WO2020159338A1 - 레이저 디본딩 장치의 레이저 헤드 모듈 - Google Patents
레이저 디본딩 장치의 레이저 헤드 모듈 Download PDFInfo
- Publication number
- WO2020159338A1 WO2020159338A1 PCT/KR2020/001595 KR2020001595W WO2020159338A1 WO 2020159338 A1 WO2020159338 A1 WO 2020159338A1 KR 2020001595 W KR2020001595 W KR 2020001595W WO 2020159338 A1 WO2020159338 A1 WO 2020159338A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- head module
- clamp member
- housing
- blowing means
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/16—Removal of by-products, e.g. particles or vapours produced during treatment of a workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/142—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
- B23K26/1462—Nozzles; Features related to nozzles
- B23K26/1464—Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
- B23K26/147—Features outside the nozzle for feeding the fluid stream towards the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
Definitions
- the present invention relates to a laser debonding apparatus, and more particularly, to a laser head module of a laser debonding apparatus capable of removing an electronic component melted by soldering without contamination of the substrate by laser irradiation.
- Micro laser processing is an application field of micron ( ⁇ m) precision in industrial laser processing, and is widely used in the semiconductor industry, display industry, printed circuit board (PCB) industry, and smartphone industry.
- Memory chips used in all electronic devices have developed technologies to reduce circuit spacing to a minimum in order to realize integration, performance, and high-speed communication speeds, and currently achieve the required level of technology simply by reducing circuit line width and line width spacing. It was difficult to stack the memory chips vertically.
- the stacking technology of up to 128 layers has already been developed by TSMC, and the technology of stacking up to 72 layers is being applied to mass production by Samsung Electronics and SK Hynix.
- Fan-in Wafer-Level-Package (FIWLP)) and a signal layout redistribution layer under the ultra-fine BGA layer under the chip, and a second fine BGA layer underneath.
- the method (called Fan-Out BGA or Fan-Out Wafer-Level-Package (FOWLP) or Fan-Out Panel-Level-Package) is being applied.
- EMC epoxy-Mold Compound
- mass reflow such as the conventional surface mount technology (SMT) standard process, Thermal Reflow Oven technology
- SMT surface mount technology
- Thermal Reflow Oven technology When applying the MR) process, the semiconductor chip is exposed to an air temperature environment of 100 to 300 degrees (°C) for hundreds of seconds, so the chip-border warpage, PCB due to the difference in coefficient of thermal expansion (CTE) -Poor adhesion of various types of soldering bonding such as PCB-Boundary Warpage and Random-Bonding Failure by Thermal Shock may occur.
- CTE coefficient of thermal expansion
- the conventional debonding technology by laser beam irradiation has the advantage of being non-contact, and since the method in which the laser light is directly absorbed by the semiconductor chip is the primary heat absorption mechanism, there is no advantage of thermal shock due to a difference in the coefficient of thermal expansion, and it is very local. Since it performs only the necessary time for phosphorus heating, it has various advantages such as low power consumption, minimized total heat input, minimized thermal shock, and minimized process time.
- the laser head module of a conventionally known laser bonding device is a method of irradiating and bonding a laser while pressing a bonding object (semiconductor chip or integrated circuit IC) for several seconds, corresponding to the size of a semiconductor chip or integrated circuit (IC) Bonding is performed by irradiating a laser in the form of a surface light source.
- a bonding object semiconductor chip or integrated circuit IC
- the surface light source laser is irradiated to the semiconductor chip while adsorbing the semiconductor chip by vacuum.
- the adsorption module and the pressure head configuration including the same are described.
- the laser head module of the conventional pressurization method as described above is a pressurizing head and a laser irradiation unit are manufactured and driven as a single module, and thus, when bonding a plurality of semiconductor chips such as a semiconductor strip, while pressing one semiconductor chip, a surface light source form It is necessary to repeatedly perform the operation of irradiating the laser of the plurality of semiconductor chips.
- This not only increases the overall working time for bonding a plurality of semiconductor chips, but also increases the price of the entire equipment as the heating head is additionally mounted.
- the laser head module by laser beam irradiation is applied to the debonding device instead of the above-described pressurizing head method
- the electronic parts separated by the laser are manually removed by a worker using a tool or a separate ejector device. Since it is removed by using, there is a problem that the substrate is contaminated by the heated and molten solder liquid, and there is a risk that a worker may be injured in a high temperature of the laser head module.
- the present invention was invented to solve the above problems, and the present invention allows the electronic components melted by laser irradiation to be removed immediately on the spot without contamination of the substrate by air blowing and suction. It is an object to provide a laser head module of the laser debonding device.
- the laser debonding apparatus for debonding the electronic component from the substrate by selectively melting the soldering of at least one electronic component disposed on the substrate, the annular housing;
- An optical lens module provided in the housing to enlarge or reduce a beam generated from a laser oscillator;
- a fixing bracket coupled to the outer circumferential surface of the housing;
- a clamp member coupled to the outer circumferential surface of the housing;
- Blowing means provided on one side of the clamp member for ejecting air toward the electronic component of the substrate; It is provided on the other side of the clamp member facing the blowing means comprises a suction means for sucking the electronic component separated from the substrate by the blowing means.
- a beam shaper for selectively converting the shape of the beam generated from the laser oscillator and transmitting it to the optical lens module is further provided in the housing.
- the beam shaper converts a circular laser beam generated from a laser oscillator into a square beam.
- blowing means a fixed plate fixedly coupled to the clamp member; A support frame hinged to one end of the fixing plate; And an air nozzle coupled to the support frame to inject air supplied from the compressor.
- the suction means a fixed plate fixedly coupled to the clamp member; A support frame hinged to one end of the fixing plate; And a funnel member coupled to the support frame to suck electronic components by the suction force of the compressor.
- the clamp member is integrally formed to have a conical shape that gradually becomes narrower toward the bottom of the fixing bracket, and the air flow paths constituting the blowing means and the suction means on the left and right sides of the body around the hollow are respectively inclined downwardly. .
- opposite ends of the air flow paths constituting the blowing means and the suction means are formed to have nozzle shapes and funnel shapes, respectively.
- a part of the suction path of the suction means is further provided with an electronic part collection container.
- air injection by the blowing means and air suction by the suction means are simultaneously performed by one compressor.
- the housing, the optical lens module, the fixed bracket is provided with a plurality of each, and the laser beam irradiated from each of the optical lens modules is irradiated at least partially overlapped in a certain area of the substrate, and the clamp member, the blower
- the means and the suction means are provided in any one of the plurality of housings.
- the present invention is to form a dual square beam to irradiate the soldering of the electronic components, so compared to the case of irradiating a single round beam in a conventional laser debonding device, a temperature deviation of 10 to 20 degrees Since it can be improved, it has an effect of preventing problems such as burning or melting of FPCB, which is a thin flexible substrate, during thermal debonding.
- FIG. 1 is a conceptual diagram of a single beam module of a laser debonding apparatus according to an embodiment of the present invention
- FIG. 2 is an image of an FPCB substrate to which a single laser beam is irradiated by a debonding device according to an embodiment of the present invention
- FIG. 3 is a conceptual diagram of a configuration of a laser debonding device according to an embodiment of the present invention
- FIG. 4 is a conceptual diagram of a configuration of a laser optical system according to an embodiment of the present invention
- FIG. 5 is an external perspective view of a laser head module according to an embodiment of the present invention
- FIG. 6 is a partial cross-sectional view of a laser head module according to another embodiment of the present invention.
- FIG. 1 is a conceptual diagram of a single beam module of a laser debonding apparatus according to an embodiment of the present invention
- FIG. 2 is an FPCB to which a single laser beam is irradiated by a debonding apparatus according to an embodiment of the present invention This is the image of the substrate.
- the laser debonding apparatus of the present invention includes a single laser module 310 according to an embodiment, thereby irradiating a single laser beam onto an FPCB substrate. 2, the laser beam irradiated by the first laser module 310 is irradiated on the substrate in a state of being deformed into a square beam shape.
- the laser beam irradiated by the laser module 310 selectively heats the temperature of the soldering defective portion to a debonding temperature at which melting of the soldering occurs, the electronic component becomes removable from the substrate, and then an ejector of a certain type By means of the devices (see FIGS. 5 and 6), the defective electronic component in which the soldering is melted is sucked and removed from the substrate.
- FIG. 3 is a conceptual diagram of a configuration of a laser debonding device according to an embodiment of the present invention.
- the laser module 310 of the laser irradiation unit includes a laser oscillator 311, a beam shaper 312, an optical lens module 313, a driving device 314, and a control device each having a cooling device 316. It comprises a 315 and the power supply 317.
- the laser oscillator 311 generates a laser beam having a predetermined range of wavelengths and output power.
- the laser oscillator is, for example, a diode laser (LD) having a wavelength of '750 nm to 1200 nm' or '1400 nm to 1600 nm' or '1800 nm to 2200 nm' or '2500 nm to 3200 nm' or a rare earth medium fiber laser (Rare-Earth- It may be a Doped Fiber Laser) or a Rare-Earth-Doped Crystal Laser, or alternatively, a medium for emitting Alexandrite laser light having a wavelength of 755 nm, or an Endiyag (Nd) having a wavelength of 1064 nm or 1320 nm. :YAG) It may be embodied by including a medium for emitting laser light.
- LD diode laser
- Nd Endiyag
- the beam shaper 312 converts a spot-shaped laser generated by the laser oscillator 311 and transmitted through an optical fiber into an area beam having a flat top.
- the beam shaper 312 may be implemented by including a square light pipe, a diffractive optical element (DOE), or a micro-lens array (MLA).
- DOE diffractive optical element
- MLA micro-lens array
- the optical lens module 313 adjusts the shape and size of the laser beam converted from the beam shaper to the surface light source so as to irradiate the electronic component mounted on the PCB substrate or the irradiation area.
- the optical lens module constitutes an optical system through a combination of a plurality of lenses.
- the driving device 314 moves the distance and position of the laser module with respect to the irradiation surface, and the control device 315 controls the driving device 314 to form a beam shape and a beam area when the laser beam reaches the irradiation surface. Adjust the beam sharpness and beam irradiation angle.
- the control device 315 may also integrally control the operation of each part of the laser module 310 in addition to the driving device 314.
- the laser output adjustment unit 370 controls the amount of power supplied from the power supply unit 317 corresponding to the laser module 310 to the laser module 310 according to a program received through a user interface or a preset program.
- the laser output adjustment unit 370 receives the parts, regions, or the entire debonding status information on the irradiation surface from one or more camera modules 350 to control the power supply unit 317 based on the received information.
- control information from the laser output adjustment unit 370 is transmitted to the control unit 315 of the laser module 310, and a feedback signal for controlling the corresponding power supply unit 317 in the control unit 315, respectively. It is also possible to provide.
- a plurality of material layers included in the electronic component are well absorbed by the laser irradiation unit. It may be composed of individual laser modules having a wavelength.
- the laser debonding apparatus selectively increases the temperature of the electronic component and the temperature of the intermediate bonding material such as solder, which is a connection material between the printed circuit board or the electronic component electrode, to optimize the bonding (Attaching or Bonding) or separation (Detaching or Debonding) process can be performed.
- the intermediate bonding material such as solder
- all the energy of each laser beam is absorbed in the solder layer by transmitting both the EMC mold layer and the silicon layer of the electronic component, or the laser beam does not penetrate the EMC mold layer and heats the surface of the electronic component to lower the electronic component. It is also possible to conduct heat to the bonding portion of the.
- FIG. 4 is a configuration conceptual diagram of a laser optical system according to an embodiment of the present invention.
- the beam shaper ( 430) converts the spot-shaped laser beam into a flat-top type surface light source A1, and the square laser beam A1 output from the beam shaper 430 is desired through the concave lens 440. It is irradiated to the image forming surface S with an enlarged surface light source A2 enlarged in size.
- the laser head module 600 of the present invention is described below in some configurations except for the laser oscillator 311, the cooling device 316, and the driving device 314 in the above-described laser module.
- FIG 5 is an external perspective view of a laser head module according to an embodiment of the present invention.
- the laser head module 600 is first provided with an annular housing 610, and a laser beam generated from a laser oscillator 311 is disposed inside the housing 610 at the top of the housing 610.
- the beam transmission optical fiber 410 is connected so that it can be transmitted.
- a beam shaper 430 for converting the round beam generated from the laser oscillator 311 into a square beam is provided in the housing 610, and the beam shaper 430 is used to irradiate a square beam through the beam shaper.
- An optical lens module 313 or the like that is enlarged or reduced to fit is disposed.
- the present invention is characterized in that, when the soldering of the electronic component is melted by the laser beam irradiated from the laser head module 600, the configuration of the ejector device for removing it is integrally added.
- the present invention is a fixed bracket 650 for fixing the housing to the outer circumferential surface of the housing 610 and the clamp member 620 is coupled to the lower portion of the fixed bracket, as shown in Figure 5, the clamp member ( On the left side of the 620, a blowing means for ejecting air toward the electronic components of the substrate is mounted, and on the right side of the clamp member 620, suction means for sucking the electronic components separated from the substrate by the blowing means. It is configurable by being mounted.
- the blowing means more specifically, a fixed plate 631 is fixedly coupled to the clamp member 620, and a support frame 632 is hinged to one end of the fixed plate 631 so that, if an operator needs it, It is configured to be able to adjust the angle arbitrarily.
- an air nozzle 633 is coupled to the support frame 632 by, for example, a screw fastening method, so that air supplied from an external compressor (not shown) can be injected toward the electronic component of the substrate. do.
- the suction means has a configuration similar to the blowing means, for example, the fixing plate 641 is coupled to the clamp member 620 by a screw fastening method, the support frame 642 at one end of the fixing plate 641 The hinge is coupled, and a funnel member 643 for sucking electronic components by the suction force of an external compressor (not shown) is mounted on the support frame 642.
- the air injection by the blowing means and the air suction by the suction means can be driven by separate compressors, respectively, but for the compact device configuration, the same one compressor (not shown) is used for blowing. It is desirable to design the means and the suction means to be driven simultaneously.
- FIG. 6 is a partial cross-sectional view of a laser head module according to another embodiment of the present invention.
- blowing means and the suction means are not mounted outside the clamp member, but the air passages constituting the blowing means and the suction means are inside the body of the clamp member. It is possible to configure even if the intaglio is formed integrally with each.
- the clamp member 621 is integrally formed to have a conical shape that becomes narrower as it goes down to the lower end of the fixing bracket 650 attached to the outer circumferential surface of the housing.
- a hollow 621a is formed in the center portion of the clamp body, so that the laser beam irradiated from the laser oscillator 311 passes through the beam shaper 312 inside the housing and the optical lens module 313 to form the hollow 621a. It is understandable that it is irradiated to the substrate through ).
- air flow paths 621b and 621c constituting the blowing means and the suction means are respectively inclined downwardly on the left and right sides of the body of the clamp member 621 around the hollow 621a.
- the opposite ends of the air flow paths constituting the blowing means and the suction means are formed to have nozzle shapes and a funnel shape, respectively, and air injected through the air flow paths 621 b of the blowing means is electronic After the component is separated from the substrate, it is sucked and removed through the air passage 621c of the suction means.
- the operator is configured to take out and recycle the electronic parts collected in the electronic parts collection container 700 from time to time.
- the laser head module according to the present invention can be configured as a dual beam laser debonding device having two laser modules, for example, rather than the single laser module of the above-described embodiment.
- the dual beam laser debonding device for example, two laser head modules each having a housing, an optical lens module, and a fixed bracket are provided, and then each laser head module is divided and arranged at regular intervals. This is possible. At this time, the laser beam irradiated from each of the optical lens modules provided in the two laser head modules is irradiated to partially overlap in a certain area of the substrate.
- the function for simultaneously adjusting the output and phase of each distributed laser beam is a laser output adjustment unit. It may be provided at 370. In this case, it is possible to significantly improve the beam flatness by controlling the phase to induce offset interference between the laser beams, and accordingly, the energy efficiency is further increased.
- the laser output adjustment unit 370 when implementing the multi-position simultaneous processing mode as described above, the laser output adjustment unit 370, the beam shape, beam area size, beam of each laser beam so that some or all of the laser beam from each laser head module is different Control one or more of sharpness, beam irradiation angle, and beam wavelength.
- a function for simultaneously adjusting the output and phase of each distributed laser beam may be provided in the laser output adjustment unit 370.
- an ejecting device may be configured only in one housing of the plurality of laser head modules. Can.
- an ejecting device may be configured only in one housing of the plurality of laser head modules. Can.
- the clamp member, the blowing means, and the suction means constituting the ejecting device are mounted on only one of the two laser head modules, it is possible to sufficiently perform the function of removing the debonded electronic components according to the blowing and precipitation. Yes, it is understandable.
- the present invention is not limited only by the above-described embodiment, and it is possible to create the same effect even when changing the detailed configuration, number, and arrangement structure of the device. It is stated that various configurations can be added, deleted, and modified within the scope of the technical idea of.
- laser head module 610 housing
- 621c suction Euro 631, 641: fixed plate
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
본 발명의 레이저 디본딩 장치의 레이저 헤드 모듈은, 기판 상에 배치된 적어도 하나 이상의 전자부품의 솔더링을 선택적으로 녹여 기판으로부터 전자부품을 디본딩하기 위한 레이저 디본딩 장치에 있어서, 환형의 하우징과; 상기 하우징 내에 구비되어 레이저 발진기로부터 생성된 빔을 확대 또는 축소하는 광학렌즈모듈과; 상기 하우징의 외주면에 결합되는 고정 브라켓과; 상기 하우징의 외주면에 결합되는 클램프 부재와; 상기 클램프 부재의 일측에 구비되어 기판의 전자부품을 향해 에어를 분사하는 블로웡 수단과; 상기 클램프 부재의 타측에 블로윙 수단과 마주보게 구비되어 블로윙 수단에 의해 기판으로부터 분리된 전자부품을 흡입하는 석션 수단을 포함하는 것을 특징으로 한다.
Description
본 발명은 레이저 디본딩 장치에 관한 것으로, 보다 상세하게는 레이저 조사에 의해 솔더링이 용융된 전자부품을 기판의 오염없이 제거할 수 있도록 된 레이저 디본딩 장치의 레이저 헤드 모듈에 관한 것이다.
산업용 레이저 가공에서 마이크론(㎛)급의 정밀도를 가지는 응용분야가 마이크로 레이저프로세싱인데, 반도체 산업, 디스플레이 산업, 인쇄회로기판(PCB) 산업, 스마트폰 산업 등에서 널리 사용되고 있다. 모든 전자기기에 사용되는 메모리칩은 집적도와 성능 및 초고속 통신속도를 구현하기 위해 회로간격을 최소한으로 축소시키는 기술이 발전하다가 현재는 회로선폭과 선폭간격을 축소시키는 것만으로는 요구되는 기술수준을 달성하기 어려워서 메모리칩들을 수직방향으로 적층하는 수준이 되었다. 이미 128층까지의 적층기술이 TSMC사에서 개발되었고, 72층까지 적층하는 기술을 삼성전자, SK하이닉스 등에서 대량생산에 적용하고 있다.
또한, 메모리칩, 마이크로프로세서칩, 그래픽프로세서칩, 무선프로세서칩, 센서프로세서칩 등을 1개의 패키지에 실장하려는 기술개발들이 치열하게 연구개발되고 있으며 상당한 수준의 기술들이 이미 실전적용되고 있다.
그러나 앞에서 언급한 기술의 개발과정에서, 초고속/초고용량 반도체칩 내부에서 더욱 더 많은 전자들이 신호처리프로세스에 참여해야 하므로 전력소비량이 커져서 발열에 대한 냉각처리 이슈가 제기되었다. 또한, 더욱 많은 신호들에 대한 초고속 신호처리 및 초고주파 신호처리라는 요구사항을 달성하기 위하여 대량의 전기신호들을 초고속으로 전달해야 한다는 기술이슈가 제기되었다. 또한, 신호선들이 많아져야 해서 반도체칩 외부로의 신호 인터페이스 선들을 더 이상 1차원적인 리드선방식으로는 처리하지 못하고 반도체칩 하부에서 2차원적으로 처리하는 볼그리드어레이(BGA) 방식(Fan-In BGA 또는 Fan-in Wafer-Level-Package(FIWLP)라고 함)과, 칩 하부의 초미세 BGA층 아래에 신호 배선 재배열층(Signal Layout Redistribution Layer)을 두고 그 하부에 2차 미세 BGA층을 설치하는 방식(Fan-Out BGA 또는 Fan-Out Wafer-Level-Package(FOWLP) 또는 Fan-Out Panel-Level-Package라고 함) 방식이 실적 적용되고 있다.
최근에는 반도체칩의 경우, EMC(Epoxy-Mold Compound)층을 포함하여 두께가 200㎛ 이하 제품이 등장하고 있다. 이와 같이 두께가 수백 마이크론에 불과한 마이크론급의 초경박형 반도체칩을 초경박형 PCB에 부착하기 위하여 기존의 표면실장기술(SMT) 표준공정인 써멀리플로우오븐(Thermal Reflow Oven) 기술과 같은 매스리플로우(MR) 공정을 적용하면 수백 초의 시간 동안 100∼300도(℃)의 공기온도환경 속에 반도체칩이 노출되므로 열팽창계수(CTE; Coefficient of ThermalExpansion) 차이 때문에 칩-테두리 휨(Chip-Boundary Warpage), PCB-테두리 휨(PCB-Boundary Warpage), 열충격형 랜덤본딩불량(Random-Bonding Failure by Thermal Shock) 등 다양한 형태의 솔더링 본딩 접착불량이 발생할 수 있다.
이에 따라 종래에는 상기한 원인을 포함하여 솔더링 공정 상에서 발생되는 다양한 형태의 전자부품의 솔더링 불량을 리웍하기 위해 국부적인 가열(Localized Heating) 기술이 개발되었는데, 그 중 최근에 가장 활발하게 연구되고 있는 분야가 레이저 빔 조사에 의한 솔더링 디본딩 기술이다.
종래 레이저 빔 조사에 의한 디본딩 기술은 비접촉식이라는 장점을 가지고 있고, 레이저광이 직접 반도체칩에 흡수되는 방법이 1차적인 열흡수메카니즘이므로 열팽창계수의 차이에 의한 열충격이 없다는 장점이 있으며, 매우 국부적인 가열을 꼭 필요한 시간만 수행하므로 저전력소비, 총 입열량 최소화, 열충격 최소화, 프로세스 시간 최소화 등 여러가지 장점들을 가지고 있다.
한편, 통상적으로 알려진 레이저 본딩 장치의 레이저 헤드 모듈은 본딩대상물(반도체 칩 또는 집적회로 IC)을 수 초 동안 눌러주면서 레이저를 조사하여 본딩하는 방식으로, 반도체 칩 또는 집적회로(IC) 사이즈에 대응하는 면 광원 형태의 레이저를 조사하여 본딩을 수행한다.
이러한 가압방식의 레이저 헤드 모듈에 대해서는 한국등록특허 제10-1245356호(이하, '선행문헌'이라 함)을 참조하면, 반도체 칩을 진공에 의해 흡착하면서 면 광원 형태의 레이저가 반도체 칩으로 조사되도록 하는 흡착모듈과 그를 포함하는 가압 헤드 구성이 기술되어 있다.
그러나, 상기와 같은 종래 가압방식의 레이저 헤드 모듈은 가압 헤드와 레이저 조사부가 하나의 모듈로 제작되어 구동되기 때문에 반도체 스트립과 같이 복수의 반도체 칩을 본딩하는 경우 하나의 반도체 칩을 가압하면서 면 광원 형태의 레이저를 조사하는 동작을 복수의 반도체 칩 개수만큼 반복적으로 수행해야 한다.
이로 인해 복수의 반도체 칩을 본딩하기 위한 전체 작업시간이 증가될 뿐만 아니라, 가열헤드를 추가 탑재함에 따라 전체 장비의 가격이 급격히 증가되는 문제점이 있었다.
한편 상술한 가압헤드 방식 대신에 레이저 빔 조사에 의한 레이저 헤드 모듈을 디본딩 장치에 적용하더라도, 현재로선 레이저에 의해 분리된 전자부품을 작업자가 공구를 이용하여 일일이 수작업으로 제거하거나 또는 별도의 이젝터 장치를 이용하여 제거하고 있어 가열 및 용융된 솔더액에 의해 기판이 오염되는 문제점이 있을 뿐만 아니라 레이저 헤드 모듈의 고열에 작업자가 안전사고를 입을 수 있는 위험도 상존하였다.
이에 본 발명은 상기와 같은 문제점을 해소할 수 있도록 발명된 것으로, 본 발명은 레이저 조사에 의해 솔더링이 용융된 전자부품을 에어 블로잉 및 석션 방식에 의해 기판의 오염없이 그 자리에서 즉시 제거할 수 있도록 된 레이저 디본딩 장치의 레이저 헤드 모듈을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명은, 기판 상에 배치된 적어도 하나 이상의 전자부품의 솔더링을 선택적으로 녹여 기판으로부터 전자부품을 디본딩하기 위한 레이저 디본딩 장치에 있어서, 환형의 하우징과; 상기 하우징 내에 구비되어 레이저 발진기로부터 생성된 빔을 확대 또는 축소하는 광학렌즈모듈과; 상기 하우징의 외주면에 결합되는 고정 브라켓과; 상기 하우징의 외주면에 결합되는 클램프 부재와; 상기 클램프 부재의 일측에 구비되어 기판의 전자부품을 향해 에어를 분사하는 블로웡 수단과; 상기 클램프 부재의 타측에 블로윙 수단과 마주보게 구비되어 블로윙 수단에 의해 기판으로부터 분리된 전자부품을 흡입하는 석션 수단을 포함하여 구성된다.
또한 상기 하우징 내에는 레이저 발진기로부터 생성된 빔의 형상을 선택적으로 변환한 후 광학렌즈모듈에 전달하는 빔 쉐이퍼가 더 구비된다.
또한 상기 빔 쉐이퍼는 레이저 발진기로부터 생성된 원형 레이저 빔을 스퀘어 형상의 빔으로 변환된다.
또한 상기 블로윙 수단은, 클램프 부재에 고정 결합되는 고정판; 상기 고정판의 일단에 힌지 결합되는 지지프레임; 및 상기 지지프레임에 결합되어 컴퓨레셔로부터 공급된 에어를 분사하는 에어 노즐을 포함한다.
또한 상기 석션 수단은, 클램프 부재에 고정 결합되는 고정판; 상기 고정판의 일단에 힌지 결합되는 지지프레임; 및 상기 지지프레임에 결합되어 컴퓨레셔의 흡입력에 의해 전자부품을 흡입하는 깔대기 부재를 포함한다.
또한 상기 클램프 부재는, 상기 고정 브라켓의 하단에 아래로 갈수록 점점 좁아지는 원추형상을 갖도록 일체로 형성되어 중공을 중심으로 몸체 내부 좌우측에 블로윙 수단과 석션 수단을 구성하는 에어 유로가 각각 하향 경사지게 음각된다.
또한 상기 블로윙 수단과 석션 수단을 구성하는 에어 유로의 마주보는 끝단부가 각각 노즐 형상과 깔대기 형상을 갖도록 형성된다.
또한 상기 석션 수단의 흡입경로 일부에는 전자부품 회수통이 더 연결 구비된다.
또한 상기 블로윙 수단에 의한 에어 분사와 석션 수단에 의한 에어 흡입은 하나의 컴퓨레셔에 의해 동시에 실행된다.
또한 상기 하우징, 광학렌즈모듈, 고정 브라켓은 각각 복수로 구비 및 분할 배치된 상태에서 상기 각 광학렌즈모듈로부터 조사된 레이저 빔은 기판의 일정 영역에서 적어도 일부가 중첩 조사되고, 상기 클램프 부재, 블로웡 수단 및 석션 수단은 상기 복수의 하우징 중에서 어느 하나에 구비된다.
상술한 바와 같은 본 발명은, 본 발명은 듀얼 스퀘어 빔을 형성하여 전자부품의 솔더링에 조사하기 때문에 종래 레이저 디본딩 장치에서 싱글 라운드 빔을 조사하는 경우와 대비하여 10~20도 수준의 온도 편차를 개선할 수 있으므로 디본딩 처리과정에서 얇은 연성기판인 FPCB가 열적 데미지에 의해 타거나 녹아버리는 등의 문제점을 방지할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 레이저 디본딩 장치의 싱글 빔 모듈의 개념도
도 2는 본 발명의 일 실시예에 따른 디본딩 장치에 의해 싱글 레이저 빔이 조사되는 FPCB 기판의 이미지
도 3은 본 발명의 일 실시예에 따른 레이저 디본딩 장치의 구성 개념도
도 4는 본 발명의 일 실시예에 따른 레이저 광학계의 구성 개념도
도 5는 본 발명의 일 실시예에 따른 레이저 헤드 모듈의 외관 사시도
도 6은 본 발명의 다른 실시예에 따른 레이저 헤드 모듈의 부분 단면도
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 내지 "구비하다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않아야 한다.
이하, 첨부된 도 1은 본 발명의 일 실시예에 따른 레이저 디본딩 장치의 싱글 빔 모듈의 개념도이고, 도 2는 본 발명의 일 실시예에 따른 디본딩 장치에 의해 싱글 레이저 빔이 조사되는 FPCB 기판의 이미지이다.
상기 도 1을 참조하면, 본 발명의 레이저 디본딩 장치는 일실시예에 따라 단일의 레이저 모듈(310)을 구비하며, 이에 따라 FPCB 기판 상에 싱글 레이저 빔을 조사하게 된다. 이 때 도 2를 참조하면 상기 제 1 레이저 모듈(310)에 의해 조사된 레이저 빔은 스퀘어 빔 형상으로 변형된 상태로 기판 상에서 조사된다.
즉, 상기 레이저 모듈(310)에 의해 조사된 레이저 빔이 솔더링 불량부의 온도를 솔더링의 용융이 일어나는 디본딩 온도까지 선택적으로 가열함에 따라 전자부품이 기판에서 제거 가능한 상태가 되고, 이어서 일정 형태의 이젝터 장치(도 5 및 도 6 참조)에 의해 상기 솔더링이 용융된 불량 전자부품을 기판으로부터 흡입 제거하게 되는 것이다.
이하, 첨부된 도 3 및 도 4를 참조하여 본 발명에 따른 듀얼 빔 구성 및 작동 관계를 일실시예에 따라 구체적으로 살펴보면 다음과 같다.
도 3은 본 발명의 일 실시예에 따른 레이저 디본딩 장치의 구성 개념도이다.
상기 도 3에서, 레이저 조사부의 레이저 모듈(310)은 각기 냉각장치(316)를 구비한 레이저 발진기(311), 빔 쉐이퍼(312), 광학렌즈모듈(313), 구동장치(314), 제어장치(315) 및 전원공급부(317)를 포함하여 구성된다.
상기 레이저 발진기(311)는 소정 범위의 파장과 출력 파워를 갖는 레이저 빔을 생성한다. 레이저 발진기는 일례로 '750nm 내지 1200nm' 또는 '1400nm 내지 1600nm' 또는 '1800nm 내지 2200nm' 또는 '2500nm 내지 3200nm'의 파장을 갖는 다이오드 레이저(Laser Diode, LD) 또는 희토류 매질 광섬유 레이저(Rare-Earth-Doped Fiber Laser) 또는 희토류 매질 광결정 레이저(Rare-Earth-Doped Crystal Laser)일 수 있으며, 이와 달리 755nm의 파장을 갖는 알렉산드라이트 레이저 광을 방출하기 위한 매질, 또는 1064nm 또는 1320nm의 파장을 갖는 엔디야그(Nd:YAG) 레이저 광을 방출하기 위한 매질을 포함하여 구현될 수 있다.
빔 쉐이퍼(beam shaper)(312)는 레이저 발진기(311)에서 발생하여 광섬유를 통해 전달되는 스폿(spot) 형태의 레이저를 플랫 탑을 가진 면광원(Area Beam) 형태로 변환시킨다. 빔 쉐이퍼(312)는 사각 광 파이프(Square Light Pipe), 회절광학소자(Diffractive Optical Element, DOE) 또는 마이크로렌즈어레이(Micro-Lens Array, MLA)를 포함하여 구현될 수 있다.
광학렌즈모듈(313)은 빔 쉐이퍼에서 면 광원 형태로 변환된 레이저 빔의 형태와 크기를 조정하여 PCB 기판에 장착된 전자부품 내지 조사 구역으로 조사하도록 한다. 광학렌즈모듈은 복수의 렌즈의 결합을 통해 광학계를 구성한다.
구동장치(314)는 조사면에 대해 레이저 모듈의 거리 및 위치를 이동시키고, 제어장치(315)는 구동장치(314)를 제어하여 레이저 빔이 조사면에 도달할 때의 빔 형상, 빔 면적 크기, 빔 선명도 및 빔 조사 각도를 조정한다. 제어장치(315)는 또한 구동장치(314) 외에 레이저 모듈(310) 각 부의 동작을 통합적으로 제어할 수 있다.
한편, 레이저출력조정부(370)는 사용자 인터페이스를 통해 수신한 프로그램 또는 미리 설정된 프로그램에 따라 레이저 모듈(310)에 대응하는 전원 공급부(317)에서 레이저 모듈(310)로 공급되는 전력량을 제어한다. 레이저출력조정부(370)는 하나 이상의 카메라 모듈(350)로부터 조사면 상에서의 부품별, 구역별 또는 전체 디본딩 상태 정보를 수신하여 이를 토대로 전원 공급부(317)를 제어한다. 이와 달리, 레이저출력조정부(370)로부터의 제어정보가 레이저 모듈(310)의 제어장치(315)로 전달되고, 상기 제어장치(315)에서 각기 대응하는 전원공급부(317)를 제어하기 위한 피드백 신호를 제공하는 것도 가능하다.
이러한 기능을 통해서, 레이저 빔 크기와 출력을 조정함에 의해 조사면 내의 전자부품들과 기판 간의 접합을 수행하거나 접합을 제거할 수 있다. 특히, 기판 상에서 손상된 전자부품을 제거하는 경우에는 레이저 빔의 면적을 해당 전자부품 영역으로 최소화함에 따라 기판에 존재하는 인접한 다른 전자부품 내지 정상적인 전자부품에 레이저 빔에 의한 열이 인가되는 것을 최소화할 수 있으며, 이에 따라 제거 대상인 손상된 전자부품만을 제거하는 것이 가능하다.
한편, 복수의 레이저 모듈 별로 서로 다른 파장을 가진 레이저 빔을 방출하도록 구성하는 경우에는, 레이저 조사부는 전자부품에 포함된 복수의 재료층(예: EMC층, 실리콘층, 솔더층)이 각기 잘 흡수하는 파장을 갖는 개별 레이저 모듈로 구성될 수 있다.
이에 따라 본 발명에 따른 레이저 디본딩 장치는 전자부품의 온도와 인쇄회로기판이나 전자부품 전극간의 연결소재인 솔더(Solder)와 같은 중간접합재의 온도를 선택적으로 상이하게 상승시켜 최적화된 접합(Attaching or Bonding) 또는 분리(Detaching or Debonding) 공정을 수행할 수 있다.
구체적으로, 전자부품의 EMC몰드층과 실리콘층을 모두 투과하여 솔더층에 각 레이저 빔의 모든 에너지가 흡수되도록 하거나, 레이저 빔이 EMC몰드층을 투과하지 않고 전자부품의 표면을 가열하여 전자부품 하부의 본딩부로 열이 전도되도록 할 수도 있다.
도 4는 본 발명의 일 실시예에 따른 레이저 광학계의 구성 개념도이다.
상기 도 4는 본 발명에 적용가능한 가장 간단한 구조의 광학계로서, 빔 전송 광섬유(410)로부터 방출된 레이저 빔이 볼록렌즈(420)를 통해 초점 정렬되어 빔 쉐이퍼(430)로 입사하면, 빔 쉐이퍼(430)에서 스폿 형태의 레이저 빔을 플랫 탑(Flat-Top) 형태의 면광원(A1)으로 변환시키고, 빔 쉐이퍼(430)로부터 출력된 정사각형 레이저 빔(A1)이 오목 렌즈(440)를 통해 원하는 크기로 확대되어 확대된 면광원(A2)으로 결상면(S)에 조사된다.
이하 첨부된 도 5 및 도 6을 참조하여 본 발명에 따른 레이저 헤드 모듈의 구성 및 작동관계에 대해 자세히 살펴보기로 한다. 먼저 본 발명의 레이저 헤드 모듈(600)은 앞서 상술한 레이저 모듈에서 레이저 발진기(311)와 냉각장치(316), 구동장치(314) 등을 제외한 일부 구성으로 이하 기술된다.
도 5는 본 발명의 일 실시예에 따른 레이저 헤드 모듈의 외관 사시도이다.
첨부된 도 5에서, 상기 레이저 헤드 모듈(600)은 먼저 환형의 하우징(610)이 구비되는데, 상기 하우징(610)의 상단에는 레이저 발진기(311)로부터 생성된 레이저 빔이 하우징(610) 내부로 전송될 수 있도록 빔 전송 광섬유(410)가 연결된다.
상기 하우징(610) 내에는 레이저 발진기(311)로부터 생성된 라운드 빔을 스퀘어 빔으로 변환하는 빔 쉐이퍼(430)가 구비되며, 상기 빔 쉐이퍼(430) 하부에는 상기 빔 쉐이퍼를 통한 스퀘어 빔을 조사 용도에 맞게 확대 또는 축소하는 광학렌즈모듈(313) 등이 삽입 배치된다.
본 발명은 상기 레이저 헤드 모듈(600)에서 조사된 레이저 빔에 의해 전자부품의 솔더링이 용융되면 이를 제거하기 위한 이젝터 장치의 구성이 일체로 부가된 것을 특징으로 한다.
이를 위해 본 발명은 첨부된 도 5와 같이 상기 하우징(610)의 외주면에 하우징을 고정 설치하기 위한 고정 브라켓(650)과 상기 고정 브라켓의 하부에 클램프 부재(620)가 결합되고, 상기 클램프 부재(620)의 좌측에는 기판의 전자부품을 향해 에어를 분사하는 블로웡 수단이 장착되어 있으며, 상기 클램프 부재(620)의 우측에는 상기 블로윙 수단에 의해 기판으로부터 분리된 전자부품을 흡입하기 위한 석션 수단이 장착됨으로써 구성 가능하다.
상기 블로윙 수단은, 보다 구체적으로 클램프 부재(620)에 고정판(631)이 고정 결합되어 있으며, 상기 고정판(631)의 일단에는 지지프레임(632)이 힌지 결합되어 있어서 작업자가 필요한 경우 상기 지지프레임의 각도를 임의적으로 조정할 수 있게 구성된다. 또한 상기 지지프레임(632)에는 에어 노즐(633)이 예를 들어 나사 체결 방식에 의해 결합되어 있어서 외부의 컴퓨레셔(도면 미도시)로부터 공급된 에어를 기판의 전자부품을 향해 분사할 수 있도록 구성된다.
또한 상기 석션 수단은, 상기 블로윙 수단과 유사한 구성을 갖는데, 예를 들어 클램프 부재(620)에 고정판(641)이 나사 체결 방식에 의해 결합되고, 상기 고정판(641)의 일단에는 지지프레임(642)이 힌지 결합되며, 상기 지지프레임(642)에는 외부의 컴퓨레셔(도면 미도시)의 흡입력에 의해 전자부품을 흡입하는 깔대기 부재(643)가 장착된다.
이 때, 상기 블로윙 수단에 의한 에어 분사와 석션 수단에 의한 에어 흡입은 각각 별도의 컴퓨레셔에 의해 구동될 수 있으나, 컴팩트한 장치 구성을 위해서는 동일한 하나의 컴퓨레셔(도면 미도시)를 이용하여 블로윙 수단과 석션 수단이 동시에 구동될 수 있도록 설계함이 바람직하다.
한편 도 6은 본 발명의 다른 실시예에 따른 레이저 헤드 모듈의 부분 단면도이다.
이하 첨부된 도 6을 참조하면 상술한 도 5의 일 실시예처럼 블로윙 수단과 석션 수단이 클램프 부재의 외측에 장착된 것이 아니라, 상기 블로윙 수단과 석션 수단을 구성하는 에어 유로들이 클램프 부재의 몸체 내부에 일체로 각각 음각 형성되어서도 구성이 가능하다.
일례로 이 때, 도 6을 참조하면 상기 클램프 부재(621)는, 상기 하우징의 외주면에 결착되는 고정 브라켓(650)의 하단에 아래로 갈수록 점점 좁아지는 원추형상을 갖도록 일체로 형성된다.
이 때, 상기 클램프 바디부의 가운데 부분에는 중공(621a)이 형성되어 있어서 레이저 발진기(311)로부터 조사된 레이저 빔이 하우징 내부의 빔 쉐이퍼(312)와 광학렌즈모듈(313)을 거쳐 상기 중공(621a)을 통해 기판으로 조사됨은 이해 가능하다.
또한 상기 중공(621a)을 중심으로 클램프 부재(621)의 몸체 내부 좌우측에는 블로윙 수단과 석션 수단을 구성하는 에어 유로(621b)(621c)가 각각 하향으로 경사지게 음각 형성된다.
이 때, 더욱 바람직하게는 상기 블로윙 수단과 석션 수단을 구성하는 에어 유로의 마주보는 끝단부가 각각 노즐 형상과 깔대기 형상을 갖도록 형성되며, 상기 블로윙 수단의 에어 유로(621b)를 통해 분사된 에어가 전자부품을 기판으로부터 분리시킨 후 석션 수단의 에어 유로(621c)를 통해 흡입 및 제거되어진다.
한편 상기 석션 수단의 흡입경로 상에는 거름망 형태의 전자부품 회수통(700)이 더 연결 구비되어 있음에 따라 작업자가 수시로 상기 전자부품 회수통(700)에 모여진 전자부품을 꺼내 재활용할 수 있게 구성된다.
아울러 본 발명에 따른 레이저 헤드 모듈은 상술한 일 실시예의 단일의 레이저 모듈이 아니라 예를 들어 2개의 레이저 모듈을 갖는 듀얼 빔 레이저 디본딩 장치로도 구성이 가능하다. 이러한 듀얼 빔 레이저 디본딩 장치 구성을 위해 예를 들어 하우징, 광학렌즈모듈, 고정 브라켓을 각각 구비하는 레이저 헤드 모듈을 2개 구비한 후 상기 각 레이저 헤드 모듈을 일정 간격을 두고 분할 배치하는 형태로 구성이 가능하다. 이 때 상기 2개의 레이저 헤드 모듈에 구비된 각각의 광학렌즈모듈로부터 조사된 레이저 빔은 기판의 일정 영역에서 일부가 중첩되도록 조사된다.
상기와 같이 2개의 레이저 헤드 모듈을 구동하는 경우 예를 들어 하나의 레이저 광원을 분배하여 각 레이저 헤드 모듈에 입력하는 경우에는 분배된 각 레이저 빔의 출력과 위상을 동시에 조절하기 위한 기능이 레이저출력조정부(370)에 구비될 수 있다. 이러한 경우에는, 각 레이저 빔 간에 상쇄 간섭을 유도하도록 위상을 제어하여 빔 평탄도를 현저하게 개선할 수 있으며 이에 따라 에너지 효율이 더욱 증가하게 된다.
한편, 상기와 같이 복수 위치 동시 가공 모드를 구현하는 경우에는, 레이저출력조정부(370)가 각 레이저 헤드 모듈로부터의 레이저 빔의 일부 또는 전부가 상이하도록 각 레이저 빔의 빔 형상, 빔 면적 크기, 빔 선명도, 빔 조사 각도 및 빔 파장 중 하나 이상을 제어한다. 이 때에도, 하나의 레이저 광원을 분배하여 각 레이저 헤드 모듈에 입력하는 경우에는 분배된 각 레이저 빔의 출력과 위상을 동시에 조절하기 위한 기능이 레이저출력조정부(370)에 구비될 수 있다.
이러한 기능을 통해서, 레이저 빔 크기와 출력을 조정함에 의해 싱글 빔의 경우보다 용이하게 조사면 내의 전자부품들과 기판 간의 접합을 수행하거나 접합을 제거하는 작업을 수행할 수 있다. 특히, 기판 상에서 손상된 전자부품을 제거하는 경우에는 레이저 빔의 면적을 해당 전자부품 영역으로 최소화함에 따라 기판에 존재하는 인접한 다른 전자부품 내지 정상적인 전자부품에 레이저 빔에 의한 열이 인가되는 것을 최소화할 수 있으며, 이에 따라 제거 대상인 손상된 전자부품만을 제거하는 것이 가능하다.
한편 상기와 같은 듀얼 레이저 헤드 모듈의 디본딩 장치 구성에서는 모든 레이저 헤드 모듈에 이젝팅 장치를 구비할 필요는 없으며, 예를 들어 상기 복수의 레이저 헤드 모듈의 어느 하나의 하우징에만 이젝팅 장치를 구성할 수 있다. 이를 위해 이젝팅 장치를 구성하는 클램프 부재와 블로웡 수단, 석션 수단을 2개의 레이저 헤드 모듈 중 어느 하나에만 장착하는 경우에도 디본딩된 전자부품을 블로윙 및 석셕에 따라 제거하는 기능을 충분히 수행할 수 있음은 이해 가능하다.
아울러 본 발명은 단지 앞서 기술된 일 실시예에 의해서만 한정된 것은 아니며, 장치의 세부 구성이나 개수 및 배치 구조를 변경할 때에도 동일한 효과를 창출할 수 있는 것이므로 당해 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상의 범주 내에서 다양한 구성의 부가 및 삭제, 변형이 가능한 것임을 명시하는 바이다.
600 : 레이저 헤드 모듈 610 : 하우징
620, 621 : 클램프 부재 621b: 블로윙 유로
621c: 석션 유로 631, 641 : 고정판
632, 642 : 지지프레임 633 : 노즐
643 : 깔대기 부재 650 : 고정 브라켓
Claims (10)
- 기판으로부터 전자부품을 디본딩하기 위한 레이저 디본딩 장치에 있어서,환형의 하우징;상기 하우징 내에 구비되어 레이저 발진기로부터 생성된 빔을 확대 또는 축소하는 광학렌즈모듈;상기 하우징의 외주면 일측에 결합되는 고정 브라켓;상기 하우징의 외주면 타측에 결합되는 클램프 부재;상기 클램프 부재의 일측에 구비되어 기판의 전자부품을 향해 에어를 분사하는 블로웡 수단; 및상기 클램프 부재의 타측에 블로윙 수단과 마주보게 구비되어 블로윙 수단에 의해 기판으로부터 분리된 전자부품을 흡입하는 석션 수단을 포함하는,레이저 디본딩 장치의 레이저 헤드 모듈.
- 제 1 항에 있어서,상기 하우징 내에는 레이저 발진기로부터 생성된 빔의 형상을 선택적으로 변환한 후 광학렌즈모듈에 전달하는 빔 쉐이퍼가 더 구비되는,레이저 디본딩 장치의 레이저 헤드 모듈.
- 제 1 항에 있어서,상기 빔 쉐이퍼는 레이저 발진기로부터 생성된 원형 레이저 빔을 스퀘어 형상의 빔으로 변환하는,레이저 디본딩 장치의 레이저 헤드 모듈.
- 제 1 항에 있어서,상기 블로윙 수단은,클램프 부재에 고정 결합되는 고정판;상기 고정판의 일단에 힌지 결합되는 지지프레임; 및상기 지지프레임에 결합되어 컴퓨레셔로부터 공급된 에어를 분사하는 에어 노즐을 포함하는,레이저 디본딩 장치의 레이저 헤드 모듈.
- 제 1 항에 있어서,상기 석션 수단은,클램프 부재에 고정 결합되는 고정판;상기 고정판의 일단에 힌지 결합되는 지지프레임; 및상기 지지프레임에 결합되어 컴퓨레셔의 흡입력에 의해 전자부품을 흡입하는 깔대기 부재를 포함하는,레이저 디본딩 장치의 레이저 헤드 모듈.
- 제 1 항에 있어서,상기 클램프 부재는,상기 고정 브라켓의 하단에 아래로 갈수록 점점 좁아지는 원추형상을 갖도록 일체로 형성되어 중공을 중심으로 몸체 내부 좌우측에 블로윙 수단과 석션 수단을 구성하는 에어 유로가 각각 하향 경사지게 음각되는,레이저 디본딩 장치의 레이저 헤드 모듈.
- 제 6 항에 있어서,상기 블로윙 수단과 석션 수단을 구성하는 에어 유로의 마주보는 끝단부가 각각 노즐 형상과 깔대기 형상을 갖도록 형성되는,레이저 디본딩 장치의 레이저 헤드 모듈.
- 제 1 항에 있어서,상기 석션 수단의 흡입경로 일부에는 전자부품 회수통이 더 연결 구비되는,레이저 디본딩 장치의 레이저 헤드 모듈.
- 제 1 항에 있어서,상기 블로윙 수단에 의한 에어 분사와 석션 수단에 의한 에어 흡입은 하나의 컴퓨레셔에 의해 동시에 실행되는,레이저 디본딩 장치의 레이저 헤드 모듈.
- 제 1 항에 있어서,상기 하우징, 광학렌즈모듈, 고정 브라켓은 각각 복수로 구비 및 분할 배치된 상태에서 상기 각 광학렌즈모듈로부터 조사된 레이저 빔은 기판의 일정 영역에서 적어도 일부가 중첩 조사되고,상기 클램프 부재, 블로웡 수단 및 석션 수단은 상기 복수의 하우징 중에서 어느 하나에 구비되는,레이저 디본딩 장치의 레이저 헤드 모듈.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190013548A KR20200095769A (ko) | 2019-02-01 | 2019-02-01 | 레이저 디본딩 장치의 레이저 헤드 모듈 |
KR10-2019-0013548 | 2019-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020159338A1 true WO2020159338A1 (ko) | 2020-08-06 |
Family
ID=70179643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/001595 WO2020159338A1 (ko) | 2019-02-01 | 2020-02-03 | 레이저 디본딩 장치의 레이저 헤드 모듈 |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR20200095769A (ko) |
CN (2) | CN210334761U (ko) |
TW (1) | TWI735149B (ko) |
WO (1) | WO2020159338A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102683187B1 (ko) * | 2021-05-12 | 2024-07-09 | 레이저쎌 주식회사 | 레이저 디본딩 장치 |
CN113851395A (zh) * | 2021-09-03 | 2021-12-28 | 北京中科镭特电子有限公司 | 激光解键合气体排放装置及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003204150A (ja) * | 2002-01-07 | 2003-07-18 | Taisei Kaken:Kk | はんだ付けされた電子部品の取り外し方法及びその装置 |
JP2008072020A (ja) * | 2006-09-15 | 2008-03-27 | Ricoh Co Ltd | 部品取外し装置 |
JP2009164310A (ja) * | 2007-12-28 | 2009-07-23 | Sharp Corp | 電子部品リペア装置および電子部品リペア方法 |
KR20130092022A (ko) * | 2012-02-09 | 2013-08-20 | 위아코퍼레이션 주식회사 | 레이저를 이용한 숄더 제거장치 및 제거방법 |
KR101346317B1 (ko) * | 2013-07-09 | 2013-12-31 | 에스아이에스 주식회사 | 맞춤 재단 용접 판재의 용접을 위해 Al-Si도금층을 제거하기 위한 레이저 삭마 장치 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI541093B (zh) * | 2009-12-07 | 2016-07-11 | Ipg Microsystems Llc | 雷射剝離系統及方法 |
CN108265329A (zh) * | 2018-01-22 | 2018-07-10 | 东莞市中晶半导体科技有限公司 | 一种定点定域激光剥离装置 |
-
2019
- 2019-02-01 KR KR1020190013548A patent/KR20200095769A/ko not_active Application Discontinuation
- 2019-04-04 CN CN201920453506.6U patent/CN210334761U/zh active Active
- 2019-04-04 CN CN201910270951.3A patent/CN111531280A/zh active Pending
-
2020
- 2020-02-03 WO PCT/KR2020/001595 patent/WO2020159338A1/ko active Application Filing
- 2020-02-03 TW TW109103276A patent/TWI735149B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003204150A (ja) * | 2002-01-07 | 2003-07-18 | Taisei Kaken:Kk | はんだ付けされた電子部品の取り外し方法及びその装置 |
JP2008072020A (ja) * | 2006-09-15 | 2008-03-27 | Ricoh Co Ltd | 部品取外し装置 |
JP2009164310A (ja) * | 2007-12-28 | 2009-07-23 | Sharp Corp | 電子部品リペア装置および電子部品リペア方法 |
KR20130092022A (ko) * | 2012-02-09 | 2013-08-20 | 위아코퍼레이션 주식회사 | 레이저를 이용한 숄더 제거장치 및 제거방법 |
KR101346317B1 (ko) * | 2013-07-09 | 2013-12-31 | 에스아이에스 주식회사 | 맞춤 재단 용접 판재의 용접을 위해 Al-Si도금층을 제거하기 위한 레이저 삭마 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN210334761U (zh) | 2020-04-17 |
TW202030040A (zh) | 2020-08-16 |
KR20200095769A (ko) | 2020-08-11 |
CN111531280A (zh) | 2020-08-14 |
TWI735149B (zh) | 2021-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019017650A1 (ko) | 레이저 리플로우 장치 | |
US7357288B2 (en) | Component connecting apparatus | |
KR102710097B1 (ko) | 마이크로 엘이디 디스플레이 모듈 제조 방법 | |
WO2020159341A1 (ko) | 멀티 빔 레이저 디본딩 장치 및 방법 | |
WO2020159338A1 (ko) | 레이저 디본딩 장치의 레이저 헤드 모듈 | |
KR102228432B1 (ko) | 레이저 리플로우 장치의 레이저 가압 헤드 모듈 | |
WO2017213465A1 (ko) | 릴-투-릴 레이저 리플로우 장치 및 방법 | |
KR102376989B1 (ko) | 선형 이송 방식의 레이저 리플로우 장치 | |
KR102430967B1 (ko) | 레이저 디본딩 장치의 레이저 헤드 모듈 | |
KR102199450B1 (ko) | 레이저 리플로우 장치의 레이저 가압 헤드 모듈 | |
WO2019151842A1 (ko) | 전자부품의 리플로우 및 리워크 장치 | |
KR102228434B1 (ko) | 레이저 리플로우 장치의 레이저 리플로우 방법 | |
KR20040004084A (ko) | 반도체 칩 탑재 장치 및 탑재 방법 | |
KR20210039620A (ko) | 레이저 리플로우 장치의 온도 센싱 모듈 | |
KR102174929B1 (ko) | 레이저 리플로우 장치의 레이저 리플로우 방법 | |
KR20210019785A (ko) | 불량 전자부품 검사방법 및 이를 이용한 레이저 리웍 장치 | |
WO2020242160A1 (ko) | 선형 이송 방식의 레이저 리플로우 장치 | |
KR20210099782A (ko) | 레이저 디본딩 장치 | |
KR20200125205A (ko) | 레이저 디본딩 장치의 히팅모듈 | |
KR20200129435A (ko) | 레이저 리플로우 장치의 본딩대상물 이송 모듈 | |
CN118263168A (zh) | 芯片贴装装置以及剥离夹具 | |
KR20200124558A (ko) | 레이저 디본딩 장치의 석셕모듈 | |
KR102327167B1 (ko) | 레이저 리플로우 장치의 레이저 가압 헤드 모듈 | |
JP7504494B2 (ja) | 真空チャンバーを設けた加圧方式のレーザリフロー装置 | |
KR102228433B1 (ko) | 레이저 리플로우 장치의 레이저 가압 헤드 모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20748659 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20748659 Country of ref document: EP Kind code of ref document: A1 |