Nothing Special   »   [go: up one dir, main page]

WO2020158422A1 - 入力装置 - Google Patents

入力装置 Download PDF

Info

Publication number
WO2020158422A1
WO2020158422A1 PCT/JP2020/001326 JP2020001326W WO2020158422A1 WO 2020158422 A1 WO2020158422 A1 WO 2020158422A1 JP 2020001326 W JP2020001326 W JP 2020001326W WO 2020158422 A1 WO2020158422 A1 WO 2020158422A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive voltage
operation surface
control unit
input device
unit
Prior art date
Application number
PCT/JP2020/001326
Other languages
English (en)
French (fr)
Inventor
智英 宇佐美
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020158422A1 publication Critical patent/WO2020158422A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present disclosure relates to an input device capable of input operation by an operation body such as a finger.
  • Patent Document 1 As a conventional input device, for example, one described in Patent Document 1 is known.
  • This input device is provided at a position different from that of the display device, and detects the operation position of the finger on the operation surface.
  • the touch pad vibrates the operation surface based on the detection result, and the input device moves between the finger and the operation surface.
  • An actuator that controls the frictional force of the actuator and a control unit that controls the operation of the actuator.
  • This input device is configured such that an icon displayed on the display device, that is, an operation button, can be input to the icon by operating a finger on the touch pad.
  • the portion corresponding to the icon of the display device is the target area
  • the portion corresponding to the periphery of the icon is the peripheral area.
  • the control unit does not operate the actuator.
  • no vibration is generated on the operation surface, and a larger frictional force is generated between the finger and the operation surface than when vibration is generated on the operation surface.
  • the moving speed of the finger on the operation surface is higher in the peripheral area where the operation surface vibrates than in areas other than the peripheral area where the operation surface does not vibrate. Therefore, this input device reduces the frictional force in the peripheral area and pulls the finger toward the target area when the operator operates the finger so as to pass through the peripheral area from other than the peripheral area and reach the target area. The operator is reminded of such a "feeling of pulling in".
  • the inventors of the present invention conducted extensive studies on this type of input device, and found that the squeeze effect may be uneven due to a standing wave due to vibration generated on the operation surface.
  • a standing wave is generated on the operating surface when the operating surface is vibrated by the actuator. More specifically, on the operation surface in which the standing wave is generated, due to vibration, a portion (hereinafter referred to as “mountain valley portion”) in which a mountain state and a valley state are alternately repeated in a cross-sectional view. , A portion that hardly changes and becomes a knot state (hereinafter referred to as a “knot portion”) occurs.
  • the ridges and valleys are the portions where the variation in the orthogonal direction is large, and the squeeze film is generated, so the degree of reduction of the friction force due to the squeeze effect is large.
  • the knot portion has a small variation in the orthogonal direction and a squeeze film is unlikely to occur, so that the degree of reduction in the frictional force due to the squeeze effect is small.
  • the present disclosure has an object to provide an input device in which unevenness due to a squeeze effect is reduced more than in the past and an operation feeling is improved.
  • An input device includes an operation unit having an operation surface operated by an operator with an operation body, a detection unit that detects an operation position of the operation surface by the operation body, a drive unit that vibrates the operation surface, and a detection unit.
  • a control unit that applies a predetermined drive voltage to a drive unit to drive the drive unit based on a signal output from the unit, and a standing wave is generated on the operating surface in a vibrated state.
  • the resulting operation surface has a nodal portion including a portion that does not fluctuate in the orthogonal direction and a peak and valley portion that has a fluctuation in the orthogonal direction larger than the knot portion, with the normal direction to the operation surface in the non-vibrating state as the orthogonal direction.
  • the control unit changes the drive voltage according to the operation position with respect to the coordinate data of the peaks and valleys and the knots on the operation surface.
  • the control unit drives the drive unit according to the operation position to vibrate the operation surface
  • the input device makes the operator feel a predetermined operation feeling.
  • a standing wave is generated on the operating surface in a driven state, and a knot portion including a portion that does not fluctuate in a direction orthogonal to the operating surface in a state in which vibration does not occur, and fluctuation in the orthogonal direction is greater than that It becomes a state having a large mountain valley portion.
  • the control unit performs control to vary the drive voltage of the drive unit according to the operation position with respect to the standing wave. Therefore, this input device reduces unevenness of the squeeze film in a state where the operation surface is vibrated, Improving the operation feeling of the operator.
  • FIG. 5 is a plan view showing an operation on the operation surface corresponding to the selection of the icon shown in FIG. 4.
  • FIG. 6 is a plan view showing the operation unit in a state where a standing wave is generated by vibration.
  • FIG. 6B is a diagram showing how the operation surface in the state of FIG.
  • 6A is traced with a finger.
  • 6B is an enlarged view of an area shown by a broken line in FIG. 6B, showing a state where a finger is placed on a mountain valley portion and a state where a finger is placed on a knot portion of the operation surface where a standing wave is generated.
  • .. 7 is a graph showing a relationship between a driving voltage and a frictional force of a driving portion at a mountain valley portion and a node portion on the operation surface where a standing wave is generated. It is a figure which shows an example of the tracing operation performed on the operation surface.
  • 9 is a graph showing the relationship between the operating position and the drive voltage of the drive unit when the drag operation of FIG. 8 is performed in the conventional input device.
  • 9 is a graph showing the relationship between the operating position and the frictional force when the drag operation of FIG. 8 is performed in the conventional input device.
  • 9 is a graph showing the relationship between the operating position and the drive voltage of the drive unit when the drag operation of FIG. 8 is performed in the input device of the first embodiment.
  • 9 is a graph showing the relationship between the operating position and the frictional force when the drag operation of FIG. 8 is performed in the input device of the first embodiment.
  • 3 is a flowchart showing an example of control executed by the control unit of FIG. 2.
  • 7 is a graph showing a relationship between an operation position and a drive voltage of a drive section in a modified example of the first embodiment.
  • FIG. 5, FIG. 6A, and FIG. 8 for simplification of description, the left-right direction on the paper surface is the X direction, the direction orthogonal to the X direction on the paper surface is the Y direction, and these directions are indicated by arrows. Showing. Although not shown in cross section in FIGS. 5 and 8, some regions are hatched for easy viewing.
  • the input device 1 of the present embodiment is mounted on a vehicle 5 such as an automobile together with a separate display device 2 as shown in FIG. 1, and is applied to a vehicle-mounted input device that controls input to the display device 2. Is suitable. In this embodiment, an example in which the input device 1 is applied to an in-vehicle application will be described with reference to FIGS. 1 and 2.
  • the input device 1 is arranged, for example, in the center console 51 of the vehicle 5 and is connected to the display device 2 mounted on the instrument panel 50.
  • the control unit 15 described later is connected to the display device 2 and a predetermined in-vehicle device 3 via the in-vehicle LAN 4, and the operator operates the operation panel 11. It is configured to be able to control input to the display device 2 and the like by input.
  • the display device 2 is an arbitrary display such as a liquid crystal display or an OLED (organic light emitting diode) display.
  • the display device 2 is arranged at a position where the operator can visually recognize the display unit 20, such as a central portion of the instrument panel 50 of the vehicle 5 in the vehicle width direction.
  • the display device 2 is configured as, for example, a display unit of a navigation device, and displays various information such as current position information of the vehicle on the map, traveling direction information, or guidance information to a destination desired by the operator. To display. Note that the display device 2 may be used to display information about the device when the in-vehicle device 3 is a device other than the navigation device.
  • the in-vehicle device 3 is a predetermined device mounted on the vehicle 5 together with the input device 1 and the display device 2, and is, for example, a car navigation system, a meter, an audio, a back camera, a road traffic information system, a dedicated communication device, or the like. However, it is not limited to these.
  • the in-vehicle LAN 4 is used for a communication network between the in-vehicle devices including the input device 1 and the display device 2.
  • CAN abbreviation of Controller Area Network
  • LIN abbreviation of Local Interconnect Network
  • the input device 1 is not limited to the above-described examples and the like, and the arrangement thereof may be appropriately changed such as being arranged on the steering wheel, and may be applied to other uses other than the vehicle.
  • the input device 1 of the present embodiment is separate from the display device 2, and has an operation unit 10 having an operation panel 11 and a detection unit 12, a drive unit 13, and a control unit 15. With.
  • the operation unit 10 includes an operation panel 11 having an operation surface 11a and a detection unit 12, a drive unit 13, and a housing 14 having a support unit 140, and an operator operates a finger or the like. This is the part where the body F operates.
  • the operation panel 11 includes an operation surface 11a that is a surface on which the operator operates the operation body F, and a detection unit 12 that detects an operation of the operation surface 11a by the operator.
  • a detection unit 12 that detects an operation of the operation surface 11a by the operator.
  • a touch pad or a touch panel For example, a touch pad or a touch panel.
  • the operation surface 11 a defines areas corresponding to various icons 21 displayed on the display unit 20 of the display device 2.
  • the operation surface 11a when two icons 21 separated from each other in the X direction are displayed on the display unit 20, the operation surface 11a has an area corresponding to the icon 21 as shown in FIG.
  • Two target areas 111 and their peripheral areas 112 are defined.
  • one of the two target areas 111 on the left side in the X direction corresponds to the icon 21 displayed on the left side in the X direction in FIG. 4.
  • the target area 111 on the right side in the X direction corresponds to the icon 21 displayed on the right side in the X direction in FIG. 4.
  • the icon 21 on the left side in the X direction of FIG. 4 is referred to as “left icon 21A”, and the corresponding target region 111 on the left side of the X direction in FIG. 5 is referred to as “left icon 21A”.
  • the target area 111A" is referred to.
  • the icon 21 on the right side in the X direction of FIG. 4 is referred to as a “right icon 21B”, and the corresponding target region 111 on the right side in the X direction of FIG. 5 is referred to as a “right target region 111B”.
  • the operation unit 10 is configured to be capable of performing predetermined operations such as selection and pushing of various icons 21 displayed on the display unit 20 by operating the operation tool F on the operation surface 11a.
  • predetermined operations such as selection and pushing of various icons 21 displayed on the display unit 20 by operating the operation tool F on the operation surface 11a.
  • the operator puts the operating tool F in the left target area 111, and slides the operating tool F from that state to the right target area 111 through the peripheral area 112 and performs a tracing operation. By doing so, the right icon 21B can be selected.
  • the state in which the left icon 21A is selected is changed to the state in which the right icon 21B is selected.
  • the target area 111 corresponding to the icon 21 and the peripheral area 112 on the operation surface 11a are arbitrary and may be appropriately changed for each icon 21 displayed on the display unit 20, that is, for each design of the display screen. ..
  • the peripheral area 112 is defined not only in a portion of the operation surface 11a corresponding to an area different from the icon 21 displayed on the display unit 20 but also in a predetermined area. Good. For example, only the area between the different target areas 111 on the operation surface 11 a, the area around the predetermined target area 111, or the like may be defined as the peripheral area 112.
  • the peripheral region 112 is a region in which the frictional force with the operating body F is different from that in the target region 111, and is a region for reminding the operator of a predetermined operation feeling such as a feeling of pulling in or a feeling of riding up, It is appropriately defined according to the target area 111.
  • the above-described operation is an example, and various operations such as a drag operation in the Y direction and a rotation operation can be performed on the operation surface 11a as well as a drag operation in the X direction.
  • the detection unit 12 detects an operation on the operation surface 11a by the operator, and is arranged closer to the housing 14 than the operation surface 11a as shown in FIG.
  • the detection unit 12 is, for example, of a capacitance type, in which a first electrode extending along one direction on the operation surface 11a and a second electrode orthogonal to the one direction are arranged in a grid pattern. And is covered with any insulating material.
  • the detection unit 12 is configured so that the generated capacitance changes according to the position of the operating tool F that is close to the operation surface 11a.
  • the detection unit 12 is connected to the control unit 15 by a wiring (not shown) and outputs the electrostatic capacitance signal to the control unit 15 as a position signal.
  • the detection unit 12 is not limited to the capacitance type as long as it outputs a signal corresponding to the position of the operating body F to the control unit 15 when the operator puts the operating body F on the operation surface 11a.
  • any other method such as a pressure-sensitive method may be used.
  • the detection unit 12 detects a contact of the operating tool F with the operation surface 11a, and thus may be referred to as a “touch sensor”.
  • the detection unit 12 may be configured to detect the pressing force applied to the operation surface 11a by the operation tool F based on the change in the capacitance caused by the pressure applied to the operation surface 11a, or optionally in addition to the touch sensor.
  • the push sensor may be included.
  • the drive unit 13 generates ultrasonic vibration in a direction orthogonal to the operation surface 11a, vibrates the operation surface 11a as necessary, and squeezes the frictional force between the operation body F and the operation surface 11a. That is, it is an actuator used for reducing the friction coefficient.
  • the drive unit 13 is made of, for example, a substance having a piezo effect, such as piezoelectric ceramics, which changes its volume when a voltage is applied and generates a voltage when a force is applied from the outside.
  • the drive unit 13 is provided near both ends of the surface of the operation panel 11 opposite to the operation surface 11a.
  • the drive unit 13 is configured to include, for example, an electrode (not shown) that sandwiches a substance exhibiting a piezo effect, and vibrates due to the piezo effect when an AC voltage is applied to this electrode.
  • the driving unit 13 correlates its vibration frequency with the frequency of the applied AC voltage, and correlates its amplitude with the voltage value of the applied AC voltage.
  • the drive unit 13 is connected to the control unit 15 by a wiring (not shown), and the control unit 15 controls the generation of vibration and the magnitude of vibration.
  • the housing 14 is a member that supports the operation panel 11 while accommodating the operation panel 11, and has a plurality of support portions 140 formed on the bottom surface thereof.
  • the support part 140 supports the operation surface 11 a of the operation panel so that the drive part 13 can vibrate.
  • the control unit 15 has a storage medium such as a ROM and a RAM and a CPU (not shown), and is an electronic control unit that controls the drive of the drive unit 13 based on the position signal obtained from the detection unit 12. There is.
  • the control unit 15 acquires the coordinate position of the operating tool F on the operating surface 11a, the moving direction of the operating tool F, the moving distance thereof, and the like based on the position signal output from the detecting unit 12.
  • the control unit 15 acquires, as the operation state of the operation tool F, the presence/absence of a pressing operation on any of the target areas 111 on the operation surface 11a.
  • the control unit 15 controls the generation state of vibration by the drive unit 13 in accordance with these operation states, generates a predetermined vibration on the operation surface 11a, and causes an operation feeling such as a feeling of retraction with respect to the operation body F. It is configured to execute control regarding.
  • the control unit 15 controls the drive unit 13 by applying a drive voltage to drive the drive voltage.
  • the control unit 15 reduces uneven frictional force between the operation surface 11a and the operating body F in the peripheral region 112, depending on which position of a standing wave described later in the peripheral region 112 corresponds to the operation position.
  • the control for varying the drive voltage to the drive unit 13 is performed. The details will be described later.
  • the above is the basic configuration of the input device 1.
  • FIG. 6A the drive unit 13 that is invisible when viewed from the direction normal to the operation surface 11a is shown by a broken line.
  • FIG. 6C the position of the operation surface 11a in one cycle of the standing waves described below is shown by a solid line, and the position of the operation surface 11a in another cycle is shown by a broken line.
  • orthogonal to the operating surface 11a in the non-vibrating state is simply referred to as "orthogonal direction".
  • the drive unit 13 is driven.
  • a description will be given as a typical example of the above.
  • a standing wave or a standing wave having a predetermined cycle is generated along the X direction on the operation surface 11a.
  • the operation surface 11a vibrated by the drive unit 13 is deformed in a wavy manner in the orthogonal direction, and is in a state of vibrating in the orthogonal direction on the spot.
  • the operation surface 11a in such a state will be referred to as an "operation surface 11a having a standing wave.”
  • FIG. 6B a standing wave or a standing wave having a predetermined cycle
  • the operating surface 11a in which the standing wave is generated includes a knot portion 113 including a portion in which there is no fluctuation in the orthogonal direction, and a mountain trough portion 114 in which the fluctuation in the orthogonal direction is larger than that of the knot portion 113. It becomes a state having.
  • the node portion 113 including a portion where there is no variation in the orthogonal direction of the operation surface 11a is unlikely to form a squeeze film with the operation body F, and has an effect of reducing the frictional force with the operation body F. Hard to get.
  • the squeeze film is formed between the mountain/valley portion 114 having a large variation in the orthogonal direction of the operation surface 11a with the operation body F, the degree of reduction in the frictional force between the operation body F and the operation body F is larger than that of the knot portion 113. ..
  • the operating surface 11a in the vibrating state is a state in which the peaks and valleys 114 in which the reduction in the frictional force with the operating body F is relatively large and the knots 113 in which the reduction in the frictional force is relatively small are mixed, That is, the frictional force is uneven.
  • the operation surface 11a in which the unevenness of the frictional force is generated causes deterioration of the operation feeling of the operator.
  • a predetermined threshold value is set for the frictional force between the operating tool F and the operation surface 11a, and the threshold value or less is set. This can be achieved by setting the area of No. 1 as the peaks and valleys 114 and the area larger than the threshold value as the nodal section 113.
  • the coordinate data on the operation surface 11a where a standing wave is generated by being vibrated that is, the coordinate data of the standing wave is stored in advance in a predetermined data format such as a data table in a storage medium.
  • the control unit 15 controls the drive voltage of the drive unit 13 to be changed in accordance with the operating position with respect to the coordinate data of the standing wave, and thus the frictional force between the operating surface 11a and the operating tool F is not uniform. It is configured to reduce. That is, the control unit 15 performs control for changing the drive voltage of the drive unit 13 depending on whether the operation position corresponds to the knot portion 113 or the mountain valley 114.
  • the knot portions 113 and the ridges 114 have different frictional forces with the operating body F with respect to the drive voltage of the drive unit 13.
  • the driving voltage is zero, that is, when the driving voltage is not driven
  • the joint portions 113 and the crests 114 have the same frictional force F1 with the operating body F.
  • the frictional force is different between the nodal portion 113 where the squeeze film is less likely to occur and the peak-valley portion 114 where the squeeze film is produced.
  • the drive voltage is E1
  • the frictional force at the knot 113 is F2
  • the frictional force at the crest 114 is F3, which is smaller than F2.
  • the control unit 15 controls the drive voltage so that the frictional force at the joint 113 and the frictional force at the peaks 114 are the same or almost the same.
  • a finger which is the operating tool F, is placed at a point X1 in the left target area 111A, and the finger directly passes through the peripheral area 112 to the right target area 111B.
  • An example will be described in which the tracing operation of sliding to the point X2 is performed.
  • the drive voltage of the drive unit is zero in the left target area 111A but is E1 in the peripheral area 112, as shown in FIG. 9A.
  • the right target area 111B it is reset to zero.
  • the frictional force between the operating surface 11a and the operating body F at this time is F1 in the left and right target areas 111A and 111B, but is alternately F3 and F2 in the peripheral area 112 as shown in FIG. 9B. become. This is because, as described above, the operating surface 11a in the vibrating state is in a state in which a standing wave is generated and the node portion 113 and the ridges 114 are formed.
  • the control unit 15 sets the drive voltage of the drive unit 13 to E1 when the operating tool F is in the peripheral region 112 as illustrated in FIG. 10A, for example.
  • E2 is used for control.
  • the control unit 15 sets the drive voltage of the driving unit 13 to E1 and the operating position of the operating tool F corresponds to the knot portion 113.
  • the drive voltage is set to E2.
  • the drive voltage E2 is higher than E1
  • the frictional force at the joint 113 is the same as the frictional force F3 at the peak 114 at the drive voltage E1.
  • step S101 the control unit 15 sets the drive voltage of the drive unit 13 to zero.
  • the detection unit 12 outputs a signal corresponding to the operation position to the control unit 15 in step S102.
  • the control unit 15 advances the process to step S103.
  • the operation surface 11a has not yet vibrated and is in a high friction state in which the frictional force between the operation surface 11a and the operating body F is larger than that in the state where the operation portion 11a vibrates.
  • step S103 the control unit 15 determines whether or not the operation position is the peripheral area 112. In the case of a positive determination in step S103, the control unit 15 advances the processing to step S104. On the other hand, in the case of a negative determination in step S103, the control unit 15 returns the process to step S102.
  • step S104 the control unit 15 determines whether the operation position is the knot portion 113 of the operation surface 11a where the standing wave is generated. In the case of a positive determination in step S104, the control unit 15 advances the processing to step S105, and sets the drive voltage of the drive unit 13 to, for example, E2 in step S105. On the other hand, in the case of a negative determination in step S104, the control unit 15 advances the process to step S106, and sets the drive voltage of the drive unit 13 to E1, for example, in step S106.
  • step S105 and S106 the operation surface 11a is vibrated by the drive unit 13, and the frictional force between the operation surface 11a and the operation tool F is reduced due to the squeeze effect.
  • the frictional force in these steps is the same or approximately the same in order to prevent the operation feeling of the operator from being deteriorated.
  • the drive voltage E1 in step S106 is the “first drive voltage”
  • the drive voltage E2 in step S105 may be referred to as the “second drive voltage”.
  • step S107 the control unit 15 determines whether the operation position has reached the predetermined target area 111. In the case of positive determination in step S107, the control unit 15 advances the processing to step S108. On the other hand, in the case of a negative determination in step S107, the control unit 15 returns the process to step S102.
  • step S108 the control unit 15 controls the drive voltage of the drive unit 13 to zero, and controls the operation surface 11a so that it does not vibrate, that is, the high friction state. Then, the control unit 15 ends the process.
  • the control unit 15 controls the coordinate position of the standing wave from when the operating tool F is placed on the operating surface 11a until the operating tool F reaches the predetermined target area 111.
  • the drive voltage of the drive unit 13 is changed according to the operation position with respect to.
  • the control unit 15 controls the drive voltage to a predetermined value when the operating position corresponds to the peripheral area 112, and drives the operating voltage in the peripheral area 112 according to the operating position for the coordinate data of the standing wave. Vary the voltage. Therefore, the frictional force between the operation surface 11a and the operating body F in the peripheral region 112 is kept within a predetermined range that does not give an uncomfortable feeling to the operator, and the operation feeling is improved as compared with the conventional case.
  • the above-described processing by the control unit 15 can be applied even when the operating tool F moves only the node 113 or the mountain valley 114 of the operating surface 11a where the standing wave is generated. That is, even when the operating tool F moves only one of the knot portion 113 and the ridge/valley portion 114, since the drive voltage is fixed as the first drive voltage or the second drive voltage, the operation surface 11a and the operation surface 11a are operated. The frictional force with the body F is constant. Therefore, the unevenness of the squeeze effect is reduced, and the deterioration of the operation feeling is suppressed.
  • the control unit 15 may perform control such that the change from one of the first drive voltage E1 and the second drive voltage E2 to the other becomes a pulse wave different from a rectangular wave. Specifically, the control unit 15 may perform control such that the change of the drive voltage when changing from one of the drive voltages E1 and E2 to the other becomes a pulse wave having a predetermined gradient. That is, in the peripheral region 112, the change in the drive voltage when the operation position moves from one of the knot portion 113 and the ridge/valley portion 114 to the other does not need to have a gradient, as shown in FIG. 10A. As shown in FIG. 12, it may have a predetermined gradient. As shown in FIG.
  • the frictional force in the peripheral region 112 is as shown in FIG. 10B without a gradient between the driving voltages E1 and E2. As with the changing control, it falls within a predetermined range.
  • the control unit 15 and the method thereof described in the present disclosure are provided exclusively by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. It may be realized by a computer. Alternatively, the control unit 15 and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit 15 and its method described in the present disclosure combine a processor and a memory programmed to execute one or a plurality of functions with a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers configured by. Further, the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by the computer.
  • control unit 15 sets the drive voltage of the drive unit 13 to zero in steps S101 and S108
  • the drive voltage is not necessarily zero. You don't have to.
  • the control unit 15 sets the drive voltage in steps S101 and S108 to a predetermined value larger than zero. You may control.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • User Interface Of Digital Computer (AREA)
  • Position Input By Displaying (AREA)

Abstract

入力装置であって、操作者が操作体(F)により操作する操作面(11a)を有する操作部(10)と、操作体による操作面の操作位置を検出する検出部(12)と、操作面を振動させる駆動部(13)と、検出部から出力される信号に基づいて、駆動部に所定の駆動電圧を印加して駆動させる制御部(15)とを備える。振動した状態の操作面には、定在波が生じる。定在波が生じた操作面は、振動していない状態の操作面に対する法線方向を直交方向として、直交方向における変動をしない部分を含む節目部(113)と、直交方向における変動が節目部よりも大きい山谷部(114)とを有している。制御部は、操作面における山谷部および節目部の座標データに対する操作位置に応じて、駆動電圧を変動させる。

Description

入力装置 関連出願への相互参照
 本出願は、2019年1月29日に出願された日本特許出願番号2019-13217号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、指等の操作体による入力操作が可能な入力装置に関する。
 従来の入力装置として、例えば、特許文献1に記載されたものが知られている。この入力装置は、表示装置とは別位置に設けられ、操作面上での指の操作位置を検出するタッチパッドと、この検出結果に基づいて操作面を振動させ、指と操作面との間の摩擦力を制御するアクチュエータと、アクチュエータの作動を制御する制御部とを備える。この入力装置は、表示装置に表示されるアイコン、すなわち操作ボタンに対して、タッチパッド上で、指操作を行うことで、アイコンに対する入力が可能な構成とされる。
 タッチパッド上の領域は、表示装置のアイコンに対応する部分がターゲット領域とされ、当該アイコンの周辺に対応する部分が周辺領域とされている。指がこのタッチパッドの操作面上を移動し、周辺領域以外の領域から周辺領域を通ってターゲット領域内に至るとき、制御部は、アクチュエータを作動させ、周辺領域での振動を発生させる制御を行う。このように、指が周辺領域を通過するときには、上記の振動発生によって指と操作面との間にスクイーズ膜と呼ばれる空気膜が発生して、操作面に対する指の摩擦力は、振動を発生させない場合よりも低下する。この現象は、スクイーズ効果と呼ばれる。
 一方、指が周辺領域以外の領域を移動する際には、制御部は、アクチュエータを作動させない。この場合、操作面における振動の発生がなく、指と操作面との間には、操作面に振動が発生しているときよりも大きい摩擦力が発生する。その結果、操作面における指の移動速度は、操作面が振動する周辺領域のほうが、操作面が振動してない周辺領域以外の領域より大きくなる。したがって、この入力装置は、周辺領域以外から周辺領域を通り、ターゲット領域内に至るように操作者が指操作した場合、周辺領域における摩擦力を低下させ、ターゲット領域内に向けて指が引き込まれるような「引込み感」を操作者に想起させる。
特開2017-130021号公報
 ところで、本発明者らがこの種の入力装置について、鋭意検討を行ったところ、操作面に生じる振動による定在波に起因するスクイーズ効果のムラが生じ得ることが判明した。
 具体的には、アクチュエータにより操作面が振動した状態では、操作面には、定在波が生じる。より具体的には、この定在波が生じた状態の操作面には、振動により、断面視にて、山の状態と谷の状態とを交互に繰り返す部分(以下「山谷部」という)と、ほとんど変動せず、節目のような状態になる部分(以下「節目部」という)とが生じる。振動していない状態の操作面に対して直交する方向を直交方向として、山谷部は、直交方向における変動が大きい部分であり、スクイーズ膜が生じるため、スクイーズ効果による摩擦力の低下度合いが大きい。一方、節目部は、直交方向における変動が小さく、スクイーズ膜が生じにくいため、スクイーズ効果による摩擦力の低下度合いが小さい。
 つまり、単に振動を生じさせた操作面は、山谷部と節目部とでは、摩擦力の低下度合いが異なるため、摩擦力の変動、すなわちムラが生じ得る。この場合、操作者が指などに得られる感触にムラが生じてしまい、操作感触が悪化してしまう。特許文献1に記載の入力装置では、このスクイーズ効果のムラに対応することができない。
 本開示は、従来よりもスクイーズ効果によるムラを低減し、操作感触が向上した入力装置を提供することを目的とする。
 本開示の観点による入力装置は、操作者が操作体により操作する操作面を有する操作部と、操作体による操作面の操作位置を検出する検出部と、操作面を振動させる駆動部と、検出部から出力される信号に基づいて、駆動部に所定の駆動電圧を印加して駆動させる制御部とを備え、振動した状態の操作面には、定在波が生じており、定在波が生じた操作面は、振動していない状態の操作面に対する法線方向を直交方向として、直交方向における変動をしない部分を含む節目部と、直交方向における変動が節目部よりも大きい山谷部とを有しており、制御部は、操作面における山谷部および節目部の座標データに対する操作位置に応じて、駆動電圧を変動させる。
 これにより、操作者が操作面を指などで操作したとき、検出部によりその操作位置が検出されると共に、制御部がその操作位置に応じて駆動部を駆動させて操作面を振動状態にし、操作者に所定の操作感触を想起させる入力装置となる。また、駆動状態の操作面には、定在波が生じ、振動が生じていない状態の操作面に対する直交方向での変動がない部分を含む節目部と、直交方向での変動が節目部よりも大きい山谷部とを有する状態となる。そして、制御部が、定在波に対する操作位置に応じて、駆動部の駆動電圧を変動させる制御を行うため、この入力装置は、操作面を振動させた状態におけるスクイーズ膜のムラを低減させ、操作者の操作感触を向上させる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態の入力装置を車両に搭載した状態の一例を示す図である。 第1実施形態の入力装置の概要を示すブロック図である。 図1の入力装置のうち操作部の概要を示す断面図である。 図1の入力装置が接続された表示装置の表示部に表示された複数のアイコンのうち、一方のアイコンから他方のアイコンを選択する一例を示す平面図である。 図4に示すアイコンの選択に対応する操作面における操作を示す平面図である。 振動により定在波が生じた状態の操作部を示す平面図である。 図6Aの状態の操作面を指でなぞる様子を示した図である。 図6Bの破線で示す領域を拡大したものであって、定在波が生じた操作面のうち山谷部に指を置いた状態と、節目部に指を置いた状態とを示す拡大図である。 定在波が生じた操作面のうち、山谷部および節目部における駆動部の駆動電圧と摩擦力との関係を示すグラフである。 操作面上で行うなぞり操作の一例を示す図である。 従来の入力装置において、図8のなぞり操作を行った場合における操作位置と駆動部の駆動電圧との関係を示すグラフである。 従来の入力装置において、図8のなぞり操作を行った場合における操作位置と摩擦力との関係を示すグラフである。 第1実施形態の入力装置において、図8のなぞり操作を行った場合における操作位置と駆動部の駆動電圧との関係を示すグラフである。 第1実施形態の入力装置において、図8のなぞり操作を行った場合における操作位置と摩擦力との関係を示すグラフである。 図2の制御部が実行する制御の一例を示すフローチャートである。 第1実施形態の変形例における操作位置と駆動部の駆動電圧との関係を示すグラフである。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 第1実施形態の入力装置1について、図1~図11を参照して説明する。
 図4、図5、図6A、図8では、説明の簡便化のため、紙面上の左右方向をX方向とし、紙面上においてX方向と直交する方向をY方向として、これらの方向を矢印で示している。図5、図8では、断面を示すものではないが、見易くするため、一部の領域にハッチングを施している。
 本実施形態の入力装置1は、例えば図1に示すように、別体の表示装置2と共に、自動車などの車両5に搭載され、表示装置2に対する入力制御を行う車載用入力装置に適用されると好適である。本実施形態では、入力装置1が車載用途に適用された一例について、図1、図2を参照して説明する。
 例えば、入力装置1は、図1に示すように、例えば、車両5のうちセンターコンソール51に配置され、インストルメントパネル50に搭載された表示装置2に接続されている。具体的には、図2に示すように、入力装置1は、後述する制御部15が、車載LAN4を介して表示装置2および所定の車載機器3に接続され、操作者が操作パネル11への入力により表示装置2等への入力制御が可能な構成とされている。
 表示装置2は、例えば、液晶ディスプレイやOLED(有機発光ダイオード)ディスプレイなどの任意のディスプレイとされる。表示装置2は、例えば図1に示すように、車両5のインストルメントパネル50の車両幅方向における中央部など、操作者が表示部20を視認可能な位置に配置される。表示装置2は、例えば、ナビゲーション装置の表示部として構成され、地図上における自車の現在位置情報、進行方向情報、あるいは操作者の希望する目的地への案内情報等の各種情報を表示部20に表示する。なお、表示装置2は、車載機器3がナビゲーション装置以外の機器である場合において、当該機器に関する情報を表示するために用いられてもよい。
 車載機器3は、入力装置1や表示装置2と共に車両5に搭載される所定の機器であり、例えば、カーナビゲーションシステム、メータ、オーディオ、バックカメラ、道路交通情報システム、および専用通信機などとされ得るが、これらに限定されない。
 車載LAN4は、入力装置1および表示装置2を含む車載された各装置間の通信ネットワークに用いられるものであり、例えば、CAN(Controller Area Networkの略)やLIN(Local Interconnect Networkの略)などとされ得る。
 なお、入力装置1は、上記した例などに限定されず、ステアリングに配置されるなど適宜その配置が変更されてもよいし、車載以外の他の用途にも適用され得る。
 (入力装置の構成)
 本実施形態の入力装置1は、図2に示すように、表示装置2とは別体とされると共に、操作パネル11および検出部12を有する操作部10と、駆動部13と、制御部15とを備える。
 操作部10は、図3に示すように、操作面11aおよび検出部12を有する操作パネル11と、駆動部13と、支持部140を有する筐体14とを備え、操作者が指などの操作体Fで操作を行う部位である。
 操作パネル11は、図3に示すように、操作者が操作体Fによる操作を行う側の面である操作面11aと、操作者による操作面11aの操作を検出する検出部12とを有し、例えば、タッチパッドやタッチパネルなどとされる。
 操作面11aは、例えば図4に示すように、表示装置2の表示部20に表示される各種アイコン21に対応した領域が定義されている。例えば、図4に示すように、表示部20にX方向において互いに離れた2つのアイコン21が表示されている場合には、操作面11aは、図5に示すように、アイコン21に対応する領域である2つのターゲット領域111と、その周辺領域112とが定義される。この場合、2つのターゲット領域111のうちX方向の左側のものは、図4のX方向の左側に表示されたアイコン21に対応している。X方向の右側のターゲット領域111は、図4のX方向の右側に表示されたアイコン21に対応している。
 以下、説明の簡便化のため、便宜的に、図4のX方向左側のアイコン21を「左のアイコン21A」と称し、これに対応する図5のX方向左側のターゲット領域111を「左のターゲット領域111A」と称する。また、図4のX方向右側のアイコン21を「右のアイコン21B」と称し、これに対応する図5のX方向右側のターゲット領域111を「右のターゲット領域111B」と称する。
 操作部10は、操作面11a上での操作体Fの操作により、表示部20に表示された各種アイコン21の選択や押込み等の所定の操作が可能な構成とされる。例えば、操作者は、図5に示すように、操作体Fを左のターゲット領域111に置き、その状態から周辺領域112を通って右のターゲット領域111に操作体Fをスライドさせる、なぞり操作を行うことで、右アイコン21Bを選択することができる。この操作により、例えば、表示部20では、左アイコン21Aが選択された状態から、右アイコン21Bが選択された状態に変更される。
 なお、操作面11aのうちアイコン21に対応するターゲット領域111とこの周辺領域112は、任意であり、表示部20に表示されるアイコン21ごと、すなわち表示画面の意匠ごとに適宜変更されてもよい。また、周辺領域112は、図4に示すように、操作面11aのうち、表示部20に表示されたアイコン21と異なる領域に対応する部分のすべてだけでなく、所定の領域だけが定義されてもよい。例えば、操作面11aのうち異なるターゲット領域111間の領域だけや、所定のターゲット領域111の周囲の領域だけなどが、周辺領域112として定義されてもよい。つまり、周辺領域112は、操作体Fとの間の摩擦力がターゲット領域111におけるそれと異なる状態とされ、操作者に引込み感や乗り上げ感などの所定の操作感触を想起させるための領域であり、ターゲット領域111に合わせて適宜定義される。また、上記した操作は、一例であり、操作面11a上では、X方向におけるなぞり操作だけでなく、Y方向のなぞり操作や、ローテーション操作などの各種操作がなされ得る。
 検出部12は、操作者による操作面11a上の操作を検出するものであり、図3に示すように、操作面11aよりも筐体14側に配置される。検出部12は、例えば、静電容量式とされ、操作面11a上の一方向に沿って延設された第1電極と、当該一方向に対して直交する第2電極とが格子状に配列されており、任意の絶縁性材料により覆われてなる。検出部12は、操作面11aに近接する操作体Fの位置に応じて、生じる静電容量が変化する構成とされている。検出部12は、図2に示すように、図示しない配線により制御部15と接続されており、この静電容量の信号を位置信号として制御部15に出力する。
 なお、検出部12は、操作者が操作体Fを操作面11aに置いたときに、その位置に応じた信号を制御部15に出力するものであればよく、静電容量式に限定されず、感圧式などの他の任意の方式とされてもよい。また、検出部12は、操作面11aへの操作体Fの接触を検出するため、「タッチセンサ」と称し得る。さらに、検出部12は、操作面11aへの押圧による静電容量の変化により、操作体Fによる操作面11aへの押圧力を検出する構成とされてもよいし、タッチセンサとは別に、任意のプッシュセンサを備える構成とされてもよい。
 駆動部13は、例えば、操作面11aに対する直交方向に超音波振動を発生させ、必要に応じて、操作面11aを振動させ、スクイーズ効果により、操作体Fと操作面11aとの間の摩擦力、つまり摩擦係数を低下させるために用いられるアクチュエータである。駆動部13は、例えば、電圧印加により体積が変化する一方で、外部から力を受けると電圧を発生する、ピエゾ効果を有する物質、例えば、圧電セラミックス等により形成される。駆動部13は、例えば、図3に示すように、操作パネル11のうち操作面11aの反対側の面の両端付近に設けられる。
 駆動部13は、例えば、ピエゾ効果を示す物質を挟持する図示しない電極を備えた構成とされ、この電極に交流電圧が印加されるとピエゾ効果により振動する。駆動部13は、その振動周波数については印加される交流電圧の周波数と相関し、その振幅については印加される交流電圧の電圧値と相関する。駆動部13は、図2に示すように、図示しない配線により制御部15と接続されており、制御部15により振動発生や振動の大きさなどの制御がなされる。
 筐体14は、図3に示すように、操作パネル11を収容しつつ、これを支持する部材であり、その底面に複数の支持部140が形成されている。支持部140は、操作パネルのうち操作面11aが駆動部13により振動可能となるように支持している。
 制御部15は、図示しない、ROMやRAMなどの記憶媒体およびCPUなどを有してなり、検出部12から得られる位置信号に基づいて、駆動部13の駆動制御を行う電子制御ユニットとされている。制御部15は、検出部12から出力される位置信号により、操作面11aにおける操作体Fの座標位置、操作体Fの移動方向およびその移動距離等を取得する。制御部15は、操作体Fの操作状態として、操作面11a上において、いずれかのターゲット領域111上での押込み操作の有無等を取得する。制御部15は、これらの操作状態に応じて、駆動部13による振動の発生状態を制御し、操作面11aに所定の振動を発生させて、操作体Fに対する引込み感を想起させるなどの操作感触に関する制御を実行する構成とされている。
 制御部15は、検出部12により検出された操作位置が、操作面11aのうち周辺領域112に該当する場合には、駆動部13に駆動電圧を印加してこれを駆動させる制御を行う。制御部15は、周辺領域112における操作面11aと操作体Fとの間の摩擦力ムラを低減するため、操作位置が周辺領域112のうち後述する定在波のどの位置に該当するかにより、駆動部13への駆動電圧を変動する制御を行う。この詳細については、後述する。
 以上が、入力装置1の基本的な構成である。
 (操作面における定在波)
 次に、駆動部13を駆動させた際に操作面11aで生じる定在波について、図6A~図6Cを参照して説明する。
 図6Aでは、操作面11aに対する法線方向から見たときに、見えない駆動部13を破線で示している。図6Cでは、後述する定在波のうち一の周期における操作面11aの位置を実線で示し、他の周期における操作面11aの位置を破線で示している。また、以下の説明では、簡略化のため、振動していない状態の操作面11aに対して直交する方向を単に「直交方向」と称する。
 例えば、図6Aに示すように、操作部10が、操作面11aのX方向の両端それぞれに、Y方向に沿って延設された駆動部13が配置されてなる場合において、駆動部13を駆動させたときを代表例として説明する。
 このとき、操作面11aには、図6Bに示すように、X方向に沿って所定の周期をもつ定在波、あるいは定常波が生じる。具体的には、駆動部13により振動させられた操作面11aは、直交方向において波打つように変形し、その場で直交方向に振動している状態となる。以下、便宜的にこのような状態となった操作面11aを「定在波が生じた操作面11a」と称する。この定在波が生じた操作面11aは、図6Cに示すように、直交方向における変動が生じない部分を含む節目部113と、節目部113よりも当該直交方向における変動が大きい山谷部114とを有する状態となる。
 ここで、本発明者らがこの種の入力装置について鋭意検討をしたところ、振動した状態の操作面11aと操作体Fとの間には、スクイーズ膜が生じるが、操作体Fの位置によりこのスクイーズ膜のムラが生じ得ることが判明した。
 具体的には、操作面11aの直交方向における変動がない部分を含む節目部113は、操作体Fとの間にスクイーズ膜が生じにくく、操作体Fとの間の摩擦力を低下させる効果が得られにくい。一方、操作面11aの直交方向における変動が大きい山谷部114は、操作体Fとの間にスクイーズ膜が生じるため、操作体Fとの間の摩擦力の低下度合いが節目部113よりも大きくなる。つまり、振動状態の操作面11aは、操作体Fとの間の摩擦力の低下が相対的に大きい山谷部114と、当該摩擦力の低下が相対的に小さい節目部113とが混在した状態、すなわち摩擦力のムラが生じた状態である。この摩擦力のムラが生じた状態の操作面11aは、操作者の操作感触が悪化する原因となる。
 なお、定在波が生じた操作面11aでの節目部113と山谷部114との区画については、例えば、操作体Fと操作面11aとの間の摩擦力に所定の閾値を設け、閾値以下の領域を山谷部114、閾値よりも大きい領域を節目部113とすることにより可能である。
 (入力装置の作動および効果)
 本実施形態の入力装置1は、例えば、振動させられることで定在波が生じた操作面11aにおける座標データ、すなわち定在波の座標データが、データテーブルなどの所定のデータ形式で予め記憶媒体に格納されている。入力装置1は、制御部15が、定在波の座標データに対する操作位置に応じて、駆動部13の駆動電圧を変動させる制御を行い、操作面11aと操作体Fとの摩擦力のムラを低減する構成とされている。つまり、制御部15は、操作位置が節目部113に該当する場合と、山谷部114に該当する場合とで、駆動部13の駆動電圧を変更する制御を行う。
 具体的には、節目部113と山谷部114とは、図7に示すように、駆動部13の駆動電圧に対する操作体Fとの摩擦力が異なる状態となる。例えば、駆動電圧がゼロである場合、すなわち駆動していない場合には、節目部113および山谷部114は、操作体Fとの間の摩擦力が同じF1である。しかしながら、駆動電圧を大きくするにつれ、スクイーズ膜が生じにくい節目部113と、スクイーズ膜が生じる山谷部114とでは、その摩擦力に差が生じる。例えば、駆動電圧がE1である場合には、節目部113における摩擦力がF2であるのに対し、山谷部114における摩擦力は、F2よりも小さいF3となる。制御部15は、節目部113における摩擦力と、山谷部114における摩擦力とが同じか若しくは同程度となるように駆動電圧の制御を行う。
 より具体的には、図8に示すように、左のターゲット領域111A内のX1の点に操作体Fである指を置き、そのままその指を、周辺領域112を通って、右のターゲット領域111B内のX2の点までスライドさせるなぞり操作を行う場合を例に説明する。
 従来の入力装置で同様の操作を行った場合には、その駆動部の駆動電圧は、図9Aに示すように、左のターゲット領域111A内ではゼロであるが、周辺領域112内ではE1とされ、右のターゲット領域111Bに到達するとゼロに戻される。このときの操作面11aと操作体Fとの間の摩擦力は、例えば図9Bに示すように、左右のターゲット領域111A、111BではF1であるものの、周辺領域112では、交互にF3とF2とになる。これは、上記したように、振動状態の操作面11aは、定在波が生じ、節目部113と山谷部114とを有する状態となるためである。
 これに対して、本実施形態の入力装置1では、制御部15は、例えば図10Aに示すように、操作体Fが周辺領域112内にある状態でおいて、駆動部13の駆動電圧をE1、E2で変動させる制御を行う。具体的には、制御部15は、操作体Fの操作位置が山谷部114に該当する場合には、駆動部13の駆動電圧をE1とし、操作体Fの操作位置が節目部113に該当する場合には、その駆動電圧をE2とする。なお、この駆動電圧E2は、図7に示すように、E1よりも大きく、節目部113における摩擦力が、駆動電圧がE1のときに山谷部114における摩擦力F3と同じになる電圧である。
 このような駆動電圧の制御が行われた場合、操作面11aと操作体Fとの間の摩擦力は、図10Bに示すように、周辺領域112内においてもF3で一定の状態となり、ムラが従来よりも低減する。そのため、操作者は、周辺領域112における摩擦力ムラによる操作感触の悪化を知覚することなく、安定した引込み感などの所定の操作感が得られる。
 なお、上記では、節目部113における摩擦力と山谷部114における摩擦力とが同一とされる例について説明したが、これらの摩擦力は、同一だけでなく、同程度、すなわち操作者に操作感触の差を知覚させない程度の差があっても構わない。また、摩擦力F1、F2、F3については、操作パネル11や操作体Fの材質や、温度や湿度などの環境に応じて変化するため、駆動電圧E1、E2は、このような要因を考慮して適宜設定される。
 (入力装置における制御)
 次に、本実施形態の入力装置1の制御部15が実行する制御について、図11を参照して説明する。
 まず、ステップS101では、制御部15は、駆動部13の駆動電圧をゼロに設定する。操作者が操作面11aに操作体Fを置いたとき、ステップS102にて、検出部12がその操作位置に応じた信号を制御部15に出力する。制御部15は、検出部12から操作位置に対応する位置信号を取得したら、処理をステップS103に進める。なお、この時点では、操作面11aは、まだ振動していない状態であり、駆動部13により振動した状態よりも操作体Fとの間の摩擦力が大きい高摩擦状態である。
 ステップS103では、制御部15は、操作位置が周辺領域112であるか否かの判定を行う。ステップS103にて肯定判定の場合には、制御部15は、処理をステップS104に進める。一方、ステップS103にて否定判定の場合には、制御部15は、処理をステップS102に戻す。
 ステップS104では、制御部15は、操作位置が、定在波が生じた操作面11aのうち節目部113であるか否かの判定を行う。ステップS104にて肯定判定の場合には、制御部15は、処理をステップS105に進め、ステップS105にて駆動部13の駆動電圧を例えばE2に設定する。一方、ステップS104にて否定判定の場合には、制御部15は、処理をステップS106に進め、ステップS106にて駆動部13の駆動電圧を例えばE1に設定する。
 なお、ステップS105、S106では、操作面11aは、駆動部13により振動した状態となり、操作体Fとの間の摩擦力がスクイーズ効果により低下した低摩擦状態である。これらのステップの摩擦力は、上記したように、操作者の操作感触の悪化を防ぐため、同じかまたは同程度とされる。また、ステップS106における駆動電圧E1を「第1駆動電圧」とした場合、ステップS105における駆動電圧E2は、「第2駆動電圧」と称され得る。ステップS105またはステップS106の後、制御部15は、処理をステップS107に進める。
 ステップS107では、制御部15は、操作位置が所定のターゲット領域111内に到達したか否かを判定する。ステップS107にて肯定判定の場合には、制御部15は、処理をステップS108に進める。一方、ステップS107にて否定判定の場合には、制御部15は、処理をステップS102に戻す。
 ステップS108では、制御部15は、駆動部13の駆動電圧をゼロにし、操作面11aを振動していない状態、すなわち高摩擦状態にする制御を行う。その後、制御部15は、処理を終了させる。
 上記した制御が行われることにより、操作面11aに操作体Fが置かれてから、その操作体Fが所定のターゲット領域111に到達するまでの間、制御部15は、定在波の座標位置に対する操作位置に応じて、駆動部13の駆動電圧を変動させることとなる。言い換えると、制御部15は、操作位置が周辺領域112に該当する場合に駆動電圧を所定の値とする制御を行うと共に、周辺領域112において定在波の座標データに対する操作位置に応じて、駆動電圧を変動させる。そのため、操作面11aのうち周辺領域112における操作体Fとの間の摩擦力が、操作者に違和感を与えない程度の所定の範囲内に保たれ、従来よりも操作感触が向上する。
 なお、制御部15による上記の処理は、例えば、操作体Fが、定在波が生じた操作面11aの節目部113または山谷部114のみを移動する場合であっても、対応可能である。すなわち、操作体Fが節目部113および山谷部114のうち一方のみを移動する場合であっても、駆動電圧が第1駆動電圧または第2駆動電圧のまま固定されるため、操作面11aと操作体Fとの間の摩擦力は、一定となる。そのため、スクイーズ効果のムラが低減され、操作感触の悪化が抑制される。
 本実施形態によれば、操作面11aを振動させることで定在波が生じても、従来よりもスクイーズ効果によるムラを低減し、操作感触が向上した入力装置となる。
 (第1実施形態の変形例)
 上記第1実施形態では、図10Aに示したように、制御部15が、操作位置が節目部113および山谷部114のうち一方から他方に変化した場合において、駆動電圧E1、E2のうち一方から他方への変化が矩形波となる制御を行った例について説明した。しかしながら、上記した駆動電圧の制御は、あくまで一例であり、これに限定されない。
 例えば、制御部15は、図12に示すように、第1駆動電圧E1および第2駆動電圧E2のうち一方から他方への変化が矩形波とは異なるパルス波となる制御を行ってもよい。具体的には、制御部15は、駆動電圧E1、E2のうち一方から他方へ変化させる際の駆動電圧の変化が、所定の勾配をもったパルス波となる制御を行ってもよい。つまり、周辺領域112内において、操作位置が、節目部113および山谷部114のうち一方から他方へ移動する際の駆動電圧の変化は、図10Aに示すように、勾配がなくてもよいし、図12に示すように、所定の勾配をもってもよい。図12に示すように、駆動電圧E1、E2間を所定の勾配で変化させる制御であっても、周辺領域112における摩擦力は、図10Bに示すように駆動電圧E1、E2間を勾配なしで変化させる制御と同様に、所定の範囲内に収まる。
 本変形例であっても、上記第1実施形態と同様の効果が得られる。
 (他の実施形態)
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらの一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 (1)本開示に記載の制御部15及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部15及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部15及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 (2)上記第1実施形態では、図11に示すように、ステップS101およびS108にて、制御部15が、駆動部13の駆動電圧をゼロにする例について説明したが、必ずしも駆動電圧をゼロにしなくてもよい。例えば、振動していない状態の操作面11aと操作体Fとの摩擦力が想定以上に大きい場合などには、制御部15は、ステップS101、S108における駆動電圧をゼロより大きい所定の値にする制御を行ってもよい。

Claims (6)

  1.  入力装置であって、
     操作者が操作体(F)により操作する操作面(11a)を有する操作部(10)と、
     前記操作体による前記操作面の操作位置を検出する検出部(12)と、
     前記操作面を振動させる駆動部(13)と、
     前記検出部から出力される信号に基づいて、前記駆動部に所定の駆動電圧を印加して駆動させる制御部(15)とを備え、
     振動した状態の前記操作面には、定在波が生じており、
     前記定在波が生じた前記操作面は、振動していない状態の前記操作面に対する法線方向を直交方向として、前記直交方向における変動をしない部分を含む節目部(113)と、前記直交方向における変動が前記節目部よりも大きい山谷部(114)とを有しており、
     前記制御部は、前記操作面における前記山谷部および前記節目部の座標データに対する前記操作位置に応じて、前記駆動電圧を変動させる、入力装置。
  2.  前記制御部は、前記操作位置が前記操作面のうち所定のターゲット領域(111)の周辺領域(112)に該当する場合に、前記駆動電圧の制御を行う、請求項1に記載の入力装置。
  3.  前記制御部は、前記操作位置が前記操作面のうち前記周辺領域に到達したときから前記ターゲット領域に到達するまでの間、前記駆動電圧の制御を行う、請求項2に記載の入力装置。
  4.  前記制御部は、前記操作位置が前記山谷部に該当する場合には、前記駆動電圧を第1駆動電圧(E1)とし、前記操作位置が前記節目部に該当する場合には、前記駆動電圧を第2駆動電圧(E2)とする制御を行い、
     前記第2駆動電圧は、前記第1駆動電圧よりも大きい、請求項1ないし3のいずれか1つに記載の入力装置。
  5.  前記制御部は、前記操作位置が前記山谷部および前記節目部のうち一方から他方に変化した場合において、前記第1駆動電圧および前記第2駆動電圧のうち一方から他方への前記駆動電圧の変化が矩形波となる制御を行う、請求項4に記載の入力装置。
  6.  前記制御部は、前記操作位置が前記山谷部および前記節目部のうち一方から他方に変化した場合において、前記第1駆動電圧および前記第2駆動電圧のうち一方から他方への前記駆動電圧の変化が所定の勾配をもったパルス波となる制御を行う、請求項4に記載の入力装置。
PCT/JP2020/001326 2019-01-29 2020-01-16 入力装置 WO2020158422A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-013217 2019-01-29
JP2019013217A JP2020123037A (ja) 2019-01-29 2019-01-29 入力装置

Publications (1)

Publication Number Publication Date
WO2020158422A1 true WO2020158422A1 (ja) 2020-08-06

Family

ID=71840310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001326 WO2020158422A1 (ja) 2019-01-29 2020-01-16 入力装置

Country Status (2)

Country Link
JP (1) JP2020123037A (ja)
WO (1) WO2020158422A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057894A1 (ja) * 2011-10-17 2013-04-25 パナソニック株式会社 電子機器
JP2017004262A (ja) * 2015-06-10 2017-01-05 株式会社東海理化電機製作所 操作装置
JP2017049700A (ja) * 2015-08-31 2017-03-09 富士通テン株式会社 入力装置、統合入力システム、入力装置の制御方法およびプログラム
JP2017073101A (ja) * 2015-10-05 2017-04-13 株式会社ミライセンス 触力覚情報提示システム
JP2017091089A (ja) * 2015-11-06 2017-05-25 富士通テン株式会社 入力装置、表示装置および入力プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013057894A1 (ja) * 2011-10-17 2013-04-25 パナソニック株式会社 電子機器
JP2017004262A (ja) * 2015-06-10 2017-01-05 株式会社東海理化電機製作所 操作装置
JP2017049700A (ja) * 2015-08-31 2017-03-09 富士通テン株式会社 入力装置、統合入力システム、入力装置の制御方法およびプログラム
JP2017073101A (ja) * 2015-10-05 2017-04-13 株式会社ミライセンス 触力覚情報提示システム
JP2017091089A (ja) * 2015-11-06 2017-05-25 富士通テン株式会社 入力装置、表示装置および入力プログラム

Also Published As

Publication number Publication date
JP2020123037A (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
JP6351964B2 (ja) 入力装置
JP5689362B2 (ja) 入力装置
US20150169063A1 (en) Operation device
JP7141215B2 (ja) 操作入力装置およびタッチパネル
US11275445B2 (en) Input device
US20180024638A1 (en) Drive controlling apparatus, electronic device, computer-readable recording medium, and drive controlling method
JP2017130021A (ja) 触覚呈示装置
JP2013196340A (ja) 操作入力システム
JP2018036959A (ja) 制御装置、入力装置、入力システム、表示装置および制御方法
JP6891971B2 (ja) 駆動制御装置、電子機器、及び、駆動制御方法
JP2016170766A (ja) 操作入力装置
JP5797456B2 (ja) 入力装置
US10739906B2 (en) Operation input device and touch panel
US10664056B2 (en) Control device, input system and control method
JP6819783B2 (ja) 駆動制御装置、電子機器、及び駆動制御方法
JP6852795B2 (ja) 制御装置、電子機器、及び、電子機器の制御方法
WO2020158422A1 (ja) 入力装置
JP7207017B2 (ja) 入力装置
JP6477305B2 (ja) 電子機器、及び、押圧検出プログラム
KR20110072211A (ko) 터치 스크린 장치
JP2016057764A (ja) 触覚呈示装置
WO2023097557A1 (en) Electronic apparatus and method of operation electronic apparatus
JP2018005706A (ja) 操作装置
JP2017054284A (ja) 触覚呈示装置
JP2017049828A (ja) 触覚呈示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748634

Country of ref document: EP

Kind code of ref document: A1