Nothing Special   »   [go: up one dir, main page]

WO2020183670A1 - Calibration device and terminal device - Google Patents

Calibration device and terminal device Download PDF

Info

Publication number
WO2020183670A1
WO2020183670A1 PCT/JP2019/010368 JP2019010368W WO2020183670A1 WO 2020183670 A1 WO2020183670 A1 WO 2020183670A1 JP 2019010368 W JP2019010368 W JP 2019010368W WO 2020183670 A1 WO2020183670 A1 WO 2020183670A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
calibration
transmission line
antenna
base station
Prior art date
Application number
PCT/JP2019/010368
Other languages
French (fr)
Japanese (ja)
Inventor
石岡 和明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/010368 priority Critical patent/WO2020183670A1/en
Priority to JP2021504725A priority patent/JP6929482B2/en
Publication of WO2020183670A1 publication Critical patent/WO2020183670A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to a calibration device and a terminal device for calculating a calibration coefficient used for estimating a transmission line matrix.
  • Patent Document 1 discloses a method in which a base station having a function of a transmission device acquires a transmission line matrix using transmission line reversibility.
  • a method of acquiring a transmission line matrix using transmission line reversibility will be described.
  • a reference signal is transmitted in the uplink communication transmitted from the wireless terminal to the base station, and the transmission path matrix of the downlink communication is estimated using the reference signal acquired by the base station in the uplink communication.
  • This method utilizes transmission line reversibility, which is the same property of uplink communication and downlink communication in a wireless transmission line.
  • the transmission path reversibility is established in the wireless transmission path.
  • the transmission path is different and the transmission path reversibility cannot be established. Therefore, reversible calibration that corrects the characteristics of the transmitting amplifier and the receiving amplifier is required.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a calibration device capable of suppressing deterioration of calibration accuracy.
  • the calibration apparatus has uplink and downlink transmission line information estimated based on received signals, and characteristics of a plurality of transmission amplifiers.
  • the error function expressed using the transmission line information calculated using the characteristics of multiple receiving amplifiers is decomposed by Canonical Polyadic to estimate the characteristics of each of multiple transmitting amplifiers and multiple receiving amplifiers. It is characterized in that the calibration coefficient is calculated using the estimated value.
  • the calibration device according to the present invention has the effect of suppressing deterioration of calibration accuracy.
  • FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 300 includes a base station device 1, a measuring device 2, and a calibration device 3.
  • the base station device 1 and the measuring device 2 communicate with each other by the TDD method.
  • the wireless communication system 300 will be described as a system to which the TDD (Time Division Duplex) method is applied, but the reversibility of the transmission line is high even when the frequencies are different between the transmission and reception. If it holds, the wireless communication system 300 may be a system to which the FDD (Frequency Division Duplex) system is applied.
  • the calibration device 3 includes a calibration coefficient calculation unit 31.
  • the calibration coefficient calculation unit 31 calculates a calibration coefficient that corrects the difference in the characteristics of the plurality of antennas included in the base station device 1 and the measurement device 2.
  • the calibration device 3 and the base station device 1 may communicate with each other by wire or wirelessly.
  • the calibration device 3 and the measuring device 2 may communicate with each other by wire or wirelessly.
  • Uplink is uplink communication from the measuring device 2 to the base station device 1.
  • the downlink is downlink communication from the base station device 1 to the measuring device 2.
  • the measuring device 2 may be a dedicated measuring device for calibration or a normal terminal device.
  • the calibration device 3 is a device different from the base station device 1 and the measuring device 2, but the calibration device 3 may be built in the measuring device 2 or built in the base station device 1. May be good.
  • the base station device 1 may include the measuring device 2 and the calibration device 3.
  • the base station device 1 includes antennas 111 and 112, transmission / reception selector switches 121 and 122, transmission high power amplifiers 131 and 132 for each antenna, reception amplifiers 141 and 142, downlink transmission line estimation unit 15, and a precoder.
  • a 16 and a first transmission line estimation unit 17 are provided.
  • the measuring device 2 includes an antenna 211,212, a transmission / reception changeover switch 221,222, a transmission high power amplifier 231,232, a reception amplifier 241,242, and a second transmission line estimation unit 27.
  • the base station device 1 is provided with two antennas of the antenna 111 and the antenna 112
  • the measuring device 2 is provided with the two antennas of the antenna 211 and the antenna 212.
  • the device 1 and the measuring device 2 may each include three or more antennas.
  • the transmission line information of the transmission line between the antenna 111 and the antenna 211 is h 11 . Further, the transmission line information of the transmission line between the antenna 111 and the antenna 212 is h 21 .
  • transmission path information of the transmission path between the antenna 112 and the antenna 211 is h 12.
  • transmission line information of the transmission line between the antenna 112 and the antenna 212 is h 22 .
  • the antennas 111, 112, 211 and 212 are also referred to as reference antennas, respectively.
  • the transmission / reception changeover switch 121 When downlink communication is performed, the transmission / reception changeover switch 121 connects the antenna 111 and the transmission high power amplifier 131, and the transmission / reception changeover switch 122 connects the antenna 112 and the transmission high power amplifier 132. Further, when downlink communication is performed, the transmission / reception changeover switch 221 connects the antenna 211 and the reception amplifier 241, and the transmission / reception changeover switch 222 connects the antenna 212 and the reception amplifier 242. When uplink communication is performed, the transmission / reception changeover switch 121 connects the antenna 111 and the reception amplifier 141, and the transmission / reception changeover switch 122 connects the antenna 112 and the reception amplifier 142.
  • the transmission / reception changeover switch 221 connects the antenna 211 and the transmission high power amplifier 231, and the transmission / reception changeover switch 222 connects the antenna 212 and the transmission high power amplifier 232. ..
  • the transmission / reception changeover switches 121, 122, 221, 222 switch between uplink communication and downlink communication.
  • the transmission signal T m1 is input to the transmission high power amplifier 231.
  • the transmission signal T m2 is input to the transmission high power amplifier 232.
  • the transmission signal T m1 and the transmission signal T m2 are transmission signals generated by the measuring device 2.
  • the transmission signal T m1 and the transmission signal T m2 are known signals used when the base station apparatus 1 estimates the information of the uplink transmission line at the time of calibration. Further, the transmission signal T m1 and the transmission signal T m2 are reference signals defined by, for example, 3GPP (Third Generation Partnership Project).
  • the downlink transmission line estimation unit 15, the first transmission line estimation unit 17, the second transmission line estimation unit 27, and the calibration coefficient calculation unit 31 are realized by a processing circuit which is an electronic circuit that performs each processing.
  • the processing circuit may be dedicated hardware or a control circuit including a memory and a CPU (Central Processing Unit) that executes a program stored in the memory.
  • the memory corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory, a magnetic disk, an optical disk, or the like.
  • FIG. 2 is a diagram showing a control circuit according to the embodiment.
  • the control circuit is, for example, a control circuit 400 having the configuration shown in FIG.
  • the control circuit 400 includes a processor 400a which is a CPU and a memory 400b.
  • a processor 400a which is a CPU and a memory 400b.
  • the processor 400a reading and executing the program corresponding to each process stored in the memory 400b.
  • the memory 400b is also used as a temporary memory in each process performed by the processor 400a.
  • FIG. 3 is a flowchart showing the operation of the wireless communication system 300 according to the embodiment.
  • the base station apparatus 1 transmits a downlink reference signal (step S1).
  • the measuring device 2 receives the downlink reference signal (step S2).
  • the second transmission line estimation unit 27 estimates the downlink transmission line information using the received downlink reference signal (step S3).
  • the second transmission line estimation unit 27 transmits the estimated downlink transmission line information to the calibration coefficient calculation unit 31 (step S4).
  • the measuring device 2 transmits an uplink reference signal (step S5).
  • the base station apparatus 1 receives the uplink reference signal (step S6).
  • the first transmission line estimation unit 17 estimates the uplink transmission line information using the received uplink reference signal (step S7).
  • the first transmission line estimation unit 17 transmits the estimated uplink transmission line information to the calibration coefficient calculation unit 31 (step S8).
  • the calibration coefficient calculation unit 31 calculates the calibration coefficient using the downlink transmission line information received in step S4 and the uplink transmission line information received in step S8 (step S9).
  • the calibration device 3 transmits the calculated calibration coefficient to the base station device 1 (step S10). This is the operation of calibration by the calibration device 3.
  • the base station apparatus 1 estimates the downlink transmission line information using the calibration coefficient and the uplink transmission line information estimated in step S7 (step S11).
  • the base station apparatus 1 performs precoding using the estimated downlink transmission line information and generates a transmission signal (step S12).
  • the base station apparatus 1 precodes the transmission stream signals S 1 and S 2 using the precoder 16 to generate the transmission signals T 1 and T 2 for each antenna.
  • the transmission stream signals S 1 and S 2 are signals before precoding.
  • the transmission signals T 1 and T 2 are precoded signals in which the transmission stream signals S 1 and S 2 are mixed.
  • the precoding requires channel matrix h d downlink, the value singular value decomposition of the channel matrix h d can be expressed, for example, equation (1).
  • U ⁇ D ⁇ V H SVD (h d ) ⁇ ⁇ ⁇ (1)
  • the superscript H of V represents the conjugated transpose.
  • hd is an N ⁇ M matrix
  • U is an N ⁇ N unitary matrix
  • V is an M ⁇ M unitary matrix
  • D is an N ⁇ M diagonal matrix
  • singular values are arranged in diagonal elements.
  • N and M indicate rows and columns, respectively, and are arbitrary integers.
  • SVD Single Value Decomposition
  • the precoder 16 performs a calculation of Equation (2) the unitary matrix V obtained by SVD of the h d a precoding matrix.
  • Equation (2) S 1 and S 2 represent transmission stream signals.
  • T 1 and T 2 represent transmission signals.
  • Downlink channel estimation unit 15, by the equation (3) using the uplink transmission path R 1, R 2, calculates the channel matrix h d downlink is the transmission path information of the downlink shown in the step S11 To do.
  • h d (C 1 R 1 C 2 R 2 ) ...
  • R 1 is an uplink transmission line acquired from the antenna 111
  • R 2 is an uplink transmission line estimated by the first transmission line estimation unit 17 from the received signal of the antenna 112. Since the corresponding antennas of R 1 and R 2 are different information and the transmission lines are also different, the contents of R 1 and R 2 are different from each other.
  • R 1 and R 2 are vertical vectors.
  • C 1 and C 2 are calibration coefficients calculated by the calibration coefficient calculation unit 31 of the calibration before the start of communication shown in step S9, and the calibration coefficient is a complex number scalar per frequency.
  • the reference signal is transmitted by the uplink communication
  • the first transmission line estimation unit 17 uses the reference signal to transmit the uplink transmission line. Estimate the information.
  • the base station device 1 transmits the downlink reference signal, and the measuring device 2 receives the downlink reference signal.
  • the second transmission line estimation unit 27 estimates the downlink transmission line information using the received downlink reference signal.
  • the second transmission line estimation unit 27 transmits the estimated downlink transmission line information to the calibration coefficient calculation unit 31.
  • the measuring device 2 transmits the uplink reference signal, and the base station device 1 receives the uplink reference signal.
  • the first transmission line estimation unit 17 estimates the uplink transmission line information using the received uplink reference signal. Further, the first transmission line estimation unit 17 transmits the uplink transmission line information to the calibration coefficient calculation unit 31.
  • the calibration coefficient calculation unit 31 receives the uplink transmission line information and the downlink transmission line information from the first transmission line estimation unit 17 and the second transmission line estimation unit 27, respectively, and receives the calibration coefficient. Calculate C 1 and C 2 . Further, the calibration coefficient calculation unit 31 transmits the calibration coefficients C 1 and C 2 to the downlink transmission line estimation unit 15.
  • the operation of only one carrier frequency has been described, but in the OFDM (Orthogonal Frequency Division Multiplexing) signal, the above calculation is performed for each subcarrier.
  • the calibration coefficient calculation unit 31 calculates the calibration coefficient using CP decomposition (Canonical Polyadic Decomposition).
  • CP decomposition Canonical Polyadic Decomposition
  • the transmission lines of the plurality of reference antennas are different for each antenna to be calibrated. Further, the characteristics of the transmission amplifier and the reception amplifier connected to the reference antenna also differ for each reference antenna. Further, when the calibration measurement is measured a plurality of times at different times, the carrier phases of the transmission line and the transmission / reception are different from each other.
  • the combined value of the characteristics of the reference antenna cannot be calculated by simply adding complex numbers, but the combined value of the characteristics of a plurality of reference antennas can be calculated by using CP decomposition.
  • FIG. 4 is a diagram showing a description of the reversible calibration according to the embodiment.
  • i is the number of the antenna included in the base station apparatus 1.
  • the base station apparatus 1 includes n antennas, and the antenna numbers of the base station apparatus 1 are 0 to n-1. That is, i takes a value from 0 to n-1.
  • j is the number of the antenna included in the measuring device 2.
  • the measuring device 2 includes m antennas, and the antenna numbers of the measuring devices 2 are 0 to m-1. That is, j takes a value from 0 to m-1.
  • EBTi (f) is a value indicating the characteristics of the transmission amplifier of the base station apparatus 1 connected to the antenna number i.
  • FIG. 4 shows EBTi (f) having antenna numbers 0 and n-1.
  • EBRi (f) is a value indicating the characteristics of the receiving amplifier of the base station apparatus 1 connected to the antenna number i.
  • FIG. 4 shows EBRi (f) having antenna numbers 0 and n-1.
  • E UTj (f) is a value indicating the characteristics of the transmission amplifier of the measuring device 2 connected to the antenna number j.
  • FIG. 4 shows EUTj (f) having antenna numbers of 0 and m-1.
  • E URj (f) is a value indicating the characteristics of the receiving amplifier of the measuring device 2 connected to the antenna number j.
  • FIG. 4 shows EURj (f) having antenna numbers of 0 and m-1.
  • h i, j (f) indicate a transmission path when the antenna number of the base station device 1 is i and the antenna number of the measuring device 2 is j, and the antenna number of the base station device 1 is 0 and the measuring device 2 is used.
  • the transmission line is h0,0 (f).
  • T Bi (f) indicates a signal transmitted by the antenna of the antenna number i of the base station apparatus 1.
  • R Bi (f) indicates a signal received by the antenna of the antenna number i of the base station apparatus 1.
  • TUj (f) indicates a signal transmitted by the antenna of the antenna number j of the measuring device 2.
  • RUj (f) indicates a signal received by the antenna of the antenna number j of the measuring device 2.
  • the signal R uji (f) received by the antenna of the antenna number j of the measuring device 2 is represented by the following equation (4). It is assumed that f represents CC (Component Carrier) and RB (Resource Block).
  • the downlink transmission lines h Di, j (f) are represented as follows.
  • the signal R Bi (f) received by the antenna of the antenna number i of the base station apparatus 1 is represented as follows.
  • the uplink transmission lines h Ui and j (f) are represented as follows.
  • Calibration coefficients C i (f) is expressed as follows.
  • g (f) may be arbitrary.
  • Downlink channel estimation unit 15 the transmission path h Ui uplink, j transmission path h (with hat) in the downlink by using the calibration coefficient C i (f) from (f) Di, j and (f) presume.
  • Equation (9) is a value k times that of Equation (5), but it does not affect the ratio between base station antennas.
  • k is the value of equation (10).
  • h Di, j (f) and h Ui, j (f) are measured values including noise, and the error
  • 2 is defined as follows.
  • the estimation of hi , j (f), EBTi (f), EURj (f), EBRj (f), and EUTj (f) is a CP decomposition that decomposes the tensor into multiple vectors with lower dimensions. Equivalent. Gradient descent is used for CP decomposition to minimize the error of CP decomposition. By using the gradient descent method for CP decomposition, the calculation accuracy of CP decomposition can be improved.
  • Equation (12) The partial differential of equation (11), which is an error function due to each variable, is expressed as equation (12).
  • equation (12) * indicates the complex conjugate.
  • the CP decomposition by the gradient descent method requires iteration (repetition) and the calculation scale is large.
  • the calculation scale can be reduced by reducing the frequency resolution, reducing the amount of data, and improving the S / N (Signal / Noise) ratio. Further, if the frequency resolution is lowered to reduce the amount of data and improve the S / N ratio, the possibility of being supplemented by the local minimum is reduced and the performance is improved.
  • the frequency resolution is increased with the value obtained here as the initial value and CP decomposition is further performed, the initial value is close to the convergence value, so that the value converges to the optimum value with less iteration.
  • CP decomposition using the gradient descent method is performed, the result of the first CP decomposition is calculated, the frequency resolution is higher than that of the gradient descent method used for the first CP decomposition, and the result of the first CP decomposition is performed. May be performed for the second CP decomposition with the initial value of.
  • the calibration coefficient calculation unit 31 estimates the characteristics of the transmission line, the transmission amplifier, and the reception amplifier, which are different for each antenna, by using the equation (12) using CP decomposition. Then, using these estimated values, the calibration coefficient is calculated using the equation (8). Therefore, it is possible to calculate the error of the value affected by different conditions for each antenna, and it is possible to calculate the calibration coefficient that minimizes the error due to the difference between these conditions. Therefore, it is possible to suppress a decrease in calibration accuracy. Further, the calibration coefficient calculation unit 31 may calculate the calibration coefficient by treating the transmission line information at different times as different antennas and CP-decomposing the transmission line information. Further, the calibration coefficient calculation unit 31 may calculate the calibration coefficient by CP-decomposing the information of the transmission lines of the plurality of uplinks of the antenna.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

A calibration device (3) that is characterized: by estimating the characteristics of a plurality of transmission amplifiers and the characteristics of a plurality of reception amplifiers by performing a canonical polyadic decomposition on an error function that is represented using uplink and downlink transmission path information that has been estimated on the basis of a reception signal and transmission path information that is calculated using the characteristics of the plurality of transmission amplifiers and the plurality of reception amplifiers; and by using the estimated values to calculate a calibration coefficient.

Description

キャリブレーション装置および端末装置Calibration device and terminal device
 本発明は、伝送路行列の推定に用いるキャリブレーション係数を計算するキャリブレーション装置および端末装置に関する。 The present invention relates to a calibration device and a terminal device for calculating a calibration coefficient used for estimating a transmission line matrix.
 近年スマートフォンに代表される無線端末が普及し、これに伴って無線通信の大容量化および無線通信の伝送速度の高速化に対する需要が高まっている。無線通信の伝送速度の高速化の技術として、複数の送信アンテナと複数の受信アンテナとを用いて空間多重するMIMO(Multiple Input Multiple Output)伝送技術がある。MIMO伝送技術では、送信側で伝送路行列の特異値分解などを用いたプリコーディングを実施することで無線通信の伝送速度を改善している。プリコーディングを行うためには送信装置が伝送路行列を取得する必要がある。特許文献1は、送信装置の機能を有する基地局が伝送路可逆性を用いて伝送路行列を取得する手法を開示する。 In recent years, wireless terminals represented by smartphones have become widespread, and along with this, there is an increasing demand for increasing the capacity of wireless communication and increasing the transmission speed of wireless communication. As a technology for increasing the transmission speed of wireless communication, there is a MIMO (Multiple Input Multiple Output) transmission technology that spatially multiplexes using a plurality of transmitting antennas and a plurality of receiving antennas. In MIMO transmission technology, the transmission speed of wireless communication is improved by performing precoding using singular value decomposition of the transmission line matrix on the transmission side. In order to perform precoding, the transmitter needs to acquire the transmission line matrix. Patent Document 1 discloses a method in which a base station having a function of a transmission device acquires a transmission line matrix using transmission line reversibility.
 ここで、TDD(Time Division Duplex)方式のシステムにおいて、伝送路可逆性を用いて伝送路行列を取得する手法について説明する。まず、無線端末から基地局に伝送するアップリンクの通信でリファレンス信号が送信され、基地局がアップリンクの通信で取得したリファレンス信号を用いてダウンリンクの通信の伝送路行列を推定する。この手法は無線伝送路においてアップリンクの通信とダウンリンクの通信とが同じ性質である伝送路可逆性を利用している。 Here, in a TDD (Time Division Duplex) system, a method of acquiring a transmission line matrix using transmission line reversibility will be described. First, a reference signal is transmitted in the uplink communication transmitted from the wireless terminal to the base station, and the transmission path matrix of the downlink communication is estimated using the reference signal acquired by the base station in the uplink communication. This method utilizes transmission line reversibility, which is the same property of uplink communication and downlink communication in a wireless transmission line.
 無線端末および基地局に備わる無線装置の送信アンプと受信アンプとが同一であるとき、無線の伝送路において伝送路可逆性が成り立つ。しかし、無線装置の送信アンプと受信アンプとが異なる場合、伝送経路が異なり伝送路可逆性が成り立たない。このため、送信アンプおよび受信アンプの特性を補正する可逆性キャリブレーションが必要となる。 When the transmission amplifier and the reception amplifier of the wireless device provided in the wireless terminal and the base station are the same, the transmission path reversibility is established in the wireless transmission path. However, when the transmission amplifier and the reception amplifier of the wireless device are different, the transmission path is different and the transmission path reversibility cannot be established. Therefore, reversible calibration that corrects the characteristics of the transmitting amplifier and the receiving amplifier is required.
特開2017-38197号公報JP-A-2017-38197
 しかしながら、上記従来の技術によれば、可逆性キャリブレーションを行う場合にリファレンスアンテナ1つで行うと、リファレンスアンテナとキャリブレーション対象の無線装置のアンテナとの間の偏波の違いなど伝送路の影響で送受のレベルが大きく低下し雑音等の影響でキャリブレーション精度が低下する。例えば、リファレンスアンテナを垂直にし、キャリブレーショ対象の無線装置のアンテナを水平にすると偏波が一致しないためアンテナ間で電波が送受できなくなる。このため、1つのリファレンスアンテナを用いてキャリブレーションを行う場合、キャリブレーションの精度が劣化するという問題があった。 However, according to the above-mentioned conventional technique, when reversible calibration is performed with one reference antenna, the influence of the transmission line such as the difference in polarization between the reference antenna and the antenna of the radio device to be calibrated The level of transmission and reception is greatly reduced, and the calibration accuracy is reduced due to the influence of noise and the like. For example, if the reference antenna is made vertical and the antenna of the wireless device to be calibrated is made horizontal, the polarizations do not match and radio waves cannot be transmitted / received between the antennas. Therefore, when calibration is performed using one reference antenna, there is a problem that the accuracy of calibration deteriorates.
 本発明は、上記に鑑みてなされたものであって、キャリブレーションの精度の劣化を抑制することができるキャリブレーション装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a calibration device capable of suppressing deterioration of calibration accuracy.
 上述した課題を解決し、目的を達成するために、本発明にかかるキャリブレーション装置は、受信信号に基づいて推定されたアップリンクおよびダウンリンクのそれぞれの伝送路情報と、複数の送信アンプの特性、および複数の受信アンプの特性を用いて計算される伝送路情報とを用いて表される誤差関数をCanonical Polyadic分解することで複数の送信アンプ、複数の受信アンプのそれぞれの特性を推定し、推定した値を用いてキャリブレーション係数を計算することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the calibration apparatus according to the present invention has uplink and downlink transmission line information estimated based on received signals, and characteristics of a plurality of transmission amplifiers. , And the error function expressed using the transmission line information calculated using the characteristics of multiple receiving amplifiers is decomposed by Canonical Polyadic to estimate the characteristics of each of multiple transmitting amplifiers and multiple receiving amplifiers. It is characterized in that the calibration coefficient is calculated using the estimated value.
 本発明にかかるキャリブレーション装置は、キャリブレーションの精度の劣化を抑制することができるという効果を奏する。 The calibration device according to the present invention has the effect of suppressing deterioration of calibration accuracy.
実施の形態にかかる無線通信システムの構成を示す図The figure which shows the structure of the wireless communication system which concerns on embodiment 実施の形態にかかる制御回路を示す図The figure which shows the control circuit which concerns on embodiment 実施の形態にかかる無線通信システムの動作を示すフローチャートA flowchart showing the operation of the wireless communication system according to the embodiment. 実施の形態にかかる可逆性キャリブレーションの説明を示す図The figure which shows the description of the reversible calibration which concerns on embodiment
 以下に、本発明の実施の形態にかかるキャリブレーション装置および端末装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The calibration device and the terminal device according to the embodiment of the present invention will be described in detail below with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態.
 図1は、実施の形態にかかる無線通信システムの構成を示す図である。無線通信システム300は、基地局装置1と、測定装置2と、キャリブレーション装置3と、を備える。基地局装置1と測定装置2とはTDD方式で通信する。なお、本実施の形態では、無線通信システム300は、TDD(Time Division Duplex)方式を適用するシステムであるとして説明するが、送受の往復で周波数が異なる場合であっても伝送路の可逆性が成り立つのであれば、無線通信システム300は、FDD(Frequency Division Duplex)方式を適用するシステムであってもよい。キャリブレーション装置3は、キャリブレーション係数計算部31を備える。キャリブレーション係数計算部31は、基地局装置1および測定装置2が備える複数のアンテナの特性の差を補正するキャリブレーション係数を計算する。キャリブレーション装置3と基地局装置1とは、有線で通信してもよく、無線で通信してもよい。キャリブレーション装置3と測定装置2とは、有線で通信してもよく、無線で通信してもよい。アップリンクとは、測定装置2から基地局装置1向けの上り方向の通信である。ダウンリンクとは、基地局装置1から測定装置2向けの下り方向の通信である。測定装置2はキャリブレーション用の専用の測定装置であってもよく、通常の端末装置であってもよい。図1では、キャリブレーション装置3は、基地局装置1および測定装置2とは別の装置としているが、キャリブレーション装置3は測定装置2に内蔵してもよく、基地局装置1に内蔵してもよい。さらに、基地局装置1に測定装置2およびキャリブレーション装置3を内蔵してもよい。
Embodiment.
FIG. 1 is a diagram showing a configuration of a wireless communication system according to an embodiment. The wireless communication system 300 includes a base station device 1, a measuring device 2, and a calibration device 3. The base station device 1 and the measuring device 2 communicate with each other by the TDD method. In the present embodiment, the wireless communication system 300 will be described as a system to which the TDD (Time Division Duplex) method is applied, but the reversibility of the transmission line is high even when the frequencies are different between the transmission and reception. If it holds, the wireless communication system 300 may be a system to which the FDD (Frequency Division Duplex) system is applied. The calibration device 3 includes a calibration coefficient calculation unit 31. The calibration coefficient calculation unit 31 calculates a calibration coefficient that corrects the difference in the characteristics of the plurality of antennas included in the base station device 1 and the measurement device 2. The calibration device 3 and the base station device 1 may communicate with each other by wire or wirelessly. The calibration device 3 and the measuring device 2 may communicate with each other by wire or wirelessly. Uplink is uplink communication from the measuring device 2 to the base station device 1. The downlink is downlink communication from the base station device 1 to the measuring device 2. The measuring device 2 may be a dedicated measuring device for calibration or a normal terminal device. In FIG. 1, the calibration device 3 is a device different from the base station device 1 and the measuring device 2, but the calibration device 3 may be built in the measuring device 2 or built in the base station device 1. May be good. Further, the base station device 1 may include the measuring device 2 and the calibration device 3.
 基地局装置1は、アンテナ111,112と、送受の切り替えスイッチ121,122と、アンテナ毎の送信ハイパワーアンプ131,132と、受信アンプ141,142と、ダウンリンク伝送路推定部15と、プリコーダ16と、第1の伝送路推定部17と、を備える。 The base station device 1 includes antennas 111 and 112, transmission / reception selector switches 121 and 122, transmission high power amplifiers 131 and 132 for each antenna, reception amplifiers 141 and 142, downlink transmission line estimation unit 15, and a precoder. A 16 and a first transmission line estimation unit 17 are provided.
 測定装置2は、アンテナ211,212と、送受の切り替えスイッチ221,222と、送信ハイパワーアンプ231,232と、受信アンプ241,242と、第2の伝送路推定部27と、を備える。なお、本実施の形態では、基地局装置1にアンテナ111とアンテナ112の2本のアンテナと、測定装置2にアンテナ211とアンテナ212の2本のアンテナを備える例を示しているが、基地局装置1および測定装置2が、それぞれ3本以上アンテナを備えていてもよい。アンテナ111とアンテナ211との間の伝送路の伝送路情報はh11である。また、アンテナ111とアンテナ212との間の伝送路の伝送路情報はh21である。また、アンテナ112とアンテナ211との間の伝送路の伝送路情報はh12である。また、アンテナ112とアンテナ212との間の伝送路の伝送路情報はh22である。アンテナ111,112,211,212は、それぞれリファレンスアンテナとも呼ばれる。 The measuring device 2 includes an antenna 211,212, a transmission / reception changeover switch 221,222, a transmission high power amplifier 231,232, a reception amplifier 241,242, and a second transmission line estimation unit 27. In this embodiment, an example is shown in which the base station device 1 is provided with two antennas of the antenna 111 and the antenna 112, and the measuring device 2 is provided with the two antennas of the antenna 211 and the antenna 212. The device 1 and the measuring device 2 may each include three or more antennas. The transmission line information of the transmission line between the antenna 111 and the antenna 211 is h 11 . Further, the transmission line information of the transmission line between the antenna 111 and the antenna 212 is h 21 . Furthermore, transmission path information of the transmission path between the antenna 112 and the antenna 211 is h 12. Further, the transmission line information of the transmission line between the antenna 112 and the antenna 212 is h 22 . The antennas 111, 112, 211 and 212 are also referred to as reference antennas, respectively.
 ダウンリンクの通信が行われる場合、送受の切り替えスイッチ121は、アンテナ111と送信ハイパワーアンプ131とを接続し、送受の切り替えスイッチ122は、アンテナ112と送信ハイパワーアンプ132とを接続する。また、ダウンリンクの通信が行われる場合、送受の切り替えスイッチ221は、アンテナ211と受信アンプ241とを接続し、送受の切り替えスイッチ222は、アンテナ212と受信アンプ242とを接続する。アップリンクの通信が行われる場合、送受の切り替えスイッチ121は、アンテナ111と受信アンプ141とを接続し、送受の切り替えスイッチ122は、アンテナ112と受信アンプ142とを接続する。また、アップリンクの通信が行われる場合、送受の切り替えスイッチ221は、アンテナ211と送信ハイパワーアンプ231とを接続し、送受の切り替えスイッチ222は、アンテナ212と送信ハイパワーアンプ232とを接続する。このように送受の切り替えスイッチ121,122,221,222によってアップリンクの通信とダウンリンクの通信との切り替えが行われる。送信ハイパワーアンプ231には、送信信号Tm1が入力される。送信ハイパワーアンプ232には、送信信号Tm2が入力される。送信信号Tm1および送信信号Tm2は、測定装置2が生成する送信信号である。また、送信信号Tm1および送信信号Tm2は、キャリブレーション時に基地局装置1でアップリンクの伝送路の情報を推定するときに用いる既知の信号である。また、送信信号Tm1および送信信号Tm2は、例えば、3GPP(Third Generation Partnership Project)で規定されるリファレンスシグナルである。 When downlink communication is performed, the transmission / reception changeover switch 121 connects the antenna 111 and the transmission high power amplifier 131, and the transmission / reception changeover switch 122 connects the antenna 112 and the transmission high power amplifier 132. Further, when downlink communication is performed, the transmission / reception changeover switch 221 connects the antenna 211 and the reception amplifier 241, and the transmission / reception changeover switch 222 connects the antenna 212 and the reception amplifier 242. When uplink communication is performed, the transmission / reception changeover switch 121 connects the antenna 111 and the reception amplifier 141, and the transmission / reception changeover switch 122 connects the antenna 112 and the reception amplifier 142. Further, when uplink communication is performed, the transmission / reception changeover switch 221 connects the antenna 211 and the transmission high power amplifier 231, and the transmission / reception changeover switch 222 connects the antenna 212 and the transmission high power amplifier 232. .. In this way, the transmission / reception changeover switches 121, 122, 221, 222 switch between uplink communication and downlink communication. The transmission signal T m1 is input to the transmission high power amplifier 231. The transmission signal T m2 is input to the transmission high power amplifier 232. The transmission signal T m1 and the transmission signal T m2 are transmission signals generated by the measuring device 2. Further, the transmission signal T m1 and the transmission signal T m2 are known signals used when the base station apparatus 1 estimates the information of the uplink transmission line at the time of calibration. Further, the transmission signal T m1 and the transmission signal T m2 are reference signals defined by, for example, 3GPP (Third Generation Partnership Project).
 ダウンリンク伝送路推定部15、第1の伝送路推定部17、第2の伝送路推定部27、およびキャリブレーション係数計算部31は、各処理を行う電子回路である処理回路により実現される。 The downlink transmission line estimation unit 15, the first transmission line estimation unit 17, the second transmission line estimation unit 27, and the calibration coefficient calculation unit 31 are realized by a processing circuit which is an electronic circuit that performs each processing.
 本処理回路は、専用のハードウェアであっても、メモリ及びメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央演算装置)を備える制御回路であってもよい。ここでメモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの、不揮発性または揮発性の半導体メモリ、磁気ディスク、光ディスクなどが該当する。図2は、実施の形態にかかる制御回路を示す図である。本処理回路がCPUを備える制御回路である場合、この制御回路は例えば、図2に示す構成の制御回路400となる。 The processing circuit may be dedicated hardware or a control circuit including a memory and a CPU (Central Processing Unit) that executes a program stored in the memory. Here, the memory corresponds to, for example, a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory, a magnetic disk, an optical disk, or the like. FIG. 2 is a diagram showing a control circuit according to the embodiment. When the processing circuit is a control circuit including a CPU, the control circuit is, for example, a control circuit 400 having the configuration shown in FIG.
 図2に示すように、制御回路400は、CPUであるプロセッサ400aと、メモリ400bと、を備える。図2に示す制御回路400により実現される場合、プロセッサ400aがメモリ400bに記憶された、各処理に対応するプログラムを読みだして実行することにより実現される。また、メモリ400bは、プロセッサ400aが実施する各処理における一時メモリとしても使用される。 As shown in FIG. 2, the control circuit 400 includes a processor 400a which is a CPU and a memory 400b. When it is realized by the control circuit 400 shown in FIG. 2, it is realized by the processor 400a reading and executing the program corresponding to each process stored in the memory 400b. The memory 400b is also used as a temporary memory in each process performed by the processor 400a.
 無線通信システム300の動作の概要について説明する。キャリブレーション装置3が、キャリブレーション係数を計算する。基地局装置1が、キャリブレーション係数とアップリンクの伝送路の情報とを用いてダウンリンクの伝送路の情報を算出する。無線通信システム300の動作の流れについて説明する。図3は、実施の形態にかかる無線通信システム300の動作を示すフローチャートである。基地局装置1は、ダウンリンクのリファレンス信号を送信する(ステップS1)。測定装置2はダウンリンクのリファレンス信号を受信する(ステップS2)。第2の伝送路推定部27は、受信したダウンリンクのリファレンス信号を用いてダウンリンクの伝送路情報を推定する(ステップS3)。 The outline of the operation of the wireless communication system 300 will be described. The calibration device 3 calculates the calibration coefficient. The base station apparatus 1 calculates the downlink transmission line information using the calibration coefficient and the uplink transmission line information. The operation flow of the wireless communication system 300 will be described. FIG. 3 is a flowchart showing the operation of the wireless communication system 300 according to the embodiment. The base station apparatus 1 transmits a downlink reference signal (step S1). The measuring device 2 receives the downlink reference signal (step S2). The second transmission line estimation unit 27 estimates the downlink transmission line information using the received downlink reference signal (step S3).
 第2の伝送路推定部27は、推定したダウンリンクの伝送路情報をキャリブレーション係数計算部31に送信する(ステップS4)。測定装置2は、アップリンクのリファレンス信号を送信する(ステップS5)。基地局装置1は、アップリンクのリファレンス信号を受信する(ステップS6)。第1の伝送路推定部17は、受信したアップリンクのリファレンス信号を用いてアップリンクの伝送路情報を推定する(ステップS7)。第1の伝送路推定部17は、推定したアップリンクの伝送路情報をキャリブレーション係数計算部31に送信する(ステップS8)。 The second transmission line estimation unit 27 transmits the estimated downlink transmission line information to the calibration coefficient calculation unit 31 (step S4). The measuring device 2 transmits an uplink reference signal (step S5). The base station apparatus 1 receives the uplink reference signal (step S6). The first transmission line estimation unit 17 estimates the uplink transmission line information using the received uplink reference signal (step S7). The first transmission line estimation unit 17 transmits the estimated uplink transmission line information to the calibration coefficient calculation unit 31 (step S8).
 キャリブレーション係数計算部31は、ステップS4で受信したダウンリンクの伝送路情報と、ステップS8で受信したアップリンクの伝送路情報とを用いてキャリブレーション係数を計算する(ステップS9)。キャリブレーション装置3は、計算したキャリブレーション係数を基地局装置1に送信する(ステップS10)。ここまでが、キャリブレーション装置3によるキャリブレーションの動作である。次に、基地局装置1がデータを測定装置2に伝送する動作の流れを説明する。基地局装置1は、キャリブレーション係数と、ステップS7で推定したアップリンクの伝送路情報とを用いてダウンリンクの伝送路情報を推定する(ステップS11)。基地局装置1は、推定したダウンリンクの伝送路情報を用いてプリコーディングを行い、送信信号を生成する(ステップS12)。 The calibration coefficient calculation unit 31 calculates the calibration coefficient using the downlink transmission line information received in step S4 and the uplink transmission line information received in step S8 (step S9). The calibration device 3 transmits the calculated calibration coefficient to the base station device 1 (step S10). This is the operation of calibration by the calibration device 3. Next, the flow of operation in which the base station device 1 transmits data to the measuring device 2 will be described. The base station apparatus 1 estimates the downlink transmission line information using the calibration coefficient and the uplink transmission line information estimated in step S7 (step S11). The base station apparatus 1 performs precoding using the estimated downlink transmission line information and generates a transmission signal (step S12).
 次に、無線通信システム300の動作の詳細について説明する。ステップS12のデータ伝送時において、基地局装置1は、送信ストリーム信号S,Sを、プリコーダ16を用いてプリコーディングし、アンテナ毎の送信信号T,Tの信号を生成する。送信ストリーム信号S,Sは、プリコーディング前の信号である。送信信号T,Tは、送信ストリーム信号S,Sが混ざったプリコーディング後の信号である。プリコーディングにはダウンリンクの伝送路行列hが必要であり、伝送路行列hを特異値分解した値は、例えば式(1)で表すことができる。
  U・D・V=SVD(h)・・・(1)
Next, the details of the operation of the wireless communication system 300 will be described. At the time of data transmission in step S12, the base station apparatus 1 precodes the transmission stream signals S 1 and S 2 using the precoder 16 to generate the transmission signals T 1 and T 2 for each antenna. The transmission stream signals S 1 and S 2 are signals before precoding. The transmission signals T 1 and T 2 are precoded signals in which the transmission stream signals S 1 and S 2 are mixed. The precoding requires channel matrix h d downlink, the value singular value decomposition of the channel matrix h d can be expressed, for example, equation (1).
U ・ D ・ V H = SVD (h d ) ・ ・ ・ (1)
 式(1)において、Vの上付きのHは共役転置を表す。hをN×M行列とした場合、UはN×Nのユニタリ行列、VはM×Mのユニタリ行列、DはN×Mの対角行列であり、対角要素に特異値が並ぶ。NとMとはそれぞれ行、列を示し任意の整数である。SVD(Singular Value Decomposition)は、特異値分解することを示す。次に、プリコーダ16は、hをSVDして得られるユニタリ行列Vをプリコーディング行列として式(2)の演算を行う。 In equation (1), the superscript H of V represents the conjugated transpose. When hd is an N × M matrix, U is an N × N unitary matrix, V is an M × M unitary matrix, and D is an N × M diagonal matrix, and singular values are arranged in diagonal elements. N and M indicate rows and columns, respectively, and are arbitrary integers. SVD (Singular Value Decomposition) indicates that singular value decomposition is performed. Then, the precoder 16 performs a calculation of Equation (2) the unitary matrix V obtained by SVD of the h d a precoding matrix.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(2)においてS,Sは送信ストリーム信号を示す。式(2)においてT,Tは送信信号を示す。ダウンリンク伝送路推定部15は、アップリンク伝送路R,Rを用いて式(3)により、ステップS11に示されるダウンリンクの伝送路情報であるダウンリンクの伝送路行列hを計算する。
  h=(C C)・・・(3)
In equation (2), S 1 and S 2 represent transmission stream signals. In equation (2), T 1 and T 2 represent transmission signals. Downlink channel estimation unit 15, by the equation (3) using the uplink transmission path R 1, R 2, calculates the channel matrix h d downlink is the transmission path information of the downlink shown in the step S11 To do.
h d = (C 1 R 1 C 2 R 2 ) ... (3)
 式(3)において、Rはアンテナ111から取得したアップリンクの伝送路であり、Rはアンテナ112の受信信号から第1の伝送路推定部17により推定したアップリンクの伝送路である。RおよびRは、対応するアンテナが異なる情報であり、伝送路も異なるため、RおよびRの内容はそれぞれ異なる。RおよびRは縦ベクトルである。C,Cは、ステップS9に示される通信開始前のキャリブレーションのキャリブレーション係数計算部31により計算されたキャリブレーション係数であり、キャリブレーション係数は1周波数あたりの複素数のスカラーである。本実施例に適用される無線通信システム300においてはアップリンク通信でリファレンス信号が送信されていることを想定しており、第1の伝送路推定部17はリファレンス信号を用いてアップリンクの伝送路情報を推定する。 In the equation (3), R 1 is an uplink transmission line acquired from the antenna 111, and R 2 is an uplink transmission line estimated by the first transmission line estimation unit 17 from the received signal of the antenna 112. Since the corresponding antennas of R 1 and R 2 are different information and the transmission lines are also different, the contents of R 1 and R 2 are different from each other. R 1 and R 2 are vertical vectors. C 1 and C 2 are calibration coefficients calculated by the calibration coefficient calculation unit 31 of the calibration before the start of communication shown in step S9, and the calibration coefficient is a complex number scalar per frequency. In the wireless communication system 300 applied to this embodiment, it is assumed that the reference signal is transmitted by the uplink communication, and the first transmission line estimation unit 17 uses the reference signal to transmit the uplink transmission line. Estimate the information.
 キャリブレーション時は、基地局装置1がダウンリンクのリファレンス信号を送信し、測定装置2がダウンリンクのリファレンス信号を受信する。測定装置2では第2の伝送路推定部27が、受信したダウンリンクのリファレンス信号を用いてダウンリンクの伝送路情報を推定する。また、キャリブレーション時は、第2の伝送路推定部27は推定したダウンリンクの伝送路情報をキャリブレーション係数計算部31に送信する。測定装置2はアップリンクのリファレンス信号を送信し、基地局装置1はアップリンクのリファレンス信号を受信する。基地局装置1では、第1の伝送路推定部17が、受信したアップリンクのリファレンス信号を用いてアップリンクの伝送路情報を推定する。また、第1の伝送路推定部17は、アップリンクの伝送路情報をキャリブレーション係数計算部31に送信する。 At the time of calibration, the base station device 1 transmits the downlink reference signal, and the measuring device 2 receives the downlink reference signal. In the measuring device 2, the second transmission line estimation unit 27 estimates the downlink transmission line information using the received downlink reference signal. At the time of calibration, the second transmission line estimation unit 27 transmits the estimated downlink transmission line information to the calibration coefficient calculation unit 31. The measuring device 2 transmits the uplink reference signal, and the base station device 1 receives the uplink reference signal. In the base station apparatus 1, the first transmission line estimation unit 17 estimates the uplink transmission line information using the received uplink reference signal. Further, the first transmission line estimation unit 17 transmits the uplink transmission line information to the calibration coefficient calculation unit 31.
 キャリブレーション係数計算部31は、アップリンクの伝送路情報とダウンリンクの伝送路情報とを、それぞれ第1の伝送路推定部17と第2の伝送路推定部27とから受信し、キャリブレーション係数C,Cを計算する。また、キャリブレーション係数計算部31は、キャリブレーション係数C,Cをダウンリンク伝送路推定部15に送信する。なお、上記説明では1キャリア周波数のみの動作を説明したが、OFDM(Orthogonal Frequency Division Multiplexing)信号においてはサブキャリア毎に上記の計算を行う。 The calibration coefficient calculation unit 31 receives the uplink transmission line information and the downlink transmission line information from the first transmission line estimation unit 17 and the second transmission line estimation unit 27, respectively, and receives the calibration coefficient. Calculate C 1 and C 2 . Further, the calibration coefficient calculation unit 31 transmits the calibration coefficients C 1 and C 2 to the downlink transmission line estimation unit 15. In the above description, the operation of only one carrier frequency has been described, but in the OFDM (Orthogonal Frequency Division Multiplexing) signal, the above calculation is performed for each subcarrier.
 キャリブレーション係数計算部31ではCP分解(Canonical Polyadic Decomposition)を用いてキャリブレーション係数を計算する。複数のリファレンスアンテナは、キャリブレーション対象のアンテナ毎に伝送路が異なる。また、リファレンスアンテナに接続される送信アンプおよび受信アンプもリファレンスアンテナごとにそれぞれ特性が異なる。また、時間をずらしてキャリブレーション用の測定を複数回測定した場合、伝送路および送受のキャリア位相はそれぞれ異なる。リファレンスアンテナの特性が合成された値は、単純な複素数の加算によって算出することはできないが、CP分解を用いることで複数のリファレンスアンテナの特性が合成された値を算出することができる。図4は、実施の形態にかかる可逆性キャリブレーションの説明を示す図である。iは基地局装置1が備えるアンテナの番号である。基地局装置1はアンテナをn個備えており、基地局装置1のアンテナ番号は0~n-1である。つまり、iは0~n-1の値をとる。jは測定装置2が備えるアンテナの番号である。測定装置2はアンテナをm個備えており、測定装置2のアンテナ番号は0~m-1である。つまり、jは0~m-1の値をとる。EBTi(f)はアンテナ番号iに接続する基地局装置1の送信アンプの特性を示す値である。図4では、アンテナ番号が0およびn-1のEBTi(f)を示す。EBRi(f)はアンテナ番号iに接続する基地局装置1の受信アンプの特性を示す値である。図4では、アンテナ番号が0およびn-1のEBRi(f)を示す。EUTj(f)は、アンテナ番号jに接続する測定装置2の送信アンプの特性を示す値である。図4では、アンテナ番号が0およびm-1のEUTj(f)を示す。 The calibration coefficient calculation unit 31 calculates the calibration coefficient using CP decomposition (Canonical Polyadic Decomposition). The transmission lines of the plurality of reference antennas are different for each antenna to be calibrated. Further, the characteristics of the transmission amplifier and the reception amplifier connected to the reference antenna also differ for each reference antenna. Further, when the calibration measurement is measured a plurality of times at different times, the carrier phases of the transmission line and the transmission / reception are different from each other. The combined value of the characteristics of the reference antenna cannot be calculated by simply adding complex numbers, but the combined value of the characteristics of a plurality of reference antennas can be calculated by using CP decomposition. FIG. 4 is a diagram showing a description of the reversible calibration according to the embodiment. i is the number of the antenna included in the base station apparatus 1. The base station apparatus 1 includes n antennas, and the antenna numbers of the base station apparatus 1 are 0 to n-1. That is, i takes a value from 0 to n-1. j is the number of the antenna included in the measuring device 2. The measuring device 2 includes m antennas, and the antenna numbers of the measuring devices 2 are 0 to m-1. That is, j takes a value from 0 to m-1. EBTi (f) is a value indicating the characteristics of the transmission amplifier of the base station apparatus 1 connected to the antenna number i. FIG. 4 shows EBTi (f) having antenna numbers 0 and n-1. EBRi (f) is a value indicating the characteristics of the receiving amplifier of the base station apparatus 1 connected to the antenna number i. FIG. 4 shows EBRi (f) having antenna numbers 0 and n-1. E UTj (f) is a value indicating the characteristics of the transmission amplifier of the measuring device 2 connected to the antenna number j. FIG. 4 shows EUTj (f) having antenna numbers of 0 and m-1.
 EURj(f)は、アンテナ番号jに接続する測定装置2の受信アンプの特性を示す値である。図4では、アンテナ番号が0およびm-1のEURj(f)を示す。hi,j(f)は、基地局装置1のアンテナ番号がi、測定装置2のアンテナ番号がjで通信する時の伝送路を示し、基地局装置1のアンテナ番号が0、測定装置2のアンテナ番号が0の場合の伝送路は、h0,0(f)である。TBi(f)は、基地局装置1のアンテナ番号iのアンテナが送信する信号を示す。RBi(f)は、基地局装置1のアンテナ番号iのアンテナが受信する信号を示す。TUj(f)は、測定装置2のアンテナ番号jのアンテナが送信する信号を示す。RUj(f)は、測定装置2のアンテナ番号jのアンテナが受信する信号を示す。 E URj (f) is a value indicating the characteristics of the receiving amplifier of the measuring device 2 connected to the antenna number j. FIG. 4 shows EURj (f) having antenna numbers of 0 and m-1. h i, j (f) indicate a transmission path when the antenna number of the base station device 1 is i and the antenna number of the measuring device 2 is j, and the antenna number of the base station device 1 is 0 and the measuring device 2 is used. When the antenna number of is 0, the transmission line is h0,0 (f). T Bi (f) indicates a signal transmitted by the antenna of the antenna number i of the base station apparatus 1. R Bi (f) indicates a signal received by the antenna of the antenna number i of the base station apparatus 1. TUj (f) indicates a signal transmitted by the antenna of the antenna number j of the measuring device 2. RUj (f) indicates a signal received by the antenna of the antenna number j of the measuring device 2.
 測定装置2のアンテナ番号jのアンテナが受信する信号Ruj(f)は以下の式(4)で表される。なお、fはCC(Component Carrier)およびRB(Resource Block)を表すとする。 The signal R uji (f) received by the antenna of the antenna number j of the measuring device 2 is represented by the following equation (4). It is assumed that f represents CC (Component Carrier) and RB (Resource Block).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ダウンリンクの伝送路hDi,j(f)は以下の様に表される。 The downlink transmission lines h Di, j (f) are represented as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 基地局装置1のアンテナ番号iのアンテナが受信する信号RBi(f)は以下の様に表される。 The signal R Bi (f) received by the antenna of the antenna number i of the base station apparatus 1 is represented as follows.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 アップリンクの伝送路hUi,j(f)は以下の様に表される。 The uplink transmission lines h Ui and j (f) are represented as follows.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 キャリブレーション係数C(f)は以下の様に表される。 Calibration coefficients C i (f) is expressed as follows.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 プリコーディングにおいてg(f)は任意でよい。ダウンリンク伝送路推定部15は、アップリンクの伝送路hUi,j(f)からキャリブレーション係数C(f)を用いてダウンリンクの伝送路h(ハット付き)Di,j(f)を推定する。 In precoding, g (f) may be arbitrary. Downlink channel estimation unit 15, the transmission path h Ui uplink, j transmission path h (with hat) in the downlink by using the calibration coefficient C i (f) from (f) Di, j and (f) presume.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 式(9)は、式(5)に対して、k倍の値であるが、基地局アンテナ間の比率には影響がない。kは式(10)の値である。 Equation (9) is a value k times that of Equation (5), but it does not affect the ratio between base station antennas. k is the value of equation (10).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 hDi,j(f)とhUi,j(f)はノイズを含む測定値であり、誤差|e|を以下の様に定義する。 h Di, j (f) and h Ui, j (f) are measured values including noise, and the error | e | 2 is defined as follows.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 誤差を最小とするhi,j(f),EBTi(f),EURj(f),EBRi(f),およびEUTj(f)を推定し、式(8)によってキャリブレーション係数C(f)を計算する。 Estimate hi , j (f), EBTi (f), EURj (f), EBRi (f), and EUTj (f) that minimize the error, and use Eq. (8) to estimate the calibration coefficient C. i (f) is calculated.
 hi,j(f),EBTi(f),EURj(f),EBRj(f),およびEUTj(f)の推定はテンソルをより次元の低い複数のベクトルに分解するCP分解と等価である。CP分解の誤差を最小化するためにCP分解に勾配降下法を用いる。CP分解に勾配降下法を用いることでCP分解の計算精度を向上させることができる。 The estimation of hi , j (f), EBTi (f), EURj (f), EBRj (f), and EUTj (f) is a CP decomposition that decomposes the tensor into multiple vectors with lower dimensions. Equivalent. Gradient descent is used for CP decomposition to minimize the error of CP decomposition. By using the gradient descent method for CP decomposition, the calculation accuracy of CP decomposition can be improved.
 各変数による誤差関数である式(11)の偏微分は式(12)の様に表される。式(12)において、*は複素共役を示す。 The partial differential of equation (11), which is an error function due to each variable, is expressed as equation (12). In equation (12), * indicates the complex conjugate.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 勾配降下法によるCP分解ではイタレーション(繰り返し)が必要であり演算規模が大きい。この場合、周波数分解能を落としてデータ量の削減およびS/N(Signal/Noise)比を改善させることで演算規模を削減することができる。さらに、周波数分解能を落としてデータ量の削減およびS/N比を改善させると、ローカルミニマムに補足される可能性が減り性能が改善する。ここで得られた値を初期値として周波数分解能を上げてさらにCP分解を実施すると初期値が収束値に近いため少ないイタレーションで最適値に収束する。また、勾配降下法を用いたCP分解を行い、1回目のCP分解の結果を算出し、1回目のCP分解に用いた勾配降下法よりも周波数分解能を上げて、1回目のCP分解の結果を初期値とした2回目のCP分解を行ってもよい。 The CP decomposition by the gradient descent method requires iteration (repetition) and the calculation scale is large. In this case, the calculation scale can be reduced by reducing the frequency resolution, reducing the amount of data, and improving the S / N (Signal / Noise) ratio. Further, if the frequency resolution is lowered to reduce the amount of data and improve the S / N ratio, the possibility of being supplemented by the local minimum is reduced and the performance is improved. When the frequency resolution is increased with the value obtained here as the initial value and CP decomposition is further performed, the initial value is close to the convergence value, so that the value converges to the optimum value with less iteration. In addition, CP decomposition using the gradient descent method is performed, the result of the first CP decomposition is calculated, the frequency resolution is higher than that of the gradient descent method used for the first CP decomposition, and the result of the first CP decomposition is performed. May be performed for the second CP decomposition with the initial value of.
 以上説明したように、本実施の形態では、キャリブレーション係数計算部31が、CP分解を用いた式(12)を用いて、アンテナごとによって異なる伝送路、送信アンプ、および受信アンプの特性を推定し、推定したこれらの値を用いて、式(8)を用いてキャリブレーション係数を計算する。このため、アンテナごとにそれぞれ異なる条件によって影響を受けている値の誤差を計算することができ、これらの条件の差による誤差が最小となるキャリブレーション係数を計算できる。したがって、キャリブレーション精度の低下を抑制することができる。また、キャリブレーション係数計算部31は、時刻の異なる伝送路情報を異なるアンテナと見なして伝送路情報をCP分解し、キャリブレーション係数を計算してもよい。また、キャリブレーション係数計算部31は、アンテナの複数のアップリンクの伝送路の情報をCP分解することでキャリブレーション係数を計算することとしてもよい。 As described above, in the present embodiment, the calibration coefficient calculation unit 31 estimates the characteristics of the transmission line, the transmission amplifier, and the reception amplifier, which are different for each antenna, by using the equation (12) using CP decomposition. Then, using these estimated values, the calibration coefficient is calculated using the equation (8). Therefore, it is possible to calculate the error of the value affected by different conditions for each antenna, and it is possible to calculate the calibration coefficient that minimizes the error due to the difference between these conditions. Therefore, it is possible to suppress a decrease in calibration accuracy. Further, the calibration coefficient calculation unit 31 may calculate the calibration coefficient by treating the transmission line information at different times as different antennas and CP-decomposing the transmission line information. Further, the calibration coefficient calculation unit 31 may calculate the calibration coefficient by CP-decomposing the information of the transmission lines of the plurality of uplinks of the antenna.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 基地局装置、2 測定装置、3 キャリブレーション装置、15 ダウンリンク伝送路推定部、16 プリコーダ、17 第1の伝送路推定部、27 第2の伝送路推定部、31 キャリブレーション係数計算部、111,112,211,212 アンテナ、121,122,221,222 切り替えスイッチ、131,132,231,232 送信ハイパワーアンプ、141,142,241,242 受信アンプ、300 無線通信システム、400 制御回路、400a プロセッサ、400b メモリ。 1 base station device, 2 measuring device, 3 calibration device, 15 downlink transmission line estimation unit, 16 precoder, 17 first transmission line estimation unit, 27 second transmission line estimation unit, 31 calibration coefficient calculation unit, 111,112,211,212 antenna, 121,122,221,222 changeover switch, 131,132,231,232 transmission high power amplifier, 141,142,241,242 reception amplifier, 300 wireless communication system, 400 control circuit, 400a processor, 400b memory.

Claims (4)

  1.  受信信号に基づいて推定されたアップリンクおよびダウンリンクのそれぞれの伝送路情報と、複数の送信アンプの特性、および複数の受信アンプの特性を用いて計算される伝送路情報とを用いて表される誤差関数をCanonical Polyadic分解することで前記複数の送信アンプ、前記複数の受信アンプのそれぞれの特性を推定し、前記推定した値を用いてキャリブレーション係数を計算することを特徴とするキャリブレーション装置。 It is expressed using the uplink and downlink transmission line information estimated based on the received signal, the characteristics of multiple transmitting amplifiers, and the transmission line information calculated using the characteristics of multiple receiving amplifiers. A calibration device characterized in that the characteristics of each of the plurality of transmission amplifiers and the plurality of reception amplifiers are estimated by decomposing the error function into Canonical Polyadic, and the calibration coefficient is calculated using the estimated values. ..
  2.  時刻の異なる複数のアップリンクの伝送路の情報を前記Canonical Polyadic分解することで前記キャリブレーション係数を計算することを特徴とする請求項1に記載のキャリブレーション装置。 The calibration device according to claim 1, wherein the calibration coefficient is calculated by decomposing the information of a plurality of uplink transmission lines having different times into Canonical Polyadic.
  3.  勾配降下法を用いて前記Canonical Polyadic分解を行うことを特徴とする請求項1または2に記載のキャリブレーション装置。 The calibration device according to claim 1 or 2, wherein the Canonical Polyadic decomposition is performed using a gradient descent method.
  4.  請求項1から3のいずれか1つに記載のキャリブレーション装置を備えることを特徴とする端末装置。
     
    A terminal device comprising the calibration device according to any one of claims 1 to 3.
PCT/JP2019/010368 2019-03-13 2019-03-13 Calibration device and terminal device WO2020183670A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/010368 WO2020183670A1 (en) 2019-03-13 2019-03-13 Calibration device and terminal device
JP2021504725A JP6929482B2 (en) 2019-03-13 2019-03-13 Calibration equipment, terminal equipment, control circuits and programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/010368 WO2020183670A1 (en) 2019-03-13 2019-03-13 Calibration device and terminal device

Publications (1)

Publication Number Publication Date
WO2020183670A1 true WO2020183670A1 (en) 2020-09-17

Family

ID=72426663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010368 WO2020183670A1 (en) 2019-03-13 2019-03-13 Calibration device and terminal device

Country Status (2)

Country Link
JP (1) JP6929482B2 (en)
WO (1) WO2020183670A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032271A1 (en) * 2012-08-31 2014-03-06 Nec(China) Co., Ltd. Method and apparatus for antenna calibration
JP2017038197A (en) * 2015-08-07 2017-02-16 日本電信電話株式会社 Radio communications system and radio communications method
CN106559367A (en) * 2016-12-08 2017-04-05 电子科技大学 MIMO ofdm system millimeter wave channel estimation methods based on low-rank tensor resolution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682432B (en) * 2007-05-29 2013-03-06 三菱电机株式会社 Calibration method, communication system, frequency control method, and communication device
JP2009182441A (en) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp Communication device and calibration method
JP6633578B2 (en) * 2017-07-25 2020-01-22 日本電信電話株式会社 Wireless communication device and rotation amount calculation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032271A1 (en) * 2012-08-31 2014-03-06 Nec(China) Co., Ltd. Method and apparatus for antenna calibration
JP2017038197A (en) * 2015-08-07 2017-02-16 日本電信電話株式会社 Radio communications system and radio communications method
CN106559367A (en) * 2016-12-08 2017-04-05 电子科技大学 MIMO ofdm system millimeter wave channel estimation methods based on low-rank tensor resolution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAITO, YUYA ET AL: "Investigation on the Performance of TDD Massive MIMO in the 4.5 GHz Band.", IEICE TECHNICAL REPORT, vol. 116, no. 396, 12 January 2017 (2017-01-12), pages 25 - 30 *

Also Published As

Publication number Publication date
JPWO2020183670A1 (en) 2021-09-13
JP6929482B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
US11146317B2 (en) Precoding matrix indication method, precoding matrix determining method, and device
CN111342912B (en) Channel measurement method and communication device
US20220385344A1 (en) Csi reporting based on linear combination port-selection codebook
US20220255596A1 (en) Methods, Distributed Base Station System, Remote Radio Unit and Base Band Unit System for Handling Downlink Signals
EP3886335A1 (en) Channel measurement method and communication apparatus
US9788292B2 (en) Reciprocity calibration for multiple-input multiple-output systems
US10523345B2 (en) Methods and apparatus for calibration and array operation in advanced MIMO system
CN111342913B (en) Channel measurement method and communication device
CN108282254B (en) Channel state information reporting method, base station and user equipment
EP3110033A1 (en) Dual-stream beamforming method and device
US10601559B2 (en) Methods and devices for transmitting and receiving pilot signal
CN111431679B (en) Parameter configuration method and communication device
EP4040699A1 (en) Method for configuring transmission port of a downlink reference signal, and communication apparatus
CN114600384A (en) Channel measurement method and communication device
CN102780518A (en) Calibration method and device of antenna gain
JP6929482B2 (en) Calibration equipment, terminal equipment, control circuits and programs
US11044001B2 (en) Steering vector weighting
CN106685623A (en) Time-delay compensation method, user equipment and base station
CN113949468B (en) Initial phase correction method for transmission channel, base station and computer storage medium
WO2019203702A1 (en) Beam weight interpolation for use with mu-mimo
WO2017088658A1 (en) Method and device for acquiring channel information
US20240154660A1 (en) Methods, Base Band Unit System and Radio Unit of a Distributed Base Station System Adapted for Beamforming
EP4324111A1 (en) Baseband unit, radio unit and methods in a wireless communications network
CN117394889A (en) Precoding matrix selection method and device and computer readable storage medium
KR20240115134A (en) Electronic device and method for receiving signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918704

Country of ref document: EP

Kind code of ref document: A1