Nothing Special   »   [go: up one dir, main page]

WO2020158506A1 - 濃度測定装置 - Google Patents

濃度測定装置 Download PDF

Info

Publication number
WO2020158506A1
WO2020158506A1 PCT/JP2020/001917 JP2020001917W WO2020158506A1 WO 2020158506 A1 WO2020158506 A1 WO 2020158506A1 JP 2020001917 W JP2020001917 W JP 2020001917W WO 2020158506 A1 WO2020158506 A1 WO 2020158506A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
concentration
light
measurement
cell
Prior art date
Application number
PCT/JP2020/001917
Other languages
English (en)
French (fr)
Inventor
正明 永瀬
一輝 田中
昌彦 滝本
西野 功二
池田 信一
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US17/423,500 priority Critical patent/US11796458B2/en
Priority to KR1020217010738A priority patent/KR102535963B1/ko
Priority to CN202080007907.4A priority patent/CN113260850A/zh
Priority to JP2020569533A priority patent/JP7357938B2/ja
Publication of WO2020158506A1 publication Critical patent/WO2020158506A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • G01N2021/0314Double pass, autocollimated path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1211Correction signals for temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1218Correction signals for pressure variations

Definitions

  • the present invention relates to a concentration measuring device, and more particularly to a concentration measuring device that measures the concentration of gas in a measuring cell by detecting the intensity of light that has passed through the measuring cell.
  • a raw material gas generated from a liquid material such as an organic metal (MO) or a solid material is incorporated in the middle of a gas supply line that supplies the semiconductor manufacturing apparatus, and the concentration is configured to measure the concentration of the flowing gas.
  • a measuring device so-called in-line concentration measuring device
  • the light having a predetermined wavelength is made incident from a light source through a light incident window into a measuring cell in which a measuring gas flows, and the light passing through the measuring cell is received by a light receiving element to measure the absorbance.
  • concentration of the measurement gas can be obtained from the measured absorbance according to the Lambert-Beer law (for example, Patent Documents 1 to 3).
  • the measurement cell has not only a cell structure branched from the gas supply line and separately arranged, but also an in-line transmitted light detection structure provided in the middle of the gas supply line as shown in Patent Documents 1 to 3. included.
  • the concentration of the measurement gas is calculated by using an extinction coefficient (a coefficient indicating the ease of light absorption of the gas) based on the Lambert-Beer equation.
  • the extinction coefficient used at this time is obtained in advance before measuring the concentration, and is associated with the type of gas and the wavelength of the measurement light.
  • the absorption characteristics are different even for the same gas species due to the temperature of the gas in the measurement cell and the characteristic difference (hereinafter referred to as machine difference) between the concentration measuring apparatuses.
  • machine difference the characteristic difference between the concentration measuring apparatuses.
  • the conventional method may reduce the measurement accuracy.
  • the present invention has been made in view of the above problems, and its main object is to provide a concentration measuring device with improved measurement accuracy.
  • the concentration measuring device a measurement cell having a flow path through which a gas flows, a light source that emits incident light to the measurement cell, a photodetector that detects light emitted from the measurement cell, and A pressure sensor for detecting the gas pressure in the measurement cell, a temperature sensor for detecting the gas temperature in the measurement cell, an output of the pressure sensor, an output of the temperature sensor, an output of the photodetector, in advance, And a calculation circuit for calculating the concentration of the gas based on a plurality of absorption coefficients stored in the memory, wherein the calculation circuit is an absorption coefficient determined from the plurality of absorption coefficients based on the output of the temperature sensor. Is used to calculate the concentration.
  • the arithmetic circuit is configured to calculate the concentration using an extinction coefficient determined based on the output of the temperature sensor and the peak wavelength of the measurement light emitted by the light source.
  • the arithmetic circuit is configured to calculate the concentration using any one of nine extinction coefficients corresponding to combinations of three temperatures and three peak wavelengths of measuring light.
  • the arithmetic circuit is configured to calculate the concentration by correcting the extinction coefficient of the reference gas using the correction factor set for each gas type.
  • the reference gas is acetone gas.
  • the embodiment of the present invention it is possible to prevent the accuracy from decreasing due to the temperature of the gas and the difference in the equipment, and to measure the concentration more accurately.
  • FIG. 3 is a diagram showing a spectral spectrum A1 of a light emitting device having a peak wavelength of 300 nm and transmittance characteristics B1 to B3 when 100% acetone gas was passed at 100° C., 130° C., and 150° C. It is a figure which shows the generation
  • FIG. 1 is a diagram showing an overall configuration of a concentration measuring device 100 used in the embodiment of the present invention.
  • the concentration measuring device 100 includes a gas unit 50A having a measuring cell 4 incorporated in a gas supply line, and an electric unit 50B arranged apart from the gas unit 50A and having a light source 1 and an arithmetic circuit 8.
  • the gas unit 50A and the electric unit 50B are connected by optical fibers 10a and 10b and a sensor cable (not shown).
  • the gas unit 50A may be heated to, for example, about 100° C. to 150° C. depending on the type of measurement gas. However, the gas unit 50A is not always used at a high temperature, and when using a gas at room temperature (room temperature) or below room temperature, it may be used in a state where it does not reach a high temperature (not heated).
  • the electric unit 50B separated from the gas unit 50A is typically maintained at room temperature.
  • An external control device that transmits an operation control signal to the concentration measuring device 100 or receives a measured concentration signal from the concentration measuring device 100 may be connected to the electric unit 50B.
  • the gas unit 50A is provided with a measurement cell 4 having an inflow port 4a, an outflow port 4b, and a flow path 4c extending in the longitudinal direction of the measurement gas. Further, a transparent window portion (here, a transparent plate) 3 is provided at one end of the measuring cell 4, and a reflecting member 5 is provided at the other end of the measuring cell 4. ..
  • light includes not only visible light but also at least infrared rays and ultraviolet rays, and may include electromagnetic waves of any wavelength. Further, the light-transmitting property means that the internal transmittance with respect to the incident light on the measurement cell 4 is sufficiently high so that the concentration measurement can be performed.
  • the window 3 of the measurement cell 4 is fixed to the cell body 2 by a pressing member, and the collimator 6 to which the optical fiber 10a is connected is attached to the pressing member.
  • the collimator 6 can make the light from the light source 1 incident on the measurement cell 4 as parallel light, and can also receive the reflected light from the reflecting member 5.
  • the collimator 6 is preferably designed so that the concentration can be measured with high accuracy even when the gas to be measured flowing through the measurement cell 4 is at a high temperature.
  • the inflow port 4a and the outflow port 4b of the measurement cell 4 are arranged on both sides of the flow path 4c (on the left and right sides of the flow path 4c on the paper surface), and when installed in the gas supply line, the gas unit 50A as a whole is It is configured to flow the gas horizontally.
  • the flow path 4c extends in a direction orthogonal to the overall flow direction in the gas supply line.
  • such a configuration is referred to as a vertical measurement cell 4, and by using the vertical measurement cell 4, space saving can be realized when the measurement cell 4 is installed in a gas supply line, and maintenance is possible. The advantage is that it is easy to remove.
  • the inflow port 4a is arranged in the vicinity of the reflecting member 5 and the outflow port 4b is arranged in the vicinity of the window part 3.
  • the inflow port 4a is arranged in the window part 3.
  • the outlet 4b may be disposed in the vicinity of the reflection member 5.
  • the flow path 4c does not necessarily have to extend in a direction orthogonal to the overall flow direction.
  • the window portion 3 sapphire, which is resistant to detection light used for concentration measurement such as ultraviolet light and has a high transmittance and is mechanically and chemically stable, is preferably used, but other stable materials are used.
  • quartz glass can be used.
  • the cell body 2 (flow passage forming portion) of the measurement cell 4 is made of, for example, SUS316L.
  • the reflection member 5 is fixed by a pressing member on the lower surface of the cell body 2.
  • the reflecting surface of the reflecting member 5 is provided so as to be perpendicular to the traveling direction of incident light or the central axis of the flow path.
  • the reflecting member 5 may have a structure in which an aluminum layer as a reflecting layer is formed on the back surface of a sapphire plate by sputtering, for example. Further, the reflection member 5 may include a dielectric multilayer film as a reflective layer, and by using the dielectric multilayer film, it is possible to selectively reflect light in a specific wavelength range (for example, near ultraviolet rays). ..
  • the dielectric multilayer film is composed of a laminated body (a laminated body of a high-refractive-index thin film and a low-refractive-index thin film) of a plurality of optical coatings having different refractive indexes, and the thickness and refractive index of each layer are appropriately selected As a result, it is possible to reflect or transmit light having a specific wavelength.
  • the dielectric multilayer film can reflect light at an arbitrary ratio, for example, when the incident light is reflected by the reflecting member 5, the incident light is not reflected 100% but partially ( For example, 10%) is transmitted, and the transmitted light can be received by the photodetector or the like installed on the lower portion of the reflection member 5 (the surface opposite to the surface in contact with the flow path 4c). It is also possible to use light as the reference light and substitute for the reference light detector 9.
  • the gas unit 50A of the present embodiment is provided with a pressure sensor 20 for detecting the pressure of the measurement gas flowing in the measurement cell 4 and a temperature sensor 22 for measuring the temperature of the measurement gas. ..
  • the gas unit 50A is configured to be able to measure the pressure and temperature of the measurement gas when measuring the concentration.
  • Outputs of the pressure sensor 20 and the temperature sensor 22 are input to the arithmetic circuit 8 of the electric unit 50B via a sensor cable (not shown).
  • a plurality of temperature sensors 22 may be provided.
  • a thermistor, a thermocouple, or the like can be used instead of the resistance temperature detector.
  • the pressure sensor 20 for example, a pressure sensor with a built-in silicon single crystal sensor chip having a diaphragm forming a pressure detection surface is used.
  • the pressure sensor 20 and the temperature sensor 22 may be provided at arbitrary positions as long as the pressure and temperature of the gas existing in the flow path 4c in the measurement cell 4 can be measured.
  • the light source 1 that generates the light to be incident into the measurement cell 4
  • the measurement light detector 7 that receives the light emitted from the measurement cell 4
  • An arithmetic circuit 8 configured to calculate the concentration of the measurement gas based on (a signal corresponding to the intensity of the received light) and a reference light detector 9 that receives the reference light from the light source 1 are provided. There is.
  • the light source 1 includes two light emitting elements (LEDs here) 1A and 1B that emit ultraviolet light having different wavelengths. Driving currents of different frequencies are applied to the light emitting elements 1A and 1B by using an oscillation circuit, and frequency analysis (for example, fast Fourier transform or wavelet transform) is performed to detect the detection signals detected by the measurement photodetector 7. , The intensity of light corresponding to each wavelength component can be measured.
  • LEDs light emitting elements
  • LDs laser diodes
  • a light source of a single wavelength can be used, and in this case, the multiplexer and the frequency analysis circuit can be omitted.
  • Three or more light emitting elements may be provided, or only any selected one of the provided light emitting elements may be used to generate incident light.
  • a resistance temperature detector may be attached to the light source 1.
  • the light emitted by the light emitting element is not limited to ultraviolet light, and may be visible light or infrared light.
  • the light source 1 and the reference light detector 9 are attached to the beam splitter 11.
  • the beam splitter 11 functions so that a part of the light from the light source 1 is made incident on the reference light detector 9 and the remaining light is guided to the measurement cell 4.
  • a photodiode or a phototransistor is preferably used as the light receiving element forming the measurement light detector 7 and the reference light detector 9.
  • the arithmetic circuit 8 is composed of, for example, a processor and a memory provided on a circuit board, includes a computer program that executes a predetermined arithmetic operation based on an input signal, and can be realized by a combination of hardware and software.
  • the arithmetic circuit 8 is built in the electric unit 50B, but some (such as the CPU) or all of its constituent elements may be provided in a device outside the electric unit 50B. Needless to say.
  • the light from the light source 1 is guided to the window 3 of the measuring cell 4 by the optical fiber 10a. Further, in the measurement cell 4, the light reflected by the reflecting member 5 is guided to the measurement photodetector 7 by the optical fiber 10b.
  • the optical fiber 10a for guiding the light to the measurement cell 4 and the optical fiber 10b for guiding the light emitted from the measurement cell 4 are separately provided, and thereby the influence of stray light is provided. Can be reduced.
  • the light source and the measurement photodetector may be connected to the measurement cell by using a single optical transmission member such as an optical fiber bundle for both incident light and emitted light.
  • a single optical transmission member such as an optical fiber bundle for both incident light and emitted light.
  • a reflection type concentration measuring device using such a single optical transmission member is disclosed in, for example, Patent Document 2, and it is possible to adopt the same configuration in other embodiments of the present invention. ..
  • the optical path length of light that travels back and forth within the measurement cell 4 can be defined by twice the distance between the window 3 and the reflection member 5.
  • the concentration measuring device 100 the light having the wavelength ⁇ which is incident on the measuring cell 4 and then reflected by the reflecting member 5 is absorbed by the gas existing in the flow path 4c in the measuring cell 4 depending on the gas concentration.
  • the arithmetic circuit 8 can measure the absorbance A ⁇ at the wavelength ⁇ by frequency-analyzing the detection signal from the measurement photodetector 7, and further, the Lambert-Beer shown in the following formula (1). Based on the law of, the molar concentration C M can be calculated from the absorbance A ⁇ .
  • I 0 is the intensity of the incident light that enters the measurement cell
  • I is the intensity of the light that has passed through the gas in the measurement cell
  • ⁇ ′ is the molar extinction coefficient (m 2 /mol)
  • L is the optical path length (m) of the measuring cell
  • C M is the molar concentration (mol/m 3 ).
  • the molar extinction coefficient ⁇ ' is a coefficient determined by the substance.
  • I/I 0 is generally called transmittance
  • the absorbance A ⁇ is 0 when the transmittance I/I 0 is 100%
  • the absorbance A ⁇ is infinite when the transmittance I/I 0 is 0%.
  • the intensity of the light detected by the measurement photodetector 7 may be regarded as the incident light intensity I 0 .
  • the optical path length L of the measurement cell 4 can be defined as twice the distance between the window 3 and the reflecting member 5 as described above, the light entrance window and the light exit window are provided at both ends of the measurement cell. It is possible to obtain a double optical path length as compared with the concentration measuring device provided. As a result, the measurement accuracy can be improved despite the reduction in size. Further, in the concentration measuring device 100, light is incident and emitted only on the side of the window 3 of the measuring cell 4, so that the number of parts can be reduced.
  • the concentration measuring device 100 can obtain the gas molar concentration C M by using the Lambert-Beer equation (1).
  • the molar concentration C M is not calculated from the formula (1) using only the preset molar absorption coefficient ⁇ ′, but the molar concentration C M is output by the temperature sensor 22.
  • the extinction coefficient selected based on the selected temperature is used, and the output of the temperature sensor 22 and the output of the pressure sensor 20 are also referred to determine the gas concentration.
  • the extinction coefficient can be read out from the memory and used when the concentration is measured by pre-storing the extinction coefficient in a memory before shipment of the concentration.
  • the wavelength of the measurement light is set to 290 nm to 310 nm, for example.
  • the following equation (1a) is established by the Lambert-Beer equation (1).
  • I 0 is the incident light intensity
  • I is the transmitted light intensity
  • is the molar extinction coefficient
  • L is the optical path length
  • C M is the gas to be measured. (Here is acetone) molar concentration.
  • This formula (1a) shows that the absorbance is proportional to the molar concentration when the optical path length is constant, and the molar extinction coefficient ⁇ is the slope of the linear function (there Ease of absorption of a substance).
  • the molar extinction coefficient ⁇ in the case of using the natural logarithm ln(I/I 0 ) of the transmittance will be described below as an example.
  • n is the substance amount (mol) of the gas, that is, the number of moles
  • V is the volume (m 3 ).
  • P is a pressure (Torr)
  • T is a temperature (K).
  • the pressure that can be detected by the pressure sensor 20 is the total pressure P total (Torr) of the mixed gas containing acetone and the carrier gas.
  • P total Torr
  • the gas related to absorption is only acetone
  • the expression (2) is expressed by using the expression (2)
  • the relationship between the concentration (%) of acetone and the absorbance in consideration of pressure and temperature can be expressed by the following expression (3) using the absorption coefficient ⁇ ace of acetone. ..
  • each measured value (gas) when a gas having a known acetone concentration C ace (for example, 100% concentration acetone gas containing no carrier gas) is passed. It can be seen that the absorption coefficient ⁇ ace corresponding to the acetone concentration (%) at the measurement light wavelength is obtained based on the temperature T, the total pressure P total , and the transmitted light intensity I).
  • the concentration of acetone of unknown concentration is calculated by the equation (4) based on the measurement result of (T, P total , I). It is possible to ask.
  • the above equations (3) and (4) apply the ideal gas equation of state to the Lambert-Beer equation in consideration of the fact that the measurement target is a gas (here, acetone gas), and also measure the concentration. This is an equation derived as a formula for obtaining the gas concentration (%) by using the gas pressure (total pressure P total ) and the gas temperature T that can be measured by the pressure sensor 20 and the temperature sensor 22 of the apparatus 100.
  • a correction value Jx (1 at 100% density) for correcting the relationship between the set density and the output density is set in advance for each density x%, and is determined based on the measured transmittance.
  • the correction density may be output after performing the linearity correction using the correction value Jx.
  • One of the causes of the difference in measurement error depending on the temperature of the gas is that the transmittance (I/I 0 ) measured depending on the temperature of the gas is different even if the acetone gas has the same concentration.
  • FIG. 2 shows a spectrum A2 of a light emitting element (LED) having a peak intensity at 300 nm (a spectrum of detection light when there is no light absorption in a measurement cell), and a temperature when an acetone gas having a concentration of 100% is supplied. It is a figure which shows the difference of the transmittance characteristics B1, B2, and B3 by.
  • the horizontal axis represents the wavelength (nm)
  • the vertical axis represents the light intensity in the spectral spectrum A2 (more specifically, the intensity normalized by the maximum intensity Imax), and the transmittance in the transmittance characteristics B1 to B3 ( I/I 0 ).
  • the transmittance characteristic B1 shows the case where the gas temperature is 100° C.
  • the transmittance characteristic B2 shows the case where the gas temperature is 130° C.
  • the transmittance characteristic B3 shows the case where the gas temperature is 150° C.
  • the transmittance characteristics B1 to B3 shown in FIG. 2 are the spectrum of the detection light (not shown) when flowing 100% concentration of acetone gas, and the spectrum of the detection light when there is no absorption by the acetone gas.
  • the result of division by the spectrum A2 is shown as the transmittance.
  • 100% concentration of acetone gas has a temperature of 100° C. as compared with the transmittance characteristic B2 at 130° C., which is a main gas temperature (hereinafter sometimes referred to as reference temperature) during use.
  • the transmittance characteristic B1 tends to be higher.
  • the transmittance characteristic B3 at 150° C. tends to be lower than the transmittance characteristic B2. This tendency is the same for the ultraviolet light of 290 to 310 nm which is assumed as the measurement light.
  • the transmittance and thus the absorbance can be measured as different depending on the temperature of the gas. More specifically, as shown in FIG. 2, when the measurement is performed using the light of the spectral spectrum A1 having a peak at 300 nm, the concentration of acetone itself is constant at the same 100%, but the gas temperature is constant. Is 130°C, the transmittance is ⁇ 2, the gas temperature is 100°C, the transmittance is ⁇ 1, and the gas temperature is 150°C, the transmittance is ⁇ 3.
  • the concentration calculation is performed according to the above equation (4) using the absorption coefficient ⁇ ace obtained when flowing acetone gas at 130° C. at 100% concentration, the concentration of gas at 100° C. or 150° C. will be accurate. There are things you can't ask. This is because the susceptibility to light absorption varies depending on the gas temperature even if the concentration is the same.
  • the extinction coefficient ⁇ ace at each temperature is obtained in advance, and these are stored in the memory as a plurality of extinction coefficients ⁇ ace associated with the temperature, and the concentration
  • an appropriate extinction coefficient ⁇ ace is determined and used based on the measured gas temperature at that time.
  • 11 is graphs C1 to C3 showing the relationship between the calculated concentration when performing the concentration calculation and the actual acetone concentration.
  • the horizontal axis represents the actual acetone concentration (known set concentration), and the vertical axis represents the magnitude of the deviation from the actual acetone concentration in full scale error (%).
  • the magnitude of the above error becomes the largest when 100% concentration of acetone gas is flown, becomes 0 when 0% concentration of acetone gas is flown (that is, there is no absorption), and the concentration and the magnitude of error are large.
  • the extinction coefficients ⁇ ace , T1 , ⁇ ace , and T3 other than the reference temperature at 100% concentration are also obtained in advance, and these are used to calculate the concentration of gas near 100°C and 150°C. By doing so, it is understood that it is possible to obtain a calculation result with a small error for any of the concentrations.
  • the extinction coefficients ⁇ ace , T1 and ⁇ ace , T3 are the same as the extinction coefficients ⁇ ace and T2, and are the respective measured values (T, P total , when flowing 100% concentration acetone gas at 100° C. and 150° C., respectively). From I), it can be calculated by the equations (3) and (4).
  • the table of FIG. 4 shows the extinction coefficient for each cell temperature (° C.) when the measurement light wavelength (LED peak wavelength (nm)) is 300 nm, and as described above, 100° C. using the measurement light of 300 nm. , 130° C., 150° C., the absorption coefficients ⁇ ace , T1 , ⁇ ace , T2 , ⁇ ace , and T3 obtained from the equation (4) are obtained and all are stored in the memory.
  • the present invention is not limited to this, and the extinction coefficient of 130° C. serving as the reference is stored as the reference extinction coefficient and the It is also possible to store the correction coefficient in 1 above and calculate the concentration using the extinction coefficient multiplied by the correction coefficient determined based on the measured temperature.
  • the embodiment of the present invention is not limited to this.
  • the error in concentration measurement that occurs depending on gas temperature can be reduced.
  • the orthogonal plane coordinates (T1, ⁇ T1 ) The extinction coefficient can also be obtained by substituting the measured temperature in a linear equation connecting (T2, ⁇ T2 ).
  • FIG. 5 shows spectral spectra A1, A2, A3 of measurement light having three different peak wavelengths (297.5 nm, 300.0 nm, and 302.5 nm) and transmittance characteristics B1, B2, B3 depending on temperature.
  • FIG. FIG. 5 is a diagram in which, in addition to FIG. 2, the difference in the spectrum of the measurement light caused by the difference in the density measuring device is added.
  • FIG. 6 shows nine set extinction coefficients ⁇ ace , L1 , T1 , ⁇ ace , L1 , T2 for combinations of gas temperatures T1, T2, T3 and measurement light wavelengths L1, L2, L3, respectively.
  • the actual peak wavelength of the measurement light may be slightly different even in the concentration measurement device manufactured by the same design. This is because the peak wavelength itself of the light source (LED) is often different from the beginning.
  • the spectrum of the ultraviolet LED in particular may change from the initial spectrum with the lapse of use time.
  • the extinction coefficient ⁇ ace , L2 for the wavelength of 300 nm set in the initial stage is applied to the measurement result when the measurement lights of different wavelengths (here, 297.5 nm and 302.5 nm) are applied to measure the concentration.
  • an error may occur in the calculation density.
  • the transmittance varies depending on the measurement light wavelength. Specifically, as shown in FIG. 5, even in the case of the same 100% concentration and 130° C. acetone gas, the transmittance ⁇ 2 is obtained when the measurement light peak wavelength is 300 nm, whereas it is 297.5 nm when the measurement light peak wavelength is 300 nm.
  • the value is ⁇ 4, and the value is ⁇ 5 at 302.5 nm.
  • nine matrix-shaped extinction coefficients determined based on the temperatures T1, T2, T3 and the wavelengths L1, L2, L3 are preset and stored in the memory. , Which enables more accurate concentration measurement in each case.
  • nine or more extinction coefficients may be set, and when a value between the extinction coefficients described in the matrix is observed, the closest extinction coefficient is selected, or An appropriate extinction coefficient may be determined by performing correction by using the above method.
  • the concentration measuring device can determine the extinction coefficient to be used by the device by performing a step of detecting the peak of the measurement light wavelength in advance before measuring the concentration.
  • the concentration measurement using acetone gas has been described above, similarly for other types of gas as well, by presetting a plurality of extinction coefficients associated with the temperature or the measurement light wavelength, The accuracy of concentration measurement can be improved.
  • the extinction coefficient may be set in advance as described above, but the extinction coefficient for acetone gas is stored in memory and the extinction coefficient is determined according to the type of gas. The extinction coefficient for the gas species may be determined by correcting the coefficient.
  • FIG. 7A is a diagram showing a matrix of correction factors corresponding to the matrix of the absorption coefficient of acetone gas shown in FIG.
  • MO values nine correction factors corresponding to combinations of three temperatures and three measurement light wavelengths.
  • a factor is set.
  • Each correction factor can be obtained by dividing the absorption coefficient measured for the gas to be measured by the absorption coefficient of acetone gas.
  • the extinction coefficients of the nine acetone gases are stored in the memory as the extinction coefficients of the reference gas (here, acetone gas), and the correction matrix for each type of measurement gas (here, metal organic (MO) gas) is stored.
  • the concentration measurement can be performed more accurately for various gases. Note that the concentration measurement error caused by the design of the optical system of the concentration measuring device can be calibrated before the shipment in the process of obtaining the extinction coefficient using the reference gas. The error due to the machine difference at the time of measurement is suppressed.
  • FIG. 7B is a diagram showing an example of the relationship between the MO factor (correction factor) and the temperature and the measurement light wavelength.
  • Such a tendency is a tendency shown when a correction factor is obtained for a gas having a transmittance characteristic similar to that of the acetone gas shown in FIG.
  • concentration measuring device has been described above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • light used for measurement light in a wavelength region other than the ultraviolet region can be used depending on the type of gas.
  • the reflection type concentration measuring device using the reflecting member has been described above, the incident light is made incident from one end side of the measuring cell and the measuring light is taken out from the other end side of the measuring cell without using the reflecting member. It is also possible to use a transmission type concentration measuring device configured as described above.
  • the concentration measuring device is used for semiconductor manufacturing equipment and the like, and is preferably used for measuring the concentration of various gases.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

濃度測定装置100は、ガスが流れる流路を有する測定セル4と、測定セルへの入射光を発する光源1と、測定セルから出射した光を検出する光検出器7と、測定セル内のガス圧力を検出する圧力センサ20と、測定セル内のガス温度を検出する温度センサ22と、圧力センサの出力P、温度センサの出力T、光検出器の出力I、および、吸光係数αに基づいてガスの濃度を演算する演算回路8とを備え、演算回路8は、温度センサ22の出力に基づいて決定された吸光係数αを用いて濃度を演算するように構成されている。

Description

濃度測定装置
 本発明は、濃度測定装置に関し、特に、測定セルを通過した光の強度を検出することによって測定セル内のガスの濃度を測定する濃度測定装置に関する。
 従来、有機金属(MO)等の液体材料や固体材料から生成された原料ガスを半導体製造装置へと供給するガス供給ラインの途中に組み込まれ、流れるガスの濃度を測定するように構成された濃度測定装置(いわゆるインライン式濃度測定装置)が知られている。
 この種の濃度測定装置では、測定ガスが流れる測定セルに、光入射窓を介して光源から所定波長の光を入射させ、測定セル内を通過した光を受光素子で受光することによって吸光度を測定している。また、測定した吸光度から、ランベルト・ベールの法則に従って測定ガスの濃度を求めることができる(例えば、特許文献1~3)。
 本明細書において、測定ガスの濃度を検出するために用いられる種々の透過光検出構造を広く、測定セルと呼んでいる。測定セルには、ガス供給ラインから分岐して別個に配置されたセル構造だけでなく、特許文献1~3に示されるようなガス供給ラインの途中に設けられたインライン式の透過光検出構造も含まれる。
特開2014-219294号公報 国際公開第2018/021311号 特開2018-25499号公報
 測定セル内のガス濃度を吸光度に基づいて測定するためには、ガスの吸光特性に適合した波長を有する光を、測定セルに入射させる必要がある。また、測定ガスの濃度は、ランベルト・ベールの式に基づき、吸光係数(ガスの吸光のしやすさを示す係数)を用いて、演算によって求められる。このときに用いられる吸光係数は、濃度測定の前に予め求められたものであり、ガスの種類や測定光の波長に関連付けられたものである。
 しかしながら、本発明者の実験によれば、測定セル内のガスの温度や、濃度測定装置の装置ごとの特性差(以下、機差と呼ぶ)によって、同じガス種であっても吸光特性が異なるものとなる場合があり、このときには、従来の方法では測定精度が低下するおそれがあることがわかった。
 本発明は、上記課題を鑑みてなされたものであり、測定精度が向上した濃度測定装置を提供することをその主たる目的とする。
 本発明の実施形態による濃度測定装置は、ガスが流れる流路を有する測定セルと、前記測定セルへの入射光を発する光源と、前記測定セルから出射した光を検出する光検出器と、前記測定セル内のガス圧力を検出する圧力センサと、前記測定セル内のガス温度を検出する温度センサと、前記圧力センサの出力と、前記温度センサの出力と、前記光検出器の出力と、予めメモリに格納された複数の吸光係数とに基づいて前記ガスの濃度を演算する演算回路とを備え、前記演算回路は、前記温度センサの出力に基づいて前記複数の吸光係数から決定された吸光係数を用いて濃度を演算するように構成されている。
 ある実施形態において、前記演算回路は、前記温度センサの出力と、前記光源が発する測定光のピーク波長とに基づいて決定された吸光係数を用いて濃度を演算するように構成されている。
 ある実施形態において、前記演算回路は、3つの温度と3つの測定光のピーク波長との組み合わせに対応する9つの吸光係数のうちのいずれかを用いて濃度を演算するように構成されている。
 ある実施形態において、前記演算回路は、決定された吸光係数αを用いて、下記の式に基づいて前記ガスの濃度Cを求めるように構成されており、下記の式において、I0は測定セルに入射する入射光の強度、Iは測定セルを通過した光の強度、Rは気体定数、Tは測定セル内のガス温度、Lは測定セルの光路長、Pは測定セル内のガス圧力である。
   C=ln(I0/I)×(R・T)/(α・L・P)
 ある実施形態において、前記演算回路は、ガスの種類ごとに設定された補正ファクタを用いて、基準ガスの吸光係数を補正して濃度を演算するように構成されている。
 ある実施形態において、前記基準ガスは、アセトンガスである。
 本発明の実施形態によれば、ガスの温度や装置の機差による精度低下を防止して、より正確に濃度を測定することができる。
本発明の実施形態に係る濃度測定装置の全体構成を示す模式図である。 300nmのピーク波長を有する発光素子の分光スペクトルA1と、100℃、130℃、および、150℃で100%アセトンガスを流したときの透過率特性B1~B3を示す図である。 一定の吸光係数を用いた場合のガス温度による誤差の発生を示す図である。 測定光の波長(300nm)に対応するものとして、3つの温度T1(100℃)、T2(130℃)、T3(150℃)ごとに設定された吸光係数を示す表である。 3つの異なるピーク波長を有する測定光の分光スペクトルA1、A2、A3およびガス温度ごとの透過率特性B1、B2、B3を示す図である。 3つの測定光の波長L1(297.5nm)、L2(300nm)、L3(302.5nm)ごと、および、3つの温度T1(100℃)、T2(130℃)、T3(150℃)ごとに設定された9つの吸光係数を示す表である。 (a)は測定光の波長および温度ごとに設定された補正ファクタ(MOファクタ)を示す表であり、(b)は補正ファクタの傾向の一例を示す図である。
 以下、図面を参照しながら本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。
 図1は、本発明の実施形態で用いられる濃度測定装置100の全体構成を示す図である。濃度測定装置100は、ガス供給ラインに組み込まれる測定セル4を有するガスユニット50Aと、ガスユニット50Aと離間して配置され光源1および演算回路8などを有する電気ユニット50Bとを備えている。ガスユニット50Aと電気ユニット50Bとは、光ファイバ10a、10bおよびセンサケーブル(図示せず)によって接続されている。
 ガスユニット50Aは、測定ガスの種類によって例えば100℃~150℃程度にまで加熱される可能性がある。ただし、ガスユニット50Aは、必ずしも高温で使用するとは限らず、常温(室温)や常温以下のガスを用いる場合は、高温にならない(加熱しない)状態で使用する場合もある。また、ガスユニット50Aと離間する電気ユニット50Bは、典型的には室温に維持されている。電気ユニット50Bには、濃度測定装置100に動作制御信号を送信したり、濃度測定装置100から測定濃度信号を受信したりする外部制御装置が接続されていてもよい。
 ガスユニット50Aには、測定ガスの流入口4a、流出口4bおよび長手方向に延びる流路4cを有する測定セル4が設けられている。また、測定セル4の一方の端部には、透光性の窓部(ここでは透光性プレート)3が設けられ、測定セル4の他方の端部には反射部材5が設けられている。なお、本明細書において、光とは、可視光線のみならず、少なくとも赤外線、紫外線を含み、任意の波長の電磁波を含み得る。また、透光性とは、測定セル4への入射光に対する内部透過率が濃度測定を行い得る程度に十分に高いことを意味する。
 測定セル4の窓部3は、押さえ部材によってセル本体2に固定されており、押さえ部材には、光ファイバ10aが接続されたコリメータ6が取り付けられている。コリメータ6は、光源1からの光を測定セル4に平行光として入射させることができ、また、反射部材5からの反射光を受光することができる。コリメータ6は、測定セル4を流れる測定対象のガスが高温のときにも高精度に濃度測定を行えるように設計されていることが好ましい。
 測定セル4の流入口4aと流出口4bとは、流路4cの両側(紙面における流路4cの左側と右側)に配置され、ガス供給ラインに組み込まれたときに、ガスユニット50Aは全体として水平方向にガスを流すように構成されている。一方、流路4cは、ガス供給ラインにおける全体の流れ方向に直交する方向に延びている。本明細書では、このような構成を、縦型の測定セル4と呼んでおり、縦型の測定セル4を用いれば、ガス供給ラインに組み込まれたときに省スペース化を実現できるとともに、メンテナンスがしやすいという利点が得られる。なお、図示する測定セル4では、流入口4aが反射部材5の近傍に配置され、流出口4bが窓部3の近傍に配置されているが、他の態様において、流入口4aが窓部3の近傍に配置され、流出口4bが反射部材5の近傍に配置されていてもよい。また、流路4cは必ずしも全体の流れ方向に対して直交する方向に延びなければならないと言う事はない。
 窓部3としては、紫外光等の濃度測定に用いる検出光に対して耐性および高透過率を有し、機械的・化学的に安定なサファイアが好適に用いられるが、他の安定な素材、例えば石英ガラスを用いることもできる。測定セル4のセル本体2(流路形成部)は例えばSUS316L製である。
 また、反射部材5は、セル本体2の下面において、押さえ部材により固定されている。反射部材5の反射面は、入射光の進行方向または流路の中心軸に対して垂直になるように設けられている。
 反射部材5は、例えばサファイアプレートの裏面にスパッタリングによって反射層としてのアルミニウム層が形成された構成を有していてもよい。また、反射部材5は、反射層として誘電体多層膜を含むものであってもよく、誘電体多層膜を用いれば、特定波長域の光(例えば近紫外線)を選択的に反射させることができる。誘電体多層膜は、屈折率の異なる複数の光学被膜の積層体(高屈折率薄膜と低屈折率薄膜との積層体)によって構成されるものであり、各層の厚さや屈折率を適宜選択することによって、特定の波長の光を反射したり透過させたりすることができる。
 また、誘電体多層膜は、任意の割合で光を反射させることができるため、例えば、入射光が反射部材5によって反射される際、入射した光を100%反射するのではなく、一部(例えば10%)は透過するようにし、反射部材5の下部(流路4cに接する面とは反対側の面)に設置した光検出器などによって、透過した光を受光することもでき、透過した光を参照光として利用し、参照光検出器9の代替とすることも可能である。
 また、本実施形態のガスユニット50Aには、測定セル4内を流れる測定ガスの圧力を検出するための圧力センサ20と、測定ガスの温度を測定するための温度センサ22とが設けられている。ガスユニット50Aは、濃度測定時の測定ガスの圧力および温度を測定することができるように構成されている。
 圧力センサ20および温度センサ22の出力は、図示しないセンサケーブルを介して電気ユニット50Bの演算回路8に入力される。温度センサ22は、複数が設けられていてもよい。温度センサ22としては、測温抵抗体以外にも、サーミスタや熱電対などを用いることもできる。圧力センサ20としては、例えば、圧力検知面を形成するダイヤフラムを備えたシリコン単結晶センサチップ内蔵型の圧力センサが用いられる。圧力センサ20および温度センサ22は、測定セル4内の流路4cに存在するガスの圧力および温度を測定できる限り、任意の位置に設けられていてよい。
 他方、電気ユニット50Bには、測定セル4内に入射させる光を発生する光源1と、測定セル4から出射した光を受光する測定光検出器7と、測定光検出器7が出力する検出信号(受光した光の強度に応じた信号)に基づいて測定ガスの濃度を演算するように構成された演算回路8と、光源1からの参照光を受光する参照光検出器9とが設けられている。
 光源1は、本実施形態では、互いに異なる波長の紫外光を発する2つの発光素子(ここではLED)1A、1Bを備えている。発光素子1A、1Bには、発振回路を用いて異なる周波数の駆動電流が流され、周波数解析(例えば、高速フーリエ変換やウェーブレット変換)を行うことによって、測定光検出器7が検出した検出信号から、各波長成分に対応した光の強度を測定することができる。発光素子1A、1Bとしては、LED以外の発光素子、例えばLD(レーザダイオード)を用いることもできる。また、複数の異なる波長の合波光を光源に用いる代わりに、単一波長の光源を利用することもでき、この場合、合波器や周波数解析回路は省略することができる。発光素子は、3つ以上設けられていてもよいし、設けたうちの選択された任意の発光素子のみを用いて入射光を生成するように構成されていてもよい。光源1には測温抵抗体が取り付けられていてもよい。さらに、発光素子が発する光は、紫外光にかぎらず可視光や赤外光であっても良い。
 光源1および参照光検出器9はビームスプリッタ11に取り付けられている。ビームスプリッタ11は、光源1からの光の一部を参照光検出器9に入射させるとともに、残りの光を測定セル4へと導くように機能する。測定光検出器7および参照光検出器9を構成する受光素子としては、例えばフォトダイオードやフォトトランジスタが好適に用いられる。
 演算回路8は、例えば、回路基板上に設けられたプロセッサやメモリなどによって構成され、入力信号に基づいて所定の演算を実行するコンピュータプログラムを含み、ハードウェアとソフトウェアとの組み合わせによって実現され得る。なお、図示する態様では演算回路8は、電気ユニット50Bに内蔵されているが、その構成要素の一部(CPUなど)または全部が電気ユニット50Bの外側の装置に設けられていてもよいことはいうまでもない。
 濃度測定装置100において、光源1からの光は、光ファイバ10aによって測定セル4の窓部3に導光される。また、測定セル4において、反射部材5によって反射された光は、光ファイバ10bによって測定光検出器7に導光される。本実施形態では、測定セル4に導光するための光ファイバ10aと、測定セル4から出射した光を導光するための光ファイバ10bとが別個に設けられており、これによって、迷光の影響を低減することができる。
 ただし、別の態様において、光ファイババンドルなどの入射光用と出射光用とを兼ねる一本の光伝送部材を用いて、光源および測定光検出器と、測定セルとを接続するようにしてもよい。このような一本の光伝送部材を用いる反射型の濃度測定装置は、例えば、特許文献2に開示されており、本発明の他の実施形態において、同様の構成を採用することも可能である。
 以上に説明した測定セル4において、測定セル4内を往復する光の光路長は、窓部3と反射部材5との距離の2倍によって規定することができる。濃度測定装置100において、測定セル4に入射され、その後、反射部材5によって反射された波長λの光は、測定セル4内の流路4cに存在するガスによって、ガスの濃度に依存して吸収される。そして、演算回路8は、測定光検出器7からの検出信号を周波数解析することによって、当該波長λでの吸光度Aλを測定することができ、さらに、以下の式(1)に示すランベルト・ベールの法則に基づいて、吸光度Aλからモル濃度CMを算出することができる。
   Aλ=-log10(I/I0)=α’LCM   ・・・(1)
 上記の式(1)において、I0は測定セルに入射する入射光の強度、Iは測定セル内のガス中を通過した光の強度、α’はモル吸光係数(m2/mol)、Lは測定セルの光路長(m)、CMはモル濃度(mol/m3)である。モル吸光係数α’は物質によって決まる係数である。I/I0は、一般に透過率と呼ばれており、透過率I/I0が100%のときに吸光度Aλは0となり、透過率I/I0が0%のときに吸光度Aλは無限大となる。
 なお、上記式における入射光強度I0については、測定セル4内に吸光性のガスが存在しないとき(例えば、紫外光を吸収しないガスが充満しているときや、真空に引かれているとき)に測定光検出器7によって検出された光の強度を入射光強度I0とみなしてよい。
 測定セル4の光路長Lは、上記のように、窓部3と反射部材5との距離の2倍として規定することができるので、光入射窓と光出射窓とを測定セルの両端部に備える濃度測定装置に比べて、2倍の光路長を得ることができる。これにより、小型化したにも関わらず、測定精度を向上させることができる。また、濃度測定装置100では、測定セル4の窓部3の側のみで光の入射および出射を行うので、部品点数を削減し得る。
 以上に説明したように、濃度測定装置100は、ランベルト・ベールの式(1)を用いて、ガスのモル濃度CMを求めることが可能である。ただし、より測定精度を向上させるために、本実施形態では、予め設定された唯一のモル吸光係数α’を用いて式(1)からモル濃度CMを求めるのではなく、温度センサ22によって出力された温度などに基づいて選択された吸光係数を用い、また、温度センサ22の出力や圧力センサ20の出力も参照してガスの濃度を求めるようにしている。なお、吸光係数は、濃度測定を行う前の出荷時等に予めメモリなどに格納しておくことによって、濃度測定時にメモリから読み出して用いることができる。
 以下、本実施形態において、既知の濃度を有するアセトンガスを流すことにより、濃度演算に用いる吸光係数を求める方法について説明する。なお、以下では、測定に用いる光として、アセトンガスの濃度に対応して吸光される所定の波長を有する光(具体的には近紫外線)が用いられ、吸光係数についても当該波長に対応するものを求めている。アセトンガスの場合、測定光の波長は、例えば290nm~310nmに設定される。
 上述したように、ランベルト・ベールの式(1)により、下記の式(1a)が成り立つ。式(1a)において、ランベルト・ベールの式(1)と同様に、I0は入射光強度、Iは透過光強度、αはモル吸光係数、Lは光路長、CMは測定対象となるガス(ここではアセトン)のモル濃度である。この式(1a)は、光路長が一定の場合に、吸光度が、モル濃度に比例することを示しており、モル吸光係数αは、モル濃度と吸光度との関係を示す一次関数の傾き(その物質の吸光のしやすさ)に対応する。
Figure JPOXMLDOC01-appb-M000001
 なお、上記の式(1a)におけるモル吸光係数αは、透過率(I/I0)の自然対数を用いたときのモル吸光係数αであり、前述の式(1)における透過率(I/I0)の常用対数を用いたときのモル吸光係数α’(吸光度Aλに対応するモル吸光係数)に対して、α’=0.434αの関係を有するものである。これは、log10e=0.434であるからである。以下、例示的に透過率の自然対数ln(I/I0)を用いる場合のモル吸光係数αについて説明するが、透過率の常用対数log10(I/I0)を用いる場合のモル吸光係数α’についても同様の説明が適用されることは言うまでもない。
 上記のアセトンのモル濃度CMは、単位体積当たりのガスの物質量を指すので、CM=n/Vと表すことができる。ここで、nはガスの物質量(mol)すなわちモル数であり、Vは体積(m3)である。そして、測定対象がガスであるので、理想気体の状態方程式PV=nRTから、モル濃度CM=n/V=P/RTが導かれ、これを上記の式(1)に代入し、また、-ln(I/I0)=ln(I0/I)を適用すると、下記の式(2)が導かれる。式(2)において、Rは気体定数=0.0623(Torr・m3/K/mol)であり、Pは圧力(Torr)であり、Tは温度(K)である。
Figure JPOXMLDOC01-appb-M000002
 ここで、圧力センサ20が検出できる圧力は、アセトンとキャリアガスとを含む混合ガスの全圧Ptotal(Torr)である。一方、吸収に関係するガスはアセトンのみであり、上記の式(2)における圧力Pは、アセトンの分圧Paceに対応する。そこで、アセトンの分圧Paceを、ガス全体中におけるアセトン濃度Cace(体積%:以下、単に%と示す)と全圧Ptotalとによって表した式であるPace=Ptotal・Caceを用いて式(2)を表すと、圧力および温度を考慮したアセトンの濃度(%)と吸光度との関係は、アセトンの吸光係数αaceを用いて、下記の式(3)によって表すことができる。
Figure JPOXMLDOC01-appb-M000003
 また上記の式(3)を変形することによって、下記の式(4)が導かれる。
Figure JPOXMLDOC01-appb-M000004
 したがって、上記の式(3)または(4)によれば、既知のアセトン濃度Caceを有するガス(例えばキャリアガスを含まない100%濃度のアセトンガス)を流したときの、各測定値(ガス温度T、全圧Ptotal、および透過光強度I)に基づいて、測定光波長におけるアセトン濃度(%)に対応する吸光係数αaceが得られることがわかる。
 また、求められた吸光係数αaceをメモリに格納しておくことによって、上記式(4)に従って、(T、Ptotal、I)の測定結果に基づいて、未知濃度のアセトンの濃度を演算により求めることが可能である。上記式(3)および(4)は、測定対象が気体(ここではアセトンガス)であることを考慮して、ランベルト・ベールの式に対して理想気体の状態方程式を適用し、また、濃度測定装置100の圧力センサ20および温度センサ22が測定可能なガス圧力(全圧Ptotal)およびガス温度Tも用いてガス濃度(%)を求めるものとして導出された式である。
 なお、100%濃度のアセトンガスを流したときに求められた吸光係数αaceを用いて濃度の演算を行った場合、既知濃度(設定濃度)と、演算による出力濃度との関係が、一律でない場合もある。この場合には、設定濃度と出力濃度との関係を補正する補正値Jx(100%濃度の時は1)を濃度x%ごとに予め設定しておき、測定された透過率に基づいて決定された補正値Jx用いて直線性補正を行った上で、補正濃度を出力するようにしてもよい。
 上記のように、アセトンの吸光係数αaceを予め求めておくことによって、測定値(T、Ptotal、I)からアセトン濃度を演算により求めることが可能である。しかしながら、本発明者の実験によれば、上記の式(3)または(4)を用いたとしても、アセトンの温度の違いによって、濃度測定の誤差が異なるものになることが確認された。なお、上記式(4)は、ガス温度Tも考慮に入れた式ではあるが、実験の結果、さらなる補正を行うことが、より正確に濃度を測定するためには好ましいことがわかった。
 ガスの温度によって測定誤差に違いが生じる原因の一つとしては、同じ濃度のアセトンガスであっても、ガスの温度によって測定される透過率(I/I0)が異なることが挙げられる。
 図2は、300nmにピーク強度を有する発光素子(LED)の分光スペクトルA2(測定セルでの吸光がないときの検出光のスペクトル)と、いずれも100%濃度のアセトンガスを流したときの温度による透過率特性B1、B2、B3の違いを示す図である。横軸は波長(nm)であり、縦軸は、分光スペクトルA2では光の強度(より具体的には、最大強度Imaxで規格化した強度)であり、透過率特性B1~B3では透過率(I/I0)である。透過率特性B1はガス温度が100℃の場合を示し、透過率特性B2はガス温度が130℃の場合を示し、透過率特性B3はガス温度が150℃の場合を示している。なお、図2に示される透過率特性B1~B3は、100%濃度のアセトンガスを流したときの検出光の分光スペクトル(図示せず)を、アセトンガスによる吸収がないときの検出光の分光スペクトルA2で除算した結果を透過率として示している。
 図2に示すように、100%濃度のアセトンガスは、使用時の主たるガス温度(以下、基準温度と呼ぶことがある)である130℃のときの透過率特性B2に比べて、100℃のときの透過率特性B1の方が、より高くなる傾向がある。また、150℃のときの透過率特性B3は、透過率特性B2に比べて、より低くなる傾向がある。この傾向は、測定光として想定される例えば290~310nmの紫外光に対して同様である。
 このため、同じ100%濃度のアセトンガスを流しているにも関わらず、ガスの温度によって、透過率ひいては吸光度が異なるものとして測定され得る。より詳細には、図2に示すように300nmにピークを有する分光スペクトルA1の光を用いて測定を行った場合において、アセトンの濃度自体は同じ100%で一定であるにも関わらず、ガス温度が130℃のときには透過率がτ2の値となり、ガス温度が100℃のときには透過率がτ1の値となり、ガス温度が150℃のときには透過率がτ3の値となる。
 したがって、100%濃度で130℃のアセトンガスを流したときに求めた吸光係数αaceを用いて、上記の式(4)に従って濃度演算を行うと、100℃または150℃のガスの濃度は正確に求められないことがある。これは、同じ濃度であっても、吸光のされやすさが、ガスの温度によって異なってしまっているからである。
 この問題を解決するために、本実施形態では、各温度での吸光係数αaceを予め求めておくとともに、これらを温度に関連付けられた複数の吸光係数αaceとしてメモリに格納しておき、濃度測定を行うときには、そのときの計測されたガス温度に基づいて、適切な吸光係数αaceを決定して使用するようにしている。
 図3は、100%濃度で130℃のアセトンガスによって得られた吸光係数αaceT2を用いて100℃(=T1)、130℃(=T2)、150℃(=T3)のアセトンガスの濃度演算を行ったときの演算濃度と、実際のアセトン濃度との誤差の関係を表したグラフC1~C3である。横軸は、実際のアセトン濃度(既知の設定濃度)を示しており、縦軸は実際のアセトン濃度からのずれの大きさをフルスケール誤差(%)で示している。
 グラフC2で示すように、アセトンガスの温度が130℃のときには、吸光係数αaceT2を用いたときの演算濃度と、実際の濃度との間の誤差は0になる(言い換えると、誤差が0となるような吸光係数αaceT2が用いられている)。一方、グラフC1に示すように、100℃のアセトンガスの場合、130℃における吸光係数αaceT2を用いて演算により求めた濃度と、実際の濃度との間には誤差が生じる。同様に、グラフC3に示すように、150℃のアセトンガスの場合、130℃における吸光係数αaceT2を用いて演算により求めた濃度と、実際の濃度との間には誤差が生じる。
 より具体的には、100℃のアセトンガスについては過大な吸光係数αaceT2が用いられたために、式(4)からわかるように、演算濃度としては実際の濃度よりも小さい値が出力され、また、150℃のアセトンガスについては過少な吸光係数αaceT2が用いられたために、演算濃度としては実際の濃度よりも大きい値が出力され、これによってグラフC1およびC3に示す誤差が生じている。
 上記の誤差の大きさは、100%濃度のアセトンガスを流したときに最も大きくなり、0%濃度のアセトンガスを流したとき(すなわち吸光なし)のときには0となり、また、濃度と誤差の大きさとは直線的な関係を有している。したがって、100%濃度のときの基準温度以外の吸光係数αaceT1、αaceT3をも予め求めておき、これらを用いて100℃近傍、150℃近傍のガスの濃度演算を行うようにすれば、いずれの濃度についても誤差の少ない演算結果を得ることができることがわかる。
 吸光係数αaceT1およびαaceT3は、吸光係数αaceT2と同様に、それぞれ、100℃および150℃の100%濃度アセトンガスを流したときの各測定値(T、Ptotal、I)から、式(3)および(4)に従って演算により求めることができる。
 図4の表は、測定光波長(LEDピーク波長(nm))が300nmであるときのセル温度(℃)ごとの吸光係数を示し、上記のようにして、300nmの測定光を用いて100℃、130℃、150℃のそれぞれのアセトンガスについて、式(4)から求められた吸光係数αaceT1、αaceT2、αaceT3が求められ、全てがメモリに格納される。
 なお、上記には、各温度での吸光係数を全てメモリに格納しておく態様を説明したが、これに限られず、基準となる130℃の吸光係数を基準吸光係数として格納するとともに、各温度での補正係数を格納しておき、測定温度に基づいて決定された補正係数を乗じた吸光係数を用いて、濃度の演算を行うようにしてもよい。
 また、上記には3つの温度T1、T2、T3のそれぞれについて吸光係数を求めておく態様を説明したが、本発明の実施形態はこれに限られるものではない。2つ以上の任意の数の、ガス温度に関連付けられた吸光係数を用いることによって、ガス温度に依存して発生する濃度測定の誤差を低減し得る。また、2つの温度T1、T2について吸光係数αT1、αT2がそれぞれ設定されているときに、測定温度がT1とT2の間であった場合には、直交平面座標(T1、αT1)と(T2、αT2)と結ぶ直線式に測定温度を代入することによって吸光係数を求めることもできる。
 次に、上記のガス温度だけでなく、測定光の波長に対しても、異なる吸光係数を設定する態様について説明する。
 図5は、3つの異なるピーク波長(297.5nm、300.0nm、および、302.5nm)を有する測定光の分光スペクトルA1、A2、A3と、温度による透過率特性B1、B2、B3とを示す図である。図5は、図2にさらに、濃度測定装置の機差によって生じる測定光の分光スペクトルの違いを追加したものである。
 また、図6は、ガスの温度T1、T2、T3および測定光の波長L1、L2、L3の組み合わせについて、それぞれ設定された9個の吸光係数αaceL1T1、αaceL1T2、αaceL1T3、αaceL2T1、αaceL2T2、αaceL2T3、αaceL3T1、αaceL3T2、αaceL3T3を示す表である。
 図5に示すように、同じ設計によって作製された濃度測定装置であっても、測定光の実際のピーク波長はわずかに異なることがある。これは、光源(LED)のピーク波長自体が最初から異なっていることも多いためである。また、特に紫外線LEDのスペクトルは、使用時間の経過とともに、初期のスペクトルから変動することも考えられる。
 この場合に、初期に設定された300nmの波長に対する吸光係数αaceL2を、異なる波長(ここでは、297.5nmおよび302.5nm)の測定光を用いたときの測定結果に適用して濃度演算を行った場合には、演算濃度に誤差が生じる可能性がある。これは、上記の温度のときと同様に、同じ100%濃度のアセトンガスであっても、測定光波長によって、透過率が異なるものになるからである。具体的には、図5に示すように、同じ100%濃度、130℃のアセトンガスの場合にも、測定光ピーク波長が300nmのときには透過率τ2となるのに対して、297.5nmのときにはτ4の値となり、302.5nmの時にはτ5の値となる。
 したがって、図6に示すように、温度T1、T2、T3および波長L1、L2、L3のそれぞれに基づいて決定される9つのマトリクス状の吸光係数を予め設定し、メモリに記憶しておくことによって、それぞれの場合でのより正確な濃度測定が可能になる。もちろん、9つ以上の吸光係数を設定しておいてもよいし、マトリクスに記載の吸光係数の間の値が観察されたときには、最も近い吸光係数を選択するか、あるいは、マトリクスの値に対して補正を行うことによって適切な吸光係数を決定してもよい。
 このように、波長L1、L2、L3のそれぞれで異なる吸光係数を用いることによって、機差による測定光波長の違いによらず濃度測定が可能である。濃度測定装置は、濃度測定を行う前に、予め測定光波長のピークを検出する工程を行っておくことによって、当該装置で用いるべき吸光係数を決定することができる。
 また、上記にはアセトンガスを用いたときの濃度測定について説明したが、他の種類のガスについても同様に、温度または測定光波長に関連付けた複数の吸光係数を予め設定しておくことによって、濃度測定の精度を向上させ得る。他の種類のガスの濃度測定を行う場合、上記のように予め吸光係数を設定しておいてもよいが、アセトンガスに対する吸光係数をメモリに格納しておくとともに、ガスの種類に応じて吸光係数を補正することによって、当該ガス種に対する吸光係数を決定してもよい。
 図7(a)は、図6に示したアセトンガスの吸光係数のマトリクスに対応する、補正ファクタのマトリクスを示す図である。図7(a)に示すように、メモリに格納されている9つのアセトンガスの吸光係数に対して、3つの温度と3つの測定光波長との組み合わせに対応する9つの補正ファクタ(以下、MOファクタと呼ぶことがある)が設定されている。各補正ファクタは、測定対象のガスについて測定した吸光係数を、アセトンガスの吸光係数によって除算することによって求めることができる。このように、9つのアセトンガスの吸光係数を基準ガス(ここではアセトンガス)の吸光係数としてメモリに格納しておくとともに、測定ガス(ここでは有機金属(MO)ガス)の種類ごとに補正マトリクスを設定することによって、種々のガスに対応して、濃度測定をより正確に行い得る。なお、濃度測定装置の光学系の設計などによって生じる濃度測定誤差は、出荷前等に、基準ガスを用いて吸光係数を求める過程で予め校正しておくことができ、出荷後に測定ガスの濃度を測定するときの機差による誤差は抑制される。
 図7(b)は、MOファクタ(補正ファクタ)と、温度および測定光波長との関係の一例を示す図である。図7(b)に示す例では、温度が高くなる程、補正ファクタが大きくなり、測定光波長が長くなる程、補正ファクタが大きくなっている。このような傾向は、図2に示したアセトンガスと同様の透過率特性を有するガスに関して、補正ファクタを求めたときに示される傾向である。ただし、異なる透過率特性を有するガスについては、他の傾向が示されることもあることは言うまでもない。
 以上、本発明の実施形態による濃度測定装置を説明したが、本発明は、上記実施形態に限定解釈されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、測定に用いられる光としては、ガスの種類に応じて、紫外領域以外の波長領域の光を利用することも可能である。
 また、上記には反射部材を用いる反射型の濃度測定装置を説明したが、反射部材を用いることなく、測定セルの一端側から入射光を入射させ、測定セルの他端側から測定光を取り出すように構成された透過型の濃度測定装置を用いることもできる。
 本発明の実施形態に係る濃度測定装置は、半導体製造装置などに対して用いられ、種々のガスの濃度を測定するために好適に利用される。
 1 光源
 2 セル本体
 3 窓部
 4 測定セル
 4a 流入口
 4b 流出口
 4c 流路
 5 反射部材
 6 コリメータ
 7 測定光検出器
 8 演算回路
 9 参照光検出器
 10a 光ファイバ(入射光用)
 10b 光ファイバ(出射光用)
 20 圧力センサ
 22 温度センサ
 50A ガスユニット
 50B 電気ユニット
 100 濃度測定装置

Claims (6)

  1.  ガスが流れる流路を有する測定セルと、
     前記測定セルへの入射光を発する光源と、
     前記測定セルから出射した光を検出する光検出器と、
     前記測定セル内のガス圧力を検出する圧力センサと、
     前記測定セル内のガス温度を検出する温度センサと、
     前記圧力センサの出力と、前記温度センサの出力と、前記光検出器の出力と、予めメモリに格納された複数の吸光係数とに基づいて前記ガスの濃度を演算する演算回路と
     を備え、
     前記演算回路は、前記温度センサの出力に基づいて前記複数の吸光係数から決定された吸光係数を用いて濃度を演算するように構成されている、濃度測定装置。
  2.  前記演算回路は、前記温度センサの出力と、前記光源が発する測定光のピーク波長とに基づいて決定された吸光係数を用いて濃度を演算するように構成されている、請求項1に記載の濃度測定装置。
  3.  3つの温度と3つの測定光のピーク波長との組み合わせに対応する9つの吸光係数のうちのいずれかを用いて濃度を演算するように構成されている、請求項2に記載の濃度測定装置。
  4.  前記演算回路は、決定された吸光係数αを用いて、下記の式に基づいて前記ガスの濃度Cを求めるように構成されており、下記の式において、I0は測定セルに入射する入射光の強度、Iは測定セルを通過した光の強度、Rは気体定数、Tは測定セル内のガス温度、Lは測定セルの光路長、Pは測定セル内のガス圧力である、請求項1から3のいずれかに記載の濃度測定装置。
     C=ln(I0/I)×(R・T)/(α・L・P)
  5.  前記演算回路は、ガスの種類ごとに設定された補正ファクタを用いて、基準ガスの吸光係数を補正して濃度を演算するように構成されている、請求項1から4のいずれかに記載の濃度測定装置。
  6.  前記基準ガスは、アセトンガスである、請求項5に記載の濃度測定装置。
PCT/JP2020/001917 2019-01-31 2020-01-21 濃度測定装置 WO2020158506A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/423,500 US11796458B2 (en) 2019-01-31 2020-01-21 Concentration measurement device
KR1020217010738A KR102535963B1 (ko) 2019-01-31 2020-01-21 농도 측정 장치
CN202080007907.4A CN113260850A (zh) 2019-01-31 2020-01-21 浓度测定装置
JP2020569533A JP7357938B2 (ja) 2019-01-31 2020-01-21 濃度測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-016404 2019-01-31
JP2019016404 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020158506A1 true WO2020158506A1 (ja) 2020-08-06

Family

ID=71840858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001917 WO2020158506A1 (ja) 2019-01-31 2020-01-21 濃度測定装置

Country Status (6)

Country Link
US (1) US11796458B2 (ja)
JP (1) JP7357938B2 (ja)
KR (1) KR102535963B1 (ja)
CN (1) CN113260850A (ja)
TW (1) TWI736118B (ja)
WO (1) WO2020158506A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021182279A1 (ja) * 2020-03-13 2021-09-16
WO2023238434A1 (ja) * 2022-06-07 2023-12-14 株式会社堀場エステック 濃度測定装置、濃度測定方法、原料気化システム、および原料気化システムにおける濃度測定方法
WO2024195271A1 (ja) * 2023-03-17 2024-09-26 荏原実業株式会社 光学分析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103895A (ja) * 1993-09-30 1995-04-21 Mazda Motor Corp 排気成分濃度検出装置
JP2002139428A (ja) * 2000-11-02 2002-05-17 Chubu Electric Power Co Inc ガス成分測定装置及び方法
US20050269499A1 (en) * 2003-05-23 2005-12-08 Schlumberger Technology Corporation Method and sensor for monitoring gas in a downhole environment
JP2011163676A (ja) * 2010-02-10 2011-08-25 Nippon Signal Co Ltd:The シート乾燥制御装置及び乾燥制御方法並びにシート乾燥装置
JP2018025499A (ja) * 2016-08-12 2018-02-15 株式会社フジキン 濃度測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206041A (ja) * 1999-01-19 2000-07-28 Japan Radio Co Ltd レ―ザ分光測定を用いた試料の含有物濃度検出方法
JP4223881B2 (ja) * 2003-07-31 2009-02-12 矢崎総業株式会社 濃度測定システム
JP2012058200A (ja) * 2010-09-13 2012-03-22 South Product:Kk 色素化合物の定量方法
JP5885699B2 (ja) 2013-05-09 2016-03-15 株式会社フジキン 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法
JP2017129374A (ja) * 2016-01-18 2017-07-27 株式会社堀場製作所 分析装置、及び、分析方法
JP6912766B2 (ja) 2016-07-29 2021-08-04 国立大学法人徳島大学 濃度測定装置
CN107144538A (zh) * 2017-06-13 2017-09-08 吴明 基准状态光吸收系数和光吸收率的检测方法
JP7103895B2 (ja) 2018-08-31 2022-07-20 ダイハツ工業株式会社 内燃機関のシリンダヘッド
CN109115706B (zh) * 2018-09-04 2021-07-27 深圳市卡普瑞环境科技有限公司 一种水分子吸收系数的温度校正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103895A (ja) * 1993-09-30 1995-04-21 Mazda Motor Corp 排気成分濃度検出装置
JP2002139428A (ja) * 2000-11-02 2002-05-17 Chubu Electric Power Co Inc ガス成分測定装置及び方法
US20050269499A1 (en) * 2003-05-23 2005-12-08 Schlumberger Technology Corporation Method and sensor for monitoring gas in a downhole environment
JP2011163676A (ja) * 2010-02-10 2011-08-25 Nippon Signal Co Ltd:The シート乾燥制御装置及び乾燥制御方法並びにシート乾燥装置
JP2018025499A (ja) * 2016-08-12 2018-02-15 株式会社フジキン 濃度測定装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021182279A1 (ja) * 2020-03-13 2021-09-16
JP7228209B2 (ja) 2020-03-13 2023-02-24 国立大学法人徳島大学 濃度測定方法
US12078590B2 (en) 2020-03-13 2024-09-03 Tokushima University Concentration measuring method, and concentration measuring device
WO2023238434A1 (ja) * 2022-06-07 2023-12-14 株式会社堀場エステック 濃度測定装置、濃度測定方法、原料気化システム、および原料気化システムにおける濃度測定方法
WO2024195271A1 (ja) * 2023-03-17 2024-09-26 荏原実業株式会社 光学分析装置

Also Published As

Publication number Publication date
TWI736118B (zh) 2021-08-11
JP7357938B2 (ja) 2023-10-10
KR20210052550A (ko) 2021-05-10
TW202041844A (zh) 2020-11-16
US20220074851A1 (en) 2022-03-10
KR102535963B1 (ko) 2023-05-26
JPWO2020158506A1 (ja) 2021-12-09
US11796458B2 (en) 2023-10-24
CN113260850A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
JP6786099B2 (ja) 濃度測定装置
KR20180104090A (ko) 농도 측정 장치
WO2020158506A1 (ja) 濃度測定装置
JP2023160991A (ja) 濃度測定装置
JP7305200B2 (ja) 濃度測定方法
JP7492269B2 (ja) 濃度測定装置
JP2024076641A (ja) 濃度測定装置
US11686671B2 (en) Concentration measurement device
JP7228209B2 (ja) 濃度測定方法
JP7244900B2 (ja) 反射部材の表裏識別方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569533

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217010738

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748493

Country of ref document: EP

Kind code of ref document: A1