221A (en) | Running controller for vehicle and method therefor | |
KR20150098787A (en) | Control method for active rear wheel steering apparatus | |
JP2005343256A (en) | Vehicle behavior controlling device | |
KR20120041555A (en) | Vehicle with multiple axis driven independently | |
KR20220018135A (en) | Method And Apparatus for Vehicle Braking | |
JP2008247052A (en) | Control device of vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20769119 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20769119 Country of ref document: EP Kind code of ref document: A1 |