Nothing Special   »   [go: up one dir, main page]

WO2020158673A1 - Elastic wave device and multiplexer - Google Patents

Elastic wave device and multiplexer Download PDF

Info

Publication number
WO2020158673A1
WO2020158673A1 PCT/JP2020/002804 JP2020002804W WO2020158673A1 WO 2020158673 A1 WO2020158673 A1 WO 2020158673A1 JP 2020002804 W JP2020002804 W JP 2020002804W WO 2020158673 A1 WO2020158673 A1 WO 2020158673A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
covers
electrode
substrate
acoustic wave
Prior art date
Application number
PCT/JP2020/002804
Other languages
French (fr)
Japanese (ja)
Inventor
彰 道上
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020217018695A priority Critical patent/KR102625090B1/en
Priority to JP2020569617A priority patent/JP7168009B2/en
Priority to CN202080010068.1A priority patent/CN113348625B/en
Publication of WO2020158673A1 publication Critical patent/WO2020158673A1/en
Priority to US17/380,068 priority patent/US11936359B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02826Means for compensation or elimination of undesirable effects of adherence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to an acoustic wave device, and particularly to an acoustic wave device using SH waves as a main mode and a multiplexer.
  • a substrate, a comb-shaped electrode provided on the upper surface of the substrate, and a protective film that covers the comb-shaped electrode are provided, and the thickness of the protective film on the upper surface of the electrode fingers forming the comb-shaped electrode and the side surface of the electrode finger.
  • a structure in which the thickness of the protective film is almost equal for example, Patent Document 1.
  • Patent Document 1 considering the moisture resistance as a protective film, its thickness becomes important. That is, it is described that if a certain humidity resistance standard is to be satisfied, it is necessary to secure a certain film thickness even in the thinnest place.
  • a Rayleigh wave response occurs at a frequency around 0.75 times that of the main mode.
  • a multiplexer in which a plurality of filters are commonly connected, if the pass band of the commonly connected partner filter and the frequency of the Rayleigh wave response match, the pass characteristic of the partner filter deteriorates.
  • the present invention provides an elastic wave device capable of changing the frequency at which the Rayleigh wave response is generated without substantially changing the frequency characteristics of the main mode.
  • an acoustic wave device that uses SH waves as a main mode, and includes a substrate and a plurality of substrates formed on a main surface of the substrate.
  • An IDT electrode having electrode fingers; and a protective film that seamlessly covers the main surface of the substrate, the side surfaces and the upper surfaces of the plurality of electrode fingers, among the portions of the protective film that cover the main surface of the substrate.
  • An intermediate portion between the adjacent electrode fingers is thicker than a portion near the electrode fingers.
  • the protective film with a non-uniform thickness, it is possible to change the frequency at which the Rayleigh wave response is generated, compared to the case where the protective film has a uniform thickness.
  • the frequency characteristic of the main mode does not substantially change. Therefore, it is possible to obtain the acoustic wave device capable of changing the frequency at which the Rayleigh wave response is generated without substantially changing the frequency characteristics of the main mode.
  • the frequency characteristics of the Rayleigh wave response can be changed by other filters while maintaining the frequency characteristics of the main mode. Can be shifted from the pass band of.
  • FIG. 1 is a plan view schematically showing an example of a general structure of a SAW resonator.
  • FIG. 2 is a sectional view schematically showing an example of a general structure of a SAW resonator.
  • FIG. 3 is a cross-sectional view showing the shape of the protective film according to Reference Example 1.
  • FIG. 4 is a cross-sectional view showing the shape of the protective film according to the first embodiment.
  • FIG. 5 is a graph showing the frequency characteristics of the SAW resonators according to Reference Example 1 and Example 1.
  • FIG. 6 is a graph showing the frequency characteristics of the SAW resonators according to Reference Example 1 and Example 1.
  • FIG. 7 is a cross-sectional view showing the shape of the protective film according to Reference Example 2.
  • FIG. 8 is a cross-sectional view showing the shape of the protective film according to the second embodiment.
  • FIG. 9 is a cross-sectional view showing the shape of the protective film according to the third embodiment.
  • FIG. 10 is a sectional view showing the shape of the protective film according to the fourth embodiment.
  • FIG. 11 is a sectional view showing the shape of the protective film according to the fifth embodiment.
  • FIG. 12 is a cross-sectional view showing the shape of the protective film according to Example 6.
  • FIG. 13 is a graph showing frequency characteristics of SAW resonators according to Reference Example 2 and Examples 2 to 6.
  • FIG. 14 is a functional block diagram showing an example of a general configuration of a multiplexer.
  • a general structure of the acoustic wave device will be described below by taking an example of a surface acoustic wave (SAW: Surface Acoustic Wave) resonator.
  • SAW Surface Acoustic Wave
  • FIG. 1 is a plan view schematically showing an example of a general structure of a SAW resonator (hereinafter, also simply referred to as a resonator).
  • the resonator 1 includes a substrate 2 and a pair of comb-teeth-shaped electrodes 3 a and 3 b arranged on the substrate 2.
  • the pair of comb-teeth-shaped electrodes 3 a and 3 b form the IDT electrode 3.
  • the comb-teeth-shaped electrode 3a is arranged in a comb-teeth shape and is composed of a plurality of electrode fingers 4a that are parallel to each other and a bus bar electrode 5a that connects the respective one ends of the plurality of electrode fingers 4a.
  • the comb-teeth-shaped electrode 3b is arranged in a comb-teeth shape and includes a plurality of electrode fingers 4b parallel to each other and a bus bar electrode 5b connecting one end of each of the plurality of electrode fingers 4b.
  • the plurality of electrode fingers 4a and 4b are formed so as to extend in a direction orthogonal to the elastic wave propagation direction X.
  • the resonator 1 shown in FIG. 1 is for explaining a general structure of a SAW resonator, and includes the number and length of the electrode fingers 4a and 4b forming the comb-shaped electrodes 3a and 3b. Sa, etc. are not limited to this.
  • FIG. 2 is a sectional view schematically showing an example of a general structure of a SAW resonator, and corresponds to the section taken along the line II-II in FIG.
  • the substrate 2 is composed of a laminated body including a piezoelectric layer 23, a low acoustic velocity film 22, and a high acoustic velocity support substrate 21.
  • the IDT electrode 3 (that is, the electrode fingers 4a and 4b and the bus bar electrodes 5a and 5b) is composed of a laminated body including an adhesion layer 31, a main electrode layer 32, and an adhesion layer 33.
  • the substrate 2 is composed of a laminated body in which a high acoustic velocity support substrate 21, a low acoustic velocity film 22, and a piezoelectric layer 23 are laminated in this order.
  • the high sound velocity support substrate 21 is a substrate that supports the low sound velocity film 22, the piezoelectric layer 23, the IDT electrode 3, and the protective film 6.
  • the high acoustic velocity support substrate 21 is a substrate in which the acoustic velocity of the bulk wave in the high acoustic velocity support substrate 21 is higher than the acoustic velocity of the elastic wave (surface wave) propagating in the piezoelectric layer 23, and is made of, for example, Si (silicon). Composed.
  • the thickness of the high sound velocity support substrate 21 is not particularly limited.
  • the low acoustic velocity film 22 is a film in which the acoustic velocity of the bulk wave in the low acoustic velocity film 22 is slower than the acoustic velocity of the elastic wave propagating in the piezoelectric layer 23, and is composed of, for example, SiO 2 (silicon dioxide) as a main component. Composed of materials.
  • the thickness of the low acoustic velocity film 22 is, for example, 673 nm.
  • the piezoelectric layer 23 is a layer in which a surface acoustic wave excited by the IDT electrode 3 propagates, and is, for example, 50° Y-cut X-propagating LiTaO3 piezoelectric single crystal or piezoelectric ceramic (50° from the Y axis with the X axis as the central axis). It is composed of a lithium tantalate single crystal or ceramics cut along a plane whose normal is the rotated axis.
  • the thickness of the piezoelectric layer 23 is, for example, 600 nm.
  • the efficiency of confining elastic wave energy in the thickness direction of the substrate 2 is increased, so that the Q value at the resonance frequency and the anti-resonance frequency can be increased.
  • the substrate 2 may be configured by a single-layer piezoelectric substrate.
  • the IDT electrode 3 is formed on the substrate 2 and is composed of a laminated body including an adhesion layer 31, a main electrode layer 32, and an adhesion layer 33.
  • the laminated structure of the IDT electrode 3 shown in FIG. 2 is applied to the electrode fingers 4a and 4b and the bus bar electrodes 5a and 5b.
  • the adhesion layer 31 is a layer for improving the adhesion between the piezoelectric layer 23 and the main electrode layer 32, and is made of, for example, Ti (titanium).
  • the adhesion layer 31 has a thickness of 6 nm, for example.
  • the main electrode layer 32 is made of, for example, Al (aluminum) or an Al alloy.
  • the thickness of the main electrode layer 32 is, for example, 130 nm.
  • the adhesion layer 33 is a layer for improving the adhesion between the main electrode layer 32 and the protective film 6, and is made of, for example, Ti (titanium).
  • the adhesion layer 33 has a thickness of 12 nm, for example.
  • the line width w of the IDT electrode 3 (particularly the electrode fingers 4a and 4b) is 0.5 ⁇ m, and the arrangement interval L is 1 ⁇ m.
  • the arrangement interval L corresponds to half of 2.0 ⁇ m, which is the wavelength ⁇ of the surface acoustic wave propagating through the piezoelectric layer 23.
  • the protective film 6 is a layer that improves the durability of the IDT electrode 3, and is made of, for example, a material whose main component is SiO 2 (silicon dioxide).
  • the protective film 6 seamlessly covers the main surface of the substrate 2 on which the IDT electrode 3 is formed, and the side surface and the upper surface of the IDT electrode 3.
  • the resonator 1 configured as described above is an example of an acoustic wave device that uses SH waves as a main mode, and a Rayleigh wave response occurs at a frequency around 0.75 times that of the main mode.
  • the resonator 1 can be used, for example, for a plurality of filters that are commonly connected to form a multiplexer. At this time, if the pass band of the commonly-connected filter on the other side and the frequency of the Rayleigh wave response match, the pass characteristic of the filter on the other side deteriorates. Therefore, it becomes necessary to shift the frequency of the Rayleigh wave response from the pass band of the commonly connected counterpart filter.
  • the frequency of the Rayleigh wave response can be changed by changing the design parameters of the IDT electrode 3 (the line width w, the arrangement interval L described above, etc.), but in this case, the frequency characteristic of the main mode also changes. Therefore, it is not effective as a practical measure.
  • the present inventors have conceived a structure in which the film thickness of the protective film is provided unevenly by paying attention to the design parameter on which the Rayleigh wave depends, among SH waves and Rayleigh waves.
  • the characteristics of the film thickness of the protective film in the resonator according to the embodiment will be described in detail.
  • the electrode fingers 4a and 4b are collectively referred to as the electrode finger 4.
  • FIG. 3 is a cross-sectional view showing the shape of the protective film 6 according to Reference Example 1.
  • the range from the electrode finger 4 to the midpoint between each electrode finger (not shown) adjacent to both sides of the electrode finger 4 is shown with one electrode finger 4 of the IDT electrode 3 as the center. ..
  • a resonator having the protective film 6 having the shape shown in FIG. 3 is referred to as a resonator 70.
  • the first portion of the protective film 6 covering the main surface of the substrate 2 has a uniform thickness of 30 nm
  • the second portion of the protective film 6 covering the upper surfaces of the electrode fingers 4 has a uniform thickness of 50 nm.
  • the thickness of the third portion of the protective film 6 covering the side surface of the electrode finger 4 is 50 nm and uniform.
  • the cross-sectional structure shown in FIG. 3 is provided centering on each electrode finger 4 in the resonator 70.
  • FIG. 4 is a cross-sectional view showing the shape of the protective film 6 according to the first embodiment.
  • FIG. 4A shows a range from one electrode finger 4 of the IDT electrode 3 as a center to an intermediate point between the electrode finger 4 and each of electrode fingers (not shown) adjacent to both sides of the electrode finger 4. It is shown.
  • FIG. 4B two adjacent electrode fingers 4a and 4b are shown.
  • the "adjacent electrode fingers” are the electrode fingers 4a and the electrode fingers 4b arranged adjacent to each other, and the adjacent electrode fingers 4a among the plurality of electrode fingers 4a and the plurality of electrode fingers 4b. It does not mean the adjacent electrode fingers 4b among them.
  • a resonator having the protective film 6 having the shape shown in FIG. 4 will be referred to as a resonator 71.
  • the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. .. Further, the thickness of the second portion of the protective film 6 covering the upper surface of the electrode finger 4 is 50 nm and uniform, and the thickness of the third portion of the protective film 6 covering the side surface of the electrode finger 4 is uniform 50 nm. That is, in the resonator 71, the intermediate portion between the adjacent electrode fingers 4 in the first portion of the protective film 6 covering the main surface of the substrate 2 is thicker than the portion in the vicinity of the electrode fingers 4.
  • the intermediate portion between the adjacent electrode fingers is the intermediate portion of the two protective layers 6 described above. It is a range that includes points and is separated by 0 G or more and 0.1 G or less on the electrode finger 4a side and the electrode finger 4b side with respect to the midpoint. Further, the vicinity of the electrode finger is separated from the protective layer 6 covering the side surface of the electrode finger 4a by 0 G or more and 0.1 G or less, or separated from the protective layer 6 covering the side surface of the electrode finger 4b by 0 G or more and 0.1 G or less. It is a range.
  • the cross-sectional structure shown in FIG. 4 is provided centering on each electrode finger 4 in the resonator 71.
  • the models of the resonators 70 and 71 were set according to the dimensional conditions shown in FIGS. 3 and 4, and the frequency characteristics of impedance were obtained by simulation.
  • the design parameters of the IDT electrode 3 are the same for the resonators 70 and 71.
  • FIG. 5 is a graph showing an example of frequency characteristics of impedance of the resonators 70 and 71.
  • the response of the main mode occurring in the vicinity of 1900 MHz to 2000 MHz is almost the same in the resonators 70 and 71. That is, it can be seen that whether the protective film 6 is made uniform or not does not substantially affect the frequency characteristics of the main mode.
  • FIG. 6 is a graph showing an enlarged Rayleigh wave response. As shown in FIG. 6, the frequencies of the Rayleigh wave response are about 5 MHz in the resonators 70 and 71.
  • FIG. 7 is a cross-sectional view showing the shape of the protective film 6 according to Reference Example 2.
  • a range from the electrode finger 4 of the IDT electrode 3 to an intermediate point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4 is shown. ..
  • a resonator having the protective film 6 having the shape shown in FIG. 7 is referred to as a resonator 80.
  • the first portion of the protective film 6 covering the main surface of the substrate 2 has a uniform thickness of 30 nm
  • the second portion of the protective film 6 covering the upper surfaces of the electrode fingers 4 has a uniform thickness of 30 nm.
  • the thickness of the third portion of the protective film 6 that covers the side surface of the electrode finger 4 is uniform at 30 nm.
  • the cross-sectional structure shown in FIG. 7 is provided centering on each electrode finger 4 in the resonator 80.
  • FIG. 8 is a sectional view showing the shape of the protective film 6 according to the second embodiment.
  • FIG. 8 shows a range from the electrode finger 4 of the IDT electrode 3 as a center to an intermediate point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4. ..
  • a resonator having the protective film 6 having the shape shown in FIG. 8 will be referred to as a resonator 81.
  • the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. ..
  • the thickness of the portion covering the central portion of the upper surface is 50 nm, and the thickness of the portion covering the end portion of the upper surface is 10 nm.
  • the thickness of the third portion of the protective film 6 that covers the side surface of the electrode finger 4 is uniform at 30 nm.
  • the intermediate portion between the adjacent electrode fingers 4 is thicker than the neighboring portion of the electrode finger 4, and Of the second portion of the protective film 6 covering the upper surface of 4, the portion covering the central portion of the upper surface is thicker than the portion covering the end portion of the upper surface.
  • the cross-sectional structure shown in FIG. 8 is provided centering on each electrode finger 4 in the resonator 81.
  • FIG. 9 is a sectional view showing the shape of the protective film 6 according to the third embodiment.
  • a range from the electrode finger 4 of the IDT electrode 3 to an intermediate point between the electrode fingers 4 and the electrode fingers (not shown) adjacent to both sides of the electrode finger 4 is shown. ..
  • a resonator having the protective film 6 having the shape shown in FIG. 9 will be referred to as a resonator 82.
  • the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. ..
  • the thickness of the portion covering the central portion of the upper surface is 10 nm
  • the thickness of the portion covering the end portion of the upper surface is 50 nm.
  • the thickness of the third portion of the protective film 6 that covers the side surface of the electrode finger 4 is uniform at 30 nm.
  • the intermediate portion between the adjacent electrode fingers 4 is thicker than the vicinity of the electrode finger 4, and Of the second portion of the protective film 6 that covers the upper surface of 4, the portion that covers the central portion of the upper surface is thinner than the portion that covers the end portion of the upper surface.
  • the sectional structure shown in FIG. 9 is provided centering on each electrode finger 4 in the resonator 82.
  • FIG. 10 is a sectional view showing the shape of the protective film 6 according to the fourth embodiment.
  • FIG. 10 shows a range from the electrode finger 4 of the IDT electrode 3 as a center to a middle point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4. ..
  • a resonator having the protective film 6 having the shape shown in FIG. 10 will be referred to as a resonator 83.
  • the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. ..
  • the thickness of the second portion of the protective film 6 covering the upper surface of the electrode finger 4 is 30 nm and uniform.
  • the thickness of the portion that covers the lower portion of the side surface is 50 nm, and the thickness of the portion that covers the upper portion of the side surface is 10 nm.
  • the intermediate portion between the adjacent electrode fingers 4 is thicker than the neighboring portion of the electrode finger 4, and Of the third portion of the protective film 6 that covers the side surface of 4, the portion that covers the lower portion of the side surface is thicker than the portion that covers the upper portion of the side surface.
  • the cross-sectional structure shown in FIG. 10 is provided centering on each electrode finger 4 in the resonator 83.
  • FIG. 11 is a sectional view showing the shape of the protective film 6 according to the fifth embodiment.
  • a range from the electrode finger 4 of the IDT electrode 3 to an intermediate point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4 is shown. ..
  • a resonator having the protective film 6 having the shape shown in FIG. 11 is referred to as a resonator 84.
  • the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. .. Further, the thickness of the second portion of the protective film 6 covering the upper surface of the electrode finger 4 is 30 nm and uniform. Further, of the third portion of the protective film 6 that covers the side surface of the electrode finger 4, the thickness of the portion that covers the lower portion of the side surface is 10 nm, and the thickness of the portion that covers the upper portion of the side surface is 50 nm.
  • the intermediate portion between the adjacent electrode fingers 4 is thicker than the vicinity of the electrode finger 4, and Of the third portion of the protective film 6 that covers the side surface of 4, the portion that covers the lower portion of the side surface is thinner than the portion that covers the upper portion of the side surface.
  • the cross-sectional structure shown in FIG. 11 is provided centering on each electrode finger 4 in the resonator 84.
  • FIG. 12 is a sectional view showing the shape of the protective film 6 according to the sixth embodiment.
  • a range from the electrode finger 4 of the IDT electrode 3 to the middle point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4 is shown. ..
  • a resonator having the protective film 6 having the shape shown in FIG. 12 is referred to as a resonator 85.
  • the thickness of the intermediate portion between the adjacent electrode fingers 4 of the first portion of the protective film 6 covering the main surface of the substrate 2 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. ..
  • the thickness of the portion covering the central portion of the upper surface is 50 nm, and the thickness of the portion covering the end portion of the upper surface is 10 nm.
  • the thickness of the portion that covers the lower portion of the side surface is 50 nm
  • the thickness of the portion that covers the upper portion of the side surface is 10 nm.
  • the intermediate portion between the adjacent electrode fingers 4 is thicker than the neighboring portion of the electrode finger 4, and Of the second portion of the protective film 6 covering the upper surface of 4, the portion covering the central portion of the upper surface is thicker than the portion covering the end portion of the upper surface. Furthermore, of the third portion of the protective film 6 that covers the side surface of the electrode finger 4, the portion that covers the lower portion of the side surface is thicker than the portion that covers the upper portion of the side surface.
  • the sectional structure shown in FIG. 12 is provided centering on each electrode finger 4 in the resonator 85.
  • the models of the resonators 80 to 85 were set according to the dimensional conditions shown in FIGS. 7 to 12, and the impedance frequency characteristics were obtained by simulation.
  • the design parameters of the IDT electrode 3 were the same for the resonators 80 to 85.
  • the response of the main mode was almost the same in the resonators 80 to 85 (not shown).
  • FIG. 13 is a graph showing an enlarged Rayleigh wave response of the resonators 80 to 85. As shown in FIG. 13, the frequency of the Rayleigh wave response differs by about 3 MHz to 9 MHz between the resonator 80 and each of the resonators 81 to 85.
  • the above-described resonator provided with the protective film having a non-uniform thickness can be used, for example, for a plurality of filters that are commonly connected and that form a multiplexer.
  • FIG. 14 is a functional block diagram showing an example of a general configuration of a multiplexer.
  • the multiplexer 90 includes filters 91 and 92 whose one ends are commonly connected to each other. At least one of the filters 91 and 92 has an elastic wave device in which a protective film has a nonuniform thickness ( For example, the resonator 71, any one of the resonators 81 to 85 is used.
  • the frequency of the Rayleigh wave response of the filter 91 matches the pass band of the filter 92.
  • the filter 91 by configuring the filter 91 with a resonator in which the thickness of the protective film is not uniform, it is possible to shift the frequency of the Rayleigh wave response of the filter 91 from the pass band of the filter 92 while maintaining the pass characteristic of the filter 91. it can.
  • the method for forming the protective film having a non-uniform thickness is not particularly limited, but as an example, the protective film may be formed by the sputtering conditions when forming the protective film or the etching and milling conditions in the step of adjusting the frequency by scraping the protective film. You can That is, the protective film having a non-uniform thickness can be formed at a low cost by utilizing a plurality of existing processes.
  • the processing of the protective film into a specific shape is performed at the same time as adjusting the frequency of the main mode after checking the waveform before frequency adjustment by controlling during frequency adjustment (when cutting the protective film). May be.
  • the position of the main mode and the Rayleigh wave response can be grasped, and an adaptive method can be adopted by changing the conditions of sputtering, etching, and milling for each sample if necessary. it can.
  • an acoustic wave device is an acoustic wave device that uses SH waves as a main mode, and includes a substrate and a plurality of electrode fingers formed on the main surface of the substrate.
  • An IDT electrode having: and a protective film that seamlessly covers the main surface of the substrate, side surfaces and upper surfaces of the plurality of electrode fingers, and is adjacent to a part of the protective film that covers the main surface of the substrate.
  • the middle portion of the electrode finger is thicker than the vicinity of the electrode finger.
  • the portion that covers the central portion of the upper surface may be thicker than the portion that covers the end portion of the upper surface.
  • the portion that covers the central portion of the upper surface may be thinner than the portion that covers the end portion of the upper surface.
  • the portion that covers the lower portion of the side surface may be thicker than the portion that covers the upper portion of the side surface.
  • the portion that covers the lower portion of the side surface may be thinner than the portion that covers the upper portion of the side surface.
  • the protective film with a non-uniform thickness, it is possible to change the frequency at which the Rayleigh wave response is generated, compared to the case where the protective film has a uniform thickness.
  • the frequency characteristic of the main mode does not substantially change. Therefore, it is possible to obtain the acoustic wave device capable of changing the frequency at which the Rayleigh wave response is generated without substantially changing the frequency characteristics of the main mode.
  • the frequency characteristics of the Rayleigh wave response can be changed by other filters while maintaining the frequency characteristics of the main mode. Can be shifted from the pass band of.
  • the substrate may be composed of a piezoelectric material containing lithium tantalate, and the IDT electrode may be composed of a piezoelectric layer formed on one main surface.
  • the substrate is made of a piezoelectric material containing lithium tantalate, the piezoelectric layer having the IDT electrode formed on one main surface, and the acoustic wave velocity propagating through the piezoelectric layer rather than the acoustic wave velocity propagating through the piezoelectric layer.
  • a bulk acoustic wave velocity is higher than that of a high acoustic velocity supporting substrate having a high bulk acoustic velocity and a high acoustic velocity supporting substrate and the piezoelectric layer.
  • a low sonic film that is slow.
  • the substrate is an acoustic wave device having a single-layer structure or a laminated structure
  • the frequency at which the Rayleigh wave response is generated can be changed without substantially changing the frequency characteristics of the main mode. Wave device is obtained.
  • the maximum thickness of the protective film may be half the thickness of the IDT electrode or less.
  • the multiplexer includes a plurality of filters whose one ends are connected to each other, and at least one filter among the plurality of filters is configured using the acoustic wave device.
  • the present invention can be widely used for communication devices such as mobile phones as an elastic wave device and a multiplexer using the elastic wave device.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

An elastic wave device of the present invention uses SH waves as a main mode and comprises: a substrate (2); an interdigital transducer (IDT) electrode (3) having electrode fingers (4a, 4b) formed on a main surface of the substrate (2); and a protective film (6) which continuously covers the main surface of the substrate (2) and the side surfaces and top surfaces of the electrode fingers (4a, 4b), wherein, from among the portions of the protective film (6) covering the main surface of the substrate (2), a central section between the adjacent electrode fingers (4a, 4b) is thicker than nearby sections near the electrode fingers (4a, 4b).

Description

弾性波デバイスおよびマルチプレクサAcoustic wave devices and multiplexers
 本発明は、弾性波装置に関し、特には、SH波をメインモードとした弾性波デバイス、および、マルチプレクサに関する。 The present invention relates to an acoustic wave device, and particularly to an acoustic wave device using SH waves as a main mode and a multiplexer.
 従来、基板と、この基板の上面に設けた櫛型電極と、この櫛型電極を覆う保護膜とを備え、櫛型電極を構成する電極指の上面の保護膜の厚さと、電極指の側面の保護膜の厚さとをほぼ等しくした構造が開示されている(例えば、特許文献1)。 Conventionally, a substrate, a comb-shaped electrode provided on the upper surface of the substrate, and a protective film that covers the comb-shaped electrode are provided, and the thickness of the protective film on the upper surface of the electrode fingers forming the comb-shaped electrode and the side surface of the electrode finger. There is disclosed a structure in which the thickness of the protective film is almost equal (for example, Patent Document 1).
 特許文献1には、保護膜としての耐湿性を考えると、その厚さが重要となってくる。すなわち、一定の耐湿基準を満たそうとすると、もっとも薄いところでも一定の膜厚を確保する必要がある、と記載されている。 In Patent Document 1, considering the moisture resistance as a protective film, its thickness becomes important. That is, it is described that if a certain humidity resistance standard is to be satisfied, it is necessary to secure a certain film thickness even in the thinnest place.
特開2006-41589号公報JP, 2006-41589, A
 SH波をメインモードとして利用する弾性波デバイスでは、メインモードに対して0.75倍付近の周波数に、レイリー波レスポンスが発生する。例えば、複数のフィルタを共通接続したマルチプレクサにおいて、共通接続された相手側フィルタの通過帯域と、レイリー波レスポンスの周波数とが一致すると、相手側フィルタの通過特性が劣化する。 In an acoustic wave device that uses SH waves as a main mode, a Rayleigh wave response occurs at a frequency around 0.75 times that of the main mode. For example, in a multiplexer in which a plurality of filters are commonly connected, if the pass band of the commonly connected partner filter and the frequency of the Rayleigh wave response match, the pass characteristic of the partner filter deteriorates.
 そこで、本発明は、メインモードの周波数特性を実質的に変えることなく、レイリー波レスポンスが発生する周波数を変えることができる弾性波デバイスを提供する。 Therefore, the present invention provides an elastic wave device capable of changing the frequency at which the Rayleigh wave response is generated without substantially changing the frequency characteristics of the main mode.
 上記目的を達成するために、本発明の一態様に係る弾性波デバイスは、SH波をメインモードとして利用する弾性波デバイスであって、基板と、前記基板の主面上に形成された複数の電極指を有するIDT電極と、前記基板の前記主面、前記複数の電極指の側面および上面を途切れなく覆う保護膜と、を備え、前記基板の前記主面を覆う前記保護膜の部分のうち、隣接する前記電極指間の中間部が、前記電極指の近傍部より厚い。 In order to achieve the above object, an acoustic wave device according to an aspect of the present invention is an acoustic wave device that uses SH waves as a main mode, and includes a substrate and a plurality of substrates formed on a main surface of the substrate. An IDT electrode having electrode fingers; and a protective film that seamlessly covers the main surface of the substrate, the side surfaces and the upper surfaces of the plurality of electrode fingers, among the portions of the protective film that cover the main surface of the substrate. An intermediate portion between the adjacent electrode fingers is thicker than a portion near the electrode fingers.
 これにより、保護膜を不均一な厚みで設けることで、保護膜の厚みが均一な場合と比べて、レイリー波レスポンスが発生する周波数を変化させることができる。このとき、IDT電極の設計パラメータを変化させなければ、メインモードの周波数特性は実質的に変化しない。したがって、メインモードの周波数特性を実質的に変えることなく、レイリー波レスポンスが発生する周波数を変えることができる弾性波デバイスが得られる。 By doing this, by providing the protective film with a non-uniform thickness, it is possible to change the frequency at which the Rayleigh wave response is generated, compared to the case where the protective film has a uniform thickness. At this time, unless the design parameter of the IDT electrode is changed, the frequency characteristic of the main mode does not substantially change. Therefore, it is possible to obtain the acoustic wave device capable of changing the frequency at which the Rayleigh wave response is generated without substantially changing the frequency characteristics of the main mode.
 例えば、レイリー波レスポンスが他のフィルタの通過特性に悪影響を与える場合など、保護膜を不均一な厚みで設けることで、メインモードの周波数特性を維持しながら、レイリー波レスポンスの周波数を他のフィルタの通過帯域からずらすことができる。 For example, when the Rayleigh wave response adversely affects the pass characteristics of other filters, by providing a protective film with a non-uniform thickness, the frequency characteristics of the Rayleigh wave response can be changed by other filters while maintaining the frequency characteristics of the main mode. Can be shifted from the pass band of.
図1は、SAW共振子の一般的な構造の一例を模式的に示す平面図である。FIG. 1 is a plan view schematically showing an example of a general structure of a SAW resonator. 図2は、SAW共振子の一般的な構造の一例を模式的に示す断面図である。FIG. 2 is a sectional view schematically showing an example of a general structure of a SAW resonator. 図3は、参考例1に係る保護膜の形状を示す断面図である。FIG. 3 is a cross-sectional view showing the shape of the protective film according to Reference Example 1. 図4は、実施例1に係る保護膜の形状を示す断面図である。FIG. 4 is a cross-sectional view showing the shape of the protective film according to the first embodiment. 図5は、参考例1、実施例1に係るSAW共振子の周波数特性を示すグラフである。FIG. 5 is a graph showing the frequency characteristics of the SAW resonators according to Reference Example 1 and Example 1. 図6は、参考例1、実施例1に係るSAW共振子の周波数特性を示すグラフである。FIG. 6 is a graph showing the frequency characteristics of the SAW resonators according to Reference Example 1 and Example 1. 図7は、参考例2に係る保護膜の形状を示す断面図である。FIG. 7 is a cross-sectional view showing the shape of the protective film according to Reference Example 2. 図8は、実施例2に係る保護膜の形状を示す断面図である。FIG. 8 is a cross-sectional view showing the shape of the protective film according to the second embodiment. 図9は、実施例3に係る保護膜の形状を示す断面図である。FIG. 9 is a cross-sectional view showing the shape of the protective film according to the third embodiment. 図10は、実施例4に係る保護膜の形状を示す断面図である。FIG. 10 is a sectional view showing the shape of the protective film according to the fourth embodiment. 図11は、実施例5に係る保護膜の形状を示す断面図である。FIG. 11 is a sectional view showing the shape of the protective film according to the fifth embodiment. 図12は、実施例6に係る保護膜の形状を示す断面図である。FIG. 12 is a cross-sectional view showing the shape of the protective film according to Example 6. 図13は、参考例2、実施例2~6に係るSAW共振子の周波数特性を示すグラフである。FIG. 13 is a graph showing frequency characteristics of SAW resonators according to Reference Example 2 and Examples 2 to 6. 図14は、マルチプレクサの一般的な構成の一例を示す機能ブロック図である。FIG. 14 is a functional block diagram showing an example of a general configuration of a multiplexer.
 本発明の実施の形態について、実施例及び図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。 Embodiments of the present invention will be described in detail with reference to examples and drawings. It should be noted that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following embodiments are examples, and are not intended to limit the present invention.
 以下では、実施の形態に係る弾性波デバイスについて説明する前に、弾性波デバイスの一般的な構造について、弾性表面波(SAW:Surface Acoustic Wave)共振子の例を挙げて説明する。 Before describing the acoustic wave device according to the embodiment, a general structure of the acoustic wave device will be described below by taking an example of a surface acoustic wave (SAW: Surface Acoustic Wave) resonator.
 図1は、SAW共振子(以下、単に共振子とも言う)の一般的な構造の一例を模式的に示す平面図である。図1に示されるように、共振子1は、基板2と、基板2上に配置された1対の櫛歯状電極3a、3bとからなる。1対の櫛歯状電極3a、3bは、IDT電極3を構成する。 FIG. 1 is a plan view schematically showing an example of a general structure of a SAW resonator (hereinafter, also simply referred to as a resonator). As shown in FIG. 1, the resonator 1 includes a substrate 2 and a pair of comb-teeth- shaped electrodes 3 a and 3 b arranged on the substrate 2. The pair of comb-teeth- shaped electrodes 3 a and 3 b form the IDT electrode 3.
 櫛歯状電極3aは、櫛歯形状に配置され、互いに平行な複数の電極指4aと、複数の電極指4aのそれぞれの一端同士を接続するバスバー電極5aとで構成されている。また、櫛歯状電極3bは、櫛歯形状に配置され、互いに平行な複数の電極指4bと、複数の電極指4bのそれぞれの一端同士を接続するバスバー電極5bとで構成されている。複数の電極指4a、4bは、弾性波伝搬方向Xと直交する方向に延びるように形成されている。 The comb-teeth-shaped electrode 3a is arranged in a comb-teeth shape and is composed of a plurality of electrode fingers 4a that are parallel to each other and a bus bar electrode 5a that connects the respective one ends of the plurality of electrode fingers 4a. The comb-teeth-shaped electrode 3b is arranged in a comb-teeth shape and includes a plurality of electrode fingers 4b parallel to each other and a bus bar electrode 5b connecting one end of each of the plurality of electrode fingers 4b. The plurality of electrode fingers 4a and 4b are formed so as to extend in a direction orthogonal to the elastic wave propagation direction X.
 なお、図1に示された共振子1は、SAW共振子の一般的な構造を説明するためのものであって、櫛歯状電極3a、3bを構成する電極指4a、4bの本数や長さなどは、これに限定されない。 The resonator 1 shown in FIG. 1 is for explaining a general structure of a SAW resonator, and includes the number and length of the electrode fingers 4a and 4b forming the comb- shaped electrodes 3a and 3b. Sa, etc. are not limited to this.
 図2は、SAW共振子の一般的な構造の一例を模式的に示す断面図であり、図1のII-II線における断面に対応する。図2に示されるように、基板2は、圧電体層23、低音速膜22、高音速支持基板21からなる積層体で構成されている。IDT電極3(つまり、電極指4a、4b、バスバー電極5a、5b)は、密着層31、主電極層32、および密着層33からなる積層体で構成されている。 FIG. 2 is a sectional view schematically showing an example of a general structure of a SAW resonator, and corresponds to the section taken along the line II-II in FIG. As shown in FIG. 2, the substrate 2 is composed of a laminated body including a piezoelectric layer 23, a low acoustic velocity film 22, and a high acoustic velocity support substrate 21. The IDT electrode 3 (that is, the electrode fingers 4a and 4b and the bus bar electrodes 5a and 5b) is composed of a laminated body including an adhesion layer 31, a main electrode layer 32, and an adhesion layer 33.
 基板2は、高音速支持基板21、低音速膜22、および圧電体層23がこの順に積層された積層体で構成されている。 The substrate 2 is composed of a laminated body in which a high acoustic velocity support substrate 21, a low acoustic velocity film 22, and a piezoelectric layer 23 are laminated in this order.
 高音速支持基板21は、低音速膜22、圧電体層23、IDT電極3、および保護膜6を支持する基板である。高音速支持基板21は、圧電体層23を伝搬する弾性波(表面波)の音速よりも、高音速支持基板21中のバルク波の音速が高速となる基板であり、例えばSi(シリコン)で構成される。高音速支持基板21の厚みは、特には限定されない。 The high sound velocity support substrate 21 is a substrate that supports the low sound velocity film 22, the piezoelectric layer 23, the IDT electrode 3, and the protective film 6. The high acoustic velocity support substrate 21 is a substrate in which the acoustic velocity of the bulk wave in the high acoustic velocity support substrate 21 is higher than the acoustic velocity of the elastic wave (surface wave) propagating in the piezoelectric layer 23, and is made of, for example, Si (silicon). Composed. The thickness of the high sound velocity support substrate 21 is not particularly limited.
 低音速膜22は、圧電体層23を伝搬する弾性波の音速よりも、低音速膜22中のバルク波の音速が低速となる膜であり、例えば、SiO2(二酸化ケイ素)を主成分とする材料で構成される。低音速膜22の厚みは、例えば673nmである。 The low acoustic velocity film 22 is a film in which the acoustic velocity of the bulk wave in the low acoustic velocity film 22 is slower than the acoustic velocity of the elastic wave propagating in the piezoelectric layer 23, and is composed of, for example, SiO 2 (silicon dioxide) as a main component. Composed of materials. The thickness of the low acoustic velocity film 22 is, for example, 673 nm.
 圧電体層23は、IDT電極3によって励振される弾性表面波が伝搬する層であり、例えば、50°YカットX伝搬LiTaO3圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸から50°回転した軸を法線とする面で切断したタンタル酸リチウム単結晶またはセラミックス)で構成される。圧電体層23の厚みは、例えば、600nmである。 The piezoelectric layer 23 is a layer in which a surface acoustic wave excited by the IDT electrode 3 propagates, and is, for example, 50° Y-cut X-propagating LiTaO3 piezoelectric single crystal or piezoelectric ceramic (50° from the Y axis with the X axis as the central axis). It is composed of a lithium tantalate single crystal or ceramics cut along a plane whose normal is the rotated axis. The thickness of the piezoelectric layer 23 is, for example, 600 nm.
 上述の積層構造の基板2によれば、基板2の厚み方向における弾性波エネルギーの閉じ込め効率が高くなるので、共振周波数及び反共振周波数におけるQ値を高めることができる。ただし、基板2を積層構造とすることは必須ではなく、基板2を単層の圧電基板により構成しても構わない。 According to the substrate 2 having the above-described laminated structure, the efficiency of confining elastic wave energy in the thickness direction of the substrate 2 is increased, so that the Q value at the resonance frequency and the anti-resonance frequency can be increased. However, it is not essential that the substrate 2 has a laminated structure, and the substrate 2 may be configured by a single-layer piezoelectric substrate.
 IDT電極3は、基板2上に形成され、密着層31、主電極層32、および密着層33からなる積層体で構成されている。図2に示されるIDT電極3の積層構造は、電極指4a、4bおよびバスバー電極5a、5bに適用される。 The IDT electrode 3 is formed on the substrate 2 and is composed of a laminated body including an adhesion layer 31, a main electrode layer 32, and an adhesion layer 33. The laminated structure of the IDT electrode 3 shown in FIG. 2 is applied to the electrode fingers 4a and 4b and the bus bar electrodes 5a and 5b.
 密着層31は、圧電体層23と主電極層32との密着性を向上させるための層であり、例えば、Ti(チタニウム)で構成される。密着層31の厚みは、例えば、6nmである。 The adhesion layer 31 is a layer for improving the adhesion between the piezoelectric layer 23 and the main electrode layer 32, and is made of, for example, Ti (titanium). The adhesion layer 31 has a thickness of 6 nm, for example.
 主電極層32は、例えば、Al(アルミニウム)またはAl合金で構成される。主電極層32の厚みは、例えば130nmである。 The main electrode layer 32 is made of, for example, Al (aluminum) or an Al alloy. The thickness of the main electrode layer 32 is, for example, 130 nm.
 密着層33は、主電極層32と保護膜6との密着性を向上させるための層であり、例えば、Ti(チタニウム)で構成される。密着層33の厚みは、例えば、12nmである。 The adhesion layer 33 is a layer for improving the adhesion between the main electrode layer 32 and the protective film 6, and is made of, for example, Ti (titanium). The adhesion layer 33 has a thickness of 12 nm, for example.
 IDT電極3(特には、電極指4a、4b)の線幅wは0.5μmであり、配置間隔Lは、1μmである。配置間隔Lは、圧電体層23を伝搬する弾性表面波の波長λである2.0μmの半分に対応する。 The line width w of the IDT electrode 3 (particularly the electrode fingers 4a and 4b) is 0.5 μm, and the arrangement interval L is 1 μm. The arrangement interval L corresponds to half of 2.0 μm, which is the wavelength λ of the surface acoustic wave propagating through the piezoelectric layer 23.
 保護膜6は、IDT電極3の耐久性を向上させる層であり、例えば、SiO2(二酸化ケイ素)を主成分とする材料で構成される。保護膜6は、基板2のIDT電極3が形成された主面、およびIDT電極3の側面および上面を途切れなく覆っている。 The protective film 6 is a layer that improves the durability of the IDT electrode 3, and is made of, for example, a material whose main component is SiO 2 (silicon dioxide). The protective film 6 seamlessly covers the main surface of the substrate 2 on which the IDT electrode 3 is formed, and the side surface and the upper surface of the IDT electrode 3.
 以上のように構成される共振子1は、SH波をメインモードとして利用する弾性波デバイスの一例であり、メインモードに対して0.75倍付近の周波数に、レイリー波レスポンスが発生する。 The resonator 1 configured as described above is an example of an acoustic wave device that uses SH waves as a main mode, and a Rayleigh wave response occurs at a frequency around 0.75 times that of the main mode.
 共振子1は、例えば、共通接続されてマルチプレクサを構成する複数のフィルタに用いることができる。このとき、共通接続された相手側フィルタの通過帯域と、レイリー波レスポンスの周波数とが一致すると、相手側フィルタの通過特性が劣化する。そこで、レイリー波レスポンスの周波数を共通接続された相手側フィルタの通過帯域からずらす必要が生じる。 The resonator 1 can be used, for example, for a plurality of filters that are commonly connected to form a multiplexer. At this time, if the pass band of the commonly-connected filter on the other side and the frequency of the Rayleigh wave response match, the pass characteristic of the filter on the other side deteriorates. Therefore, it becomes necessary to shift the frequency of the Rayleigh wave response from the pass band of the commonly connected counterpart filter.
 例えば、IDT電極3の設計パラメータ(上述の線幅w、配置間隔Lなど)を変更することによってレイリー波レスポンスの周波数を変更することはできるが、この場合、メインモードの周波数特性も変わってしまうため、現実的な対策としては有効ではない。 For example, the frequency of the Rayleigh wave response can be changed by changing the design parameters of the IDT electrode 3 (the line width w, the arrangement interval L described above, etc.), but in this case, the frequency characteristic of the main mode also changes. Therefore, it is not effective as a practical measure.
 そこで、本発明者らは、SH波とレイリー波のうち、特にレイリー波が依存する設計パラメータに着目することにより、保護膜の膜厚を不均一に設ける構造に想到した。以下、実施の形態に係る共振子における保護膜の膜厚の特徴について、詳細に説明する。なお、以下の説明では、電極指4a、4bは、まとめて電極指4として参照される。 Therefore, the present inventors have conceived a structure in which the film thickness of the protective film is provided unevenly by paying attention to the design parameter on which the Rayleigh wave depends, among SH waves and Rayleigh waves. Hereinafter, the characteristics of the film thickness of the protective film in the resonator according to the embodiment will be described in detail. In the following description, the electrode fingers 4a and 4b are collectively referred to as the electrode finger 4.
 (実施の形態)
 図3は、参考例1に係る保護膜6の形状を示す断面図である。図3では、IDT電極3の1つの電極指4を中心として、電極指4から電極指4の両側に隣接する電極指(図示せず)の各々との中間点までの範囲が示されている。図3の形状の保護膜6を有する共振子を、共振子70として参照する。
(Embodiment)
FIG. 3 is a cross-sectional view showing the shape of the protective film 6 according to Reference Example 1. In FIG. 3, the range from the electrode finger 4 to the midpoint between each electrode finger (not shown) adjacent to both sides of the electrode finger 4 is shown with one electrode finger 4 of the IDT electrode 3 as the center. .. A resonator having the protective film 6 having the shape shown in FIG. 3 is referred to as a resonator 70.
 共振子70では、基板2の主面を覆う保護膜6の第1部分の厚みが30nmで均一であり、電極指4の上面を覆う保護膜6の第2部分の厚みが50nmで均一であり、電極指4の側面を覆う保護膜6の第3部分の厚みが50nmで均一である。図3に示される断面構造は、共振子70において、各電極指4を中心として設けられている。 In the resonator 70, the first portion of the protective film 6 covering the main surface of the substrate 2 has a uniform thickness of 30 nm, and the second portion of the protective film 6 covering the upper surfaces of the electrode fingers 4 has a uniform thickness of 50 nm. The thickness of the third portion of the protective film 6 covering the side surface of the electrode finger 4 is 50 nm and uniform. The cross-sectional structure shown in FIG. 3 is provided centering on each electrode finger 4 in the resonator 70.
 図4は、実施例1に係る保護膜6の形状を示す断面図である。図4の(a)には、IDT電極3の1つの電極指4を中心として、電極指4から電極指4の両側に隣接する電極指(図示せず)の各々との中間点までの範囲が示されている。図4の(b)には、隣接する2つの電極指4a、4bが示されている。なお、「隣接する電極指」とは、隣り合って配置される電極指4a及び電極指4bのことであり、複数の電極指4aのうち隣り合う電極指4a同士、及び、複数の電極指4bのうち隣り合う電極指4b同士のことではない。図4の形状の保護膜6を有する共振子を、共振子71として参照する。 FIG. 4 is a cross-sectional view showing the shape of the protective film 6 according to the first embodiment. FIG. 4A shows a range from one electrode finger 4 of the IDT electrode 3 as a center to an intermediate point between the electrode finger 4 and each of electrode fingers (not shown) adjacent to both sides of the electrode finger 4. It is shown. In FIG. 4B, two adjacent electrode fingers 4a and 4b are shown. The "adjacent electrode fingers" are the electrode fingers 4a and the electrode fingers 4b arranged adjacent to each other, and the adjacent electrode fingers 4a among the plurality of electrode fingers 4a and the plurality of electrode fingers 4b. It does not mean the adjacent electrode fingers 4b among them. A resonator having the protective film 6 having the shape shown in FIG. 4 will be referred to as a resonator 71.
 共振子71では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部の厚みが50nmであり、電極指4の近傍部の厚みが10nmである。また、電極指4の上面を覆う保護膜6の第2部分の厚みが50nmで均一であり、電極指4の側面を覆う保護膜6の第3部分の厚みが50nmで均一である。つまり、共振子71では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部が、電極指4の近傍部より厚い。例えば、電極指4a、4bの各側面を覆って互いに対向する2つの保護層6の間隔(ギャップ)をGとした場合、隣接する電極指間の中間部は、上記2つの保護層6の中間点を含み、当該中間点を基準として電極指4a側および電極指4b側のそれぞれに0G以上0.1G以下離れた範囲である。また、電極指の近傍部は、電極指4aの側面を覆う保護層6から0G以上0.1G以下離れた範囲、または、電極指4bの側面を覆う保護層6から0G以上0.1G以下離れた範囲である。図4に示される断面構造は、共振子71において、各電極指4を中心として設けられている。 In the resonator 71, in the first portion of the protective film 6 that covers the main surface of the substrate 2, the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. .. Further, the thickness of the second portion of the protective film 6 covering the upper surface of the electrode finger 4 is 50 nm and uniform, and the thickness of the third portion of the protective film 6 covering the side surface of the electrode finger 4 is uniform 50 nm. That is, in the resonator 71, the intermediate portion between the adjacent electrode fingers 4 in the first portion of the protective film 6 covering the main surface of the substrate 2 is thicker than the portion in the vicinity of the electrode fingers 4. For example, when the gap (gap) between the two protective layers 6 covering the side surfaces of the electrode fingers 4a and 4b and facing each other is G, the intermediate portion between the adjacent electrode fingers is the intermediate portion of the two protective layers 6 described above. It is a range that includes points and is separated by 0 G or more and 0.1 G or less on the electrode finger 4a side and the electrode finger 4b side with respect to the midpoint. Further, the vicinity of the electrode finger is separated from the protective layer 6 covering the side surface of the electrode finger 4a by 0 G or more and 0.1 G or less, or separated from the protective layer 6 covering the side surface of the electrode finger 4b by 0 G or more and 0.1 G or less. It is a range. The cross-sectional structure shown in FIG. 4 is provided centering on each electrode finger 4 in the resonator 71.
 図3、図4に示す寸法条件に従って共振子70、71のモデルを設定し、シミュレーションによりインピーダンスの周波数特性を求めた。IDT電極3の設計パラメータは、共振子70、71で同一とした。 The models of the resonators 70 and 71 were set according to the dimensional conditions shown in FIGS. 3 and 4, and the frequency characteristics of impedance were obtained by simulation. The design parameters of the IDT electrode 3 are the same for the resonators 70 and 71.
 図5は、共振子70、71のインピーダンスの周波数特性の一例を示すグラフである。図5に見られるように、1900MHz~2000MHz付近で生じるメインモードのレスポンスは、共振子70、71においてほぼ同一である。つまり、保護膜6を均一とするか不均一とするかは、メインモードの周波数特性に実質的に影響しないことが分かる。これに対し、1420MHz~1440MHz付近で生じるレイリー波レスポンスの周波数は、共振子70、71で差があることが分かる。 FIG. 5 is a graph showing an example of frequency characteristics of impedance of the resonators 70 and 71. As can be seen in FIG. 5, the response of the main mode occurring in the vicinity of 1900 MHz to 2000 MHz is almost the same in the resonators 70 and 71. That is, it can be seen that whether the protective film 6 is made uniform or not does not substantially affect the frequency characteristics of the main mode. On the other hand, it can be seen that there is a difference between the resonators 70 and 71 in the frequency of the Rayleigh wave response generated near 1420 MHz to 1440 MHz.
 図6は、レイリー波レスポンスを拡大して示すグラフである。図6に見られるように、レイリー波レスポンスの周波数は、共振子70、71で、約5MHzの差がある。 FIG. 6 is a graph showing an enlarged Rayleigh wave response. As shown in FIG. 6, the frequencies of the Rayleigh wave response are about 5 MHz in the resonators 70 and 71.
 この結果から、保護膜を不均一な厚みで設けることで、保護膜の厚みが均一な場合と比べて、メインモードの周波数特性を実質的に変えることなく、レイリー波レスポンスが発生する周波数を変えられることが分かる。 From this result, it is possible to change the frequency at which the Rayleigh wave response is generated by providing the protective film with a non-uniform thickness without substantially changing the frequency characteristics of the main mode as compared with the case where the thickness of the protective film is uniform. You can see that.
 以下では、保護膜6の形状が異なる他の実施例に係る共振子について説明する。 In the following, resonators according to other examples in which the shape of the protective film 6 is different will be described.
 図7は、参考例2に係る保護膜6の形状を示す断面図である。図7では、IDT電極3の1つの電極指4を中心として、電極指4から電極指4の両側に隣接する電極指(図示せず)の各々との中間点までの範囲が示されている。図7の形状の保護膜6を有する共振子を、共振子80として参照する。 FIG. 7 is a cross-sectional view showing the shape of the protective film 6 according to Reference Example 2. In FIG. 7, a range from the electrode finger 4 of the IDT electrode 3 to an intermediate point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4 is shown. .. A resonator having the protective film 6 having the shape shown in FIG. 7 is referred to as a resonator 80.
 共振子80では、基板2の主面を覆う保護膜6の第1部分の厚みが30nmで均一であり、電極指4の上面を覆う保護膜6の第2部分の厚みが30nmで均一であり、電極指4の側面を覆う保護膜6の第3部分の厚みが30nmで均一である。図7に示される断面構造は、共振子80において、各電極指4を中心として設けられている。 In the resonator 80, the first portion of the protective film 6 covering the main surface of the substrate 2 has a uniform thickness of 30 nm, and the second portion of the protective film 6 covering the upper surfaces of the electrode fingers 4 has a uniform thickness of 30 nm. The thickness of the third portion of the protective film 6 that covers the side surface of the electrode finger 4 is uniform at 30 nm. The cross-sectional structure shown in FIG. 7 is provided centering on each electrode finger 4 in the resonator 80.
 図8は、実施例2に係る保護膜6の形状を示す断面図である。図8では、IDT電極3の1つの電極指4を中心として、電極指4から電極指4の両側に隣接する電極指(図示せず)の各々との中間点までの範囲が示されている。図8の形状の保護膜6を有する共振子を、共振子81として参照する。 FIG. 8 is a sectional view showing the shape of the protective film 6 according to the second embodiment. FIG. 8 shows a range from the electrode finger 4 of the IDT electrode 3 as a center to an intermediate point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4. .. A resonator having the protective film 6 having the shape shown in FIG. 8 will be referred to as a resonator 81.
 共振子81では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部の厚みが50nmであり、電極指4の近傍部の厚みが10nmである。また、電極指4の上面を覆う保護膜6の第2部分のうち、上面の中央部を覆う部分の厚みが50nmであり、上面の端部を覆う部分の厚みが10nmである。また、電極指4の側面を覆う保護膜6の第3部分の厚みが30nmで均一である。つまり、共振子81では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部が、電極指4の近傍部より厚いことに加えて、電極指4の上面を覆う保護膜6の第2部分のうち、上面の中央部を覆う部分が、上面の端部を覆う部分より厚い。図8に示される断面構造は、共振子81において、各電極指4を中心として設けられている。 In the resonator 81, in the first portion of the protective film 6 that covers the main surface of the substrate 2, the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. .. Further, of the second portion of the protective film 6 covering the upper surface of the electrode finger 4, the thickness of the portion covering the central portion of the upper surface is 50 nm, and the thickness of the portion covering the end portion of the upper surface is 10 nm. In addition, the thickness of the third portion of the protective film 6 that covers the side surface of the electrode finger 4 is uniform at 30 nm. That is, in the resonator 81, in the first portion of the protective film 6 that covers the main surface of the substrate 2, the intermediate portion between the adjacent electrode fingers 4 is thicker than the neighboring portion of the electrode finger 4, and Of the second portion of the protective film 6 covering the upper surface of 4, the portion covering the central portion of the upper surface is thicker than the portion covering the end portion of the upper surface. The cross-sectional structure shown in FIG. 8 is provided centering on each electrode finger 4 in the resonator 81.
 図9は、実施例3に係る保護膜6の形状を示す断面図である。図9では、IDT電極3の1つの電極指4を中心として、電極指4から電極指4の両側に隣接する電極指(図示せず)の各々との中間点までの範囲が示されている。図9の形状の保護膜6を有する共振子を、共振子82として参照する。 FIG. 9 is a sectional view showing the shape of the protective film 6 according to the third embodiment. In FIG. 9, a range from the electrode finger 4 of the IDT electrode 3 to an intermediate point between the electrode fingers 4 and the electrode fingers (not shown) adjacent to both sides of the electrode finger 4 is shown. .. A resonator having the protective film 6 having the shape shown in FIG. 9 will be referred to as a resonator 82.
 共振子82では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部の厚みが50nmであり、電極指4の近傍部の厚みが10nmである。また、電極指4の上面を覆う保護膜6の第2部分のうち、上面の中央部を覆う部分の厚みが10nmであり、上面の端部を覆う部分の厚みが50nmである。また、電極指4の側面を覆う保護膜6の第3部分の厚みが30nmで均一である。つまり、共振子82では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部が、電極指4の近傍部より厚いことに加えて、電極指4の上面を覆う保護膜6の第2部分のうち、上面の中央部を覆う部分が、上面の端部を覆う部分より薄い。図9に示される断面構造は、共振子82において、各電極指4を中心として設けられている。 In the resonator 82, in the first portion of the protective film 6 that covers the main surface of the substrate 2, the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. .. Further, of the second portion of the protective film 6 covering the upper surface of the electrode finger 4, the thickness of the portion covering the central portion of the upper surface is 10 nm, and the thickness of the portion covering the end portion of the upper surface is 50 nm. In addition, the thickness of the third portion of the protective film 6 that covers the side surface of the electrode finger 4 is uniform at 30 nm. That is, in the resonator 82, in the first portion of the protective film 6 that covers the main surface of the substrate 2, the intermediate portion between the adjacent electrode fingers 4 is thicker than the vicinity of the electrode finger 4, and Of the second portion of the protective film 6 that covers the upper surface of 4, the portion that covers the central portion of the upper surface is thinner than the portion that covers the end portion of the upper surface. The sectional structure shown in FIG. 9 is provided centering on each electrode finger 4 in the resonator 82.
 図10は、実施例4に係る保護膜6の形状を示す断面図である。図10では、IDT電極3の1つの電極指4を中心として、電極指4から電極指4の両側に隣接する電極指(図示せず)の各々との中間点までの範囲が示されている。図10の形状の保護膜6を有する共振子を、共振子83として参照する。 FIG. 10 is a sectional view showing the shape of the protective film 6 according to the fourth embodiment. FIG. 10 shows a range from the electrode finger 4 of the IDT electrode 3 as a center to a middle point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4. .. A resonator having the protective film 6 having the shape shown in FIG. 10 will be referred to as a resonator 83.
 共振子83では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部の厚みが50nmであり、電極指4の近傍部の厚みが10nmである。また、電極指4の上面を覆う保護膜6の第2部分の厚みが30nmで均一である。また、電極指4の側面を覆う保護膜6の第3部分のうち、側面の下部を覆う部分の厚みが50nmであり、側面の上部を覆う部分の厚みが10nmである。つまり、共振子83では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部が、電極指4の近傍部より厚いことに加えて、電極指4の側面を覆う保護膜6の第3部分のうち、側面の下部を覆う部分が、側面の上部を覆う部分より厚い。図10に示される断面構造は、共振子83において、各電極指4を中心として設けられている。 In the resonator 83, in the first portion of the protective film 6 covering the main surface of the substrate 2, the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. .. Further, the thickness of the second portion of the protective film 6 covering the upper surface of the electrode finger 4 is 30 nm and uniform. Further, of the third portion of the protective film 6 that covers the side surface of the electrode finger 4, the thickness of the portion that covers the lower portion of the side surface is 50 nm, and the thickness of the portion that covers the upper portion of the side surface is 10 nm. That is, in the resonator 83, in the first portion of the protective film 6 that covers the main surface of the substrate 2, the intermediate portion between the adjacent electrode fingers 4 is thicker than the neighboring portion of the electrode finger 4, and Of the third portion of the protective film 6 that covers the side surface of 4, the portion that covers the lower portion of the side surface is thicker than the portion that covers the upper portion of the side surface. The cross-sectional structure shown in FIG. 10 is provided centering on each electrode finger 4 in the resonator 83.
 図11は、実施例5に係る保護膜6の形状を示す断面図である。図11では、IDT電極3の1つの電極指4を中心として、電極指4から電極指4の両側に隣接する電極指(図示せず)の各々との中間点までの範囲が示されている。図11の形状の保護膜6を有する共振子を、共振子84として参照する。 FIG. 11 is a sectional view showing the shape of the protective film 6 according to the fifth embodiment. In FIG. 11, a range from the electrode finger 4 of the IDT electrode 3 to an intermediate point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4 is shown. .. A resonator having the protective film 6 having the shape shown in FIG. 11 is referred to as a resonator 84.
 共振子84では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部の厚みが50nmであり、電極指4の近傍部の厚みが10nmである。また、電極指4の上面を覆う保護膜6の第2部分の厚みが30nmで均一である。また、電極指4の側面を覆う保護膜6の第3部分のうち、側面の下部を覆う部分の厚みが10nmであり、側面の上部を覆う部分の厚みが50nmである。つまり、共振子84では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部が、電極指4の近傍部より厚いことに加えて、電極指4の側面を覆う保護膜6の第3部分のうち、側面の下部を覆う部分が、側面の上部を覆う部分より薄い。図11に示される断面構造は、共振子84において、各電極指4を中心として設けられている。 In the resonator 84, in the first portion of the protective film 6 that covers the main surface of the substrate 2, the thickness of the intermediate portion between the adjacent electrode fingers 4 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. .. Further, the thickness of the second portion of the protective film 6 covering the upper surface of the electrode finger 4 is 30 nm and uniform. Further, of the third portion of the protective film 6 that covers the side surface of the electrode finger 4, the thickness of the portion that covers the lower portion of the side surface is 10 nm, and the thickness of the portion that covers the upper portion of the side surface is 50 nm. That is, in the resonator 84, in the first portion of the protective film 6 that covers the main surface of the substrate 2, the intermediate portion between the adjacent electrode fingers 4 is thicker than the vicinity of the electrode finger 4, and Of the third portion of the protective film 6 that covers the side surface of 4, the portion that covers the lower portion of the side surface is thinner than the portion that covers the upper portion of the side surface. The cross-sectional structure shown in FIG. 11 is provided centering on each electrode finger 4 in the resonator 84.
 図12は、実施例6に係る保護膜6の形状を示す断面図である。図12では、IDT電極3の1つの電極指4を中心として、電極指4から電極指4の両側に隣接する電極指(図示せず)の各々との中間点までの範囲が示されている。図12の形状の保護膜6を有する共振子を、共振子85として参照する。 FIG. 12 is a sectional view showing the shape of the protective film 6 according to the sixth embodiment. In FIG. 12, a range from the electrode finger 4 of the IDT electrode 3 to the middle point between the electrode finger 4 and each of the electrode fingers (not shown) adjacent to both sides of the electrode finger 4 is shown. .. A resonator having the protective film 6 having the shape shown in FIG. 12 is referred to as a resonator 85.
 共振子85では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部の厚みが50nmであり、電極指4の近傍部の厚みが10nmである。また、電極指4の上面を覆う保護膜6の第2部分のうち、上面の中央部を覆う部分の厚みが50nmであり、上面の端部を覆う部分の厚みが10nmである。また、電極指4の側面を覆う保護膜6の第3部分のうち、側面の下部を覆う部分の厚みが50nmであり、側面の上部を覆う部分の厚みが10nmである。つまり、共振子83では、基板2の主面を覆う保護膜6の第1部分のうち、隣接する電極指4間の中間部が、電極指4の近傍部より厚いことに加えて、電極指4の上面を覆う保護膜6の第2部分のうち、上面の中央部を覆う部分が、上面の端部を覆う部分より厚い。さらには、電極指4の側面を覆う保護膜6の第3部分のうち、側面の下部を覆う部分が、側面の上部を覆う部分より厚い。図12に示される断面構造は、共振子85において、各電極指4を中心として設けられている。 In the resonator 85, the thickness of the intermediate portion between the adjacent electrode fingers 4 of the first portion of the protective film 6 covering the main surface of the substrate 2 is 50 nm, and the thickness in the vicinity of the electrode fingers 4 is 10 nm. .. Further, of the second portion of the protective film 6 covering the upper surface of the electrode finger 4, the thickness of the portion covering the central portion of the upper surface is 50 nm, and the thickness of the portion covering the end portion of the upper surface is 10 nm. Further, of the third portion of the protective film 6 that covers the side surface of the electrode finger 4, the thickness of the portion that covers the lower portion of the side surface is 50 nm, and the thickness of the portion that covers the upper portion of the side surface is 10 nm. That is, in the resonator 83, in the first portion of the protective film 6 that covers the main surface of the substrate 2, the intermediate portion between the adjacent electrode fingers 4 is thicker than the neighboring portion of the electrode finger 4, and Of the second portion of the protective film 6 covering the upper surface of 4, the portion covering the central portion of the upper surface is thicker than the portion covering the end portion of the upper surface. Furthermore, of the third portion of the protective film 6 that covers the side surface of the electrode finger 4, the portion that covers the lower portion of the side surface is thicker than the portion that covers the upper portion of the side surface. The sectional structure shown in FIG. 12 is provided centering on each electrode finger 4 in the resonator 85.
 図7~12に示す寸法条件に従って共振子80~85のモデルを設定し、シミュレーションによりインピーダンスの周波数特性を求めた。IDT電極3の設計パラメータは、共振子80~85で同一とした。メインモードのレスポンスは、共振子80~85においてほぼ同一であった(図示せず)。 The models of the resonators 80 to 85 were set according to the dimensional conditions shown in FIGS. 7 to 12, and the impedance frequency characteristics were obtained by simulation. The design parameters of the IDT electrode 3 were the same for the resonators 80 to 85. The response of the main mode was almost the same in the resonators 80 to 85 (not shown).
 図13は、共振子80~85のレイリー波レスポンスを拡大して示すグラフである。図13に見られるように、レイリー波レスポンスの周波数は、共振子80と、共振子81~85の各々とで約3MHz~9MHzの差がある。 FIG. 13 is a graph showing an enlarged Rayleigh wave response of the resonators 80 to 85. As shown in FIG. 13, the frequency of the Rayleigh wave response differs by about 3 MHz to 9 MHz between the resonator 80 and each of the resonators 81 to 85.
 この結果から、保護膜を不均一な厚みで設けることで、保護膜の厚みが均一な場合と比べて、メインモードの周波数特性を実質的に変えることなく、レイリー波レスポンスが発生する周波数を変えられることが分かる。 From this result, it is possible to change the frequency at which the Rayleigh wave response is generated by providing the protective film with a non-uniform thickness without substantially changing the frequency characteristics of the main mode as compared with the case where the thickness of the protective film is uniform. You can see that.
 以上説明した、保護膜を不均一な厚みで設けた共振子は、例えば、共通接続され、マルチプレクサを構成する複数のフィルタに用いることができる。 The above-described resonator provided with the protective film having a non-uniform thickness can be used, for example, for a plurality of filters that are commonly connected and that form a multiplexer.
 図14は、マルチプレクサの一般的な構成の例を示す機能ブロック図である。図14に示されるように、マルチプレクサ90は、一端同士が共通接続されたフィルタ91、92を備え、フィルタ91、92のうち少なくとも1つのフィルタは、保護膜の厚みが不均一な弾性波デバイス(例えば、共振子71、81~85のうちのいずれかの共振子)を用いて構成されている。 FIG. 14 is a functional block diagram showing an example of a general configuration of a multiplexer. As shown in FIG. 14, the multiplexer 90 includes filters 91 and 92 whose one ends are commonly connected to each other. At least one of the filters 91 and 92 has an elastic wave device in which a protective film has a nonuniform thickness ( For example, the resonator 71, any one of the resonators 81 to 85 is used.
 マルチプレクサ90において、例えば、フィルタ91のレイリー波レスポンスの周波数がフィルタ92の通過帯域と一致したとする。この場合、フィルタ91を保護膜の厚みが不均一な共振子で構成することで、フィルタ91の通過特性を維持しながら、フィルタ91のレイリー波レスポンスの周波数をフィルタ92の通過帯域からずらすことができる。 In the multiplexer 90, for example, it is assumed that the frequency of the Rayleigh wave response of the filter 91 matches the pass band of the filter 92. In this case, by configuring the filter 91 with a resonator in which the thickness of the protective film is not uniform, it is possible to shift the frequency of the Rayleigh wave response of the filter 91 from the pass band of the filter 92 while maintaining the pass characteristic of the filter 91. it can.
 以上、本発明の実施の形態に係る弾性波デバイスおよびマルチプレクサについて、実施の形態に基づいて説明したが、本発明は、個々の実施の形態には限定されない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。 The elastic wave device and the multiplexer according to the embodiments of the present invention have been described above based on the embodiments, but the present invention is not limited to the individual embodiments. As long as it does not depart from the gist of the present invention, various modifications made by those skilled in the art may be applied to the present embodiment, or a configuration constructed by combining components in different embodiments may be one or more of the present invention. It may be included in the range of the aspect.
 厚みが不均一な保護膜の形成方法は、特には限定されないが、一例として、保護膜の形成時のスパッタ条件や、保護膜を削り周波数調整する工程でのエッチングやミリングの条件によって形成することができる。つまり、厚みが不均一な保護膜は、既存の複数の工程を利用して低コストに形成することができる。 The method for forming the protective film having a non-uniform thickness is not particularly limited, but as an example, the protective film may be formed by the sputtering conditions when forming the protective film or the etching and milling conditions in the step of adjusting the frequency by scraping the protective film. You can That is, the protective film having a non-uniform thickness can be formed at a low cost by utilizing a plurality of existing processes.
 具体的に、保護膜の特定の形状への加工は、周波数調整時(保護膜を削る時)にコントロールすることで、周波数調整前の波形を確認後、メインモードの周波数を合わせることと同時に行ってもよい。 Specifically, the processing of the protective film into a specific shape is performed at the same time as adjusting the frequency of the main mode after checking the waveform before frequency adjustment by controlling during frequency adjustment (when cutting the protective film). May be.
 また、保護膜形成前や、周波数調整前で、メインモードとレイリー波レスポンスの位置を把握し、必要に応じてスパッタやエッチング、ミリングの条件をサンプル毎に変えるといった適応的な方法を採ることもできる。 Also, before forming the protective film and before adjusting the frequency, the position of the main mode and the Rayleigh wave response can be grasped, and an adaptive method can be adopted by changing the conditions of sputtering, etching, and milling for each sample if necessary. it can.
 (まとめ)
 以上説明したように、本発明の一態様に係る弾性波デバイスは、SH波をメインモードとして利用する弾性波デバイスであって、基板と、前記基板の主面上に形成された複数の電極指を有するIDT電極と、前記基板の前記主面、前記複数の電極指の側面および上面を途切れなく覆う保護膜と、を備え、前記基板の前記主面を覆う前記保護膜の部分のうち、隣接する前記電極指の中間部が、前記電極指の近傍部より厚い。
(Summary)
As described above, an acoustic wave device according to an aspect of the present invention is an acoustic wave device that uses SH waves as a main mode, and includes a substrate and a plurality of electrode fingers formed on the main surface of the substrate. An IDT electrode having: and a protective film that seamlessly covers the main surface of the substrate, side surfaces and upper surfaces of the plurality of electrode fingers, and is adjacent to a part of the protective film that covers the main surface of the substrate. The middle portion of the electrode finger is thicker than the vicinity of the electrode finger.
 また、前記電極指の前記上面を覆う前記保護膜の部分のうち、前記上面の中央部を覆う部分が、前記上面の端部を覆う部分より厚くてもよい。 Also, of the portion of the protective film that covers the upper surface of the electrode finger, the portion that covers the central portion of the upper surface may be thicker than the portion that covers the end portion of the upper surface.
 また、前記電極指の前記上面を覆う前記保護膜の部分のうち、前記上面の中央部を覆う部分が、前記上面の端部を覆う部分より薄くてもよい。 Further, of the portion of the protective film that covers the upper surface of the electrode finger, the portion that covers the central portion of the upper surface may be thinner than the portion that covers the end portion of the upper surface.
 また、前記電極指の前記側面を覆う前記保護膜の部分のうち、前記側面の下部を覆う部分が、前記側面の上部を覆う部分より厚くてもよい。 Also, of the portion of the protective film that covers the side surface of the electrode finger, the portion that covers the lower portion of the side surface may be thicker than the portion that covers the upper portion of the side surface.
 また、前記電極指の前記側面を覆う前記保護膜の部分のうち、前記側面の下部を覆う部分が、前記側面の上部を覆う部分より薄くてもよい。 Also, of the portion of the protective film that covers the side surface of the electrode finger, the portion that covers the lower portion of the side surface may be thinner than the portion that covers the upper portion of the side surface.
 これにより、保護膜を不均一な厚みで設けることで、保護膜の厚みが均一な場合と比べて、レイリー波レスポンスが発生する周波数を変化させることができる。このとき、IDT電極の設計パラメータを変化させなければ、メインモードの周波数特性は実質的に変化しない。したがって、メインモードの周波数特性を実質的に変えることなく、レイリー波レスポンスが発生する周波数を変えることができる弾性波デバイスが得られる。 By doing this, by providing the protective film with a non-uniform thickness, it is possible to change the frequency at which the Rayleigh wave response is generated, compared to the case where the protective film has a uniform thickness. At this time, unless the design parameter of the IDT electrode is changed, the frequency characteristic of the main mode does not substantially change. Therefore, it is possible to obtain the acoustic wave device capable of changing the frequency at which the Rayleigh wave response is generated without substantially changing the frequency characteristics of the main mode.
 例えば、レイリー波レスポンスが他のフィルタの通過特性に悪影響を与える場合など、保護膜を不均一な厚みで設けることで、メインモードの周波数特性を維持しながら、レイリー波レスポンスの周波数を他のフィルタの通過帯域からずらすことができる。 For example, when the Rayleigh wave response adversely affects the pass characteristics of other filters, by providing a protective film with a non-uniform thickness, the frequency characteristics of the Rayleigh wave response can be changed by other filters while maintaining the frequency characteristics of the main mode. Can be shifted from the pass band of.
 また、前記基板は、タンタル酸リチウムを含有する圧電材料で構成され、前記IDT電極が一方の主面上に形成された圧電体層からなっていてもよい。 The substrate may be composed of a piezoelectric material containing lithium tantalate, and the IDT electrode may be composed of a piezoelectric layer formed on one main surface.
 また、前記基板は、タンタル酸リチウムを含有する圧電材料で構成され、前記IDT電極が一方の主面上に形成された圧電体層と、前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速支持基板と、前記高音速支持基板と前記圧電体層との間に配置され、前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速である低音速膜と、を有してもよい。 Further, the substrate is made of a piezoelectric material containing lithium tantalate, the piezoelectric layer having the IDT electrode formed on one main surface, and the acoustic wave velocity propagating through the piezoelectric layer rather than the acoustic wave velocity propagating through the piezoelectric layer. A bulk acoustic wave velocity is higher than that of a high acoustic velocity supporting substrate having a high bulk acoustic velocity and a high acoustic velocity supporting substrate and the piezoelectric layer. And a low sonic film that is slow.
 これにより、基板が単層構造および積層構造のいずれの構造の弾性波デバイスであっても、メインモードの周波数特性を実質的に変えることなく、レイリー波レスポンスが発生する周波数を変えることができる弾性波デバイスが得られる。 As a result, regardless of whether the substrate is an acoustic wave device having a single-layer structure or a laminated structure, the frequency at which the Rayleigh wave response is generated can be changed without substantially changing the frequency characteristics of the main mode. Wave device is obtained.
 また、前記保護膜の最大の厚みが、前記IDT電極の厚みの半分以下であるとしてもよい。 The maximum thickness of the protective film may be half the thickness of the IDT electrode or less.
 これにより、保護膜が過度に厚くならいので、保護膜が厚い場合に生じるQ値の劣化が抑えられる。その結果、特性に優れた弾性波デバイスが得られる。 This will prevent the Q value from deteriorating when the protective film is thick because the protective film is too thick. As a result, an elastic wave device having excellent characteristics can be obtained.
 本発明の一態様に係るマルチプレクサは、一端同士が互いに接続された複数のフィルタを備え、前記複数のフィルタのうち少なくとも1つのフィルタは、前記弾性波デバイスを用いて構成されている。 The multiplexer according to an aspect of the present invention includes a plurality of filters whose one ends are connected to each other, and at least one filter among the plurality of filters is configured using the acoustic wave device.
 これにより、前述した弾性波デバイスの効果に基づき、通過特性に優れたマルチプレクサが得られる。 ∙ This makes it possible to obtain a multiplexer with excellent pass characteristics based on the effects of the acoustic wave device described above.
 本発明は、弾性波デバイスおよび弾性波デバイスを用いたマルチプレクサとして、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used for communication devices such as mobile phones as an elastic wave device and a multiplexer using the elastic wave device.
 1、70、71、80~85  共振子
 2  基板
 3  IDT電極
 3a、3b  櫛歯状電極
 4、4a、4b  電極指
 5a、5b  バスバー電極
 6  保護膜
 21  高音速支持基板
 22  低音速膜
 23  圧電体層
 31、33  密着層
 32  主電極層
 90  マルチプレクサ
 91、92  フィルタ
1, 70, 71, 80 to 85 Resonator 2 Substrate 3 IDT electrodes 3a, 3b Comb-shaped electrodes 4, 4a, 4b Electrode fingers 5a, 5b Busbar electrode 6 Protective film 21 High acoustic velocity support substrate 22 Low acoustic velocity film 23 Piezoelectric body Layer 31, 33 Adhesion layer 32 Main electrode layer 90 Multiplexer 91, 92 Filter

Claims (9)

  1.  SH波をメインモードとして利用する弾性波デバイスは、
     基板と、
     前記基板の主面上に形成された複数の電極指を有するIDT(InterDigital Transducer)電極と、
     前記基板の前記主面、前記複数の電極指の側面および上面を途切れなく覆う保護膜と、
    を備え、
     前記基板の前記主面を覆う前記保護膜の部分のうち、隣接する前記電極指間の中間部が、前記電極指の近傍部より厚い、
     弾性波デバイス。
    An acoustic wave device that uses SH waves as a main mode is
    Board,
    An IDT (InterDigital Transducer) electrode having a plurality of electrode fingers formed on the main surface of the substrate;
    A protective film that seamlessly covers the main surface of the substrate, side surfaces and upper surfaces of the plurality of electrode fingers;
    Equipped with
    Of the portion of the protective film that covers the main surface of the substrate, an intermediate portion between adjacent electrode fingers is thicker than a portion near the electrode fingers,
    Acoustic wave device.
  2.  前記電極指の前記上面を覆う前記保護膜の部分のうち、前記上面の中央部を覆う部分が、前記上面の端部を覆う部分より厚い、
     請求項1に記載の弾性波デバイス。
    Of the portion of the protective film that covers the upper surface of the electrode finger, the portion that covers the central portion of the upper surface is thicker than the portion that covers the end portion of the upper surface,
    The acoustic wave device according to claim 1.
  3.  前記電極指の前記上面を覆う前記保護膜の部分のうち、前記上面の中央部を覆う部分が、前記上面の端部を覆う部分より薄い、
     請求項1に記載の弾性波デバイス。
    Of the portion of the protective film that covers the upper surface of the electrode finger, the portion that covers the central portion of the upper surface is thinner than the portion that covers the end portion of the upper surface,
    The acoustic wave device according to claim 1.
  4.  前記電極指の前記側面を覆う前記保護膜の部分のうち、前記側面の下部を覆う部分が、前記側面の上部を覆う部分より厚い、
     請求項1から3のいずれか1項に記載の弾性波デバイス。
    Of the portion of the protective film that covers the side surface of the electrode finger, the portion that covers the lower portion of the side surface is thicker than the portion that covers the upper portion of the side surface,
    The acoustic wave device according to any one of claims 1 to 3.
  5.  前記電極指の前記側面を覆う前記保護膜の部分のうち、前記側面の下部を覆う部分が、前記側面の上部を覆う部分より薄い、
     請求項1から3のいずれか1項に記載の弾性波デバイス。
    Of the portion of the protective film that covers the side surface of the electrode finger, the portion that covers the lower portion of the side surface is thinner than the portion that covers the upper portion of the side surface,
    The acoustic wave device according to any one of claims 1 to 3.
  6.  前記基板は、タンタル酸リチウムを含有する圧電材料で構成され、前記IDT電極が一方の主面上に形成された圧電体層からなる、
     請求項1から5のいずれか1項に記載の弾性波デバイス。
    The substrate is composed of a piezoelectric material containing lithium tantalate, and the IDT electrode is composed of a piezoelectric layer formed on one main surface.
    The acoustic wave device according to any one of claims 1 to 5.
  7.  前記基板は、
     タンタル酸リチウムを含有する圧電材料で構成され、前記IDT電極が一方の主面上に形成された圧電体層と、
     前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が高速である高音速支持基板と、
     前記高音速支持基板と前記圧電体層との間に配置され、前記圧電体層を伝搬する弾性波音速よりも、伝搬するバルク波音速が低速である低音速膜と、を有する、
     請求項1から5のいずれか1項に記載の弾性波デバイス。
    The substrate is
    A piezoelectric layer composed of a piezoelectric material containing lithium tantalate, wherein the IDT electrode is formed on one main surface;
    A higher acoustic velocity support substrate in which the acoustic velocity of a bulk wave propagating is higher than the acoustic velocity of an acoustic wave propagating in the piezoelectric layer,
    A low sonic film that is disposed between the high acoustic velocity support substrate and the piezoelectric layer, and has a low bulk acoustic wave velocity that propagates as compared to the acoustic wave acoustic velocity that propagates through the piezoelectric layer.
    The acoustic wave device according to any one of claims 1 to 5.
  8.  前記保護膜の最大の厚みが、前記IDT電極の厚みの半分以下である、
     請求項1から7のいずれか1項に記載の弾性波デバイス。
    The maximum thickness of the protective film is less than half the thickness of the IDT electrode,
    The acoustic wave device according to any one of claims 1 to 7.
  9.  一端同士が互いに接続された複数のフィルタを備え、
     前記複数のフィルタのうち少なくとも1つのフィルタは、請求項1から8のいずれか1項に記載の弾性波デバイスを用いて構成されている、
     マルチプレクサ。
    Equipped with multiple filters with one end connected to each other,
    At least one filter of the plurality of filters is configured using the acoustic wave device according to any one of claims 1 to 8,
    Multiplexer.
PCT/JP2020/002804 2019-01-31 2020-01-27 Elastic wave device and multiplexer WO2020158673A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217018695A KR102625090B1 (en) 2019-01-31 2020-01-27 Acoustic wave devices and multiplexers
JP2020569617A JP7168009B2 (en) 2019-01-31 2020-01-27 Acoustic wave devices and multiplexers
CN202080010068.1A CN113348625B (en) 2019-01-31 2020-01-27 Elastic wave device and multiplexer
US17/380,068 US11936359B2 (en) 2019-01-31 2021-07-20 Acoustic wave device and multiplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-015718 2019-01-31
JP2019015718 2019-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/380,068 Continuation US11936359B2 (en) 2019-01-31 2021-07-20 Acoustic wave device and multiplexer

Publications (1)

Publication Number Publication Date
WO2020158673A1 true WO2020158673A1 (en) 2020-08-06

Family

ID=71841346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002804 WO2020158673A1 (en) 2019-01-31 2020-01-27 Elastic wave device and multiplexer

Country Status (5)

Country Link
US (1) US11936359B2 (en)
JP (1) JP7168009B2 (en)
KR (1) KR102625090B1 (en)
CN (1) CN113348625B (en)
WO (1) WO2020158673A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045086A1 (en) * 2020-08-24 2022-03-03 株式会社村田製作所 Elastic wave device
WO2023048144A1 (en) * 2021-09-21 2023-03-30 株式会社村田製作所 Elastic wave device
WO2023136291A1 (en) * 2022-01-13 2023-07-20 株式会社村田製作所 Elastic wave device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035702A1 (en) * 2000-10-23 2002-05-02 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter
WO2003088483A1 (en) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device, and mobile communication device and sensor both using same
WO2008087836A1 (en) * 2007-01-19 2008-07-24 Murata Manufacturing Co., Ltd. Manufacturing method for elastic boundary wave device
JP2009118369A (en) * 2007-11-09 2009-05-28 Epson Toyocom Corp Surface acoustic wave device, and method of manufacturing surface acoustic wave device
JP2011135468A (en) * 2009-12-25 2011-07-07 Murata Mfg Co Ltd Elastic boundary wave apparatus and method of manufacturing the same
WO2012120879A1 (en) * 2011-03-09 2012-09-13 パナソニック株式会社 Elastic wave apparatus
JP2013145930A (en) * 2010-04-21 2013-07-25 Murata Mfg Co Ltd Surface acoustic wave device and manufacturing method therefor
WO2018003657A1 (en) * 2016-06-28 2018-01-04 株式会社村田製作所 Elastic wave device
JP2018093487A (en) * 2016-11-30 2018-06-14 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Saw filter that comprises piezoelectric substrate having stepwise cross section
WO2018221427A1 (en) * 2017-05-30 2018-12-06 株式会社村田製作所 Multiplexer, transmission device, and reception device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041589A (en) 2004-07-22 2006-02-09 Matsushita Electric Ind Co Ltd Surface acoustic wave device and manufacturing method thereof
JP2010011440A (en) * 2008-05-30 2010-01-14 Hitachi Ltd Acoustic wave device and high-frequency filter using the same
WO2011158445A1 (en) * 2010-06-17 2011-12-22 パナソニック株式会社 Acoustic wave element
JP5690711B2 (en) * 2011-12-28 2015-03-25 スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 Elastic wave element
KR102062088B1 (en) * 2015-09-09 2020-02-11 가부시키가이샤 무라타 세이사쿠쇼 A seismic device
JP2018037719A (en) * 2016-08-29 2018-03-08 株式会社村田製作所 Acoustic wave device
WO2019095640A1 (en) * 2017-11-14 2019-05-23 安徽云塔电子科技有限公司 Piezoelectric resonator and manufacturing method of piezoelectric resonator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035702A1 (en) * 2000-10-23 2002-05-02 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter
WO2003088483A1 (en) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device, and mobile communication device and sensor both using same
WO2008087836A1 (en) * 2007-01-19 2008-07-24 Murata Manufacturing Co., Ltd. Manufacturing method for elastic boundary wave device
JP2009118369A (en) * 2007-11-09 2009-05-28 Epson Toyocom Corp Surface acoustic wave device, and method of manufacturing surface acoustic wave device
JP2011135468A (en) * 2009-12-25 2011-07-07 Murata Mfg Co Ltd Elastic boundary wave apparatus and method of manufacturing the same
JP2013145930A (en) * 2010-04-21 2013-07-25 Murata Mfg Co Ltd Surface acoustic wave device and manufacturing method therefor
WO2012120879A1 (en) * 2011-03-09 2012-09-13 パナソニック株式会社 Elastic wave apparatus
WO2018003657A1 (en) * 2016-06-28 2018-01-04 株式会社村田製作所 Elastic wave device
JP2018093487A (en) * 2016-11-30 2018-06-14 スカイワークス ソリューションズ, インコーポレイテッドSkyworks Solutions, Inc. Saw filter that comprises piezoelectric substrate having stepwise cross section
WO2018221427A1 (en) * 2017-05-30 2018-12-06 株式会社村田製作所 Multiplexer, transmission device, and reception device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045086A1 (en) * 2020-08-24 2022-03-03 株式会社村田製作所 Elastic wave device
WO2023048144A1 (en) * 2021-09-21 2023-03-30 株式会社村田製作所 Elastic wave device
WO2023136291A1 (en) * 2022-01-13 2023-07-20 株式会社村田製作所 Elastic wave device

Also Published As

Publication number Publication date
CN113348625A (en) 2021-09-03
KR20210091292A (en) 2021-07-21
CN113348625B (en) 2024-02-23
JPWO2020158673A1 (en) 2021-11-25
US11936359B2 (en) 2024-03-19
KR102625090B1 (en) 2024-01-16
US20220224307A1 (en) 2022-07-14
JP7168009B2 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
JP7377920B2 (en) surface acoustic wave device
JP6247377B2 (en) Elastic wave element, filter element, and communication apparatus
JP7057636B2 (en) Multiplexer
WO2017188342A1 (en) Elastic wave element and communication device
KR101514742B1 (en) Surface acoustic wave device
WO2020158673A1 (en) Elastic wave device and multiplexer
JP6870684B2 (en) Multiplexer
JP7433216B2 (en) Elastic wave elements, elastic wave filters, duplexers and communication devices
JP2008072316A (en) Elastic wave device, resonator and filter
KR101958081B1 (en) Elastic wave device
JP6760480B2 (en) Extractor
WO2016080444A1 (en) Elastic wave element, filter element, and communication device
US11863155B2 (en) Surface acoustic wave element
JP2018182460A (en) Acoustic wave resonator, filter, and multiplexer
JP6935220B2 (en) Elastic wave elements, filters and multiplexers
JPWO2011142183A1 (en) Surface acoustic wave device
WO2021085609A1 (en) Acoustic wave filter
JP2021122090A (en) Acoustic wave filter
WO2018079574A1 (en) Acoustic wave element
US11606079B2 (en) Transducer structure for source suppression in saw filter devices
WO2019009271A1 (en) Multiplexer
WO2024116813A1 (en) Elastic wave device and filter device
WO2023068206A1 (en) Multiplexer
WO2023282328A1 (en) Acoustic wave element, acoustic wave filter device, and multiplexer
CN113054944B (en) Elastic wave filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217018695

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020569617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748169

Country of ref document: EP

Kind code of ref document: A1