Nothing Special   »   [go: up one dir, main page]

WO2020174593A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2020174593A1
WO2020174593A1 PCT/JP2019/007389 JP2019007389W WO2020174593A1 WO 2020174593 A1 WO2020174593 A1 WO 2020174593A1 JP 2019007389 W JP2019007389 W JP 2019007389W WO 2020174593 A1 WO2020174593 A1 WO 2020174593A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
refrigerant
resistor
fin
flow path
Prior art date
Application number
PCT/JP2019/007389
Other languages
French (fr)
Japanese (ja)
Inventor
伴明 高木
賢二 安東
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to JP2021501441A priority Critical patent/JP7119200B2/en
Priority to PCT/JP2019/007389 priority patent/WO2020174593A1/en
Publication of WO2020174593A1 publication Critical patent/WO2020174593A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a cooling device, and more particularly to a cooling device that cools a heating element arranged on the surface by a refrigerant flowing through an internal refrigerant flow path.
  • a cooling device that cools a heating element by a refrigerant flowing through an internal refrigerant passage has been known.
  • Such a cooling device is disclosed in, for example, Japanese Utility Model Laid-Open No. 63-145395.
  • a road conditioning structure is disclosed.
  • a supply side flow path resistance adjuster is provided on each of the refrigerant supply sides and a discharge side flow path resistance adjuster is provided on each of the discharge sides of the refrigerant flow path of the module.
  • the supply-side flow path resistance adjuster and the discharge-side flow path resistance adjuster are valves and the like.
  • a cooling device called a cold plate is used to cool a heating element such as an electronic device, which is not disclosed in Japanese Utility Model Laid-Open No. 63-145395.
  • the cold plate cools the heating element installed on the surface by the refrigerant flowing through the internal flow path.
  • Multiple heat generating elements may be installed on the cold plate.
  • the flow path of the refrigerant should be branched in the cold plate and installed in parallel so as to pass directly under each heat generating element. There is.
  • the cooling performance is improved by vaporizing the liquid phase refrigerant in the refrigerant channel and utilizing the heat of vaporization.
  • the cooling performance is improved by vaporizing the liquid phase refrigerant in the refrigerant channel and utilizing the heat of vaporization.
  • the load (heat load, that is, the calorific value) of a heating element such as an electronic device installed on the cold plate fluctuates according to the operation of the electronic device. Therefore, in each heating element installed on the cold plate, The load fluctuates and is not uniform.
  • the gas ratio of the refrigerant ratio of vapor-phase refrigerant
  • the gas rate remains low and the pressure loss becomes relatively low.
  • the refrigerant flow rate to the high load side is relatively reduced, and the refrigerant flow rate to the low load side is relatively increased, resulting in insufficient cooling performance on the high load side, There is a problem that the cooling performance of the entire device is reduced.
  • a cooling device that cools a plurality of heating elements by utilizing the heat of vaporization of the refrigerant in the branched flow path, it is required to suppress the fluctuation of the refrigerant distribution amount even when the load of the heating elements changes.
  • the present invention has been made to solve the above problems, and one object of the present invention is to cool a plurality of heating elements by utilizing heat of vaporization of a refrigerant in a branched flow path.
  • a cooling device it is an object of the present invention to provide a cooling device capable of suppressing the variation of the refrigerant distribution amount even when the load of the heating element varies.
  • a cooling device includes a main body having an installation surface on which a heating element is installed, and a plurality of heating elements and a coolant provided on the installation surface between the plurality of heating elements and the refrigerant, respectively.
  • a refrigerant flow path including a plurality of heat exchange sections that perform heat exchange is provided, and the refrigerant flow path is connected to the inlet opening into which at least a part of the liquid-phase refrigerant flows and a branch from the inlet opening, each of which is connected to the heat exchange section.
  • a heating element is provided by including a distribution path and an outlet opening through which at least a part of the vaporized refrigerant flows out in the heat exchange section, and increasing flow path resistance between the branch section of the distribution path and the heat exchange section.
  • a resistor that suppresses the variation in the distribution amount of the refrigerant due to the variation in the heat generation amount is provided.
  • the flow of the refrigerant before the gas ratio is increased by the resistor at the position before the heat exchange part where the refrigerant is vaporized and between the branch part.
  • the road resistance can be increased in advance. That is, when the load of the heat generating element in each heat exchange section of the branched refrigerant flow path changes, the pressure loss in each heat exchange section varies depending on the load change (difference in gas rate). At this time, when the resistor is not provided, the refrigerant distribution amount to each heat exchange section depends directly on the difference in pressure loss in each heat exchange section.
  • the pressure loss due to the resistor causes the difference in pressure loss in each heat exchange unit to be the refrigerant distribution amount to each heat exchange unit. Can be relatively small.
  • the increase in the pressure loss due to the resistor is sufficiently large with respect to the amount of change in the pressure loss due to the fluctuation of the gas rate in each heat exchange part, the gas in each heat exchange part The difference in pressure loss due to the difference in rate becomes almost negligible.
  • the cooling device that cools the plurality of heating elements by utilizing the heat of vaporization of the refrigerant in the branched flow path, the refrigerant distribution amount even when the load of the heating elements changes. Can be suppressed.
  • the refrigerant flow passage includes a discharge passage that joins from the respective heat exchange portions and is connected to the outlet opening, and the resistor is provided not in the discharge passage but in the distribution passage.
  • a resistor is provided in the discharge passage on the downstream side after a difference in pressure loss occurs due to a difference in gas ratio in each heat exchange section, it acts in a direction to expand the difference in pressure loss in each heat exchange section. Resulting in. Therefore, according to the above configuration, since the resistor is arranged only on the upstream side (distribution path) before the difference in the gas ratio in each heat exchange section occurs, it is possible to effectively suppress the variation in the refrigerant distribution amount. it can.
  • the resistor is arranged in the distribution path at a position separated from the heat exchange section so as not to be affected by heat conduction from the heat exchange section due to heat exchange with the heating element.
  • the heat of the heating element may be transferred by heat conduction and the refrigerant may be vaporized.
  • the resistor is provided after the difference in the gas ratio occurs, the difference in pressure loss between the heat exchange sections will be increased. Therefore, according to the above configuration, it is possible to suppress vaporization of the refrigerant due to the effect of heat conduction from the heat exchange section at the arrangement position of the resistor. Therefore, the flow path resistance (pressure loss) can be increased at the position in the previous stage where the heat of the heat generating element affects.
  • the resistor is preferably arranged at a position closer to the branch portion than the heat exchange portion in the distribution path.
  • the resistor is arranged at a position relatively distant from the heat exchange section, so that the heat of the heating element more reliably causes a difference in the gas rate (pressure loss due to vaporization).
  • the flow path resistance (pressure loss) can be increased at the position.
  • the plurality of heat exchange sections include a first heat exchange section and a second heat exchange section
  • the resistor has a pressure loss in one of the first heat exchange section and the second heat exchange section.
  • the pressure loss in the other of the first heat exchange unit and the second heat exchange unit is minimum, the flow rate difference of the refrigerant distributed to each of the first heat exchange unit and the second heat exchange unit is preset.
  • the flow path resistance of the coolant flow path at the installation position is increased so that the flow path resistance falls within the specified range.
  • the distribution amount of the refrigerant is kept within the preset range even when the loads of the first heat exchange unit and the second heat exchange unit are maximally different from each other and the pressure loss is maximal. be able to. Therefore, it is possible to ensure the performance of the cooling device that can cope with the case where the load of the heating element fluctuates to the maximum.
  • the heat exchange section includes a first fin provided along the circulation direction of the refrigerant, and the resistor is configured to increase the flow path resistance more than the first fin under the same condition.
  • the same condition is a condition assuming a case in which the first fin and the resistor are provided at the same position in the refrigerant flow path with the same dimensions.
  • the flow resistance of each of the first fin and the resistor is determined by its structure, and the resistor has a structure that increases the flow resistance more than that of the first fin. According to this structure, unlike the case where the flow path resistance is increased by providing the first fin also in the distribution path, for example, the flow path resistance can be effectively increased by the resistor.
  • the length of the resistor can be suppressed. As a result, it is possible to prevent the flow path length of the coolant flow path from unnecessarily increasing, and thus it is possible to prevent the cooling device from increasing in size due to the increase in the flow path length.
  • the resistor is provided with a second fin that is provided in a direction intersecting with the circulation direction of the refrigerant and that allows the coolant to pass in the circulation direction.
  • the fins for heat transfer provided in the heat exchange portion are provided so as to extend along the circulation direction of the refrigerant, and the heat transfer area is locally divided into a plurality of channels to divide the heat transfer area.
  • the flow passage resistance is effectively increased by the second fins that are directed in the direction intersecting the flow direction of the coolant (the direction different from the normal direction) so as to block the coolant while allowing the coolant to pass therethrough.
  • the fins are members that are also provided in the heat exchange section, there is no need to provide a dedicated member as a resistor, and the device configuration can be simplified.
  • the second fin forming the resistor includes an offset fin or a perforate fin.
  • the offset fin is a fin formed so that a plurality of fin portions extending in a predetermined direction so as to partition the refrigerant flow path are displaced in the width direction orthogonal to the predetermined direction, and the gaps in which the respective fin portions are displaced Refrigerant can be distributed in a part.
  • the perforated fin is a fin having a through hole in the fin portion, and the refrigerant can flow through the through hole. Since the gap between the offset fins and the through hole of the perforate fin can be made sufficiently small, by using these fins as the second fin, it is possible to effectively increase the flow path resistance even in a short distance.
  • a resistor can be formed. Further, there are various types of offset fins in the amount of displacement in the width direction and the length of the fin portion, and since there are various types of perforate fins in the size and number of through holes, these are used. This makes it possible to easily obtain a resistor having a flow path resistance suitable for the coolant flow path.
  • the main body includes a wall that defines the refrigerant flow path, a plate member that constitutes the installation surface, and a resistor arranged in the refrigerant flow path.
  • the coolant flow path and the resistor can be reliably joined together by brazing.
  • the brazing filler metal is melted to join the members together. It is necessary to prevent clogging, which increases the manufacturing difficulty.
  • the resistor formed by the second fins there is a track record that many fins for heat transfer are used in the cooling device joined by brazing, and the fins are joined together without causing clogging. It's easy to do.
  • the resistor configured by the second fin even when performing collective joining by brazing, it is possible to easily configure the resistor without causing clogging and deviation from the design value of the flow path resistance. Both the performance of the cooling device and the ease of manufacturing can be achieved.
  • a cooling device that cools a plurality of heating elements using the heat of vaporization of the refrigerant in the branched flow path, it is possible to suppress fluctuations in the refrigerant distribution amount even when the load on the heating elements changes.
  • the cooling device 100 is a liquid-cooled cold plate that absorbs heat from a heating element installed on the upper surface (installation surface) and cools it.
  • the heating element M is not particularly limited, but is a heating element such as various electronic devices, electronic circuits (or elements forming the electronic circuits), or the like.
  • the heating element M may be, for example, a power module mounted in a power conversion device, or a processor such as a CPU (Central Processing Unit) or GPU (Graphics Processing Unit) mounted in a computer.
  • a power module including a power control switching element such as an IGBT (insulated gate bipolar transistor) will be described.
  • the cooling device 100 includes a main body 1.
  • the main body 1 has an installation surface 11 on which the heating element M is installed.
  • the main body 1 has a coolant passage 2 (see FIG. 2) therein, through which a coolant 5 for cooling the heating element M installed on the installation surface 11 flows.
  • the main body 1 has an approximately rectangular flat plate shape.
  • the main body 1 has a flat surface-shaped first surface (upper surface) and a second surface (lower surface), respectively.
  • a nozzle that serves as a connection port for the refrigerant flow passage 2 to an external refrigerant flow passage (such as a pipe) is provided on one side end surface of the main body 1 in the longitudinal direction (X1 direction) and the other side end surface thereof (X2 direction). 3 are provided.
  • Each nozzle 3 has an opening for the refrigerant 5 to enter and exit.
  • the two nozzles 3 are in communication with an inlet opening 22 and an outlet opening 24, which will be described later, of the refrigerant channel 2 through the openings.
  • the longitudinal direction of the main body 1 is the X direction
  • the lateral direction of the main body 1 is the Y direction
  • the thickness direction (vertical direction) of the main body 1 is defined as the Z direction.
  • the first surface (upper surface) of the main body 1 is the installation surface 11.
  • the installation surface 11 is, for example, a flat surface, but unevenness may be formed according to the shape of the heating element M.
  • a plurality of placement areas 12 for placing the heating elements M are formed on the installation surface 11.
  • the arrangement area 12 is an area in the installation surface 11 where the heating element M is placed and the surface of the heating element M and the installation surface 11 are in contact with each other.
  • the main body 1 is provided with four placement regions 12, and four cooling elements 100 can be placed in the cooling device 100.
  • the heating element M which is a power module, has a rectangular plate shape in plan view.
  • Each of the placement regions 12 is formed such that the heating element M is placed with its long side aligned with the X direction and its short side aligned with the Y direction.
  • the planar shape of the heating element M is arbitrary.
  • the main body 1 is provided with screw holes (not shown) corresponding to the respective placement areas 12, and the heating element M can be positioned and fixed in the placement area 12.
  • the heating element M is placed (installed) so as to be in close contact with the placement area 12 on the installation surface 11 in a state where the gap is eliminated by a heat conductive compound or heat dissipation grease.
  • the main body 1 has a structure in which a wall 13 that defines the internal coolant flow passage 2 and a plate member 14 that constitutes upper and lower surfaces (first surface and second surface) in the thickness direction are joined.
  • the installation surface 11 is composed of the outer surfaces of the upper and lower plate members 14.
  • the coolant channel 2 is a coolant circulation space formed inside the main body 1.
  • the coolant channel 2 is partitioned by the wall portion 13 and the plate member 14 (see FIG. 1).
  • the coolant channel 2 is a passage through which the coolant 5 flows.
  • the coolant flow channel 2 includes a plurality of heat exchange portions 21 formed at a position immediately below the arrangement region 12 (that is, a position overlapping the arrangement region 12 in plan view).
  • the refrigerant flow path 2 of the present embodiment is configured such that at least a part of the liquid-phase refrigerant 5 flows in a saturated state, a part of which is vaporized in the heat exchange section 21, and the gas-liquid mixed-phase refrigerant 5 flows out. Has been done.
  • the cooling device 100 cools the heating element M using the heat of vaporization accompanying the phase change (vaporization) of the refrigerant 5.
  • a refrigerant 5 for example, a refrigerant of a fluorine-based organic compound such as HFC (hydrofluorocarbon) or HFO (hydrofluoroolefin) can be used.
  • the refrigerant channel 2 is configured to include a channel that supplies the refrigerant 5 to each heat exchange section 21 and a channel that discharges the refrigerant from each heat exchange section 21. That is, the refrigerant flow path 2 includes an inlet opening 22, a distribution path 23 branched from the inlet opening 22 and connected to the heat exchange unit 21, and an outlet opening 24. Further, the refrigerant flow path 2 includes a discharge passage 25 that joins the heat exchange portions 21 and is connected to the outlet opening 24. The refrigerant 5 flows from the inlet opening 22 toward the outlet opening 24. Regarding the circulation direction of the refrigerant 5 in the refrigerant flow path 2, the direction toward the inlet opening 22 is called the upstream side, and the direction toward the outlet opening 24 is called the downstream side.
  • the inlet opening 22 is an end opening of the coolant channel 2, and one is provided on the side end surface of the main body 1.
  • the inlet opening 22 opens at the side end surface of the main body 1 on the X1 direction side and communicates with the nozzle 3 on the X1 direction side.
  • the inlet opening 22 receives the refrigerant 5 from the outside and supplies it into the refrigerant flow path 2. At least a part of the liquid-phase refrigerant 5 flows into the inlet opening 22.
  • the refrigerant 5 has a larger liquid phase ratio than the gas phase.
  • the distribution passage 23 is a branched passage portion of the refrigerant passage 2 that has one end on the upstream side and a plurality of ends on the downstream side.
  • the upstream end of the distribution path 23 communicates with the inlet opening 22.
  • the plurality of downstream end portions of the distribution passage 23 are in communication with the heat exchange portion 21, respectively.
  • the distribution path 23 is configured to distribute the refrigerant 5 from the inlet opening 22 to the plurality of heat exchange units 21.
  • the number of the plurality of downstream end portions of the distribution path 23 is two in the example of FIG. As shown in FIG. 3, the distribution path 23 is branched from one inlet opening 22 at a branch portion 23a and is connected to each of the two heat exchange portions 21 on the downstream side.
  • each downstream flow path portion that is divided from the branch portion 23a is referred to as a tributary flow path 26.
  • the distribution passage 23 extends in the X2 direction from the inlet opening 22 to the branch portion 23a, and is branched into two on both sides in the Y direction at the branch portion 23a, and then each tributary flow path 26 is in the X2 direction.
  • the tributary channels 26 after the branch portion 23a do not communicate with each other.
  • the total flow rate of the refrigerant in each tributary channel 26 corresponds to the flow rate flowing into the inlet opening 22.
  • the flow path resistance is increased between the branch portion 23a of the distribution path 23 and the heat exchange portion 21 (the tributary flow path 26) so that the heat generation amount (load) of the heating element M varies.
  • a resistor 30 that suppresses fluctuations in the distribution amount of the refrigerant 5 is provided.
  • the resistor 30 is an obstacle provided so as to block a part of the flow path between the branch portion 23 a of the distribution path 23 and the heat exchange portion 21.
  • the resistor 30 is provided in the distribution passage 23 instead of being provided in the discharge passage 25. Details of the resistor 30 will be described later.
  • the heat exchange part 21 is a part of the refrigerant flow path 2 and is a flow path part for performing heat exchange between the plurality of heating elements M on the installation surface 11 and the refrigerant 5, respectively. is there.
  • the heat exchange portions 21 are provided one at a position directly below the four disposition regions 12.
  • the heat exchange part 21 is a flow path part having one end on the upstream side and one end on the downstream side.
  • the plurality of heat exchange parts 21 include a first heat exchange part 21a and a second heat exchange part 21b.
  • the first heat exchange section 21a and the second heat exchange section 21b are connected in parallel to the inlet opening 22 by a branched distribution path 23.
  • the first heat exchange section 21a and the second heat exchange section 21b are arranged side by side in the Y direction with the wall 13a interposed therebetween.
  • the first heat exchanging portion 21a and the second heat exchanging portion 21b are provided two by two in correspondence with the four heating elements M (arrangement region 12). That is, the two first heat exchange portions 21a arranged in the X direction form one set, and are connected in series in the X direction in the refrigerant passage 2.
  • the two second heat exchanging portions 21b arranged in the X direction form one set, and are connected in series in the X direction in the refrigerant passage 2.
  • the rows of the first heat exchange portions 21a and the rows of the second heat exchange portions 21b extending in the X direction are arranged in parallel in the Y direction.
  • the refrigerant 5 is first provided in the first heat exchange part 21a (second heat exchange part 21b) on the upstream side. Supplied.
  • the refrigerant 5 that has passed through the upstream first heat exchange section 21a (second heat exchange section 21b) is supplied to the downstream first heat exchange section 21a (second heat exchange section 21b).
  • the two first heat exchange portions 21a (second heat exchange portions 21b) arranged in the X direction are connected by a linear connection path 27.
  • the two first heat exchanging parts 21a and the two second heat exchanging parts 21b arranged in the Y direction are partitioned by the wall part 13a that partitions the branched refrigerant flow path 2 and do not communicate with each other. ..
  • the flow path length (length in the flow direction of the refrigerant) and flow path width (length in the width direction orthogonal to the flow direction) of the heat exchange section 21 are the planar shape (arrangement region) of the heating element M (see FIG. 1). 12 shapes).
  • the refrigerant 5 absorbs heat from each heating element M in the process of passing through the heat exchange section 21. Due to the heat absorption, part of the refrigerant 5 passing through the heat exchange section 21 is vaporized. The heat of vaporization of the refrigerant 5 can increase the heat exchange efficiency of the heating element M by the cooling device 100 as compared with the case where the heat of vaporization is not used.
  • Each heat exchange section 21 includes a first fin 21c provided along the circulation direction of the refrigerant 5.
  • the first fin 21c is a heat transfer fin provided in the heat exchange unit 21.
  • the first fin 21c increases the heat transfer area by locally dividing the refrigerant flow path 2 (heat exchange section 21) into a plurality of channels to improve heat exchange performance.
  • the first fin 21c is, for example, a corrugated fin, and a plurality of plate-shaped fin portions 41 extending in the first direction in the plane are arranged at intervals in the second direction orthogonal to the first direction in the plane.
  • the first fin 21c is a fin provided such that the first direction in which the fin portion 41 extends is along the circulation direction (X direction) of the refrigerant 5 in the heat exchange portion 21.
  • the plane fin 40a has a structure in which fin portions 41 that linearly extend in the first direction (A direction) are arranged at a constant pitch P in the second direction (B direction). Each of the plurality of fin portions 41 is connected at one end in the height direction (vertical direction) with a plate-shaped connecting portion 45.
  • the perforated fin 40b has a structure in which a plurality of through holes 42 are provided in the plain fin 40a.
  • a plurality of rows 43 configured by arranging fin portions 41 extending in the first direction (direction A) in the second direction (direction B) are displaced from each other in the second direction (direction B) (offset). It is a fin provided as follows.
  • the first fin 21c locally divides the refrigerant flow path (heat exchange portion 21) into a plurality of channels by the plurality of fin portions 41, thereby increasing the heat transfer area of the refrigerant 5.
  • the discharge passage 25 is a flow passage portion that has a plurality of upstream end portions and one downstream end portion and joins the branched flow passages.
  • the plurality of upstream end portions of the discharge passage 25 are in communication with the heat exchange portion 21, respectively.
  • the downstream end of the discharge passage 25 communicates with the outlet opening 24.
  • the discharge path 25 is configured to merge the refrigerant 5 that has passed through the branched heat exchange portions 21 and send the combined refrigerant 5 to the outlet opening 24.
  • the number of the plurality of upstream end portions of the discharge passage 25 is two in the example of FIG.
  • the outlet opening 24 is an end opening of the refrigerant flow path 2 and one is provided on the side end surface of the main body 1.
  • the outlet opening 24 opens at the side end surface of the main body 1 on the X2 direction side and communicates with the nozzle 3 on the X2 direction side.
  • the outlet opening 24 is provided on the most downstream side of the refrigerant flow path 2 and discharges the refrigerant 5 after heat exchange (after cooling) to the outside. From the outlet opening 24, the refrigerant 5 at least a part of which is vaporized in the heat exchange section 21 flows out.
  • the refrigerant flow path 2 includes two paths 20a and 20b branched between the inlet opening 22 and the outlet opening 24.
  • the passage 20a extends from the branch portion 23a of the refrigerant passage 2 and includes the tributary passage 26, the upstream first heat exchange portion 21a, the connection passage 27, and the downstream first heat exchange portion 21a. It is a route that passes through the exchange unit 21a.
  • the passage 20b extends from the branch portion 23a of the refrigerant passage 2 and includes the tributary passage 26, the upstream second heat exchange portion 21b, the connection passage 27, and the downstream second heat exchange portion 21b. It is a route that passes through the exchange unit 21b.
  • the route 20a passing through the first heat exchange unit 21a and the route 20b passing through the second heat exchange unit 21b are the routes 20a when the loads (heat amounts) in the first heat exchange unit 21a and the second heat exchange unit 21b are equal to each other.
  • the overall pressure loss and the overall pressure loss of the path 20b are configured to substantially match. Therefore, in the example shown in FIG. 2, the two paths 20a and 20b from the branch portion 23a to the discharge path 25 have the same structure, and are substantially symmetrical in the Y direction with the branch portion 23a as a boundary.
  • the resistor 30 is provided in at least one of the plurality of branch passages 26 between the branch portion 23 a of the distribution passage 23 and the heat exchange portion 21.
  • the resistor 30 is provided in each of the plurality (two) of the tributary channels 26.
  • the resistor 30 is installed inside the coolant channel 2.
  • the resistor 30 is fixed to the wall portion 13 and/or the plate member 14 that divides the coolant channel 2 in the coolant channel 2.
  • the resistor 30 does not have a movable part for changing the opening degree of the valve body or the like, and causes a flow path resistance by a fixed structure.
  • the resistor 30 is arranged in the distribution path 23 at a position separated from the heat exchange part 21 so as not to be affected by heat conduction from the heat exchange part 21 due to heat exchange with the heating element M. Specifically, the resistor 30 is arranged in the distribution path 23 at a position closer to the branch portion 23a than the heat exchange portion 21. In the present embodiment, the resistor 30 is arranged immediately after the branch portion 23a. That is, the resistor 30 is provided at the position of the upstream end portion of the tributary channel 26 (the boundary portion between the branch portion 23a and the tributary channel 26). The downstream end of the resistor 30 is arranged upstream of the heat exchange part 21.
  • the tributary flow path 26 includes a flow path portion that connects the downstream end of the resistor 30 and the heat exchange section 21.
  • the resistor 30 has a width W1 that is substantially equal to the flow channel width of the tributary channel 26.
  • the length L1 of the resistor 30 in the flow direction (X direction) of the refrigerant 5 is smaller than the length of the tributary flow path 26. In the flow direction (X direction) of the refrigerant 5, the length L1 of the resistor 30 is smaller than the length of the heat exchange section 21.
  • the resistor 30 increases the channel resistance of the refrigerant channel 2 as compared with the case where the resistor 30 is not installed.
  • the resistor 30 may be configured by, for example, an orifice plate having fine holes, a block body provided so as to block a part of the tributary channel 26, or the like.
  • the resistor 30 is configured to increase the flow path resistance more than that of the first fin 21c under the same condition. That is, the flow path resistance is increased as compared with the case where the first fin 21c is installed in place of the resistor 30 in the installation region of the resistor 30 shown in FIG.
  • the resistor 30 includes a second fin 31 that is provided in a direction that intersects with the circulation direction of the coolant 5 and that allows the coolant 5 to pass in the circulation direction.
  • the second fins 31 circulate the coolant 5 in the normal installation direction (the first direction in which the fin portion 41 extends (direction A, see FIGS. 4 to 6)) for the purpose of increasing the flow path resistance (as the resistor 30 ). It is installed in the refrigerant flow path 2 in a direction different from the direction (toward the direction).
  • the second fin 31 is, for example, a corrugated fin, which is a corrugated fin that allows the coolant 5 to flow in the circulation direction even if the second fin 31 is arranged in a direction intersecting with the circulation direction of the coolant 5.
  • the second fin 31 forming the resistor 30 includes an offset fin 40c (see FIG. 6) or a perforate fin 40b (see FIG. 5).
  • the offset fin 40c is used as the second fin 31.
  • the second fins 31 shown in FIG. 3 are installed with the first direction (A direction) in which the fin portions 41 extend toward the flow channel width direction (Y direction) orthogonal to the circulation direction (X direction) of the refrigerant 5. ing. Therefore, in the second fin 31, the fin portion 41 extending in the first direction (direction A) is configured to function as a barrier that blocks the refrigerant flow passage 2 (the tributary flow passage 26).
  • the second direction (the B direction, see FIG. 6) that is the arrangement direction of the fin portions 41 matches the circulation direction (X direction) of the refrigerant 5.
  • the offset fin 40c (see FIG. 6) or the perforate fin 40b (see FIG. 5) as the second fin 31 is a fin that allows the refrigerant 5 to flow in the second direction (B direction). That is, in the offset fin 40c shown in FIG. 6, the position of the fin portion 41 is displaced in the second direction (B direction) between the odd-numbered row 43 and the even-numbered row 43 of the fin portion 41. Therefore, a gap 44 having a size corresponding to the offset amount Os in the B direction is formed between the fin portions 41 forming the even-numbered rows 43 and the fin portions 41 forming the odd-numbered rows 43. ..
  • the coolant 5 flows into the offset fins 40c in the second direction (direction B)
  • the coolant 5 that collides with the side surfaces of the fin portions 41 enters the gaps 44 between the fin portions 41 and passes through the gaps 44. And zigzag between the fin portions 41.
  • the refrigerant 5 can pass through the offset fin 40c in the second direction (direction B).
  • offset fins 40c that differ in the length L2 of the fin portion 41, the pitch P of the fin portion 41 in each row 43, the offset amount Os of the fin portion 41, and the like.
  • the flow path resistance is determined by the length L2 of the fin portion 41, the pitch P of the fin portion 41, the offset amount Os of the fin portion 41, and the like. It becomes a parameter to do.
  • the through hole 42 formed in the fin portion 41 serves as a passage for the coolant 5 flowing in the second direction (B direction). Therefore, the refrigerant 5 can pass through the perforate fins 40b in the second direction (direction B).
  • perforated fins 40b that differ in the diameter (or opening area) of the through holes 42, the number of the through holes 42 (or the ratio of the through holes 42 to the non-through portions), the formation position of the through holes 42, and the like. is there.
  • the resistor 30 (second fin 31) is the perforate fin 40b
  • the diameter, number, position, etc. of these through holes 42 are parameters for increasing or decreasing the flow path resistance.
  • the main body portion 1 includes a wall portion 13 that divides the refrigerant flow passage 2, a plate member 14 (see FIG. 1) that constitutes the installation surface 11 (see FIG. 1 ), and a resistor arranged in the refrigerant flow passage 2. It has a structure in which the body 30 is integrated by brazing. That is, the wall portion 13, the first fin 21c, the resistor 30 (second fin 31), and the plate member 14 are all coated or coated with a brazing material, and as shown in FIG. , The first fin 21c and the resistor 30 (second fin 31) are arranged so that both sides in the thickness direction are sandwiched by the plate members 14, respectively, and the assembly is heated to a predetermined brazing temperature. By heating and melting the brazing filler metal, and then cooling the brazing filler metal, the members forming the main body 1 are joined together.
  • the flow path resistance by the resistor 30 is the amount of heat generated by the heating element M in the heat exchange section 21 on the downstream side of the resistor 30, the pressure loss of the entire refrigerant flow path 2, and the individual branch portions (from the branch section 23a). It is set in consideration of the pressure loss of the tributary flow path 26 to the confluence of the discharge path 25, the path including the heat exchange section 21, and the like.
  • the flow resistances of the two resistors 30 installed on the paths 20a and 20b are set to be substantially the same.
  • the flow path resistances of the two resistors 30 may have different flow path resistances according to the respective heat quantities. In such a case, for example, the performance of each heating element M is different, and the amount of heat in each of the two first heat exchange units 21a is larger than the amount of heat in each of the two second heat exchange units 21b. To do.
  • the pressure loss in one of the first heat exchange section 21a and the second heat exchange section 21b is maximum, and the pressure loss in the other of the first heat exchange section 21a and the second heat exchange section 21b is minimum.
  • the flow path of the refrigerant flow path 2 at the installation position is set so that the difference in the flow rate of the refrigerant 5 distributed to each of the first heat exchange section 21a and the second heat exchange section 21b falls within a preset range. Increase resistance.
  • the load (heat generation amount) of the heating element M which is a power module, varies according to the operation of the power control switching element.
  • This change in load is expressed here as a load factor. That is, the load of each heating element M fluctuates between a load rate of 0%, which is the designed minimum heat generation amount, and a load rate of 100%, which is the maximum heat generation amount.
  • the gas rate in the heat exchange section 21 rises most when the load rate is 100%, and the rise rate is minimum (substantially zero rise rate) when the load rate is 0%.
  • one of the first heat exchanging portion 21a and the second heat exchanging portion 21b has a load factor of 100%, and the pressure loss due to the vaporization of the refrigerant 5 (increase of the gas rate) becomes maximum, and the first heat exchanging portion 21a
  • the load factor of the other of the second heat exchange section 21b is 0% and the pressure loss due to the vaporization of the refrigerant 5 is minimum
  • the difference in the refrigerant distribution amount is maximum.
  • the flow path resistance due to the resistor 30 is the first heat exchange when the difference in pressure loss due to vaporization of the refrigerant 5 between the first heat exchange section 21a and the second heat exchange section 21b is the maximum.
  • the flow rate difference of the refrigerant 5 distributed to each of the exchange section 21a and the second heat exchange section 21b is set to fall within a preset range.
  • the range of the flow rate difference of the refrigerant 5 is preferably sufficiently small.
  • the range of the flow rate difference of the refrigerant 5 is 30% or less of the flow rate of the refrigerant at the inlet opening 22, and more preferably 20% or less.
  • the cooling device 100 of this embodiment constitutes a part of a fluid circuit 50 as shown in FIG. 7, for example.
  • the fluid circuit 50 mainly includes a refrigerant circulating unit 51, a condensing unit 52, and a pipe line 53 connecting each unit.
  • a valve (not shown) for adjusting the flow rate or the like may be provided in each part of the fluid circuit 50.
  • the nozzle 3 on the inlet side is connected to the refrigerant circulation unit 51 via the pipe line 53.
  • the nozzle 3 on the outlet side is connected to the condensing unit 52 via the pipe line 53.
  • the condenser section 52 is connected to the refrigerant circulation section 51 via the pipe line 53.
  • the fluid circuit 50 is a closed fluid circuit that circulates the refrigerant 5 through the refrigerant circulation unit 51, the cooling device 100, and the condensation unit 52.
  • the coolant circulation unit 51 includes a pump and supplies the coolant 5 to the cooling device 100.
  • the refrigerant circulation unit 51 circulates the refrigerant 5 in the fluid circuit 50 by pressure.
  • a plurality of cooling devices 100 may be provided in the fluid circuit 50, as indicated by the chain double-dashed line.
  • the coolant 5 supplied to the inlet opening 22 of the cooling device 100 passes through the branched distribution passage 23 through the first heat exchange section 21a and the second heat exchange section 21b, respectively.
  • the heat of the heating element M (see FIG. 1) installed in the cooling device 100 is absorbed by the refrigerant 5, and a part of the refrigerant 5 is vaporized and the heating element M is cooled.
  • the refrigerant 5 in the cooling device 100 merges in the discharge passage 25 and is discharged from the outlet opening 24.
  • the refrigerant 5 discharged from the cooling device 100 is sent to the condenser 52.
  • the condenser 52 returns the vaporized refrigerant 5 vaporized in the cooling device 100 to the liquid phase by discharging the heat absorbed by the refrigerant 5.
  • the condensing part 52 can be configured by a known heat exchanger.
  • the refrigerant 5 discharged from the condenser 52 returns to the refrigerant circulation unit 51 and circulates in the fluid circuit 50 again.
  • FIG. 8 and 9 are diagrams showing distribution amounts of the refrigerant 5 to the paths 20a and 20b according to the comparative example in the case where the resistor 30 is not provided.
  • FIG. 10 is a diagram showing the distribution amount of the refrigerant 5 to the paths 20a and 20b according to the present embodiment in which the resistor 30 is provided.
  • the refrigerant flow path 2 shown in FIG. 2 is simplified, and two first heat exchange sections 21a and two second heat exchange sections 21b are provided together. It is shown as one heat exchange section.
  • the specific distribution amount (flow rate) and the value of the pressure loss shown in the following description are examples shown for the purpose of description, and are not limited to these.
  • the pressure loss ⁇ P1 in the first heat exchange section 21a is equal to the pressure loss ⁇ P2 in the second heat exchange section 21b.
  • FIG. 9 shows a comparative example (without a resistor) when the load of the heating element M in each of the first heat exchange section 21a and the second heat exchange section 21b is different.
  • the heating element M has a load of 100% in the first heat exchange section 21a
  • the heating element M has a load of 0% in the second heat exchange section 21b.
  • the refrigerant 5 is vaporized by heat input from the heating element M (load 100%), and the pressure loss due to the vaporization of the refrigerant 5 (increase in gas rate) increases.
  • the pressure loss ⁇ P2 in the second heat exchange section 21b is significantly smaller than the pressure loss ⁇ P1 in the first heat exchange section 21a.
  • the load condition of the heating element M in each of the first heat exchange section 21a and the second heat exchange section 21b is the same as in FIG. That is, the heating element M has a load of 100% in the first heat exchange section 21a, and the heating element M has a load of 0% in the second heat exchange section 21b.
  • the resistors 30 In the paths 20a and 20b, the resistors 30 have the same structure, but the pressure loss due to the respective resistors 30 reflects the difference in pressure loss ( ⁇ P1, ⁇ P2) in the heat exchange section on the downstream side of each path. It becomes a value.
  • the pressure loss ⁇ P1 due to the vaporization of the refrigerant 5 is 12 kPa in the first heat exchange section 21a (load 100%).
  • the pressure loss in the resistor 30 of the path 20a becomes 10 kPa
  • the pressure loss in the resistor 30 of the path 20b becomes 21 kPa.
  • the pressure loss becomes equal in the path 20a and the path 20b, and the difference in the refrigerant distribution amount to the path 20a and the path 20b is suppressed.
  • the flow rate at the inlet opening 22 is 20 L/min
  • the flow rate Q1 8.5 L/min
  • the flow rate Q2 11.5 L/min in the paths 20a and 20b, respectively.
  • the refrigerant flow rate Q1 to the first heat exchange section 21a with a load of 100% is 2 L/min
  • the refrigerant flow rate Q1 is Since it becomes 9.5 L/min, the shortage of the cooling capacity in the first heat exchanging portion 21a having a large heat quantity is alleviated.
  • of the refrigerant 5 distributed to each of the first heat exchange section 21a and the second heat exchange section 21b is 3 L/min, and the refrigerant flow rate at the inlet opening 22 ( It falls within 15% of 20 L/min).
  • the description is omitted, even when the load of the first heat exchanging portion 21a and the load of the second heat exchanging portion 21b are reversed, the relationship between the flow rate Q1 and the flow rate Q2 is simply reversed and falls within the same range. ..
  • the flow resistance of the resistor 30 is used as a variable parameter so that the difference between the flow rate Q1 and the flow rate Q2 in the case of FIG. 10 falls within a preset range. Road resistance is determined.
  • the refrigerant before the heat exchange section 21 where the refrigerant 5 is vaporized and the branch portion 23a is located before the gas ratio is increased by the resistor 30.
  • the flow path resistance of No. 5 can be increased in advance. That is, by increasing the pressure loss in advance by the resistors 30 provided in front of each heat exchange section 21, as shown in FIG. 10, the pressure loss in each heat exchange section 21 is caused by the pressure loss by the resistors 30.
  • the influence of the difference ( ⁇ P1, ⁇ P2) on the refrigerant distribution amount (flow rate Q1, flow rate Q2) to each heat exchange section 21 can be made relatively small.
  • the cooling device 100 that cools the plurality of heating elements M by utilizing the heat of vaporization of the refrigerant 5 in the branched flow paths, the fluctuation of the refrigerant distribution amount is suppressed even when the load of the heating elements M changes. be able to.
  • the resistor 30 is provided in the distribution passage 23 instead of being provided in the discharge passage 25, and is upstream before a difference in pressure loss ( ⁇ P1, ⁇ P2) occurs due to a difference in gas ratio in each heat exchange portion 21. Since the resistor 30 is arranged only on the side (the distribution path 23), it is possible to effectively suppress the variation in the refrigerant distribution amount (flow rate Q1, flow rate Q2).
  • the resistor 30 is arranged in the distribution path 23 at a position separated from the heat exchange part 21 so as not to be affected by heat conduction from the heat exchange part 21 due to heat exchange with the heating element M.
  • the vaporization of the refrigerant 5 due to the heat conduction from the heat exchange portion 21 is suppressed at the arrangement position of the resistor 30. Therefore, the flow path resistance (pressure loss) can be increased at the position of the previous stage where the heat of the heating element M is affected.
  • the resistor 30 is arranged in the distribution path 23 at a position closer to the branch portion 23a than the heat exchange part 21, the resistor 30 can be arranged at a position relatively distant from the heat exchange part 21.
  • the flow path resistance (pressure loss) to each heat exchange portion 21 can be increased more reliably at the position of the previous stage where the gas rate (pressure loss) differs due to the heat of the heating element M.
  • the pressure loss in one of the first heat exchange section 21a and the second heat exchange section 21b is maximum and the pressure loss in the other of the first heat exchange section 21a and the second heat exchange section 21b is minimum.
  • the resistor 30 is provided in the first heat exchanging portion 21a and the second heat exchanging portion 21b, even if the load is maximally different and the difference in pressure loss is maximal, the distribution amount of the refrigerant 5 is preset. It can fit within the set range. Therefore, it is possible to ensure the performance of the cooling device 100 that can cope with the case where the heat load of the heating element M changes to the maximum.
  • the resistor 30 is configured to increase the flow passage resistance more than the first fin 21c of the heat exchange section 21 under the same conditions, for example, by providing the first fin 21c in the distribution passage 23 as well. Unlike the case of increasing the channel resistance, the resistor 30 can effectively increase the channel resistance. Therefore, the length L1 of the resistor in the coolant flow direction (X direction) can be suppressed. As a result, it is possible to prevent the flow path length of the coolant flow path 2 from unnecessarily increasing, and thus it is possible to prevent the cooling device 100 from increasing in size due to the increase in the flow path length.
  • the resistor 30 is provided in the direction (Y direction) intersecting the circulation direction of the refrigerant 5, and is constituted by the second fins 31 through which the refrigerant 5 can pass in the circulation direction.
  • the second fins 31 directed in a direction (a direction different from the normal direction) intersecting the flow direction of the coolant 5 so as to block the coolant 5 can effectively increase the flow passage resistance while allowing the passage of the flow path.
  • the fin is a member that is also provided in the heat exchange section 21, it is not necessary to provide a dedicated member as the resistor 30, and the device configuration can be simplified.
  • the wall portion 13 that defines the coolant flow passage 2, the plate member 14 that configures the installation surface 11, and the resistor 30 that is disposed in the coolant flow passage 2 are integrated by brazing. Since it has the above-mentioned structure, the coolant flow path 2 and the resistor 30 can be reliably joined together by brazing. On the other hand, in brazing, since the brazing material is melted and the members are joined together, for example, when the orifice plate with minute holes or the block body with minute gaps is used as the resistor 30, the molten brazing material is used. Therefore, it is necessary to prevent clogging, which increases the manufacturing difficulty.
  • the resistor 30 including the second fin 31 has a large number of fins used in the cooling device joined by brazing, and thus the resistor 30 can be joined without causing clogging. It's easy. Therefore, in the resistor 30 including the second fins 31, the resistor 30 can be easily configured without causing clogging or deviation from the design value of the flow path resistance even when performing collective joining by brazing. Therefore, the performance of the cooling device 100 and the ease of manufacturing can be compatible.
  • the heating element M is a power module including a power control switching element
  • the present invention is not limited to this.
  • the heating element M is not particularly limited and may be any one.
  • the number of the arrangement regions 12 (that is, the number of the heating elements M to be installed on the installation surface 11) may be two, three, or five or more as long as it is plural.
  • the number of heat exchanging parts 21 may be provided according to the number of heating elements M installed on the installation surface 11.
  • the first surface (upper surface) of the main body 1 is used as the installation surface 11
  • the second surface (lower surface) of the main body 1 may be the installation surface 11, or both the first surface and the second surface may be the installation surface 11.
  • the main body portion 1 is provided with the refrigerant channel 2 adjacent to the first surface and the refrigerant channel 2 adjacent to the second surface, A plurality of layers of the coolant channels 2 may be formed in the thickness direction of the main body 1.
  • the inlet opening 22 is provided on the side end surface of the main body 1 in the X1 direction and the outlet opening 24 is provided on the side end surface of the main body 1 in the X2 direction has been shown, but the present invention is not limited to this.
  • the inlet opening 22 and the outlet opening 24 may be provided on the same side end surface of the main body 1.
  • the refrigerant flow path 2 extending from the inlet opening 22 may be turned back (U-turned) at the end opposite to the inlet opening 22 and connected to the outlet opening 24.
  • Both the inlet opening 22 and the outlet opening 24 may be opened on any surface of the main body portion 1, for example, may penetrate the plate member 14 in the thickness direction and may be opened on the first surface or the second surface. ..
  • the plane fin 40a, the perforate fin 40b, or the offset fin 40c is shown as an example of the first fin 21c, but the present invention is not limited to this.
  • a louver fin or a herringbone fin other than these may be adopted as the first fin 21c.
  • the refrigerant flow path 2 is branched into two tributary flow paths 26
  • the present invention is not limited to this.
  • the refrigerant channel 2 may be branched into three or more.
  • the refrigerant flow path 2 may be branched into four branch flow paths 26.
  • branching into four at one branching portion 23a after branching into two at the first branching portion and then further branching into two at the second branching portion provided in each tributary flow path 26, a total of four branches are made. Such a configuration may be used.
  • the resistor 30 is provided in each of the tributary flow paths 26 of the refrigerant flow path 2 branched into two, but the present invention is not limited to this. In the present invention, it is not necessary to provide the resistor 30 in all the branched tributary channels 26, and the resistor 30 may be provided only in a part of the branched tributary channels 26.
  • the heating element M of the first heat exchanging portion 21a and the heating element M of the second heat exchanging portion 21b have different operating rates of the power modules, and the heating element M of the first heat exchanging portion 21a always has a load of about 100%.
  • the resistor 30 is provided in the tributary flow path 26 on the second heat exchange section 21b side. You can just do it.
  • the present invention is not limited to this.
  • a resistor may be provided in the discharge passage 25 as well.
  • the resistor 30 is arranged in the distribution path 23 closer to the branch portion 23a than the heat exchange portion 21 is shown, but the present invention is not limited to this.
  • the resistor 30 may be provided at least between the branch part 23a of the distribution path 23 and the heat exchange part 21, and the resistor 30 may be closer to the heat exchange part 21 than the branch part 23a.
  • the refrigerant 5 is vaporized by the heat of the heating element M at the installation position of the resistor 30, the pressure loss of the resistor 30 on the high load side relatively increases, and the pressure of the resistor 30 on the low load side increases.
  • the loss is relatively reduced, and the effect of suppressing the variation in the refrigerant distribution amount due to the provision of the resistor 30 is reduced. Therefore, it is preferable to dispose the resistor 30 at a position distant from the heat exchange unit 21 at least to the extent that it is not affected by the heat of the heating element M.
  • the length L1 of the resistor 30 is smaller than the length of the heat exchange section 21 in the circulation direction (X direction) of the refrigerant 5, but the present invention is not limited to this. ..
  • the length L1 of the resistor 30 in the circulation direction of the refrigerant 5 may be the same as the length of the heat exchange section 21, or may be larger than the length of the heat exchange section 21.
  • the second fin 31 configuring the resistor 30 is the offset fin 40c
  • the second fin 31 may be the perforate fin 40b as described above.
  • the resistor 30 is configured to increase the flow path resistance more than that of the first fin 21c under the same condition, but the present invention is not limited to this.
  • the flow resistance of the resistor 30 and the flow resistance of the first fin 21c may be about the same, or the flow resistance of the first fin 21c may be higher.
  • the main body 1 has a structure in which the wall 13, the plate member 14, and the resistor 30 are integrated by brazing is shown, but the present invention is not limited to this. Absent.
  • Each member of the main body 1 may be integrated by a method other than brazing (welding, fastening, solid phase diffusion bonding, etc.).
  • the refrigerant flow path 2 has a shape in which it is branched into two and linearly extends in the X direction, and then merges, but the present invention is not limited to this.
  • the shape of the coolant channel 2 (path in the main body 1) is arbitrary, and the position of the heating element M (arrangement region 12) on the installation surface 11, the positions of the inlet opening 22 and the outlet opening 24, the position of the main body 1 It may be appropriately set according to the outer shape and the like.
  • each 1st heat exchange part 21a (each 2nd heat exchange part 21b) does not need to be located in a line with the X direction.
  • the connection path 27 that connects the upstream heat exchange portion 21 and the downstream heat exchange portion 21 may have a non-linear shape.
  • the connecting path 27 is bent with two bent portions 71.
  • the refrigerant 5 that has passed through the heat exchange section 21 on the upstream side passes through the curved connecting path 27 and flows into the heat exchange section 21 on the downstream side, the refrigerant 5 becomes a gas-liquid mixed phase state. Therefore, due to the centrifugal force, the liquid-phase refrigerant 5 having a large specific gravity is concentrated on the outer peripheral side of the bent portion 71, and the gas-phase refrigerant 5 is concentrated on the inner peripheral side. If the gas phase and the liquid phase are separated in the connection path 27 and flow into the heat exchange section 21 on the downstream side in a biased state, the cooling capacity may decrease.
  • the uneven flow suppressing portion 73 is, for example, a fin extending along the circulation direction of the coolant 5, and is preferably configured by a plain fin 40a (see FIG. 4) or the like in which the coolant 5 does not flow in the second direction (B direction). ..
  • the bent portion 71 the bias between the gas phase and the liquid phase locally occurs in the channel 72 between the fin portions 41. Therefore, it is possible to suppress the deviation between the gas phase and the liquid phase as compared with the case where the deviation is generated in the entire connection passage 27 without providing the deviation suppressing portion 73.
  • the straight line portion 74 is a void portion in which no fins are provided, or the refrigerant 5 can also flow in the second direction (B direction). It is preferable to provide such a fin (that is, a perforate fin 40b (see FIG. 5) or an offset fin 40c (see FIG. 6)). As a result, the refrigerant 5 can flow in the straight line portion 74 in the flow channel width direction. As a result, it is possible to suppress uneven flow due to the difference in path length between the refrigerant 5 passing on the outer peripheral side and the refrigerant 5 passing on the inner peripheral side of the curved connection path 27.
  • the configuration in which the nonuniform flow suppressing portion 73 is provided in the bent portion 71 may be applied to the bent portion 75 of the distribution path 23 as shown in FIG. That is, when the refrigerant 5 in the gas-liquid mixed phase is supplied to the inlet opening 22, the nonuniform flow suppressing portion 73 may be provided in each bent portion 75 of the distribution passage 23. As a result, it is possible to prevent the refrigerant 5 that has previously flowed in the gas-liquid mixed phase from flowing unevenly in the distribution passage 23 between the gas phase on the inner peripheral side and the liquid phase on the outer peripheral side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A coolant flow path (2) of this cooling device (100) includes an inlet opening (22) for inflow of the refrigerant (5), distribution paths (23) branching from the inlet opening and connecting to each heat exchange unit (21), and an outlet opening (24) for outflow of at least partially gasified refrigerant. Between the branching (23a) of the distribution paths and the heat exchange units, a resistance body (30) is provided which, by increasing the flow path resistance, suppresses fluctuation in the distribution amount of the refrigerant accompanying fluctuation of the heat generation amount of a heat generating body (M).

Description

冷却装置Cooling system
 この発明は、冷却装置に関し、特に、内部の冷媒流路を流れる冷媒によって、表面上に配置された発熱体を冷却する冷却装置に関する。 The present invention relates to a cooling device, and more particularly to a cooling device that cools a heating element arranged on the surface by a refrigerant flowing through an internal refrigerant flow path.
 従来、内部の冷媒流路を流れる冷媒によって、発熱体を冷却する冷却装置が知られている。このような冷却装置は、たとえば、実開昭63-145395号公報に開示されている。 Conventionally, a cooling device that cools a heating element by a refrigerant flowing through an internal refrigerant passage has been known. Such a cooling device is disclosed in, for example, Japanese Utility Model Laid-Open No. 63-145395.
 上記実開昭63-145395号公報では、電子機器に複数のモジュールと冷媒供給装置を搭載し、冷媒供給装置から流路を介してそれぞれのモジュールに冷媒を循環供給している電子機器の冷媒流路調整構造が開示されている。実開昭63-145395号公報では、モジュールの冷媒流路の、冷媒供給側それぞれに供給側流路抵抗調整器を設け、且つ、排出側それぞれに排出側流路抵抗調整器を設けている。供給側流路抵抗調整器および排出側流路抵抗調整器は、バルブ等である。 In Japanese Utility Model Laid-Open No. 63-145395, a refrigerant flow of an electronic device in which a plurality of modules and a refrigerant supply device are mounted in an electronic device, and the refrigerant is circulated and supplied from the refrigerant supply device to each module through a flow path. A road conditioning structure is disclosed. In Japanese Utility Model Application Laid-Open No. 63-145395, a supply side flow path resistance adjuster is provided on each of the refrigerant supply sides and a discharge side flow path resistance adjuster is provided on each of the discharge sides of the refrigerant flow path of the module. The supply-side flow path resistance adjuster and the discharge-side flow path resistance adjuster are valves and the like.
 実開昭63-145395号公報において、モジュールについて具体的な説明はない。 In Japanese Utility Model Publication No. 63-145395, there is no specific explanation about the module.
実開昭63-145395号公報Japanese Utility Model Publication No. 63-145395
 上記実開昭63-145395号公報では開示されていないが、電子機器などの発熱体の冷却には、コールドプレートと呼ばれる冷却装置が用いられる。コールドプレートは、内部の流路を流れる冷媒によって、表面上に設置された発熱体を冷却する。コールドプレートには、複数の発熱体が設置されることがあり、その場合、冷媒の流路がコールドプレート内部で分岐して、それぞれの発熱体の直下を通過するように並列的に設けられることがある。 A cooling device called a cold plate is used to cool a heating element such as an electronic device, which is not disclosed in Japanese Utility Model Laid-Open No. 63-145395. The cold plate cools the heating element installed on the surface by the refrigerant flowing through the internal flow path. Multiple heat generating elements may be installed on the cold plate. In this case, the flow path of the refrigerant should be branched in the cold plate and installed in parallel so as to pass directly under each heat generating element. There is.
 また、上記実開昭63-145395号公報では開示されていないが、このような冷却装置では、冷媒流路内で液相の冷媒を気化させ、気化熱を利用することにより冷却性能を向上させることがある。 Although not disclosed in Japanese Utility Model Laid-Open No. 63-145395, in such a cooling device, the cooling performance is improved by vaporizing the liquid phase refrigerant in the refrigerant channel and utilizing the heat of vaporization. Sometimes.
 ここで、コールドプレートに設置された電子機器などの発熱体の負荷(熱負荷、すなわち、発熱量)は、電子機器の動作に応じて変動するため、コールドプレートに設置された個々の発熱体において負荷が変動し、均一とはならない。このとき、コールドプレートの内部で分岐した冷媒流路では、負荷が高い側では冷媒のガス率(気相の冷媒の割合)が上昇して体積変化により圧力損失が増大する一方、負荷が低い側ではガス率が低いままとなるため圧力損失が相対的に低くなる。その結果、分岐した冷媒流路において、高負荷側への冷媒流量が相対的に減少し、低負荷側への冷媒流量が相対的に増大することにより高負荷側での冷却性能が不足し、装置全体としての冷却性能が低下するという問題点がある。 Here, the load (heat load, that is, the calorific value) of a heating element such as an electronic device installed on the cold plate fluctuates according to the operation of the electronic device. Therefore, in each heating element installed on the cold plate, The load fluctuates and is not uniform. At this time, in the refrigerant flow path branched inside the cold plate, the gas ratio of the refrigerant (ratio of vapor-phase refrigerant) increases on the high load side and the pressure loss increases due to volume change, while on the low load side. In this case, the gas rate remains low and the pressure loss becomes relatively low. As a result, in the branched refrigerant flow path, the refrigerant flow rate to the high load side is relatively reduced, and the refrigerant flow rate to the low load side is relatively increased, resulting in insufficient cooling performance on the high load side, There is a problem that the cooling performance of the entire device is reduced.
 そのため、分岐した流路内での冷媒の気化熱を利用して複数の発熱体を冷却する冷却装置において、発熱体の負荷が変動した場合でも冷媒分配量の変動を抑制することが求められる。 Therefore, in a cooling device that cools a plurality of heating elements by utilizing the heat of vaporization of the refrigerant in the branched flow path, it is required to suppress the fluctuation of the refrigerant distribution amount even when the load of the heating elements changes.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、分岐した流路内での冷媒の気化熱を利用して複数の発熱体を冷却する冷却装置において、発熱体の負荷が変動した場合でも冷媒分配量の変動を抑制することが可能な冷却装置を提供することである。 The present invention has been made to solve the above problems, and one object of the present invention is to cool a plurality of heating elements by utilizing heat of vaporization of a refrigerant in a branched flow path. In a cooling device, it is an object of the present invention to provide a cooling device capable of suppressing the variation of the refrigerant distribution amount even when the load of the heating element varies.
 上記目的を達成するために、この発明による冷却装置は、発熱体が設置される設置面を有する本体部と、本体部内に設けられ、設置面上の複数の発熱体と冷媒との間でそれぞれ熱交換を行う複数の熱交換部を含む冷媒流路とを備え、冷媒流路は、少なくとも一部が液相の冷媒が流入する入口開口と、入口開口から分岐してそれぞれ熱交換部につながる分配路と、少なくとも一部が熱交換部において気化した冷媒が流出する出口開口とを含み、分配路の分岐部と熱交換部との間には、流路抵抗を増大させることにより、発熱体の発熱量の変動に伴う冷媒の分配量の変動を抑制する抵抗体が設けられている。 In order to achieve the above object, a cooling device according to the present invention includes a main body having an installation surface on which a heating element is installed, and a plurality of heating elements and a coolant provided on the installation surface between the plurality of heating elements and the refrigerant, respectively. A refrigerant flow path including a plurality of heat exchange sections that perform heat exchange is provided, and the refrigerant flow path is connected to the inlet opening into which at least a part of the liquid-phase refrigerant flows and a branch from the inlet opening, each of which is connected to the heat exchange section. A heating element is provided by including a distribution path and an outlet opening through which at least a part of the vaporized refrigerant flows out in the heat exchange section, and increasing flow path resistance between the branch section of the distribution path and the heat exchange section. A resistor that suppresses the variation in the distribution amount of the refrigerant due to the variation in the heat generation amount is provided.
 この発明による冷却装置では、上記のように構成することによって、冷媒が気化する熱交換部の手前の、分岐部との間の位置で、抵抗体により、ガス率が増大する前の冷媒の流路抵抗を予め増大させておくことができる。すなわち、分岐した冷媒流路の各熱交換部における発熱体の負荷が変動すると、負荷変動(ガス率の差異)に応じて各熱交換部における圧力損失に差が生じる。このとき、抵抗体を設けない場合、各熱交換部への冷媒分配量は、各熱交換部における圧力損失の差にそのまま依存する。そこで、それぞれの熱交換部の手前に設けた抵抗体により圧力損失を予め大きくすることにより、抵抗体による圧力損失によって、各熱交換部における圧力損失の差異が各熱交換部への冷媒分配量に及ぼす影響を、相対的に小さくすることができる。説明のために極端な例を示すと、各熱交換部のガス率の変動に伴う圧力損失の変化量に対して抵抗体による圧力損失の上昇が十分に大きければ、各熱交換部でのガス率の相違による圧力損失の差異はほぼ無視できるようになる。このような理由により、上記構成によれば、分岐した流路内での冷媒の気化熱を利用して複数の発熱体を冷却する冷却装置において、発熱体の負荷が変動した場合でも冷媒分配量の変動を抑制することができる。 In the cooling device according to the present invention, by configuring as described above, the flow of the refrigerant before the gas ratio is increased by the resistor at the position before the heat exchange part where the refrigerant is vaporized and between the branch part. The road resistance can be increased in advance. That is, when the load of the heat generating element in each heat exchange section of the branched refrigerant flow path changes, the pressure loss in each heat exchange section varies depending on the load change (difference in gas rate). At this time, when the resistor is not provided, the refrigerant distribution amount to each heat exchange section depends directly on the difference in pressure loss in each heat exchange section. Therefore, by increasing the pressure loss in advance with a resistor provided in front of each heat exchange unit, the pressure loss due to the resistor causes the difference in pressure loss in each heat exchange unit to be the refrigerant distribution amount to each heat exchange unit. Can be relatively small. As an extreme example for explanation, if the increase in the pressure loss due to the resistor is sufficiently large with respect to the amount of change in the pressure loss due to the fluctuation of the gas rate in each heat exchange part, the gas in each heat exchange part The difference in pressure loss due to the difference in rate becomes almost negligible. For this reason, according to the above configuration, in the cooling device that cools the plurality of heating elements by utilizing the heat of vaporization of the refrigerant in the branched flow path, the refrigerant distribution amount even when the load of the heating elements changes. Can be suppressed.
 上記発明において、好ましくは、冷媒流路は、それぞれの熱交換部から合流して出口開口につながる排出路を含み、抵抗体は、排出路には設けられずに分配路に設けられている。ここで、各熱交換部におけるガス率の相違により圧力損失に差異が生じた後の下流側の排出路に抵抗体が設けられると、各熱交換部における圧力損失の差を拡大する方向に作用してしまう。そのため、上記構成によれば、各熱交換部におけるガス率の差が生じる前の上流側(分配路)にのみ抵抗体が配置されるので、効果的に冷媒分配量の変動を抑制することができる。 In the above-mentioned invention, preferably, the refrigerant flow passage includes a discharge passage that joins from the respective heat exchange portions and is connected to the outlet opening, and the resistor is provided not in the discharge passage but in the distribution passage. Here, if a resistor is provided in the discharge passage on the downstream side after a difference in pressure loss occurs due to a difference in gas ratio in each heat exchange section, it acts in a direction to expand the difference in pressure loss in each heat exchange section. Resulting in. Therefore, according to the above configuration, since the resistor is arranged only on the upstream side (distribution path) before the difference in the gas ratio in each heat exchange section occurs, it is possible to effectively suppress the variation in the refrigerant distribution amount. it can.
 上記発明において、好ましくは、抵抗体は、分配路において、発熱体との熱交換に伴う熱交換部からの熱伝導の影響を受けないように熱交換部から離間した位置に配置されている。ここで、熱交換部の手前であっても、熱交換部の近傍の位置では、熱伝導により発熱体の熱が伝わり冷媒が気化する可能性がある。ガス率に差異が生じた後に抵抗体が設けられれば、各熱交換部の圧力損失の差異を拡大してしまう。そこで、上記構成によれば、抵抗体の配置位置において熱交換部からの熱伝導の影響によって冷媒が気化することが抑制される。そのため、発熱体の熱の影響を受ける前段階の位置で流路抵抗(圧力損失)を増大させることができる。 In the above invention, preferably, the resistor is arranged in the distribution path at a position separated from the heat exchange section so as not to be affected by heat conduction from the heat exchange section due to heat exchange with the heating element. Here, even before the heat exchange section, at a position in the vicinity of the heat exchange section, the heat of the heating element may be transferred by heat conduction and the refrigerant may be vaporized. If the resistor is provided after the difference in the gas ratio occurs, the difference in pressure loss between the heat exchange sections will be increased. Therefore, according to the above configuration, it is possible to suppress vaporization of the refrigerant due to the effect of heat conduction from the heat exchange section at the arrangement position of the resistor. Therefore, the flow path resistance (pressure loss) can be increased at the position in the previous stage where the heat of the heat generating element affects.
 この場合、好ましくは、抵抗体は、分配路において熱交換部よりも分岐部に近い位置に配置されている。このように構成すれば、熱交換部から相対的に離れた位置に抵抗体が配置されるので、より確実に、発熱体の熱によってガス率(気化に伴う圧力損失)に差異が生じる前段階の位置で流路抵抗(圧力損失)を増大させることができる。 In this case, the resistor is preferably arranged at a position closer to the branch portion than the heat exchange portion in the distribution path. According to this structure, the resistor is arranged at a position relatively distant from the heat exchange section, so that the heat of the heating element more reliably causes a difference in the gas rate (pressure loss due to vaporization). The flow path resistance (pressure loss) can be increased at the position.
 上記発明において、好ましくは、複数の熱交換部は、第1熱交換部と第2熱交換部とを含み、抵抗体は、第1熱交換部および第2熱交換部の一方における圧力損失が最大となり、第1熱交換部および第2熱交換部の他方における圧力損失が最小となる場合に、第1熱交換部および第2熱交換部の各々に分配される冷媒の流量差が予め設定された範囲内に収まるように、設置位置における冷媒流路の流路抵抗を増大させる。このように構成すれば、第1熱交換部と第2熱交換部とで負荷が最大限相違し、圧力損失の差が最大となる場合でも、冷媒の分配量を予め設定した範囲内に収めることができる。したがって、発熱体の負荷が最大限変動した場合にも対応可能な冷却装置の性能を確保できる。 In the above invention, preferably, the plurality of heat exchange sections include a first heat exchange section and a second heat exchange section, and the resistor has a pressure loss in one of the first heat exchange section and the second heat exchange section. When the pressure loss in the other of the first heat exchange unit and the second heat exchange unit is minimum, the flow rate difference of the refrigerant distributed to each of the first heat exchange unit and the second heat exchange unit is preset. The flow path resistance of the coolant flow path at the installation position is increased so that the flow path resistance falls within the specified range. According to this structure, the distribution amount of the refrigerant is kept within the preset range even when the loads of the first heat exchange unit and the second heat exchange unit are maximally different from each other and the pressure loss is maximal. be able to. Therefore, it is possible to ensure the performance of the cooling device that can cope with the case where the load of the heating element fluctuates to the maximum.
 上記発明において、好ましくは、熱交換部は、冷媒の流通方向に沿って設けられた第1フィンを含み、抵抗体は、同一条件下で第1フィンよりも流路抵抗を増大させるように構成されている。ここで、同一条件とは、冷媒流路の同一位置に同一寸法で第1フィンと抵抗体とがそれぞれ設けられるケースを仮定した条件のことである。この同一条件下で、第1フィンおよび抵抗体の各流路抵抗はその構造によって決まり、抵抗体が第1フィンよりも流路抵抗を増大させる構造を有する。このように構成すれば、たとえば分配路にも第1フィンを設けることにより流路抵抗を増大させる場合と異なり、抵抗体によって流路抵抗を効果的に増大させることができるので、冷媒流通方向における抵抗体の長さを抑制できる。その結果、冷媒流路の流路長が不必要に増大することを抑制できるので、流路長の増大により冷却装置が大型化することを抑制できる。 In the above invention, preferably, the heat exchange section includes a first fin provided along the circulation direction of the refrigerant, and the resistor is configured to increase the flow path resistance more than the first fin under the same condition. Has been done. Here, the same condition is a condition assuming a case in which the first fin and the resistor are provided at the same position in the refrigerant flow path with the same dimensions. Under this same condition, the flow resistance of each of the first fin and the resistor is determined by its structure, and the resistor has a structure that increases the flow resistance more than that of the first fin. According to this structure, unlike the case where the flow path resistance is increased by providing the first fin also in the distribution path, for example, the flow path resistance can be effectively increased by the resistor. The length of the resistor can be suppressed. As a result, it is possible to prevent the flow path length of the coolant flow path from unnecessarily increasing, and thus it is possible to prevent the cooling device from increasing in size due to the increase in the flow path length.
 上記発明において、好ましくは、抵抗体は、冷媒の流通方向と交差する方向に向けて設けられ、かつ、冷媒が流通方向に通過可能な第2フィンにより構成されている。ここで、通常、熱交換部に設けられる伝熱用のフィンは、冷媒の流通方向に沿って延びるように設けられ、冷媒流路を局所的に複数のチャネルに分割することにより伝熱面積を増大させて熱交換性能を向上させる。これに対し、上記構成によれば、冷媒を通過可能としつつ、冷媒を遮るように冷媒の流通方向と交差する方向(通常と異なる方向)に向けた第2フィンによって、流路抵抗を効果的に増大させることができる。また、フィンは、熱交換部にも設けられる部材であるため、抵抗体として専用の部材を設ける必要がなく装置構成を簡素化できる。 In the above invention, preferably, the resistor is provided with a second fin that is provided in a direction intersecting with the circulation direction of the refrigerant and that allows the coolant to pass in the circulation direction. Here, usually, the fins for heat transfer provided in the heat exchange portion are provided so as to extend along the circulation direction of the refrigerant, and the heat transfer area is locally divided into a plurality of channels to divide the heat transfer area. To improve heat exchange performance. On the other hand, according to the above configuration, the flow passage resistance is effectively increased by the second fins that are directed in the direction intersecting the flow direction of the coolant (the direction different from the normal direction) so as to block the coolant while allowing the coolant to pass therethrough. Can be increased to Further, since the fins are members that are also provided in the heat exchange section, there is no need to provide a dedicated member as a resistor, and the device configuration can be simplified.
 この場合、好ましくは、抵抗体を構成する第2フィンは、オフセットフィンまたはパーフォレートフィンを含む。ここで、オフセットフィンは、冷媒流路を区画するように所定方向に延びる複数のフィン部が所定方向と直交する幅方向へずれるように形成されたフィンであり、それぞれのフィン部がずれた隙間部分で冷媒が流通可能となる。パーフォレートフィンは、フィン部に貫通孔が設けられたフィンであり、貫通孔を介して冷媒が流通可能となる。オフセットフィンの隙間部分やパーフォレートフィンの貫通孔は十分に小さくすることができるので、第2フィンとしてこれらのフィンを用いることにより、短距離でも効果的に流路抵抗を増大させることが可能な抵抗体を構成することができる。また、オフセットフィンには、幅方向へのずれ量やフィン部の長さにおいて多様な種類があり、パーフォレートフィンにも貫通孔の大きさや数において多様な種類があるため、これらを利用することによって冷媒流路に適した流路抵抗の抵抗体を容易に得ることができる。 In this case, preferably, the second fin forming the resistor includes an offset fin or a perforate fin. Here, the offset fin is a fin formed so that a plurality of fin portions extending in a predetermined direction so as to partition the refrigerant flow path are displaced in the width direction orthogonal to the predetermined direction, and the gaps in which the respective fin portions are displaced Refrigerant can be distributed in a part. The perforated fin is a fin having a through hole in the fin portion, and the refrigerant can flow through the through hole. Since the gap between the offset fins and the through hole of the perforate fin can be made sufficiently small, by using these fins as the second fin, it is possible to effectively increase the flow path resistance even in a short distance. A resistor can be formed. Further, there are various types of offset fins in the amount of displacement in the width direction and the length of the fin portion, and since there are various types of perforate fins in the size and number of through holes, these are used. This makes it possible to easily obtain a resistor having a flow path resistance suitable for the coolant flow path.
 上記抵抗体が第2フィンにより構成される場合、好ましくは、本体部は、冷媒流路を区画する壁部と、設置面を構成する板部材と、冷媒流路内に配置された抵抗体とがろう付けにより一体化された構造を有する。このように構成すれば、ろう付けにより、冷媒流路と抵抗体とを一括して確実に接合することができる。一方、ろう付けでは、ろう材を溶融させて部材を接合するため、たとえば抵抗体として、微小孔が形成されたオリフィス板や、微小隙間が形成されたブロック体などを用いる場合、溶けたろう材によって目詰まりを起こさないようにする必要があり製造難易度が増大する。これに対して、第2フィンにより構成される抵抗体では、ろう付けにより接合された冷却装置に伝熱用のフィンが多く用いられている実績があり、目詰まりなどを生じさせることなく接合させることが容易である。そのため、第2フィンにより構成される抵抗体では、ろう付けによる一括接合を行う場合でも、目詰まりの発生や流路抵抗の設計値からの乖離を生じることなく容易に抵抗体を構成できるので、冷却装置の性能と製造の容易性との両立を図ることができる。 When the resistor is composed of the second fins, preferably, the main body includes a wall that defines the refrigerant flow path, a plate member that constitutes the installation surface, and a resistor arranged in the refrigerant flow path. Has a structure integrated by brazing. According to this structure, the coolant flow path and the resistor can be reliably joined together by brazing. On the other hand, in brazing, the brazing filler metal is melted to join the members together. It is necessary to prevent clogging, which increases the manufacturing difficulty. On the other hand, in the resistor formed by the second fins, there is a track record that many fins for heat transfer are used in the cooling device joined by brazing, and the fins are joined together without causing clogging. It's easy to do. Therefore, in the resistor configured by the second fin, even when performing collective joining by brazing, it is possible to easily configure the resistor without causing clogging and deviation from the design value of the flow path resistance. Both the performance of the cooling device and the ease of manufacturing can be achieved.
 分岐した流路内での冷媒の気化熱を利用して複数の発熱体を冷却する冷却装置において、発熱体の負荷が変動した場合でも冷媒分配量の変動を抑制することができる。 In a cooling device that cools a plurality of heating elements using the heat of vaporization of the refrigerant in the branched flow path, it is possible to suppress fluctuations in the refrigerant distribution amount even when the load on the heating elements changes.
本実施形態による冷却装置に発熱体を設置した状態を示した模式的な斜視図である。It is a typical perspective view showing the state where a heating element was installed in a cooling device by this embodiment. 本体部の内部の冷媒流路を示した模式的な水平断面図である。It is a typical horizontal sectional view showing a refrigerant channel inside a main part. 図2の冷媒流路の分配路を拡大して示した図である。It is the figure which expanded and showed the distribution path of the refrigerant flow path of FIG. プレーンフィンの一例を示した斜視図である。It is a perspective view showing an example of a plane fin. パーフォレートフィンの一例を示した斜視図である。It is a perspective view showing an example of a perforate fin. オフセットフィンの一例を示した斜視図である。It is a perspective view showing an example of an offset fin. 冷却装置に冷媒を循環させる流体回路を説明するための図である。It is a figure for explaining a fluid circuit which circulates a refrigerant in a cooling device. 抵抗体を設けない比較例において発熱体の負荷変動がない場合の冷媒分配量を説明するための図である。It is a figure for demonstrating the refrigerant|coolant distribution amount when there is no load change of a heat generating body in the comparative example which does not provide a resistor. 抵抗体を設けない比較例において発熱体の負荷変動がある場合の冷媒分配量を説明するための図である。It is a figure for demonstrating the refrigerant|coolant distribution amount when there is a load change of a heat generating body in the comparative example which does not provide a resistor. 本実施形態の冷却装置において発熱体の負荷変動がある場合の冷媒分配量を説明するための図である。It is a figure for demonstrating the refrigerant|coolant distribution amount in case the load of a heating element changes in the cooling device of this embodiment. 変形例による曲がった接続路を示した模式図である。It is the schematic diagram which showed the curved connection path by a modification. 分配路に偏流抑制部を設けた変形例を示した模式図である。It is a schematic diagram which showed the modification which provided the drift suppression part in the distribution path.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1~図7を参照して、一実施形態による冷却装置100の構成について説明する。冷却装置100は、上面(設置面)上に設置された発熱体からの熱を吸収して冷却する液冷式のコールドプレートである。発熱体Mは、特に限定されないが、たとえば各種の電子機器、電子回路(または電子回路を構成する素子)などの発熱体である。発熱体Mは、たとえば電力変換装置に搭載されるパワーモジュールや、コンピュータに搭載されるCPU(Central Processing Unit)、GPU(Graphics Processing Unit)などのプロセッサでありうる。以下では、発熱体Mが、IGBT(絶縁ゲートバイポーラトランジスタ)などの電力制御用スイッチング素子を備えたパワーモジュールである例について説明する。 The configuration of the cooling device 100 according to the embodiment will be described with reference to FIGS. 1 to 7. The cooling device 100 is a liquid-cooled cold plate that absorbs heat from a heating element installed on the upper surface (installation surface) and cools it. The heating element M is not particularly limited, but is a heating element such as various electronic devices, electronic circuits (or elements forming the electronic circuits), or the like. The heating element M may be, for example, a power module mounted in a power conversion device, or a processor such as a CPU (Central Processing Unit) or GPU (Graphics Processing Unit) mounted in a computer. In the following, an example in which the heating element M is a power module including a power control switching element such as an IGBT (insulated gate bipolar transistor) will be described.
 (本体部)
 図1に示すように、冷却装置100は、本体部1を備えている。本体部1は、発熱体Mが設置される設置面11を有する。本体部1は、設置面11上に設置された発熱体Mを冷却するための冷媒5を流通させる冷媒流路2(図2参照)を内部に有している。
(Main body)
As shown in FIG. 1, the cooling device 100 includes a main body 1. The main body 1 has an installation surface 11 on which the heating element M is installed. The main body 1 has a coolant passage 2 (see FIG. 2) therein, through which a coolant 5 for cooling the heating element M installed on the installation surface 11 flows.
 本体部1は、概略で長方形状の平板形状を有する。本体部1は、それぞれ平坦面状の第1面(上面)と、第2面(下面)とを有する。本体部1の長手方向の一方(X1方向)の側端面および他方(X2方向)の側端面には、それぞれ、冷媒流路2に対する外部の冷媒流路(配管など)との接続口となるノズル3が設けられている。各ノズル3は、冷媒5が出入りするための開口部を有している。2つのノズル3は、開口部を介して、冷媒流路2の後述する入口開口22および出口開口24とそれぞれ連通している。以下、便宜的に、平面視(上面視)における直交する2方向のうち、本体部1の長手方向をX方向とし、本体部1の短手方向をY方向とする。本体部1の厚み方向(上下方向)をZ方向とする。 The main body 1 has an approximately rectangular flat plate shape. The main body 1 has a flat surface-shaped first surface (upper surface) and a second surface (lower surface), respectively. A nozzle that serves as a connection port for the refrigerant flow passage 2 to an external refrigerant flow passage (such as a pipe) is provided on one side end surface of the main body 1 in the longitudinal direction (X1 direction) and the other side end surface thereof (X2 direction). 3 are provided. Each nozzle 3 has an opening for the refrigerant 5 to enter and exit. The two nozzles 3 are in communication with an inlet opening 22 and an outlet opening 24, which will be described later, of the refrigerant channel 2 through the openings. Hereinafter, for convenience, of the two directions orthogonal to each other in plan view (top view), the longitudinal direction of the main body 1 is the X direction, and the lateral direction of the main body 1 is the Y direction. The thickness direction (vertical direction) of the main body 1 is defined as the Z direction.
 図1の例では、本体部1の第1面(上面)が設置面11である。設置面11は、たとえば平坦面であるが、発熱体Mの形状に応じて凹凸が形成されていてもよい。設置面11には、発熱体Mを配置するための配置領域12が複数形成されている。配置領域12は、設置面11内で、発熱体Mが載置されて発熱体Mの表面と設置面11とが接触する領域である。図1の例では、本体部1に4つの配置領域12が設けられており、冷却装置100には、4つの発熱体Mを配置することが可能である。 In the example of FIG. 1, the first surface (upper surface) of the main body 1 is the installation surface 11. The installation surface 11 is, for example, a flat surface, but unevenness may be formed according to the shape of the heating element M. A plurality of placement areas 12 for placing the heating elements M are formed on the installation surface 11. The arrangement area 12 is an area in the installation surface 11 where the heating element M is placed and the surface of the heating element M and the installation surface 11 are in contact with each other. In the example of FIG. 1, the main body 1 is provided with four placement regions 12, and four cooling elements 100 can be placed in the cooling device 100.
 図1の例では、パワーモジュールである発熱体Mは、平面視で長方形の板状形状を有する。各配置領域12は、発熱体Mが、長辺がX方向に一致し、短辺がY方向に一致して載置されるように形成されている。発熱体Mの平面形状は任意である。 In the example of FIG. 1, the heating element M, which is a power module, has a rectangular plate shape in plan view. Each of the placement regions 12 is formed such that the heating element M is placed with its long side aligned with the X direction and its short side aligned with the Y direction. The planar shape of the heating element M is arbitrary.
 本体部1には、それぞれの配置領域12に対応するねじ穴(図示せず)が設けられ、発熱体Mを配置領域12に位置決めして固定することが可能である。発熱体Mは、熱伝導性コンパウンドや放熱グリスなどにより隙間をなくした状態で、設置面11上の配置領域12に密着するように配置(設置)される。 The main body 1 is provided with screw holes (not shown) corresponding to the respective placement areas 12, and the heating element M can be positioned and fixed in the placement area 12. The heating element M is placed (installed) so as to be in close contact with the placement area 12 on the installation surface 11 in a state where the gap is eliminated by a heat conductive compound or heat dissipation grease.
 本体部1は、内部の冷媒流路2を区画する壁部13と、厚み方向の上下表面(第1面および第2面)を構成する板部材14とが接合された構造を有する。設置面11は、上下の板部材14の外表面により構成される。 The main body 1 has a structure in which a wall 13 that defines the internal coolant flow passage 2 and a plate member 14 that constitutes upper and lower surfaces (first surface and second surface) in the thickness direction are joined. The installation surface 11 is composed of the outer surfaces of the upper and lower plate members 14.
 (冷媒流路)
 図2に示すように、冷媒流路2は、本体部1の内部に形成された冷媒の流通空間である。冷媒流路2は、壁部13と板部材14(図1参照)とによって区画されている。冷媒流路2は、冷媒5を流通させる通路である。冷媒流路2は、配置領域12の直下の位置(すなわち、平面視で配置領域12と重なる位置)に形成された複数の熱交換部21を含む。本実施形態の冷媒流路2は、少なくとも一部が液相の冷媒5が飽和状態で流入し、一部が熱交換部21において気化して、気液混相の冷媒5が流出するように構成されている。つまり、冷却装置100は、冷媒5の相変化(気化)に伴う気化熱を利用して発熱体Mの冷却を行う。このような冷媒5としては、たとえばHFC(ハイドロフルオロカーボン)またはHFO(ハイドロフルオロオレフィン)などのフッ素系有機化合物の冷媒を用いることが可能である。
(Refrigerant flow path)
As shown in FIG. 2, the coolant channel 2 is a coolant circulation space formed inside the main body 1. The coolant channel 2 is partitioned by the wall portion 13 and the plate member 14 (see FIG. 1). The coolant channel 2 is a passage through which the coolant 5 flows. The coolant flow channel 2 includes a plurality of heat exchange portions 21 formed at a position immediately below the arrangement region 12 (that is, a position overlapping the arrangement region 12 in plan view). The refrigerant flow path 2 of the present embodiment is configured such that at least a part of the liquid-phase refrigerant 5 flows in a saturated state, a part of which is vaporized in the heat exchange section 21, and the gas-liquid mixed-phase refrigerant 5 flows out. Has been done. That is, the cooling device 100 cools the heating element M using the heat of vaporization accompanying the phase change (vaporization) of the refrigerant 5. As such a refrigerant 5, for example, a refrigerant of a fluorine-based organic compound such as HFC (hydrofluorocarbon) or HFO (hydrofluoroolefin) can be used.
 冷媒流路2は、各熱交換部21に冷媒5を供給する流路と、各熱交換部21から冷媒を排出する流路とを含んで構成される。すなわち、冷媒流路2は、入口開口22と、入口開口22から分岐してそれぞれ熱交換部21につながる分配路23と、出口開口24とを含む。また、冷媒流路2は、それぞれの熱交換部21から合流して出口開口24につながる排出路25を含む。冷媒5は、入口開口22から出口開口24に向かって流れる。なお、冷媒流路2内の冷媒5の流通方向について、入口開口22に向かう方向を上流側、出口開口24に向かう方向を下流側という。 The refrigerant channel 2 is configured to include a channel that supplies the refrigerant 5 to each heat exchange section 21 and a channel that discharges the refrigerant from each heat exchange section 21. That is, the refrigerant flow path 2 includes an inlet opening 22, a distribution path 23 branched from the inlet opening 22 and connected to the heat exchange unit 21, and an outlet opening 24. Further, the refrigerant flow path 2 includes a discharge passage 25 that joins the heat exchange portions 21 and is connected to the outlet opening 24. The refrigerant 5 flows from the inlet opening 22 toward the outlet opening 24. Regarding the circulation direction of the refrigerant 5 in the refrigerant flow path 2, the direction toward the inlet opening 22 is called the upstream side, and the direction toward the outlet opening 24 is called the downstream side.
 入口開口22は、冷媒流路2の端部開口であり、本体部1の側端面に1つ設けられている。図2の例では、入口開口22は、本体部1のX1方向側の側端面に開口してX1方向側のノズル3と連通している。入口開口22は、外部から冷媒5を受け入れて冷媒流路2内に供給する。入口開口22には、少なくとも一部が液相の冷媒5が流入する。冷媒5は、実質的に全て液相(ガス率=0%)の状態で入口開口22に流入してもよいし、一部が気相の気液混相の状態で入口開口22に流入してもよい。入口開口22において冷媒5は気相よりも液相の割合の方が大きい。 The inlet opening 22 is an end opening of the coolant channel 2, and one is provided on the side end surface of the main body 1. In the example of FIG. 2, the inlet opening 22 opens at the side end surface of the main body 1 on the X1 direction side and communicates with the nozzle 3 on the X1 direction side. The inlet opening 22 receives the refrigerant 5 from the outside and supplies it into the refrigerant flow path 2. At least a part of the liquid-phase refrigerant 5 flows into the inlet opening 22. The refrigerant 5 may flow into the inlet opening 22 in a substantially liquid phase (gas ratio=0%) state, or may partially flow into the inlet opening 22 in a gas-liquid mixed phase state. Good. At the inlet opening 22, the refrigerant 5 has a larger liquid phase ratio than the gas phase.
 分配路23は、冷媒流路2のうちで、上流側の1つの端部と、下流側の複数の端部とを有する分岐した流路部分である。分配路23の上流側端部が入口開口22に連通している。分配路23の複数の下流側端部は、それぞれ熱交換部21に連通している。分配路23は、入口開口22からの冷媒5を複数の熱交換部21に分配するように構成されている。分配路23の複数の下流側端部の数は、図2の例では2つである。図3に示すように、分配路23は、1つの入口開口22から分岐部23aにおいて分岐して、下流側の2つの熱交換部21に1本ずつ接続している。以下では、分岐部23aから分かれた個々の下流側の流路部分を、支流路26という。 The distribution passage 23 is a branched passage portion of the refrigerant passage 2 that has one end on the upstream side and a plurality of ends on the downstream side. The upstream end of the distribution path 23 communicates with the inlet opening 22. The plurality of downstream end portions of the distribution passage 23 are in communication with the heat exchange portion 21, respectively. The distribution path 23 is configured to distribute the refrigerant 5 from the inlet opening 22 to the plurality of heat exchange units 21. The number of the plurality of downstream end portions of the distribution path 23 is two in the example of FIG. As shown in FIG. 3, the distribution path 23 is branched from one inlet opening 22 at a branch portion 23a and is connected to each of the two heat exchange portions 21 on the downstream side. In the following, each downstream flow path portion that is divided from the branch portion 23a is referred to as a tributary flow path 26.
 図2および図3の例では、分配路23が、入口開口22から分岐部23aまでX2方向に延びて、分岐部23aにおいてY方向の両側に2分岐した後、それぞれの支流路26がX2方向に延びて、Y方向に並んだ2つの熱交換部21にそれぞれ接続している。分岐部23a以降の各支流路26は、互いに連通していない。各支流路26における冷媒流量の合計が、入口開口22に流入する流量に相当する。 In the example of FIG. 2 and FIG. 3, the distribution passage 23 extends in the X2 direction from the inlet opening 22 to the branch portion 23a, and is branched into two on both sides in the Y direction at the branch portion 23a, and then each tributary flow path 26 is in the X2 direction. To each of the two heat exchange parts 21 arranged in the Y direction. The tributary channels 26 after the branch portion 23a do not communicate with each other. The total flow rate of the refrigerant in each tributary channel 26 corresponds to the flow rate flowing into the inlet opening 22.
 本実施形態では、分配路23の分岐部23aと熱交換部21との間(支流路26)には、流路抵抗を増大させることにより、発熱体Mの発熱量(負荷)の変動に伴う冷媒5の分配量の変動を抑制する抵抗体30が設けられている。抵抗体30は、分配路23の分岐部23aと熱交換部21との間の流路の一部を遮るように設けられた障害物である。本実施形態では、抵抗体30は、排出路25には設けられずに分配路23に設けられている。抵抗体30の詳細については、後述する。 In the present embodiment, the flow path resistance is increased between the branch portion 23a of the distribution path 23 and the heat exchange portion 21 (the tributary flow path 26) so that the heat generation amount (load) of the heating element M varies. A resistor 30 that suppresses fluctuations in the distribution amount of the refrigerant 5 is provided. The resistor 30 is an obstacle provided so as to block a part of the flow path between the branch portion 23 a of the distribution path 23 and the heat exchange portion 21. In the present embodiment, the resistor 30 is provided in the distribution passage 23 instead of being provided in the discharge passage 25. Details of the resistor 30 will be described later.
 図2に示すように、熱交換部21は、冷媒流路2の一部であって、設置面11上の複数の発熱体Mと冷媒5との間でそれぞれ熱交換を行う流路部分である。本実施形態の例では、4つの発熱体Mがそれぞれ4つの配置領域12に設置されるので、熱交換部21は、4つの配置領域12の直下の位置に1つずつ設けられている。熱交換部21は、上流側の1つの端部と、下流側の1つの端部とを有する流路部分である。 As shown in FIG. 2, the heat exchange part 21 is a part of the refrigerant flow path 2 and is a flow path part for performing heat exchange between the plurality of heating elements M on the installation surface 11 and the refrigerant 5, respectively. is there. In the example of the present embodiment, since the four heat generating elements M are installed in the four disposition regions 12, respectively, the heat exchange portions 21 are provided one at a position directly below the four disposition regions 12. The heat exchange part 21 is a flow path part having one end on the upstream side and one end on the downstream side.
 複数の熱交換部21は、第1熱交換部21aと第2熱交換部21bとを含む。第1熱交換部21aと第2熱交換部21bとは、分岐した分配路23によって入口開口22に対して並列的に接続されている。図2の例では、第1熱交換部21aと第2熱交換部21bとは、壁部13aを挟んでY方向に並んで配置されている。第1熱交換部21aと第2熱交換部21bとは、4つの発熱体M(配置領域12)に対応して2つずつ設けられている。すなわち、X方向に並んだ2つの第1熱交換部21aが1組となり、冷媒流路2においてX方向に直列的に接続されている。X方向に並んだ2つの第2熱交換部21bが1組となり、冷媒流路2においてX方向に直列的に接続されている。X方向に延びた第1熱交換部21aの列と第2熱交換部21bの列とが、Y方向に並列的に並んでいる。 The plurality of heat exchange parts 21 include a first heat exchange part 21a and a second heat exchange part 21b. The first heat exchange section 21a and the second heat exchange section 21b are connected in parallel to the inlet opening 22 by a branched distribution path 23. In the example of FIG. 2, the first heat exchange section 21a and the second heat exchange section 21b are arranged side by side in the Y direction with the wall 13a interposed therebetween. The first heat exchanging portion 21a and the second heat exchanging portion 21b are provided two by two in correspondence with the four heating elements M (arrangement region 12). That is, the two first heat exchange portions 21a arranged in the X direction form one set, and are connected in series in the X direction in the refrigerant passage 2. The two second heat exchanging portions 21b arranged in the X direction form one set, and are connected in series in the X direction in the refrigerant passage 2. The rows of the first heat exchange portions 21a and the rows of the second heat exchange portions 21b extending in the X direction are arranged in parallel in the Y direction.
 X方向に並んだ2つ1組の第1熱交換部21a(第2熱交換部21b)に対して、まず上流側の第1熱交換部21a(第2熱交換部21b)に冷媒5が供給される。上流側の第1熱交換部21a(第2熱交換部21b)を通過した冷媒5が下流側の第1熱交換部21a(第2熱交換部21b)に供給される。X方向に並んだ2つの第1熱交換部21a(第2熱交換部21b)の間は、直線状の接続路27によって接続されている。Y方向に並んだ2つの第1熱交換部21aと2つの第2熱交換部21bとの間は、分岐した冷媒流路2を区画する壁部13aによって区画されており、互いに連通していない。 With respect to the pair of first heat exchange parts 21a (second heat exchange part 21b) arranged in the X direction, the refrigerant 5 is first provided in the first heat exchange part 21a (second heat exchange part 21b) on the upstream side. Supplied. The refrigerant 5 that has passed through the upstream first heat exchange section 21a (second heat exchange section 21b) is supplied to the downstream first heat exchange section 21a (second heat exchange section 21b). The two first heat exchange portions 21a (second heat exchange portions 21b) arranged in the X direction are connected by a linear connection path 27. The two first heat exchanging parts 21a and the two second heat exchanging parts 21b arranged in the Y direction are partitioned by the wall part 13a that partitions the branched refrigerant flow path 2 and do not communicate with each other. ..
 第1熱交換部21aまたは第2熱交換部21bである個々の熱交換部21は、X方向に直線状に延びている。熱交換部21の流路長さ(冷媒の流通方向の長さ)および流路幅(流通方向と直交する幅方向の長さ)は、発熱体M(図1参照)の平面形状(配置領域12の形状)に応じて設計されている。冷媒5は、熱交換部21を通過する過程でそれぞれの発熱体Mから熱を吸収する。吸熱により、熱交換部21を通過する冷媒5の一部が気化する。冷媒5の気化熱によって、気化熱を利用しない場合と比べて冷却装置100による発熱体Mの熱交換効率を上昇させることが可能である。 The individual heat exchange parts 21, which are the first heat exchange part 21a or the second heat exchange part 21b, extend linearly in the X direction. The flow path length (length in the flow direction of the refrigerant) and flow path width (length in the width direction orthogonal to the flow direction) of the heat exchange section 21 are the planar shape (arrangement region) of the heating element M (see FIG. 1). 12 shapes). The refrigerant 5 absorbs heat from each heating element M in the process of passing through the heat exchange section 21. Due to the heat absorption, part of the refrigerant 5 passing through the heat exchange section 21 is vaporized. The heat of vaporization of the refrigerant 5 can increase the heat exchange efficiency of the heating element M by the cooling device 100 as compared with the case where the heat of vaporization is not used.
 それぞれの熱交換部21は、冷媒5の流通方向に沿って設けられた第1フィン21cを含む。第1フィン21cは、熱交換部21に設けられる伝熱用のフィンである。第1フィン21cは、冷媒流路2(熱交換部21)を局所的に複数のチャネルに分割することにより伝熱面積を増大させて熱交換性能を向上させる。第1フィン21cは、たとえばコルゲートフィンであり、平面内の第1方向に沿って延びる複数の板状のフィン部41が、平面内で第1方向と直交する第2方向に間隔を隔てて並ぶように設けられた構造を有している。第1フィン21cは、フィン部41が延びる第1方向が、熱交換部21における冷媒5の流通方向(X方向)に沿うように設けられたフィンである。 Each heat exchange section 21 includes a first fin 21c provided along the circulation direction of the refrigerant 5. The first fin 21c is a heat transfer fin provided in the heat exchange unit 21. The first fin 21c increases the heat transfer area by locally dividing the refrigerant flow path 2 (heat exchange section 21) into a plurality of channels to improve heat exchange performance. The first fin 21c is, for example, a corrugated fin, and a plurality of plate-shaped fin portions 41 extending in the first direction in the plane are arranged at intervals in the second direction orthogonal to the first direction in the plane. Thus, the structure is provided. The first fin 21c is a fin provided such that the first direction in which the fin portion 41 extends is along the circulation direction (X direction) of the refrigerant 5 in the heat exchange portion 21.
 第1フィン21cの種類(フィン形状)としては、たとえば、図4に示すプレーンフィン40a、図5に示すパーフォレートフィン40b、図6に示すオフセットフィン(セレートフィンとも呼ばれる)40cなどを採用することができる。プレーンフィン40aは、第1方向(A方向)に直線状に延びるフィン部41が、第2方向(B方向)に一定のピッチPで配列された構造を有する。複数のフィン部41は、それぞれ高さ方向(上下方向)のいずれかの端部同士が板状の接続部45によって接続されている。パーフォレートフィン40bは、プレーンフィン40aに複数の貫通孔42が設けられた構造を有する。オフセットフィン40cは、第1方向(A方向)に延びるフィン部41が第2方向(B方向)に配列されて構成された複数の列43が、互いに第2方向(B方向)へずれる(オフセットする)ように設けられているフィンである。第1フィン21cは、冷媒流路(熱交換部21)を複数のフィン部41によって局所的に複数のチャネルに分割し、これにより冷媒5の伝熱面積を増大する。 As the type (fin shape) of the first fin 21c, for example, the plane fin 40a shown in FIG. 4, the perforate fin 40b shown in FIG. 5, the offset fin (also called serrate fin) 40c shown in FIG. You can The plane fin 40a has a structure in which fin portions 41 that linearly extend in the first direction (A direction) are arranged at a constant pitch P in the second direction (B direction). Each of the plurality of fin portions 41 is connected at one end in the height direction (vertical direction) with a plate-shaped connecting portion 45. The perforated fin 40b has a structure in which a plurality of through holes 42 are provided in the plain fin 40a. In the offset fin 40c, a plurality of rows 43 configured by arranging fin portions 41 extending in the first direction (direction A) in the second direction (direction B) are displaced from each other in the second direction (direction B) (offset). It is a fin provided as follows. The first fin 21c locally divides the refrigerant flow path (heat exchange portion 21) into a plurality of channels by the plurality of fin portions 41, thereby increasing the heat transfer area of the refrigerant 5.
 図2に戻り、排出路25は、上流側の複数の端部と、下流側の1つの端部とを有し、分岐した流路を合流させる流路部分である。排出路25の複数の上流側端部が、それぞれ熱交換部21に連通している。排出路25の下流側端部は、出口開口24に連通している。排出路25は、分岐した各熱交換部21を通過した冷媒5を合流させて、出口開口24に送り込むように構成されている。排出路25の複数の上流側端部の数は、図2の例では2つである。 Returning to FIG. 2, the discharge passage 25 is a flow passage portion that has a plurality of upstream end portions and one downstream end portion and joins the branched flow passages. The plurality of upstream end portions of the discharge passage 25 are in communication with the heat exchange portion 21, respectively. The downstream end of the discharge passage 25 communicates with the outlet opening 24. The discharge path 25 is configured to merge the refrigerant 5 that has passed through the branched heat exchange portions 21 and send the combined refrigerant 5 to the outlet opening 24. The number of the plurality of upstream end portions of the discharge passage 25 is two in the example of FIG.
 出口開口24は、冷媒流路2の端部開口であり、本体部1の側端面に1つ設けられている。図2の例では、出口開口24は、本体部1のX2方向側の側端面に開口してX2方向側のノズル3と連通している。出口開口24は、冷媒流路2の最下流に設けられ、熱交換後(冷却後)の冷媒5を外部へ排出する。出口開口24からは、少なくとも一部が熱交換部21において気化した冷媒5が流出する。つまり、入口開口22に流入した液相の冷媒5のうちの一部が気化して気相の冷媒5となり、入口開口22への流入時よりもガス率が上昇した気液混相の冷媒5が、出口開口24から流出する。なお、入口開口22に流入した液相の冷媒5の全部が気化してもよく、その場合、出口開口24からは気相の冷媒5が流出する。 The outlet opening 24 is an end opening of the refrigerant flow path 2 and one is provided on the side end surface of the main body 1. In the example of FIG. 2, the outlet opening 24 opens at the side end surface of the main body 1 on the X2 direction side and communicates with the nozzle 3 on the X2 direction side. The outlet opening 24 is provided on the most downstream side of the refrigerant flow path 2 and discharges the refrigerant 5 after heat exchange (after cooling) to the outside. From the outlet opening 24, the refrigerant 5 at least a part of which is vaporized in the heat exchange section 21 flows out. That is, a part of the liquid-phase refrigerant 5 flowing into the inlet opening 22 is vaporized to become the vapor-phase refrigerant 5, and the gas-liquid mixed-phase refrigerant 5 having a higher gas ratio than that at the time of flowing into the inlet opening 22 is generated. , Exits through the outlet opening 24. It should be noted that all of the liquid-phase refrigerant 5 that has flowed into the inlet opening 22 may be vaporized, and in that case, the gas-phase refrigerant 5 flows out from the outlet opening 24.
 このような構成により、冷媒流路2は、入口開口22と出口開口24との間で分岐した2つの経路20aおよび20bを含んでいる。経路20aは、冷媒流路2の分岐部23aから延びて、支流路26、上流側の第1熱交換部21a、接続路27、下流側の第1熱交換部21aを含んだ、第1熱交換部21aを通過する経路である。経路20bは、冷媒流路2の分岐部23aから延びて、支流路26、上流側の第2熱交換部21b、接続路27、下流側の第2熱交換部21bを含んだ、第2熱交換部21bを通過する経路である。 With such a configuration, the refrigerant flow path 2 includes two paths 20a and 20b branched between the inlet opening 22 and the outlet opening 24. The passage 20a extends from the branch portion 23a of the refrigerant passage 2 and includes the tributary passage 26, the upstream first heat exchange portion 21a, the connection passage 27, and the downstream first heat exchange portion 21a. It is a route that passes through the exchange unit 21a. The passage 20b extends from the branch portion 23a of the refrigerant passage 2 and includes the tributary passage 26, the upstream second heat exchange portion 21b, the connection passage 27, and the downstream second heat exchange portion 21b. It is a route that passes through the exchange unit 21b.
 第1熱交換部21aを通る経路20aと、第2熱交換部21bを通る経路20bとは、それぞれ第1熱交換部21aおよび第2熱交換部21bにおける負荷(熱量)が等しい時、経路20a全体の圧力損失と経路20b全体の圧力損失とが略一致するように構成されている。そのため、図2に示した例では、分岐部23aから排出路25まで2本の経路20a、20bは、互いに同一構造を有し、分岐部23aを境界としてY方向に略対称である。 The route 20a passing through the first heat exchange unit 21a and the route 20b passing through the second heat exchange unit 21b are the routes 20a when the loads (heat amounts) in the first heat exchange unit 21a and the second heat exchange unit 21b are equal to each other. The overall pressure loss and the overall pressure loss of the path 20b are configured to substantially match. Therefore, in the example shown in FIG. 2, the two paths 20a and 20b from the branch portion 23a to the discharge path 25 have the same structure, and are substantially symmetrical in the Y direction with the branch portion 23a as a boundary.
 (抵抗体)
 次に、抵抗体30の詳細について説明する。抵抗体30は、分配路23の分岐部23aと熱交換部21との間の複数の支流路26のうち少なくとも1つに設けられる。図3に示す例では、抵抗体30は、複数(2つ)の支流路26の各々に設けられている。抵抗体30は、冷媒流路2の内部に設置されている。抵抗体30は、冷媒流路2内で、冷媒流路2を区画する壁部13および/または板部材14に固定されている。抵抗体30は、弁体などの開度変更を行うための可動部を有さず、固定された構造によって流路抵抗を生じさせる。
(Resistor)
Next, details of the resistor 30 will be described. The resistor 30 is provided in at least one of the plurality of branch passages 26 between the branch portion 23 a of the distribution passage 23 and the heat exchange portion 21. In the example shown in FIG. 3, the resistor 30 is provided in each of the plurality (two) of the tributary channels 26. The resistor 30 is installed inside the coolant channel 2. The resistor 30 is fixed to the wall portion 13 and/or the plate member 14 that divides the coolant channel 2 in the coolant channel 2. The resistor 30 does not have a movable part for changing the opening degree of the valve body or the like, and causes a flow path resistance by a fixed structure.
 抵抗体30は、分配路23において、発熱体Mとの熱交換に伴う熱交換部21からの熱伝導の影響を受けないように熱交換部21から離間した位置に配置されている。具体的には、抵抗体30は、分配路23において熱交換部21よりも分岐部23aに近い位置に配置されている。本実施形態では、抵抗体30が分岐部23aの直後の位置に配置されている。すなわち、抵抗体30は、支流路26の上流側端部の位置(分岐部23aと支流路26との境界部)に設けられている。抵抗体30の下流側端部は、熱交換部21よりも上流側に離れて配置されている。言い換えると、支流路26は、抵抗体30の下流側端部と熱交換部21との間を接続する流路部分を含んでいる。抵抗体30は、支流路26の流路幅と略等しい幅W1を有する。冷媒5の流通方向(X方向)における抵抗体30の長さL1は、支流路26の長さよりも小さい。冷媒5の流通方向(X方向)において、抵抗体30の長さL1は、熱交換部21の長さよりも小さい。 The resistor 30 is arranged in the distribution path 23 at a position separated from the heat exchange part 21 so as not to be affected by heat conduction from the heat exchange part 21 due to heat exchange with the heating element M. Specifically, the resistor 30 is arranged in the distribution path 23 at a position closer to the branch portion 23a than the heat exchange portion 21. In the present embodiment, the resistor 30 is arranged immediately after the branch portion 23a. That is, the resistor 30 is provided at the position of the upstream end portion of the tributary channel 26 (the boundary portion between the branch portion 23a and the tributary channel 26). The downstream end of the resistor 30 is arranged upstream of the heat exchange part 21. In other words, the tributary flow path 26 includes a flow path portion that connects the downstream end of the resistor 30 and the heat exchange section 21. The resistor 30 has a width W1 that is substantially equal to the flow channel width of the tributary channel 26. The length L1 of the resistor 30 in the flow direction (X direction) of the refrigerant 5 is smaller than the length of the tributary flow path 26. In the flow direction (X direction) of the refrigerant 5, the length L1 of the resistor 30 is smaller than the length of the heat exchange section 21.
 抵抗体30は、抵抗体30を設置しない場合と比べて、冷媒流路2の流路抵抗を増大させる。抵抗体30は、たとえば、微細孔が形成されたオリフィス板、支流路26の一部を遮るように設けられるブロック体などにより構成されうる。本実施形態では、抵抗体30は、同一条件下で第1フィン21cよりも流路抵抗を増大させるように構成されている。つまり、図3に示した抵抗体30の設置領域に、抵抗体30に代えて第1フィン21cを設置したと仮定した場合よりも、流路抵抗を増大させる。 The resistor 30 increases the channel resistance of the refrigerant channel 2 as compared with the case where the resistor 30 is not installed. The resistor 30 may be configured by, for example, an orifice plate having fine holes, a block body provided so as to block a part of the tributary channel 26, or the like. In the present embodiment, the resistor 30 is configured to increase the flow path resistance more than that of the first fin 21c under the same condition. That is, the flow path resistance is increased as compared with the case where the first fin 21c is installed in place of the resistor 30 in the installation region of the resistor 30 shown in FIG.
 抵抗体30の具体例として、本実施形態では、抵抗体30は、冷媒5の流通方向と交差する方向に向けて設けられ、かつ、冷媒5が流通方向に通過可能な第2フィン31により構成されている。第2フィン31は、流路抵抗の増大を目的として(抵抗体30として)、通常の設置方向(フィン部41の延びる第1方向(A方向、図4~図6参照)を冷媒5の流通方向に向ける方向)とは異なる向きで冷媒流路2に設置される。第2フィン31は、たとえばコルゲートフィンのうち、冷媒5の流通方向と交差する方向に向けて配置しても冷媒5が流通方向へ流通可能なコルゲートフィンである。 As a specific example of the resistor 30, in the present embodiment, the resistor 30 includes a second fin 31 that is provided in a direction that intersects with the circulation direction of the coolant 5 and that allows the coolant 5 to pass in the circulation direction. Has been done. The second fins 31 circulate the coolant 5 in the normal installation direction (the first direction in which the fin portion 41 extends (direction A, see FIGS. 4 to 6)) for the purpose of increasing the flow path resistance (as the resistor 30 ). It is installed in the refrigerant flow path 2 in a direction different from the direction (toward the direction). The second fin 31 is, for example, a corrugated fin, which is a corrugated fin that allows the coolant 5 to flow in the circulation direction even if the second fin 31 is arranged in a direction intersecting with the circulation direction of the coolant 5.
 抵抗体30を構成する第2フィン31は、オフセットフィン40c(図6参照)またはパーフォレートフィン40b(図5参照)を含む。本実施形態では、第2フィン31としてオフセットフィン40cが採用されている。図3に示した第2フィン31は、フィン部41の延びる第1方向(A方向)を、冷媒5の流通方向(X方向)と直交する流路幅方向(Y方向)に向けて設置されている。このため、第2フィン31では、第1方向(A方向)に延びるフィン部41が、冷媒流路2(支流路26)を遮る障壁として機能するように構成されている。第2フィン31は、フィン部41の配列方向である第2方向(B方向、図6参照)が、冷媒5の流通方向(X方向)に一致している。 The second fin 31 forming the resistor 30 includes an offset fin 40c (see FIG. 6) or a perforate fin 40b (see FIG. 5). In the present embodiment, the offset fin 40c is used as the second fin 31. The second fins 31 shown in FIG. 3 are installed with the first direction (A direction) in which the fin portions 41 extend toward the flow channel width direction (Y direction) orthogonal to the circulation direction (X direction) of the refrigerant 5. ing. Therefore, in the second fin 31, the fin portion 41 extending in the first direction (direction A) is configured to function as a barrier that blocks the refrigerant flow passage 2 (the tributary flow passage 26). In the second fins 31, the second direction (the B direction, see FIG. 6) that is the arrangement direction of the fin portions 41 matches the circulation direction (X direction) of the refrigerant 5.
 第2フィン31としてのオフセットフィン40c(図6参照)またはパーフォレートフィン40b(図5参照)は、冷媒5を第2方向(B方向)に流通させることが可能なフィンである。すなわち、図6に示すオフセットフィン40cでは、フィン部41の奇数番目の列43と、偶数番目の列43とで、フィン部41の位置が第2方向(B方向)にずれている。そのため、偶数番目の列43を構成するフィン部41と、奇数番目の列43を構成するフィン部41との間には、B方向のオフセット量Osに応じた大きさの隙間44が形成される。これにより、オフセットフィン40cに対して冷媒5が第2方向(B方向)に流入すると、フィン部41の側面に衝突した冷媒5が各フィン部41の間の隙間44に入り込み、隙間44を介してそれぞれのフィン部41の間をジグザグに進行する。その結果、冷媒5はオフセットフィン40cに対して第2方向(B方向)に通過可能である。 The offset fin 40c (see FIG. 6) or the perforate fin 40b (see FIG. 5) as the second fin 31 is a fin that allows the refrigerant 5 to flow in the second direction (B direction). That is, in the offset fin 40c shown in FIG. 6, the position of the fin portion 41 is displaced in the second direction (B direction) between the odd-numbered row 43 and the even-numbered row 43 of the fin portion 41. Therefore, a gap 44 having a size corresponding to the offset amount Os in the B direction is formed between the fin portions 41 forming the even-numbered rows 43 and the fin portions 41 forming the odd-numbered rows 43. .. As a result, when the coolant 5 flows into the offset fins 40c in the second direction (direction B), the coolant 5 that collides with the side surfaces of the fin portions 41 enters the gaps 44 between the fin portions 41 and passes through the gaps 44. And zigzag between the fin portions 41. As a result, the refrigerant 5 can pass through the offset fin 40c in the second direction (direction B).
 オフセットフィン40cには、フィン部41の長さL2、各列43におけるフィン部41のピッチP、フィン部41のオフセット量Osなどが異なる様々な種類がある。オフセットフィン40cにより構成された抵抗体30(第2フィン31)では、これらのフィン部41の長さL2、フィン部41のピッチP、フィン部41のオフセット量Osなどが、流路抵抗を決定するためのパラメータとなる。 There are various types of offset fins 40c that differ in the length L2 of the fin portion 41, the pitch P of the fin portion 41 in each row 43, the offset amount Os of the fin portion 41, and the like. In the resistor 30 (second fin 31) configured by the offset fin 40c, the flow path resistance is determined by the length L2 of the fin portion 41, the pitch P of the fin portion 41, the offset amount Os of the fin portion 41, and the like. It becomes a parameter to do.
 なお、図5に示すパーフォレートフィン40bでは、フィン部41に形成された貫通孔42が、第2方向(B方向)に流通する冷媒5の通り道となる。そのため、冷媒5はパーフォレートフィン40bに対して第2方向(B方向)に通過可能である。パーフォレートフィン40bには、貫通孔42の直径(または開口面積)、貫通孔42の数(または非貫通部に対する貫通孔42の割合)、貫通孔42の形成位置などが異なる様々な種類がある。抵抗体30(第2フィン31)がパーフォレートフィン40bである場合、これらの貫通孔42の直径、数および位置などが、流路抵抗を増減させるパラメータとなる。 In the perforated fin 40b shown in FIG. 5, the through hole 42 formed in the fin portion 41 serves as a passage for the coolant 5 flowing in the second direction (B direction). Therefore, the refrigerant 5 can pass through the perforate fins 40b in the second direction (direction B). There are various types of perforated fins 40b that differ in the diameter (or opening area) of the through holes 42, the number of the through holes 42 (or the ratio of the through holes 42 to the non-through portions), the formation position of the through holes 42, and the like. is there. When the resistor 30 (second fin 31) is the perforate fin 40b, the diameter, number, position, etc. of these through holes 42 are parameters for increasing or decreasing the flow path resistance.
 このように冷媒5がB方向に流通する第2フィン31では、冷媒5がA方向に流通する場合と比べて、高い流路抵抗が生じる。そのため、第2フィン31によって構成された抵抗体30では、所望の流路抵抗を得るために必要となる距離を小さくすることができる。すなわち、図3に示したように、所望の流路抵抗を実現するために必要となる抵抗体30の長さL1を小さくすることが可能である。 In this way, in the second fin 31 in which the refrigerant 5 flows in the B direction, a higher flow path resistance occurs as compared with the case where the refrigerant 5 flows in the A direction. Therefore, in the resistor 30 configured by the second fin 31, it is possible to reduce the distance required to obtain the desired flow path resistance. That is, as shown in FIG. 3, it is possible to reduce the length L1 of the resistor 30 required to realize a desired flow path resistance.
 ところで、本体部1は、冷媒流路2を区画する壁部13と、設置面11(図1参照)を構成する板部材14(図1参照)と、冷媒流路2内に配置された抵抗体30とがろう付けにより一体化された構造を有する。すなわち、壁部13、第1フィン21c、抵抗体30(第2フィン31)、板部材14には、いずれもろう材が塗布または被覆されており、図2に示したように壁部13と、第1フィン21cと、抵抗体30(第2フィン31)とを配置し、厚み方向の両側をそれぞれ板部材14によって挟み込むようにした組立体を構成し、組立体を所定のろう付け温度まで加熱してろう材を溶融させた後、冷却することにより、本体部1を構成する各部材が一括で接合される。 By the way, the main body portion 1 includes a wall portion 13 that divides the refrigerant flow passage 2, a plate member 14 (see FIG. 1) that constitutes the installation surface 11 (see FIG. 1 ), and a resistor arranged in the refrigerant flow passage 2. It has a structure in which the body 30 is integrated by brazing. That is, the wall portion 13, the first fin 21c, the resistor 30 (second fin 31), and the plate member 14 are all coated or coated with a brazing material, and as shown in FIG. , The first fin 21c and the resistor 30 (second fin 31) are arranged so that both sides in the thickness direction are sandwiched by the plate members 14, respectively, and the assembly is heated to a predetermined brazing temperature. By heating and melting the brazing filler metal, and then cooling the brazing filler metal, the members forming the main body 1 are joined together.
 抵抗体30による流路抵抗は、抵抗体30の下流側にある熱交換部21における発熱体Mが発生する熱量や、冷媒流路2の全体の圧力損失、個々の分岐部分(分岐部23aから排出路25の合流部までの支流路26、熱交換部21を含む経路)の圧力損失等を考慮して設定される。 The flow path resistance by the resistor 30 is the amount of heat generated by the heating element M in the heat exchange section 21 on the downstream side of the resistor 30, the pressure loss of the entire refrigerant flow path 2, and the individual branch portions (from the branch section 23a). It is set in consideration of the pressure loss of the tributary flow path 26 to the confluence of the discharge path 25, the path including the heat exchange section 21, and the like.
 各発熱体Mが発生する熱量が同等であると見なせる場合、経路20aおよび経路20bにそれぞれ設置された2つの抵抗体30の流路抵抗は、略同一となるように設定される。一方、個々の発熱体Mの性能が異なり発生する熱量が相違する場合、2つの抵抗体30の流路抵抗は、それぞれの熱量に応じて異なる流路抵抗を有しうる。このような場合は、たとえば、各発熱体Mの性能が異なり、2つの第1熱交換部21aの各々における熱量が、2つの第2熱交換部21bの各々における熱量よりも大きい場合などが該当する。 When it can be considered that the amounts of heat generated by the heating elements M are equal, the flow resistances of the two resistors 30 installed on the paths 20a and 20b are set to be substantially the same. On the other hand, when the performance of each heating element M is different and the amount of generated heat is different, the flow path resistances of the two resistors 30 may have different flow path resistances according to the respective heat quantities. In such a case, for example, the performance of each heating element M is different, and the amount of heat in each of the two first heat exchange units 21a is larger than the amount of heat in each of the two second heat exchange units 21b. To do.
 また、抵抗体30は、第1熱交換部21aおよび第2熱交換部21bの一方における圧力損失が最大となり、第1熱交換部21aおよび第2熱交換部21bの他方における圧力損失が最小となる場合に、第1熱交換部21aおよび第2熱交換部21bの各々に分配される冷媒5の流量差が予め設定された範囲内に収まるように、設置位置における冷媒流路2の流路抵抗を増大させる。 Further, in the resistor 30, the pressure loss in one of the first heat exchange section 21a and the second heat exchange section 21b is maximum, and the pressure loss in the other of the first heat exchange section 21a and the second heat exchange section 21b is minimum. In this case, the flow path of the refrigerant flow path 2 at the installation position is set so that the difference in the flow rate of the refrigerant 5 distributed to each of the first heat exchange section 21a and the second heat exchange section 21b falls within a preset range. Increase resistance.
 すなわち、パワーモジュールである発熱体Mの負荷(発熱量)は、電力制御用スイッチング素子の動作に応じて変動する。この負荷の変動を、ここでは負荷率で表現する。すなわち、個々の発熱体Mの負荷は、設計上の最小発熱量である負荷率0%から最大発熱量である負荷率100%までの間で変動する。熱交換部21におけるガス率は、負荷率100%で最も上昇し、負荷率0%では上昇量が最小(実質的に上昇量がゼロ)となる。したがって、第1熱交換部21aおよび第2熱交換部21bの一方が負荷率100%となり冷媒5の気化(ガス率の上昇)に起因する圧力損失が最大となり、かつ、第1熱交換部21aおよび第2熱交換部21bの他方が負荷率0%となり冷媒5の気化に起因する圧力損失が最小となるケースで、冷媒分配量の差が最大となる。言い換えると、抵抗体30による流路抵抗は、第1熱交換部21aおよび第2熱交換部21bの間での冷媒5の気化に起因する圧力損失の差異が最大となる場合に、第1熱交換部21aおよび第2熱交換部21bの各々に分配される冷媒5の流量差が予め設定された範囲内に収まるように設定される。 That is, the load (heat generation amount) of the heating element M, which is a power module, varies according to the operation of the power control switching element. This change in load is expressed here as a load factor. That is, the load of each heating element M fluctuates between a load rate of 0%, which is the designed minimum heat generation amount, and a load rate of 100%, which is the maximum heat generation amount. The gas rate in the heat exchange section 21 rises most when the load rate is 100%, and the rise rate is minimum (substantially zero rise rate) when the load rate is 0%. Therefore, one of the first heat exchanging portion 21a and the second heat exchanging portion 21b has a load factor of 100%, and the pressure loss due to the vaporization of the refrigerant 5 (increase of the gas rate) becomes maximum, and the first heat exchanging portion 21a In the case where the load factor of the other of the second heat exchange section 21b is 0% and the pressure loss due to the vaporization of the refrigerant 5 is minimum, the difference in the refrigerant distribution amount is maximum. In other words, the flow path resistance due to the resistor 30 is the first heat exchange when the difference in pressure loss due to vaporization of the refrigerant 5 between the first heat exchange section 21a and the second heat exchange section 21b is the maximum. The flow rate difference of the refrigerant 5 distributed to each of the exchange section 21a and the second heat exchange section 21b is set to fall within a preset range.
 冷媒5の流量差の範囲は、十分に小さいことが好ましい。たとえば、冷媒5の流量差の範囲は、入口開口22における冷媒流量の30%以下であり、より好ましくは20%以下である。 The range of the flow rate difference of the refrigerant 5 is preferably sufficiently small. For example, the range of the flow rate difference of the refrigerant 5 is 30% or less of the flow rate of the refrigerant at the inlet opening 22, and more preferably 20% or less.
 (流体回路)
 本実施形態の冷却装置100は、たとえば図7に示すような流体回路50の一部を構成する。流体回路50は、主として、冷媒循環部51と、凝縮部52と、各部を接続する管路53とを備える。この他、流体回路50の各部には、流量調整などのためのバルブ(図示せず)などが設けられうる。
(Fluid circuit)
The cooling device 100 of this embodiment constitutes a part of a fluid circuit 50 as shown in FIG. 7, for example. The fluid circuit 50 mainly includes a refrigerant circulating unit 51, a condensing unit 52, and a pipe line 53 connecting each unit. In addition, a valve (not shown) for adjusting the flow rate or the like may be provided in each part of the fluid circuit 50.
 冷却装置100は、入口側のノズル3が、管路53を介して冷媒循環部51と接続されている。冷却装置100は、出口側のノズル3が、管路53を介して凝縮部52と接続されている。凝縮部52が管路53を介して冷媒循環部51と接続されている。流体回路50は、冷媒循環部51と、冷却装置100と、凝縮部52とで冷媒5を循環させる閉じた流体回路となっている。冷媒循環部51は、ポンプを含んで構成され、冷却装置100に対して冷媒5を供給する。冷媒循環部51は、圧力により流体回路50内の冷媒5を循環させる。冷却装置100は、二点鎖線で示したように、流体回路50において複数設けられていてもよい。 In the cooling device 100, the nozzle 3 on the inlet side is connected to the refrigerant circulation unit 51 via the pipe line 53. In the cooling device 100, the nozzle 3 on the outlet side is connected to the condensing unit 52 via the pipe line 53. The condenser section 52 is connected to the refrigerant circulation section 51 via the pipe line 53. The fluid circuit 50 is a closed fluid circuit that circulates the refrigerant 5 through the refrigerant circulation unit 51, the cooling device 100, and the condensation unit 52. The coolant circulation unit 51 includes a pump and supplies the coolant 5 to the cooling device 100. The refrigerant circulation unit 51 circulates the refrigerant 5 in the fluid circuit 50 by pressure. A plurality of cooling devices 100 may be provided in the fluid circuit 50, as indicated by the chain double-dashed line.
 図7および図2に示すように、冷却装置100の入口開口22に供給された冷媒5は、分岐した分配路23によって第1熱交換部21aおよび第2熱交換部21bをそれぞれ通過する。この際、冷却装置100に設置された発熱体M(図1参照)の熱を冷媒5が吸収し、冷媒5の一部が気化するとともに発熱体Mを冷却する。冷却装置100内の冷媒5は、排出路25で合流して、出口開口24から排出される。冷却装置100から排出された冷媒5は、凝縮部52に送られる。凝縮部52は、冷媒5が吸収した熱を排出させることにより、冷却装置100において気化した気相の冷媒5を液相に戻す。凝縮部52は、公知の熱交換器により構成されうる。凝縮部52から排出された冷媒5は、冷媒循環部51に戻り、再度流体回路50を循環する。 As shown in FIGS. 7 and 2, the coolant 5 supplied to the inlet opening 22 of the cooling device 100 passes through the branched distribution passage 23 through the first heat exchange section 21a and the second heat exchange section 21b, respectively. At this time, the heat of the heating element M (see FIG. 1) installed in the cooling device 100 is absorbed by the refrigerant 5, and a part of the refrigerant 5 is vaporized and the heating element M is cooled. The refrigerant 5 in the cooling device 100 merges in the discharge passage 25 and is discharged from the outlet opening 24. The refrigerant 5 discharged from the cooling device 100 is sent to the condenser 52. The condenser 52 returns the vaporized refrigerant 5 vaporized in the cooling device 100 to the liquid phase by discharging the heat absorbed by the refrigerant 5. The condensing part 52 can be configured by a known heat exchanger. The refrigerant 5 discharged from the condenser 52 returns to the refrigerant circulation unit 51 and circulates in the fluid circuit 50 again.
 (冷却装置の作用)
 次に、本実施形態の冷却装置100の作用を説明する。図8および図9は、抵抗体30を設けない場合の比較例による経路20aおよび経路20bへの冷媒5の分配量を示した図である。図10は、抵抗体30を設けた本実施形態による経路20aおよび経路20bへの冷媒5の分配量を示した図である。図8~図10では、説明の便宜のため、図2に示した冷媒流路2を簡略化し、それぞれ2つずつ設けられた第1熱交換部21aおよび第2熱交換部21bを、まとめて1つの熱交換部として図示している。なお、以下の説明において示される具体的な分配量(流量)や圧力損失の値は、説明のために示す一例であって、これに限られない。
(Operation of cooling device)
Next, the operation of the cooling device 100 of this embodiment will be described. 8 and 9 are diagrams showing distribution amounts of the refrigerant 5 to the paths 20a and 20b according to the comparative example in the case where the resistor 30 is not provided. FIG. 10 is a diagram showing the distribution amount of the refrigerant 5 to the paths 20a and 20b according to the present embodiment in which the resistor 30 is provided. 8 to 10, for convenience of description, the refrigerant flow path 2 shown in FIG. 2 is simplified, and two first heat exchange sections 21a and two second heat exchange sections 21b are provided together. It is shown as one heat exchange section. It should be noted that the specific distribution amount (flow rate) and the value of the pressure loss shown in the following description are examples shown for the purpose of description, and are not limited to these.
 図8は、第1熱交換部21aおよび第2熱交換部21bの各々における発熱体Mの負荷が等しい(負荷=100%)場合の比較例(抵抗体なし)を示している。この場合、経路20aおよび経路20bの圧力損失が等しくなるように冷媒流路2が構成されているので、図8では、経路20aおよび経路20bにおける冷媒分配量は一致する。すなわち、入口開口22における流量20L/minの場合に、経路20aの流量Q1および経路20bの流量Q2は、それぞれQ1=Q2=10L/minとなる。冷媒流路2の全体の圧力損失ΔPは、ΔP=15kPaとする。第1熱交換部21aにおける圧力損失ΔP1が、第2熱交換部21bにおける圧力損失ΔP2と等しい。 FIG. 8 shows a comparative example (without a resistor) when the load of the heating element M in each of the first heat exchange section 21a and the second heat exchange section 21b is equal (load=100%). In this case, since the refrigerant flow path 2 is configured so that the pressure losses of the paths 20a and 20b are equal, the refrigerant distribution amounts in the paths 20a and 20b are the same in FIG. That is, when the flow rate at the inlet opening 22 is 20 L/min, the flow rate Q1 of the path 20a and the flow rate Q2 of the path 20b are Q1=Q2=10 L/min, respectively. The pressure loss ΔP of the entire refrigerant flow path 2 is ΔP=15 kPa. The pressure loss ΔP1 in the first heat exchange section 21a is equal to the pressure loss ΔP2 in the second heat exchange section 21b.
 次に、図9は、第1熱交換部21aおよび第2熱交換部21bの各々における発熱体Mの負荷が異なる場合の比較例(抵抗体なし)を示している。図9では、第1熱交換部21aにおいて発熱体Mが負荷100%となり、第2熱交換部21bにおいて発熱体Mが負荷0%となる。経路20aの第1熱交換部21aでは、発熱体M(負荷100%)からの入熱によって冷媒5が気化し、冷媒5の気化(ガス率の上昇)に伴う圧力損失が増大する。一方、経路20bの第2熱交換部21bでは、発熱体Mからの入熱がないため冷媒5が気化せず、第1熱交換部21aのような圧力損失の増大は起こらない。つまり、同一流量においては、第1熱交換部21aにおける圧力損失ΔP1よりも、第2熱交換部21bにおける圧力損失ΔP2が大幅に小さい。 Next, FIG. 9 shows a comparative example (without a resistor) when the load of the heating element M in each of the first heat exchange section 21a and the second heat exchange section 21b is different. In FIG. 9, the heating element M has a load of 100% in the first heat exchange section 21a, and the heating element M has a load of 0% in the second heat exchange section 21b. In the first heat exchange unit 21a of the path 20a, the refrigerant 5 is vaporized by heat input from the heating element M (load 100%), and the pressure loss due to the vaporization of the refrigerant 5 (increase in gas rate) increases. On the other hand, in the second heat exchange section 21b of the path 20b, since the heat input from the heating element M is absent, the refrigerant 5 is not vaporized, and the increase in pressure loss unlike the first heat exchange section 21a does not occur. That is, at the same flow rate, the pressure loss ΔP2 in the second heat exchange section 21b is significantly smaller than the pressure loss ΔP1 in the first heat exchange section 21a.
 この結果、図9のように経路20aと経路20bとで発熱体Mの負荷が変動する場合、経路20b側へ冷媒5の流入が集中して、経路20a側への冷媒分配量が減少する。その結果、熱量の大きい第1熱交換部21a(負荷100%)における冷却能力が不足する。入口開口22における流量20L/minの場合に、経路20aおよび経路20bでは、それぞれ流量Q1=2L/minおよび流量Q2=18L/minとなる。冷媒流路2の全体の圧力損失ΔPは、ΔP=3kPaとなる。 As a result, when the load of the heating element M fluctuates between the route 20a and the route 20b as shown in FIG. 9, the inflow of the refrigerant 5 concentrates on the route 20b side, and the refrigerant distribution amount to the route 20a side decreases. As a result, the cooling capacity of the first heat exchange section 21a (load 100%) having a large amount of heat becomes insufficient. When the flow rate at the inlet opening 22 is 20 L/min, the flow rate Q1 is 2 L/min and the flow rate Q2 is 18 L/min in the paths 20a and 20b, respectively. The pressure loss ΔP of the entire refrigerant passage 2 is ΔP=3 kPa.
 図10に示す本実施形態でも、第1熱交換部21aおよび第2熱交換部21bの各々における発熱体Mの負荷の条件は図9と同様とする。つまり、第1熱交換部21aにおいて発熱体Mが負荷100%となり、第2熱交換部21bにおいて発熱体Mが負荷0%となる。経路20aおよび経路20bにおいて、抵抗体30は同一構造を有するが、それぞれの抵抗体30による圧力損失は、各経路の下流側の熱交換部での圧力損失(ΔP1、ΔP2)の差異を反映した値となる。 Also in the present embodiment shown in FIG. 10, the load condition of the heating element M in each of the first heat exchange section 21a and the second heat exchange section 21b is the same as in FIG. That is, the heating element M has a load of 100% in the first heat exchange section 21a, and the heating element M has a load of 0% in the second heat exchange section 21b. In the paths 20a and 20b, the resistors 30 have the same structure, but the pressure loss due to the respective resistors 30 reflects the difference in pressure loss (ΔP1, ΔP2) in the heat exchange section on the downstream side of each path. It becomes a value.
 すなわち、経路20aでは、第1熱交換部21a(負荷100%)において、冷媒5の気化に伴う圧力損失ΔP1=12kPaとなる。経路20bでは、第2熱交換部21b(負荷0%)において、冷媒5の気化が発生しないため圧力損失ΔP2=1kPaとなる。このとき、経路20aの抵抗体30における圧力損失が10kPaとなり、経路20bの抵抗体30における圧力損失が21kPaとなる。この結果、発熱体Mの負荷が異なる場合でも、経路20aと経路20bとで圧力損失が同等になり、経路20aおよび経路20bへの冷媒分配量の差異が抑制される。図10の例では、入口開口22における流量20L/minの場合に、経路20aおよび経路20bは、それぞれ流量Q1=8.5L/minおよび流量Q2=11.5L/minとなる。冷媒流路2の全体の圧力損失ΔPは、ΔP=22kPaとなる。 That is, in the path 20a, the pressure loss ΔP1 due to the vaporization of the refrigerant 5 is 12 kPa in the first heat exchange section 21a (load 100%). In the path 20b, the vaporization of the refrigerant 5 does not occur in the second heat exchange section 21b (load 0%), so that the pressure loss ΔP2=1 kPa. At this time, the pressure loss in the resistor 30 of the path 20a becomes 10 kPa, and the pressure loss in the resistor 30 of the path 20b becomes 21 kPa. As a result, even if the load of the heating element M is different, the pressure loss becomes equal in the path 20a and the path 20b, and the difference in the refrigerant distribution amount to the path 20a and the path 20b is suppressed. In the example of FIG. 10, when the flow rate at the inlet opening 22 is 20 L/min, the flow rate Q1=8.5 L/min and the flow rate Q2=11.5 L/min in the paths 20a and 20b, respectively. The pressure loss ΔP of the entire refrigerant flow path 2 is ΔP=22 kPa.
 このように、図10に示した本実施形態では、図9に示した比較例と同じように経路20aと経路20bとで発熱体Mの負荷が変動した場合でも、冷媒分配量の変動が抑制される。特に、図9に示した比較例では、負荷100%の第1熱交換部21aへの冷媒流量Q1が2L/minとなるのに対して、図10に示した本実施形態では冷媒流量Q1が9.5L/minとなるので、熱量の大きい第1熱交換部21aにおける冷却能力の不足が緩和される。図10の例において、第1熱交換部21aおよび第2熱交換部21bの各々に分配される冷媒5の流量差|Q1-Q2|は、3L/minであり、入口開口22における冷媒流量(20L/min)の15%に収まる。説明は省略するが、第1熱交換部21aの負荷と第2熱交換部21bの負荷とが逆転した場合にも、流量Q1と流量Q2との関係が逆になるだけで同様の範囲に収まる。実際の冷却装置100の設計では、抵抗体30の流路抵抗を可変パラメータとして、図10のケースにおいて流量Q1および流量Q2の差が予め設定された範囲内に収まるように、抵抗体30の流路抵抗が決定される。 As described above, in the present embodiment shown in FIG. 10, even when the load of the heating element M changes in the paths 20a and 20b as in the comparative example shown in FIG. 9, the fluctuation of the refrigerant distribution amount is suppressed. To be done. In particular, in the comparative example shown in FIG. 9, the refrigerant flow rate Q1 to the first heat exchange section 21a with a load of 100% is 2 L/min, whereas in the present embodiment shown in FIG. 10, the refrigerant flow rate Q1 is Since it becomes 9.5 L/min, the shortage of the cooling capacity in the first heat exchanging portion 21a having a large heat quantity is alleviated. In the example of FIG. 10, the flow rate difference |Q1-Q2| of the refrigerant 5 distributed to each of the first heat exchange section 21a and the second heat exchange section 21b is 3 L/min, and the refrigerant flow rate at the inlet opening 22 ( It falls within 15% of 20 L/min). Although the description is omitted, even when the load of the first heat exchanging portion 21a and the load of the second heat exchanging portion 21b are reversed, the relationship between the flow rate Q1 and the flow rate Q2 is simply reversed and falls within the same range. .. In the actual design of the cooling device 100, the flow resistance of the resistor 30 is used as a variable parameter so that the difference between the flow rate Q1 and the flow rate Q2 in the case of FIG. 10 falls within a preset range. Road resistance is determined.
(本実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
(Effect of this embodiment)
In this embodiment, the following effects can be obtained.
 本実施形態による冷却装置100では、上記のように、冷媒5が気化する熱交換部21の手前の、分岐部23aとの間の位置で、抵抗体30により、ガス率が増大する前の冷媒5の流路抵抗を予め増大させておくことができる。すなわち、それぞれの熱交換部21の手前に設けた抵抗体30により圧力損失を予め大きくすることにより、図10に示したように、抵抗体30による圧力損失によって、各熱交換部21における圧力損失(ΔP1、ΔP2)の差異が各熱交換部21への冷媒分配量(流量Q1、流量Q2)に及ぼす影響を、相対的に小さくすることができる。その結果、分岐した流路内での冷媒5の気化熱を利用して複数の発熱体Mを冷却する冷却装置100において、発熱体Mの負荷が変動した場合でも冷媒分配量の変動を抑制することができる。 In the cooling device 100 according to the present embodiment, as described above, the refrigerant before the heat exchange section 21 where the refrigerant 5 is vaporized and the branch portion 23a is located before the gas ratio is increased by the resistor 30. The flow path resistance of No. 5 can be increased in advance. That is, by increasing the pressure loss in advance by the resistors 30 provided in front of each heat exchange section 21, as shown in FIG. 10, the pressure loss in each heat exchange section 21 is caused by the pressure loss by the resistors 30. The influence of the difference (ΔP1, ΔP2) on the refrigerant distribution amount (flow rate Q1, flow rate Q2) to each heat exchange section 21 can be made relatively small. As a result, in the cooling device 100 that cools the plurality of heating elements M by utilizing the heat of vaporization of the refrigerant 5 in the branched flow paths, the fluctuation of the refrigerant distribution amount is suppressed even when the load of the heating elements M changes. be able to.
 また、抵抗体30は、排出路25には設けられずに分配路23に設けられており、各熱交換部21におけるガス率の相違により圧力損失(ΔP1、ΔP2)の差が生じる前の上流側(分配路23)にのみ抵抗体30が配置されるので、効果的に冷媒分配量(流量Q1、流量Q2)の変動を抑制することができる。 Further, the resistor 30 is provided in the distribution passage 23 instead of being provided in the discharge passage 25, and is upstream before a difference in pressure loss (ΔP1, ΔP2) occurs due to a difference in gas ratio in each heat exchange portion 21. Since the resistor 30 is arranged only on the side (the distribution path 23), it is possible to effectively suppress the variation in the refrigerant distribution amount (flow rate Q1, flow rate Q2).
 また、抵抗体30は、分配路23において、発熱体Mとの熱交換に伴う熱交換部21からの熱伝導の影響を受けないように熱交換部21から離間した位置に配置されているので、抵抗体30の配置位置において熱交換部21からの熱伝導によって冷媒5が気化することが抑制される。そのため、発熱体Mの熱の影響を受ける前段階の位置で流路抵抗(圧力損失)を増大させることができる。 Further, the resistor 30 is arranged in the distribution path 23 at a position separated from the heat exchange part 21 so as not to be affected by heat conduction from the heat exchange part 21 due to heat exchange with the heating element M. The vaporization of the refrigerant 5 due to the heat conduction from the heat exchange portion 21 is suppressed at the arrangement position of the resistor 30. Therefore, the flow path resistance (pressure loss) can be increased at the position of the previous stage where the heat of the heating element M is affected.
 また、抵抗体30は、分配路23において熱交換部21よりも分岐部23aに近い位置に配置されているので、抵抗体30を熱交換部21から相対的に離れた位置に配置できる。その結果、より確実に、発熱体Mの熱によってガス率(圧力損失)に差異が生じる前段階の位置でそれぞれの熱交換部21への流路抵抗(圧力損失)を増大させることができる。 Further, since the resistor 30 is arranged in the distribution path 23 at a position closer to the branch portion 23a than the heat exchange part 21, the resistor 30 can be arranged at a position relatively distant from the heat exchange part 21. As a result, the flow path resistance (pressure loss) to each heat exchange portion 21 can be increased more reliably at the position of the previous stage where the gas rate (pressure loss) differs due to the heat of the heating element M.
 また、第1熱交換部21aおよび第2熱交換部21bの一方における圧力損失が最大となり、第1熱交換部21aおよび第2熱交換部21bの他方における圧力損失が最小となる場合に、第1熱交換部21aおよび第2熱交換部21bの各々に分配される冷媒5の流量差が予め設定された範囲内に収まるように、設置位置における冷媒流路2の流路抵抗を増大させるように、抵抗体30が設けられるので、第1熱交換部21aと第2熱交換部21bとで負荷が最大限相違し、圧力損失の差が最大となる場合でも、冷媒5の分配量を予め設定した範囲内に収めることができる。したがって、発熱体Mの熱負荷が最大限変動した場合にも対応可能な冷却装置100の性能を確保できる。 Further, when the pressure loss in one of the first heat exchange section 21a and the second heat exchange section 21b is maximum and the pressure loss in the other of the first heat exchange section 21a and the second heat exchange section 21b is minimum, To increase the flow passage resistance of the coolant flow passage 2 at the installation position so that the flow rate difference of the refrigerant 5 distributed to each of the first heat exchange portion 21a and the second heat exchange portion 21b falls within a preset range. In addition, since the resistor 30 is provided in the first heat exchanging portion 21a and the second heat exchanging portion 21b, even if the load is maximally different and the difference in pressure loss is maximal, the distribution amount of the refrigerant 5 is preset. It can fit within the set range. Therefore, it is possible to ensure the performance of the cooling device 100 that can cope with the case where the heat load of the heating element M changes to the maximum.
 また、抵抗体30は、同一条件下で熱交換部21の第1フィン21cよりも流路抵抗を増大させるように構成されているので、たとえば分配路23にも第1フィン21cを設けることにより流路抵抗を増大させる場合と異なり、抵抗体30によって流路抵抗を効果的に増大させることができる。そのため、冷媒流通方向(X方向)における抵抗体の長さL1を抑制できる。その結果、冷媒流路2の流路長が不必要に増大することを抑制できるので、流路長の増大により冷却装置100が大型化することを抑制できる。 Further, since the resistor 30 is configured to increase the flow passage resistance more than the first fin 21c of the heat exchange section 21 under the same conditions, for example, by providing the first fin 21c in the distribution passage 23 as well. Unlike the case of increasing the channel resistance, the resistor 30 can effectively increase the channel resistance. Therefore, the length L1 of the resistor in the coolant flow direction (X direction) can be suppressed. As a result, it is possible to prevent the flow path length of the coolant flow path 2 from unnecessarily increasing, and thus it is possible to prevent the cooling device 100 from increasing in size due to the increase in the flow path length.
 また、抵抗体30は、冷媒5の流通方向と交差する方向(Y方向)に向けて設けられ、かつ、冷媒5が流通方向に通過可能な第2フィン31により構成されているので、冷媒5を通過可能としつつ、冷媒5を遮るように冷媒5の流通方向と交差する方向(通常と異なる方向)に向けた第2フィン31によって、流路抵抗を効果的に増大させることができる。また、フィンは、熱交換部21にも設けられる部材であるため、抵抗体30として専用の部材を設ける必要がなく装置構成を簡素化できる。 Further, the resistor 30 is provided in the direction (Y direction) intersecting the circulation direction of the refrigerant 5, and is constituted by the second fins 31 through which the refrigerant 5 can pass in the circulation direction. The second fins 31 directed in a direction (a direction different from the normal direction) intersecting the flow direction of the coolant 5 so as to block the coolant 5 can effectively increase the flow passage resistance while allowing the passage of the flow path. In addition, since the fin is a member that is also provided in the heat exchange section 21, it is not necessary to provide a dedicated member as the resistor 30, and the device configuration can be simplified.
 また、抵抗体30を構成する第2フィン31が、オフセットフィン40cを含むので、短距離でも効果的に流路抵抗を増大させることが可能な抵抗体30を構成することができる。また、上述の通り、オフセットフィン40cには、オフセット量Osやフィン部41の長さL2において多様な種類があるので、これらを利用することによって冷媒流路2に適した流路抵抗の抵抗体30を容易に得ることができる。なお、上述の通り、第2フィン31がパーフォレートフィン40bを含む場合でも、同様の効果が得られる。 Further, since the second fin 31 forming the resistor 30 includes the offset fin 40c, it is possible to form the resistor 30 capable of effectively increasing the flow path resistance even in a short distance. Further, as described above, since there are various types of the offset fin 40c in the offset amount Os and the length L2 of the fin portion 41, by using these, a resistor having a flow passage resistance suitable for the coolant flow passage 2 is provided. 30 can be easily obtained. As described above, even when the second fin 31 includes the perforate fin 40b, the same effect can be obtained.
 また、本体部1が、冷媒流路2を区画する壁部13と、設置面11を構成する板部材14と、冷媒流路2内に配置された抵抗体30とがろう付けにより一体化された構造を有するので、ろう付けにより、冷媒流路2と抵抗体30とを一括して確実に接合することができる。一方、ろう付けでは、ろう材を溶融させて部材を接合するため、たとえば抵抗体30として、微小孔が形成されたオリフィス板や、微小隙間が形成されたブロック体などを用いる場合、溶けたろう材によって目詰まりを起こさないようにする必要があり製造難易度が増大する。これに対して、第2フィン31により構成される抵抗体30では、ろう付けにより接合された冷却装置にフィンが多く用いられている実績があり、目詰まりなどを生じさせることなく接合させることが容易である。そのため、第2フィン31により構成される抵抗体30では、ろう付けによる一括接合を行う場合でも、目詰まりの発生や流路抵抗の設計値からの乖離を生じることなく容易に抵抗体30を構成できるので、冷却装置100の性能と製造の容易性との両立を図ることができる。 In addition, in the main body portion 1, the wall portion 13 that defines the coolant flow passage 2, the plate member 14 that configures the installation surface 11, and the resistor 30 that is disposed in the coolant flow passage 2 are integrated by brazing. Since it has the above-mentioned structure, the coolant flow path 2 and the resistor 30 can be reliably joined together by brazing. On the other hand, in brazing, since the brazing material is melted and the members are joined together, for example, when the orifice plate with minute holes or the block body with minute gaps is used as the resistor 30, the molten brazing material is used. Therefore, it is necessary to prevent clogging, which increases the manufacturing difficulty. On the other hand, the resistor 30 including the second fin 31 has a large number of fins used in the cooling device joined by brazing, and thus the resistor 30 can be joined without causing clogging. It's easy. Therefore, in the resistor 30 including the second fins 31, the resistor 30 can be easily configured without causing clogging or deviation from the design value of the flow path resistance even when performing collective joining by brazing. Therefore, the performance of the cooling device 100 and the ease of manufacturing can be compatible.
 (変形例)
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
(Modification)
It should be understood that the embodiments disclosed this time are exemplifications in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes meanings equivalent to the scope of claims for patent and all modifications (modifications) within the scope.
 たとえば、上記実施形態では、発熱体Mが電力制御用スイッチング素子を備えたパワーモジュールである例を示したが、本発明はこれに限られない。本発明では、発熱体Mは特に限定されず、どのような物であってもよい。 For example, in the above embodiment, an example in which the heating element M is a power module including a power control switching element has been shown, but the present invention is not limited to this. In the present invention, the heating element M is not particularly limited and may be any one.
 また、上記実施形態では、設置面11に4つの配置領域12を設けて、冷媒流路2に4つの熱交換部21を設けた例を示したが、本発明はこれに限られない。配置領域12の数(つまり、設置面11に設置する発熱体Mの数)は、複数であれば2つ、3つ、または5つ以上でもよい。熱交換部21は、設置面11に設置される発熱体Mの数に応じた数だけ設ければよい。 Further, in the above embodiment, an example in which the four disposition regions 12 are provided on the installation surface 11 and the four heat exchange parts 21 are provided in the refrigerant flow path 2 has been shown, but the present invention is not limited to this. The number of the arrangement regions 12 (that is, the number of the heating elements M to be installed on the installation surface 11) may be two, three, or five or more as long as it is plural. The number of heat exchanging parts 21 may be provided according to the number of heating elements M installed on the installation surface 11.
 また、上記実施形態では、本体部1の第1面(上面)を設置面11とした例を示したが、本発明はこれに限られない。本体部1の第2面(下面)が設置面11であってもよいし、第1面および第2面の両方が設置面11であってもよい。第1面および第2面の両方が設置面11である場合には、本体部1が第1面と隣接する冷媒流路2と、第2面と隣接する冷媒流路2を備えるように、本体部1の厚み方向に複数層の冷媒流路2が形成されてもよい。 Also, in the above embodiment, an example in which the first surface (upper surface) of the main body 1 is used as the installation surface 11 has been shown, but the present invention is not limited to this. The second surface (lower surface) of the main body 1 may be the installation surface 11, or both the first surface and the second surface may be the installation surface 11. When both the first surface and the second surface are the installation surfaces 11, the main body portion 1 is provided with the refrigerant channel 2 adjacent to the first surface and the refrigerant channel 2 adjacent to the second surface, A plurality of layers of the coolant channels 2 may be formed in the thickness direction of the main body 1.
 また、上記実施形態では、本体部1のX1方向の側端面に入口開口22を設け、X2方向の側端面に出口開口24を設けた例を示したが、本発明はこれに限られない。本発明では、本体部1の同一の側端面に入口開口22および出口開口24を設けてもよい。この場合、入口開口22から延びた冷媒流路2が入口開口22とは反対側の端部で逆向きに折り返して(Uターンして)、出口開口24に接続するようにしてもよい。入口開口22および出口開口24は、いずれも、本体部1のどの表面に開口していてもよく、たとえば板部材14を厚み方向に貫通して第1面または第2面に開口してもよい。 Further, in the above embodiment, an example in which the inlet opening 22 is provided on the side end surface of the main body 1 in the X1 direction and the outlet opening 24 is provided on the side end surface of the main body 1 in the X2 direction has been shown, but the present invention is not limited to this. In the present invention, the inlet opening 22 and the outlet opening 24 may be provided on the same side end surface of the main body 1. In this case, the refrigerant flow path 2 extending from the inlet opening 22 may be turned back (U-turned) at the end opposite to the inlet opening 22 and connected to the outlet opening 24. Both the inlet opening 22 and the outlet opening 24 may be opened on any surface of the main body portion 1, for example, may penetrate the plate member 14 in the thickness direction and may be opened on the first surface or the second surface. ..
 また、上記実施形態では、第1フィン21cの例として、プレーンフィン40a、パーフォレートフィン40bまたはオフセットフィン40cを示したが、本発明はこれに限られない。本発明では、第1フィン21cとして、これら以外のルーバーフィンやヘリンボーンフィンを採用してもよい。 In the above embodiment, the plane fin 40a, the perforate fin 40b, or the offset fin 40c is shown as an example of the first fin 21c, but the present invention is not limited to this. In the present invention, a louver fin or a herringbone fin other than these may be adopted as the first fin 21c.
 また、上記実施形態では、冷媒流路2が2つの支流路26に分岐した例を示したが、本発明はこれに限られない。本発明では、冷媒流路2が3つ以上に分岐してもよい。たとえば、4つの熱交換部21に対して、冷媒流路2が4つの支流路26に分岐してもよい。また、1つの分岐部23aにおいて4分岐するのではなく、最初の分岐部で2分岐した後、それぞれの支流路26に設けた第2の分岐部でさらに2分岐することにより、合計4分岐するような構成でもよい。 Further, in the above embodiment, an example in which the refrigerant flow path 2 is branched into two tributary flow paths 26 is shown, but the present invention is not limited to this. In the present invention, the refrigerant channel 2 may be branched into three or more. For example, with respect to the four heat exchange parts 21, the refrigerant flow path 2 may be branched into four branch flow paths 26. Further, instead of branching into four at one branching portion 23a, after branching into two at the first branching portion and then further branching into two at the second branching portion provided in each tributary flow path 26, a total of four branches are made. Such a configuration may be used.
 また、上記実施形態では、抵抗体30を、2つに分岐した冷媒流路2のそれぞれの支流路26に設けた例を示したが、本発明はこれに限られない。本発明では、分岐した支流路26の全部に抵抗体30を設ける必要はなく、分岐した支流路26のうちの一部にのみ抵抗体30を設けてもよい。たとえば第1熱交換部21aの発熱体Mと第2熱交換部21bの発熱体Mとでパワーモジュールの稼働率が異なり、第1熱交換部21aの発熱体Mは、常時100%付近の負荷で稼働するのに対して、第2熱交換部21bの発熱体Mでは30%付近の負荷で稼働するような場合には、第2熱交換部21b側の支流路26に抵抗体30を設けるだけでもよい。 Further, in the above embodiment, an example in which the resistor 30 is provided in each of the tributary flow paths 26 of the refrigerant flow path 2 branched into two has been shown, but the present invention is not limited to this. In the present invention, it is not necessary to provide the resistor 30 in all the branched tributary channels 26, and the resistor 30 may be provided only in a part of the branched tributary channels 26. For example, the heating element M of the first heat exchanging portion 21a and the heating element M of the second heat exchanging portion 21b have different operating rates of the power modules, and the heating element M of the first heat exchanging portion 21a always has a load of about 100%. On the other hand, when the heating element M of the second heat exchange section 21b operates at a load of around 30%, the resistor 30 is provided in the tributary flow path 26 on the second heat exchange section 21b side. You can just do it.
 また、上記実施形態では、抵抗体30を分配路23に設けて排出路25には設けない例を示したが、本発明はこれに限られない。抵抗体を排出路25にも設けてもよい。このとき、たとえば分配路23に設けた抵抗体30による圧力損失の増分に比べて、排出路25に設けた抵抗体による圧力損失の増分が十分小さければ、排出路25に設けた抵抗体によって冷媒分配量の変動が増大する影響は、分配路23に設けた抵抗体30によって冷媒分配量の変動を抑制する効果に比べて十分小さくなるため、問題がない。 Further, in the above embodiment, the example in which the resistor 30 is provided in the distribution passage 23 and not in the discharge passage 25 is shown, but the present invention is not limited to this. A resistor may be provided in the discharge passage 25 as well. At this time, if the increment of the pressure loss due to the resistor provided in the discharge passage 25 is sufficiently smaller than the increment of the pressure loss due to the resistor 30 provided in the distribution passage 23, the refrigerant provided by the resistor provided in the discharge passage 25 is used. Since the influence of the variation of the distribution amount increases is sufficiently smaller than the effect of suppressing the variation of the refrigerant distribution amount by the resistor 30 provided in the distribution path 23, there is no problem.
 また、上記実施形態では、抵抗体30を分配路23において熱交換部21よりも分岐部23aに近い位置に配置した例を示したが、本発明はこれに限られない。抵抗体30は、少なくとも分配路23の分岐部23aと熱交換部21との間に設けられればよく、抵抗体30が分岐部23aよりも熱交換部21に近くてもよい。ただし、抵抗体30の設置位置において発熱体Mの熱により冷媒5が気化する場合、負荷の高い側の抵抗体30では圧力損失が相対的に増大し、負荷の低い側の抵抗体30では圧力損失が相対的に減少して、抵抗体30を設けたことによる冷媒分配量の変動抑制効果が小さくなる。そのため、少なくとも発熱体Mによる熱の影響を受けない程度に、熱交換部21から離れた位置に抵抗体30を配置することが好ましい。 Further, in the above-described embodiment, the example in which the resistor 30 is arranged in the distribution path 23 closer to the branch portion 23a than the heat exchange portion 21 is shown, but the present invention is not limited to this. The resistor 30 may be provided at least between the branch part 23a of the distribution path 23 and the heat exchange part 21, and the resistor 30 may be closer to the heat exchange part 21 than the branch part 23a. However, when the refrigerant 5 is vaporized by the heat of the heating element M at the installation position of the resistor 30, the pressure loss of the resistor 30 on the high load side relatively increases, and the pressure of the resistor 30 on the low load side increases. The loss is relatively reduced, and the effect of suppressing the variation in the refrigerant distribution amount due to the provision of the resistor 30 is reduced. Therefore, it is preferable to dispose the resistor 30 at a position distant from the heat exchange unit 21 at least to the extent that it is not affected by the heat of the heating element M.
 また、上記実施形態では、冷媒5の流通方向(X方向)において、抵抗体30の長さL1は、熱交換部21の長さよりも小さい例を示したが、本発明はこれに限られない。冷媒5の流通方向における抵抗体30の長さL1は、熱交換部21の長さと同じでもよいし、熱交換部21の長さよりも大きくてもよい。 In the above embodiment, the length L1 of the resistor 30 is smaller than the length of the heat exchange section 21 in the circulation direction (X direction) of the refrigerant 5, but the present invention is not limited to this. .. The length L1 of the resistor 30 in the circulation direction of the refrigerant 5 may be the same as the length of the heat exchange section 21, or may be larger than the length of the heat exchange section 21.
 また、上記実施形態では、抵抗体30を構成する第2フィン31がオフセットフィン40cである例を示したが、上記のように、第2フィン31がパーフォレートフィン40bであってもよい。 Further, in the above embodiment, the example in which the second fin 31 configuring the resistor 30 is the offset fin 40c has been described, but the second fin 31 may be the perforate fin 40b as described above.
 また、上記実施形態では、抵抗体30が、同一条件下で第1フィン21cよりも流路抵抗を増大させるように構成される例を示したが、本発明はこれに限られない。本発明では、抵抗体30の流路抵抗と第1フィン21cの流路抵抗とが同程度であってもよいし、第1フィン21cの方が流路抵抗が大きくてもよい。 Further, in the above-described embodiment, the example in which the resistor 30 is configured to increase the flow path resistance more than that of the first fin 21c under the same condition is shown, but the present invention is not limited to this. In the present invention, the flow resistance of the resistor 30 and the flow resistance of the first fin 21c may be about the same, or the flow resistance of the first fin 21c may be higher.
 また、上記実施形態では、本体部1が、壁部13と、板部材14と、抵抗体30とがろう付けにより一体化された構造を有する例を示したが、本発明はこれに限られない。本体部1は、ろう付け以外の方法(溶接、締結、固相拡散接合など)により各部材が一体化されていてもよい。 Further, in the above-described embodiment, an example in which the main body 1 has a structure in which the wall 13, the plate member 14, and the resistor 30 are integrated by brazing is shown, but the present invention is not limited to this. Absent. Each member of the main body 1 may be integrated by a method other than brazing (welding, fastening, solid phase diffusion bonding, etc.).
 また、上記実施形態では、図2に示したように2分岐してX方向に直線状に延びた後、合流する形状の冷媒流路2を例示したが、本発明はこれに限られない。冷媒流路2の形状(本体部1内での経路)は任意であり、設置面11における発熱体M(配置領域12)の位置や、入口開口22および出口開口24の位置、本体部1の外形形状などに応じて適宜設定されればよい。 In addition, in the above-described embodiment, as shown in FIG. 2, the refrigerant flow path 2 has a shape in which it is branched into two and linearly extends in the X direction, and then merges, but the present invention is not limited to this. The shape of the coolant channel 2 (path in the main body 1) is arbitrary, and the position of the heating element M (arrangement region 12) on the installation surface 11, the positions of the inlet opening 22 and the outlet opening 24, the position of the main body 1 It may be appropriately set according to the outer shape and the like.
 たとえば、図2の例では、2つの第1熱交換部21aおよび2つの第2熱交換部21bが、それぞれX方向に並んで、直線状の接続路27によって接続された例を示したが、各第1熱交換部21a(各第2熱交換部21b)が、X方向に並ばなくてもよい。また、たとえば図11に示すように、上流側の熱交換部21と下流側の熱交換部21とを接続する接続路27が非直線形状であってもよい。 For example, in the example of FIG. 2, an example in which the two first heat exchanging portions 21a and the two second heat exchanging portions 21b are arranged in the X direction and connected by the linear connecting path 27 is shown. Each 1st heat exchange part 21a (each 2nd heat exchange part 21b) does not need to be located in a line with the X direction. Further, as shown in FIG. 11, for example, the connection path 27 that connects the upstream heat exchange portion 21 and the downstream heat exchange portion 21 may have a non-linear shape.
 図11では、接続路27が、2つの屈曲部71を有して曲がっている。図11のように、上流側の熱交換部21を通過した冷媒5が、曲がった接続路27を通過して下流側の熱交換部21に流入する場合、冷媒5が気液混相状態となっているため、遠心力により、屈曲部71の外周側に比重の大きい液相の冷媒5が集中し、内周側に気相の冷媒5が集中する。接続路27において気相と液相とが分かれた偏った状態で下流側の熱交換部21に流入すると、冷却能力が低下する可能性がある。そのため、曲がった接続路27を採用する場合には、図11のように、屈曲部71において接続路27を複数のチャネル72に分割する偏流抑制部73を設けるのが好ましい。偏流抑制部73は、たとえば冷媒5の流通方向に沿って延びるフィンであって、第2方向(B方向)へは冷媒5が流通しないプレーンフィン40a(図4参照)などにより構成するのが好ましい。これにより、屈曲部71では、気相と液相との偏りはそれぞれのフィン部41の間のチャネル72内で局所的に発生することになる。そのため、偏流抑制部73を設けずに接続路27の全体で偏りが生じる場合と比べて気相と液相との偏りを抑制できる。 In FIG. 11, the connecting path 27 is bent with two bent portions 71. As shown in FIG. 11, when the refrigerant 5 that has passed through the heat exchange section 21 on the upstream side passes through the curved connecting path 27 and flows into the heat exchange section 21 on the downstream side, the refrigerant 5 becomes a gas-liquid mixed phase state. Therefore, due to the centrifugal force, the liquid-phase refrigerant 5 having a large specific gravity is concentrated on the outer peripheral side of the bent portion 71, and the gas-phase refrigerant 5 is concentrated on the inner peripheral side. If the gas phase and the liquid phase are separated in the connection path 27 and flow into the heat exchange section 21 on the downstream side in a biased state, the cooling capacity may decrease. Therefore, when the curved connecting path 27 is adopted, it is preferable to provide the drift suppressing portion 73 that divides the connecting path 27 into the plurality of channels 72 at the bent portion 71, as shown in FIG. 11. The uneven flow suppressing portion 73 is, for example, a fin extending along the circulation direction of the coolant 5, and is preferably configured by a plain fin 40a (see FIG. 4) or the like in which the coolant 5 does not flow in the second direction (B direction). .. As a result, in the bent portion 71, the bias between the gas phase and the liquid phase locally occurs in the channel 72 between the fin portions 41. Therefore, it is possible to suppress the deviation between the gas phase and the liquid phase as compared with the case where the deviation is generated in the entire connection passage 27 without providing the deviation suppressing portion 73.
 さらに、図11のように曲がった接続路27に直線部74がある場合、直線部74は、フィンが設けられない空隙部とするか、冷媒5が第2方向(B方向)にも流通可能なフィン(すなわち、パーフォレートフィン40b(図5参照)またはオフセットフィン40c(図6参照))を設けることが好ましい。これにより、直線部74において冷媒5が流路幅方向にも流動可能となる。これにより、曲がった接続路27の外周側を通過する冷媒5と内周側を通過する冷媒5との間での経路長の相違に起因する偏流を抑制することができる。 Furthermore, when there is a straight line portion 74 in the curved connecting path 27 as shown in FIG. 11, the straight line portion 74 is a void portion in which no fins are provided, or the refrigerant 5 can also flow in the second direction (B direction). It is preferable to provide such a fin (that is, a perforate fin 40b (see FIG. 5) or an offset fin 40c (see FIG. 6)). As a result, the refrigerant 5 can flow in the straight line portion 74 in the flow channel width direction. As a result, it is possible to suppress uneven flow due to the difference in path length between the refrigerant 5 passing on the outer peripheral side and the refrigerant 5 passing on the inner peripheral side of the curved connection path 27.
 なお、屈曲部71に偏流抑制部73を設ける構成は、図12に示すように分配路23の屈曲部75に適用してもよい。すなわち、入口開口22に気液混相状態の冷媒5が供給される場合、分配路23のそれぞれの屈曲部75に偏流抑制部73を設けてもよい。これにより、予め気液混相で流入した冷媒5が、分配路23において内周側の気相と外周側の液相とに偏って流れることを抑制できる。 The configuration in which the nonuniform flow suppressing portion 73 is provided in the bent portion 71 may be applied to the bent portion 75 of the distribution path 23 as shown in FIG. That is, when the refrigerant 5 in the gas-liquid mixed phase is supplied to the inlet opening 22, the nonuniform flow suppressing portion 73 may be provided in each bent portion 75 of the distribution passage 23. As a result, it is possible to prevent the refrigerant 5 that has previously flowed in the gas-liquid mixed phase from flowing unevenly in the distribution passage 23 between the gas phase on the inner peripheral side and the liquid phase on the outer peripheral side.
 1 本体部
 2 冷媒流路
 5 冷媒
 11 設置面
 13、13a 壁部
 14 板部材
 21 熱交換部
 21a 第1熱交換部
 21b 第2熱交換部
 21c 第1フィン
 22 入口開口
 23 分配路
 23a 分岐部
 24 出口開口
 25 排出路
 30 抵抗体
 31 第2フィン
 40b パーフォレートフィン
 40c オフセットフィン
 100 冷却装置
 M 発熱体
 Q1 流量
 Q2 流量
 ΔP 冷媒流路の圧力損失
 ΔP1 第1熱交換部の圧力損失
 ΔP2 第2熱交換部の圧力損失
DESCRIPTION OF SYMBOLS 1 Main body part 2 Refrigerant flow path 5 Refrigerant 11 Installation surface 13, 13a Wall part 14 Plate member 21 Heat exchange part 21a 1st heat exchange part 21b 2nd heat exchange part 21c 1st fin 22 Entrance opening 23 Distribution path 23a Branch part 24 Outlet opening 25 Discharge path 30 Resistor 31 Second fin 40b Perforate fin 40c Offset fin 100 Cooling device M Heating element Q1 Flow rate Q2 Flow rate ΔP Pressure loss of refrigerant flow path ΔP1 Pressure loss of first heat exchange section ΔP2 Second heat Pressure loss in the exchange section

Claims (9)

  1.  発熱体が設置される設置面を有する本体部と、
     前記本体部内に設けられ、前記設置面上の複数の前記発熱体と冷媒との間でそれぞれ熱交換を行う複数の熱交換部を含む冷媒流路とを備え、
     前記冷媒流路は、少なくとも一部が液相の冷媒が流入する入口開口と、前記入口開口から分岐してそれぞれ前記熱交換部につながる分配路と、少なくとも一部が前記熱交換部において気化した冷媒が流出する出口開口とを含み、
     前記分配路の分岐部と前記熱交換部との間には、流路抵抗を増大させることにより、前記発熱体の発熱量の変動に伴う冷媒の分配量の変動を抑制する抵抗体が設けられている、冷却装置。
    A main body having an installation surface on which a heating element is installed,
    Provided in the main body portion, and comprising a refrigerant flow path including a plurality of heat exchange portions that perform heat exchange between the plurality of heating elements and the refrigerant on the installation surface,
    The refrigerant passage has an inlet opening at least a portion of which a liquid-phase refrigerant flows into, a distribution passage branched from the inlet opening and connected to the heat exchange section, and at least a part of which is vaporized in the heat exchange section. An outlet opening through which the refrigerant flows,
    A resistor is provided between the branch part of the distribution path and the heat exchange part to increase the flow path resistance to suppress the variation in the distribution amount of the refrigerant due to the variation in the heat generation amount of the heating element. The cooling system.
  2.  前記冷媒流路は、それぞれの前記熱交換部から合流して前記出口開口につながる排出路を含み、
     前記抵抗体は、前記排出路には設けられずに前記分配路に設けられている、請求項1に記載の冷却装置。
    The refrigerant passage includes a discharge passage that merges from the respective heat exchange units and is connected to the outlet opening,
    The cooling device according to claim 1, wherein the resistor is provided not in the discharge passage but in the distribution passage.
  3.  前記抵抗体は、前記分配路において、前記発熱体との熱交換に伴う前記熱交換部からの熱伝導の影響を受けないように前記熱交換部から離間した位置に配置されている、請求項1に記載の冷却装置。 The resistor is arranged in the distribution path at a position separated from the heat exchange unit so as not to be affected by heat conduction from the heat exchange unit due to heat exchange with the heat generator. The cooling device according to 1.
  4.  前記抵抗体は、前記分配路において前記熱交換部よりも前記分岐部に近い位置に配置されている、請求項3に記載の冷却装置。 The cooling device according to claim 3, wherein the resistor is arranged at a position closer to the branch portion than the heat exchange portion in the distribution path.
  5.  複数の前記熱交換部は、第1熱交換部と第2熱交換部とを含み、
     前記抵抗体は、前記第1熱交換部および前記第2熱交換部の一方における圧力損失が最大となり、前記第1熱交換部および前記第2熱交換部の他方における圧力損失が最小となる場合に、前記第1熱交換部および前記第2熱交換部の各々に分配される冷媒の流量差が予め設定された範囲内に収まるように、設置位置における前記冷媒流路の流路抵抗を増大させる、請求項1に記載の冷却装置。
    A plurality of the heat exchange units include a first heat exchange unit and a second heat exchange unit,
    In the case where the resistor has a maximum pressure loss in one of the first heat exchange section and the second heat exchange section and a minimum pressure loss in the other of the first heat exchange section and the second heat exchange section. In addition, the flow path resistance of the refrigerant flow path at the installation position is increased so that the difference in flow rate of the refrigerant distributed to each of the first heat exchange section and the second heat exchange section falls within a preset range. The cooling device according to claim 1, wherein
  6.  前記熱交換部は、冷媒の流通方向に沿って設けられた第1フィンを含み、
     前記抵抗体は、同一条件下で前記第1フィンよりも流路抵抗を増大させるように構成されている、請求項1に記載の冷却装置。
    The heat exchange section includes first fins provided along the flow direction of the refrigerant,
    The cooling device according to claim 1, wherein the resistor is configured to increase the flow path resistance more than the first fin under the same condition.
  7.  前記抵抗体は、冷媒の流通方向と交差する方向に向けて設けられ、かつ、冷媒が流通方向に通過可能な第2フィンにより構成されている、請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the resistor is provided with a second fin that is provided in a direction that intersects a flow direction of the refrigerant and that is configured to pass through the coolant in the flow direction.
  8.  前記抵抗体を構成する前記第2フィンは、オフセットフィンまたはパーフォレートフィンを含む、請求項7に記載の冷却装置。 The cooling device according to claim 7, wherein the second fins forming the resistor include an offset fin or a perforate fin.
  9.  前記本体部は、前記冷媒流路を区画する壁部と、前記設置面を構成する板部材と、前記冷媒流路内に配置された前記抵抗体とがろう付けにより一体化された構造を有する、請求項7に記載の冷却装置。 The main body portion has a structure in which a wall portion that divides the refrigerant flow passage, a plate member that constitutes the installation surface, and the resistor arranged in the refrigerant flow passage are integrated by brazing. The cooling device according to claim 7.
PCT/JP2019/007389 2019-02-26 2019-02-26 Cooling device WO2020174593A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021501441A JP7119200B2 (en) 2019-02-26 2019-02-26 Cooling system
PCT/JP2019/007389 WO2020174593A1 (en) 2019-02-26 2019-02-26 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/007389 WO2020174593A1 (en) 2019-02-26 2019-02-26 Cooling device

Publications (1)

Publication Number Publication Date
WO2020174593A1 true WO2020174593A1 (en) 2020-09-03

Family

ID=72238407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007389 WO2020174593A1 (en) 2019-02-26 2019-02-26 Cooling device

Country Status (2)

Country Link
JP (1) JP7119200B2 (en)
WO (1) WO2020174593A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230091259A (en) * 2021-12-16 2023-06-23 현대로템 주식회사 A phase change thermal management system for multiple heating elements including a flow equalization resistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043060A1 (en) * 2010-08-20 2012-02-23 Foxconn Technology Co., Ltd. Loop heat pipe
JP2013040702A (en) * 2011-08-12 2013-02-28 T Rad Co Ltd Cooling device
WO2015146110A1 (en) * 2014-03-26 2015-10-01 日本電気株式会社 Phase-change cooler and phase-change cooling method
WO2016117342A1 (en) * 2015-01-21 2016-07-28 パナソニックIpマネジメント株式会社 Cooling device and electronic device in which same is installed
WO2017037921A1 (en) * 2015-09-03 2017-03-09 富士通株式会社 Loop heat pipe, manufacturing method for same, and electronic device
WO2017150415A1 (en) * 2016-03-04 2017-09-08 日本電気株式会社 Cooling system, cooler, and cooling method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043060A1 (en) * 2010-08-20 2012-02-23 Foxconn Technology Co., Ltd. Loop heat pipe
JP2013040702A (en) * 2011-08-12 2013-02-28 T Rad Co Ltd Cooling device
WO2015146110A1 (en) * 2014-03-26 2015-10-01 日本電気株式会社 Phase-change cooler and phase-change cooling method
WO2016117342A1 (en) * 2015-01-21 2016-07-28 パナソニックIpマネジメント株式会社 Cooling device and electronic device in which same is installed
WO2017037921A1 (en) * 2015-09-03 2017-03-09 富士通株式会社 Loop heat pipe, manufacturing method for same, and electronic device
WO2017150415A1 (en) * 2016-03-04 2017-09-08 日本電気株式会社 Cooling system, cooler, and cooling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230091259A (en) * 2021-12-16 2023-06-23 현대로템 주식회사 A phase change thermal management system for multiple heating elements including a flow equalization resistor
KR102581056B1 (en) * 2021-12-16 2023-09-20 현대로템 주식회사 A phase change thermal management system for multiple heating elements including a flow equalization resistor

Also Published As

Publication number Publication date
JP7119200B2 (en) 2022-08-16
JPWO2020174593A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US7188662B2 (en) Apparatus and method of efficient fluid delivery for cooling a heat producing device
JP4675283B2 (en) Heat sink and cooler
RU2457416C1 (en) Heat exchanger
US7259965B2 (en) Integrated circuit coolant microchannel assembly with targeted channel configuration
CN102575912B (en) Heat exchanger plate and evaporator comprising same
CN111936815B (en) Distributor and heat exchanger
JP3958400B2 (en) Distribution header
JP2002130988A (en) Laminated heat-exchanger
CN104380023A (en) A plate heat exchanger with injection means
KR101317092B1 (en) Cooling device
WO2020174593A1 (en) Cooling device
KR102352040B1 (en) heat exchanger for cooling electric element
US20050144978A1 (en) Full plate, alternating layered refrigerant flow evaporator
CN115244356A (en) Heat exchanger
EP2833403B1 (en) Header for electronic cooler
JP5519353B2 (en) heatsink
CN114930108A (en) Heat exchanger
US20060042785A1 (en) Pumped fluid cooling system and method
JP7301554B2 (en) Heat exchanger
JP4547205B2 (en) Evaporator
JP2012032129A (en) Evaporator
JP5982232B2 (en) Cooling system
US11412640B2 (en) Plate cooler for aircraft electronic components
US10168112B2 (en) Heat exchanging apparatus and method for transferring heat
JP7142806B1 (en) Distributors, heat exchangers and heat pump devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501441

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917137

Country of ref document: EP

Kind code of ref document: A1