Nothing Special   »   [go: up one dir, main page]

WO2020168845A1 - 一种优化交易成本的方法、系统及设备 - Google Patents

一种优化交易成本的方法、系统及设备 Download PDF

Info

Publication number
WO2020168845A1
WO2020168845A1 PCT/CN2020/070503 CN2020070503W WO2020168845A1 WO 2020168845 A1 WO2020168845 A1 WO 2020168845A1 CN 2020070503 W CN2020070503 W CN 2020070503W WO 2020168845 A1 WO2020168845 A1 WO 2020168845A1
Authority
WO
WIPO (PCT)
Prior art keywords
transaction
volume
trading
expected
target
Prior art date
Application number
PCT/CN2020/070503
Other languages
English (en)
French (fr)
Inventor
李智
Original Assignee
阿里巴巴集团控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里巴巴集团控股有限公司 filed Critical 阿里巴巴集团控股有限公司
Publication of WO2020168845A1 publication Critical patent/WO2020168845A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange

Definitions

  • This manual relates to the field of computer technology, in particular to a method, system and equipment for optimizing transaction costs.
  • foreign exchange exposure is simply the imbalance of foreign exchange payments for banks.
  • Foreign exchange exposure mainly comes from the currency mismatch of assets, liabilities and capital, as well as foreign currency profits and foreign currency statement translation.
  • exchange rate changes may bring losses to the bank's current income or economic value, thereby forming exchange rate risks.
  • foreign exchange locking can reduce the risk of foreign exchange exposure to a certain extent; however, in the scenario of foreign exchange locking, if the short-term trading volume of foreign exchange customers is too large, the huge trading volume will have an impact on the market price, which will greatly Increase transaction costs for foreign exchange customers.
  • the embodiments of this specification provide a method, system, equipment, and computer-readable medium for optimizing transaction costs, which are used to solve the problem of excessive short-term transaction volume in the prior art application scenario where transaction prices are locked in advance. This leads to the impact of market prices, thereby increasing transaction costs.
  • the embodiments of this specification provide a method for optimizing transaction costs, including:
  • the multi-batch transaction parameters include the transaction price of all transaction batches, the transaction time of each transaction batch, and the transaction volume of each transaction batch ,among them:
  • the transaction batches corresponding to the multi-batch transaction parameters correspond to the expected transaction time period
  • the transaction time of the corresponding transaction batch is determined according to the expected transaction time period
  • the phase target corresponding to the expected transaction time period is determined
  • the trading volume determines the trading volume of the corresponding trading batch.
  • splitting the expected total transaction time limit corresponding to the target transaction volume and determining multiple expected transaction time periods includes:
  • the expected total transaction time limit corresponding to the target transaction volume is split, and multiple expected transaction time periods are determined, wherein:
  • splitting the target transaction volume and determining the target transaction volume in multiple stages includes:
  • the target transaction volume is split according to the changes in the market transaction volume, and multiple stages of target transaction volume are determined, wherein the proportion of the target transaction volume in the stage to the target transaction volume is the market corresponding to the corresponding expected transaction time period
  • the proportion of the phased transaction volume to the total market volume corresponding to the expected total transaction time limit is the same.
  • the prediction of the market transaction volume change within the expected total transaction time limit under the current transaction scenario, wherein the prediction is made by using a machine learning model.
  • a machine learning model is used for prediction, wherein a time series prediction model is used for prediction.
  • a machine learning model is used for prediction, wherein the prediction is based on an elastic network.
  • the prediction is based on an elastic network, wherein the objective function is solved
  • y is the transaction volume within the time period to be predicted
  • is the optimal parameter to be solved
  • ⁇ 1 is the penalty coefficient of L1 norm
  • ⁇ 2 is the penalty coefficient of L2 norm
  • X is a transaction feature item.
  • This application also proposes a system for optimizing transaction costs, including:
  • Transaction price determination module which is configured to determine the transaction price corresponding to the target transaction volume
  • a trading period setting module which is configured to split the expected total trading time limit corresponding to the target trading volume and determine multiple expected trading time periods
  • the trading volume setting module is configured to split the target trading volume and determine the target trading volume in multiple stages, where the target trading volume in the stages corresponds to the expected trading time period;
  • the transaction parameter setting module is configured to determine the multi-batch trading parameters on which the actual transaction is based on the target transaction volume, and the multi-batch trading parameters include the transaction price of all transaction batches and the transaction time of each transaction batch And the transaction volume of each transaction batch, including:
  • the transaction batches corresponding to the multi-batch transaction parameters correspond to the expected transaction time period
  • the transaction time of the corresponding transaction batch is determined according to the expected transaction time period
  • the phase target corresponding to the expected transaction time period is determined
  • the trading volume determines the trading volume of the corresponding trading batch.
  • the system also includes a trading volume prediction module configured to predict changes in market trading volume within the expected total trading time limit under the current trading scenario;
  • the trading volume setting module is configured to split the target trading volume according to changes in the market trading volume.
  • the trading volume prediction module is configured to predict changes in the market trading volume, wherein the changes in the trading volume include that the market phase trading volume corresponding to each expected trading time period accounts for the total market trading volume corresponding to the expected total trading time limit Ratio of amount
  • the transaction volume setting module is configured to split the target transaction volume according to changes in the market transaction volume, wherein the proportion of the target transaction volume in the stage to the target transaction volume is the same as the market corresponding to the expected transaction time period The proportion of the phased transaction volume to the total market volume corresponding to the expected total transaction time limit is the same.
  • the embodiment of this specification also proposes a device for information processing on the user equipment side.
  • the device includes a memory for storing computer program instructions and a processor for executing the program instructions.
  • the computer program instructions When the computer program instructions are When the processor executes, it triggers the device to execute the method described in the embodiment of this specification.
  • the method according to the present invention can avoid the impact of short-term large-scale transactions on market prices under the premise of pre-locking transaction prices, thereby effectively controlling transaction costs.
  • FIG. 1 is a flowchart of the method for running an application program in an embodiment of this specification
  • FIG. 2 is a partial flowchart of the method for running an application program in an embodiment of the specification
  • FIG. 3 is a flowchart of a method for operating an application program in an embodiment of this specification
  • the embodiments of this specification propose technical solutions for optimizing transaction costs.
  • the inventor first made a detailed analysis of the application scenario of foreign exchange transactions in the prior art.
  • the essence of the foreign exchange lock-in business is to lock the price of foreign exchange transactions in advance.
  • the pre-locked price is usually determined based on the prediction result of the average market price in the subsequent trading time range.
  • the transaction itself will impact the market price, causing the market price to deviate from the predicted price when the foreign exchange was locked. That is to say, when the market price is impacted, the foreign exchange transaction price locked by the foreign exchange lock business has been unable to achieve the transaction cost control effect expected at the time of the foreign exchange lock.
  • the fundamental reason for the impact of foreign exchange transactions on market prices is that the volume of foreign exchange transactions is too large, that is, relative to the current total market transaction volume, the transaction volume of foreign exchange transactions has reached A point that cannot be ignored. Therefore, in order to avoid an impact on the current market price, in the embodiments of this specification, a method of reducing transaction volume is adopted.
  • the transaction volume of locked foreign exchange is determined by the needs of transaction customers, and it is impossible to directly reduce the transaction volume in order to control transaction costs. Therefore, in the embodiments of this specification, it is not to reduce the transaction volume required by the transaction client, but to split the transaction volume required by the transaction client into a plurality of relatively small transaction volumes, which are respectively performed at different transaction times.
  • the node conducts transactions. In this way, for each transaction time node, it does not carry out the transaction of the transaction volume required by the transaction client, which is equivalent to the transaction volume of the transaction time node is reduced. In this way, at this transaction time node, the lock-in transaction cannot have an impact on the market price. In the end, when all transaction time nodes complete the transaction, the transaction of the transaction volume required by the transaction client is generally realized, and the lock transaction on each transaction time node does not have an impact on the market price, which is effective Optimize transaction costs.
  • the cost of foreign exchange transactions under the premise of foreign exchange lock is effectively optimized.
  • the transaction scenario where the transaction price is locked in advance is not limited to foreign exchange transactions.
  • the transaction that locks the transaction price itself impacts the market price. Therefore, in the embodiment of this specification, other trading scenarios are expanded according to the foreign exchange trading application scenarios.
  • the total trading volume of the locked trading price is split, and comparisons are made at different trading time nodes. Small transaction volume (relative to total transaction volume) transactions, so as to avoid impact on market prices under the premise of realizing total transaction volume, and ultimately achieve the optimization of transaction costs.
  • the technical solutions proposed in the embodiments of this specification are mainly for foreign exchange trading scenarios. However, it does not mean that the technical solutions in the embodiments of this specification can only be applied to foreign exchange trading scenarios. For different application scenarios, the technical solutions in the embodiments of this specification can be used not only to optimize the cost of foreign exchange transactions, but also to optimize the transaction costs of other asset objects such as stocks, futures, bonds, etc.
  • the method includes the following steps:
  • S120 Split the expected total transaction time limit corresponding to the target transaction volume, and determine multiple expected transaction time periods
  • S130 Split the target transaction volume and determine the target transaction volume in multiple stages, where the target transaction volume in the stage corresponds to the expected transaction time period determined in step S120;
  • the multi-batch transaction parameters include the transaction price of all transaction batches, the transaction time of each transaction batch, and the transaction volume of each transaction batch, where:
  • the transaction batch corresponding to the multi-batch transaction parameters corresponds to the expected transaction time period.
  • the transaction time of the corresponding transaction batch is determined according to the expected transaction time period, and the corresponding transaction batch is determined according to the target transaction volume of the phase corresponding to the expected transaction time period Volume.
  • transactions can be performed in actual transaction scenarios. Specifically, each transaction of a single transaction batch is performed on the actual time node corresponding to each transaction time included in the multiple transaction parameters, and the transaction volume is the transaction volume of the transaction batch in the multiple transaction parameters. In this way, after all the time nodes corresponding to the transaction time have passed, multiple batches of transactions for the target transaction volume (time-sharing and component transactions of multiple transaction time nodes) are realized. Since the transaction volume achieved by a single transaction time node is far less than the total target transaction volume, the impact of the transaction volume achieved by each transaction time node on the market price is effectively controlled. So as to finally realize the optimization of transaction cost.
  • the target trading volume may be the expected trading volume of a single trading client.
  • the target trading volume may also be the total expected trading volume of multiple different trading customers. According to the method of an embodiment of this specification, the total expected trading volume of multiple different trading customers can be taken as A whole is split and allocated to optimize the total transaction cost of multiple different transaction customers.
  • step S110 the transaction price corresponding to the target transaction volume is determined, wherein the foreign exchange lock service is performed to lock the purchase exchange rate; in step S140, the transaction price is locked
  • the purchase exchange rate is used as the transaction price in the multi-batch transaction parameters.
  • step S120 the expected total transaction time limit corresponding to the target transaction volume is split according to a preset fixed time interval, and multiple expected transaction time periods are determined.
  • the entire day of the current date is the expected total trading time limit (expected trading day, 0:00 to 12 pm), and the expected total trading time limit is divided into 24 at an interval of 1 hour Expected trading time period.
  • the expected total transaction time limit may also be divided according to other division rules to obtain the expected transaction time period.
  • the expected total transaction time limit is divided according to historical transaction records and/or predictions of actual market transaction conditions corresponding to the expected total transaction time limit.
  • the transaction frequency records in the historical transaction records are corresponding to the expected total transaction time limit.
  • a relatively small time interval is used for division.
  • step S120 predict the change in the transaction frequency within the expected total transaction time limit in the current transaction scenario; split the expected total transaction time limit according to the predicted transaction frequency change, and determine the amount Expected trading time period. For example, for a time period in which the transaction frequency is relatively high in the forecast result, a relatively small time interval is used in the division.
  • the entire day of the next day of the current date is the expected total transaction time limit (the expected transaction day, from midnight to midnight).
  • the transaction frequency is predicted.
  • the predicted result is that the transaction frequency during working hours (from 9 a.m. to 5 p.m.) is twice that of the break time (from 0:00 to 9 a.m. and from 5 p.m. to 12 p.m.). Therefore, in the time range from 9 a.m. to 5 p.m., with 0.5 hour intervals, the expected total trading time limit is divided into 18 expected trading time periods. In the time range from 0:00 to 9: 00 and 5: 00 to 12: 00, the expected total trading time is divided into 15 expected trading time periods at 1 hour intervals. In total, the expected total trading time limit is divided into 33 expected trading time periods.
  • the transaction time is a certain time range, for example, within 5 minutes from 10 am to 10:5 am.
  • the transaction time is a certain time node, for example, 10 o'clock in the morning.
  • the starting time of each expected transaction time period is selected as the transaction time, or a fixed period of time starting from the beginning time of each expected transaction time period is selected as the transaction time; for example,
  • the expected total trading time limit is one working day (from midnight to 12 o'clock in the evening).
  • the expected total trading time limit is divided at one-hour intervals, and each hour is regarded as the transaction time, or the first 5 minutes of each hour as the transaction time.
  • the middle moment of each expected transaction time period is selected as the transaction time, or a fixed period starting from the middle time of each expected transaction time period is selected as the transaction time; for example, the expected total The transaction time limit is one working day (0:00 to 12:00 pm), and the expected total transaction time limit is divided at one-hour intervals.
  • the 30-minute time per hour is used as the transaction time, or the time range from 30 minutes to 35 minutes per hour As transaction time.
  • the target transaction volume is divided into equal parts, that is, the target transaction volume is evenly distributed to multiple expected transaction time periods.
  • the trading volume per unit time is constantly changing, within a certain time range, the market trading volume may be extremely small (or even 0). In this way, evenly distributing the transaction volume of each expected transaction time period may not avoid the impact on market prices.
  • the target transaction volume is split according to the market transaction volume changes in the actual transaction scenario, so that the split target transaction volume and the market transaction volume changes and fluctuations tend to be consistent, so as to maximize During the avoidance phase, the target volume has an impact on the market price.
  • splitting the target volume to determine the target volume in multiple stages includes:
  • S210 Predict the changes in market volume within the expected total trading time limit under the current trading scenario
  • S220 Split the target transaction volume according to the market transaction volume change, and determine the target transaction volume in multiple stages.
  • VWAP average price
  • w i x i /(x 1 +x 2 +...x n ) represents the weight of the i-th transaction price based on the volume.
  • the goal of optimizing transaction costs is to make the final average transaction price as close as possible to the average transaction price of the entire market during the period.
  • the superscript (s) represents transaction data
  • the superscript (m) represents market data
  • V represents the day's trading target, that is, how much volume needs to be traded.
  • the minimum value of the objective function (2) is zero. That is to say, if you can accurately predict the proportion of the market's trading volume in each time period to the day's trading volume, then split the orders according to this ratio, and time-share transactions. The final total average transaction price is equal to the average market transaction price.
  • the ratio of the market transaction volume in a specific time period to the total market transaction volume is used to describe the market transaction volume change. Specifically, in an embodiment of this specification:
  • the target volume according to the changes in market volume, and determine the target volume in multiple stages.
  • the ratio of the target volume to the target volume in the phase and the market phase volume corresponding to the corresponding expected transaction time period account for the expected total transaction time limit
  • the corresponding proportion of the total market volume is the same.
  • the total trading volume of the day in the market is 100; the trading volumes corresponding to the 5 expected trading time periods are 10, 20, 30, 20, and 20, respectively.
  • the target volume of the day is 10. Then finally the target trading volume is split into 5 orders, the trading volume is 1, 2, 3, 2, 2.
  • the market transaction volume change within the expected total transaction time limit under the current transaction scenario is predicted based on the historical transaction volume distribution.
  • S320 Predict the trading volume of each time period of the target trading day according to the historical trading volume distribution
  • step S330 On the target trading day, before/at the trading time corresponding to the i-th time period, determine the expected phase transaction volume corresponding to the i-th time period according to the prediction result of step S320 (i is a non-zero natural number, and the starting value is 1);
  • a machine learning model is used to predict changes in market volume.
  • a time series prediction model is used for prediction.
  • prediction is made based on an elastic network (ElasticNet).
  • prediction is made based on an elastic network, where the objective function is solved
  • y is the transaction volume within the time period to be predicted
  • is the optimal parameter to be solved
  • ⁇ 1 is the penalty coefficient of L1 norm
  • ⁇ 2 is the penalty coefficient of L2 norm
  • X is a transaction feature item.
  • the transaction feature item X includes the transaction volume of the same time period of the past M trading days and the transaction volume of the past N time periods (similar to the concept of year-on-year and ring-on-quarter).
  • the transaction characteristic item X is obtained by analyzing the historical transaction volume distribution.
  • the expected total transaction time limit splitting method and the target transaction volume splitting method can be combined arbitrarily according to specific application scenarios.
  • the expected total transaction time limit is split according to a preset fixed time interval (for example, an expected transaction time period per hour), and the target transaction volume is split by an even distribution method (for example, for daily
  • the target trading volume is equally divided into 24 shares and allocated to 24 expected trading time periods).
  • the expected total transaction time limit is split according to the result of the transaction frequency prediction (for example, within the time range from 9 am to 5 pm, at 0.5 hour intervals, the expected total transaction time limit is divided into 18 One expected trading time period; within the time range of 0:00 to 9 am and 5 pm to 12 pm, the expected total trading time is divided into 15 expected trading time periods at 1 hour intervals).
  • Split the target volume by means of equal distribution (for example, for the daily target volume, it is equally divided into 33 shares and allocated to 33 expected trading time periods).
  • the expected total transaction time limit is split according to a preset fixed time interval (for example, an expected transaction time period per hour); according to the market transaction volume of each expected transaction time period, the total market transaction The prediction result of the proportion of the volume is split into the target volume.
  • a preset fixed time interval for example, an expected transaction time period per hour
  • the expected total transaction time limit is split according to the result of the transaction frequency prediction (for example, within the time range from 9 am to 5 pm, at 0.5 hour intervals, the expected total transaction time limit is divided into 18 Expected trading time periods. In the time range from 0:00 to 9 AM and 5 PM to 12 PM, the expected total trading time is divided into 15 expected trading time periods at 1 hour intervals); according to each The predicted result of the proportion of the market transaction volume in the expected transaction period to the total market transaction volume splits the target transaction volume.
  • the process of the method further includes determining whether the target transaction volume will have an impact on the market.
  • the subsequent operation of splitting the target volume is performed.
  • the market tolerance threshold is determined based on historical transaction volume records and/or transaction volume prediction results.
  • the target transaction volume exceeds the market tolerance threshold, it is determined that the target transaction volume will have an impact on the market.
  • the instantaneous transaction volume accounting for 3% of the total market pending order volume at the time will have an impact on the market price.
  • split compare the target transaction volume with the predicted market transaction volume to determine whether the split is needed.
  • the process of the method further includes, after the target transaction volume is split, determining whether the split target transaction volume will have an impact on the market. When determining the stage target volume will have an impact on the market, further split the stage target volume.
  • the embodiment of this specification also proposes a system for optimizing transaction costs. Specifically, as shown in FIG. 4, in an embodiment of this specification, the system includes:
  • the transaction price determination module 410 is configured to determine the transaction price corresponding to the target transaction volume
  • the trading time period setting module 420 is configured to split the expected total trading time limit corresponding to the target trading volume and determine multiple expected trading time periods;
  • the transaction volume setting module 430 is configured to split the target transaction volume and determine the target transaction volume in multiple stages, where the target transaction volume in the stage corresponds to the expected transaction time period;
  • Transaction parameter setting module 440 which is configured to determine multi-batch transaction parameters when performing multi-batch transactions for the target transaction volume.
  • the multi-batch transaction parameters include transaction price, transaction time of each batch, and transaction volume of each batch , Among which, the transaction price locked by the transaction price lock module is the transaction price, the transaction time of each batch is determined according to the time range corresponding to the expected transaction time period, and the target transaction volume of each batch is determined according to the target transaction volume corresponding to the expected transaction time period. Volume.
  • the system further includes a trading volume prediction module 550.
  • the trading volume prediction module 550 is configured to predict the market trading volume within the expected total trading time limit in the current trading scenario. Change; the trading volume setting module 430 is also configured to split the target trading volume according to the market trading volume changes.
  • the trading volume prediction module 550 is configured to predict changes in market trading volume, where the changes in trading volume include the market corresponding to the market phase of each expected trading time period in the expected total trading time limit.
  • the proportion of total trading volume; the trading volume setting module 430 is configured to split the target trading volume according to the changes in the market trading volume, where the ratio of the phase target trading volume to the target trading volume and the market phase trading volume corresponding to the corresponding expected trading time period The proportion of the total market volume corresponding to the expected total transaction time is the same.
  • the present invention also proposes a device for information processing on the user equipment side.
  • the device includes a memory for storing computer program instructions and a processor for executing the program instructions, wherein, When the computer program instructions are executed by the processor, the device is triggered to execute the method of the present invention.
  • a programmable logic device Programmable Logic Device, PLD
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • the controller can be implemented in any suitable manner.
  • the controller can take the form of, for example, a microprocessor or a processor and a computer-readable medium storing computer-readable program codes (such as software or firmware) executable by the (micro)processor. , Logic gates, switches, application specific integrated circuits (ASICs), programmable logic controllers and embedded microcontrollers.
  • controllers include but are not limited to the following microcontrollers: ARC625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicon Labs C8051F320, the memory controller can also be implemented as a part of the memory control logic.
  • controller in addition to implementing the controller in a purely computer-readable program code manner, it is entirely possible to program the method steps to make the controller use logic gates, switches, application specific integrated circuits, programmable logic controllers and embedded The same function can be realized in the form of a microcontroller, etc. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for implementing various functions can also be regarded as a structure within the hardware component. Or even, the device for realizing various functions can be regarded as both a software module for realizing the method and a structure within a hardware component.
  • a typical implementation device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cell phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Any combination of these devices.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • the memory may include non-permanent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the present application can also be practiced in distributed computing environments. In these distributed computing environments, remote processing devices connected through a communication network perform tasks.
  • program modules can be located in local and remote computer storage media including storage devices.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Technology Law (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

一种优化交易成本的方法、系统及设备。该方法包括:确定目标成交量对应的交易价格;拆分目标成交量对应的预期总交易时限,确定多个预期交易时间段;拆分目标成交量,确定多个阶段目标成交量,其中,阶段目标成交量与预期交易时间段对应;确定针对目标成交量进行实际交易所依据的多批次交易参数,多批次交易参数包括所有交易批次的成交价格、各个交易批次的交易时间以及各个交易批次的成交量,其中:以已确定的交易价格为成交价格;多批次交易参数对应的交易批次与预期交易时间段对应,根据预期交易时间段确定对应的交易批次的交易时间,根据与预期交易时间段对应的阶段目标成交量确定对应的交易批次的成交量。

Description

一种优化交易成本的方法、系统及设备 技术领域
本说明书涉及计算机技术领域,尤其涉及一种优化交易成本的方法、系统及设备。
背景技术
在金融领域,外汇敞口简单来说就是对于银行而言的外汇收支不平衡。外汇敞口主要来源于资产、负债及资本金的货币错配,以及外币利润和外币报表折算等方面。当在某一时段内,在存在外汇敞口的情况下,汇率变动可能会给银行的当期收益或经济价值带来损失,从而形成汇率风险。
在现有技术中,在存在大量多国货币间的兑换的应用场景中,为了减少外汇敞口风险,外汇交易客户需要提前和银行机构进行锁汇业务。锁汇就是锁定汇率,在银行中这个业务叫远期结售汇。在汇率波动频繁的情况下,银行为企业办理锁定汇率的操作。在结汇当天不是按照当天的外汇牌价,而是按照之前确定的汇率进行结汇。例如,在一个应用场景中,外汇交易客户为了对冲国际业务的风险,需要提前一天和银行以一定的价格(锁汇)购买一定量的外汇,防止第二天外汇波动带来损失。
然而,虽然锁汇可以在一定程度上减少外汇敞口风险;但是,在锁汇场景下,如果外汇交易客户的短期交易量过大,巨大的交易量会对市场价格产生冲击,从而就会大大提高外汇交易客户的交易成本。
发明内容
有鉴于此,本说明书实施例提供了一种优化交易成本的方法、系统、设备及计算机可读介质,用于解决现有技术中在交易价格预先锁定的应用场景下,由于短期交易量过大而导致市场价格被冲击,从而提升交易成本的问题。
本说明书实施例采用下述技术方案:
本说明书实施例提供一种优化交易成本的方法,包括:
确定目标成交量对应的交易价格;
拆分所述目标成交量对应的预期总交易时限,确定多个预期交易时间段;
拆分所述目标成交量,确定多个阶段目标成交量,其中,所述阶段目标成交量与所述预期交易时间段对应;
确定针对所述目标成交量进行实际交易所依据的多批次交易参数,所述多批次交易参数包括所有交易批次的成交价格、各个交易批次的交易时间以及各个交易批次的成交量,其中:
以已确定的所述交易价格为所述成交价格;
所述多批次交易参数对应的交易批次与所述预期交易时间段对应,根据所述预期交易时间段确定对应的交易批次的交易时间,根据与所述预期交易时间段对应的阶段目标成交量确定对应的交易批次的成交量。
优选地,在一实施例中,拆分所述目标成交量对应的预期总交易时限,确定多个预期交易时间段,包括:
预测当前交易场景下,在所述预期总交易时限范围内的交易频次变化;
根据所述交易频次变化拆分所述预期总交易时限,确定多个所述预期交易时间段。
优选地,在一实施例中,拆分所述目标成交量对应的预期总交易时限,确定多个预期交易时间段,其中:
按照预设的固定时间间隔拆分所述目标成交量对应的预期总交易时限,确定多个所述预期交易时间段。
优选地,在一实施例中,拆分所述目标成交量,确定多个阶段目标成交量,包括:
预测当前交易场景下,在所述预期总交易时限范围内的市场成交量变化;
根据所述市场成交量变化拆分所述目标成交量,确定多个阶段目标成交量。
优选地,在一实施例中:
预测当前交易场景下,在所述预期总交易时限范围内的市场成交量变化,其中,所述成交量变化包括每个所述预期交易时间段对应的市场阶段成交量占所述预期总交易时限对应的市场总成交量的比例;
根据所述市场成交量变化拆分所述目标成交量,确定多个阶段目标成交量,其中,所述阶段目标成交量占所述目标成交量的比例与对应的预期交易时间段所对应的市场阶段成交量占所述预期总交易时限对应的市场总成交量的比例一致。
优选地,在一实施例中,预测当前交易场景下,在所述预期总交易时限范围内的市场成交量变化,其中,利用机器学习模型进行预测。
优选地,在一实施例中,利用机器学习模型进行预测,其中,利用时序预测模型进行预测。
优选地,在一实施例中,利用机器学习模型进行预测,其中,基于弹性网络进行预测。
优选地,在一实施例中,基于弹性网络进行预测,其中,求解目标函数
min||y-Xβ|| 22||β|| 21||β|| 1
得到β的最优解,根据β的最优解计算要预测的时间段内交易量y的值,上式中:
y为要预测的时间段内交易量;
β为要求解的最优参数;
λ 1为L1范数的惩罚系数;
λ 2为L2范数的惩罚系数;
X为交易特征项。
优选地,在一实施例中:
确定目标成交量对应的交易价格,其中,执行锁汇业务,锁定购买汇率。
本申请还提出了一种优化交易成本的系统,包括:
交易价格确定模块,其配置为确定目标成交量对应的交易价格;
交易时段设置模块,其配置为拆分所述目标成交量对应的预期总交易时限,确定多个预期交易时间段;
成交量设置模块,其配置为拆分所述目标成交量,确定多个阶段目标成交量,其中,所述阶段目标成交量与所述预期交易时间段对应;
交易参数设置模块,其配置为确定针对所述目标成交量进行实际交易所依据的多批次交易参数,所述多批次交易参数包括所有交易批次的成交价格、各个交易批次的交易时间以及各个交易批次的成交量,其中:
以已确定的所述交易价格为所述成交价格;
所述多批次交易参数对应的交易批次与所述预期交易时间段对应,根据所述预期交易时间段确定对应的交易批次的交易时间,根据与所述预期交易时间段对应的阶段目标成交量确定对应的交易批次的成交量。
优选地,在一实施例中:
所述系统还包括成交量预测模块,所述成交量预测模块配置为预测当前交易场景下,在所述预期总交易时限范围内的市场成交量变化;
所述成交量设置模块配置为根据所述市场成交量变化拆分所述目标成交量。
优选地,在一实施例中:
所述成交量预测模块配置为预测所述市场成交量变化,其中,所述成交量变化包括每个所述预期交易时间段对应的市场阶段成交量占所述预期总交易时限对应的市场总成交量的比例;
所述成交量设置模块配置为根据所述市场成交量变化拆分所述目标成交量,其中,所述阶段目标成交量占所述目标成交量的比例与对应的预期交易时间段所对应的市场阶段成交量占所述预期总交易时限对应的市场总成交量的比例一致。
本说明书实施例还提出了一种用于在用户设备端进行信息处理的设备,该设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发该设备执行本说明书实施例所述的方法。
本说明书实施例采用的上述至少一个技术方案能够达到以下有益效果:根据本发明的方法可以在交易价格预先锁定的前提下,避免短期大量交易对市场价格带来的冲击,从而有效控制交易成本。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本说明书实施例中应用程序的运行方法的流程图;
图2为本说明书实施例中应用程序的运行方法的部分流程图;
图3为本说明书实施例中应用程序的运行方法的流程图;
图4以及图5为本说明书实施例中系统的结构框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在现有的应用场景中,外汇交易客户为了对冲国际业务的风险,需要提前一天和银行以一定的价格(锁汇)购买一定量的外汇,防止第二天外汇波动带来损失。但是,在锁汇场景下,如果外汇交易客户的短期交易量过大,巨大的交易量会对市场价格产生冲击,从而就会大大提高外汇交易客户的交易成本。
针对上述问题,本说明书实施例提出了用于优化交易成本的技术方案。为了提出本说明书实施例的技术方案,发明人首先对现有技术的外汇交易应用场景做详细分析。
在实际应用场景中,锁汇业务的实质是预先锁定外汇交易价格。在锁汇的前提下,在进行外汇交易时无论市场价格如何波动,实际的交易价格仍然是以之前锁定的外汇交易价格进行的。而为了控制交易成本,在进行锁汇业务时,预先锁定的价格通常是根据对之后交易时间范围内的市场平均价格的预测结果所确定的。在锁汇的前提下,如果短期内的大量交易,那么该交易本身就会冲击市场价格,所而导致市场价格偏离之前进行锁汇时的预测价格。也就是说,当市场价格被冲击后,锁汇业务所锁定的外汇交易价格已经无法实现锁汇时所预计的交易成本控制效果。
针对上述问题,为了控制交易成本,最直接的可行办法之一是随时令交易价格随市场价格波动而波动,但这就相当于无法进行锁汇。因此,在本说明书实施例中,从另一个角度考虑,尽量避免交易行为本身对市场价格产生冲击,令市场价格尽量贴近之前进行锁汇时的预测价格,从而最大程度的优化交易成本。
具体的,在锁汇前提下,外汇交易本身对市场价格产生冲击的根本原因是该外汇交易的交易量过大,即,相对于当前市场交易总量来说,锁汇交易的交易量已经到了一个无法忽视的地步。因此,为了避免对当前市场价格产生冲击,在本说明书实施例中,采用了降低交易量的做法。但是,锁汇的交易量是由交易客户的需求所决定的,不可能为了控制交易成本而直接降低交易量。因此,在本说明书实施例中,并不是降低交易客户所需要交易的交易量,而是将交易客户所需要交易的交易量拆分为多个相对较小的交易量,分别在不同的交易时间节点进行交易。这样,针对每个交易时间节点来说,其并 没有进行交易客户所需要交易的交易量的交易,就相当于该交易时间节点的交易量被降低了。这样,在该交易时间节点上,锁汇交易对市场价格就无法产生冲击。最终,当所有的交易时间节点完成交易后,总体上实现了交易客户所需要交易的交易量的交易,并且每个交易时间节点上的锁汇交易也没有对市场价格产生冲击,这就有效的优化了交易成本。
进一步的,在上述方法流程中,针对锁汇前提下的外汇交易成本进行了有效的优化。但是,在实际应用场景中,预先锁定交易价格的交易场景并不限于外汇交易。而在其他交易场景中也存在锁定交易价格的交易本身冲击市场价格的情况。因此,在本说明书实施例中,根据外汇交易应用场景对其他交易场景进行扩展,在预先锁定交易价格的前提下,对锁定交易价格的总交易量进行拆分,在不同的交易时间节点进行较小交易量(相对于总交易量)的交易,从而在实现总交易量的前提下,避免对市场价格产生冲击,最终实现对交易成本的优化。
在本说明书的描述中,本说明书实施例中所提出的技术方案主要针对外汇交易场景。但是,并不等于本说明书实施例中的技术方案只能应用于外汇交易场景。针对不同的应用场景,本说明书实施例中的技术方案不仅可以用于优化外汇交易成本,也可以用来优化其他资产标的如股票,期货,债券等的交易成本。
以下结合附图,详细说明本说明书各实施例提供的技术方案。如图1所示,在一实施例中,方法包括以下步骤:
S110,确定目标成交量对应的交易价格;
S120,拆分目标成交量对应的预期总交易时限,确定多个预期交易时间段;
S130,拆分目标成交量,确定多个阶段目标成交量,其中,阶段目标成交量与步骤S120中确定的预期交易时间段对应;
S140,确定针对目标成交量的多批次交易参数,多批次交易参数包括所有交易批次的成交价格、各个交易批次的交易时间以及各个交易批次的成交量,其中:
以已确定的交易价格为多批次交易参数中的成交价格;
多批次交易参数对应的交易批次与预期交易时间段对应,根据预期交易时间段确定对应的交易批次的交易时间,根据与预期交易时间段对应的阶段目标成交量确定对应的交易批次的成交量。
经过上述过程确定多批次交易参数后,就可以在实际交易场景中进行交易了。具体的,分别在多批次交易参数所包含的各个交易时间对应的实际时间节点上进行单个交易批次的交易,成交量为多批次交易参数中的该交易批次的成交量。这样,在经过了所有交易时间对应的时间节点后,就实现了针对目标交易量的多批次交易(多交易时间节点的分时、分量交易)。由于单个交易时间节点所实现的交易量远远小于总的目标交易量,因此,每个交易时间节点所实现的交易量对市场价格的冲击就被有效控制。从而最终实现了对交易成本的优化。
进一步的,在本说明书一实施例中,目标成交量可以是单个交易客户的预期成交量。在本说明书另一实施例中,目标成交量也可以是多个不同交易客户的总的预期成交量,根据本说明书一实施例的方法,可以将多个不同交易客户的总的预期成交量作为一个整体进行拆分分配,从而优化多个不同交易客户的总的交易成本。
进一步的,针对外汇交易的应用场景,在本说明书一实施例中:在步骤S110中,确定目标成交量对应的交易价格,其中,执行锁汇业务,锁定购买汇率;在步骤S140中,以锁定的购买汇率作为多批次交易参数中的成交价格。这样,在实际外汇交易场景中,以锁定的购买汇率分时、多批次的进行外汇购买操作,就可以最大限度的控制外汇购买交易本身对市场外汇汇率的冲击,从而最终优化外汇交易成本。
进一步的,在本说明书一实施例中,在步骤S120中,按照预设的固定时间间隔拆分目标成交量对应的预期总交易时限,确定多个预期交易时间段。
例如,在一应用场景中,以当前日期的下一日全天为预期总交易时限(预期交易日,零点到晚十二点),以1小时为间隔,将预期总交易时限划分为24个预期交易时间段。
进一步的,在本说明书其他实施例中,在步骤S120中,也可以按照其他划分规则划分预期总交易时限获取预期交易时间段。
具体的,本说明书一实施例中,在步骤S120中,根据历史交易记录和/或对预期总交易时限对应的实际市场交易情况的预测,划分预期总交易时限。例如,将根据历史交易记录中的交易频次记录与预期总交易时限对应,对于交易频次相对较高的时间段,在划分时采用相对较小的时间间隔。
具体的,在本说明书一实施例中,在步骤S120中:预测当前交易场景下,在预期总交易时限范围内的交易频次变化;根据预测出的交易频次变化拆分预期总交易时限, 确定多个预期交易时间段。例如,对于预测结果中交易频次相对较高的时间段,在划分时采用相对较小的时间间隔。
例如,在一应用场景中,以当前日期的下一日全天为预期总交易时限(预期交易日,零点到晚十二点)。针对预期总交易时限进行交易频率预测,预测结果为工作时间(早九点到晚五点)的交易频率为休息时间(零点到早九点以及晚五点到晚十二点)的2倍。因此,在早九点到晚五点的时间范围内,以0.5小时为间隔,将预期总交易时限划分为18个预期交易时间段。在零点到早九点以及晚五点到晚十二点的时间范围内,以1小时为间隔,将预期总交易时限划分为15个预期交易时间段。总计将预期总交易时限划分为33个预期交易时间段。
进一步的,在本说明书实施例中,在设置多批次交易参数时,交易时间可以选用多种不同的类型。具体的,在本说明书一实施例中,交易时间为一个确定的时间范围,例如,上午10点到10点5分的5分钟内。在本说明书一实施例中,交易时间为一个确定的时间节点,例如,上午10点。
进一步的,在本说明书实施例中,在根据预期交易时间段对应的时间范围确定各个交易批次的交易时间的过程中,也可以选用多种不同的确定策略。
具体的,在本说明书一实施例中,选择每个预期交易时间段的起始时刻为交易时间,或者,选择每个预期交易时间段的起始时刻开始的一段固定时长为交易时间;例如,预期总交易时限为一个工作日(零点到晚12点),以一小时为间隔划分预期总交易时限,将每个整点时刻作为交易时间,或者,将每个小时最开始的5分钟作为交易时间。
具体的,在本说明书一实施例中,选择每个预期交易时间段的中间时刻为交易时间,或者,选择每个预期交易时间段的中间时刻开始的一段固定时长为交易时间;例如,预期总交易时限为一个工作日(零点到晚12点),以一小时为间隔划分预期总交易时限,将每小时的30分钟时刻作为交易时间,或者,将每小时的30分钟~35分钟的时间范围作为交易时间。
进一步的,在本说明书一实施例中,在步骤S130中,将目标成交量等量拆分,即,平均地将目标成交量分配到多个预期交易时间段中。但是,考虑到在实际交易场景中,单位时间的交易量是不断变化的,在某个特定时间范围内,市场交易量有可能极小(甚至为0)。这样,平均分配各预期交易时间段的交易量就有可能无法避免对市场价格的冲击。
因此,在本说明书一实施例中,根据实际交易场景中的市场交易量变化来拆分目标成交量,使得拆分出的阶段目标成交量与市场上交易量变化波动趋于一致,从而尽可能的避免阶段目标成交量对市场价格产生冲击。
具体的,如图2所示,在本说明书一实施例中,拆分目标成交量,确定多个阶段目标成交量,包括:
S210,预测当前交易场景下,在预期总交易时限范围内的市场成交量变化;
S220,根据市场成交量变化拆分目标成交量,确定多个阶段目标成交量。
进一步的,在实际交易场景中,按照交易量加权后的平均价格(VWAP)计算公式为:
Figure PCTCN2020070503-appb-000001
式1中:x i(i=1、2、...n)表示第i次的交易量;p i(i=1、2、...n)表示第i次的交易价格;w i=x i/(x 1+x 2+...x n)表示第第i次的交易价格按照成交量加权的权重。
在本说明书一实施例中,优化交易成本的目标是使得最终交易均价尽量接近该时段整个市场成交均价。
即求解函数
min|w 1 (s)p 1+w 2 (s)p 2+…w n (s)p n-(w 1 (m)p 1+w 2 (m)p 2+…w n (m)p n)|   (2)
令式2满足:
Figure PCTCN2020070503-appb-000002
Figure PCTCN2020070503-appb-000003
Figure PCTCN2020070503-appb-000004
Figure PCTCN2020070503-appb-000005
在式2~6中,上标(s)表示交易数据,上标(m)表示市场数据。V表示当天交易目标,即总共需要交易多少量。
可以得到,目标函数(2)的最小值是0。也就是说如果能够准确预测市场每个时间段的成交量占当日成交量的比例,那么按这个比例拆分委托单,分时成交,最后总的成交均价等于市场成交均价。
基于上述分析,在本说明书一实施例中,利用具体时间段内的市场成交量占总市场成交量的比例来描述市场成交量变化。具体的,在本说明书一实施例中:
预测当前交易场景下,在预期总交易时限范围内的市场成交量变化,其中,成交量变化包括每个预期交易时间段对应的市场阶段成交量占预期总交易时限对应的市场总成交量的比例;
根据市场成交量变化拆分目标成交量,确定多个阶段目标成交量,其中,阶段目标成交量占目标成交量的比例与对应的预期交易时间段所对应的市场阶段成交量占预期总交易时限对应的市场总成交量的比例一致。
例如,在一应用场景中,假设预测中:市场上当日总交易量为100;5个预期交易时间段对应的交易量分别为10、20、30、20、20。
如果当日目标成交量为10。那么最终将目标成交量拆分为5个单子,交易量分别为1、2、3、2、2。
进一步的,在本说明书一实施例中,根据历史交易量分布预测当前交易场景下,在预期总交易时限范围内的市场成交量变化。
具体的,如图3所示,在一应用场景中,期望在目标交易日进行目标成交量的交易,交易过程如下:
S310,在目标交易日开始前获取历史交易量分布;
S320,根据历史交易量分布预测目标交易日各时间段的成交量;
S330,在目标交易日,在第i个时间段对应的交易时间前/时,根据步骤S320的预测结果确定第i个时间段对应的预期阶段成交量(i为非0自然数,起始值为1);
S340,在第i个时间段的多批次交易参数对应的交易时间进行交易,完成步骤S330确定的预期阶段成交量;
S350,判断当日交易是否结束;
S360,如果当日交易没有结束,令i=i+1,返回步骤S330;
如果当日交易结束,则目标成交量已实现。
需要说明的是,在上述实施例中,相当于是在实际交易的过程中,一边设定多批次交易参数,一边进行对应的分批次分时交易。在本说明书其他实施例中,也可以在交 易开始前一次性设置好所有的多批次交易参数。
进一步的,在本说明书一实施例中,利用机器学习模型进行市场成交量变化的预测。具体的,在本说明书一实施例中,利用时序预测模型进行预测。具体的,在本说明书另一实施例中,基于弹性网络(ElasticNet)进行预测。
进一步具体的,在本说明书一实施例中,基于弹性网络进行预测,其中,求解目标函数
min||y-Xβ|| 22||β|| 21||β|| 1       (7)
得到β的最优解,根据β的最优解计算要预测的时间段内交易量y的值,式(7)中:
y为要预测的时间段内交易量;
β为要求解的最优参数;
λ 1为L1范数的惩罚系数;
λ 2为L2范数的惩罚系数;
X为交易特征项。
具体的,在本说明书一实施例中,交易特征项X包括过去M个交易日同一时段的交易量以及过去N个时段的交易量(类似同比和环比的概念)。交易特征项X通过对历史交易量分布的分析来获取。
这里需要说明的是,在本说明书实施例中,预期总交易时限拆分方式以及目标成交量拆分方式可以根据具体的应用场景需求任意组合。
具体的,在一实施例中,按照预设的固定时间间隔拆分预期总交易时限(例如,每小时为一个预期交易时间段),采用平均分配的方式拆分目标成交量(例如,针对日目标成交量,均分为24份,分配到24个预期交易时间段)。
具体的,在一实施例中,按照交易频次预测结果拆分预期总交易时限(例如,在早九点到晚五点的时间范围内,以0.5小时为间隔,将预期总交易时限划分为18个预期交易时间段;在零点到早九点以及晚五点到晚十二点的时间范围内,以1小时为间隔,将预期总交易时限划分为15个预期交易时间段)。采用平均分配的方式拆分目标成交量(例如,针对日目标成交量,均分为33份,分配到33个预期交易时间段)。
具体的,在一实施例中,按照预设的固定时间间隔拆分预期总交易时限(例如, 每小时为一个预期交易时间段);根据每个预期交易时间段的市场交易量占总市场交易量的比例的预测结果拆分目标成交量。
具体的,在一实施例中,按照交易频次预测结果拆分预期总交易时限(例如,在早九点到晚五点的时间范围内,以0.5小时为间隔,将预期总交易时限划分为18个预期交易时间段。在零点到早九点以及晚五点到晚十二点的时间范围内,以1小时为间隔,将预期总交易时限划分为15个预期交易时间段);根据每个预期交易时间段的市场交易量占总市场交易量的比例的预测结果拆分目标成交量。
进一步的,在本说明书一实施例中,方法的流程还包括,确定目标成交量是否会对市场产生冲击。当确定目标成交量会对市场产生冲击时,才执行后续的拆分目标成交量的操作。具体的,在一应用场景中,根据历史交易量记录和/或交易量预测结果确定市场承受能力阈值,当目标成交量超过市场承受能力阈值时判断目标成交量会对市场产生冲击。具体的,在一应用场景中,瞬时交易量占到当时市场总挂单量的3%会对市场价格产生冲击。拆单前通过比较目标交易量和预测的市场交易量来判断是否需要拆单。
进一步的,在本说明书一实施例中,方法的流程还包括,当对目标交易量拆分完毕后,确定拆分出的阶段目标成交量是否会对市场产生冲击。当确定阶段目标成交量会对市场产生冲击时,对阶段目标成交量做进一步拆分。
基于本说明书实施例的方法,本说明书实施例还提出了一种优化交易成本的系统。具体的,如图4所示,在本说明书一实施例中,系统包括:
交易价格确定模块410,其配置为确定目标成交量对应的交易价格;
交易时段设置模块420,其配置为拆分目标成交量对应的预期总交易时限,确定多个预期交易时间段;
成交量设置模块430,其配置为拆分目标成交量,确定多个阶段目标成交量,其中,阶段目标成交量与预期交易时间段对应;
交易参数设置模块440,其配置为确定在针对目标成交量进行多批次交易时的多批次交易参数,多批次交易参数包括成交价格、各个批次的交易时间以及各个批次的成交量,其中,以交易价格锁定模块锁定的交易价格为成交价格,根据预期交易时间段对应的时间范围确定各个批次的交易时间,根据与预期交易时间段对应的阶段目标成交量确定各个批次的成交量。
进一步的,如图5所示,在本说明书一实施例中,系统还包括成交量预测模块550, 成交量预测模块550配置为预测当前交易场景下,在预期总交易时限范围内的市场成交量变化;成交量设置模块430还被配置为根据市场成交量变化拆分目标成交量。
进一步的,在本说明书一实施例中,成交量预测模块550配置为预测市场成交量变化,其中,成交量变化包括每个预期交易时间段对应的市场阶段成交量占预期总交易时限对应的市场总成交量的比例;成交量设置模块430配置为根据市场成交量变化拆分目标成交量,其中,阶段目标成交量占目标成交量的比例与对应的预期交易时间段所对应的市场阶段成交量占预期总交易时限对应的市场总成交量的比例一致。
进一步的,基于本发明的方法,本发明还提出了一种用于在用户设备端信息处理的设备,该设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发该设备执行本发明所述的方法。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理 器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定 方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算 环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1. 一种优化交易成本的方法,其特征在于,包括:
    确定目标成交量对应的交易价格;
    拆分所述目标成交量对应的预期总交易时限,确定多个预期交易时间段;
    拆分所述目标成交量,确定多个阶段目标成交量,其中,所述阶段目标成交量与所述预期交易时间段对应;
    确定针对所述目标成交量进行实际交易所依据的多批次交易参数,所述多批次交易参数包括所有交易批次的成交价格、各个交易批次的交易时间以及各个交易批次的成交量,其中:
    以已确定的所述交易价格为所述成交价格;
    所述多批次交易参数对应的交易批次与所述预期交易时间段对应,根据所述预期交易时间段确定对应的交易批次的交易时间,根据与所述预期交易时间段对应的阶段目标成交量确定对应的交易批次的成交量。
  2. 根据权利要求1所述的方法,其特征在于,拆分所述目标成交量对应的预期总交易时限,确定多个预期交易时间段,包括:
    预测当前交易场景下,在所述预期总交易时限范围内的交易频次变化;
    根据所述交易频次变化拆分所述预期总交易时限,确定多个所述预期交易时间段。
  3. 根据权利要求1所述的方法,其特征在于,拆分所述目标成交量对应的预期总交易时限,确定多个预期交易时间段,其中:
    按照预设的固定时间间隔拆分所述目标成交量对应的预期总交易时限,确定多个所述预期交易时间段。
  4. 根据权利要求1~3中任一项所述的方法,其特征在于,拆分所述目标成交量,确定多个阶段目标成交量,包括:
    预测当前交易场景下,在所述预期总交易时限范围内的市场成交量变化;
    根据所述市场成交量变化拆分所述目标成交量,确定多个阶段目标成交量。
  5. 根据权利要求4所述的方法,其特征在于:
    预测当前交易场景下,在所述预期总交易时限范围内的市场成交量变化,其中,所述成交量变化包括每个所述预期交易时间段对应的市场阶段成交量占所述预期总交易时限对应的市场总成交量的比例;
    根据所述市场成交量变化拆分所述目标成交量,确定多个阶段目标成交量,其中,所述阶段目标成交量占所述目标成交量的比例与对应的预期交易时间段所对应的市场 阶段成交量占所述预期总交易时限对应的市场总成交量的比例一致。
  6. 根据权利要求4或5所述的方法,其特征在于,预测当前交易场景下,在所述预期总交易时限范围内的市场成交量变化,其中,利用机器学习模型进行预测。
  7. 根据权利要求6所述的方法,其特征在于,利用机器学习模型进行预测,其中,利用时序预测模型进行预测。
  8. 根据权利要求6所述的方法,其特征在于,利用机器学习模型进行预测,其中,基于弹性网络进行预测。
  9. 根据权利要求8所述的方法,其特征在于,基于弹性网络进行预测,其中,求解目标函数
    min||y-Xβ|| 22||β|| 21||β|| 1
    得到β的最优解,根据β的最优解计算要预测的时间段内交易量y的值,上式中:
    y为要预测的时间段内交易量;
    β为要求解的最优参数;
    λ 1为L1范数的惩罚系数;
    λ 2为L2范数的惩罚系数;
    X为交易特征项。
  10. 根据权利要求1~9中任一项所述的方法,其特征在于:
    确定目标成交量对应的交易价格,其中,执行锁汇业务,锁定购买汇率。
  11. 一种优化交易成本的系统,其特征在于,包括:
    交易价格确定模块,其配置为确定目标成交量对应的交易价格;
    交易时段设置模块,其配置为拆分所述目标成交量对应的预期总交易时限,确定多个预期交易时间段;
    成交量设置模块,其配置为拆分所述目标成交量,确定多个阶段目标成交量,其中,所述阶段目标成交量与所述预期交易时间段对应;
    交易参数设置模块,其配置为确定针对所述目标成交量进行实际交易所依据的多批次交易参数,所述多批次交易参数包括所有交易批次的成交价格、各个交易批次的交易时间以及各个交易批次的成交量,其中:
    以已确定的所述交易价格为所述成交价格;
    所述多批次交易参数对应的交易批次与所述预期交易时间段对应,根据所述预期交易时间段确定对应的交易批次的交易时间,根据与所述预期交易时间段对应的阶段目标成交量确定对应的交易批次的成交量。
  12. 根据权利要求11所述的系统,其特征在于:
    所述系统还包括成交量预测模块,所述成交量预测模块配置为预测当前交易场景,在所述预期总交易时限范围内的市场成交量变化;
    所述成交量设置模块配置为根据所述市场成交量变化拆分所述目标成交量。
  13. 根据权利要求11所述的系统,其特征在于:
    所述成交量预测模块配置为预测所述市场成交量变化,其中,所述成交量变化包括每个所述预期交易时间段对应的市场阶段成交量占所述预期总交易时限对应的市场总成交量的比例;
    所述成交量设置模块配置为根据所述市场成交量变化拆分所述目标成交量,其中,所述阶段目标成交量占所述目标成交量的比例与对应的预期交易时间段所对应的市场阶段成交量占所述预期总交易时限对应的市场总成交量的比例一致。
  14. 一种用于在用户设备端信息处理的设备,该设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发该设备执行权利要求1至10中任一项所述的方法。
PCT/CN2020/070503 2019-02-19 2020-01-06 一种优化交易成本的方法、系统及设备 WO2020168845A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910124441.5 2019-02-19
CN201910124441.5A CN110033372A (zh) 2019-02-19 2019-02-19 一种优化交易成本的方法、系统及设备

Publications (1)

Publication Number Publication Date
WO2020168845A1 true WO2020168845A1 (zh) 2020-08-27

Family

ID=67235659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070503 WO2020168845A1 (zh) 2019-02-19 2020-01-06 一种优化交易成本的方法、系统及设备

Country Status (3)

Country Link
CN (1) CN110033372A (zh)
TW (1) TW202032478A (zh)
WO (1) WO2020168845A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110033372A (zh) * 2019-02-19 2019-07-19 阿里巴巴集团控股有限公司 一种优化交易成本的方法、系统及设备
CN111127018A (zh) * 2019-12-28 2020-05-08 浙江物产信息技术有限公司 一种自动计算锁定汇率损益的方法
CN111798243A (zh) * 2020-06-30 2020-10-20 中国工商银行股份有限公司 一种可疑交易在线识别方法及装置
CN113450216A (zh) * 2021-06-25 2021-09-28 中国工商银行股份有限公司 用于量化交易的数据处理方法、系统、设备和存储介质
CN114549132A (zh) * 2022-02-23 2022-05-27 浙江同花顺智富软件有限公司 一种智能交易拆单方法、设备、系统和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120095895A1 (en) * 2010-10-14 2012-04-19 Morgan Stanley (A Delaware Corporation) Computer-implemented systems and methods for determining liquidity cycle for tradable financial products and for determining flow-weighted average pricing for same
CN108596493A (zh) * 2018-04-25 2018-09-28 上海金纳信息科技有限公司 拆单式交易方法及装置
CN109117991A (zh) * 2018-07-26 2019-01-01 北京京东金融科技控股有限公司 一种股票订单交易方法和装置
CN110033372A (zh) * 2019-02-19 2019-07-19 阿里巴巴集团控股有限公司 一种优化交易成本的方法、系统及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120095895A1 (en) * 2010-10-14 2012-04-19 Morgan Stanley (A Delaware Corporation) Computer-implemented systems and methods for determining liquidity cycle for tradable financial products and for determining flow-weighted average pricing for same
CN108596493A (zh) * 2018-04-25 2018-09-28 上海金纳信息科技有限公司 拆单式交易方法及装置
CN109117991A (zh) * 2018-07-26 2019-01-01 北京京东金融科技控股有限公司 一种股票订单交易方法和装置
CN110033372A (zh) * 2019-02-19 2019-07-19 阿里巴巴集团控股有限公司 一种优化交易成本的方法、系统及设备

Also Published As

Publication number Publication date
CN110033372A (zh) 2019-07-19
TW202032478A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2020168845A1 (zh) 一种优化交易成本的方法、系统及设备
US10152752B2 (en) Methods and systems for computing trading strategies for use in portfolio management and computing associated probability distributions for use in option pricing
US8725624B2 (en) Computerized investment product
Chou et al. Range volatility: A review of models and empirical studies
TWI703461B (zh) 業務發生量的預測方法、裝置及設備
KR102141651B1 (ko) 펀드의 파생상품 거래 위험을 실시간으로 판단하는 서비스를 제공하는 방법 및 장치
Moenig Efficient valuation of variable annuity portfolios with dynamic programming
Habbab et al. Machine learning for real estate time series prediction
Frauendorfer et al. Management of non-maturing deposits by multistage stochastic programming
Stangebye Dynamic Panics: Theory and Application to the Eurozone
Kikuchi et al. Capital bubbles, interest rates, and investment in a small open economy
Cesaratto Initial and final finance in the monetary circuit and the theory of Effective Demand
US20160171607A1 (en) Portfolio management and protection
US20150294328A1 (en) Customer Relationship Prediction and Valuation
Dempster et al. Long-term interest rates and consol bond valuation
Milani et al. Dynamic correlation between share returns, NAV variation and market proxy of Brazilian ETFs
EP4042285A1 (en) Automated real time mortgage servicing and whole loan valuation
Znaczko Forecasting Foreign Exchange Rates
US20200042164A1 (en) System and Method for a Mobile Computing Device Having a User Interface and Options Selection in the User Interface
Chen et al. Multi-stage international portfolio selection with factor-based scenario tree generation
Duruechi et al. Foreign Exchange Rates Dynamics and Stock Market Performance in an Emerging Economy: Evidence from Nigeria
Feinstein et al. Endogenous Distress Contagion in a Dynamic Interbank Model
Marco Systemic financial fragility and the monetary circuit: a stock-flow consistent approach
Fontanier Sovereign Bond Purchases and Rollover Crises
Wang et al. Understanding guaranteed minimum withdrawal benefit: a study on financial risks and rational lapse strategy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20758612

Country of ref document: EP

Kind code of ref document: A1