Nothing Special   »   [go: up one dir, main page]

WO2020170466A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2020170466A1
WO2020170466A1 PCT/JP2019/024251 JP2019024251W WO2020170466A1 WO 2020170466 A1 WO2020170466 A1 WO 2020170466A1 JP 2019024251 W JP2019024251 W JP 2019024251W WO 2020170466 A1 WO2020170466 A1 WO 2020170466A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
groove
tread
edge
width direction
Prior art date
Application number
PCT/JP2019/024251
Other languages
French (fr)
Japanese (ja)
Inventor
達也 増山
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to DE112019006446.0T priority Critical patent/DE112019006446B4/en
Publication of WO2020170466A1 publication Critical patent/WO2020170466A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0353Circumferential grooves characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0355Circumferential grooves characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0362Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0365Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane characterised by width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a pneumatic tire suitable as a heavy duty pneumatic tire, and more particularly to a pneumatic tire capable of improving snow traction performance while maintaining good running performance on an unpaved road.
  • Heavy-duty pneumatic tires used for construction vehicles such as dump trucks are mainly required to have excellent running performance (traction performance) on unpaved roads. Therefore, a block-based tread pattern provided with a large number of lug grooves extending in the tire width direction is used (see, for example, Patent Document 1).
  • An object of the present invention is to provide a pneumatic tire capable of improving snow traction performance while maintaining good running performance on an unpaved road.
  • a pneumatic tire for achieving the above object is a tread portion which extends in the tire circumferential direction and forms an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and a tire diameter of these sidewall portions.
  • the rotational direction is specified, on the outer surface of the tread portion, a plurality of lug grooves extending in the tire width direction, and a tire circumferential direction
  • a circumferential narrow groove that connects the lug grooves adjacent to each other is formed, and a plurality of center blocks are defined on the center side of the tread portion by the lug groove and the circumferential narrow groove, and the center block is the tire equator.
  • the first center block and the second center block are arranged alternately in the tire circumferential direction, each of the first center block and the second center block, the axial edge of the ground contact first side that extends along the tire width direction on the ground contact first side and straddles the tire equator. And an axial edge on the grounding landing side that extends along the tire width direction to the landing landing side and straddles the tire equator, and a block width from each end of the grounding landing side axial edge to the landing landing side.
  • the center block located near the tire equator in a tire having a block-based tread pattern in which a plurality of blocks are divided by lug grooves and circumferential narrow grooves, by making the center block located near the tire equator have the above-described shape, the tire in the lug groove A groove component in the width direction can be sufficiently secured, and traction performance on unpaved roads (hereinafter referred to as off-road traction performance) and snow traction performance can be improved.
  • the center block near the tire equator has a plurality of axial edges and diagonal edges, it is possible to increase edge components in both the tire width direction and the tire circumferential direction, which contributes to improvement of snow traction performance. .. This makes it possible to maintain good off-road traction performance and improve snow traction performance as the number of edge components increases.
  • the distance A from the connection point between the axial edge on the landing post-arrival side and the diagonal edge on the ground post-landing side to the tire equator, and The distance B from the connection point between the axial edge and the diagonal edge on the first landing side, which is not connected to the diagonal edge on the grounding side, to the tire equator satisfies the relationship of 0.40 ⁇ A/B ⁇ 0.68. It is preferable. This makes it possible to improve off-road traction performance and snow traction performance in a well-balanced manner.
  • the angle ⁇ formed by the oblique edge of the first center block or the second center block on the post-ground contact side and the axial edge of the second center block or the first center block on the pre-ground contact side is 55° ⁇ . It is preferably in the range of 75°. This makes it possible to improve off-road traction performance and snow traction performance in a well-balanced manner.
  • the lug groove extends from the tread end on one side with respect to the tire equator toward the tire width direction inward and crosses the tire equator, and from the tread end on the other side with respect to the tire equator. Consisting of lug grooves extending inward in the tire width direction and intersecting the tire equator, these lug grooves are arranged alternately in the tire circumferential direction, and each lug groove intersects the tire equator in the tire width direction.
  • the first groove portion that extends along the second groove portion that extends from one end of the first groove portion to the tread end with an angle smaller than the first groove portion with respect to the tire circumferential direction, and the first groove portion The other end communicates with the second groove portion of the lug groove adjacent in the tire circumferential direction, the first groove portion is located on the ground contact first side of the tread end side end portion of the lug groove, from the tire equator to the tread end.
  • the distance is W
  • the area between the tire equator and the tire equator at a position 0.5 W away from the tire equator is the inner region, and the position is 0.5 W away from the tire equator at the tire width direction and the tread end.
  • the second groove portion When the region of is the outer region, the second groove portion is curved or bent so that the average angle of the second groove portion in the inner region with respect to the tire circumferential direction becomes smaller than the average angle of the second groove portion in the outer region with respect to the tire circumferential direction. Therefore, the maximum length of the center block in the tire width direction is preferably 25% to 35% of the tread spread width. Since the lug groove including the first groove portion and the second groove portion is provided, it is possible to improve the low noise performance while improving the off-road traction performance.
  • the first groove portion extending along the tire width direction is arranged in the vicinity of the tire equator that greatly contributes to the traction performance, and the first groove portion communicates with another lug groove (second groove portion),
  • the traction performance can be efficiently improved.
  • the second groove portion is curved or bent as described above, so that the groove length can be increased, the traction performance can be improved, and the generation of air column resonance noise can be suppressed. Further, by appropriately securing the maximum width of the center block, it is possible to secure sufficient block rigidity and exhibit good traction performance.
  • a plurality of shoulder blocks are defined on the shoulder side of the tread portion by the lug groove and the circumferential narrow groove, and a shallow groove having at least one bending point is formed on each tread surface of the center block and the shoulder block.
  • the shallow groove has a bending point, the groove component in the tire circumferential direction and the groove component in the tire width direction can be increased in a balanced manner, and the snow traction performance in the tire circumferential direction and the width direction can be efficiently improved. it can.
  • one end of the shallow groove formed in each of the center blocks communicates with the circumferential narrow groove, the other end communicates with the lug groove, and the shallow groove formed in each of the center blocks faces the tire equator.
  • the projected components of the shallow groove when projected do not overlap, and the shallow groove formed in the shoulder block has both ends terminating within the block, and the ground contact first side from the position of the apex of the shoulder block tread inner side in the tire width direction.
  • the edge component can be increased on the first-in-ground contact side while suppressing the decrease in rigidity of the shoulder block, and the snow performance can be effectively improved.
  • uneven wear wear
  • the groove depth of the lug groove is preferably 15 mm to 28 mm.
  • INDUSTRIAL APPLICABILITY The present invention can exhibit particularly excellent traction performance, anti-stone trapping performance and low noise performance in a heavy duty pneumatic tire having such characteristics.
  • the “tread ends” are both ends of the tread pattern portion of the tire in a state where the tire is assembled on a regular rim, the regular internal pressure is filled, and no load is applied (no load).
  • the “distance W in the tire width direction from the tire equator to the tread end” in the present invention is a tread development width (specified by JATMA) which is a linear distance between the tread ends measured along the tire width direction in the above state. Equivalent to 1/2 of "tread width").
  • the “regular rim” is a rim that is defined for each tire in the standard system including the standard on which the tire is based.
  • FIG. 1 is a meridian sectional view of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a front view showing the tread surface of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 3 is a sectional view showing the center block formed on the tread surface of FIG.
  • FIGS. 4A and 4B are front views showing another example of the center block formed on the tread surface.
  • a pneumatic tire of the present invention includes a tread portion 1, a pair of sidewall portions 2 arranged on both sides of the tread portion 1, and a sidewall portion 2 which is arranged inside a tire radial direction. And a pair of bead portions 3.
  • reference symbol CL indicates the tire equator
  • reference symbol E indicates the tread end.
  • the tread edge E coincides with the tire width direction outer edge of the tire width direction outermost block (the edge portion formed by the tread surface of the tire width direction outermost block and the tire width direction outer side surface). ing.
  • each tire constituent member extends in the tire circumferential direction to form an annular shape.
  • a carcass layer 4 is mounted between the pair of left and right bead portions 3.
  • the carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back from the vehicle inside to the outside around the bead cores 5 arranged in each bead portion 3.
  • a bead filler 6 is arranged on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by the main body portion and the folded portion of the carcass layer 4.
  • a plurality of layers (four layers in FIG. 1) of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1.
  • Each belt layer 7 includes a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in the range of, for example, 10° to 60°.
  • a belt reinforcing layer (not shown) may be further provided on the outer peripheral side of the belt layer 7 in the present invention.
  • the belt reinforcing layer includes, for example, an organic fiber cord oriented in the tire circumferential direction, and the angle of the organic fiber cord with respect to the tire circumferential direction can be set to, for example, 0° to 5°.
  • a tread rubber layer 11 is arranged on the outer peripheral side of the carcass layer 4 and the belt layer 7 in the tread portion 1.
  • a side rubber layer 12 is arranged on the outer peripheral side (outer side in the tire width direction) of the carcass layer 4 in the sidewall portion 2.
  • a rim cushion rubber layer 13 is arranged on the outer peripheral side (outer side in the tire width direction) of the carcass layer 4 in the bead portion 3.
  • the tread rubber layer 11 may have a structure in which two types of rubber layers having different physical properties (cap tread rubber layer and undertread rubber layer) are laminated in the tire radial direction.
  • the present invention is applied to such a general pneumatic tire, but its cross-sectional structure is not limited to the basic structure described above.
  • the surface of the tread portion 1 of the pneumatic tire of the present invention extends inward in the tire width direction from a tread end E on one side (right side in the figure) with respect to the tire equator CL. And a tire width from the tread end E on the other side (the left side in the drawing) with respect to the tire equator CL.
  • a lug groove 30 (which may be referred to as “the other side lug groove 30" in the following description) that extends inward in the direction and intersects the tire equator CL is provided.
  • a plurality of lug grooves 20 on one side and a plurality of lug grooves 30 on the other side are provided.
  • Each of the lug grooves 20, 30 is a first groove portion 21, 31 extending along the tire width direction so as to intersect with the tire equator CL, and one end of the first groove portion 21, 31 is closer to the tire than the first groove portion 21, 31.
  • the second groove portions 22 and 32 extend to the tread end E with a small angle with respect to the circumferential direction. More specifically, the lug groove 20 on one side intersects with the tire equator CL and extends along the tire width direction.
  • the first groove portion 21 and one end of the first groove portion 21 (one side relative to the tire equator (see FIG. End portion (on the right side of) and a second groove portion 22 that extends to the tread end E at an angle smaller than the first groove portion 21 with respect to the tire circumferential direction.
  • the lug groove 30 on the other side intersects with the tire equator CL and extends along the tire width direction with a first groove portion 31 and one end of the first groove portion 31 (the other side with respect to the tire equator (in the figure).
  • the second groove portion 32 extends from the end portion on the left side) to the tread edge E at an angle smaller than the first groove portion 31 with respect to the tire circumferential direction.
  • One lug groove 20 on the one side and one lug groove 30 on the other side are alternately arranged in the tire circumferential direction.
  • the lug grooves 20 and 30 basically extend in the opposite directions from the tire equator CL, as described above, the first groove portion 21 and the other side of the lug groove 20 on one side on the tire equator CL.
  • the first groove portions 31 of the lug grooves 30 are alternately arranged in the tire circumferential direction, but on the one side with respect to the tire equator CL, the second groove portions 22 of the one side lug groove 20 are spaced in the tire circumferential direction.
  • the second groove portions 32 of the lug groove 30 on the other side are arranged at intervals in the tire circumferential direction.
  • the lug grooves 20 and 30 are alternately arranged unless otherwise specified. I shall.
  • first groove portions 21, 31 of the lug grooves 20, 30 communicate with the second groove portions 32, 22 of the other lug grooves 30, 20 adjacent in the tire circumferential direction. That is, the first groove portion 21 of the lug groove 20 on one side communicates with the second groove portion 32 of the lug groove 30 on the other side adjacent in the tire circumferential direction, and the first groove portion 31 of the lug groove 30 on the other side is in the tire circumferential direction. Is communicated with the second groove portion 22 of the lug groove 20 on the one side adjacent to.
  • the first groove portions 21 and 31 of the lug grooves 20 and 30 are located closer to the ground contact side (stepping side) than the end portions of the lug grooves 20 and 30 on the tread end E side. That is, the pneumatic tire of the present invention is a tire in which the rotation direction R is designated, but the lug grooves 20 and 30 as a whole have the rotation direction R from the tire equator CL side toward the tire width direction outer side. It has a shape inclined in the opposite direction.
  • circumferential narrow grooves 40 are provided.
  • the circumferential narrow groove 40 is formed between the second groove portions adjacent to each other in the tire circumferential direction on one side of the tire equator CL, that is, the second lug groove 20 on one side adjacent to the tire equator CL in the tire circumferential direction on one side.
  • the groove portions 22 extend in the tire circumferential direction so as to connect the groove portions 22 or the second groove portions 32 of the other side lug grooves 30 that are adjacent to each other in the tire circumferential direction on the other side with respect to the tire equator CL.
  • the circumferential narrow groove 40 has a smaller groove width than the lug grooves 20 and 30.
  • the lug grooves 20 and 30 have a groove width of, for example, 5 mm to 30 mm and a groove depth of, for example, 8 mm to 28 mm.
  • the groove depth may be, for example, 15 mm to 28 mm.
  • the circumferential narrow groove 40 has a groove width of, for example, 7 mm to 11 mm and a groove depth of, for example, 15 mm to 20 mm.
  • a plurality of blocks 50 are defined by the lug grooves 20, 30 and the circumferential narrow groove 40.
  • the one located on the tire equator CL side (center side of the tread portion 1) with respect to the circumferential narrow groove 40 is the center block 51, and the tread end E side with respect to the circumferential narrow groove 40 (tread portion).
  • the one located on the shoulder side 1) is called a shoulder block 52.
  • the center block 51 includes a first center block 51A unevenly distributed on one side in the tire width direction with respect to the tire equator CL, and a second center block 51B unevenly distributed on the other side in the tire width direction with respect to the tire equator CL. I'm out.
  • each of the first center block 51A and the second center block 51B has a shape protruding from the tire equator CL in the tire width direction.
  • the first center blocks 51A and the second center blocks 51B are arranged alternately in the tire circumferential direction.
  • each center block 51 includes a plurality of edges e. More specifically, each center block 51 has an axial edge e1 on the first landing side that extends along the tire width direction on the first landing side (stepping side) and straddles the tire equator CL, and a rear landing side (kicking-out side). Side), which extends along the tire width direction and straddles the tire equator, and which has a block width in the tire width direction from both ends of an axial edge e2 on the landing rear end side and an axial edge e1 on the first landing side.
  • each center block 51 has the edges e1 to e5, the edges extending along the second groove portions 22 and 32 of the lug grooves 20 and 30, and the circumferential narrow groove 40.
  • each center block 51 The diagonal edge e3 on the first landing side and the diagonal edge e5 on the last grounding side are inclined in opposite directions. Further, in the illustrated example, all the edges forming each center block 51 are linear, but each center block 51 may include curved or zigzag edges.
  • the axial edge e1 on the first-to-ground landing side and the axial edge e2 on the last-to-ground landing side are both arranged to be -10° or more and 10° or less with respect to the tire width direction. In the illustrated example, both the axial edges e1 and e2 extend at 0° with respect to the tire width direction.
  • a cutout shape is formed in the region of the center block 51 protruding from the tire equator CL. More specifically, as the notch shape, the first groove portion 21 of the lug groove 20 on one side, the second groove portion 32 of the lug groove 30 on the other side adjacent in the tire circumferential direction, and the first center block 51A after grounding. A triangular region surrounded by the landing side oblique edge e5 is formed.
  • first groove portion 31 of the lug groove 30 on the other side the second groove portion 22 of the lug groove 20 on the one side that is adjacent in the tire circumferential direction, and the diagonal edge e5 of the second center block 51B on the post-grounding side.
  • An enclosed triangular area is formed.
  • the center block 51 located near the tire equator CL is described above.
  • the center block 51 near the tire equator CL has a plurality of axial edges and oblique edges, it is possible to increase the edge components in both the tire width direction and the tire circumferential direction, and improve snow traction performance. Contribute. This makes it possible to maintain good off-road traction performance and improve snow traction performance as the number of edge components increases.
  • circumferential narrow groove 40 noise is dispersed through the circumferential narrow groove 40, so that low noise performance can be improved. Furthermore, since the groove component in the tire circumferential direction can be added by the circumferential narrow groove 40, it is possible to prevent the tire from laterally shifting during traction and improve the stability.
  • connection point between the axial edge e2 on the post-grounding side and the diagonal edge e5 on the post-grounding side is P1
  • the connecting point between the axial edge e1 on the side and the diagonal edge e4 on the first-in-ground side is P2.
  • the distance between the connection point P1 and the tire equator CL at the axial edge e2 on the landing-after-arrival side is defined as a distance A
  • the distance between the connection point P2 and the tire equator CL at the axial edge e1 on the landing-first arrival side is defined as a distance B ( (See FIG. 3).
  • the distance A and the distance B satisfy the relationship of 0.40 ⁇ A/B ⁇ 0.68.
  • the off-road traction performance and the snow traction performance can be improved in a well-balanced manner.
  • the ratio of the distance A to the distance B is smaller than 0.40, the block rigidity tends to decrease and the uneven wear resistance tends to deteriorate, and conversely, if it exceeds 0.68, sufficient traction performance can be obtained. I can't.
  • the angle formed by the oblique edge e5 of the first center block 51A or the second center block 51B on the post-grounding side and the axial edge e1 of the second center block 51B or the first center block 51A on the first-grounding side of the ground is an angle.
  • This angle ⁇ may be set in the range of 55° ⁇ 75°.
  • the angle formed by the diagonal edge e3 of the first center block 51A or the second center block 51B on the first landing side and the axial edge e2 of the second center block 51B or the first center block 51A on the last landing side of the ground is an angle.
  • This angle ⁇ may be set in the range of 50° ⁇ 60°.
  • the off-road traction performance and the snow traction performance can be improved in a well-balanced manner.
  • the angle ⁇ or the angle ⁇ deviates from the above range, the effect of improving the traction performance cannot be sufficiently obtained.
  • the axial edge e1 on the first landing side, the axial edge e2 on the first landing side, the diagonal edge e3 on the first grounding side, or the diagonal edge e5 on the last grounding side is not linear but curved or zigzag.
  • the angle ⁇ or the angle ⁇ described above is measured based on a straight line connecting both ends of the edge.
  • each lug groove 20 and 30 has a distance in the tire width direction from the tire equator CL to the tread end E as W, and a position apart from the tire equator CL in the tire width direction by 0.50 W and the tire equator CL.
  • the second groove portions 22, 32 in the outer region Sb are defined as the inner region Sa.
  • the second groove portions 22, 32 are curved or bent so that the average angle ⁇ a of the second groove portions 22, 32 in the inner region Sa with respect to the tire circumferential direction becomes smaller than the average angle ⁇ b with respect to the tire circumferential direction.
  • the second groove portions 22 and 32 of the lug grooves 20 and 30 are smoothly curved so that the inclination angle with respect to the tire circumferential direction gradually decreases from the tread end E side toward the tire equator CL side, or at least one bend. It has a point and is bent. Further, the maximum length L in the tire width direction of the center block 51 is set to 25% to 35% of the tread development width TW.
  • the tread pattern is configured as described above, it is possible to improve low-noise performance while improving off-road traction performance. That is, the first groove portions 21 and 31 extending along the tire width direction are arranged in the vicinity of the tire equator CL, which greatly contributes to the traction performance, and the first groove portions 21 and 31 are the first groove portions of the other lug grooves 30 and 20. Since it communicates with the two groove portions 32 and 22, the traction performance can be efficiently improved.
  • the second groove portions 22 and 32 are curved or bent as described above, so that the groove length can be increased, the traction performance can be improved, and the generation of air column resonance sound can be suppressed.
  • the second groove portions 22 and 32 of the lug grooves 20 and 30 are averaged with respect to the tire circumferential direction of the second groove portions 22 and 32 in the inner region Sa when gradually decreasing the angle with respect to the tire equator CL with respect to the tire circumferential direction as described above.
  • the angle ⁇ a is preferably 35° to 45°
  • the average angle ⁇ b of the second groove portions 22 and 32 in the outer region Sb with respect to the tire circumferential direction is preferably 70° to 85°.
  • the average angle ⁇ a of the second groove portions 22 and 32 is less than 35°, it is difficult to sufficiently improve the traction performance because the groove component in the tire width direction is reduced.
  • the average angle ⁇ a of the second groove portions 22 and 32 exceeds 45°, the difference from the average angle ⁇ b becomes small, and the second groove portions 22 and 32 cannot be bent or curved sufficiently, and the lug groove length becomes longer. Since it does not increase sufficiently, it becomes difficult to sufficiently improve the traction performance.
  • the average angle ⁇ b of the second groove portions 22 and 32 is less than 70°, the difference from the average angle ⁇ a becomes small and the second groove portions 22 and 32 cannot be bent or curved sufficiently, and the lug groove length is increased. Does not increase sufficiently, it becomes difficult to sufficiently improve the traction performance.
  • the average angle ⁇ b of the second groove portions 22 and 32 exceeds 85°, the difference from the average angle ⁇ a becomes large and the second groove portions 22 and 32 are largely bent or curved, and it is difficult to secure a good groove shape. Become
  • the average angle of the second groove portions 22 and 32 of the lug grooves 20 and 30 is the angle formed by the straight line connecting the midpoints of the groove width directions of the lug grooves 20 and 30 at the boundary positions of the regions with respect to the tire circumferential direction.
  • the midpoint of the extension line of the second groove portions 22, 32 drawn toward the tire equator CL or the tread end E at the tire equator CL or the tread end E is used. I shall.
  • the first groove portions 21 and 31 are provided to secure the groove component in the tire width direction mainly in the vicinity of the tire equator CL, which largely contributes to the traction performance. Therefore, it is preferable that the first groove portions 21 and 31 extend in a direction substantially perpendicular to the tire circumferential direction. Specifically, the angle ⁇ c of the first groove portions 21 and 31 with respect to the tire circumferential direction is preferably 80° to 100°. Thereby, the first groove portions 21 and 31 can efficiently improve the traction performance.
  • the angle ⁇ c of the first groove portions 21 and 31 is less than 80° or more than 100°, the inclination of the first groove portions 21 and 31 with respect to the tire width direction becomes large, and a sufficient groove component in the tire width direction is ensured. Cannot be achieved, and the effect of improving traction performance is limited.
  • a shallow groove 60 having at least one bending point is formed on the tread surface of each block 50.
  • the shallow groove 60 is a groove having a smaller groove depth than the lug grooves 20, 30 and the circumferential narrow groove 40, and the groove depth is preferably set to 1 mm to 3 mm and the groove width is set to, for example, 1 mm to 3 mm. it can. If the depth of the shallow groove 60 is less than 1 mm, the shallow groove 60 is too shallow to obtain the effect of providing the shallow groove 60, and if the depth of the shallow groove 60 exceeds 3 mm, the block rigidity is increased. The impact will increase.
  • the shallow groove 60 formed in the center block 51 is called a center shallow groove 61
  • the shallow groove 60 formed in the shoulder block 52 is called a shoulder shallow groove 62.
  • both the center shallow groove 61 and the shoulder shallow groove 62 have one bending point.
  • the number of shallow grooves 60 formed in each block 50 is not particularly limited, but it is preferable to provide one shallow groove 60 in each block 50 as illustrated.
  • each block 50 Since the shallow groove 60 having the bending point is provided on the tread surface of the tire, the groove component in the tire circumferential direction and the groove component in the tire width direction can be increased in a balanced manner, and the snow traction performance in the tire circumferential direction and the width direction can be improved. It can be improved efficiently.
  • the center shallow groove 61 may have one end communicating with the circumferential narrow groove 40 and the other end communicating with the second groove portions 22, 32 of the lug grooves 20, 30.
  • the center shallow groove 61 is preferably bent along the outer edge of the center block 51 on the stepping side or the kicking side.
  • the center shallow groove 61 is preferably arranged within a range of ⁇ 5 mm in the tire circumferential direction from the center position of the center block 51 in the tire circumferential direction. Further, it is preferable that the projection components of the center shallow groove 61 when the center shallow groove 61 is projected toward the tire equator CL do not overlap.
  • center shallow groove 61 having an appropriate shape in the center block 51 located near the tire equator CL, which greatly contributes to the traction performance, it is possible to effectively improve the snow traction performance. Further, since the center shallow grooves 61 do not overlap as described above, the block rigidity is prevented from being excessively reduced over the entire circumference of the tire, and a balance between snow traction performance and off-road traction performance in the tire circumferential direction is avoided. Can be improved, and these performances can be highly compatible.
  • the shoulder shallow groove 62 is preferably terminated at both ends inside the shoulder block 52, as shown in the figure. Further, the shoulder shallow groove 62 may be bent along the outer edge of the shoulder block 52 on the stepping side. Further, the shoulder shallow groove 62 is preferably arranged on the stepping side with respect to the position of the apex of the tread surface of the shoulder block 52 on the inner side in the tire width direction.
  • the lug grooves 20 and 30 may have a uniform groove depth as a whole, but it is preferable that the first groove portions 21 and 31 be appropriately shallower than the second groove portions 22 and 32. Specifically, the groove depth in the first groove portions 21, 31 of the lug grooves 20, 30 is preferably 65% to 75% of the groove depth in the second groove portions 22, 32. Accordingly, the rigidity of the block (center block 51) adjacent to the first groove portions 21 and 31 can be increased, which is advantageous for improving the traction performance.
  • the groove depths of the lug grooves 20 and 30 and the circumferential narrow groove 40 can be set within the ranges described above, but it is preferable that the circumferential narrow groove 40 be appropriately shallower than the lug grooves 20 and 30.
  • the groove depth of the circumferential narrow groove 40 is preferably 75% to 85% of the groove depth of the second groove portions 22, 32 of the lug grooves 20, 30. In this way, by making the circumferential narrow groove 40 appropriately shallower than the second groove portions 22, 32, the rigidity of the blocks (center block 51, shoulder block 52) adjacent to the circumferential narrow groove 40 can be increased, It is advantageous to improve the traction performance.
  • the tire size is 315/80R22.5 and has the basic structure illustrated in FIG. 1.
  • the tread portion has a plurality of lug grooves extending in the tire width direction and lug grooves adjacent to each other in the tire circumferential direction.
  • a circumferential narrow groove to be connected is formed, and a plurality of center blocks are defined on the center side of the tread portion by the lug groove and the circumferential narrow groove, the shape of the center block, the diagonal of the landing post-arrival side Presence/absence of edges, presence/absence of axial edges on the landing first-arrival side and landing-after landing side, ratio of distance A to distance B (A/B), inclination angle ⁇ of diagonal edge on landing-after-landing side, angle change of lug groove, Conventional examples, comparative examples and Examples 1 to 6 in which the angle near the equator of the tire in the lug groove, the presence or absence of opening of the lug groove to other lug grooves, and the arrangement of shallow grooves in each block are set
  • the shape of the center block of the conventional example shown in FIG. 4(a) is significantly different from the shape of FIG. 2, but each part is made to correspond to FIG. 2 as described in the figure. Further, the shape of the center block of the comparative example shown in FIG. 4B is different from the shape of FIG. 2 in that it does not have a diagonal edge (edge e5 shown in FIG. 2) on the landing/arrival side.
  • the “angle change of the lug groove” in Table 1 means that the inclination angle of the lug groove with respect to the tire circumferential direction gradually decreases from the tread end side toward the tire equator side.
  • the “angle in the lug groove near the tire equator” in Table 1 means whether or not the angle of the lug groove with respect to the tire circumferential direction is vertical near the tire equator.
  • Off-road traction performance Each test tire was mounted on a wheel with a rim size of 22.5 ⁇ 9.00, the air pressure was set to 850 kPa, the tire was mounted on the drive shaft of a test vehicle (a truck with an axle arrangement of 6 ⁇ 4), and the test course consisted of an unpaved road. Sensory evaluation was performed by a test driver. The evaluation results are shown by an index with the value of the conventional example being 100. The larger the index value, the better the off-road traction performance.
  • each center block does not have a diagonal edge on the landing side after landing, it was not possible to sufficiently obtain the effect of improving off-road traction performance and snow traction performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Provided is a pneumatic tire with which it is possible to improve on-snow traction performance while maintaining good driving performance on an unpaved road. A plurality of central blocks 51 are partitioned toward the center of a tread portion 1 by lug grooves 20, 30 and a circumferential narrow groove 40 that are formed on an external surface of the tread portion 1, the central blocks 51 each including: on a leading side and a trailing side, a leading-side axial edge e1 and a trailing-side axial edge e2 that extend along a tire width direction across a tire equator CL; a pair of leading-side oblique edges e3, e4 that respectively extend obliquely from both ends of the leading-side axial edge e1 such that a block width gradually increases toward the trailing side; and a trailing-side oblique edge e5 that, in a region protruding from the tire equator CL, is inclined in a direction different from that of the leading-side oblique edge e3 and connects the leading-side oblique edge e3 with the trailing-side axial edge e2.

Description

空気入りタイヤPneumatic tire
 本発明は、重荷重用空気入りタイヤとして好適な空気入りタイヤに関し、更に詳しくは、未舗装路における走行性能を良好に維持しながら、雪上トラクション性能を改善することを可能にした空気入りタイヤに関する。 The present invention relates to a pneumatic tire suitable as a heavy duty pneumatic tire, and more particularly to a pneumatic tire capable of improving snow traction performance while maintaining good running performance on an unpaved road.
 ダンプトラック等の建設車両に用いられる重荷重用空気入りタイヤは、主として、未舗装路における走行性能(トラクション性能)に優れることが求められる。そのため、タイヤ幅方向に延在するラグ溝を多数備えたブロック基調のトレッドパターンが採用される(例えば、特許文献1参照)。 Heavy-duty pneumatic tires used for construction vehicles such as dump trucks are mainly required to have excellent running performance (traction performance) on unpaved roads. Therefore, a block-based tread pattern provided with a large number of lug grooves extending in the tire width direction is used (see, for example, Patent Document 1).
 一方で、近年、各種タイヤに対する要求性能が高まっており、上記のようなタイヤにおいても、未舗装路における走行性能だけでなく、雪上トラクション性能を改善することが求められている。 On the other hand, in recent years, the performance requirements for various tires have increased, and even with the tires mentioned above, it is required to improve not only the running performance on unpaved roads but also the snow traction performance.
日本国特許第4676959号公報Japanese Patent No. 4676959
 本発明の目的は、未舗装路における走行性能を良好に維持しながら、雪上トラクション性能を改善することを可能にした空気入りタイヤを提供することにある。 An object of the present invention is to provide a pneumatic tire capable of improving snow traction performance while maintaining good running performance on an unpaved road.
 上記目的を達成するための空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、回転方向が指定された空気入りタイヤにおいて、前記トレッド部の外表面に、タイヤ幅方向に延在する複数本のラグ溝と、タイヤ周方向に隣り合う前記ラグ溝どうしを連結する周方向細溝とが形成され、前記ラグ溝と前記周方向細溝によって前記トレッド部の中央側に複数のセンターブロックが区画され、該センターブロックはタイヤ赤道に対してタイヤ幅方向の一方側に偏在する第一センターブロック及びタイヤ赤道に対してタイヤ幅方向の他方側に偏在する第二センターブロックを含み、前記第一センターブロックと前記第二センターブロックとがタイヤ周方向に交互に配列され、前記第一センターブロックと前記第二センターブロックの各々は、接地先着側にタイヤ幅方向に沿って延在してタイヤ赤道を跨ぐ接地先着側の軸方向エッジと、接地後着側にタイヤ幅方向に沿って延在してタイヤ赤道を跨ぐ接地後着側の軸方向エッジと、前記接地先着側の軸方向エッジの両端からそれぞれブロック幅が接地後着側に向かって漸増するように斜めに延びる一対の接地先着側の斜めエッジと、タイヤ赤道から突き出した領域において前記接地先着側の斜めエッジと異なる方向に傾斜して前記接地先着側の斜めエッジと前記接地後着側の軸方向エッジとを接続する接地後着側の斜めエッジとを有することを特徴とするものである。 A pneumatic tire for achieving the above object is a tread portion which extends in the tire circumferential direction and forms an annular shape, a pair of sidewall portions arranged on both sides of the tread portion, and a tire diameter of these sidewall portions. In a pneumatic tire having a pair of bead portions arranged on the inner side in the direction, the rotational direction is specified, on the outer surface of the tread portion, a plurality of lug grooves extending in the tire width direction, and a tire circumferential direction A circumferential narrow groove that connects the lug grooves adjacent to each other is formed, and a plurality of center blocks are defined on the center side of the tread portion by the lug groove and the circumferential narrow groove, and the center block is the tire equator. To the tire width direction including a first center block unevenly distributed on one side and a tire equator including a second center block unevenly distributed on the other side in the tire width direction, the first center block and the second center block. Are arranged alternately in the tire circumferential direction, each of the first center block and the second center block, the axial edge of the ground contact first side that extends along the tire width direction on the ground contact first side and straddles the tire equator. And an axial edge on the grounding landing side that extends along the tire width direction to the landing landing side and straddles the tire equator, and a block width from each end of the grounding landing side axial edge to the landing landing side. A pair of diagonal edges on the first-in-first-contact side that obliquely extend toward, and in a region protruding from the tire equator, inclines in a direction different from the first-side diagonal edge on the first-contact side and the first-side diagonal edge on the first-contact side. It is characterized by having an oblique edge on the post-grounding side that connects with an axial edge on the post-grounding side.
 本発明では、ラグ溝と周方向細溝とによって複数のブロックを区画したブロック基調のトレッドパターンを有するタイヤにおいて、タイヤ赤道近傍に位置するセンターブロックを上述の形状にすることで、ラグ溝におけるタイヤ幅方向の溝成分を充分に確保することができ、未舗装路におけるトラクション性能(以下、オフロードトラクション性能という)及び雪上トラクション性能を向上することができる。特に、タイヤ赤道近傍のセンターブロックは複数の軸方向エッジ及び斜めエッジを有しているので、タイヤ幅方向及びタイヤ周方向の双方に対するエッジ成分を増やすことができ、雪上トラクション性能の改善に寄与する。これにより、オフロードトラクション性能を良好に維持することができると共に、エッジ成分の増加に伴って雪上トラクション性能を改善することができる。 In the present invention, in a tire having a block-based tread pattern in which a plurality of blocks are divided by lug grooves and circumferential narrow grooves, by making the center block located near the tire equator have the above-described shape, the tire in the lug groove A groove component in the width direction can be sufficiently secured, and traction performance on unpaved roads (hereinafter referred to as off-road traction performance) and snow traction performance can be improved. In particular, since the center block near the tire equator has a plurality of axial edges and diagonal edges, it is possible to increase edge components in both the tire width direction and the tire circumferential direction, which contributes to improvement of snow traction performance. .. This makes it possible to maintain good off-road traction performance and improve snow traction performance as the number of edge components increases.
 本発明では、第一センターブロックと第二センターブロックの各々において、接地後着側の軸方向エッジと接地後着側の斜めエッジとの接続点からタイヤ赤道までの距離Aと、接地先着側の軸方向エッジと接地後着側の斜めエッジに非接続である接地先着側の斜めエッジとの接続点からタイヤ赤道までの距離Bとは0.40≦A/B≦0.68の関係を満たすことが好ましい。これにより、オフロードトラクション性能と雪上トラクション性能とをバランス良く改善することができる。 In the present invention, in each of the first center block and the second center block, the distance A from the connection point between the axial edge on the landing post-arrival side and the diagonal edge on the ground post-landing side to the tire equator, and The distance B from the connection point between the axial edge and the diagonal edge on the first landing side, which is not connected to the diagonal edge on the grounding side, to the tire equator satisfies the relationship of 0.40≦A/B≦0.68. It is preferable. This makes it possible to improve off-road traction performance and snow traction performance in a well-balanced manner.
 本発明では、第一センターブロック又は第二センターブロックにおける接地後着側の斜めエッジと第二センターブロック又は第一センターブロックにおける接地先着側の軸方向エッジとがなす角度αは55°≦α≦75°の範囲であることが好ましい。これにより、オフロードトラクション性能と雪上トラクション性能とをバランス良く改善することができる。 In the present invention, the angle α formed by the oblique edge of the first center block or the second center block on the post-ground contact side and the axial edge of the second center block or the first center block on the pre-ground contact side is 55°≦α≦. It is preferably in the range of 75°. This makes it possible to improve off-road traction performance and snow traction performance in a well-balanced manner.
 本発明では、ラグ溝は、タイヤ赤道に対して一方側のトレッド端からタイヤ幅方向内側に向かって延在してタイヤ赤道と交差するラグ溝と、タイヤ赤道に対して他方側のトレッド端からタイヤ幅方向内側に向かって延在してタイヤ赤道と交差するラグ溝とからなり、これらラグ溝はタイヤ周方向に交互に配列され、各ラグ溝は、タイヤ赤道と交差してタイヤ幅方向に沿って延在する第一溝部と、第一溝部の一端から第一溝部よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端まで延在する第二溝部とからなり、第一溝部の他端はタイヤ周方向に隣り合うラグ溝の第二溝部に連通し、第一溝部はラグ溝のトレッド端側の端部よりも接地先着側に位置しており、タイヤ赤道からトレッド端までの距離をWとし、タイヤ赤道からタイヤ幅方向に0.5W離間した位置とタイヤ赤道との間の領域を内側領域とし、タイヤ赤道からタイヤ幅方向に0.5W離間した位置とトレッド端との間の領域を外側領域としたとき、外側領域における第二溝部のタイヤ周方向に対する平均角度よりも内側領域における第二溝部のタイヤ周方向に対する平均角度が小さくなるように第二溝部は湾曲又は屈曲しており、センターブロックのタイヤ幅方向の最大長さはトレッド展開幅の25%~35%であることが好ましい。第一溝部と第二溝部とからなるラグ溝を設けているので、オフロードトラクション性能を向上しながら、低騒音性能を向上することができる。即ち、トラクション性能への寄与が大きいタイヤ赤道近傍にタイヤ幅方向に沿って延在する第一溝部が配され、この第一溝部が他のラグ溝(第二溝部)に連通しているので、効率的にトラクション性能を向上することができる。また、第二溝部が上述のように湾曲又は屈曲することで溝長さを増大することができ、トラクション性能を向上すると共に、気柱共鳴音の発生を抑制することができる。更に、センターブロックの最大幅を適度に確保することで、ブロック剛性を充分に確保して、良好なトラクション性能を発揮することができる。 In the present invention, the lug groove extends from the tread end on one side with respect to the tire equator toward the tire width direction inward and crosses the tire equator, and from the tread end on the other side with respect to the tire equator. Consisting of lug grooves extending inward in the tire width direction and intersecting the tire equator, these lug grooves are arranged alternately in the tire circumferential direction, and each lug groove intersects the tire equator in the tire width direction. The first groove portion that extends along the second groove portion that extends from one end of the first groove portion to the tread end with an angle smaller than the first groove portion with respect to the tire circumferential direction, and the first groove portion The other end communicates with the second groove portion of the lug groove adjacent in the tire circumferential direction, the first groove portion is located on the ground contact first side of the tread end side end portion of the lug groove, from the tire equator to the tread end. The distance is W, the area between the tire equator and the tire equator at a position 0.5 W away from the tire equator is the inner region, and the position is 0.5 W away from the tire equator at the tire width direction and the tread end. When the region of is the outer region, the second groove portion is curved or bent so that the average angle of the second groove portion in the inner region with respect to the tire circumferential direction becomes smaller than the average angle of the second groove portion in the outer region with respect to the tire circumferential direction. Therefore, the maximum length of the center block in the tire width direction is preferably 25% to 35% of the tread spread width. Since the lug groove including the first groove portion and the second groove portion is provided, it is possible to improve the low noise performance while improving the off-road traction performance. That is, the first groove portion extending along the tire width direction is arranged in the vicinity of the tire equator that greatly contributes to the traction performance, and the first groove portion communicates with another lug groove (second groove portion), The traction performance can be efficiently improved. In addition, the second groove portion is curved or bent as described above, so that the groove length can be increased, the traction performance can be improved, and the generation of air column resonance noise can be suppressed. Further, by appropriately securing the maximum width of the center block, it is possible to secure sufficient block rigidity and exhibit good traction performance.
 本発明では、ラグ溝と周方向細溝によってトレッド部のショルダー側に複数のショルダーブロックが区画され、前記センターブロックと前記ショルダーブロックの各々の踏面に少なくとも1つの屈曲点を有する浅溝が形成されていることが好ましい。浅溝が屈曲点を有するので、タイヤ周方向の溝成分とタイヤ幅方向の溝成分とをバランスよく増加することができ、タイヤ周方向及び幅方向の雪上トラクション性能を効率的に向上することができる。 In the present invention, a plurality of shoulder blocks are defined on the shoulder side of the tread portion by the lug groove and the circumferential narrow groove, and a shallow groove having at least one bending point is formed on each tread surface of the center block and the shoulder block. Preferably. Since the shallow groove has a bending point, the groove component in the tire circumferential direction and the groove component in the tire width direction can be increased in a balanced manner, and the snow traction performance in the tire circumferential direction and the width direction can be efficiently improved. it can.
 本発明では、センターブロックの各々に形成された浅溝の一端は周方向細溝に連通し、他端はラグ溝に連通し、センターブロックの各々に形成された浅溝をタイヤ赤道に向かって投影したときの浅溝の投影成分どうしが重複せず、ショルダーブロックに形成された浅溝は両端がブロック内で終端し、ショルダーブロックの踏面のタイヤ幅方向内側の頂点の位置よりも接地先着側に配置されていることが好ましい。このようにトラクション性能への寄与が大きいタイヤ赤道近傍に位置するセンターブロックに適切な形状の浅溝を設けることで、効果的に雪上トラクション性能を向上することができる。また、上記のように浅溝が重複しないように配置することで、タイヤ全周に亘ってブロック剛性が過度に低下することを避けて、タイヤ周方向での雪上トラクション性能とオフロードトラクション性能とのバランスを良好にし、これら性能を高度に両立することができる。更に、ショルダーブロックの剛性低下を抑制しながら、接地先着側にエッジ成分を増加することができ、雪上性能を効果的に向上することができる。その一方で、接地後着側については浅溝が無く、ブロック剛性とゴム量が確保されるので、偏摩耗(ヒールアンドトウ摩耗)を効果的に抑制することができる。 In the present invention, one end of the shallow groove formed in each of the center blocks communicates with the circumferential narrow groove, the other end communicates with the lug groove, and the shallow groove formed in each of the center blocks faces the tire equator. The projected components of the shallow groove when projected do not overlap, and the shallow groove formed in the shoulder block has both ends terminating within the block, and the ground contact first side from the position of the apex of the shoulder block tread inner side in the tire width direction. Are preferably arranged in In this way, by providing the appropriately shaped shallow groove in the center block located near the tire equator, which greatly contributes to the traction performance, it is possible to effectively improve the snow traction performance. Further, by arranging so that the shallow grooves do not overlap as described above, avoiding excessive reduction in block rigidity over the entire circumference of the tire, and snow traction performance and off-road traction performance in the tire circumferential direction and It is possible to achieve a good balance and to achieve both of these performances at a high level. Further, the edge component can be increased on the first-in-ground contact side while suppressing the decrease in rigidity of the shoulder block, and the snow performance can be effectively improved. On the other hand, since there is no shallow groove on the post-grounding side and the block rigidity and the amount of rubber are secured, uneven wear (heel and toe wear) can be effectively suppressed.
 本発明では、ラグ溝の溝深さは15mm~28mmであることが好ましい。本発明は、このような特徴を有する重荷重用空気入りタイヤにおいて、トラクション性能、耐石噛み性能及び低騒音性能について、特に優れた性能を発揮することができる。 In the present invention, the groove depth of the lug groove is preferably 15 mm to 28 mm. INDUSTRIAL APPLICABILITY The present invention can exhibit particularly excellent traction performance, anti-stone trapping performance and low noise performance in a heavy duty pneumatic tire having such characteristics.
 本発明において、「トレッド端」とは、タイヤを正規リムにリム組みして、正規内圧を充填し、荷重を加えない状態(無負荷状態)で、タイヤのトレッド模様部分の両端である。本発明における「タイヤ赤道からトレッド端までのタイヤ幅方向の距離W」は、上述の状態でタイヤ幅方向に沿って測定されるトレッド端間の直線距離であるトレッド展開幅(JATMAで規定される「トレッド幅」)の1/2に相当する。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”であるが、タイヤが乗用車用である場合には180kPaとする。 In the present invention, the “tread ends” are both ends of the tread pattern portion of the tire in a state where the tire is assembled on a regular rim, the regular internal pressure is filled, and no load is applied (no load). The “distance W in the tire width direction from the tire equator to the tread end” in the present invention is a tread development width (specified by JATMA) which is a linear distance between the tread ends measured along the tire width direction in the above state. Equivalent to 1/2 of "tread width"). The "regular rim" is a rim that is defined for each tire in the standard system including the standard on which the tire is based. For example, in the case of JATMA, the standard rim, and in the case of TRA, "Design Rim" or ETRTO. If so, set it as “Measuring Rim”. "Regular internal pressure" is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based. For JATMA, the maximum air pressure, and for TRA, the table "TIRE LOAD LIMITS AT VARIOUS" The maximum value described in COLD INFLUTION PRESSURES is "INFLATERATION PRESSURE" for ETRTO, but 180 kPa for tires for passenger cars.
図1は本発明の実施形態からなる空気入りタイヤの子午線断面図である。FIG. 1 is a meridian sectional view of a pneumatic tire according to an embodiment of the present invention. 図2は本発明の実施形態からなる空気入りタイヤのトレッド面を示す正面図である。FIG. 2 is a front view showing the tread surface of the pneumatic tire according to the embodiment of the present invention. 図3は図2のトレッド面に形成されたセンターブロックを示す断面図である。FIG. 3 is a sectional view showing the center block formed on the tread surface of FIG. 図4(a),(b)はトレッド面に形成されたセンターブロックの他の例を示す正面図である。FIGS. 4A and 4B are front views showing another example of the center block formed on the tread surface.
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。 Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
 図1に示すように、本発明の空気入りタイヤは、トレッド部1と、このトレッド部1の両側に配置された一対のサイドウォール部2と、サイドウォール部2のタイヤ径方向内側に配置された一対のビード部3とを備えている。図1において、符号CLはタイヤ赤道を示し、符号Eはトレッド端を示す。図示の例では、トレッド端Eが、タイヤ幅方向最外側のブロックのタイヤ幅方向外側のエッジ(タイヤ幅方向最外側のブロックの踏面とタイヤ幅方向外側の側面とが成す縁部)と一致している。図1は子午線断面図であるため描写されないが、トレッド部1、サイドウォール部2、ビード部3は、それぞれタイヤ周方向に延在して環状を成しており、これにより空気入りタイヤのトロイダル状の基本構造が構成される。以下、図1を用いた説明は基本的に図示の子午線断面形状に基づくが、各タイヤ構成部材はいずれもタイヤ周方向に延在して環状を成すものである。 As shown in FIG. 1, a pneumatic tire of the present invention includes a tread portion 1, a pair of sidewall portions 2 arranged on both sides of the tread portion 1, and a sidewall portion 2 which is arranged inside a tire radial direction. And a pair of bead portions 3. In FIG. 1, reference symbol CL indicates the tire equator, and reference symbol E indicates the tread end. In the illustrated example, the tread edge E coincides with the tire width direction outer edge of the tire width direction outermost block (the edge portion formed by the tread surface of the tire width direction outermost block and the tire width direction outer side surface). ing. Although FIG. 1 is not drawn because it is a meridional cross-sectional view, the tread portion 1, the sidewall portion 2, and the bead portion 3 each extend in the tire circumferential direction to form an annular shape. The basic structure of the shape is constructed. Hereinafter, although the description with reference to FIG. 1 is basically based on the meridional cross-sectional shape shown in the drawing, each tire constituent member extends in the tire circumferential direction to form an annular shape.
 左右一対のビード部3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りに車両内側から外側に折り返されている。また、ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部と折り返し部とにより包み込まれている。一方、トレッド部1におけるカーカス層4の外周側には複数層(図1では4層)のベルト層7が埋設されている。各ベルト層7は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。これらベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~60°の範囲に設定されている。図1の空気入りタイヤでは採用されていないが、本発明では、ベルト層7の外周側に、更にベルト補強層(不図示)を設けることもできる。ベルト補強層を設ける場合、ベルト補強層は、例えばタイヤ周方向に配向する有機繊維コードを含み、この有機繊維コードはタイヤ周方向に対する角度が例えば0°~5°に設定することができる。 A carcass layer 4 is mounted between the pair of left and right bead portions 3. The carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back from the vehicle inside to the outside around the bead cores 5 arranged in each bead portion 3. A bead filler 6 is arranged on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by the main body portion and the folded portion of the carcass layer 4. On the other hand, a plurality of layers (four layers in FIG. 1) of belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. Each belt layer 7 includes a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to intersect each other between the layers. In these belt layers 7, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in the range of, for example, 10° to 60°. Although not used in the pneumatic tire of FIG. 1, a belt reinforcing layer (not shown) may be further provided on the outer peripheral side of the belt layer 7 in the present invention. When the belt reinforcing layer is provided, the belt reinforcing layer includes, for example, an organic fiber cord oriented in the tire circumferential direction, and the angle of the organic fiber cord with respect to the tire circumferential direction can be set to, for example, 0° to 5°.
 トレッド部1におけるカーカス層4及びベルト層7の外周側にはトレッドゴム層11が配される。サイドウォール部2におけるカーカス層4の外周側(タイヤ幅方向外側)にはサイドゴム層12が配される。ビード部3におけるカーカス層4の外周側(タイヤ幅方向外側)にはリムクッションゴム層13が配される。トレッドゴム層11は、物性の異なる2種類のゴム層(キャップトレッドゴム層及びアンダートレッドゴム層)がタイヤ径方向に積層した構造であってもよい。 A tread rubber layer 11 is arranged on the outer peripheral side of the carcass layer 4 and the belt layer 7 in the tread portion 1. A side rubber layer 12 is arranged on the outer peripheral side (outer side in the tire width direction) of the carcass layer 4 in the sidewall portion 2. A rim cushion rubber layer 13 is arranged on the outer peripheral side (outer side in the tire width direction) of the carcass layer 4 in the bead portion 3. The tread rubber layer 11 may have a structure in which two types of rubber layers having different physical properties (cap tread rubber layer and undertread rubber layer) are laminated in the tire radial direction.
 本発明は、このような一般的な空気入りタイヤに適用されるが、その断面構造は上述の基本構造に限定されるものではない。 The present invention is applied to such a general pneumatic tire, but its cross-sectional structure is not limited to the basic structure described above.
 本発明の空気入りタイヤのトレッド部1の表面には、図2に示すように、タイヤ赤道CLに対して一方側(図の右側)のトレッド端Eからタイヤ幅方向内側に向かって延在してタイヤ赤道CLと交差するラグ溝20(以降の説明では「一方側のラグ溝20」という場合がある)と、タイヤ赤道CLに対して他方側(図の左側)のトレッド端Eからタイヤ幅方向内側に向かって延在してタイヤ赤道CLと交差するラグ溝30(以降の説明では「他方側のラグ溝30」という場合がある)とが設けられる。一方側のラグ溝20と他方側のラグ溝30は、それぞれ複数本ずつ設けられる。 As shown in FIG. 2, the surface of the tread portion 1 of the pneumatic tire of the present invention extends inward in the tire width direction from a tread end E on one side (right side in the figure) with respect to the tire equator CL. And a tire width from the tread end E on the other side (the left side in the drawing) with respect to the tire equator CL. A lug groove 30 (which may be referred to as "the other side lug groove 30" in the following description) that extends inward in the direction and intersects the tire equator CL is provided. A plurality of lug grooves 20 on one side and a plurality of lug grooves 30 on the other side are provided.
 各ラグ溝20,30は、タイヤ赤道CLと交差してタイヤ幅方向に沿って延在する第一溝部21,31と、第一溝部21,31の一端から第一溝部21,31よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端Eまで延在する第二溝部22,32とからなる。詳述すると、一方側のラグ溝20は、タイヤ赤道CLと交差してタイヤ幅方向に沿って延在する第一溝部21と、第一溝部21の一端(タイヤ赤道に対して一方側(図の右側)の端部)から第一溝部21よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端Eまで延在する第二溝部22とからなる。同様に、他方側のラグ溝30は、タイヤ赤道CLと交差してタイヤ幅方向に沿って延在する第一溝部31と、第一溝部31の一端(タイヤ赤道に対して他方側(図の左側)の端部)から第一溝部31よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端Eまで延在する第二溝部32とからなる。 Each of the lug grooves 20, 30 is a first groove portion 21, 31 extending along the tire width direction so as to intersect with the tire equator CL, and one end of the first groove portion 21, 31 is closer to the tire than the first groove portion 21, 31. The second groove portions 22 and 32 extend to the tread end E with a small angle with respect to the circumferential direction. More specifically, the lug groove 20 on one side intersects with the tire equator CL and extends along the tire width direction. The first groove portion 21 and one end of the first groove portion 21 (one side relative to the tire equator (see FIG. End portion (on the right side of) and a second groove portion 22 that extends to the tread end E at an angle smaller than the first groove portion 21 with respect to the tire circumferential direction. Similarly, the lug groove 30 on the other side intersects with the tire equator CL and extends along the tire width direction with a first groove portion 31 and one end of the first groove portion 31 (the other side with respect to the tire equator (in the figure). The second groove portion 32 extends from the end portion on the left side) to the tread edge E at an angle smaller than the first groove portion 31 with respect to the tire circumferential direction.
 一方側のラグ溝20と他方側のラグ溝30とは1本ずつがタイヤ周方向に交互に配列される。但し、これらラグ溝20,30は、上述のように、基本的にタイヤ赤道CLから互いに逆方向に延在するので、タイヤ赤道CL上では一方側のラグ溝20の第一溝部21と他方側のラグ溝30の第一溝部31とがタイヤ周方向に交互に配置されるが、タイヤ赤道CLに対して一方側では、一方側のラグ溝20の第二溝部22がタイヤ周方向に間隔をおいて配列され、タイヤ赤道CLに対して他方側では、他方側のラグ溝30の第二溝部32がタイヤ周方向に間隔をおいて配列される。本発明では、タイヤ赤道CL上で第一溝部21,31どうしが交互に配列されて隣り合っていれば、特に断りがない限り、ラグ溝20,30が交互に配列されていると見做すものとする。 One lug groove 20 on the one side and one lug groove 30 on the other side are alternately arranged in the tire circumferential direction. However, since the lug grooves 20 and 30 basically extend in the opposite directions from the tire equator CL, as described above, the first groove portion 21 and the other side of the lug groove 20 on one side on the tire equator CL. The first groove portions 31 of the lug grooves 30 are alternately arranged in the tire circumferential direction, but on the one side with respect to the tire equator CL, the second groove portions 22 of the one side lug groove 20 are spaced in the tire circumferential direction. On the other side of the tire equator CL, the second groove portions 32 of the lug groove 30 on the other side are arranged at intervals in the tire circumferential direction. In the present invention, if the first groove portions 21 and 31 are alternately arranged and are adjacent to each other on the tire equator CL, it is considered that the lug grooves 20 and 30 are alternately arranged unless otherwise specified. I shall.
 各ラグ溝20,30の第一溝部21,31の他端は、タイヤ周方向に隣り合う別のラグ溝30,20の第二溝部32,22に連通する。つまり、一方側のラグ溝20の第一溝部21はタイヤ周方向に隣り合う他方側のラグ溝30の第二溝部32に連通し、他方側のラグ溝30の第一溝部31はタイヤ周方向に隣り合う一方側のラグ溝20の第二溝部22に連通している。 The other ends of the first groove portions 21, 31 of the lug grooves 20, 30 communicate with the second groove portions 32, 22 of the other lug grooves 30, 20 adjacent in the tire circumferential direction. That is, the first groove portion 21 of the lug groove 20 on one side communicates with the second groove portion 32 of the lug groove 30 on the other side adjacent in the tire circumferential direction, and the first groove portion 31 of the lug groove 30 on the other side is in the tire circumferential direction. Is communicated with the second groove portion 22 of the lug groove 20 on the one side adjacent to.
 各ラグ溝20,30の第一溝部21,31は各ラグ溝20,30のトレッド端E側の端部よりも接地先着側(踏込側)に位置している。即ち、本発明の空気入りタイヤは回転方向Rが指定されたタイヤであるが、各ラグ溝20,30は、溝全体として、タイヤ赤道CL側からタイヤ幅方向外側に向かって回転方向Rとは反対方向に傾斜した形状を有する。 The first groove portions 21 and 31 of the lug grooves 20 and 30 are located closer to the ground contact side (stepping side) than the end portions of the lug grooves 20 and 30 on the tread end E side. That is, the pneumatic tire of the present invention is a tire in which the rotation direction R is designated, but the lug grooves 20 and 30 as a whole have the rotation direction R from the tire equator CL side toward the tire width direction outer side. It has a shape inclined in the opposite direction.
 このようなラグ溝20,30の他に、周方向細溝40が設けられる。周方向細溝40は、タイヤ赤道CLの片側でタイヤ周方向に隣り合う第二溝部どうし、即ち、タイヤ赤道CLに対して一方側でタイヤ周方向に隣り合う一方側のラグ溝20の第二溝部22どうし、或いは、タイヤ赤道CLに対して他方側でタイヤ周方向に隣り合う他方側のラグ溝30の第二溝部32どうしを連結するように、タイヤ周方向に沿って延在する。 In addition to such lug grooves 20 and 30, circumferential narrow grooves 40 are provided. The circumferential narrow groove 40 is formed between the second groove portions adjacent to each other in the tire circumferential direction on one side of the tire equator CL, that is, the second lug groove 20 on one side adjacent to the tire equator CL in the tire circumferential direction on one side. The groove portions 22 extend in the tire circumferential direction so as to connect the groove portions 22 or the second groove portions 32 of the other side lug grooves 30 that are adjacent to each other in the tire circumferential direction on the other side with respect to the tire equator CL.
 周方向細溝40は、ラグ溝20,30よりも溝幅が小さい溝である。具体的には、ラグ溝20,30は、溝幅が例えば5mm~30mm、溝深さが例えば8mm~28mmである。特に、タイヤが重荷重用空気入りタイヤである場合は、溝深さを例えば15mm~28mmにするとよい。これに対して、周方向細溝40は、溝幅が例えば7mm~11mm、溝深さが例えば15mm~20mmである。 The circumferential narrow groove 40 has a smaller groove width than the lug grooves 20 and 30. Specifically, the lug grooves 20 and 30 have a groove width of, for example, 5 mm to 30 mm and a groove depth of, for example, 8 mm to 28 mm. In particular, when the tire is a heavy duty pneumatic tire, the groove depth may be, for example, 15 mm to 28 mm. On the other hand, the circumferential narrow groove 40 has a groove width of, for example, 7 mm to 11 mm and a groove depth of, for example, 15 mm to 20 mm.
 これらラグ溝20,30と周方向細溝40とによって、複数のブロック50が区画される。これら複数のブロック50のうち、周方向細溝40よりもタイヤ赤道CL側(トレッド部1の中央側)に位置するものをセンターブロック51、周方向細溝40よりもトレッド端E側(トレッド部1のショルダー側)に位置するものをショルダーブロック52という。センターブロック51は、タイヤ赤道CLに対してタイヤ幅方向の一方側に偏在する第一センターブロック51Aと、タイヤ赤道CLに対してタイヤ幅方向の他方側に偏在する第二センターブロック51Bとを含んでいる。即ち、第一センターブロック51Aと第二センターブロック51Bの各々は、少なくとも一部がタイヤ赤道CLからタイヤ幅方向に突き出した形状を有している。これら第一センターブロック51Aと第二センターブロック51Bとはタイヤ周方向に交互に配列されている。 A plurality of blocks 50 are defined by the lug grooves 20, 30 and the circumferential narrow groove 40. Of the plurality of blocks 50, the one located on the tire equator CL side (center side of the tread portion 1) with respect to the circumferential narrow groove 40 is the center block 51, and the tread end E side with respect to the circumferential narrow groove 40 (tread portion). The one located on the shoulder side 1) is called a shoulder block 52. The center block 51 includes a first center block 51A unevenly distributed on one side in the tire width direction with respect to the tire equator CL, and a second center block 51B unevenly distributed on the other side in the tire width direction with respect to the tire equator CL. I'm out. That is, at least a part of each of the first center block 51A and the second center block 51B has a shape protruding from the tire equator CL in the tire width direction. The first center blocks 51A and the second center blocks 51B are arranged alternately in the tire circumferential direction.
 図3に示すように、各センターブロック51は複数のエッジeを含んでいる。詳述すると、各センターブロック51は、接地先着側(踏込側)にタイヤ幅方向に沿って延在してタイヤ赤道CLを跨ぐ接地先着側の軸方向エッジe1と、接地後着側(蹴出側)にタイヤ幅方向に沿って延在してタイヤ赤道を跨ぐ接地後着側の軸方向エッジe2と、接地先着側の軸方向エッジe1の両端からそれぞれタイヤ幅方向のブロック幅が接地後着側に向かって漸増するように斜めに延びる一対の接地先着側の斜めエッジe3,e4と、タイヤ赤道CLから突き出した領域において接地先着側の斜めエッジe3と異なる方向に傾斜して接地先着側の斜めエッジe3と接地後着側の軸方向エッジe2とを接続する接地後着側の斜めエッジe5とを有している。特に、接地先着側の斜めエッジe3と接地後着側の斜めエッジe5は、互いに逆方向に傾斜していることが好ましい。なお、図示の例では、各センターブロック51は、上述したエッジe1~e5の他に、ラグ溝20,30の第二溝部22,32に沿って延在するエッジと、周方向細溝40に沿って延在するエッジとを含んでおり、接地先着側の斜めエッジe3と接地後着側の斜めエッジe5とは互いに逆方向に傾斜している。また、図示の例では、各センターブロック51を構成する全てのエッジが直線状であるが、各センターブロック51は湾曲状又はジグザグ状であるエッジを含んでいてもよい。 As shown in FIG. 3, each center block 51 includes a plurality of edges e. More specifically, each center block 51 has an axial edge e1 on the first landing side that extends along the tire width direction on the first landing side (stepping side) and straddles the tire equator CL, and a rear landing side (kicking-out side). Side), which extends along the tire width direction and straddles the tire equator, and which has a block width in the tire width direction from both ends of an axial edge e2 on the landing rear end side and an axial edge e1 on the first landing side. A pair of diagonal edges e3, e4 on the grounding first arrival side that obliquely extend toward the side and a diagonal edge e3 on the grounding first arrival side in a region protruding from the tire equator CL. It has an oblique edge e3 and an oblique edge e5 on the post-grounding side that connects the axial edge e2 on the post-grounding side. In particular, it is preferable that the diagonal edge e3 on the first landing side and the diagonal edge e5 on the last landing side are inclined in opposite directions. In the illustrated example, each center block 51 has the edges e1 to e5, the edges extending along the second groove portions 22 and 32 of the lug grooves 20 and 30, and the circumferential narrow groove 40. The diagonal edge e3 on the first landing side and the diagonal edge e5 on the last grounding side are inclined in opposite directions. Further, in the illustrated example, all the edges forming each center block 51 are linear, but each center block 51 may include curved or zigzag edges.
 接地先着側の軸方向エッジe1及び接地後着側の軸方向エッジe2は、いずれもタイヤ幅方向に対して-10°以上10°以下となるように配置される。図示の例では、軸方向エッジe1,e2はいずれもタイヤ幅方向に対して0°で延在している。 The axial edge e1 on the first-to-ground landing side and the axial edge e2 on the last-to-ground landing side are both arranged to be -10° or more and 10° or less with respect to the tire width direction. In the illustrated example, both the axial edges e1 and e2 extend at 0° with respect to the tire width direction.
 センターブロック51が上述した複数のエッジe1~e5を含んでいることにより、センターブロック51におけるタイヤ赤道CLから突き出した領域には切り欠き形状が形成される。詳述すると、この切り欠き形状として、一方側のラグ溝20の第一溝部21と、タイヤ周方向に隣り合う他方側のラグ溝30の第二溝部32と、第一センターブロック51Aの接地後着側の斜めエッジe5とで囲まれた三角形状の領域が形成される。また、他方側のラグ溝30の第一溝部31と、タイヤ周方向に隣り合う一方側のラグ溝20の第二溝部22と、第二センターブロック51Bの接地後着側の斜めエッジe5とで囲まれた三角形状の領域が形成される。このような三角形状の領域が形成されることで、ラグ溝20,30の溝容積を増やすことができ、未舗装路においては泥を掴むことができる一方で雪上路においては雪を掴むことができるので、オフロードトラクション性能及び雪上トラクション性能の向上に寄与する。 Since the center block 51 includes the plurality of edges e1 to e5 described above, a cutout shape is formed in the region of the center block 51 protruding from the tire equator CL. More specifically, as the notch shape, the first groove portion 21 of the lug groove 20 on one side, the second groove portion 32 of the lug groove 30 on the other side adjacent in the tire circumferential direction, and the first center block 51A after grounding. A triangular region surrounded by the landing side oblique edge e5 is formed. In addition, the first groove portion 31 of the lug groove 30 on the other side, the second groove portion 22 of the lug groove 20 on the one side that is adjacent in the tire circumferential direction, and the diagonal edge e5 of the second center block 51B on the post-grounding side. An enclosed triangular area is formed. By forming such a triangular region, the groove volume of the lug grooves 20 and 30 can be increased, and mud can be grasped on an unpaved road while snow can be grasped on a snowy road. Therefore, it contributes to the improvement of off-road traction performance and snow traction performance.
 上述した空気入りタイヤでは、ラグ溝20,30と周方向細溝40とによって複数のブロック50を区画したブロック基調のトレッドパターンを有するタイヤにおいて、タイヤ赤道CL近傍に位置するセンターブロック51を上述の形状にすることで、ラグ溝20,30におけるタイヤ幅方向の溝成分を充分に確保することができ、オフロードトラクション性能及び雪上トラクション性能を向上することができる。特に、タイヤ赤道CL近傍のセンターブロック51は複数の軸方向エッジ及び斜めエッジを有しているので、タイヤ幅方向及びタイヤ周方向の双方に対するエッジ成分を増やすことができ、雪上トラクション性能の改善に寄与する。これにより、オフロードトラクション性能を良好に維持することができると共に、エッジ成分の増加に伴って雪上トラクション性能を改善することができる。 In the pneumatic tire described above, in the tire having a block-based tread pattern in which a plurality of blocks 50 are divided by the lug grooves 20 and 30 and the circumferential narrow groove 40, the center block 51 located near the tire equator CL is described above. With the shape, it is possible to sufficiently secure the groove component in the tire width direction in the lug grooves 20 and 30, and it is possible to improve the off-road traction performance and the snow traction performance. In particular, since the center block 51 near the tire equator CL has a plurality of axial edges and oblique edges, it is possible to increase the edge components in both the tire width direction and the tire circumferential direction, and improve snow traction performance. Contribute. This makes it possible to maintain good off-road traction performance and improve snow traction performance as the number of edge components increases.
 また、周方向細溝40を有することで、周方向細溝40を通じて騒音が分散されるので、低騒音性能を向上することができる。更に、周方向細溝40によってタイヤ周方向の溝成分を追加することができるので、トラクション時にタイヤが横ずれすることを防止して安定性を向上することができる。 Further, by having the circumferential narrow groove 40, noise is dispersed through the circumferential narrow groove 40, so that low noise performance can be improved. Furthermore, since the groove component in the tire circumferential direction can be added by the circumferential narrow groove 40, it is possible to prevent the tire from laterally shifting during traction and improve the stability.
 上記空気入りタイヤにおいて、第一センターブロック51Aと第二センターブロック51Bの各々で、接地後着側の軸方向エッジe2と接地後着側の斜めエッジe5との接続点がP1であり、接地先着側の軸方向エッジe1と接地先着側の斜めエッジe4との接続点がP2である。接地後着側の軸方向エッジe2における接続点P1とタイヤ赤道CLとの距離を距離Aとし、接地先着側の軸方向エッジe1における接続点P2とタイヤ赤道CLとの距離を距離Bとする(図3参照)。このとき、距離Aと距離Bとは0.40≦A/B≦0.68の関係を満たすことが好ましい。このように距離Bに対して距離Aを適度に設定することで、オフロードトラクション性能と雪上トラクション性能とをバランス良く改善することができる。ここで、距離Bに対する距離Aの比を、0.40より小さくするとブロック剛性が低下して耐偏摩耗性能が悪化する傾向があり、逆に0.68より大きくするとトラクション性能を充分に得ることができない。 In the pneumatic tire described above, in each of the first center block 51A and the second center block 51B, the connection point between the axial edge e2 on the post-grounding side and the diagonal edge e5 on the post-grounding side is P1, The connecting point between the axial edge e1 on the side and the diagonal edge e4 on the first-in-ground side is P2. The distance between the connection point P1 and the tire equator CL at the axial edge e2 on the landing-after-arrival side is defined as a distance A, and the distance between the connection point P2 and the tire equator CL at the axial edge e1 on the landing-first arrival side is defined as a distance B ( (See FIG. 3). At this time, it is preferable that the distance A and the distance B satisfy the relationship of 0.40≦A/B≦0.68. By properly setting the distance A with respect to the distance B, the off-road traction performance and the snow traction performance can be improved in a well-balanced manner. Here, if the ratio of the distance A to the distance B is smaller than 0.40, the block rigidity tends to decrease and the uneven wear resistance tends to deteriorate, and conversely, if it exceeds 0.68, sufficient traction performance can be obtained. I can't.
 また、第一センターブロック51A又は第二センターブロック51Bにおける接地後着側の斜めエッジe5と、第二センターブロック51B又は第一センターブロック51Aにおける接地先着側の軸方向エッジe1とがなす角度を角度αとする。この角度αは55°≦α≦75°の範囲に設定するとよい。また、第一センターブロック51A又は第二センターブロック51Bにおける接地先着側の斜めエッジe3と、第二センターブロック51B又は第一センターブロック51Aにおける接地後着側の軸方向エッジe2とがなす角度を角度βとする。この角度βは50°≦β≦60°の範囲に設定するとよい。上述のように角度α又は角度βを適度に設定することで、オフロードトラクション性能と雪上トラクション性能とをバランス良く改善することができる。ここで、角度α又は角度βが上述した範囲から外れると、トラクション性能の改善効果を充分に得ることができない。なお、接地先着側の軸方向エッジe1、接地後着側の軸方向エッジe2、接地先着側の斜めエッジe3又は接地後着側の斜めエッジe5が直線状でなく湾曲状又はジクザグ状である場合、上述した角度α又は角度βは当該エッジの両端部を結ぶ直線に基づいて測定される。 Further, the angle formed by the oblique edge e5 of the first center block 51A or the second center block 51B on the post-grounding side and the axial edge e1 of the second center block 51B or the first center block 51A on the first-grounding side of the ground is an angle. Let α. This angle α may be set in the range of 55°≦α≦75°. In addition, the angle formed by the diagonal edge e3 of the first center block 51A or the second center block 51B on the first landing side and the axial edge e2 of the second center block 51B or the first center block 51A on the last landing side of the ground is an angle. Let β. This angle β may be set in the range of 50°≦β≦60°. By appropriately setting the angle α or the angle β as described above, the off-road traction performance and the snow traction performance can be improved in a well-balanced manner. Here, if the angle α or the angle β deviates from the above range, the effect of improving the traction performance cannot be sufficiently obtained. In addition, when the axial edge e1 on the first landing side, the axial edge e2 on the first landing side, the diagonal edge e3 on the first grounding side, or the diagonal edge e5 on the last grounding side is not linear but curved or zigzag. The angle α or the angle β described above is measured based on a straight line connecting both ends of the edge.
 図2において、各ラグ溝20,30は、タイヤ赤道CLからトレッド端Eまでのタイヤ幅方向の距離をWとし、タイヤ赤道CLからタイヤ幅方向に0.50W離間した位置とタイヤ赤道CLとの間の領域を内側領域Saとし、タイヤ赤道CLからタイヤ幅方向に0.50W離間した位置とトレッド端Eとの間の領域を外側領域Sbとしたとき、外側領域Sbにおける第二溝部22,32のタイヤ周方向に対する平均角度θbよりも内側領域Saにおける第二溝部22,32のタイヤ周方向に対する平均角度θaが小さくなるように第二溝部22,32は湾曲又は屈曲している。言い換えると、ラグ溝20,30の第二溝部22,32は、トレッド端E側からタイヤ赤道CL側に向かってタイヤ周方向に対する傾斜角度が漸減するように滑らかに湾曲するか、少なくとも1つの屈曲点を有して屈曲している。また、センターブロック51は、タイヤ幅方向の最大長さLがトレッド展開幅TWの25%~35%に設定されている。 In FIG. 2, each lug groove 20 and 30 has a distance in the tire width direction from the tire equator CL to the tread end E as W, and a position apart from the tire equator CL in the tire width direction by 0.50 W and the tire equator CL. When the region between the tread end E and the position spaced from the tire equator CL in the tire width direction by 0.50 W is the outer region Sb, the second groove portions 22, 32 in the outer region Sb are defined as the inner region Sa. The second groove portions 22, 32 are curved or bent so that the average angle θa of the second groove portions 22, 32 in the inner region Sa with respect to the tire circumferential direction becomes smaller than the average angle θb with respect to the tire circumferential direction. In other words, the second groove portions 22 and 32 of the lug grooves 20 and 30 are smoothly curved so that the inclination angle with respect to the tire circumferential direction gradually decreases from the tread end E side toward the tire equator CL side, or at least one bend. It has a point and is bent. Further, the maximum length L in the tire width direction of the center block 51 is set to 25% to 35% of the tread development width TW.
 上述のようにトレッドパターンを構成しているので、オフロードトラクション性能を向上しながら、低騒音性能を向上することができる。即ち、トラクション性能への寄与が大きいタイヤ赤道CL近傍にタイヤ幅方向に沿って延在する第一溝部21,31が配され、この第一溝部21,31が他のラグ溝30,20の第二溝部32,22に連通しているので、効率的にトラクション性能を向上することができる。また、第二溝部22,32が上述のように湾曲又は屈曲することで溝長さを増大することができ、トラクション性能を向上すると共に、気柱共鳴音の発生を抑制することができる。更に、センターブロック51の最大幅を適度に確保することで、ブロック剛性を充分に確保して、良好なトラクション性能を発揮することができる。ここで、第二溝部22,32の平均角度θa,θbの大小関係が逆転すると、第二溝部22,32の湾曲または屈曲形状が不適切になり、トラクション性能を向上する効果が充分に得られない。 Since the tread pattern is configured as described above, it is possible to improve low-noise performance while improving off-road traction performance. That is, the first groove portions 21 and 31 extending along the tire width direction are arranged in the vicinity of the tire equator CL, which greatly contributes to the traction performance, and the first groove portions 21 and 31 are the first groove portions of the other lug grooves 30 and 20. Since it communicates with the two groove portions 32 and 22, the traction performance can be efficiently improved. In addition, the second groove portions 22 and 32 are curved or bent as described above, so that the groove length can be increased, the traction performance can be improved, and the generation of air column resonance sound can be suppressed. Further, by appropriately securing the maximum width of the center block 51, it is possible to secure sufficient block rigidity and exhibit good traction performance. Here, if the magnitude relationship between the average angles θa and θb of the second groove portions 22 and 32 is reversed, the curved or bent shape of the second groove portions 22 and 32 becomes inappropriate, and the effect of improving traction performance is sufficiently obtained. Absent.
 ラグ溝20,30の第二溝部22,32は、上記のようにタイヤ赤道CLに向かってタイヤ周方向に対する角度を漸減させるにあたって、内側領域Saにおける第二溝部22,32のタイヤ周方向に対する平均角度θaを好ましくは35°~45°、外側領域Sbにおける第二溝部22,32のタイヤ周方向に対する平均角度θbを好ましくは70°~85°にするとよい。これにより、第二溝部22,32の各部における角度が良好になり、第二溝部22,32の湾曲又は屈曲形状が良好になるので、ラグ溝長さを増大させて、トラクション性能を向上するには有利になる。第二溝部22,32の平均角度θaが35°未満であると、タイヤ幅方向の溝成分が減少するためトラクション性能を充分に向上することが難しくなる。第二溝部22,32の平均角度θaが45°を超えると、平均角度θbとの差が小さくなって第二溝部22,32を充分に屈曲又は湾曲させることができず、ラグ溝長さが充分に増大しないため、トラクション性能を充分に向上することが難しくなる。第二溝部22,32の平均角度θbが70°未満であると、平均角度θaとの差が小さくなって第二溝部22,32を充分に屈曲又は湾曲させることができず、ラグ溝長さが充分に増大しないため、トラクション性能を充分に向上することが難しくなる。第二溝部22,32の平均角度θbが85°を超えると、平均角度θaとの差が大きくなって第二溝部22,32が大きく屈曲又は湾曲して良好な溝形状を確保することが難しくなる。 The second groove portions 22 and 32 of the lug grooves 20 and 30 are averaged with respect to the tire circumferential direction of the second groove portions 22 and 32 in the inner region Sa when gradually decreasing the angle with respect to the tire equator CL with respect to the tire circumferential direction as described above. The angle θa is preferably 35° to 45°, and the average angle θb of the second groove portions 22 and 32 in the outer region Sb with respect to the tire circumferential direction is preferably 70° to 85°. Thereby, the angle in each part of the second groove portions 22 and 32 becomes good, and the curved or bent shape of the second groove portions 22 and 32 becomes good, so that the lug groove length is increased and the traction performance is improved. Will be advantageous. When the average angle θa of the second groove portions 22 and 32 is less than 35°, it is difficult to sufficiently improve the traction performance because the groove component in the tire width direction is reduced. When the average angle θa of the second groove portions 22 and 32 exceeds 45°, the difference from the average angle θb becomes small, and the second groove portions 22 and 32 cannot be bent or curved sufficiently, and the lug groove length becomes longer. Since it does not increase sufficiently, it becomes difficult to sufficiently improve the traction performance. If the average angle θb of the second groove portions 22 and 32 is less than 70°, the difference from the average angle θa becomes small and the second groove portions 22 and 32 cannot be bent or curved sufficiently, and the lug groove length is increased. Does not increase sufficiently, it becomes difficult to sufficiently improve the traction performance. When the average angle θb of the second groove portions 22 and 32 exceeds 85°, the difference from the average angle θa becomes large and the second groove portions 22 and 32 are largely bent or curved, and it is difficult to secure a good groove shape. Become.
 なお、ラグ溝20,30の第二溝部22,32の平均角度は、各領域の境界位置におけるラグ溝20,30の溝幅方向の中点を結んだ直線がタイヤ周方向に対してなす角度として求めることができる。但し、タイヤ赤道CLとトレッド端Eでは、図示のように、タイヤ赤道CL又はトレッド端Eに向かって引いた第二溝部22,32の延長線のタイヤ赤道CL又はトレッド端Eにおける中点を用いるものとする。 The average angle of the second groove portions 22 and 32 of the lug grooves 20 and 30 is the angle formed by the straight line connecting the midpoints of the groove width directions of the lug grooves 20 and 30 at the boundary positions of the regions with respect to the tire circumferential direction. Can be asked as However, at the tire equator CL and the tread end E, as shown in the figure, the midpoint of the extension line of the second groove portions 22, 32 drawn toward the tire equator CL or the tread end E at the tire equator CL or the tread end E is used. I shall.
 第一溝部21,31は、上述のように、主としてトラクション性能への寄与が大きいタイヤ赤道CLの近傍においてタイヤ幅方向の溝成分を確保するために設けられる。そのため、第一溝部21,31は、タイヤ周方向に対して略垂直方向に延在することが好ましい。具体的には、第一溝部21,31のタイヤ周方向に対する角度θcを好ましくは80°~100°にするとよい。これにより、第一溝部21,31によって効率的にトラクション性能を向上することができる。第一溝部21,31の角度θcが80°未満又は100°超であると、第一溝部21,31のタイヤ幅方向に対する傾斜が大きくなって、タイヤ幅方向の溝成分を充分に確保することができず、トラクション性能を向上する効果が限定的になる。 As described above, the first groove portions 21 and 31 are provided to secure the groove component in the tire width direction mainly in the vicinity of the tire equator CL, which largely contributes to the traction performance. Therefore, it is preferable that the first groove portions 21 and 31 extend in a direction substantially perpendicular to the tire circumferential direction. Specifically, the angle θc of the first groove portions 21 and 31 with respect to the tire circumferential direction is preferably 80° to 100°. Thereby, the first groove portions 21 and 31 can efficiently improve the traction performance. When the angle θc of the first groove portions 21 and 31 is less than 80° or more than 100°, the inclination of the first groove portions 21 and 31 with respect to the tire width direction becomes large, and a sufficient groove component in the tire width direction is ensured. Cannot be achieved, and the effect of improving traction performance is limited.
 また、図2において、各ブロック50の踏面には少なくとも1つの屈曲点を有する浅溝60が形成される。浅溝60とは、ラグ溝20,30及び周方向細溝40よりも溝深さが小さい溝であり、溝深さを好ましくは1mm~3mm、溝幅を例えば1mm~3mmに設定することができる。浅溝60の溝深さが1mm未満であると、浅溝60が浅すぎて浅溝60を設けることによる効果が得られず、浅溝60の溝深さが3mmを超えるとブロック剛性への影響が大きくなる。以降の説明では、センターブロック51に形成された浅溝60をセンター浅溝61、ショルダーブロック52に形成された浅溝60をショルダー浅溝62という。図示の例では、センター浅溝61及びショルダー浅溝62は共に屈曲点を1つ有している。各ブロック50に形成される浅溝60の本数は特に限定されないが、図示のように各ブロック50に1本ずつを設けることが好ましい。 Further, in FIG. 2, a shallow groove 60 having at least one bending point is formed on the tread surface of each block 50. The shallow groove 60 is a groove having a smaller groove depth than the lug grooves 20, 30 and the circumferential narrow groove 40, and the groove depth is preferably set to 1 mm to 3 mm and the groove width is set to, for example, 1 mm to 3 mm. it can. If the depth of the shallow groove 60 is less than 1 mm, the shallow groove 60 is too shallow to obtain the effect of providing the shallow groove 60, and if the depth of the shallow groove 60 exceeds 3 mm, the block rigidity is increased. The impact will increase. In the following description, the shallow groove 60 formed in the center block 51 is called a center shallow groove 61, and the shallow groove 60 formed in the shoulder block 52 is called a shoulder shallow groove 62. In the illustrated example, both the center shallow groove 61 and the shoulder shallow groove 62 have one bending point. The number of shallow grooves 60 formed in each block 50 is not particularly limited, but it is preferable to provide one shallow groove 60 in each block 50 as illustrated.
 本発明では、オフロードトラクション性能を確保するために上述のようにラグ溝20,30と周方向細溝40とによって複数のブロック50を区画したブロック基調のトレッドパターンを有するタイヤにおいて、各ブロック50の踏面に屈曲点を有する浅溝60を設けているので、タイヤ周方向の溝成分とタイヤ幅方向の溝成分とをバランスよく増加することができ、タイヤ周方向及び幅方向の雪上トラクション性能を効率的に向上することができる。 In the present invention, in order to ensure off-road traction performance, in the tire having a block-based tread pattern in which a plurality of blocks 50 are divided by the lug grooves 20, 30 and the circumferential narrow grooves 40 as described above, each block 50 Since the shallow groove 60 having the bending point is provided on the tread surface of the tire, the groove component in the tire circumferential direction and the groove component in the tire width direction can be increased in a balanced manner, and the snow traction performance in the tire circumferential direction and the width direction can be improved. It can be improved efficiently.
 更に、センター浅溝61は、図示のように、一端が周方向細溝40に連通し、他端がラグ溝20,30の第二溝部22,32に連通しているとよい。また、センター浅溝61は、センターブロック51の踏込側又は蹴出側の外縁に沿うように屈曲しているとよい。このとき、センター浅溝61はセンターブロック51のタイヤ周方向中心位置からタイヤ周方向に±5mmの範囲内に配置されるとよい。更に、センター浅溝61をタイヤ赤道CLに向かって投影したときのセンター浅溝61の投影成分どうしが重複しないことが好ましい。このようにトラクション性能への寄与が大きいタイヤ赤道CL近傍に位置するセンターブロック51に適切な形状のセンター浅溝61を設けることで、効果的に雪上トラクション性能を向上することができる。また、上記のようにセンター浅溝61が重複しないことで、タイヤ全周に亘ってブロック剛性が過度に低下することを避けて、タイヤ周方向での雪上トラクション性能とオフロードトラクション性能とのバランスを良好にし、これら性能を高度に両立することができる。 Further, as shown, the center shallow groove 61 may have one end communicating with the circumferential narrow groove 40 and the other end communicating with the second groove portions 22, 32 of the lug grooves 20, 30. The center shallow groove 61 is preferably bent along the outer edge of the center block 51 on the stepping side or the kicking side. At this time, the center shallow groove 61 is preferably arranged within a range of ±5 mm in the tire circumferential direction from the center position of the center block 51 in the tire circumferential direction. Further, it is preferable that the projection components of the center shallow groove 61 when the center shallow groove 61 is projected toward the tire equator CL do not overlap. By providing the center shallow groove 61 having an appropriate shape in the center block 51 located near the tire equator CL, which greatly contributes to the traction performance, it is possible to effectively improve the snow traction performance. Further, since the center shallow grooves 61 do not overlap as described above, the block rigidity is prevented from being excessively reduced over the entire circumference of the tire, and a balance between snow traction performance and off-road traction performance in the tire circumferential direction is avoided. Can be improved, and these performances can be highly compatible.
 一方、ショルダー浅溝62は、図示のように、両端がショルダーブロック52内で終端しているとよい。また、ショルダー浅溝62は、ショルダーブロック52の踏込側の外縁に沿うように屈曲しているとよい。更に、ショルダー浅溝62は、ショルダーブロック52の踏面のタイヤ幅方向内側の頂点の位置よりも踏込側に配置されているとよい。このようにショルダー浅溝62を設けることで、ショルダーブロック52の剛性低下を抑制しながら、踏込側にエッジ成分を増加することができ、雪上性能を効果的に向上することができる。その一方で、蹴出側については浅溝が無く、ブロック剛性とゴム量が確保されるので、偏摩耗(ヒールアンドトウ摩耗)を効果的に抑制することができる。 On the other hand, the shoulder shallow groove 62 is preferably terminated at both ends inside the shoulder block 52, as shown in the figure. Further, the shoulder shallow groove 62 may be bent along the outer edge of the shoulder block 52 on the stepping side. Further, the shoulder shallow groove 62 is preferably arranged on the stepping side with respect to the position of the apex of the tread surface of the shoulder block 52 on the inner side in the tire width direction. By providing the shoulder shallow groove 62 in this way, it is possible to increase the edge component on the stepping side while suppressing the decrease in rigidity of the shoulder block 52, and to effectively improve the snow performance. On the other hand, since there is no shallow groove on the kicking side and the block rigidity and the amount of rubber are secured, uneven wear (heel and toe wear) can be effectively suppressed.
 ラグ溝20,30は全体が均一の溝深さを有していてもよいが、第一溝部21,31を第二溝部22,32よりも適度に浅くすることが好ましい。具体的には、ラグ溝20,30の第一溝部21,31における溝深さを第二溝部22,32における溝深さの好ましくは65%~75%にするとよい。これにより、第一溝部21,31に隣接するブロック(センターブロック51)の剛性を高めることができ、トラクション性能を向上するには有利になる。 The lug grooves 20 and 30 may have a uniform groove depth as a whole, but it is preferable that the first groove portions 21 and 31 be appropriately shallower than the second groove portions 22 and 32. Specifically, the groove depth in the first groove portions 21, 31 of the lug grooves 20, 30 is preferably 65% to 75% of the groove depth in the second groove portions 22, 32. Accordingly, the rigidity of the block (center block 51) adjacent to the first groove portions 21 and 31 can be increased, which is advantageous for improving the traction performance.
 ラグ溝20,30および周方向細溝40の溝深さはそれぞれ上述の範囲に設定することができるが、周方向細溝40をラグ溝20,30よりも適度に浅くすることが好ましい。具体的には、周方向細溝40の溝深さをラグ溝20,30の第二溝部22,32における溝深さの好ましくは75%~85%にするとよい。このように周方向細溝40を第二溝部22,32よりも適度に浅くすることで、周方向細溝40に隣接するブロック(センターブロック51、ショルダーブロック52)の剛性を高めることができ、トラクション性能を向上するには有利になる。 The groove depths of the lug grooves 20 and 30 and the circumferential narrow groove 40 can be set within the ranges described above, but it is preferable that the circumferential narrow groove 40 be appropriately shallower than the lug grooves 20 and 30. Specifically, the groove depth of the circumferential narrow groove 40 is preferably 75% to 85% of the groove depth of the second groove portions 22, 32 of the lug grooves 20, 30. In this way, by making the circumferential narrow groove 40 appropriately shallower than the second groove portions 22, 32, the rigidity of the blocks (center block 51, shoulder block 52) adjacent to the circumferential narrow groove 40 can be increased, It is advantageous to improve the traction performance.
 タイヤサイズが315/80R22.5であり、図1に例示する基本構造を有し、トレッド部に、タイヤ幅方向に延在する複数本のラグ溝と、タイヤ周方向に隣り合うラグ溝どうしを連結する周方向細溝とが形成され、これらラグ溝と周方向細溝によってトレッド部の中央側に複数のセンターブロックが区画された空気入りタイヤにおいて、センターブロックの形状、接地後着側の斜めエッジの有無、接地先着側及び接地後着側の軸方向エッジの有無、距離Bに対する距離Aの比(A/B)、接地後着側の斜めエッジの傾斜角度α、ラグ溝の角度変化、ラグ溝におけるタイヤ赤道付近の角度、ラグ溝の他のラグ溝への開口の有無、各ブロックへの浅溝の配置をそれぞれ表1のように設定した従来例、比較例及び実施例1~6の空気入りタイヤを作製した。 The tire size is 315/80R22.5 and has the basic structure illustrated in FIG. 1. The tread portion has a plurality of lug grooves extending in the tire width direction and lug grooves adjacent to each other in the tire circumferential direction. In a pneumatic tire in which a circumferential narrow groove to be connected is formed, and a plurality of center blocks are defined on the center side of the tread portion by the lug groove and the circumferential narrow groove, the shape of the center block, the diagonal of the landing post-arrival side Presence/absence of edges, presence/absence of axial edges on the landing first-arrival side and landing-after landing side, ratio of distance A to distance B (A/B), inclination angle α of diagonal edge on landing-after-landing side, angle change of lug groove, Conventional examples, comparative examples and Examples 1 to 6 in which the angle near the equator of the tire in the lug groove, the presence or absence of opening of the lug groove to other lug grooves, and the arrangement of shallow grooves in each block are set as shown in Table 1, respectively. The pneumatic tire of was produced.
 表1の「センターブロックの形状」について、対応する図面の番号を記載した。図4(a)に示す従来例のセンターブロックの形状は、図2の形状とは大きく異なるが、図中に記載したように各部を図2と対応させた。また、図4(b)に示す比較例のセンターブロックの形状は、接地後着側の斜めエッジ(図2に示すエッジe5)を有しない点において図2の形状と異なる。 Regarding "Shape of center block" in Table 1, the corresponding drawing numbers are listed. The shape of the center block of the conventional example shown in FIG. 4(a) is significantly different from the shape of FIG. 2, but each part is made to correspond to FIG. 2 as described in the figure. Further, the shape of the center block of the comparative example shown in FIG. 4B is different from the shape of FIG. 2 in that it does not have a diagonal edge (edge e5 shown in FIG. 2) on the landing/arrival side.
 また、表1の「ラグ溝の角度変化」については、ラグ溝のタイヤ周方向に対する傾斜角度がトレッド端側からタイヤ赤道側に向かって漸減していることを意味する。また、表1の「ラグ溝におけるタイヤ赤道付近の角度」については、ラグ溝のタイヤ周方向に対する角度がタイヤ赤道付近において垂直であるか否かを意味する。 In addition, the “angle change of the lug groove” in Table 1 means that the inclination angle of the lug groove with respect to the tire circumferential direction gradually decreases from the tread end side toward the tire equator side. Further, the “angle in the lug groove near the tire equator” in Table 1 means whether or not the angle of the lug groove with respect to the tire circumferential direction is vertical near the tire equator.
 これら空気入りタイヤについて、下記の評価方法により、オフロードトラクション性能及び雪上トラクション性能を評価し、その結果を表1に併せて示した。 For these pneumatic tires, off-road traction performance and snow traction performance were evaluated by the following evaluation methods, and the results are also shown in Table 1.
 オフロードトラクション性能:
 各試験タイヤをリムサイズ22.5×9.00のホイールに組み付けて、空気圧を850kPaとして、試験車両(車軸配列が6×4であるトラック)の駆動軸に装着し、未舗装路からなるテストコースでテストドライバーによる官能評価を行った。評価結果は、従来例の値を100とする指数にて示した。この指数値が大きいほどオフロードトラクション性能に優れることを意味する。
Off-road traction performance:
Each test tire was mounted on a wheel with a rim size of 22.5×9.00, the air pressure was set to 850 kPa, the tire was mounted on the drive shaft of a test vehicle (a truck with an axle arrangement of 6×4), and the test course consisted of an unpaved road. Sensory evaluation was performed by a test driver. The evaluation results are shown by an index with the value of the conventional example being 100. The larger the index value, the better the off-road traction performance.
 雪上トラクション性能
 各試験タイヤをリムサイズ22.5×9.00のホイールに組み付けて、空気圧を850kPaとして、試験車両(車軸配列が6×4であるトラック)の駆動軸に装着し、雪上路からなるテストコースでテストドライバーによる官能評価を行った。評価結果は、従来例の値を100とする指数にて示した。この指数値が大きいほど雪上トラクション性能に優れることを意味する。
Snow traction performance Each test tire was mounted on a wheel with a rim size of 22.5 x 9.00, the air pressure was set to 850 kPa, and it was mounted on the drive shaft of a test vehicle (a truck with an axle arrangement of 6 x 4) to consist of a snowy road. Sensory evaluation was performed by a test driver on the test course. The evaluation results are shown by an index with the value of the conventional example being 100. The larger the index value, the better the snow traction performance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~6はいずれも、従来例と比較して、オフロードトラクション性能及び雪上トラクション性能が改善されていた。 As is clear from Table 1, in each of Examples 1 to 6, the off-road traction performance and the snow traction performance were improved as compared with the conventional example.
 一方、比較例は、各センターブロックが接地後着側の斜めエッジを有しない構造であるため、オフロードトラクション性能及び雪上トラクション性能の改善効果を充分に得ることができなかった。 On the other hand, in the comparative example, since each center block does not have a diagonal edge on the landing side after landing, it was not possible to sufficiently obtain the effect of improving off-road traction performance and snow traction performance.
1 トレッド部
2 サイドウォール部
3 ビード部
20,30 ラグ溝
40 周方向細溝
51 センターブロック
51A 第一センターブロック
51B 第二センターブロック
CL タイヤ赤道
E トレッド端
e エッジ
e1 接地先着側の軸方向エッジ
e2 接地後着側の軸方向エッジ
e3,e4 接地先着側の斜めエッジ
e5 接地後着側の斜めエッジ
1 Tread Part 2 Sidewall Part 3 Bead Part 20, 30 Lug Groove 40 Circumferential Narrow Groove 51 Center Block 51A First Center Block 51B Second Center Block CL Tire Equator E Tread Edge e Edge e1 Axial Edge e2 on First Grounding Side Axial edges e3, e4 on the landing post-arrival side Diagonal edge e5 on the landing landing side Diagonal edge on the landing landing side

Claims (7)

  1.  タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、回転方向が指定された空気入りタイヤにおいて、
     前記トレッド部の外表面に、タイヤ幅方向に延在する複数本のラグ溝と、タイヤ周方向に隣り合う前記ラグ溝どうしを連結する周方向細溝とが形成され、前記ラグ溝と前記周方向細溝によって前記トレッド部の中央側に複数のセンターブロックが区画され、該センターブロックはタイヤ赤道に対してタイヤ幅方向の一方側に偏在する第一センターブロック及びタイヤ赤道に対してタイヤ幅方向の他方側に偏在する第二センターブロックを含み、前記第一センターブロックと前記第二センターブロックとがタイヤ周方向に交互に配列され、
     前記第一センターブロックと前記第二センターブロックの各々は、接地先着側にタイヤ幅方向に沿って延在してタイヤ赤道を跨ぐ接地先着側の軸方向エッジと、接地後着側にタイヤ幅方向に沿って延在してタイヤ赤道を跨ぐ接地後着側の軸方向エッジと、前記接地先着側の軸方向エッジの両端からそれぞれブロック幅が接地後着側に向かって漸増するように斜めに延びる一対の接地先着側の斜めエッジと、タイヤ赤道から突き出した領域において前記接地先着側の斜めエッジと異なる方向に傾斜して前記接地先着側の斜めエッジと前記接地後着側の軸方向エッジとを接続する接地後着側の斜めエッジとを有することを特徴とする空気入りタイヤ。
    An annular tread portion extending in the tire circumferential direction, a pair of sidewall portions arranged on both sides of the tread portion, and a pair of bead portions arranged on the tire radial inner side of these sidewall portions. In a pneumatic tire with a specified rotation direction,
    On the outer surface of the tread portion, a plurality of lug grooves extending in the tire width direction and a circumferential narrow groove that connects the lug grooves adjacent to each other in the tire circumferential direction are formed, and the lug groove and the circumference are formed. A plurality of center blocks are defined on the center side of the tread portion by the direction narrow groove, and the center blocks are unevenly distributed on one side in the tire width direction with respect to the tire equator. , Including a second center block unevenly distributed on the other side, the first center blocks and the second center blocks are arranged alternately in the tire circumferential direction,
    Each of the first center block and the second center block has an axial edge on the first landing side that extends along the tire width direction on the first landing side and straddles the tire equator, and a tire width direction on the last landing side. And an axial edge of the grounding rear-end side that extends along the tire equator, and diagonally extends from both ends of the axial edge of the ground-contacting first-arrival side so that the block width gradually increases toward the ground-contacting rear-end side. A pair of diagonal edges on the first landing side, the diagonal edge on the first landing side and the axial edge on the last landing side on the ground inclining in a direction different from the diagonal edge on the first landing side in the region protruding from the tire equator. A pneumatic tire having an oblique edge on the grounding/adhering side to be connected.
  2.  前記第一センターブロックと前記第二センターブロックの各々において、前記接地後着側の軸方向エッジと前記接地後着側の斜めエッジとの接続点からタイヤ赤道までの距離Aと、前記接地先着側の軸方向エッジと前記接地後着側の斜めエッジに非接続である前記接地先着側の斜めエッジとの接続点からタイヤ赤道までの距離Bとが0.40≦A/B≦0.68の関係を満たすことを特徴とする請求項1に記載の空気入りタイヤ。 In each of the first center block and the second center block, the distance A from the connection point between the axial edge on the landing rear landing side and the diagonal edge on the landing landing side to the tire equator, and the ground landing first side And the distance B from the connection point between the axial edge of the tire and the diagonal edge on the first landing side which is not connected to the diagonal edge on the grounding side to the tire equator is 0.40≦A/B≦0.68. The pneumatic tire according to claim 1, wherein the relationship is satisfied.
  3.  前記第一センターブロック又は前記第二センターブロックにおける前記接地後着側の斜めエッジと前記第二センターブロック又は前記第一センターブロックにおける前記接地先着側の軸方向エッジとがなす角度αが55°≦α≦75°の範囲であることを特徴とする請求項1又は2に記載の空気入りタイヤ。 The angle α formed by the oblique edge of the first center block or the second center block on the post-grounding side and the axial edge of the second center block or the first landing side of the ground on the first landing side is 55°≦. The pneumatic tire according to claim 1 or 2, wherein α is in the range of 75°.
  4.  前記ラグ溝が、タイヤ赤道に対して一方側のトレッド端からタイヤ幅方向内側に向かって延在してタイヤ赤道と交差するラグ溝と、タイヤ赤道に対して他方側のトレッド端からタイヤ幅方向内側に向かって延在してタイヤ赤道と交差するラグ溝とからなり、これらラグ溝がタイヤ周方向に交互に配列され、
     各ラグ溝は、タイヤ赤道と交差してタイヤ幅方向に沿って延在する第一溝部と、前記第一溝部の一端から前記第一溝部よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端まで延在する第二溝部とからなり、前記第一溝部の他端はタイヤ周方向に隣り合うラグ溝の前記第二溝部に連通し、前記第一溝部は前記ラグ溝のトレッド端側の端部よりも接地先着側に位置しており、
     タイヤ赤道からトレッド端までの距離をWとし、タイヤ赤道からタイヤ幅方向に0.5W離間した位置とタイヤ赤道との間の領域を内側領域とし、タイヤ赤道からタイヤ幅方向に0.5W離間した位置とトレッド端との間の領域を外側領域としたとき、前記外側領域における前記第二溝部のタイヤ周方向に対する平均角度よりも前記内側領域における前記第二溝部のタイヤ周方向に対する平均角度が小さくなるように前記第二溝部は湾曲又は屈曲しており、
     前記センターブロックのタイヤ幅方向の最大長さがトレッド展開幅の25%~35%であることを特徴とする請求項1~3のいずれかに記載の空気入りタイヤ。
    The lug groove, the lug groove extending inward in the tire width direction from the tread end on one side with respect to the tire equator and intersecting the tire equator, and the tire width direction from the tread end on the other side with respect to the tire equator. It consists of lug grooves that extend inward and intersect the tire equator, and these lug grooves are arranged alternately in the tire circumferential direction,
    Each lug groove, a first groove portion that extends along the tire width direction intersecting the tire equator, and inclined from the one end of the first groove portion at a smaller angle with respect to the tire circumferential direction than the first groove portion. The second groove portion extending to the tread end, the other end of the first groove portion communicates with the second groove portion of the lug groove adjacent in the tire circumferential direction, the first groove portion is the tread end side of the lug groove. It is located on the grounding first-arrival side than the end of
    The distance from the tire equator to the tread edge is W, the region between the tire equator and the tire equator at a distance of 0.5 W in the tire width direction is the inner region, and the tire equator is at a distance of 0.5 W in the tire width direction. When the region between the position and the tread end is the outer region, the average angle with respect to the tire circumferential direction of the second groove portion in the inner region is smaller than the average angle with respect to the tire circumferential direction of the second groove portion in the outer region. So that the second groove portion is curved or bent,
    The pneumatic tire according to any one of claims 1 to 3, wherein the maximum length of the center block in the tire width direction is 25% to 35% of the tread development width.
  5.  前記ラグ溝と前記周方向細溝によって前記トレッド部のショルダー側に複数のショルダーブロックが区画され、前記センターブロックと前記ショルダーブロックの各々の踏面に少なくとも1つの屈曲点を有する浅溝が形成されていることを特徴とする請求項1~4のいずれかに記載の空気入りタイヤ。 A plurality of shoulder blocks are defined on the shoulder side of the tread portion by the lug groove and the circumferential narrow groove, and a shallow groove having at least one bending point is formed on each tread surface of the center block and the shoulder block. The pneumatic tire according to any one of claims 1 to 4, characterized in that:
  6.  前記センターブロックの各々に形成された前記浅溝の一端が前記周方向細溝に連通し、他端が前記ラグ溝に連通し、前記センターブロックの各々に形成された前記浅溝をタイヤ赤道に向かって投影したときの前記浅溝の投影成分どうしが重複せず、
     前記ショルダーブロックに形成された前記浅溝は両端がブロック内で終端し、前記ショルダーブロックの踏面のタイヤ幅方向内側の頂点の位置よりも接地先着側に配置されていることを特徴とする請求項5に記載の空気入りタイヤ。
    One end of the shallow groove formed in each of the center blocks communicates with the circumferential narrow groove, the other end communicates with the lug groove, and the shallow groove formed in each of the center blocks is connected to the tire equator. The projected components of the shallow groove when projected toward each other do not overlap,
    The shallow groove formed in the shoulder block has both ends terminating inside the block, and is arranged on a ground contact first side with respect to a position of an apex of the tread surface of the shoulder block on the inner side in the tire width direction. The pneumatic tire according to item 5.
  7.  前記ラグ溝の最大深さが15mm~28mmであることを特徴とする請求項1~6のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 6, wherein the maximum depth of the lug groove is 15 mm to 28 mm.
PCT/JP2019/024251 2019-02-20 2019-06-19 Pneumatic tire WO2020170466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112019006446.0T DE112019006446B4 (en) 2019-02-20 2019-06-19 tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019028351A JP6631730B1 (en) 2019-02-20 2019-02-20 Pneumatic tire
JP2019-028351 2019-02-20

Publications (1)

Publication Number Publication Date
WO2020170466A1 true WO2020170466A1 (en) 2020-08-27

Family

ID=69146677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024251 WO2020170466A1 (en) 2019-02-20 2019-06-19 Pneumatic tire

Country Status (3)

Country Link
JP (1) JP6631730B1 (en)
DE (1) DE112019006446B4 (en)
WO (1) WO2020170466A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112606630A (en) * 2021-01-07 2021-04-06 厦门正新橡胶工业有限公司 Pneumatic tire tread pattern structure for cross-country sports

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046724A1 (en) * 2010-10-05 2012-04-12 株式会社ブリヂストン Tire
JP2012171606A (en) * 2011-02-24 2012-09-10 Bridgestone Corp Pneumatic tire for construction vehicle
JP2014213832A (en) * 2013-04-30 2014-11-17 住友ゴム工業株式会社 Heavy load tire
WO2015059942A1 (en) * 2013-10-24 2015-04-30 横浜ゴム株式会社 Pneumatic tire
JP2016016694A (en) * 2014-07-04 2016-02-01 住友ゴム工業株式会社 Winter tire
JP2016196288A (en) * 2015-04-03 2016-11-24 住友ゴム工業株式会社 Pneumatic tire
JP2016199120A (en) * 2015-04-09 2016-12-01 住友ゴム工業株式会社 Pneumatic tire
JP2017124773A (en) * 2016-01-15 2017-07-20 横浜ゴム株式会社 Pneumatic tire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188109A (en) 1996-01-11 1997-07-22 Bridgestone Corp Pneumatic tire for heavy load
WO2006001202A1 (en) 2004-06-23 2006-01-05 Bridgestone Corporation Pneumatic tire
JP6724379B2 (en) 2016-01-20 2020-07-15 住友ゴム工業株式会社 Pneumatic tire
CN108725101B (en) 2017-04-18 2021-12-03 住友橡胶工业株式会社 Tyre for vehicle wheels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046724A1 (en) * 2010-10-05 2012-04-12 株式会社ブリヂストン Tire
JP2012171606A (en) * 2011-02-24 2012-09-10 Bridgestone Corp Pneumatic tire for construction vehicle
JP2014213832A (en) * 2013-04-30 2014-11-17 住友ゴム工業株式会社 Heavy load tire
WO2015059942A1 (en) * 2013-10-24 2015-04-30 横浜ゴム株式会社 Pneumatic tire
JP2016016694A (en) * 2014-07-04 2016-02-01 住友ゴム工業株式会社 Winter tire
JP2016196288A (en) * 2015-04-03 2016-11-24 住友ゴム工業株式会社 Pneumatic tire
JP2016199120A (en) * 2015-04-09 2016-12-01 住友ゴム工業株式会社 Pneumatic tire
JP2017124773A (en) * 2016-01-15 2017-07-20 横浜ゴム株式会社 Pneumatic tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112606630A (en) * 2021-01-07 2021-04-06 厦门正新橡胶工业有限公司 Pneumatic tire tread pattern structure for cross-country sports
CN112606630B (en) * 2021-01-07 2024-08-20 厦门正新橡胶工业有限公司 Tread pattern structure of pneumatic tire for off-road athletic

Also Published As

Publication number Publication date
DE112019006446B4 (en) 2024-08-01
DE112019006446T5 (en) 2021-09-09
JP2020131944A (en) 2020-08-31
JP6631730B1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP6436080B2 (en) Pneumatic tire
JP6142930B1 (en) Pneumatic tire
JP5667614B2 (en) Pneumatic tire
WO2015033818A1 (en) Pneumatic tire
WO2015190206A1 (en) Pneumatic tire
WO2018150746A1 (en) Pneumatic tire
JP7095374B2 (en) Pneumatic tires
JP6421652B2 (en) Pneumatic tire
WO2019203067A1 (en) Pneumatic tire
WO2020170466A1 (en) Pneumatic tire
WO2019155786A1 (en) Pneumatic tire
JP7293889B2 (en) pneumatic tire
JP6969474B2 (en) Pneumatic tires
JP2018161998A (en) Pneumatic tire
WO2020059395A1 (en) Pneumatic tire
JP7035693B2 (en) Pneumatic tires
WO2019203066A1 (en) Pneumatic tire
WO2020105513A1 (en) Pneumatic tire
WO2020084831A1 (en) Pneumatic tire
WO2019142508A1 (en) Pneumatic tire
JP2020097271A (en) Pneumatic tire
WO2023153022A1 (en) Tire
JP7131111B2 (en) pneumatic tire
WO2022185801A1 (en) Pneumatic tire
JP6311743B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916334

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19916334

Country of ref document: EP

Kind code of ref document: A1