Nothing Special   »   [go: up one dir, main page]

WO2020162720A1 - 무선 통신 시스템에서 nwdaf의 신호 송수신 방법 및 이를 위한 장치. - Google Patents

무선 통신 시스템에서 nwdaf의 신호 송수신 방법 및 이를 위한 장치. Download PDF

Info

Publication number
WO2020162720A1
WO2020162720A1 PCT/KR2020/001787 KR2020001787W WO2020162720A1 WO 2020162720 A1 WO2020162720 A1 WO 2020162720A1 KR 2020001787 W KR2020001787 W KR 2020001787W WO 2020162720 A1 WO2020162720 A1 WO 2020162720A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
nwdaf
notification
location
user plane
Prior art date
Application number
PCT/KR2020/001787
Other languages
English (en)
French (fr)
Inventor
김래영
윤명준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/310,509 priority Critical patent/US11917451B2/en
Publication of WO2020162720A1 publication Critical patent/WO2020162720A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion
    • H04L47/115Identifying congestion using a dedicated packet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the NWDAF relates to a method and apparatus related to receiving a notification based on a change in a user plane congestion status from Operations and Maintenance (OAM). For.
  • OAM Operations and Maintenance
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • division multiple access division multiple access
  • MC-FDMA multi carrier frequency division multiple access
  • RATs radio access technologies
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • WiFi wireless fidelity
  • 5G 5th Generation
  • the three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Super-reliability and It includes the area of ultra-reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC ultra-reliable and low latency communications
  • KPI key performance indicator
  • 5G supports these various use cases in a flexible and reliable way.
  • eMBB goes far beyond basic mobile Internet access, and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
  • Data is one of the key drivers of 5G, and it may not be possible to see dedicated voice services for the first time in the 5G era.
  • voice is expected to be handled as an application program simply using the data connection provided by the communication system.
  • the main causes for increased traffic volume are increased content size and increased number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video and mobile Internet connections will become more prevalent as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work in the cloud, and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are another key factor in increasing demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all fields, namely mMTC. It is predicted that by 2020, there are 20 billion potential IoT devices.
  • Industrial IoT is one of the areas where 5G plays a key role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will transform the industry through ultra-reliable/low-latency links, such as remote control of the main infrastructure and self-driving vehicles.
  • the level of reliability and delay is essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams rated at hundreds of megabits per second to gigabits per second. This fast speed is required to deliver TV in 4K (6K, 8K and above) resolutions as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications involve almost immersive sports events.
  • Certain application programs may require special network settings. For VR games, for example, game companies may need to integrate the core server with the network operator's edge network server to minimize latency.
  • Automotive is expected to be an important new driver for 5G, along with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. The reason is that future users continue to expect high quality connections regardless of their location and speed.
  • Another application example in the automotive field is an augmented reality dashboard. It identifies objects in the dark over what the driver sees through the front window and superimposes information that tells the driver about the distance and movement of the object.
  • wireless modules will enable communication between vehicles, exchange of information between the vehicle and the supporting infrastructure, and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system guides alternative courses of action to help the driver drive more safely, reducing the risk of accidents.
  • the next step will be remote control or a self-driven vehicle.
  • Smart cities and smart homes will be embedded in high-density wireless sensor networks.
  • the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of a city or home.
  • a similar setup can be done for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and consumer electronics are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve efficiency, reliability, economics, sustainability of production and the distribution of fuels such as electricity in an automated manner.
  • the smart grid can be viewed as another sensor network with low latency.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine that provides clinical care from a distance. This helps to reduce barriers to distance and can improve access to medical services that are not continuously available in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with wireless links that can be reconfigured is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operate with cable-like delay, reliability and capacity, and that management be simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using location-based information systems. Logistics and freight tracking use cases typically require low data rates, but require a wide range and reliable location information.
  • the NWDAF discloses a method related to receiving a notification based on a change in a user plane congestion state from an OAM.
  • the NWDAF in a method for transmitting and receiving a signal of a Network Data Analytics Function (NWDAF) in a wireless communication system, notifies based on a change in user plane congestion status from Operations and Maintenance (OAM).
  • OAM Operations and Maintenance
  • a wireless communication system at least one processor; And at least one computer memory that can be operably connected to the at least one processor and stores instructions for causing the at least one processor to perform operations when executed, wherein the operations are performed by the NWDAF Receiving a notification based on a change in a user plane congestion status from (OAM); And transmitting, by the NWDAF, a user plane congestion analysis notification to the V2X application server through a Network Exposure Function (NEF) based on the notification, wherein the change in the user plane congestion state is It is determined based on one or more information including whether or not a QNC notification has been transmitted, and whether the QNC notification is transmitted increases when the NG-RAN sends GFBR cannot be fulfilled/guaranteed to the SMF, and the NG-RAN increases the GFBR. It is a device that is determined based on a counter value that is reduced when sending cannot be fulfilled/guaranteed to the SMF.
  • NEF Network Exposure Function
  • the user plane congestion analysis notification may include a location and time at which a potential change in QoS may occur.
  • the method includes the steps of: receiving, by the NWDAF, a second subscription request from the NEF having received a first subscription request related to congestion-related analysis information from the V2X application server; Transmitting, by the NWDAF, a third subscription request to the OAM while providing a threshold value from the NWDAF based on the first subscription request; Receiving, by the NWDAF, a response to the third subscription request from the OAM; And transmitting, by the NWDAF, the analysis of the user plane congestion derived based on the response to the V2X application server through the NEF.
  • the first subscription request may include a subscription request for a plurality of locations.
  • the subscription request for the plurality of locations may include an observation start time and an end time for each of the plurality of locations.
  • Each of the plurality of locations may be a geographical area designated/detailed by the V2X application server.
  • the geographic area may be one of Cell ID(s)), TAI(s), polygon, circle, and address.
  • the first subscription request may include a subscription request for a location.
  • the V2X application server may cancel the subscription for the location after performing a subscription for the next location on the path.
  • the threshold value may be included in the one or more pieces of information.
  • the threshold may be at least one of 5QI(s), GFBR-UL & DL, and MFBR-UL & DL.
  • the NEF may convert a location where the potential change of QoS may occur into one of a polygon, a circle, and an address.
  • the present invention it is possible to appropriately determine the level of congestion rather than determining by the number of times that the conventional GBR bearer disappears.
  • FIG. 1 is a diagram showing a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary diagram showing the architecture of a general E-UTRAN and EPC.
  • 3 is an exemplary diagram showing the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary diagram showing the structure of a radio interface protocol in the user plane.
  • 5 is a flow diagram for explaining a random access process.
  • RRC radio resource control
  • FIG. 7 is a diagram for describing a 5G system.
  • FIG. 13 illustrates a communication system 1 applied to the present invention.
  • 15 illustrates a signal processing circuit for a transmission signal.
  • FIG 16 shows another example of a wireless device applied to the present invention.
  • FIG. 17 illustrates a portable device applied to the present invention.
  • 21 illustrates a robot applied to the present invention.
  • 22 illustrates an AI device applied to the present invention.
  • each component or feature may be considered to be optional unless explicitly stated otherwise.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some components and/or features may be combined to constitute an embodiment of the present invention.
  • the order of operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • Embodiments of the present invention may be supported by standard documents disclosed in connection with at least one of an Institute of Electrical and Electronics Engineers (IEEE) 802 system, a 3GPP system, a 3GPP LTE and LTE-A system, and a 3GPP2 system. That is, among the embodiments of the present invention, steps or parts not described to clearly reveal the technical idea of the present invention may be supported by the above documents. In addition, all terms disclosed in this document can be described by the standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • -UMTS Universal Mobile Telecommunications System
  • 3G Global System for Mobile Communication
  • 3G Generation
  • Evolved Packet System A network system composed of an Evolved Packet Core (EPC), which is an Internet Protocol (IP)-based packet switched (PS) core network, and an access network such as LTE/UTRAN.
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • PS packet switched
  • UMTS is an evolved type of network.
  • -NodeB a base station of GERAN/UTRAN. It is installed outdoors and its coverage is macro cell scale.
  • -eNodeB a base station of E-UTRAN. It is installed outdoors and its coverage is macro cell scale.
  • -UE User Equipment
  • the UE may also be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the UE may be a portable device such as a notebook computer, a mobile phone, a personal digital assistant (PDA), a smart phone, or a multimedia device, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term UE or UE may refer to an MTC device.
  • -HNB Home NodeB: As a base station of the UMTS network, it is installed indoors and its coverage is in the micro cell scale.
  • -HeNB Home eNodeB
  • Home eNodeB As a base station of the EPS network, it is installed indoors and its coverage is on a micro cell scale.
  • -MME Mobility Management Entity: A network node of an EPS network that performs mobility management (MM) and session management (SM) functions.
  • MM mobility management
  • SM session management
  • -PDN-GW Packet Data Network-Gateway
  • PGW Packet Data Network-Gateway
  • PGW A network node of an EPS network that performs UE IP address allocation, packet screening and filtering, and charging data collection functions.
  • SGW Serving Mobility Management Entity: A network node of an EPS network that performs a function of triggering a mobility anchor, packet routing, idle mode packet buffering, and triggering the MME to page the UE.
  • Non-Access Stratum The upper end (stratum) of the control plane (control plane) between the UE and the MME.
  • control plane control plane
  • the main function is to support.
  • -PDN Packet Data Network
  • MMS multimedia messaging service
  • WAP wireless application protocol
  • -PDN connection a logical connection between the UE and the PDN, expressed by one IP address (one IPv4 address and/or one IPv6 prefix).
  • -RAN Radio Access Network
  • RNC Radio Network Controller
  • HSS Home Subscriber Server
  • the HSS may perform functions such as configuration storage, identity management, and user state storage.
  • -PLMN Public Land Mobile Network
  • ProSe Service Proximity based Service
  • a service that enables discovery between physically adjacent devices and direct communication with each other, communication through a base station, or communication through a third device.
  • user plane data is exchanged through a direct data path without going through a 3GPP core network (eg, EPC).
  • 3GPP core network eg, EPC
  • EPC Evolved Packet Core
  • FIG. 1 is a diagram showing a schematic structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • EPC is a key element of SAE (System Architecture Evolution) to improve the performance of 3GPP technologies.
  • SAE is a research project that determines a network structure that supports mobility between various types of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various wireless access technologies based on IP and providing improved data transmission capability.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system, and can support packet-based real-time and non-real-time services.
  • the core network is connected through two distinct sub-domains: CS (Circuit-Switched) for voice and PS (Packet-Switched) for data.
  • CS Circuit-Switched
  • PS Packet-Switched
  • the connection between the terminal and the terminal having IP capability is an IP-based base station (e.g., eNodeB (evolved Node B)), EPC, application domain (e.g., IMS ( IP Multimedia Subsystem)).
  • EPC is an essential structure for implementing end-to-end IP services.
  • the EPC may include various components, and in FIG. 1, some of them, SGW (Serving Gateway), PDN GW (Packet Data Network Gateway), MME (Mobility Management Entity), SGSN (Serving General Packet Radio Service) Supporting Node) and ePDG (enhanced packet data gateway) are shown.
  • SGW Serving Gateway
  • PDN GW Packet Data Network Gateway
  • MME Mobility Management Entity
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced packet data gateway
  • the SGW (or S-GW) operates as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility within the E-UTRAN (Evolved-UMTS (Universal Mobile Telecommunications System) Terrestrial Radio Access Network defined after 3GPP Release-8).
  • E-UTRAN Evolved-UMTS (Universal Mobile Telecommunications System) Terrestrial Radio Access Network defined after 3GPP Release-8).
  • SGW has mobility with other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access Network). It may also function as an anchor point for.
  • 3GPP networks RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access Network). It may also function as an anchor point for.
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • PDN GW can support policy enforcement features, packet filtering, charging support, etc.
  • mobility management between 3GPP networks and non-3GPP networks e.g., untrusted networks such as I-WLAN (Interworking Wireless Local Area Network), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax) Can serve as an anchor point for 3GPP networks and non-3GPP networks (e.g., untrusted networks such as I-WLAN (Interworking Wireless Local Area Network), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax) Can serve as an anchor point for 3GPP networks and non-3GPP networks (e.g., untrusted networks such as I-WLAN (Interworking Wireless Local Area Network), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax) Can serve as an anchor point for 3GPP networks and non-3GPP networks (e.g., untrusted networks such as I-WLAN (Interworking Wireless Local Area Network
  • the SGW and the PDN GW are configured as separate gateways, but two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming, and handover.
  • the MME controls control plane functions related to subscriber and session management.
  • the MME manages numerous eNodeBs and performs signaling for selection of a conventional gateway for handover to other 2G/3G networks.
  • the MME performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data such as user mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG serves as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspot, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspot, etc.
  • a terminal having IP capability is an IP service network provided by an operator (ie, an operator) through various elements in the EPC based on 3GPP access as well as non-3GPP access. (For example, IMS) can be accessed.
  • FIG. 1 shows various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link connecting two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • various reference points may exist according to the network structure.
  • S1-U Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover for path switching between eNBs and user plane tunneling per bearer during handover
  • S3 Reference point between MME and SGSN that provides user and bearer information exchange for mobility between 3GPP access networks in an idle and/or active state.
  • This reference point can be used within PLMN- or between PLMNs (eg, in case of PLMN-inter-handover)) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state .
  • This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).)
  • S4 A reference point between SGW and SGSN that provides related control and mobility support between the GPRS core and the 3GPP anchor function of the SGW. Also, if a direct tunnel is not established, it provides related control and mobility support between GPRS Core.
  • S5 A reference point that provides user plane tunneling and tunnel management between SGW and PDN GW. It is used for SGW relocation when connection to a PDN GW not co-located with the SGW is required due to terminal mobility and required PDN connectivity (It provides user plane tunneling and tunnel management between Serving GW and PDN GW. It is used) for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.) S11 Reference point between MME and SGW SGi A reference point between the PDN GW and the PDN.
  • the PDN may be a public or private PDN outside the operator, or may be, for example, an intra-operator PDN for provision of IMS services.
  • This reference point corresponds to the Gi of 3GPP access (It is the reference point between the PDN GW and the packet data network.
  • Packet data network may be an operator external public or private packet data network or an intra operator packet data network, eg for provision of IMS services.This reference point corresponds to Gi for 3GPP accesses.)
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides control and mobility support between trusted non-3GPP access and PDN GW to the user plane.
  • S2b is a reference point that provides related control and mobility support between ePDG and PDN GW to the user plane.
  • FIG. 2 is an exemplary diagram showing the architecture of a general E-UTRAN and EPC.
  • the eNodeB is routing to the gateway while the Radio Resource Control (RRC) connection is active, scheduling and transmitting a paging message, scheduling and transmitting a broadcaster channel (BCH), and resources in the uplink and downlink. It can perform functions for dynamic allocation to UE, configuration and provision for measurement of eNodeB, radio bearer control, radio admission control, and connection mobility control. Within the EPC, paging generation, LTE_IDLE state management, user plane encryption, SAE bearer control, NAS signaling encryption and integrity protection functions can be performed.
  • RRC Radio Resource Control
  • FIG. 3 is an exemplary diagram showing the structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is an exemplary diagram showing the structure of a radio interface protocol in a user plane between a terminal and a base station .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the wireless interface protocol horizontally consists of a physical layer, a data link layer, and a network layer, and vertically, a user plane and control for data information transmission. It is divided into a control plane for signal transmission.
  • the protocol layers are L1 (Layer 1), L2 (Layer 2), L3 (Layer 3) based on the lower three layers of the Open System Interconnection (OSI) reference model widely known in communication systems. ) Can be distinguished.
  • OSI Open System Interconnection
  • the first layer provides an information transfer service using a physical channel.
  • the physical layer is connected to an upper medium access control layer through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transmitted between different physical layers, that is, between the physical layers of the transmitting side and the receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one sub-frame is composed of a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe is composed of a plurality of resource blocks (Resource Block), and one resource block is composed of a plurality of symbols (Symbol) and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time at which data is transmitted, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are according to 3GPP LTE, a data channel PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel), and a control channel PDCCH (Physical Downlink Control Channel), It can be divided into PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and PUCCH (Physical Uplink Control Channel).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the Medium Access Control (MAC) layer of the second layer plays a role of mapping various logical channels to various transport channels, and also logical channel multiplexing that maps several logical channels to one transport channel. It plays the role of (Multiplexing).
  • the MAC layer is connected to the RLC layer, which is the upper layer, through a logical channel, and the logical channel has a control channel and a control channel that transmits information of the control plane according to the type of transmitted information. It is divided into a traffic channel that transmits information on the user plane.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating the data received from the upper layer. Play a role.
  • RLC Radio Link Control
  • the second layer's Packet Data Convergence Protocol (PDCP) layer is an IP that is relatively large in size and contains unnecessary control information for efficient transmission in a wireless section with a small bandwidth when transmitting an IP packet such as IPv4 or IPv6. It performs a header compression function that reduces the packet header size.
  • the PDCP layer also performs a security function, which consists of encryption (Ciphering) to prevent data interception by a third party and integrity protection (Integrity protection) to prevent data manipulation by a third party.
  • the radio resource control (Radio Resource Control; hereinafter abbreviated as RRC) layer located at the top of the third layer is defined only in the control plane, and configuration and reconfiguration of radio bearers (Radio Bearer; abbreviated as RB).
  • RRC Radio Resource Control
  • RB refers to a service provided by the second layer for data transmission between the UE and the E-UTRAN.
  • the terminal When there is an RRC connection between the RRC of the terminal and the RRC layer of the radio network, the terminal is in an RRC connected mode, otherwise, the terminal is in an RRC idle mode.
  • the RRC state refers to whether the RRC of the UE is in a logical connection with the RRC of the E-UTRAN, and when it is connected, it is called an RRC_CONNECTED state, and when it is not connected, it is called an RRC_IDLE state. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can determine the existence of the corresponding UE at the cell level, and thus can effectively control the UE.
  • the E-UTRAN cannot determine the existence of the UE, and the core network is managed by the TA (Tracking Area) unit, which is a larger area unit than the cell. That is, the UE in the RRC_IDLE state is determined only whether the UE exists in a larger area unit than the cell, and in order to receive a normal mobile communication service such as voice or data, the UE must transition to the RRC_CONNECTED state.
  • Each TA is classified through a Tracking Area Identity (TAI).
  • the terminal may configure the TAI through a tracking area code (TAC), which is information broadcasted from the cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, establishes an RRC connection in the cell, and registers the terminal information in the core network. After that, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as necessary, and looks at system information or paging information. This is called camping on the cell. The UE that has stayed in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state when it is necessary to establish an RRC connection.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs functions such as connection management (Session Management) and mobility management (Mobility Management).
  • ESM evolved session management
  • the default bearer resource has the characteristic that it is allocated from the network when it is connected to the network when it first accesses a specific packet data network (PDN).
  • PDN packet data network
  • the network allocates an IP address available to the terminal so that the terminal can use the data service, and also allocates the QoS of the default bearer.
  • LTE largely supports two types: a bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing the bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR a bearer having QoS characteristics of GBR or Non-GBR may be allocated.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID One EPS bearer has a QoS characteristic of a maximum bit rate (MBR) or/and a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to obtain UL synchronization with the base station or to be allocated UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe in which transmission of a random access preamble is possible and a preamble format.
  • the UE transmits a randomly selected random access preamble to the eNodeB.
  • the UE selects one of 64 candidate random access preambles.
  • a corresponding subframe is selected by the PRACH configuration index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB Upon receiving the random access preamble, the eNodeB sends a random access response (RAR) to the UE.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE receives a random access response in a Medium Access Control (MAC) Protocol Data Unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC Medium Access Control
  • PDU Protocol Data Unit
  • RRC 6 shows a connection process in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected.
  • the RRC state refers to whether or not the entity of the RRC layer of the UE is in a logical connection with the entity of the RRC layer of the eNodeB, and when connected, it is called an RRC connected state, and the connection The state that has not been set is called the RRC idle state.
  • the E-UTRAN can determine the existence of the corresponding terminal at the cell level, and thus can effectively control the UE.
  • the UE in the idle state cannot be recognized by the eNodeB, and is managed by the Core Network in units of a tracking area, which is a larger area unit than a cell.
  • the tracking area is a set unit of cells. That is, only the existence of an idle state UE is determined in a large area unit, and the UE needs to transition to a connected state in order to receive a normal mobile communication service such as voice or data.
  • the UE When the user first turns on the power of the UE, the UE first searches for an appropriate cell and then stays in an idle state in the cell. The UE, which has stayed in the idle state, establishes an RRC connection with the RRC layer of the eNodeB through an RRC connection procedure when it is necessary to establish an RRC connection, and then transitions to the RRC connected state. .
  • a call attempt by a user or uplink data transmission is required, or a paging message is received from the EUTRAN.
  • a response message may be transmitted.
  • the RRC connection process is largely a process in which the UE transmits an RRC connection request message to the eNodeB, the eNodeB transmits an RRC connection setup message to the UE, and the UE completes RRC connection setup to the eNodeB. It includes the process of transmitting a (RRC connection setup complete) message. This process will be described in more detail with reference to FIG. 6 as follows.
  • the UE When the UE in the idle mode wants to establish an RRC connection for reasons such as a call attempt, a data transmission attempt, or a response to the eNodeB's paging, the UE first sends an RRC connection request message. Send to eNodeB.
  • the eNB When receiving the RRC connection request message from the UE, the eNB accepts the RRC connection request of the UE when radio resources are sufficient, and transmits an RRC connection setup message, which is a response message, to the UE. .
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits the RRC connection setup message, the UE finally establishes an RRC connection with the eNodeB and transitions to the RRC connection mode.
  • the MME is divided into an Access and Mobility Management Function (AMF) and a Session Management Function (SMF) in the Next Generation system (or 5G Core Network (CN)). Accordingly, NAS interaction with the UE and MM (Mobility Management) are performed by AMF, and SM (Session Management) is performed by SMF.
  • AMF Access and Mobility Management Function
  • SMF Session Management
  • UPF User Plane Function
  • P-GW Packet Control Plane part
  • the user-plane part can be considered to be in charge of the UPF.
  • one or more UPFs may exist between the RAN and the DN (Data Network). That is, the conventional EPC may be configured as illustrated in FIG. 7 in 5G.
  • PDU session refers to an association between a UE and a DN that provides not only IP type but also Ethernet type or unstructured type PDU connectivity service.
  • UDM Unified Data Management
  • PCF Policy Control Function
  • the functions can be provided in an expanded form to satisfy the requirements of the 5G system.
  • each function, and each interface, TS 23.501 applies mutatis mutandis.
  • Non-3GPP access is typically WLAN access, which may include both a trusted WLAN and an untrusted WLAN.
  • the Access and Mobility Management Function (AMF) of the 5G system performs Registration Management (RM) and Connection Management (CM) for non-3GPP access as well as 3GPP access.
  • RM Registration Management
  • CM Connection Management
  • the same AMF serves the UE for 3GPP access and non-3GPP access belonging to the same PLMN, so that one network function is integrated and efficient for authentication, mobility management as well as session management for UEs registered through two different accesses. Can apply.
  • each eV2X service may be provided with different application configurations such as levels of automation, gaps between vehicles, etc.
  • Each application configuration can have different QoS requirements.
  • applications may have to adjust their configuration when QoS changes according to the new QoS that can be delivered.
  • the eV2X service it may be important for some application(s) to be notified in advance of potential changes in delivered QoS in order to be able to dynamically adjust the configuration.
  • the notification can take into account the locations the UE is likely to drive for a given time. This key issue is to study 5GS enhancements to support application tuning for eV2X services based on notifications of potential changes in QoS delivered.
  • FIG. 8 shows a procedure used to retrieve user plane congestion analysis for a specific geographic area by NF. This procedure can be used to request a one-time or continuous report for user plane congestion analysis.
  • step S801 the NF transmits Nnwdaf_AnalyticsInfo_Request to NWDAF to instruct a request for analysis for user plane congestion at a specific location.
  • the NF can request statistics or predictions or both.
  • the analysis type is set to user plane congestion, and the analysis target is set to location (eg ECGI, TA).
  • steps S802 to S803 if the request is approved, in order to provide the requested analysis, the NWDAF may request the OAM for a user plane congestion state for the requested location, and the OAM provides the requested information. If the NWDAF already has information about the congestion state of the user plane at the requested location, this step is omitted.
  • step S804 the NWDAF derives the requested analysis.
  • step S805 the NWDAF provides the NF with an analysis of the user plane congestion.
  • step S806 the NF transmits an Nnwdaf_EventsSubscription_Subscribe request to the NWDAF to request analysis of user plane congestion at a specific location (eg, ECGI, TA). NF can request statistics or predictions, or both.
  • the NWDAF subscribes to the OAM to obtain a user plane congestion state for the requested location, providing a congestion level threshold if possible, and the OAM returns the first report for the requested information in response. to provide.
  • step S809 the NWDAF derives the requested analysis.
  • step S810 the NWDAF provides an analysis of the user plane congestion to the NF.
  • step S811 a change in the user plane congestion state corresponding to exceeding the threshold value set by the NWDAF is detected by the OAM and notified to the NWDAF.
  • step S812 the NWDAF derives a new analysis.
  • step S813 the NWDAF provides an analysis notification on the user plane congestion for the NF.
  • a method of processing QoS change prediction through a 3GPP 5G system (5G mobile communication system, next-generation mobile communication system) proposed below may be configured by a combination of one or more of the following operations/configurations/steps.
  • the method proposed in the embodiment(s) is useful for V2X services.
  • the V2X application server can be replaced with an application function or application server below.
  • the V2X service is used in combination with a V2X application, a V2X message, V2X traffic, and V2X data.
  • the UE may include all various UEs such as vehicle UEs as well as pedestrian UEs.
  • QoS may be QoS for PC5 communication and/or QoS for Uu communication.
  • the NWDAF receives a notification based on a change in user plane congestion status from Operations and Maintenance (OAM), and the NWDAF analyzes user plane congestion based on the notification ( analytics for the user plane congestion) notification can be transmitted to the V2X application server through Network Exposure Function (NEF).
  • OAM Operations and Maintenance
  • NEF Network Exposure Function
  • the change in the user plane congestion state is determined based on one or more information including whether a QoS Notification Control (QNC) notification has been transmitted, and whether the QNC notification has been transmitted is determined by the NG-RAN GFBR cannot be fulfilled. It may be determined based on a counter value that increases when /guaranteed is transmitted to the SMF, and decreases when NG-RAN transmits GFBR cannot be fulfilled/guaranteed to the SMF.
  • QoS requirements eg, 5QI(s), GFBR-UL and DL, MFBR-UL and DL
  • Changes in user plane congestion status detected by OAM are, for example, related 5QI (s) packet delay, average UL / DL throughput, DRB accessibility/conservation, whether or not a QNC notification is transmitted (whether notification for QNC has been sent) (e.g., whether NG-RAN has informed SMF that it cannot yet be notified after NG-RAN notifies SMF that it cannot fulfill GFBR requirements) fulfil the GFBR requirement but re-fulfillment has not been notified yet)).
  • 5QI s
  • OAM is a QoS Flow of a specific 5QI
  • SMF i.e., core network
  • the V2X application server or NWDAF may request to notify that there is a change in the user plane congestion status when there is a transmission of a QNC notification (i.e., 1) or more than n times as described above.
  • the user plane congestion analysis notification may include a location and time at which a potential change in QoS may occur.
  • the NWDAF receiving the notification based on the change in the user plane congestion state from the OAM may be performed after the next step, which is a subscription request/response procedure between the OAM and the V2X application server, is performed.
  • the subscription request/response procedure includes: receiving, by the NWDAF, a second subscription request from the NEF having received a first subscription request related to congestion-related analysis information from the V2X application server; Transmitting, by the NWDAF, a third subscription request to the OAM while providing a threshold value from the NWDAF based on the first subscription request; Receiving, by the NWDAF, a response to the third subscription request from the OAM; And transmitting, by the NWDAF, an analysis of the user plane congestion derived based on the response to the V2X application server through the NEF.
  • the first subscription request may include a subscription request for a location.
  • the location may be all or part of the route as shown in FIG. 9.
  • the V2X application server sets a location where user plane congestion related analytics is requested to cover the entire area (FIG. 9(a)) or partial area (FIG. 9(b)) along the path.
  • the path length represented by the location can be selected to suit the needs of a specific application, and should be sufficient for safe operation within a specific time window (i.e., it does not have to be an end-to-end path that the UE should finally reach).
  • the V2X application server analyzes the next location along the route (e.g. Location # 2) until the request location covers the final destination.
  • Request the NWDAF to report the information at an appropriate time in consideration of the UE speed, path, and V2X application. Therefore, notification of potential changes in QoS can support application coordination.
  • the previously requested location may overlap the next requested location.
  • the V2X application server may cancel the subscription for the location after performing a subscription for the next location on the path.
  • the first subscription request may include a subscription request for a plurality of locations.
  • the subscription request for the plurality of locations may include an observation start time and an end time for each of the plurality of locations. That is, the V2X application server may request a subscription including a plurality of locations. Multiple Locations may cover the entire path or only part of the path. For each location, you may include the observation start and end times, or the observation start and validity periods. For example, it can be included in the form of a list as follows.
  • the NWDAF may perform a subscription request to the OAM for each location according to the observation start time of each location. NEF may perform this operation. In the future, it is possible to request update only for some locations. In this case, updated information can be provided for the ID of the location to be updated.
  • Each of the plurality of locations may be a geographical area designated/detailed by the V2X application server.
  • the geographic area may be one of Cell ID(s)), TAI(s), polygon, circle, and address.
  • the NWDAF receives the notification based on the change in the user plane congestion state from the OAM, and the NWDAF transmits the user plane congestion analysis notification to the V2X application server through NEF based on the notification, steps S1007 and S1008 of FIG. 10, respectively. It may correspond to S1009.
  • step S1001 the UE provides information on a path, a path start time, and a QoS requirement (eg, 5QI(s)) to the V2X application server.
  • a QoS requirement eg, 5QI(s)
  • Steps S1002 to S1009 are based on the mechanisms and procedures specified in section 6.1.1'Analytics Subscribe / Unsubscribe' section 6.12'User plane congestion analytics' of TS 23.288.
  • step S1002 the V2X application server subscribes to analytic information from NWDAF through NEF.
  • the analysis type is set to user plane congestion and the analysis target is set to location.
  • the V2X application server can request statistics or predictions or both.
  • For the analysis type 'user plane congestion' can be used, or a new type can be defined and used.
  • the request includes location information.
  • the requested location is the geographical area specified/detailed by the V2X application server, and the cell level (Cell ID(s)), TA level (TAI(s)) or other format (e.g. polygon, circle, etc. or civic Can be addresses (eg streets, districts, etc.).
  • Cell ID(s) Cell ID(s)
  • TAI(s) TA level
  • other format e.g. polygon, circle, etc. or civic Can be addresses (eg streets, districts, etc.).
  • the requested location may cover the entire area along the path or a partial area along the path. If the initially requested location contains a partial area along the route (e.g., Location # 1), the V2X application server is the next location along the route (e.g., Location # 2) until the requested location contains the final destination. Subscribing to NWDAF analysis information for, and canceling the subscription of NWDAF analysis information for the previous location (eg, Location # 1). The previously requested location may overlap with the next requested location, and the V2X application server subscribes to the NWDAF analysis information for the next location at an appropriate time in consideration of, for example, UE speed, route, and V2X application. .
  • QoS requirements e.g., 5QI(s), GFBR-UL & DL, MFBR-UL & DL
  • QoS requirements may be provided as threshold information to be used for user plane congestion notification regarding a potential change in QoS.
  • QoS requirements and thresholds information may be separately provided.
  • QoS requirements XX Mbps
  • UL/DL MFBR YY Mbps
  • UL/DL GFBR AA Mbps
  • UL/DL MFBR BB Mbps
  • the V2X application server If multiple UEs have received the same information from these UEs as they move to the same path (i.e., the same origin and destination) at the same time (step S1001), the V2X application server provides one subscription to analytic information for these UEs. to NWDAF can also be performed. In this case, upon receiving notification for potential change in QoS, it may be notified to the UEs.
  • the request may also include a start time.
  • the NEF records the association between the analysis trigger and the requester ID.
  • step S1003 the NEF subscribes to the analysis information from the NWDAF according to the request of the V2X application server.
  • NEF may apply restrictions on NWDAF (e.g., restrictions on parameters or parameter values from Nnwdaf_AnalyticsSubscription_Subscribe service operations) to subscription requests according to operator configuration.
  • NWDAF e.g., restrictions on parameters or parameter values from Nnwdaf_AnalyticsSubscription_Subscribe service operations
  • NEF can provide V2X application server provided location information in a format understood by the 3GPP system (eg, TA list, cell list, etc.).
  • step S1004 the NWDAF provides congestion level thresholds and subscribes to OAM to obtain a user plane congestion state for the requested location, and the OAM provides the first report on the requested information as a response. do.
  • step S1005 the NWDAF derives the requested analysis and provides the analysis for the user plane congestion to the NEF.
  • NEF provides an analysis of user plane congestion to the V2X application server.
  • step S1007 a change in the user plane congestion state exceeding the threshold set by the NWDAF is detected by the OAM, and notified to the NWDAF.
  • the notification includes where and when a potential change in QoS can occur.
  • the change of the user plane congestion information detected by OAM is described in FIG. 11 below.
  • the notification may include an item or reason for which QoS potential change is expected.
  • step S1008 the NWDAF derives a new analysis and provides an analysis notification for the user plane congestion for NEF.
  • the NWDAF may configure notification information to be delivered to the V2X application server based on the notification information provided by OAM.
  • the NEF provides a notification of the user plane congestion analysis (analytics for the user plane congestion) to the V2X application server. If necessary, NEF provides the location information provided by the NWDAF, taking into account the location information where potential QoS changes may occur, in a form understood by the V2X application server (e.g., polygons, circles, etc.) or civic addresses (e.g. streets, districts, etc.) )).
  • the V2X application server e.g., polygons, circles, etc.
  • civic addresses e.g. streets, districts, etc.
  • V2X application coordination may take place in the UE and/or the V2X application server upon receiving a notification about a potential change in QoS.
  • the above procedure involves continuous reporting, but one-time reporting may also be used.
  • the V2X application server can interact directly with the NWDAF (e.g., if the V2X application server is a trusted application function (AF))
  • a procedure in which the V2X application server subscribes to NWDAF analysis information for a next location along a path and cancels subscription to NWDAF analysis information on a previous location will be described with reference to FIG. 11. As shown, when the path is changed and the updated path is provided from the UE, the V2X application server subscribes to the NWDAF analysis information for the updated location along the path, and NWDAF analysis information on the previously requested location You can unsubscribe about.
  • step S1101 the V2X application server subscribes to the user plane congestion analysis for the NWDAF for the next location along the path (eg, Location # 2) through NEF. This step corresponds to step S1002-6 of FIG. 10.
  • the V2X application server unsubscribes the user plane congestion analysis for the NWDAF for the previous location (eg, Location # 1) through NEF.
  • step S1104 the NWDAF unsubscribes the user plane congestion to the OAM for the previous location (eg, Location # 1).
  • steps S1105 to 6 the V2X application server receives a response.
  • steps S1107 to 8 subscription for user plane congestion analysis for the next location along the route and unsubscription for user plane congestion analysis for the previous location are repeated until the requested location includes the final destination.
  • the V2X application server may prevent separate unsubscription from being performed.
  • a subscription period eg, Observation period, duration, valid period, etc.
  • the V2X application server uses this to perform Subscription to NWDAF analytic information, and previously subscribed. You can also unsubscribe.
  • New/changed location or new/changed QoS requirements and/or thresholds information (these can also be interpreted as Analytic Filters), perform a new subscription, and update the existing subscription with the changed parameters instead of canceling the previous subscription. You may.
  • identification information eg, Analytic ID
  • Identification information can refer/identify an existing subscription can be provided in a subscription update request.
  • the V2X application server may request a subscription including a plurality of locations. Multiple Locations may cover the entire path or only part of the path. For each location, you may include the observation start and end times, or the observation start and validity periods. For example, it can be included in the form of a list as follows.
  • the NWDAF may perform a subscription request to the OAM for each location according to the observation start time of each location. NEF may perform this operation. In the future, it is possible to request update only for some locations. In this case, updated information can be provided for the ID of the location to be updated.
  • the V2X application server can interact directly with the NWDAF (for example, if the V2X application server is a trusted AF)
  • step S1201 the UE provides information on a path, a path start time, and a QoS requirement (eg, 5QI) to the V2X application server.
  • a QoS requirement eg, 5QI
  • Steps S1202 to 6 are based on the mechanisms and procedures defined in 6.1.2 “Analyze Request” and 6.12 “User Plane Congestion Analysis” of TS 23.288.
  • step S1202 the V2X application server requests reception of analysis information from NWDAF through NEF.
  • NEF approves the request for analysis information
  • NEF records the association between the analysis trigger and the requester ID.
  • NEF transmits Nnwdaf_AnalyticsInfo_Request to NWDAF according to the request of the V2X application server. This refers to the contents of S1003 of FIG. 10.
  • step S1204 if the request is approved, in order to provide the requested analysis, the NWDAF may request the OAM for a user plane congestion state for the requested location, and the OAM provides the requested information. If the NWDAF already has information about the congestion state of the user plane at the requested location, this step is omitted.
  • step S1205 the NWDAF derives the requested analysis and provides the NEF with the analysis for the user plane congestion. This refers to the contents of S1008 of FIG. 10.
  • step S1206 the NWDAF provides the analysis of the user plane congestion to the V2X application server. This refers to the contents of S1009 of FIG. 10.
  • steps S1207 to 8 when the location requested in step S1202 by the V2X application server covers only a part of the path, the V2X application server must continuously perform analytic information request for the next location. This should be performed at an appropriate time in consideration of UE speed, the path, and V2X application. As a result, information on potential change in QoS provided by the V2X application server can assist Application Adjustment. This analytic information request can be performed until the requested location covers the final destination.
  • V2X application coordination may take place in the UE and/or the V2X application server upon receiving a notification about a potential change in QoS.
  • the V2X application server may make a request including a plurality of locations. Multiple Locations may cover the entire path or only part of the path. For each location, you can include the observation start time. For example, it can be included in the form of a list as follows.
  • the NWDAF may perform a subscription request to the OAM for each location in accordance with the observation start time of each location. NEF may perform this operation. In the future, it is possible to request update only for some locations. In this case, updated information can be provided for the ID of the location to be updated.
  • FIG. 13 illustrates a communication system 1 applied to the present invention.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device means a device that performs communication using wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices, including Head-Mounted Device (HMD), Head-Up Display (HUD), TV, smartphone, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, and washing machines.
  • IoT devices may include sensors, smart meters, and the like.
  • a base station and a network may be implemented as a wireless device, and a specific wireless device 200a may operate as a base station/network node to another wireless device.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
  • the wireless communication/connection is various wireless access such as uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR), and wireless devices/base stations/wireless devices, base stations and base stations can transmit/receive radio signals to each other through wireless communication/connections 150a, 150b, 150c.
  • the wireless communication/connections 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • various configuration information setting processes e.g, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes e.g., resource allocation processes, and the like.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate the first information/signal, and then transmit the wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive the wireless signal including the second information/signal through the transceiver 106 and store the information obtained from the signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive a radio signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202.
  • the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , Can be provided to one or more transceivers (106, 206).
  • a signal e.g., baseband signal
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • firmware or software may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document include firmware or software configured to be performed in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or a set of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • the one or more memories 104, 204 may be connected to the one or more processors 102, 202 through various techniques such as wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc. mentioned in the description, functions, procedures, proposals, methods and/or operation flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected with one or more antennas (108, 208), and one or more transceivers (106, 206) through one or more antennas (108, 208), the description and functionality disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more transceivers 106, 206 may include (analog) oscillators and/or filters.
  • 15 illustrates a signal processing circuit for a transmission signal.
  • the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060.
  • the operations/functions of FIG. 15 may be performed in processors 102 and 202 and/or transceivers 106 and 206 of FIG. 14.
  • the hardware elements of FIG. 15 may be implemented in the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 14.
  • blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 14.
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 14, and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 14.
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 15.
  • the codeword is an encoded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010.
  • the scramble sequence used for scramble is generated based on an initialization value, and the initialization value may include ID information of a wireless device.
  • the scrambled bit sequence may be modulated by the modulator 1020 into a modulation symbol sequence.
  • the modulation scheme may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030.
  • the modulation symbols of each transport layer may be mapped to the corresponding antenna port(s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the N*M precoding matrix W.
  • N is the number of antenna ports
  • M is the number of transmission layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on complex modulation symbols. Further, the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbols, DFT-s-OFDMA symbols) in the time domain, and may include a plurality of subcarriers in the frequency domain.
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • the signal processing process for the received signal in the wireless device may be configured as the reverse of the signal processing process 1010 to 1060 of FIG. 15.
  • a wireless device eg, 100 and 200 in FIG. 14
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP canceller, and a Fast Fourier Transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT Fast Fourier Transform
  • the baseband signal may be reconstructed into a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process.
  • a signal processing circuit for a received signal may include a signal restorer, a resource demapper, a postcoder, a demodulator, a descrambler, and a decoder.
  • the wireless device 16 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 13).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 14, and various elements, components, units/units, and/or modules ) Can be composed of.
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 14.
  • the transceiver(s) 114 may include one or more transceivers 106 and 206 and/or one or more antennas 108 and 208 of FIG. 14.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130.
  • the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (Figs. 13, 100a), vehicles (Figs. 13, 100b-1, 100b-2), XR devices (Figs. 13, 100c), portable devices (Figs. 13, 100d), and home appliances. (Figs. 13, 100e), IoT devices (Figs. 13, 100f), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate/environment devices, It may be implemented in the form of an AI server/device (FIGS. 13 and 400), a base station (FIGS. 13 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed place depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least part of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 is a random access memory (RAM), a dynamic RAM (DRAM), a read only memory (ROM), a flash memory, a volatile memory, and a non-volatile memory. volatile memory) and/or a combination thereof.
  • FIG. 16 An implementation example of FIG. 16 will be described in more detail with reference to the drawings.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers).
  • the portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ) Can be included.
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 16, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling components of the portable device 100.
  • the control unit 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands required for driving the portable device 100.
  • the memory unit 130 may store input/output data/information, and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130. Can be saved.
  • the communication unit 110 may convert information/signals stored in the memory into wireless signals, and may directly transmit the converted wireless signals to other wireless devices or to a base station.
  • the communication unit 110 may restore the received radio signal to the original information/signal. After the restored information/signal is stored in the memory unit 130, it may be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), or a ship.
  • AV aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a unit (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130/140a to 140d correspond to blocks 110/130/140 of FIG. 16, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc. may be included.
  • the autonomous driving unit 140d is a technology that maintains a driving lane, a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically drives along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data and traffic information data from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the control unit 120 may control the driving unit 140a so that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, and a driving plan to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • Vehicles can also be implemented as vehicles, trains, aircraft, ships, and the like.
  • the vehicle 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, and a position measurement unit 140b.
  • blocks 110 to 130/140a to 140b correspond to blocks 110 to 130/140 of FIG. 16, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
  • the controller 120 may control various components of the vehicle 100 to perform various operations.
  • the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the vehicle 100.
  • the input/output unit 140a may output an AR/VR object based on information in the memory unit 130.
  • the input/output unit 140a may include a HUD.
  • the location measuring unit 140b may obtain location information of the vehicle 100.
  • the location information may include absolute location information of the vehicle 100, location information within a driving line, acceleration information, location information with surrounding vehicles, and the like.
  • the location measurement unit 140b may include GPS and various sensors.
  • the communication unit 110 of the vehicle 100 may receive map information, traffic information, and the like from an external server and store them in the memory unit 130.
  • the location measurement unit 140b may acquire vehicle location information through GPS and various sensors and store the vehicle location information in the memory unit 130.
  • the controller 120 may generate a virtual object based on map information, traffic information, vehicle location information, and the like, and the input/output unit 140a may display the generated virtual object on a window in the vehicle (1410, 1420).
  • the controller 120 may determine whether the vehicle 100 is operating normally within the driving line based on the vehicle location information. When the vehicle 100 deviates abnormally from the driving line, the control unit 120 may display a warning on the glass window in the vehicle through the input/output unit 140a.
  • control unit 120 may broadcast a warning message about driving abnormalities to nearby vehicles through the communication unit 110.
  • controller 120 may transmit location information of the vehicle and information on driving/vehicle abnormality to a related organization through the communication unit 110.
  • the XR device may be implemented as an HMD, a head-up display (HUD) provided in a vehicle, a television, a smartphone, a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • HMD head-up display
  • a television a television
  • smartphone a smartphone
  • a computer a wearable device
  • a home appliance a digital signage
  • a vehicle a robot, and the like.
  • the XR device 100a may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a power supply unit 140c.
  • blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 16, respectively.
  • the communication unit 110 may transmit and receive signals (eg, media data, control signals, etc.) with other wireless devices, portable devices, or external devices such as a media server.
  • Media data may include images, images, and sounds.
  • the controller 120 may perform various operations by controlling components of the XR device 100a.
  • the controller 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing.
  • the memory unit 130 may store data/parameters/programs/codes/commands required for driving the XR device 100a/generating an XR object.
  • the input/output unit 140a may obtain control information, data, etc. from the outside, and may output the generated XR object.
  • the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 140b may obtain XR device status, surrounding environment information, user information, and the like.
  • the sensor unit 140b may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
  • the power supply unit 140c supplies power to the XR device 100a, and may include a wired/wireless charging circuit, a battery, and the like.
  • the memory unit 130 of the XR device 100a may include information (eg, data, etc.) necessary to generate an XR object (eg, AR/VR/MR object).
  • the input/output unit 140a may obtain a command to manipulate the XR device 100a from the user, and the control unit 120 may drive the XR device 100a according to the user's driving command. For example, when a user tries to watch a movie, news, etc. through the XR device 100a, the controller 120 transmits the content request information through the communication unit 130 to another device (for example, the mobile device 100b) or Can be sent to the media server.
  • another device for example, the mobile device 100b
  • the communication unit 130 may download/stream contents such as movies and news from another device (eg, the portable device 100b) or a media server to the memory unit 130.
  • the control unit 120 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata generation/processing for the content, and is obtained through the input/output unit 140a/sensor unit 140b.
  • An XR object may be generated/output based on information on a surrounding space or a real object.
  • the XR device 100a is wirelessly connected to the mobile device 100b through the communication unit 110, and the operation of the XR device 100a may be controlled by the mobile device 100b.
  • the portable device 100b may operate as a controller for the XR device 100a.
  • the XR device 100a may obtain 3D location information of the portable device 100b, and then generate and output an XR object corresponding to the portable device 100b.
  • Robots can be classified into industrial, medical, household, military, etc. depending on the purpose or field of use.
  • the robot 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a driving unit 140c.
  • blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 16, respectively.
  • the communication unit 110 may transmit and receive signals (eg, driving information, control signals, etc.) with other wireless devices, other robots, or external devices such as a control server.
  • the controller 120 may perform various operations by controlling the components of the robot 100.
  • the memory unit 130 may store data/parameters/programs/codes/commands supporting various functions of the robot 100.
  • the input/output unit 140a obtains information from the outside of the robot 100 and may output information to the outside of the robot 100.
  • the input/output unit 140a may include a camera, a microphone, a user input unit, a display unit, a speaker, and/or a haptic module.
  • the sensor unit 140b may obtain internal information, surrounding environment information, user information, and the like of the robot 100.
  • the sensor unit 140b may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, and the like.
  • the driving unit 140c may perform various physical operations such as moving a robot joint. In addition, the driving unit 140c may make the robot 100 travel on the ground or fly in the air.
  • the driving unit 140c may include an actuator, a motor, a wheel, a brake, a propeller, and the like.
  • AI devices are fixed devices such as TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It can be implemented with possible devices.
  • the AI device 100 includes a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a/140b, a running processor unit 140c, and a sensor unit 140d. It may include. Blocks 110 to 130/140a to 140d correspond to blocks 110 to 130/140 of FIG. 16, respectively.
  • the communication unit 110 uses wired/wireless communication technology to provide external devices such as other AI devices (eg, FIGS. 13, 100x, 200, 400) or AI servers (eg, 400 in FIG. 13) and wired/wireless signals (eg, sensor information). , User input, learning model, control signals, etc.). To this end, the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from the external device to the memory unit 130.
  • AI devices eg, FIGS. 13, 100x, 200, 400
  • AI servers eg, 400 in FIG. 13
  • wired/wireless signals eg, sensor information
  • the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from the external device to the memory unit 130.
  • the controller 120 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. In addition, the controller 120 may perform a determined operation by controlling the components of the AI device 100. For example, the control unit 120 may request, search, receive, or utilize data from the learning processor unit 140c or the memory unit 130, and the predicted or desirable operation among at least one executable operation Components of the AI device 100 may be controlled to execute the operation. In addition, the control unit 120 collects history information including the user's feedback on the operation content or the operation of the AI device 100 and stores it in the memory unit 130 or the running processor unit 140c, or the AI server ( 13 and 400). The collected history information can be used to update the learning model.
  • the memory unit 130 may store data supporting various functions of the AI device 100.
  • the memory unit 130 may store data obtained from the input unit 140a, data obtained from the communication unit 110, output data from the running processor unit 140c, and data obtained from the sensing unit 140.
  • the memory unit 130 may store control information and/or software codes necessary for the operation/execution of the controller 120.
  • the input unit 140a may acquire various types of data from the outside of the AI device 100.
  • the input unit 140a may acquire training data for model training and input data to which the training model is to be applied.
  • the input unit 140a may include a camera, a microphone, and/or a user input unit.
  • the output unit 140b may generate output related to visual, auditory, or tactile sense.
  • the output unit 140b may include a display unit, a speaker, and/or a haptic module.
  • the sensing unit 140 may obtain at least one of internal information of the AI device 100, surrounding environment information, and user information of the AI device 100 by using various sensors.
  • the sensing unit 140 may include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. have.
  • the learning processor unit 140c may train a model composed of an artificial neural network by using the training data.
  • the running processor unit 140c may perform AI processing together with the running processor unit of the AI server (FIGS. 13 and 400 ).
  • the learning processor unit 140c may process information received from an external device through the communication unit 110 and/or information stored in the memory unit 130.
  • the output value of the learning processor unit 140c may be transmitted to an external device through the communication unit 110 and/or may be stored in the memory unit 130.
  • Embodiments as described above can be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

일 실시예는, 무선통신시스템에서 Network Data Analytics Function (NWDAF)의 신호 송수신 방법에 있어서, NWDAF가 Operations and Maintenance (OAM)으로부터 사용자 평면 혼잡 상태(user plane congestion status)의 변화에 기초한 통지(notification)를 수신하는 단계; 및 상기 NWDAF가 상기 통지에 기초하여 사용자 평면 혼잡 분석 (analytics for the user plane congestion) 통지를 Network Exposure Function (NEF)를 통해 V2X 애플리케이션 서버로 전송하는 단계를 포함하며, 상기 사용자 평면 혼잡 상태의 변화는 QNC 통지가 전송되었는지 여부를 포함하는 하나 이상의 정보에 기초하여 결정되며, 상기 QNC 통지가 전송되었는지 여부는, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 증가하고, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 감소되는 카운터 값에 기초하여 결정된 것인, 방법이다.

Description

무선 통신 시스템에서 NWDAF의 신호 송수신 방법 및 이를 위한 장치.
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 구체적으로는 NWDAF가 Operations and Maintenance (OAM)으로부터 사용자 평면 혼잡 상태(user plane congestion status)의 변화에 기초한 통지(notification)의 수신에 관련된 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
무선 통신 시스템에서는 LTE, LTE-A, WiFi 등의 다양한 RAT(Radio Access Technology)이 사용되고 있으며, 5G 도 여기에 포함된다. 5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다. 일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
실시예에서는 NWDAF가 OAM으로부터 사용자 평면 혼잡 상태의 변화에 기초한 통지의 수신에 관련된 방법을 개시한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다
일 실시예는, 무선통신시스템에서 Network Data Analytics Function (NWDAF)의 신호 송수신 방법에 있어서, NWDAF가 Operations and Maintenance (OAM)으로부터 사용자 평면 혼잡 상태(user plane congestion status)의 변화에 기초한 통지(notification)를 수신하는 단계; 및 상기 NWDAF가 상기 통지에 기초하여 사용자 평면 혼잡 분석 (analytics for the user plane congestion) 통지를 Network Exposure Function (NEF)를 통해 V2X 애플리케이션 서버로 전송하는 단계를 포함하며, 상기 사용자 평면 혼잡 상태의 변화는 QNC 통지가 전송되었는지 여부를 포함하는 하나 이상의 정보에 기초하여 결정되며, 상기 QNC 통지가 전송되었는지 여부는, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 증가하고, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 감소되는 카운터 값에 기초하여 결정된 것인, 방법이다.
무선통신시스템에서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은, NWDAF가 Operations and Maintenance (OAM)으로부터 사용자 평면 혼잡 상태(user plane congestion status)의 변화에 기초한 통지(notification)를 수신하는 단계; 및 상기 NWDAF가 상기 통지에 기초하여 사용자 평면 혼잡 분석(analytics for the user plane congestion) 통지를 Network Exposure Function (NEF)를 통해 V2X 애플리케이션 서버로 전송하는 단계를 포함하며, 상기 사용자 평면 혼잡 상태의 변화는 QNC 통지가 전송되었는지 여부를포함하는 하나 이상의 정보에 기초하여 결정되며, 상기 QNC 통지가 전송되었는지 여부는, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 증가하고, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 감소되는 카운터 값에 기초하여 결정된 것인, 장치이다.
상기 사용자 평면 혼잡 분석 통지는, QoS의 잠재적 변경이 발생할 수 있는 위치 및 시간을 포함할 수 있다.
상기 방법은, 상기 NWDAF가, 상기 V2X 애플리케이션 서버로부터 혼잡 관련 분석 정보에 관련된 제1 서브스크라이브 요청(subscribe request)을 수신한 NEF로부터, 제2 서브스크라이브 요청을 수신하는 단계; 상기 NWDAF가, 상기 제1 서브스크라이브 요청에 기초하여, 상기 NWDAF가 임계값을 제공하면서 상기 OAM에 제3 서브스크라이브 요청을 전송하는 단계; 상기 NWDAF가, 상기 OAM으로부터 상기 제3 서브스크라이브 요청에 대한 응답을 수신하는 단계; 및 상기 NWDAF가, 상기 응답에 기초하여 도출된 사용자 평면 혼잡에 대한 분석을 상기 NEF를 통해 상기 V2X 애플리케이션 서버로 전송하는 단계를 더 포함할 수 있다.
상기 제1 서브스크라이브 요청은, 복수의 위치(location)에 대한 서브스크립션 요청을 포함할 수 있다.
상기 복수의 위치에 대한 서브스크립션 요청은, 복수의 위치 각각에 대한관측 시작 시간 및 종료시간을 포함할 수 있다.
상기 복수의 위치 각각은, V2X 애플리케이션 서버에 의해 지정/상세된 지리적 영역(geographical area)일 수 있다.
상기 지리적 영역은, Cell ID(s)), TAI(s), 다각형, 원, 주소 중 하나의 정보일 수 있다.
상기 제1 서브스크라이브 요청은, 위치에 대한 서브스크립션 요청을 포함할 수 있다.
상기 위치가 경로의 일부인 경우, 상기 V2X 애플리케이션 서버는 경로상 상기 위치의 다음 위치에 대한 서브스크립션 수행 후, 상기 위치에 대한 서브스크립션을 취소할 수 있다.
상기 임계값은 상기 하나 이상의 정보에 포함될 수 있다.
상기 임계값은 5QI(s), GFBR - UL & DL, MFBR - UL & DL 중 하나 이상일 수 있다.
상기 NEF는 상기 QoS의 잠재적 변경이 발생할 수 있는 위치를 다각형, 원, 주소 중 하나의 정보로 변환할 수 있다.
본 발명에 따르면, 종래 GBR 베어러가 없어진 횟수로 판단하는 것보다, 혼잡 레벨의 적절한 판단이 가능하다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 flow도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 5G 시스템을 설명하기 위한 도면이다.
도 8 내지 도 12는 본 발명의 실시예(들)를 설명하기 위한 도면이다.
도 13은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 14는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 15는 전송 신호를 위한 신호 처리 회로를 예시한다.
도 16은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다.
도 17은 본 발명에 적용되는 휴대 기기를 예시한다.
도 18은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다.
도 19는 본 발명에 적용되는 차량을 예시한다.
도 20은 본 발명에 적용되는 XR 기기를 예시한다.
도 21은 본 발명에 적용되는 로봇을 예시한다.
도 22는 본 발명에 적용되는 AI 기기를 예시한다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
종래 EPC에서의 MME는 Next Generation system(또는 5G CN(Core Network))에서는 AMF(Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 즉, 종래 EPC는 5G에서 도 7에 예시된 바와 같이 구성될 수 있다. 또한, 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다.
5G 시스템은 TS 23.501, TS 23.502 및 TS 23.503에 작업되고 있다. 따라서 본 발명에서는 5G 시스템에 대해서 상기 규격을 준용키로 한다. 또한, NG-RAN 관련 더 자세한 아키텍처 및 내용은 TS 38.300 등을 준용한다. 5G 시스템은 non-3GPP 액세스도 지원하며, 이에 TS 23.501의 4.2.8절에는 non-3GPP 액세스를 지원하기 위한 아키텍처, network element 등의 내용들이 기술되어 있고, TS 23.502의 4.12절에는 non-3GPP 액세스를 지원하기 위한 procedure들이 기술되어 있다. Non-3GPP 액세스의 예로는 대표적으로 WLAN 액세스를 들 수 있으며 이는 trusted WLAN과 untrusted WLAN을 모두 포함할 수 있다. 5G 시스템의 AMF(Access and Mobility Management Function)는 3GPP 액세스뿐만 아니라 non-3GPP 액세스에 대한 Registration Management(RM) 및 Connection Management(CM)를 수행한다. 이처럼 동일한 PLMN에 속하는 3GPP 액세스와 non-3GPP 액세스에 대해 동일한 AMF가 UE를 serve함으로써 두 개의 서로 다른 액세스를 통해 등록한 UE에 대해 인증, 이동성 관리뿐만 아니라 세션 관리 등을 하나의 네트워크 펑션이 통합적이고 효율적으로 지원할 수 있다.
한편, TR 23.786v1.1.0의 5.15절에서는 어떤 지역에 대해 (이는 UE의 이동이 예상되는 지역일 수 있음) 네트워크에서 제공하는 QoS에 대해 potential change (예, 요구되는 QoS를 만족시키기 어려움) 예측하여 이를 application으로 통보하여 application이 적절한 동작을 취하도록 돕는 것에 대한 의제가 기술되어 있다. 이 의제에 대해 설명하면, TS 22.186에 정의된 대로 각 eV2X 서비스에는 자동화 수준, 차량 간 갭 등과 같은 다른 애플리케이션 구성(configuration)이 제공될 수 있다. 각 애플리케이션 구성은 다른 QoS 요구 사항을 가질 수 있다. 결과적으로, 애플리케이션은 전달될 수있는 새로운 QoS에 따라 QoS가 변경되는 경우 그 구성을 조정해야 할 수 있다. eV2X 서비스의 요구 사항을 고려할 때 일부 애플리케이션 (들)은 구성을 동적으로 조정할 수 있으려면 전달된 QoS의 잠재적 변경에 대해 미리 통지하는 것이 중요 할 수 있다. 통지는 UE가 주어진 시간 동안 운전할 가능성이 있는 위치를 고려할 수 있다. 이 핵심 문제는 전달된 QoS의 잠재적 변경에 대한 알림에 따라 eV2X 서비스에 대한 애플리케이션 조정을 지원하기 위해 5GS 개선 사항을 연구하는 것이다.
도 8에는 NF에 의해 특정 지리적 영역에 대한 사용자 평면 혼잡 분석을 retrieve하는데 사용되는 절차가 도시되어 있다. 이 절차는 사용자 평면 혼잡 분석에 대한 일회성 또는 연속보고를 요청하는데 사용될 수 있다.
단계 S801에서, NF는 Nnwdaf_AnalyticsInfo_Request를 NWDAF로 전송하여, 특정 위치에서 사용자 평면 혼잡 분석(analytics for user plane congestion)에 대한 요청을 지시한다. NF는 통계(statistics) 또는 예측(predictions) 또는 양자 모두를 요청할 수 있다. 분석 유형은 사용자 평면 혼잡으로 설정되고 분석 대상은 위치 (예 : ECGI, TA)로 설정된다. 단계 S802 내지 S803에서, 요청이 승인되면, 요청된 분석을 제공하기 위해, NWDAF는 요청된 위치에 대한 사용자 평면 혼잡 상태를 OAM에 요청할 수 있으며, OAM은 요청된 정보를 제공한다. NWDAF에 요청된 위치의 사용자 평면 혼잡 상태에 대한 정보가 이미 있으면 이 단계는 생략된다.
단계 S804에서, NWDAF는 요청된 분석을 도출한다. 단계 S805에서, NWDAF는 NF에게 사용자 평면 혼잡에 대한 분석을 제공한다. 단계 S806에서, NF는 Nnwdaf_EventsSubscription_Subscribe 요청을 NWDAF에 전송함으로써, 특정 위치(예 : ECGI, TA)에서 사용자 평면 혼잡에 대한 분석을 요청한다. NF는 통계 또는 예측, 또는 양자 모두를 요청할 수 있다.
단계 S807 내지 S808에서, NWDAF는, 가능하면 혼잡 수준 임계값을 제공하면서, 요청된 위치에 대한 사용자 평면 혼잡 상태를 얻기 위해 OAM에 subscribe 하고, OAM은 요청된 정보에 대한 첫 번째 보고서를 응답으로 다시 제공한다.
단계 S809에서, NWDAF는 요청된 분석을 도출한다. 단계 S810에서, NWDAF는 NF에 사용자 평면 혼잡에 대한 분석을 제공한다. 단계 S811에서, NWDAF에 의해 설정된 임계값을 넘는 것에 대응하는 사용자 평면 혼잡 상태의 변경은 OAM에 의해 검출되고 NWDAF에 통지된다. 단계 S812에서, NWDAF는 새로운 분석을 도출한다. 단계 S813에서, NWDAF는 NF에 대한 사용자 평면 혼잡에 대한 분석 알림을 제공한다.
이하에서는 상술한 내용에 기초하여 QoS change prediction을 처리하는 방법을 제안한다.
이하에서 제안하는 3GPP 5G System (5G 이동통신 시스템, 차세대 이동통신 시스템)을 통해 QoS change prediction을 처리하는 방법은 다음 중 하나 이상의 동작/구성/단계의 조합으로 구성될 수 있다. 특히 실시예(들)서 제안하는 방법은 V2X 서비스를 위해 유용하다. 그러나, V2X 서비스에만 국한되어 사용될 필요는 없다. V2X 서비스가 아닌 서비스에 적용될 경우 아래에서 V2X 애플리케이션 서버는 Application Function 또는 Application Server로 대치될 수 있다. 실시예에서 V2X service는 V2X application, V2X 메시지, V2X traffic, V2X data 등과 혼용되어 사용된다. V2X 서비스 관련해서 UE는 vehicle UE 뿐 아니라 pedestrian UE와 같이 다양한 UE를 모두 포함할 수 있다. QoS는 PC5 통신을 위한 QoS 및/또는 Uu 통신을 위한 QoS일 수 있다.
실시예
일 실시예에 의하면, NWDAF가 Operations and Maintenance (OAM)으로부터 사용자 평면 혼잡 상태(user plane congestion status)의 변화에 기초한 통지(notification)를 수신하고, 상기 NWDAF가 상기 통지에 기초하여 사용자 평면 혼잡 분석(analytics for the user plane congestion) 통지를 Network Exposure Function (NEF)를 통해 V2X 애플리케이션 서버로 전송할 수 있다.
여기서, 상기 사용자 평면 혼잡 상태의 변화는 QNC(QoS Notification Control) 통지가 전송되었는지 여부를 포함하는 하나 이상의 정보에 기초하여 결정되며, 상기 QNC 통지가 전송되었는지 여부는, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 증가하고, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 감소되는 카운터 값에 기초하여 결정된 것일 수 있다. 보다 상세히, QoS requirements (예를 들어, 5QI(s), GFBR - UL and DL, MFBR - UL and DL)는 QoS의 잠재적 변화에 관한 사용자 평면 혼잡 통지에 사용될 임계값 정보로서 제공될 수 있다. OAM에 의해 검출된 사용자 평면 혼잡 상태(user plane congestion status)의 변화는, 예를 들어, 관련 5QI (s) 패킷 지연, 평균 UL / DL 처리량, DRB 접근성/보존성, QNC 통지가 전송되었는지 여부(whether notification for QNC has been sent) (예: NG-RAN이 SMF에게 GFBR 요구 사항을 이행할 수 없음을 통보한 후에, re-fulfillment는 아직 통지하지 않았는지 여부(whether NG-RAN has informed SMF that it cannot fulfil the GFBR requirement but re-fulfillment has not been notified yet)) 등에 기초하여 검출된다. 여기서, 상기 whether notification for QNC(QoS Notification Control) has been sent (e.g. whether NG-RAN has informed SMF that it cannot fulfil the GFBR requirement but re-fulfillment has not been notified yet) 관련하여 OAM은 특정 5QI의 QoS Flow에 대해 NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF (즉, core network)로 전송한 경우 1을 증가하고, 상기 QoS Flow에 대해 NG-RAN이 GFBR can be fulfilled/guaranteed again을 SMF로 전송한 경우 1을 감소하는 식으로 하여 QNC 통지(notification for QNC) 전송 여부에 대한 measure를 수행할 수 있는 것이다. 또한, V2X 애플리케이션 서버 또는 NWDAF는 상기와 같이 QNC 통지의 전송이 있는 경우(즉, 1)가 아니라 n회 이상 전송이 발생한 경우에 user plane congestion status에 change가 있음을 통보해 줄 것을 요청할 수도 있다.
상기 사용자 평면 혼잡 분석 통지는, QoS의 잠재적 변경이 발생할 수 있는 위치 및 시간을 포함할 수 있다.
상기 NWDAF가 OAM으로부터 사용자 평면 혼잡 상태의 변화에 기초한 통지를 수신하는 것은, OAM과 V2X 애플리케이션 서버 사이에서 서브스크라이브 요청/응답 절차인 다음 단계가 수행된 이후 수행될 수 있다. 상기 서브스크라이브 요청/응답 절차는, 상기 NWDAF가, 상기 V2X 애플리케이션 서버로부터 혼잡 관련 분석 정보에 관련된 제1 서브스크라이브 요청(subscribe request)을 수신한 NEF로부터, 제2 서브스크라이브 요청을 수신하는 단계; 상기 NWDAF가, 상기 제1 서브스크라이브 요청에 기초하여, 상기 NWDAF가 임계값을 제공하면서 상기 OAM에 제3 서브스크라이브 요청을 전송하는 단계; 상기 NWDAF가, 상기 OAM으로부터 상기 제3 서브스크라이브 요청에 대한 응답을 수신하는 단계; 및 상기 NWDAF가, 상기 응답에 기초하여 도출된 사용자 평면 혼잡에 대한 분석을 상기 NEF를 통해 상기 V2X 애플리케이션 서버로 전송하는 단계를 포함할 수 있다.
상기 제1 서브스크라이브 요청은, 위치에 대한 서브스크립션 요청을 포함할 수 있다. 상기 위치는 도 9에 도시된 바와 같이 경로의 전부 또는 경로의 일부일 수 있다. V2X 애플리케이션 서버는 경로를 따라 전체 영역 (도 9 (a)) 또는 부분 영역 (도 9(b))을 포괄하기 위해 사용자 평면 혼잡 관련 분석(user plane congestion related analytics)이 요청되는 위치를 설정한다. 위치에 의해 표현되는 경로 길이는 특정 애플리케이션의 요구에 맞도록 선택될 수 있으며, 특정 시간 윈도우 내에서 안전한 동작을 위해 충분해야 한다(즉, UE가 최종 도달해야 하는 종단 간 경로일 필요는 없다) 처음 요청된 위치가 경로를 따라 부분 영역 (예 : Location # 1)을 차지하는 경우, 요청 위치가 최종 목적지를 커버할 때까지, V2X 애플리케이션 서버는 경로에 따른 다음 위치 (예 : Location # 2)에 대한 분석 정보를, UE 속도, 경로, V2X 애플리케이션 등을 고려하여 적절한 시간에 보고하도록 NWDAF에 요청한다. 따라서 QoS의 잠재적 변경에 대한 알림은 애플리케이션 조정을 지원할 수 있다. 이전에 요청된 위치는 다음 번 요청된 위치와 겹칠 수 있다.
상기 위치가 경로의 일부인 경우, 상기 V2X 애플리케이션 서버는 경로상 상기 위치의 다음 위치에 대한 서브스크립션 수행 후, 상기 위치에 대한 서브스크립션을 취소할 수 있다.
또는, 상기 제1 서브스크라이브 요청은, 복수의 위치(location)에 대한 서브스크립션 요청을 포함할 수 있다. 상기 복수의 위치에 대한 서브스크립션 요청은, 복수의 위치 각각에 대한 관측 시작 시간 및 종료시간을 포함할 수 있다. 즉, V2X 애플리케이션 서버는 다수의 Location을 포함하여 subscription 요청을 할 수도 있다. 다수의 Location은 path의 전체를 커버할 수도 있고, 일부만 커버할 수도 있다. 각 Location에 대해 observation 시작 시간과 종료 시간, 또는 observation 시작 시간과 유효기간을 포함할 수 있다. 예를 들어, 리스트 형태로써 아래와 같이 포함시킬 수 있다.
{Location ID=1, Location Information (이는 상술한 바와 같이 다양한 형태로 표현가능), observation 시작 시간과 종료 시간},
{Location ID=2, Location Information (이는 상술한 바와 같이 다양한 형태로 표현가능), observation 시작 시간과 종료 시간}
{Location ID=3, Location Information (이는 상술한 바와 같이 다양한 형태로 표현가능), observation 시작 시간과 종료 시간}
이러한 경우, subscription 요청을 여러 번 할 필요가 없을 뿐만 아니라 subscription 해지를 하지 않아도 된다. 이처럼 다수의 Location 정보가 포함된 subscription 요청에 대해 NWDAF가 각 Location의 observation 시작 시간에 맞게 Location 별로 OAM으로 subscription 요청을 수행할 수도 있다. 이러한 동작은 NEF가 수행할 수도 있다. 추후 일부의 Location에 대해서만 요청 업데이트를 할 수도 있다. 이 경우, 업데이트하고자 하는 Location의 ID에 대해서 업데이트된 정보를 제공할 수 있다.
상기 복수의 위치 각각은, V2X 애플리케이션 서버에 의해 지정/상세된 지리적 영역(geographical area)일 수 있다. 상기 지리적 영역은, Cell ID(s)), TAI(s), 다각형, 원, 주소 중 하나의 정보일 수 있다.
NWDAF가 OAM으로부터 사용자 평면 혼잡 상태의 변화에 기초한 통지를 수신하고, 상기 NWDAF가 상기 통지에 기초하여 사용자 평면 혼잡 분석 통지를 NEF를 통해 V2X 애플리케이션 서버로 전송하는 것은, 각각 도 10의 단계 S1007 및 S1008 내지 S1009에 해당하는 것일 수 있다. 또한, 상기 NWDAF가, 상기 V2X 애플리케이션 서버로부터 혼잡 관련 분석 정보에 관련된 제1 서브스크라이브 요청(subscribe request)을 수신한 NEF로부터, 제2 서브스크라이브 요청을 수신하는 단계; 상기 NWDAF가, 상기 제1 서브스크라이브 요청에 기초하여, 상기 NWDAF가 임계값을 제공하면서 상기 OAM에 제3 서브스크라이브 요청을 전송하는 단계; 상기 NWDAF가, 상기 OAM으로부터 상기 제3 서브스크라이브 요청에 대한 응답을 수신하는 단계; 및 상기 NWDAF가, 상기 응답에 기초하여 도출된 사용자 평면 혼잡에 대한 분석을 상기 NEF를 통해 상기 V2X 애플리케이션 서버로 전송하는 단계는 각각 도 10의 S1003, S1004, S1005, S1006에 해당하는 것일 수 있다. 이에 기초하여, 도 10에 대해 설명한다.
단계 S1001에서, UE는 경로, 경로 시작 시간 및 QoS 요구 사항(예를 들어 5QI(s))에 대한 정보를 V2X 애플리케이션 서버에 제공한다.
단계 S1002 내지 S1009는 TS 23.288의 6.1.1 ’Analytics Subscribe / Unsubscribe' 섹션 6.12 ’User plane congestion analytics’ 섹션에 지정된 메커니즘과 절차를 기반으로 한다.
단계 S1002에서, V2X 애플리케이션 서버는 NEF를 통해 NWDAF로부터 분석 정보(analytic information)를 subscribes한다. 분석 유형은 사용자 평면 혼잡(user plane congestion)으로 설정되고 분석 대상은 위치로 설정된다. V2X 애플리케이션 서버는 통계 또는 예측 또는 양자 모두를 요청할 수 있다. 분석 유형의 경우, ‘user plane congestion’을 사용할 수도 있고 또는 새로운 유형을 정의해서 사용할 수도 있다.
상기 요청은 위치 정보를 포함한다. 요청된 위치는 V2X 애플리케이션 서버에 의해 지정/상세된 지리적 영역(geographical area)이며 셀 수준 (Cell ID(s)), TA level (TAI(s)) 또는 기타 형식(예 : 다각형, 원 등 또는 civic addresses (예 : streets, districts 등)) 일 수 있다.
요청된 위치는 경로에 따른 전체 영역 또는 경로에 따른 부분 영역을 커버할 수 있다. 최초 요청된 위치가 경로에 따른 부분 영역(예 : Location # 1)을 포함하는 경우, 요청된 위치가 최종 목적지를 포함할 때까지, V2X 애플리케이션 서버는 경로에 따른 다음 위치(예 : Location # 2)에 대한 NWDAF 분석 정보의 subscription을 수행하고, 이전 위치(예 : Location # 1)에 대한 NWDAF 분석 정보의 subscription 취소를 수행한다. 이전에 요청된 위치는 다음 요청된 위치와 겹칠 수 있으며, V2X 애플리케이션 서버는 예를 들어 UE 속도, 경로, V2X 응용 프로그램 등을 고려하여 적절한 시간에 다음 위치에 대한 NWDAF 분석 정보에 대한 subscription을 수행한다.
QoS 요구 사항 (예를 들어, 5QI(s), GFBR - UL & DL, MFBR - UL & DL)은 QoS의 잠재적 변화에 관한 사용자 평면 혼잡 통지에 사용될 임계값 정보로서 제공될 수있다.
상기 QoS requirements를 thresholds 정보로 제공하는 대신, QoS requirements와 thresholds 정보를 별도로 제공할 수도 있다. (예를 들어, QoS requirements에서의 UD/DL GFBR(Guaranteed Flow Bit Rate) = XX Mbps, UL/DL MFBR = YY Mbps이고 thresholds 정보에서의 UL/DL GFBR = AA Mbps, UL/DL MFBR = BB Mbps)
다수의 UE가 동시간에 동일한 path (즉, 동일한 출발지 및 목적지)로 이동함에 따라 이러한 UE들로부터 동일한 정보를 수신했다면 (단계 S1001), V2X 애플리케이션 서버는 이 UE들에 대해 하나의 subscription to analytic information to NWDAF을 수행할 수도 있다. 이 경우, potential change in QoS에 대해 notification을 받으면, 상기 UE들에게 이를 알려줄 수 있다.
상기 요청은 시작 시간을 포함할 수도 있다. NEF에 의해 분석 정보 가입(subscription)이 승인되면, NEF는 분석 트리거와 요청자 ID의 연관을 기록한다.
단계 S1003에서, NEF는 V2X 애플리케이션 서버의 요청에 따라, 분석 정보를 NWDAF로부터 subscribe한다. NWDAF 분석에 subscription시, NEF는 사업자 구성(operator configuration)에 따라 subscription 요청에 NWDAF에 대해 제한(예 : Nnwdaf_AnalyticsSubscription_Subscribe service operations으로부터의 파라미터 또는 파라미터 값에 대한 제한)을 적용할 수 있다. 필요한 경우 NEF는 V2X 애플리케이션 서버 제공 위치 정보를 3GPP 시스템에서 이해하는 형식 (예 : TA 목록, 셀 목록 등)으로 제공할 수 있다.
단계 S1004에서, NWDAF는 요청된 위치에 대한 사용자 평면 혼잡 상태를 얻기 위해, 혼잡 레벨 임계 값(congestion level thresholds)을 제공하며 OAM에 subscribe하고, OAM은 요청된 정보에 대한 첫 번째 보고를 응답으로써 제공한다.
단계 S1005에서, NWDAF는 요청된 분석을 도출하고 사용자 평면 혼잡에 대한 분석을 NEF에 제공한다.
단계 S1006에서, NEF는 V2X 애플리케이션 서버에 사용자 평면 혼잡에 대한 분석을 제공한다.
단계 S1007에서, NWDAF에 의해 설정된 임계값을 넘는 사용자 평면 혼잡 상태의 변화는 OAM에 의해 검출되고, NWDAF에 통지된다. 통지에는 QoS의 잠재적 변경이 발생할 수 있는 위치 및 시간이 포함된다. 여기서 OAM에 의해 검출된 사용자 평면 혼잡 정보의 변경은 이하의 도 11에 설명을 참조한다. 상기 notification은 어떤 QoS에 potential change가 예상되는지 항목이나 이유를 포함할 수도 있다.
단계 S1008에서, NWDAF는 새로운 분석을 도출하고 NEF에 대한 사용자 평면 혼잡에 대한 분석 알림을 제공한다. NWDAF는 OAM이 제공한 notification 정보에 기반하여 V2X 애플리케이션 서버로 전달될 notification 정보를 구성할 수도 있다.
단계 S1009에서, NEF는 V2X 애플리케이션 서버에 사용자 평면 혼잡 분석(analytics for the user plane congestion)의 통지를 제공한다. 필요한 경우, NEF는 QoS의 잠재적 변경이 일어날 수 있는 위치 정보를 고려한 NWDAF가 제공하는 위치 정보를, V2X 애플리케이션 서버에 의해 이해되는 형태 (예 : 다각형, 원 등 또는 civic addresses (예 : streets, districts 등))로 매핑한다.
단계 S1010에서, V2X 애플리케이션 조정은 QoS의 잠재적 변화에 대한 통지를 수신하면 UE 및/또는 V2X 애플리케이션 서버에서 일어날 수 있다.
상기 절차는 지속적인 보고와 관련되지만, 일회성 보고도 사용될 수 있다. V2X 애플리케이션 서버는 NWDAF와 직접 상호 작용을 수행할 수 있다 (예 : V2X 애플리케이션 서버가 신뢰할 수 있는 AF(Application Function) 인 경우)
V2X 애플리케이션 서버가 경로에 따른 다음 위치에 대한 NWDAF 분석 정보를 subscribe하고, 이전 위치에 대한 NWDAF 분석 정보를 가입 취소하는 절차는 도 11을 참조하여 설명한다. 도시된 바와 같이, 경로가 변경되고 업데이트된 경로가 UE로부터 제공될 때, V2X 애플리케이션 서버는 경로를 따라 업데이트된 위치에 대한 NWDAF 분석 정보에 subscription을 수행하고, 이전에 요청된 위치에 대한 NWDAF 분석 정보에 대해 unsubscription 할 수 있다.
단계 S1101에서, V2X 애플리케이션 서버는 NEF를 통해, 경로에 따른 다음 위치(예 : Location # 2)에 대해 NWDAF에 대한 사용자 평면 혼잡 분석을 subscribe한다. 이 단계는 도 10의 S1002-6 단계에 해당한다.
단계 S1102 내지 3에서, V2X 애플리케이션 서버는 NEF를 통해, 이전 위치 (예 : Location # 1)에 대해 NWDAF에 대한 사용자 평면 혼잡 분석을 unsubscribe한다.
단계 S1104에서, NWDAF는 이전 위치(예 : Location # 1)에 대해, OAM에 대한 사용자 평면 혼잡을 unsubscribe한다.
단계 S1105 내지 6에서, V2X 애플리케이션 서버가 응답을 수신한다
단계 S1107 내지 8에서, 요청된 위치가 최종 목적지를 포함 할 때까지, 경로에 따른 다음 위치에 대한 사용자 평면 정체 분석에 대한 Subscription 및 이전 위치에 대한 사용자 평면 정체 분석에 대한 unsubscription이 반복된다.
Continuous reporting에 subscription 시, 가입기간 (예, Observation period, duration, valid period 등)을 제공함으로써 V2X 애플리케이션 서버가 unsubscription을 별도로 하지 않도록 할 수도 있다.
QoS requirements 및/또는 thresholds information이 변경되는 경우 (예, UE로부터의 input, V2X 애플리케이션 서버의 변경결정 등으로 인해), V2X 애플리케이션 서버는 이를 이용하여 Subscription to NWDAF analytic information을 수행하고, 이전에 가입을 unsubscribe할 수도 있다.
새로운/변경된 location 또는 새로운/변경된 QoS requirements 및/또는 thresholds information (이들은 Analytic Filter로 해석될 수도 있음)에 대해 새롭게 subscription을 수행하고, 이전의 subscription을 해지하는 대신, 변경된 파라미터를 가지고 기존의 subscription을 업데이트할 수도 있다. 이를 위해 기존에 subscription을 refer/identify할 수 있는 식별정보 (예, Analytic ID)를 subscription 업데이트 요청에 제공할 수 있다.
도 10의 S1002에서 V2X 애플리케이션 서버는 다수의 Location을 포함하여 subscription 요청을 할 수도 있다. 다수의 Location은 path의 전체를 커버할 수도 있고, 일부만 커버할 수도 있다. 각 Location에 대해 observation 시작 시간과 종료 시간, 또는 observation 시작 시간과 유효기간을 포함할 수 있다. 예를 들어, 리스트 형태로써 아래와 같이 포함시킬 수 있다.
{Location ID=1, Location Information (이는 상기한 바와 같이 다양한 형태로 표현가능), observation 시작 시간과 종료 시간},
{Location ID=2, Location Information (이는 상기한 바와 같이 다양한 형태로 표현가능), observation 시작 시간과 종료 시간}
{Location ID=3, Location Information (이는 상기한 바와 같이 다양한 형태로 표현가능), observation 시작 시간과 종료 시간}
이로 인해, subscription 요청을 여러 번 할 필요가 없을 뿐만 아니라 subscription 해지를 하지 않아도 된다. 이처럼 다수의 Location 정보가 포함된 subscription 요청에 대해 NWDAF가 각 Location의 observation 시작 시간에 맞게 Location 별로 OAM으로 subscription 요청을 수행할 수도 있다. 이러한 동작은 NEF가 수행할 수도 있다. 추후 일부의 Location에 대해서만 요청 업데이트를 할 수도 있다. 이 경우, 업데이트하고자 하는 Location의 ID에 대해서 업데이트된 정보를 제공할 수 있다.
도 12는 NEF를 통해 수행된 V2X 애플리케이션 서버와 NWDAF 간의 상호 작용을 도시한다. V2X 애플리케이션 서버는 NWDAF와 직접 상호 작용을 수행 할 수 있다 (예를 들어, V2X 애플리케이션 서버가 신뢰할 수있는 AF 인 경우)
단계 S1201에서, UE는 경로, 경로 시작 시간 및 QoS 요구 사항 (예를 들어 5QI)에 관한 정보를 V2X 애플리케이션 서버에 제공한다.
단계 S1202 내지 6은 TS 23.288의 6.1.2 ‘분석 요청’ 및 6.12 '사용자 평면 혼잡 분석’에서 정의된 메커니즘과 절차를 기반으로 한다.
단계 S1202에서, V2X 애플리케이션 서버는 NEF를 통해 NWDAF로부터 분석 정보 수신을 요청한다. V2X 애플리케이션 서버가 request에 포함하는 정보는 도 10의 S1002 내용으ㄹ 참고한다. NEF가 분석 정보 요청을 승인하면 NEF는 분석 트리거와 요청자 ID의 연관을 기록한다.
단계 S1203에서, NEF는 V2X 애플리케이션 서버의 요청에 따라 Nnwdaf_AnalyticsInfo_Request를 NWDAF로 전송한다. 이는 도 10의 S1003 내용을 참고한다.
단계 S1204에서, 요청이 승인되면, 요청된 분석을 제공하기 위해 NWDAF는 요청된 위치에 대한 사용자 평면 혼잡 상태를 OAM에 요청할 수 있으며, OAM은 요청된 정보를 제공한다. NWDAF에 요청된 위치의 사용자 평면 혼잡 상태에 대한 정보가 이미 있으면 이 단계는 생략된다.
단계 S1205에서, NWDAF는 요청된 분석을 도출하고 NEF에 사용자 평면 혼잡에 대한 분석을 제공한다. 이는 도 10의 S1008 내용을 참고한다.
단계 S1206에서, NWDAF는 사용자 평면 혼잡에 대한 분석을 V2X 애플리케이션 서버에 제공한다. 이는 도 10의 S1009 내용을 참고한다.
단계 S1207 내지 8에서, V2X 애플리케이션 서버가 단계 S1202에서 요청한 location이 path를 일부만 커버하는 경우, V2X 애플리케이션 서버는 다음 location에 대해 지속적으로 analytic information request를 수행해야 한다. 이는 UE speed, the path, V2X application 등을 고려하여 적절한 시간에 수행되어야 한다. 그 결과 V2X 애플리케이션 서버가 제공받은 potential change in QoS에 대한 정보는 Application Adjustment를 assist할 수 있다. 이러한 analytic information request는 requested location이 final destination을 cover할 때까지 수행될 수 있다.
단계 S1209에서, V2X 애플리케이션 조정은 QoS의 잠재적 변화에 대한 통지를 수신하면 UE 및 / 또는 V2X 애플리케이션 서버에서 일어날 수 있다.
상기 S1202에서 V2X 애플리케이션 서버는 다수의 Location을 포함하여 요청을 할 수도 있다. 다수의 Location은 path의 전체를 커버할 수도 있고, 일부만 커버할 수도 있다. 각 Location에 대해 observation 시작 시간을 포함할 수 있다. 예를 들어, 리스트 형태로써 아래와 같이 포함시킬 수 있다.
{Location ID=1, Location Information (이는 상기한 바와 같이 다양한 형태로 표현가능), observation 시작 시간},
{Location ID=2, Location Information (이는 상기한 바와 같이 다양한 형태로 표현가능), observation 시작 시간}
{Location ID=3, Location Information (이는 상기한 바와 같이 다양한 형태로 표현가능), observation 시작 시간}
이로 인해, 요청을 여러 번 할 필요가 없게 된다. 이처럼 다수의 Location 정보가 포함된 요청에 대해 NWDAF가 각 Location의 observation 시작 시간에 맞게 Location 별로 OAM으로 subscription 요청을 수행할 수도 있다. 이러한 동작은 NEF가 수행할 수도 있다. 추후 일부의 Location에 대해서만 요청 업데이트를 할 수도 있다. 이 경우, 업데이트하고자 하는 Location의 ID에 대해서 업데이트된 정보를 제공할 수 있다.
본 발명이 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 13은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 13을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
본 발명이 적용되는 무선 기기 예
도 14은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 14을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 13의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 발명이 적용되는 신호 처리 회로 예
도 15는 전송 신호를 위한 신호 처리 회로를 예시한다.
도 15를 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 15의 동작/기능은 도 14의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 15의 하드웨어 요소는 도 14의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 14의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 14의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 14의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 15의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 15의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 14의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
본 발명이 적용되는 무선 기기 활용 예
도 16은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 13 참조).
도 16을 참조하면, 무선 기기(100, 200)는 도 14의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 14의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 14의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 13, 100a), 차량(도 13, 100b-1, 100b-2), XR 기기(도 13, 100c), 휴대 기기(도 13, 100d), 가전(도 13, 100e), IoT 기기(도 13, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 13, 400), 기지국(도 13, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 16에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 16의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
본 발명이 적용되는 휴대기기 예
도 17는 본 발명에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 17를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 16의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
본 발명이 적용되는 차량 또는 자율 주행 차량 예
도 18는 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 18를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 16의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
본 발명이 적용되는 AR/VR 및 차량 예
도 19은 본 발명에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.
도 19을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다. 여기서, 블록 110~130/140a~140b는 각각 도 16의 블록 110~130/140에 대응한다.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다.
본 발명이 적용되는 XR 기기 예
도 20은 본 발명에 적용되는 XR 기기를 예시한다. XR 기기는 HMD, 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등으로 구현될 수 있다.
도 20을 참조하면, XR 기기(100a)는 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 전원공급부(140c)를 포함할 수 있다. 여기서, 블록 110~130/140a~140c은 각각 도 16의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 휴대 기기, 또는 미디어 서버 등의 외부 기기들과 신호(예, 미디어 데이터, 제어 신호 등)를 송수신할 수 있다. 미디어 데이터는 영상, 이미지, 소리 등을 포함할 수 있다. 제어부(120)는 XR 기기(100a)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성 및 처리 등의 절차를 제어 및/또는 수행하도록 구성될 수 있다. 메모리부(130)는 XR 기기(100a)의 구동/XR 오브젝트의 생성에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 외부로부터 제어 정보, 데이터 등을 획득하며, 생성된 XR 오브젝트를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 XR 기기 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다. 전원공급부(140c)는 XR 기기(100a)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다.
일 예로, XR 기기(100a)의 메모리부(130)는 XR 오브젝트(예, AR/VR/MR 오브젝트)의 생성에 필요한 정보(예, 데이터 등)를 포함할 수 있다. 입출력부(140a)는 사용자로부터 XR 기기(100a)를 조작하는 명령을 회득할 수 있으며, 제어부(120)는 사용자의 구동 명령에 따라 XR 기기(100a)를 구동시킬 수 있다. 예를 들어, 사용자가 XR 기기(100a)를 통해 영화, 뉴스 등을 시청하려고 하는 경우, 제어부(120)는 통신부(130)를 통해 컨텐츠 요청 정보를 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버에 전송할 수 있다. 통신부(130)는 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버로부터 영화, 뉴스 등의 컨텐츠를 메모리부(130)로 다운로드/스트리밍 받을 수 있다. 제어부(120)는 컨텐츠에 대해 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성/처리 등의 절차를 제어 및/또는 수행하며, 입출력부(140a)/센서부(140b)를 통해 획득한 주변 공간 또는 현실 오브젝트에 대한 정보에 기반하여 XR 오브젝트를 생성/출력할 수 있다.
또한, XR 기기(100a)는 통신부(110)를 통해 휴대 기기(100b)와 무선으로 연결되며, XR 기기(100a)의 동작은 휴대 기기(100b)에 의해 제어될 수 있다. 예를 들어, 휴대 기기(100b)는 XR 기기(100a)에 대한 콘트롤러로 동작할 수 있다. 이를 위해, XR 기기(100a)는 휴대 기기(100b)의 3차원 위치 정보를 획득한 뒤, 휴대 기기(100b)에 대응하는 XR 개체를 생성하여 출력할 수 있다.
본 발명이 적용되는 로봇 예
도 21은 본 발명에 적용되는 로봇을 예시한다. 로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류될 수 있다.
도 21을 참조하면, 로봇(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 구동부(140c)를 포함할 수 있다. 여기서, 블록 110~130/140a~140c은 각각 도 16의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 다른 로봇, 또는 제어 서버 등의 외부 기기들과 신호(예, 구동 정보, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 로봇(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 로봇(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 로봇(100)의 외부로부터 정보를 획득하며, 로봇(100)의 외부로 정보를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 로봇(100)의 내부 정보, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 레이더 등을 포함할 수 있다. 구동부(140c)는 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 구동부(140c)는 로봇(100)을 지상에서 주행하거나 공중에서 비행하게 할 수 있다. 구동부(140c)는 액츄에이터, 모터, 바퀴, 브레이크, 프로펠러 등을 포함할 수 있다.
본 발명이 적용되는 AI 기기 예
도 22는 본 발명에 적용되는 AI 기기를 예시한다. AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 22를 참조하면, AI 기기(100)는 통신부(110), 제어부(120), 메모리부(130), 입/출력부(140a/140b), 러닝 프로세서부(140c) 및 센서부(140d)를 포함할 수 있다. 블록 110~130/140a~140d는 각각 도 16의 블록 110~130/140에 대응한다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 13, 100x, 200, 400)나 AI 서버(예, 도 13의 400) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(110)는 메모리부(130) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(130)로 전달할 수 있다.
제어부(120)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(120)는 AI 기기(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 러닝 프로세서부(140c) 또는 메모리부(130)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(100)의 구성 요소들을 제어할 수 있다. 또한, 제어부(120)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(130) 또는 러닝 프로세서부(140c)에 저장하거나, AI 서버(도 13, 400) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
메모리부(130)는 AI 기기(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(130)는 입력부(140a)로부터 얻은 데이터, 통신부(110)로부터 얻은 데이터, 러닝 프로세서부(140c)의 출력 데이터, 및 센싱부(140)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(130)는 제어부(120)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.
입력부(140a)는 AI 기기(100)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(140a)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(140a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(140b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(140b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(140)는 다양한 센서들을 이용하여 AI 기기(100)의 내부 정보, AI 기기(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(140)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.
러닝 프로세서부(140c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(140c)는 AI 서버(도 13, 400)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(140c)는 통신부(110)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(130)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(140c)의 출력 값은 통신부(110)를 통해 외부 기기로 전송되거나/되고, 메모리부(130)에 저장될 수 있다.
상술한 바와 같은 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (13)

  1. 무선통신시스템에서 Network Data Analytics Function (NWDAF)의 신호 송수신 방법에 있어서,
    NWDAF가 Operations and Maintenance (OAM)으로부터 사용자 평면 혼잡 상태(user plane congestion status)의 변화에 기초한 통지(notification)를 수신하는 단계; 및
    상기 NWDAF가 상기 통지에 기초하여 사용자 평면 혼잡 분석 (analytics for the user plane congestion) 통지를 Network Exposure Function (NEF)를 통해 V2X 애플리케이션 서버로 전송하는 단계;
    를 포함하며,
    상기 사용자 평면 혼잡 상태의 변화는 QNC 통지가 전송되었는지 여부를 포함하는 하나 이상의 정보에 기초하여 결정되며,
    상기 QNC 통지가 전송되었는지 여부는, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 증가하고, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 감소되는 카운터 값에 기초하여 결정된 것인, 방법.
  2. 제1항에 있어서,
    상기 사용자 평면 혼잡 분석 통지는, QoS의 잠재적 변경이 발생할 수 있는 위치 및 시간을 포함하는, 방법.
  3. 제1항에 있어서,
    상기 방법은,
    상기 NWDAF가, 상기 V2X 애플리케이션 서버로부터 혼잡 관련 분석 정보에 관련된 제1 서브스크라이브 요청(subscribe request)을 수신한 NEF로부터, 제2 서브스크라이브 요청을 수신하는 단계;
    상기 NWDAF가, 상기 제1 서브스크라이브 요청에 기초하여, 상기 NWDAF가 임계값을 제공하면서 상기 OAM에 제3 서브스크라이브 요청을 전송하는 단계;
    상기 NWDAF가, 상기 OAM으로부터 상기 제3 서브스크라이브 요청에 대한 응답을 수신하는 단계; 및
    상기 NWDAF가, 상기 응답에 기초하여 도출된 사용자 평면 혼잡에 대한 분석을 상기 NEF를 통해 상기 V2X 애플리케이션 서버로 전송하는 단계;
    를 더 포함하는, 방법.
  4. 제3항에 있어서,
    상기 제1 서브스크라이브 요청은, 복수의 위치(location)에 대한 서브스크립션 요청을 포함하는, 방법.
  5. 제4항에 있어서,
    상기 복수의 위치에 대한 서브스크립션 요청은, 복수의 위치 각각에 대한관측 시작 시간 및 종료시간을 포함하는, 방법.
  6. 제4항에 있어서,
    상기 복수의 위치 각각은, V2X 애플리케이션 서버에 의해 지정/상세된 지리적 영역(geographical area)인, 방법.
  7. 제6항에 있어서,
    상기 지리적 영역은, Cell ID(s)), TAI(s), 다각형, 원, 주소 중 하나의 정보인, 방법.
  8. 제3항에 있어서,
    상기 제1 서브스크라이브 요청은, 위치에 대한 서브스크립션 요청을 포함하는, 방법.
  9. 제8항에 있어서,
    상기 위치가 경로의 일부인 경우, 상기 V2X 애플리케이션 서버는 경로상 상기 위치의 다음 위치에 대한 서브스크립션 수행 후, 상기 위치에 대한 서브스크립션을 취소하는, 방법.
  10. 제3항에 있어서,
    상기 임계값은 상기 하나 이상의 정보에 포함되는, 방법.
  11. 제10항에 있어서,
    상기 임계값은 5QI(s), GFBR - UL & DL, MFBR - UL & DL 중 하나 이상인, 방법.
  12. 제3항에 있어서,
    상기 NEF는 상기 QoS의 잠재적 변경이 발생할 수 있는 위치를 다각형, 원, 주소 중 하나의 정보로 변환하는, 방법.
  13. 무선통신시스템에서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며,
    상기 동작들은, NWDAF가 Operations and Maintenance (OAM)으로부터 사용자 평면 혼잡 상태(user plane congestion status)의 변화에 기초한 통지(notification)를 수신하는 단계; 및
    상기 NWDAF가 상기 통지에 기초하여 사용자 평면 혼잡 분석(analytics for the user plane congestion) 통지를 Network Exposure Function (NEF)를 통해 V2X 애플리케이션 서버로 전송하는 단계;
    를 포함하며,
    상기 사용자 평면 혼잡 상태의 변화는 QNC 통지가 전송되었는지 여부를포함하는 하나 이상의 정보에 기초하여 결정되며,
    상기 QNC 통지가 전송되었는지 여부는, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 증가하고, NG-RAN이 GFBR cannot be fulfilled/guaranteed를 SMF에 전송하면 감소되는 카운터 값에 기초하여 결정된 것인, 장치.
PCT/KR2020/001787 2019-02-08 2020-02-07 무선 통신 시스템에서 nwdaf의 신호 송수신 방법 및 이를 위한 장치. WO2020162720A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/310,509 US11917451B2 (en) 2019-02-08 2020-02-07 Method by which NWDAF transmits and receives signal in wireless communication system, and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0015169 2019-02-08
KR20190015169 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162720A1 true WO2020162720A1 (ko) 2020-08-13

Family

ID=71948352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001787 WO2020162720A1 (ko) 2019-02-08 2020-02-07 무선 통신 시스템에서 nwdaf의 신호 송수신 방법 및 이를 위한 장치.

Country Status (2)

Country Link
US (1) US11917451B2 (ko)
WO (1) WO2020162720A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4340416A4 (en) * 2021-05-14 2024-07-10 Guangdong Oppo Mobile Telecommunications Corp Ltd METHOD FOR SENDING AND METHOD FOR RECEIVING EARLY WARNING INFORMATION, APPARATUS, APPARATUS, DEVICE AND MEDIUM

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11470017B2 (en) * 2019-07-30 2022-10-11 At&T Intellectual Property I, L.P. Immersive reality component management via a reduced competition core network component
CN110621032B (zh) * 2019-09-27 2021-06-15 腾讯科技(深圳)有限公司 一种通信的方法、相关装置及设备
CN116546454A (zh) * 2020-04-24 2023-08-04 腾讯科技(深圳)有限公司 网络辅助信息提供方法及相关设备
KR20220057963A (ko) * 2020-10-30 2022-05-09 에스케이텔레콤 주식회사 데이터처리 노드장치 및 그 장치에서 수행되는 정보 전달 방법
EP4017034A1 (en) * 2020-12-21 2022-06-22 Deutsche Telekom AG 5g positioning slam tags
WO2023161733A1 (en) * 2022-02-23 2023-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Congestion aware traffic optimization in communication networks
WO2023172094A1 (ko) * 2022-03-10 2023-09-14 엘지전자 주식회사 분석 정보와 관련된 통신
CN116866981A (zh) * 2022-03-28 2023-10-10 华为技术有限公司 通信方法和装置
KR20230155287A (ko) * 2022-05-03 2023-11-10 삼성전자주식회사 무선 통신 시스템에서 네트워크 혼잡 정보에 기반하여 머신 러닝 모델을 결정하기 위한 방법 및 장치
US20230362807A1 (en) * 2022-05-09 2023-11-09 Radisys Corporation Data driven energy efficiency in open radio access network (o-ran) systems
CN115633390B (zh) * 2022-10-27 2023-08-29 广州爱浦路网络技术有限公司 基于iab基站的移动网络接入调控方法及系统
CN116233966B (zh) * 2023-02-13 2023-10-03 广州爱浦路网络技术有限公司 应急通讯场景下5gc用户接入系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180220327A1 (en) * 2013-01-11 2018-08-02 Interdigital Patent Holdings, Inc. User-plane congestion management

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432633B1 (en) * 2017-07-20 2019-10-02 ASUSTek Computer Inc. Method and apparatus for servicing qos (quality of service) flow in a wireless communication system
US10743211B2 (en) * 2018-09-25 2020-08-11 Verizon Patent And Licensing, Inc. Diversified ran architecture with congestion control based on spectrum re-allocation
US11678252B2 (en) * 2018-10-05 2023-06-13 Huawei Technologies Co., Ltd. Quality of service information notification to user equipment, users, and application server
CN117614852A (zh) * 2018-10-05 2024-02-27 华为技术有限公司 用于管理与多个网络切片相关的服务的设备和方法
US20210352535A1 (en) * 2018-10-08 2021-11-11 Telefonaktiebolaget Lm Ericsson (Publ) Notification control in a communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180220327A1 (en) * 2013-01-11 2018-08-02 Interdigital Patent Holdings, Inc. User-plane congestion management

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSG SA; Policy and Charging Control Framework for the 5G System; Stage 2 (Release 15), V15.4.0", 3GPP TS 23.503, 18 December 2018 (2018-12-18), XP051591143 *
HUAWEI: "Consistent usage of Policy Control Request Trigger GFBR of QoS Flow cannot be guaranteed", S 2-1810523 , 3GPP TSG-SA WG2 MEETING #129, 9 October 2018 (2018-10-09), Dongguan, China, XP051539499 *
NOKIA: "NWDAF procedures for user plane congestion analytics", S 2-1900656 , 3GPP TSG-SA WG2 MEETING #130, 15 January 2019 (2019-01-15), Kochi, XP051590324 *
QUALCOMM INCORPORATED: "QoS Notification Control during handover", S 2-1900172 , 3GPP TSG-SA WG2 MEETING #130 S 2-1900172, 15 January 2019 (2019-01-15), Kochi, India, XP051589861 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4340416A4 (en) * 2021-05-14 2024-07-10 Guangdong Oppo Mobile Telecommunications Corp Ltd METHOD FOR SENDING AND METHOD FOR RECEIVING EARLY WARNING INFORMATION, APPARATUS, APPARATUS, DEVICE AND MEDIUM

Also Published As

Publication number Publication date
US11917451B2 (en) 2024-02-27
US20220038946A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2020162720A1 (ko) 무선 통신 시스템에서 nwdaf의 신호 송수신 방법 및 이를 위한 장치.
WO2020141859A1 (ko) 무선 통신 시스템에서 pdb에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2021187913A1 (ko) 엣지 컴퓨팅과 관련된 통신
WO2020027639A1 (ko) 무선 통신 시스템에서 qos 만족 여부를 표시하는 이동 단말기
WO2019216641A1 (ko) 무선 통신 시스템에서 v2x 데이터를 전송하는 방법 및 이를 위한 장치
WO2020226401A1 (ko) 무선 통신 시스템에서 pfi에 관련된 단말의 동작 방법 및 이를 위한 장치
WO2021141408A1 (ko) 무선통신시스템에서 단말이 신호를 송수신하는 방법
WO2020226435A1 (ko) 무선 통신 시스템에서 qos에 관련된 동작 방법 및 이를 위한 장치
WO2021187829A1 (ko) 네트워크 슬라이스와 관련된 통신
WO2020251335A1 (ko) 무선 통신 시스템에서 단말의 신호 송수신 방법
WO2020251314A1 (ko) 무선 통신 시스템에서 rsu 간의 신호 송수신 방법
WO2021040344A1 (ko) 무선통신시스템에서 신호 송수신 방법
WO2023014157A1 (ko) 무선통신시스템에서 path switching 및 측정 보고에 관련된 리모트 ue의 동작 방법.
WO2021085909A1 (ko) 무선통신시스템에서 pc5 유니캐스트 링크 해제에 관련된 ue의 동작 방법
WO2021002726A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 송수신에 관련된 동작 방법 및 이를 위한 장치
WO2020139052A1 (ko) 무선 통신 시스템에서 qnc를 위한 송수신 방법 및 이를 위한 장치
WO2020162719A1 (ko) 무선 통신 시스템에서 qos 만족 여부를 표시하는 이동 단말기
WO2021158090A1 (en) Method and apparatus for inactivity handling in mobility in wireless communication system
WO2021020890A1 (ko) 무선통신시스템에서 bsr에 관련된 ue의 동작 방법 및 장치
WO2021040361A1 (ko) 무선통신시스템에서 단말의 신호 송수신 방법
WO2020130625A1 (ko) Nr v2x에서 bwp 기반의 통신을 수행하는 방법 및 장치
WO2023287259A1 (ko) 무선통신시스템에서 사이드링크 릴레이에서 핸드오버에 관련된 동작 방법
WO2022231379A1 (ko) 무선통신시스템에서 사이드링크에서 릴레이 ue의 동작 방법
WO2022035182A1 (ko) 무선통신시스템에서 센서 로우 데이터 공유와 피드백에 관련된 ue의 동작 방법.
WO2021002734A1 (ko) 무선통신시스템에서 신호 송수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752390

Country of ref document: EP

Kind code of ref document: A1