WO2020147352A1 - 一种磁浮测试系统和电磁铁测试方法 - Google Patents
一种磁浮测试系统和电磁铁测试方法 Download PDFInfo
- Publication number
- WO2020147352A1 WO2020147352A1 PCT/CN2019/111611 CN2019111611W WO2020147352A1 WO 2020147352 A1 WO2020147352 A1 WO 2020147352A1 CN 2019111611 W CN2019111611 W CN 2019111611W WO 2020147352 A1 WO2020147352 A1 WO 2020147352A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnet
- controller
- test bench
- brake
- test
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/18—Safety devices; Monitoring
- B60T17/22—Devices for monitoring or checking brake systems; Signal devices
- B60T17/228—Devices for monitoring or checking brake systems; Signal devices for railway vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/04—Magnetic suspension or levitation for vehicles
- B60L13/06—Means to sense or control vehicle position or attitude with respect to railway
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/002—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
- B60T13/665—Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/74—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
- B60T13/748—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on electro-magnetic brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61H—BRAKES OR OTHER RETARDING DEVICES SPECIALLY ADAPTED FOR RAIL VEHICLES; ARRANGEMENT OR DISPOSITION THEREOF IN RAIL VEHICLES
- B61H7/00—Brakes with braking members co-operating with the track
- B61H7/02—Scotch blocks, skids, or like track-engaging shoes
- B61H7/04—Scotch blocks, skids, or like track-engaging shoes attached to railway vehicles
- B61H7/06—Skids
- B61H7/08—Skids electromagnetically operated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D63/00—Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
- F16D63/008—Brakes acting on a linearly moving member
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/08—Railway vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/005—Testing of electric installations on transport means
- G01R31/008—Testing of electric installations on transport means on air- or spacecraft, railway rolling stock or sea-going vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to the technical field of data processing, in particular to a magnetic levitation test system and an electromagnet test method.
- Ultra-high-speed operation requires the on-board controllers, electromagnet controllers and electromagnets used in maglev trains to have higher performance. Therefore, in research, design, and production In terms of testing and testing, it is very important to the detection of vehicle controllers, solenoid controllers and solenoids.
- the purpose of the embodiments of the present invention is to provide a magnetic levitation test system and an electromagnet test method.
- an embodiment of the present invention provides a maglev test system, including: a central control unit, a vehicle-mounted controller test stand, an electromagnet controller test stand, and an electromagnet test stand;
- the central control unit is respectively connected with a vehicle-mounted controller test bench, an electromagnet controller test bench, and an electromagnet test bench;
- the vehicle-mounted controller test bench is connected with the electromagnet controller test bench;
- the electromagnet controller The test bench is connected to the electromagnet test bench;
- An electromagnet is installed on the electromagnet test bench
- the central control unit is used to issue control instructions to the vehicle controller test bench;
- the vehicle-mounted controller test bench is used to send the control instructions to the electromagnet controller test bench;
- the electromagnet controller test bench is used to generate an electromagnet test instruction according to the control instruction, and test the electromagnet installed on the electromagnet test bench;
- the electromagnet test bench is used to execute the electromagnet test instruction issued by the electromagnet controller test bench to test the installed electromagnet.
- an embodiment of the present invention also provides an electromagnet test method for using the above-mentioned magnetic levitation test system, including:
- the levitation controller receives a first levitation instruction sent by the electromagnet controller test bench, where the first levitation instruction carries a gap value between the levitation electromagnet and the long stator;
- the output voltage corresponding to the gap value between the floating electromagnet and the long stator is determined, and the output voltage is transmitted to the electromagnet through the open circuit switch cabinet according to the determined output voltage.
- the levitation electromagnet on the test bench is powered so that the gap between the levitation electromagnet and the long stator reaches the gap value between the levitation electromagnet and the long stator carried by the first levitation instruction;
- an embodiment of the present invention also provides an electromagnet test method for using the above-mentioned maglev test system, including:
- the guiding controller receives a second lifting instruction sent by the electromagnet controller test bench, where the second lifting instruction carries a gap value between the guiding electromagnet and the long stator;
- the output voltage corresponding to the gap value between the guide electromagnet and the long stator is determined, and the output voltage is transmitted to the electromagnet through the open circuit switch cabinet according to the determined output voltage.
- the guiding electromagnet on the test bench is powered so that the gap between the guiding electromagnet and the long stator reaches the value of the gap between the guiding electromagnet and the long stator carried by the second floating instruction;
- an embodiment of the present invention also provides an electromagnet test method for using the above-mentioned maglev test system, including:
- the brake controller receives a brake command sent by the electromagnet controller test bench, and the brake command carries the brake level of the brake electromagnet;
- the vehicle controller and the electromagnet controller are tested by the maglev test system integrated with the vehicle controller test bench, the electromagnet controller test bench, and the electromagnet test bench. Joint testing with electromagnets. Compared with the inability to test on-board controllers, electromagnet controllers and electromagnets in related technologies, it can simulate the operating conditions of the train and control the vehicle under the simulated train operating conditions. Carry out joint testing of the car controller, electromagnet controller and electromagnet to verify the functions of the car controller, electromagnet controller and electromagnet, and reduce the failure rate when the car controller, electromagnet controller and electromagnet are used at the same time.
- Figure 1 shows a schematic structural diagram of a maglev test system provided by an embodiment of the present invention
- Figure 2 shows a communication flow chart of the levitation controller in the maglev test system provided by the embodiment of the present invention
- FIG. 3 shows a communication flow chart of the guidance controller in the maglev test system provided by the embodiment of the present invention
- Fig. 4 shows a communication flow chart of the brake controller in the maglev test system provided by the embodiment of the present invention.
- Icon 100-central control unit; 102-vehicle controller test bench; 104-electromagnet controller test bench; 106-electromagnet test bench; 1020-vehicle controller test bench control cabinet; 1022-vehicle controller installation bench; 1024-car controller; 1040-electromagnet controller test bench; 1042-first high-voltage DC power supply cabinet; 1044-electromagnet controller control cabinet; 1046-load cabinet; 1048-break switch cabinet; 1050-suspension controller ; 1052-Guiding controller; 1054-Braking controller; 1060-Electromagnet installation table; 1062- The second high voltage DC power supply cabinet; 1064- Electromagnet control cabinet; 1066-Levitating electromagnet; 1068- Guiding electromagnet; 1070-Brake electromagnet.
- this embodiment proposes a maglev test system and an electromagnet test method, which can perform a joint test on a vehicle controller, an electromagnet controller, and an electromagnet.
- the maglev test system proposed in this embodiment includes: a central control unit 100, a vehicle-mounted controller test stand 102, an electromagnet controller test stand 104, and an electromagnet test stand 106 .
- the above-mentioned central control unit 100 is respectively connected to the on-board controller test bed 102, the electromagnet controller test bed 104, and the electromagnet test bed 106; the above-mentioned on-board controller test bed 102 is connected to the electromagnet controller test bed 104;
- the iron controller test stand 104 is connected to the above-mentioned electromagnet test stand 106.
- An electromagnet is installed on the electromagnet test bench 106 described above.
- the above-mentioned central control unit 100 is configured to issue control instructions to the above-mentioned vehicle-mounted controller test bench 102.
- the vehicle-mounted controller test stand 102 is used to send the control command to the electromagnet controller test stand 104.
- the electromagnet controller test stand 104 is used to generate an electromagnet test command according to the control command, and test the electromagnet installed on the electromagnet test stand 106.
- the electromagnet test bench 106 is used to execute the electromagnet test command issued by the electromagnet controller test bench 104 to test the installed electromagnet.
- the above-mentioned central control unit 100 is used to simulate the control instructions issued by the train control system and to receive the speed, acceleration, and gap values of the electromagnet during the test.
- the above-mentioned central control unit 100 can use any computing device in the prior art that can control the vehicle-mounted controller test bed 102, the electromagnet controller test bed 104, and the electromagnet test bed 106, which will not be repeated here.
- the above-mentioned on-board controller test bed 102 includes: the on-board controller test bed control cabinet 1020, the on-board controller mounting table 1022, and the on-board controller 1024.
- the on-board controller 1024 is installed on the on-board controller installation stand 1022; the on-board controller installation stand 1022 is provided with an electrical connection interface with the electromagnet controller test stand 1040 in the electromagnet controller test stand 104.
- the vehicle-mounted controller test bench control cabinet 1020 is used to send the control instructions issued by the central control unit 100 to the vehicle-mounted controller 1024 and monitor the response output of the vehicle-mounted controller 1024.
- the above-mentioned onboard controller 1024 is used to send the above-mentioned control command to the electromagnet controller test bench 104.
- the on-board controller 1024 sends the control command to the electromagnet controller test stand 1040 of the electromagnet controller test stand 104 through the electrical connection interface of the on-board controller installation stand 1022.
- the above-mentioned electromagnet controller test bench 104 includes: an electromagnet controller test bench 1040, a first high-voltage DC power supply cabinet 1042, an electromagnet controller control cabinet 1044, a load cabinet 1046, a circuit breaker switch cabinet 1048, and an electromagnet controller.
- the electromagnet controller test bench 1040 is respectively connected to the electromagnet controller control cabinet 1044 and the disconnection switch cabinet 1048; the disconnection switch cabinet 1048 is also connected to the solenoid controller control cabinet 1044 and the load cabinet 1046 respectively.
- the electromagnet controller includes: a levitation controller 1050, a guidance controller 1052, and a brake controller 1054; the levitation controller 1050, the guidance controller 1052, and the brake controller 1054 are respectively installed in the electromagnet controller On the test bench 1040.
- the electromagnet controller test stand 1040 is provided with electrical connection interfaces with the on-board controller installation stand 1022 and the electromagnet installation stand 1060. Therefore, the electromagnet controller test stand 1040 can receive the control instructions issued by the on-board controller 1024 through the electrical connection interface with the on-board controller mount 1022; it can also pass the electrical connection with the solenoid mount 1060.
- the connection interface sends the control command issued by the solenoid controller for testing the solenoid to the solenoid mounting table.
- the electromagnet controller control cabinet 1044 is respectively connected to the levitation controller 1050, the guidance controller 1052, and the brake controller 1054 to control the levitation controller 1050, the guidance controller 1052 and the brake controller 1054. Collect the output of the levitation controller 1050, the guidance controller 1052, and the brake controller 1054, and perform data recording; perform data recording on the levitation controller 1050, the guidance controller 1052 and the brake in a certain order
- the controller 1054 performs a functional test.
- the first high-voltage DC power supply cabinet 1042 supplies power to the electromagnet controller test bench 1040 and the electromagnet controller control cabinet 1044 respectively.
- the electromagnet controller test bench 1040 is configured to receive the control command sent by the vehicle controller 1024, and send the control command to the suspension controller 1050, the guidance controller 1052, or the brake controller 1054, so that The levitation controller 1050, the guidance controller 1052, or the brake controller 1054 control the electromagnet installed on the electromagnet test bench 106; simulate the traveling speed of the maglev train, and use the simulated traveling speed of the maglev train The speed is sent to the aforementioned guide controller 1052, where the aforementioned electromagnet includes: a floating electromagnet 1066, a guide electromagnet 1068, and a braking electromagnet 1070.
- the aforementioned load cabinet 1046 is used to provide an adjustable load for the function test of the electromagnet controller.
- the above-mentioned breaking switch cabinet 1048 is used to control the on-off of the test bench signal and the load.
- the first levitation command carries the gap value between the levitation electromagnet 1066 and the long stator.
- the levitation controller 1050 is configured to determine the distance between the levitation electromagnet 1066 and the long stator from the corresponding relationship between the gap value and the output voltage when receiving the first levitation instruction sent by the electromagnet controller test bench 1040
- the output voltage corresponding to the gap value, and according to the determined output voltage, power is supplied to the floating electromagnet 1066 on the electromagnet test bench 106 through the disconnecting switch cabinet 1048, so that the gap between the floating electromagnet 1066 and the long stator is Reach the gap value between the levitation electromagnet and the long stator carried by the first levitation command; obtain the velocity, acceleration, and gap value of the levitation electromagnet 1066 when the levitation electromagnet 1066 floats, and use the obtained levitation electromagnet when it floats
- the speed, acceleration, and gap values of the speed are sent to the aforementioned vehicle controller 1024.
- the in-vehicle controller 1024 is configured to, upon receiving the velocity, acceleration, and gap value of the levitation electromagnet 1066 when the levitation electromagnet 1066 is levitation sent by the levitation controller 1050, change the velocity, acceleration, and gap of the levitation electromagnet 1066 The value is sent to the aforementioned central control unit 100.
- the levitation controller 1050 may pre-store the corresponding relationship between the gap value and the output voltage.
- the speed, acceleration, and gap values of the above-mentioned levitation electromagnet can be collected by the sensor installed on the above-mentioned levitation electromagnet. Therefore, the levitation controller can obtain the speed of the levitation sensor during levitation from the sensor installed on the levitation electromagnet. , Acceleration and clearance values.
- the second floating command carries the gap between the guide electromagnet 1068 and the long stator value.
- the guide controller 1052 is used to determine the relationship between the guide electromagnet 1068 and the long stator from the corresponding relationship between the gap value and the output voltage when receiving the second lifting command sent by the electromagnet controller test bench 1040
- the gap value corresponds to the output voltage, and according to the determined output voltage, power is supplied to the guide electromagnet 1068 on the electromagnet test bench 106 through the disconnect switch cabinet 1048, so that the gap between the guide electromagnet and the long stator Reach the gap value between the guide electromagnet and the long stator carried by the second levitation command; obtain the velocity, acceleration and gap value of the guide electromagnet 1068 when the guide electromagnet 1068 floats, and start the obtained guide electromagnet 1068
- the speed, acceleration, and gap values during floating are sent to the vehicle controller 1024 described above.
- the in-vehicle controller 1024 is used to raise the speed, acceleration, and clearance values of the guide electromagnet when the guide electromagnet 1068 is raised when receiving the speed, acceleration, and clearance values of the guide electromagnet 1068 sent by the guide controller 1052 Send to the above-mentioned central control unit 100.
- the guidance controller 1052 may pre-store the corresponding relationship between the gap value and the output voltage.
- the speed, acceleration, and gap values of the above-mentioned guide electromagnet 1068 when floating can be collected by the sensor installed on the above-mentioned guide electromagnet. Therefore, the guide controller 1052 can obtain the guide when floating from the sensor installed on the guide electromagnet 1068. The speed, acceleration and gap value of the sensor.
- the above-mentioned levitation controller 1050 and the above-mentioned guidance controller 1052 can also execute landing instructions respectively, so that the levitation electromagnet 1066 and the guidance electromagnet 1068 are restored from the floating state to the initial state; the above-mentioned levitation controller 1050 and the above guidance control
- the process of executing the landing instructions by the device 1052 is similar to the process of executing the above floating instructions, and will not be repeated here.
- the brake command when the control command is a brake command, the brake command carries the brake level of the brake electromagnet 1070;
- the brake controller 1054 is used to determine from the corresponding relationship between the brake level and the output voltage that it corresponds to the brake level carried by the brake command when receiving the brake command sent by the electromagnet controller test bench 1040 According to the determined output voltage, power is supplied to the brake electromagnet 1054 on the electromagnet test bench 106 through the disconnect switch cabinet 1048, so that the brake electromagnet 1070 performs the brake carried by the brake command Level braking; obtain the speed, acceleration and gap values of the brake electromagnet 1070 when braking, and send the obtained speed, acceleration and gap values of the brake electromagnet 1070 when braking to the vehicle controller 1024;
- the in-vehicle controller 1024 is used to brake the speed, acceleration and clearance of the brake electromagnet when receiving the speed, acceleration, and clearance value of the brake electromagnet when the brake electromagnet is floating. The value is sent to the aforementioned central control unit 100.
- the brake controller 1054 may pre-store the corresponding relationship between the brake level and the output voltage.
- the speed, acceleration and gap value of the brake electromagnet 1070 when it floats can be collected by the sensor installed on the brake electromagnet 1070. Therefore, the brake controller 1054 can be obtained from the sensor installed on the brake electromagnet 1070. Get the speed, acceleration and clearance value of the brake sensor during levitation.
- the electromagnet test bench 106 may include: an electromagnet mounting table 1060, a second high-voltage DC power supply cabinet 1062, an electromagnet control cabinet 1064, a suspension electromagnet 1066, a guide electromagnet 1068, and a brake Electromagnet 1070;
- the electromagnet control cabinet 1064 is respectively connected to the electromagnet mounting table 1060 and the second high voltage DC power supply cabinet 1062; the second high voltage DC power supply cabinet 1062 is connected to the electromagnet mounting table 1060; the suspension electromagnet 1066, The guide electromagnet 1068 and the brake electromagnet 1070 are mounted on the electromagnet mounting base 1060.
- the electromagnet control cabinet 1064 is used to obtain monitoring information of the suspension electromagnet 1066, the guide electromagnet 1068, and the brake electromagnet 1070 during the test process, and send the obtained monitoring information to the central control unit 100; And control the second high-voltage DC power supply cabinet 1062 to supply power to the floating electromagnet 1066, the guiding electromagnet 1068, and the braking electromagnet 1070 on the electromagnet mounting table 1060.
- the monitoring information includes: the value of the gap between the suspension electromagnet and the long stator, the value of the gap between the guide electromagnet and the long stator, train speed, acceleration, and voltage and current across the electromagnet.
- the electromagnet mounting stand 1060 is provided with an electrical connection interface electrically connected to the electromagnet controller test stand 1040, so that the electrical connection interface with the electromagnet controller test stand 1040 can receive the use of the electromagnet controller. Control instructions for testing the electromagnet.
- the second high-voltage DC power supply cabinet 1062 is used to provide power for electromagnet testing.
- maglev test system proposed in this embodiment can also perform the joint test on the vehicle controller, the electromagnet controller, and the electromagnet. test.
- This embodiment also separately proposes electromagnet test methods using the maglev test system to control the levitation electromagnet, the guide electromagnet, and the brake electromagnet respectively.
- the above electromagnet test method can perform the following steps (1) to (3):
- the levitation controller receives the first levitation instruction sent by the electromagnet controller test bench, and the first levitation instruction carries the gap value between the levitation electromagnet and the long stator;
- the above electromagnet testing method can perform the following steps (1) to (3):
- the guiding controller receives the second floating instruction sent by the electromagnet controller test bench, and the second floating instruction carries the gap value between the guiding electromagnet and the long stator;
- the above electromagnet test method can perform the following steps (1) to (3):
- the brake controller receives the brake command sent by the solenoid controller test bench, and the above brake command carries the brake level of the brake solenoid;
- maglev test system and electromagnet test method proposed in this embodiment are tested on the vehicle controller and electromagnet through the maglev test system integrated with the vehicle controller test bench, the electromagnet controller test bench, and the electromagnet test bench.
- the controller and the electromagnet are jointly tested.
- the electromagnet controller and the electromagnet that cannot be tested in the related technology, it can simulate the operating conditions of the train, and perform the test under the simulated train operating conditions. Carry out joint testing of on-board controller, electromagnet controller and electromagnet to verify the functions of on-board controller, electromagnet controller and electromagnet, reducing the failure rate when the on-board controller, electromagnet controller and electromagnet are used at the same time .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Transportation (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种磁浮测试系统和电磁铁测试方法,通过集成有车载控制器试验台(102)、电磁铁控制器试验台(104)以及电磁铁试验台(106)的磁浮测试系统对车载控制器(1024)、电磁铁控制器及电磁铁进行联合测试,能够模拟列车的运行工况,并在所模拟的列车运行工况下对车载控制器(1024)、电磁铁控制器及电磁铁进行联合测试,从而对车载控制器(1024)、电磁铁控制器及电磁铁进行功能验证,降低车载控制器(1024)、电磁铁控制器及电磁铁同时使用时的故障率。
Description
本申请要求2019年01月14日提交中国专利局、申请号为201910032372.5、发明名称为“一种磁浮测试系统和电磁铁测试方法”的发明专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及数据处理技术领域,具体而言,涉及一种磁浮测试系统和电磁铁测试方法。
目前,国内运行的高速磁浮列车最高运行速度达到503公里/小时,超高速运行要求磁浮列车中使用的车载控制器,电磁铁控制器及电磁铁具备更高的性能,因此在研究、设计、生产及试验等方面,对车载控制器,电磁铁控制器及电磁铁的检测至关重要。
相关技术中,并没有高速磁浮列车中车载控制器,电磁铁控制器及电磁铁的试验装置,无法对车载控制器、电磁铁控制器及电磁铁进行测试。
发明内容
为解决上述问题,本发明实施例的目的在于提供一种磁浮试验系统和电磁铁测试方法。
第一方面,本发明实施例提供了一种磁浮测试系统,包括:中央控制单元、车载控制器试验台、电磁铁控制器试验台、以及电磁铁试验台;
所述中央控制单元,分别与车载控制器试验台、电磁铁控制器试验台、以及电磁铁试验台连接;所述车载控制器试验台与电磁铁控制器试验台连接;所述电磁铁控制器试验台与所述电磁铁试验台连接;
所述电磁铁试验台上安装有电磁铁;
所述中央控制单元,用于向所述车载控制器试验台发出控制指令;
所述车载控制器试验台,用于将所述控制指令发送到所述电磁铁控制器试验台;
所述电磁铁控制器试验台,用于按照所述控制指令,生成电磁铁测试指令,对所述电磁铁试验台上安装的电磁铁进行测试;
所述电磁铁试验台,用于执行所述电磁铁控制器试验台发出的所述电磁铁测试指令,对所安装的所述电磁铁进行测试。
第二方面,本发明实施例还提供了一种电磁铁测试方法,用于使用上述的磁浮测试系统,包括:
悬浮控制器接收电磁铁控制器测试台发送的第一起浮指令,所述第一起浮指令携带有悬浮电磁铁与长定子之间的间隙值;
从间隙值与输出电压的对应关系中,确定出所述悬浮电磁铁与长定子之间的间隙值对应的输出电压,并按照确定的所述输出电压通过所述断路开关柜向所述电磁铁试验台上的所述悬浮电磁铁供电,使得所述悬浮电磁铁与所述长定子之间的间隙达到所述第一起浮指令携带的所述悬浮电磁铁与长定子之间的间隙值;
获取所述悬浮电磁铁起浮时的速度、加速度和间隙值,并将获取到的所述悬浮电磁铁起浮时的速度、加速度和间隙值发送到车载控制器。
第三方面,本发明实施例还提供了一种电磁铁测试方法,用于使用上述的磁浮测试系统,包括:
导向控制器接收电磁铁控制器测试台发送的第二起浮指令,所述第二起浮指令携带有导向电磁铁与长定子之间的间隙值;
从间隙值与输出电压的对应关系中,确定出所述导向电磁铁与长定子之间的间隙值对应的输出电压,并按照确定的所述输出电压通过所述断路开关柜向所述电磁铁试验台上的所述导向电磁铁供电,使得所述导向电磁铁与所述长定子之间的间隙达到所述第二起浮指令携带的所述导向电磁铁与长定子之间的间隙值;
获取所述导向电磁铁起浮时的速度、加速度和间隙值,并将获取到的所述导向电磁铁起浮时的速度、加速度和间隙值发送到车载控制器。
第四方面,本发明实施例还提供了一种电磁铁测试方法,用于使用上 述的磁浮测试系统,包括:
制动控制器接收电磁铁控制器测试台发送的制动指令,所述制动指令携带有制动电磁铁的制动等级;
从制动等级与输出电压的对应关系中确定出与所述制动指令携带的制动等级对应的输出电压,并按照确定的所述输出电压通过所述断路开关柜向所述电磁铁试验台上的所述制动电磁铁供电,使得所述制动电磁铁按照所述制动指令携带的制动等级进行制动;
获取所述制动电磁铁制动时的速度、加速度和间隙值,并将获取到的所述制动电磁铁制动时的速度、加速度和间隙值发送到车载控制器。
本发明实施例上述第一方面至第四方面提供的方案中,通过集成有车载控制器试验台、电磁铁控制器试验台以及电磁铁试验台的磁浮测试系统对车载控制器、电磁铁控制器及电磁铁进行联合测试,与相关技术中无法对车载控制器、电磁铁控制器及电磁铁进行测试相比,能够模拟列车的运行工况,并在所模拟的列车运行工况下对车载控制器、电磁铁控制器及电磁铁进行联合测试,从而对车载控制器、电磁铁控制器及电磁铁进行功能验证,降低车载控制器、电磁铁控制器及电磁铁同时使用时的故障率。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例所提供的一种磁浮测试系统的结构示意图;
图2示出了本发明实施例所提供的磁浮测试系统中,悬浮控制器通信流程图;
图3示出了本发明实施例所提供的磁浮测试系统中,导向控制器通信 流程图;
图4示出了本发明实施例所提供的磁浮测试系统中,制动控制器通信流程图。
图标:100-中央控制单元;102-车载控制器试验台;104-电磁铁控制器试验台;106-电磁铁试验台;1020-车载控制器试验台控制柜;1022-车载控制器安装台;1024-车载控制器;1040-电磁铁控制器测试台;1042-第一高压直流电源供电柜;1044-电磁铁控制器控制柜;1046-负载柜;1048-断路开关柜;1050-悬浮控制器;1052-导向控制器;1054-制动控制器;1060-电磁铁安装台;1062-第二高压直流电源供电柜;1064-电磁铁控制柜;1066-悬浮电磁铁;1068-导向电磁铁;1070-制动电磁铁。
目前,并没有可以对高速磁浮列车中车载控制器,电磁铁控制器及电磁铁进行测试的试验装置,无法对车载控制器、电磁铁控制器及电磁铁进行测试。基于此,本实施例提出一种磁浮测试系统和电磁铁测试方法,可以对车载控制器、电磁铁控制器及电磁铁进行联合测试。
实施例
参见图1所示的磁浮测试系统的结构示意图,本实施例提出的磁浮测试系统,包括:中央控制单元100、车载控制器试验台102、电磁铁控制器试验台104、以及电磁铁试验台106。
上述中央控制单元100,分别与车载控制器试验台102、电磁铁控制器试验台104、以及电磁铁试验台106连接;上述车载控制器试验台102与电磁铁控制器试验台104连接;上述电磁铁控制器试验台104与上述电磁铁试验台106连接。
上述电磁铁试验台106上安装有电磁铁。
上述中央控制单元100,用于向上述车载控制器试验台102发出控制指令。
上述车载控制器试验台102,用于将上述控制指令发送到上述电磁铁控制器试验台104。
上述电磁铁控制器试验台104,用于按照上述控制指令,生成电磁铁测试指令,对上述电磁铁试验台106上安装的电磁铁进行测试。
上述电磁铁试验台106,用于执行上述电磁铁控制器试验台104发出的上述电磁铁测试指令,对所安装的上述电磁铁进行测试。
在一个实施方式中,上述中央控制单元100,用于模拟列车控制系统发出的控制指令并且接收电磁铁在测试过程中的速度、加速度以及间隙值。
上述中央控制单元100,可以采用现有技术中任何可以对车载控制器试验台102、电磁铁控制器试验台104、以及电磁铁试验台106进行控制的计算设备,这里不再一一赘述。
为了对车载控制器进行测试,具体地,上述车载控制器试验台102,包括:车载控制器试验台控制柜1020、车载控制器安装台1022、以及车载控制器1024。
上述车载控制器1024安装在上述车载控制器安装台1022上;上述车载控制器安装台1022设有与电磁铁控制器试验台104中的电磁铁控制器测试台1040的电气连接接口。
上述车载控制器试验台控制柜1020,用于将上述中央控制单元100发出的控制指令发送到上述车载控制器1024,并监测车载控制器1024的响应输出。
上述车载控制器1024,用于将上述控制指令发送到电磁铁控制器试验台104。
在一个实施方式中,上述车载控制器1024通过上述车载控制器安装台1022的电气连接接口将上述控制指令发送到电磁铁控制器试验台104的电磁铁控制器测试台1040中。
上述电磁铁控制器试验台104,包括:电磁铁控制器测试台1040、第一高压直流电源供电柜1042、电磁铁控制器控制柜1044、负载柜1046、断路开关柜1048和电磁铁控制器。
上述电磁铁控制器测试台1040分别与电磁铁控制器控制柜1044和断路开关柜1048连接;上述断路开关柜1048还分别与上述电磁铁控制器控制柜1044和上述负载柜1046连接。
上述电磁铁控制器,包括:悬浮控制器1050、导向控制器1052和制 动控制器1054;上述悬浮控制器1050、上述导向控制器1052和上述制动控制器1054分别安装在上述电磁铁控制器测试台1040上。
上述电磁铁控制器测试台1040,设有与上述车载控制器安装台1022及电磁铁安装台1060的电气连接接口。从而,电磁铁控制器测试台1040可以通过与上述车载控制器安装台1022之间的电气连接接口接收上述车载控制器1024发出的控制指令;还可以通过与上述电磁铁安装台1060之间的电气连接接口将电磁铁控制器发出的用于对电磁铁进行测试的控制指令发送到上述电磁铁安装台。
上述电磁铁控制器控制柜1044,分别与上述悬浮控制器1050、上述导向控制器1052和上述制动控制器1054连接,控制上述悬浮控制器1050、上述导向控制器1052和上述制动控制器1054的输入信号,采集上述悬浮控制器1050、上述导向控制器1052和上述制动控制器1054的输出,并进行数据记录;按照一定顺序对上述悬浮控制器1050、上述导向控制器1052和上述制动控制器1054进行功能性测试。
上述第一高压直流电源供电柜1042分别向上述电磁铁控制器测试台1040和上述电磁铁控制器控制柜1044供电。
上述电磁铁控制器测试台1040,用于接收上述车载控制器1024发送的上述控制指令,并将上述控制指令发送到上述悬浮控制器1050、上述导向控制器1052或者上述制动控制器1054,使得上述悬浮控制器1050、上述导向控制器1052或者上述制动控制器1054对安装在上述电磁铁试验台106上的电磁铁进行控制;模拟磁浮列车的行驶速度,将模拟得到的上述磁浮列车的行驶速度发送到上述导向控制器1052,其中,上述电磁铁,包括:悬浮电磁铁1066、导向电磁铁1068和制动电磁铁1070。
上述负载柜1046,用于为电磁铁控制器的功能测试提供可调负载。
上述断路开关柜1048,用于控制测试台信号与负载的通断。
参见图2所示的悬浮控制器通信流程图,在一个实施方式中,当上述控制指令为第一起浮指令时,上述第一起浮指令携带有悬浮电磁铁1066与长定子之间的间隙值。
上述悬浮控制器1050,用于接收到上述电磁铁控制器测试台1040发送的第一起浮指令时,从间隙值与输出电压的对应关系中,确定出上述悬 浮电磁铁1066与长定子之间的间隙值对应的输出电压,并按照确定的上述输出电压通过上述断路开关柜1048向上述电磁铁试验台106上的上述悬浮电磁铁1066供电,使得上述悬浮电磁铁1066与上述长定子之间的间隙达到上述第一起浮指令携带的上述悬浮电磁铁与长定子之间的间隙值;获取上述悬浮电磁铁1066起浮时的速度、加速度和间隙值,并将获取到的上述悬浮电磁铁起浮时的速度、加速度和间隙值发送到上述车载控制器1024。
上述车载控制器1024,用于在接收到上述悬浮控制器1050发送的上述悬浮电磁铁1066起浮时的速度、加速度和间隙值时,将上述悬浮电磁铁1066起浮时的速度、加速度和间隙值发送给上述中央控制单元100。
这里,悬浮控制器1050可以预先存储有间隙值与输出电压的对应关系。
上述悬浮电磁铁起浮时的速度、加速度和间隙值可以被安装在上述悬浮电磁铁上安装的传感器采集,所以,悬浮控制器可以从悬浮电磁铁上安装的传感器获取起浮时悬浮传感器的速度、加速度和间隙值。
参见图3所示的导向控制器通信流程图,在一个实施方式中,当上述控制指令为第二起浮指令时,上述第二起浮指令携带有导向电磁铁1068与长定子之间的间隙值。
上述导向控制器1052,用于接收到上述电磁铁控制器测试台1040发送的第二起浮指令时,从间隙值与输出电压的对应关系中,确定出上述导向电磁铁1068与长定子之间的间隙值对应的输出电压,并按照确定的上述输出电压通过上述断路开关柜1048向上述电磁铁试验台106上的上述导向电磁铁1068供电,使得上述导向电磁铁与上述长定子之间的间隙达到上述第二起浮指令携带的上述导向电磁铁与长定子之间的间隙值;获取上述导向电磁铁1068起浮时的速度、加速度和间隙值,并将获取到的上述导向电磁铁1068起浮时的速度、加速度和间隙值发送到上述车载控制器1024。
上述车载控制器1024,用于在接收到上述导向控制器1052发送的上述导向电磁铁1068起浮时的速度、加速度和间隙值时,将上述导向电磁铁起浮时的速度、加速度和间隙值发送给上述中央控制单元100。
这里,导向控制器1052可以预先存储有间隙值与输出电压的对应关系。
上述导向电磁铁1068起浮时的速度、加速度和间隙值可以被安装在上述导向电磁铁上安装的传感器采集,所以,导向控制器1052可以从导向电磁铁1068上安装的传感器获取起浮时导向传感器的速度、加速度和间隙值。
进一步地,上述悬浮控制器1050和上述导向控制器1052,还可以分别执行降落指令,使得悬浮电磁铁1066和导向电磁铁1068从起浮状态恢复到初始状态;上述悬浮控制器1050和上述导向控制器1052分别执行降落指令的流程与执行上述起浮指令的流程类似,这里不再赘述。
参见图4所示的制动控制器通信流程图,在一个实施方式中,当上述控制指令为制动指令时,上述制动指令携带有制动电磁铁1070的制动等级;
上述制动控制器1054,用于接收到上述电磁铁控制器测试台1040发送的制动指令时,从制动等级与输出电压的对应关系中确定出与上述制动指令携带的制动等级对应的输出电压,并按照确定的上述输出电压通过上述断路开关柜1048向上述电磁铁试验台106上的上述制动电磁铁1054供电,使得上述制动电磁铁1070按照上述制动指令携带的制动等级进行制动;获取上述制动电磁铁1070制动时的速度、加速度和间隙值,并将获取到的上述制动电磁铁1070制动时的速度、加速度和间隙值发送到上述车载控制器1024;
上述车载控制器1024,用于在接收到上述制动控制器发送的上述制动电磁铁起浮时的速度、加速度和间隙值时,将上述制动电磁铁制动时的速度、加速度和间隙值发送给上述中央控制单元100。
这里,制动控制器1054可以预先存储有制动等级与输出电压的对应关系。
上述制动电磁铁1070起浮时的速度、加速度和间隙值可以被安装在上述制动电磁铁1070上安装的传感器采集,所以,制动控制器1054可以从制动电磁铁1070上安装的传感器获取起浮时制动传感器的速度、加速度和间隙值。
为了对电磁铁进行测试,上述电磁铁试验台106,可以包括:电磁铁安装台1060、第二高压直流电源供电柜1062、电磁铁控制柜1064、悬浮 电磁铁1066、导向电磁铁1068和制动电磁铁1070;
上述电磁铁控制柜1064分别与上述电磁铁安装台1060和上述第二高压直流电源供电柜1062连接;上述第二高压直流电源供电柜1062与上述电磁铁安装台1060连接;上述悬浮电磁铁1066、上述导向电磁铁1068和上述制动电磁铁1070安装在上述电磁铁安装台1060上。
上述电磁铁控制柜1064,用于获取测试过程中上述悬浮电磁铁1066、上述导向电磁铁1068和上述制动电磁铁1070的监控信息,并将获取到的监控信息发送到上述中央控制单元100;并控制上述第二高压直流电源供电柜1062向上述电磁铁安装台1060上的上述悬浮电磁铁1066、上述导向电磁铁1068和上述制动电磁铁1070供电。
其中,所述监控信息,包括:悬浮电磁铁与长定子之间的间隙值、导向电磁铁与长定子之间的间隙值、列车速度、加速度、电磁铁两端的电压及电流。
上述电磁铁安装台1060,设置有与电磁铁控制器测试台1040电气连接的电气连接接口,从而可以通过与上述电磁铁控制器测试台1040之间的电气连接接口接收电磁铁控制器发出的用于对电磁铁进行测试的控制指令。
第二高压直流电源供电柜1062,用于为电磁铁测试提供电源。
除了上述对车载控制器1024、电磁铁控制器及电磁铁进行联合测试进行联合测试之外,通过本实施例提出的磁浮测试系统,还可以分别对车载控制器、电磁铁控制器及电磁铁进行测试。
本实施例还分别提出了应用磁浮测试系统分别对悬浮电磁铁、导向电磁铁、以及制动电磁铁进行控制的电磁铁测试方法。
在一个实施方式中,为了对悬浮电磁铁进行控制,上述电磁铁测试方法,可以执行以下步骤(1)至步骤(3):
(1)悬浮控制器接收电磁铁控制器测试台发送的第一起浮指令,上述第一起浮指令携带有悬浮电磁铁与长定子之间的间隙值;
(2)从间隙值与输出电压的对应关系中,确定出上述悬浮电磁铁与长定子之间的间隙值对应的输出电压,并按照上述确定的输出电压通过上述断路开关柜向上述电磁铁试验台上的上述悬浮电磁铁供电,使得上述悬浮 电磁铁与上述长定子之间的间隙达到上述第一起浮指令携带的上述悬浮电磁铁与长定子之间的间隙值;
(3)获取上述悬浮电磁铁起浮时的速度、加速度和间隙值,并将获取到的上述悬浮电磁铁起浮时的速度、加速度和间隙值发送到车载控制器。
在一个实施方式中,为了对导向电磁铁进行控制,上述电磁铁测试方法,可以执行以下步骤(1)至步骤(3):
(1)导向控制器接收电磁铁控制器测试台发送的第二起浮指令,上述第二起浮指令携带有导向电磁铁与长定子之间的间隙值;
(2)从间隙值与输出电压的对应关系中,确定出上述导向电磁铁与长定子之间的间隙值对应的输出电压,并按照确定的上述输出电压通过上述断路开关柜向上述电磁铁试验台上的上述导向电磁铁供电,使得上述导向电磁铁与上述长定子之间的间隙达到上述第二起浮指令携带的上述导向电磁铁与长定子之间的间隙值;
(3)获取上述导向电磁铁起浮时的速度、加速度和间隙值,并将获取到的上述导向电磁铁起浮时的速度、加速度和间隙值发送到车载控制器。
在一个实施方式中,为了对制动电磁铁进行控制,上述电磁铁测试方法,可以执行以下步骤(1)至步骤(3):
(1)制动控制器接收电磁铁控制器测试台发送的制动指令,上述制动指令携带有制动电磁铁的制动等级;
(2)从制动等级与输出电压的对应关系中确定出与上述制动指令携带的制动等级对应的输出电压,并按照确定的上述输出电压通过上述断路开关柜向上述电磁铁试验台上的上述制动电磁铁供电,使得上述制动电磁铁按照上述制动指令携带的制动等级进行制动;
(3)获取上述制动电磁铁制动时的速度、加速度和间隙值,并将获取到的上述制动电磁铁制动时的速度、加速度和间隙值发送到车载控制器。
综上所述,本实施例提出的磁浮试验系统和电磁铁测试方法,通过集成有车载控制器试验台、电磁铁控制器试验台以及电磁铁试验台的磁浮测试系统对车载控制器、电磁铁控制器及电磁铁进行联合测试,与相关技术中无法对车载控制器、电磁铁控制器及电磁铁进行测试相比,能够模拟列车的运行工况,并在所模拟的列车运行工况下对车载控制器、电磁铁控制 器及电磁铁进行联合测试,从而对车载控制器、电磁铁控制器及电磁铁进行功能验证,降低车载控制器、电磁铁控制器及电磁铁同时使用时的故障率。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。
Claims (10)
- 一种磁浮测试系统,其特征在于,包括:中央控制单元、车载控制器试验台、电磁铁控制器试验台、以及电磁铁试验台;所述中央控制单元,分别与车载控制器试验台、电磁铁控制器试验台、以及电磁铁试验台连接;所述车载控制器试验台与电磁铁控制器试验台连接;所述电磁铁控制器试验台与所述电磁铁试验台连接;所述电磁铁试验台上安装有电磁铁;所述中央控制单元,用于向所述车载控制器试验台发出控制指令;所述车载控制器试验台,用于将所述控制指令发送到所述电磁铁控制器试验台;所述电磁铁控制器试验台,用于按照所述控制指令,生成电磁铁测试指令,对所述电磁铁试验台上安装的电磁铁进行测试;所述电磁铁试验台,用于执行所述电磁铁控制器试验台发出的所述电磁铁测试指令,对所安装的所述电磁铁进行测试。
- 根据权利要求1所述的磁浮测试系统,其特征在于,所述车载控制器试验台,包括:车载控制器试验台控制柜、车载控制器安装台、以及车载控制器;所述车载控制器安装在所述车载控制器安装台上;所述车载控制器试验台控制柜,用于将所述中央控制单元发出的控制指令发送到所述车载控制器;所述车载控制器,用于将所述控制指令发送到电磁铁控制器试验台。
- 根据权利要求2所述的磁浮测试系统,其特征在于,所述电磁铁控制器试验台,包括:电磁铁控制器测试台、第一高压直流电源供电柜、电磁铁控制器控制柜、负载柜、断路开关柜和电磁铁控制器;所述电磁铁控制器测试台分别与电磁铁控制器控制柜和断路开关柜连接;所述断路开关柜还分别与所述电磁铁控制器控制柜和所述负载柜连接;所述电磁铁控制器,包括:悬浮控制器、导向控制器和制动控制器;所述悬浮控制器、导向控制器和制动控制器分别安装在所述电磁铁控制器 测试台上;所述第一高压直流电源供电柜分别向所述电磁铁控制器测试台和所述电磁铁控制器控制柜供电;所述电磁铁控制器测试台,用于接收所述车载控制器发送的所述控制指令,并将所述控制指令发送到所述悬浮控制器、所述导向控制器或者所述制动控制器,使得所述悬浮控制器、所述导向控制器或者所述制动控制器对安装在所述电磁铁试验台上的电磁铁进行控制;模拟磁浮列车的行驶速度,将模拟得到的所述磁浮列车的行驶速度发送到所述导向控制器,其中,所述电磁铁,包括:悬浮电磁铁、导向电磁铁和制动电磁铁。
- 根据权利要求3所述的磁浮测试系统,其特征在于,当所述控制指令为第一起浮指令时,所述第一起浮指令携带有悬浮电磁铁与长定子之间的间隙值;所述悬浮控制器,用于接收到所述电磁铁控制器测试台发送的第一起浮指令时,从间隙值与输出电压的对应关系中,确定出所述悬浮电磁铁与长定子之间的间隙值对应的输出电压,并按照确定的所述输出电压通过所述断路开关柜向所述电磁铁试验台上的所述悬浮电磁铁供电,使得所述悬浮电磁铁与所述长定子之间的间隙达到所述第一起浮指令携带的所述悬浮电磁铁与长定子之间的间隙值;获取所述悬浮电磁铁起浮时的速度、加速度和间隙值,并将获取到的所述悬浮电磁铁起浮时的速度、加速度和间隙值发送到所述车载控制器。
- 根据权利要求3所述的磁浮测试系统,其特征在于,当所述控制指令为第二起浮指令时,所述第二起浮指令携带有导向电磁铁与长定子之间的间隙值;所述导向控制器,用于接收到所述电磁铁控制器测试台发送的第二起浮指令时,从间隙值与输出电压的对应关系中,确定出所述导向电磁铁与长定子之间的间隙值对应的输出电压,并按照确定的所述输出电压通过所述断路开关柜向所述电磁铁试验台上的所述导向电磁铁供电,使得所述导向电磁铁与所述长定子之间的间隙达到所述第二起浮指令携带的所述导向 电磁铁与长定子之间的间隙值;获取所述导向电磁铁起浮时的速度、加速度和间隙值,并将获取到的所述导向电磁铁起浮时的速度、加速度和间隙值发送到所述车载控制器。
- 根据权利要求3所述的磁浮测试系统,其特征在于,当所述控制指令为制动指令时,所述制动指令携带有制动电磁铁的制动等级;所述制动控制器,用于接收到所述电磁铁控制器测试台发送的制动指令时,从制动等级与输出电压的对应关系中确定出与所述制动指令携带的制动等级对应的输出电压,并按照确定的所述输出电压通过所述断路开关柜向所述电磁铁试验台上的所述制动电磁铁供电,使得所述制动电磁铁按照所述制动指令携带的制动等级进行制动;获取所述制动电磁铁制动时的速度、加速度和间隙值,并将获取到的所述制动电磁铁制动时的速度、加速度和间隙值发送到所述车载控制器。
- 根据权利要求1所述的磁浮测试系统,其特征在于,所述电磁铁试验台,包括:电磁铁安装台、第二高压直流电源供电柜、电磁铁控制柜、悬浮电磁铁、导向电磁铁和制动电磁铁;所述电磁铁控制柜分别与所述电磁铁安装台和所述第二高压直流电源供电柜连接;所述第二高压直流电源供电柜与所述电磁铁安装台连接;所述悬浮电磁铁、所述导向电磁铁和所述制动电磁铁安装在所述电磁铁安装台上;所述电磁铁控制柜,用于获取测试过程中所述悬浮电磁铁、所述导向电磁铁和所述制动电磁铁的监控信息,并将获取到的监控信息发送到所述中央控制单元;并控制所述第二高压直流电源供电柜向所述电磁铁安装台上的所述悬浮电磁铁、所述导向电磁铁和所述制动电磁铁供电。
- 一种电磁铁测试方法,用于使用上述权利要求1-7任一项所述的磁浮测试系统,其特征在于,包括:悬浮控制器接收电磁铁控制器测试台发送的第一起浮指令,所述第一起浮指令携带有悬浮电磁铁与长定子之间的间隙值;从间隙值与输出电压的对应关系中,确定出所述悬浮电磁铁与长定子之间的间隙值对应的输出电压,并按照确定的所述输出电压通过断路开关柜向所述电磁铁试验台上的所述悬浮电磁铁供电,使得所述悬浮电磁铁与所述长定子之间的间隙达到所述第一起浮指令携带的所述悬浮电磁铁与长定子之间的间隙值;获取所述悬浮电磁铁起浮时的速度、加速度和间隙值,并将获取到的所述悬浮电磁铁起浮时的速度、加速度和间隙值发送到车载控制器。
- 一种电磁铁测试方法,用于使用上述权利要求1-7任一项所述的磁浮测试系统,其特征在于,包括:导向控制器接收电磁铁控制器测试台发送的第二起浮指令,所述第二起浮指令携带有导向电磁铁与长定子之间的间隙值;从间隙值与输出电压的对应关系中,确定出所述导向电磁铁与长定子之间的间隙值对应的输出电压,并按照确定的所述输出电压通过断路开关柜向所述电磁铁试验台上的所述导向电磁铁供电,使得所述导向电磁铁与所述长定子之间的间隙达到所述第二起浮指令携带的所述导向电磁铁与长定子之间的间隙值;获取所述导向电磁铁起浮时的速度、加速度和间隙值,并将获取到的所述导向电磁铁起浮时的速度、加速度和间隙值发送到车载控制器。
- 一种电磁铁测试方法,用于使用上述权利要求1-7任一项所述的磁浮测试系统,其特征在于,包括:制动控制器接收电磁铁控制器测试台发送的制动指令,所述制动指令携带有制动电磁铁的制动等级;从制动等级与输出电压的对应关系中确定出与所述制动指令携带的制动等级对应的输出电压,并按照确定的所述输出电压通过断路开关柜向所述电磁铁试验台上的所述制动电磁铁供电,使得所述制动电磁铁按照所述制动指令携带的制动等级进行制动;获取所述制动电磁铁制动时的速度、加速度和间隙值,并将获取到的所述制动电磁铁制动时的速度、加速度和间隙值发送到车载控制器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19910669.1A EP3913381A4 (en) | 2019-01-14 | 2019-10-17 | MAGNETIC LEVEL TEST SYSTEM AND ELECTROMAGNETIC TEST PROCEDURE |
US17/285,106 US11982589B2 (en) | 2019-01-14 | 2019-10-17 | Magnetic levitation test system and electromagnet test method |
JP2020559450A JP7069344B2 (ja) | 2019-01-14 | 2019-10-17 | 磁気浮上テストシステム及び電磁石テスト方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910032372.5 | 2019-01-14 | ||
CN201910032372.5A CN109725221B (zh) | 2019-01-14 | 2019-01-14 | 一种磁浮测试系统和电磁铁测试方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020147352A1 true WO2020147352A1 (zh) | 2020-07-23 |
Family
ID=66299703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/111611 WO2020147352A1 (zh) | 2019-01-14 | 2019-10-17 | 一种磁浮测试系统和电磁铁测试方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11982589B2 (zh) |
EP (1) | EP3913381A4 (zh) |
JP (1) | JP7069344B2 (zh) |
CN (1) | CN109725221B (zh) |
WO (1) | WO2020147352A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114018607A (zh) * | 2021-11-04 | 2022-02-08 | 西南交通大学 | 一种超导电动磁悬浮试验台 |
CN114200229A (zh) * | 2021-12-01 | 2022-03-18 | 中车长春轨道客车股份有限公司 | 一种感应供电试验台 |
CN116046424A (zh) * | 2023-02-08 | 2023-05-02 | 西南交通大学 | 一种双盘线圈式电动悬浮实验装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109725221B (zh) * | 2019-01-14 | 2020-11-03 | 中车青岛四方机车车辆股份有限公司 | 一种磁浮测试系统和电磁铁测试方法 |
CN112706622B (zh) * | 2019-10-25 | 2022-11-29 | 株洲中车时代电气股份有限公司 | 一种磁浮列车的电磁铁控制器 |
CN113126591A (zh) * | 2020-01-16 | 2021-07-16 | 中车青岛四方机车车辆股份有限公司 | 一种列车控制器的测试方法及装置 |
CN111257020A (zh) * | 2020-01-20 | 2020-06-09 | 中车青岛四方机车车辆股份有限公司 | 一种模拟轨道列车轨道不平顺的试验装置和试验方法 |
CN111338234B (zh) * | 2020-03-12 | 2023-09-22 | 中车青岛四方机车车辆股份有限公司 | 一种磁悬浮控制算法验证系统、方法及装置 |
CN115097362B (zh) * | 2022-06-24 | 2024-04-16 | 湖南凌翔磁浮科技有限责任公司 | 一种长定子驱动力测试装置及方法 |
CN115290281B (zh) * | 2022-09-05 | 2023-10-27 | 中车长春轨道客车股份有限公司 | 一种超导磁体的测试方法、系统及处理器组件 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120123646A1 (en) * | 2010-11-01 | 2012-05-17 | John Mantini | Monitoring System for Controlling Liftable and Steer Axles on Trucks or Tractor Trailers |
CN103064038A (zh) * | 2013-01-03 | 2013-04-24 | 武汉理工大学 | 单自由度混合磁悬浮实验装置 |
CN103954844A (zh) * | 2014-04-11 | 2014-07-30 | 西南交通大学 | 一种中低速磁浮列车悬浮电磁铁电感参数在线检测方法 |
CN104527451A (zh) * | 2014-12-04 | 2015-04-22 | 中国人民解放军国防科学技术大学 | 用于中低速磁浮列车的悬浮控制器检测装置 |
CN106569157A (zh) * | 2016-08-22 | 2017-04-19 | 浙江大学 | 一种用于检测磁化率的磁悬浮检测装置及检测方法 |
CN109725221A (zh) * | 2019-01-14 | 2019-05-07 | 中车青岛四方机车车辆股份有限公司 | 一种磁浮测试系统和电磁铁测试方法 |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5619199B2 (zh) * | 1972-03-28 | 1981-05-06 | ||
DE3117971C2 (de) * | 1981-05-07 | 1984-06-07 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | Regelung zum leistungsoptimalen Anpassen des Luftspaltes von elektromagnetischen Schwebefahrzeugen |
DE3411190C2 (de) * | 1984-03-27 | 1986-11-06 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | Magnetregler für Langstator-Magnetschwebefahrzeuge |
JPS62225106A (ja) | 1986-03-24 | 1987-10-03 | Daifuku Co Ltd | リニアモ−タ利用の搬送設備 |
JPS64440A (en) | 1987-06-23 | 1989-01-05 | Hitachi Ltd | Apparatus for testing linear motor |
DE4003866A1 (de) * | 1990-02-09 | 1991-08-14 | Man Nutzfahrzeuge Ag | Steuerung fuer die kupplung eines getriebes in einem kraftfahrzeug |
JP2539527B2 (ja) * | 1990-03-02 | 1996-10-02 | 株式会社日立製作所 | 超電導磁気浮上列車、超電導磁気浮上列車システム並びにその制御方法及び磁気浮上列車用超電導コイル |
JPH03173346A (ja) | 1990-10-25 | 1991-07-26 | Daifuku Co Ltd | リニアモータ用の複合型二次導体構造 |
US5445347A (en) * | 1993-05-13 | 1995-08-29 | Hughes Aircraft Company | Automated wireless preventive maintenance monitoring system for magnetic levitation (MAGLEV) trains and other vehicles |
ATE219578T1 (de) * | 1996-12-03 | 2002-07-15 | Avl List Gmbh | Verfahren und vorrichtung zur analyse des fahrverhaltens von kraftfahrzeugen |
DE19910967C1 (de) * | 1999-03-12 | 2000-09-21 | Avl Deutschland Gmbh | Verfahren zum Simulieren des Verhaltens eines Fahrzeugs auf einer Fahrbahn |
US6758146B2 (en) * | 2001-06-29 | 2004-07-06 | The Regents Of The University Of California | Laminated track design for inductrack maglev systems |
JP3598279B2 (ja) | 2001-07-16 | 2004-12-08 | 東海旅客鉄道株式会社 | 位置検知システム |
KR100400068B1 (en) * | 2003-02-21 | 2003-09-29 | Bong Taek Kim | Performance test equipment system of train driving device and test method thereof |
TWI236945B (en) * | 2003-05-14 | 2005-08-01 | Hon Hai Prec Ind Co Ltd | Machining guideway |
KR100671783B1 (ko) | 2004-09-10 | 2007-01-22 | 한국기계연구원 | 자기부상열차 무선원격제어 장치 및 방법 |
EP2061672B1 (de) * | 2006-09-12 | 2018-01-03 | Siemens Aktiengesellschaft | Verfahren und anordnung zum messen eines spalts |
DE102007001479B4 (de) * | 2007-01-09 | 2019-10-10 | Siemens Aktiengesellschaft | Verfahren und Einrichtung zum Messen des Pollagewinkels eines Magnetschwebefahrzeugs einer Magnetschwebebahn |
DE102007004919B4 (de) * | 2007-01-26 | 2018-09-27 | Siemens Aktiengesellschaft | Verfahren und Einrichtung zur Antriebssteuerung eines Magnetschwebefahrzeugs auf einer Magnetschwebebahnstrecke |
JP5202874B2 (ja) | 2007-05-29 | 2013-06-05 | 東海旅客鉄道株式会社 | 鉄道車両用走行試験装置 |
CN101699247B (zh) * | 2009-11-10 | 2011-05-18 | 青岛四方车辆研究所有限公司 | 车体综合试验台 |
EP2390644B1 (en) * | 2010-05-31 | 2015-09-16 | Siemens Industry Software NV | Method and system for determining static and/or dynamic, loads using inverse dynamic calibration |
BR112013026824B1 (pt) * | 2011-04-20 | 2021-06-29 | Magglobal Llc | Dispositivo e sistema de separação magnética de alta intensidade |
AR093197A1 (es) | 2012-02-29 | 2015-05-27 | Qwtip Llc | Sistema y metodo de levitacion y distribucion |
WO2014056335A1 (zh) * | 2012-10-13 | 2014-04-17 | 广州微点焊设备有限公司 | 悬浮电磁力动力装置 |
US9000774B2 (en) * | 2013-03-14 | 2015-04-07 | International Business Machines Corporation | Non-contact conductivity measurement |
US9784635B2 (en) * | 2015-06-29 | 2017-10-10 | General Electric Company | Systems and methods for detection of engine component conditions via external sensors |
US9718486B1 (en) * | 2016-02-01 | 2017-08-01 | Electro-Motive Diesel, Inc. | System for analyzing health of train |
US11504038B2 (en) * | 2016-02-12 | 2022-11-22 | Newton Howard | Early detection of neurodegenerative disease |
US10583748B2 (en) * | 2016-12-05 | 2020-03-10 | Sanskar Agrawal | Magnetic system for an automobile for increasing fuel efficiency |
CN109094599B (zh) * | 2018-08-01 | 2020-02-14 | 中车青岛四方机车车辆股份有限公司 | 一种电磁横向主动减振系统以其控制方法和装置 |
CN109141946A (zh) | 2018-10-12 | 2019-01-04 | 湖南根轨迹智能科技有限公司 | 一种单模块悬浮控制系统实验检测平台 |
ES2827898A1 (es) * | 2019-10-08 | 2021-05-24 | Zeleros Global S L | Sistema matricial de suspension electromagnetica para vehiculos de transporte |
CN110667655B (zh) * | 2019-10-31 | 2021-12-03 | 江西理工大学 | 一种基于5g通信技术的永磁磁浮轨道交通控制系统与方法 |
CN111038272B (zh) * | 2020-01-02 | 2021-04-20 | 中车青岛四方机车车辆股份有限公司 | 具有气动升力控制装置的轨道车辆 |
EP4100899A1 (en) * | 2020-02-07 | 2022-12-14 | Hyperloop Technologies, Inc. | Modeling, simulation, and analysis of transportation systems |
DE102020110534A1 (de) * | 2020-04-17 | 2021-10-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Verfahren, Computerprogramm und Vorrichtung zur Überprüfung eines induktiven Bauteils |
EP4196238A2 (en) * | 2020-08-11 | 2023-06-21 | John M. Baker | Apparatus and applications for magnetic levitation and movement using offset magnetic arrays |
AT524086B1 (de) * | 2020-08-14 | 2022-07-15 | Avl List Gmbh | Prüfstand zum Testen eines realen Prüflings im Fahrbetrieb |
US12031883B2 (en) * | 2021-01-29 | 2024-07-09 | Horiba Instruments Incorporated | Apparatus and method for testing automated vehicles |
CN112798210B (zh) * | 2021-04-14 | 2021-08-31 | 西南交通大学 | 一种电动悬浮磁浮列车振动试验台及其试验方法 |
US11656153B1 (en) * | 2021-08-11 | 2023-05-23 | Zoox, Inc. | Simulator for vehicle drivetrain testing |
CN114154230B (zh) * | 2021-10-27 | 2024-02-27 | 西南交通大学 | 一种磁浮线路运行状态模拟装置及其模拟方法 |
US20230160782A1 (en) * | 2021-11-22 | 2023-05-25 | Southwest Jiaotong University | Equipment for simulating high-speed magnetic levitation operation |
US20230252824A1 (en) * | 2022-02-09 | 2023-08-10 | Snap-On Incorporated | Method and system for servicing a vehicle using a test set |
US20230252830A1 (en) * | 2022-02-09 | 2023-08-10 | Snap-On Incorporated | Method and system for servicing a vehicle using a functional test |
US11761851B1 (en) * | 2022-05-31 | 2023-09-19 | Safran Landing Systems Canada Inc. | Backlash measurement system for an electromechanical actuator |
-
2019
- 2019-01-14 CN CN201910032372.5A patent/CN109725221B/zh active Active
- 2019-10-17 WO PCT/CN2019/111611 patent/WO2020147352A1/zh unknown
- 2019-10-17 JP JP2020559450A patent/JP7069344B2/ja active Active
- 2019-10-17 EP EP19910669.1A patent/EP3913381A4/en active Pending
- 2019-10-17 US US17/285,106 patent/US11982589B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120123646A1 (en) * | 2010-11-01 | 2012-05-17 | John Mantini | Monitoring System for Controlling Liftable and Steer Axles on Trucks or Tractor Trailers |
CN103064038A (zh) * | 2013-01-03 | 2013-04-24 | 武汉理工大学 | 单自由度混合磁悬浮实验装置 |
CN103954844A (zh) * | 2014-04-11 | 2014-07-30 | 西南交通大学 | 一种中低速磁浮列车悬浮电磁铁电感参数在线检测方法 |
CN104527451A (zh) * | 2014-12-04 | 2015-04-22 | 中国人民解放军国防科学技术大学 | 用于中低速磁浮列车的悬浮控制器检测装置 |
CN106569157A (zh) * | 2016-08-22 | 2017-04-19 | 浙江大学 | 一种用于检测磁化率的磁悬浮检测装置及检测方法 |
CN109725221A (zh) * | 2019-01-14 | 2019-05-07 | 中车青岛四方机车车辆股份有限公司 | 一种磁浮测试系统和电磁铁测试方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3913381A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114018607A (zh) * | 2021-11-04 | 2022-02-08 | 西南交通大学 | 一种超导电动磁悬浮试验台 |
CN114018607B (zh) * | 2021-11-04 | 2022-08-23 | 西南交通大学 | 一种超导电动磁悬浮试验台 |
CN114200229A (zh) * | 2021-12-01 | 2022-03-18 | 中车长春轨道客车股份有限公司 | 一种感应供电试验台 |
CN114200229B (zh) * | 2021-12-01 | 2023-05-23 | 中车长春轨道客车股份有限公司 | 一种感应供电试验台 |
CN116046424A (zh) * | 2023-02-08 | 2023-05-02 | 西南交通大学 | 一种双盘线圈式电动悬浮实验装置 |
CN116046424B (zh) * | 2023-02-08 | 2023-06-13 | 西南交通大学 | 一种双盘线圈式电动悬浮实验装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2021518918A (ja) | 2021-08-05 |
EP3913381A1 (en) | 2021-11-24 |
CN109725221A (zh) | 2019-05-07 |
JP7069344B2 (ja) | 2022-05-17 |
US11982589B2 (en) | 2024-05-14 |
EP3913381A4 (en) | 2022-10-12 |
CN109725221B (zh) | 2020-11-03 |
US20210348984A1 (en) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020147352A1 (zh) | 一种磁浮测试系统和电磁铁测试方法 | |
CN103108770A (zh) | 电动汽车及其应急控制方法 | |
CN110281985A (zh) | 一种超高速磁悬浮列车运行控制系统和方法 | |
WO2022228453A1 (zh) | 用于磁浮列车悬浮系统的检测系统 | |
JP2016518803A (ja) | エネルギー貯蔵システムを充電する間の誤りを検出する方法及び構造 | |
CN211498316U (zh) | 一种钢轨打磨列车气动控制系统 | |
WO2019144570A1 (zh) | 一种磁轨制动控制系统、方法及磁悬浮列车 | |
AU2018305713A1 (en) | Method and device for locating faults along an energy supply chain for DC current systems | |
CN211016021U (zh) | 一种机车的制动教学系统 | |
CA2313910C (en) | Method and apparatus for detecting leakage current on a two wire dc or ac power line | |
CN107839488A (zh) | 一种纯电动车受电弓升降控制方法及装置 | |
CN103043061A (zh) | 内燃机车撒砂电控装置 | |
US20230382235A1 (en) | Voltage control method and apparatus, system, and maglev train | |
CN106740905B (zh) | 重联机车单机故障情况下的牵引控制电路 | |
CN205643668U (zh) | 一种磁轨枕实时监测系统 | |
CN114371685B (zh) | 用于悬浮和导向适应性分析的高速磁浮磁力耦合测试系统 | |
CN108891300B (zh) | 一种中低速磁浮列车的悬浮控制方法 | |
CN107102630A (zh) | 一种用于磁浮列车的控制器板卡故障检测系统 | |
CN105352425B (zh) | 一种单探头双线圈自诊断磁浮列车悬浮气隙传感器 | |
CN211016027U (zh) | 一种机车的制动实训系统 | |
CN105739451B (zh) | 列车电气系统过压斩波能耗均衡控制方法 | |
CN114620099B (zh) | Matc系统车载仿真装置 | |
CN216901434U (zh) | 一种bcu测试装置 | |
CN209063923U (zh) | 一种动车自动过分相装置 | |
KR102730616B1 (ko) | 전압 제어 방법 및 장치, 시스템, 및 자기부상열차 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19910669 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020559450 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019910669 Country of ref document: EP Effective date: 20210816 |