Nothing Special   »   [go: up one dir, main page]

WO2020143282A1 - 一种应用于废水除磷去浊的复合絮凝剂及其制法及应用 - Google Patents

一种应用于废水除磷去浊的复合絮凝剂及其制法及应用 Download PDF

Info

Publication number
WO2020143282A1
WO2020143282A1 PCT/CN2019/114520 CN2019114520W WO2020143282A1 WO 2020143282 A1 WO2020143282 A1 WO 2020143282A1 CN 2019114520 W CN2019114520 W CN 2019114520W WO 2020143282 A1 WO2020143282 A1 WO 2020143282A1
Authority
WO
WIPO (PCT)
Prior art keywords
flocculant
natural polymer
composite
composite flocculant
water
Prior art date
Application number
PCT/CN2019/114520
Other languages
English (en)
French (fr)
Inventor
杨琥
任杰
李爱民
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2020143282A1 publication Critical patent/WO2020143282A1/zh
Priority to ZA2021/02733A priority Critical patent/ZA202102733B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds

Definitions

  • the invention relates to a modified natural polymer flocculant and an inorganic coagulant to prepare a composite flocculant through aging, so as to achieve the effects of simultaneously removing phosphorus-containing substances in water and effectively reducing turbidity.
  • Phosphorus is a nutrient element commonly found in wastewater, and it is also one of the elements that make up ATP and other substances. From the perspective of plant growth, plant nutrients are an indispensable element in plant growth. However, excessive phosphorus entering the natural water body of the ecosystem will cause serious harm and cause water Eutrophication. "Eutrophication" is a concept in limnology. Studies have shown that an important feature of water aging is eutrophication. The excessive increase of nutrient elements in natural water will cause excessive proliferation of aquatic plants and algae, resulting in the living space of aquatic animals in the water being squeezed smaller and smaller. At the same time, the excessive value-added leads to the competition of algae populations, which reduces the types of algae in the water and increases the number of individuals rapidly.
  • algae will secrete a large amount of algal toxins into the water. These difficult-to-digest toxins enter the water body and cause health damage to the human body and aquatic organisms.
  • the algae that produce algae toxins are mostly cyanobacteria. Among them, Microcystis aeruginosa, Arthrococcus pluvialis, Anabaena sp. Microcystins are by far the most widely distributed and most complex toxins, and are currently known to have the most obvious promoting effect on the formation of liver tumors.
  • Flocculation is the first step of the conventional water treatment process and the most critical step.
  • the choice of flocculant directly determines the quality of the flocculation effect.
  • inorganic flocculant materials mainly aluminum salts and iron salts
  • inorganic flocculant materials have been widely used in the flocculation treatment of water because of their advantages of good effect, relatively low price, and wide sources.
  • this type of flocculant is used, it will inevitably cause trace metal ions to remain in the water body. If people drink this water for a long time, it will definitely cause health damage.
  • Alzheimer's disease senile dementia
  • inorganic salt flocculant materials are more harmful to the environment, sensitive to temperature, pH and other conditions, and difficult to remove smaller particles.
  • synthetic organic polymer flocculants such as polyacrylamide
  • the amount is small, but the price is high, and although the polymer itself is not toxic, it is included in the polymer
  • the monomers that do not participate in the reaction, such as acrylamide, are highly toxic. Therefore, it is now generally believed that inorganic and synthetic polymer flocculants should be used carefully in water treatment processes to purify water bodies.
  • Natural polymers are macromolecules in animals, plants and microbial resources in nature. They are easily decomposed into water and carbon dioxide after being discarded. They have wide sources and are non-toxic. They are environmentally friendly materials such as cellulose, starch, Chitosan and so on. Formula 1 is a molecular structural formula of starch, a very wide source of natural polymer materials.
  • natural polymer materials are a type of renewable resources that are completely separated from petroleum resources, and can be said to be inexhaustible. It is precisely because of the excellent properties of natural polymer materials, it has been widely used in many fields such as biology, medicine and food processing.
  • the purpose of the present invention is to provide a natural composite flocculant and inorganic salt coagulant to synthesize a new type of composite flocculant and its preparation method, used in sewage to achieve simultaneous removal of phosphorus-containing substances in the water body and effectively reduce the effect of turbidity; At the same time, the amount of inorganic salts in the water body is reduced, and other potential organic pollutants are not introduced to ensure the cleanliness and safety of the water body.
  • a composite flocculant applied to dephosphorization and turbidity of waste water It is a composite flocculant prepared by mixing and aging of natural polymer flocculant and inorganic salt coagulant.
  • the natural polymer flocculant may be a neutral, cationic, anionic or amphoteric natural polymer flocculant.
  • the natural polymer flocculant may be commercially available or self-made.
  • the neutral natural polymer flocculant may be chitosan.
  • the cationic natural polymer flocculant may be 3-chloro-2-hydroxypropyltrimethylammonium chloride modified starch (St-CTA).
  • the anionic natural polymer flocculant may be starch-grafted polyacrylic acid (St-g-PAA) flocculant.
  • the amphoteric natural polymer flocculant may be carboxymethyl cellulose grafted polymethacryloyloxyethyltrimethylammonium chloride (CMC-g-PDMC).
  • a method for preparing the above-mentioned composite flocculant is that natural polymer flocculant and inorganic salt coagulant are dissolved in water separately, and after fully dissolved, the mass concentration of natural polymer flocculant is: 1%-10%, inorganic The mass concentration of the salt coagulant is: 1%-7.5%, and then the inorganic salt coagulant aqueous solution and the natural polymer flocculant aqueous solution are mixed in a volume ratio of 1-100:1, and matured at 30-80°C for 0.5 -5h, to get the final composite flocculant product.
  • the mass ratio of inorganic salt coagulant to natural polymer flocculant in the final product is 7.5:1-30:1.
  • the composite flocculant is directly added to treat phosphorus-containing wastewater. The results show that this process is used to treat actual domestic sewage, and under the condition that the total phosphorus content in the water (TP ⁇ 0.3mg/L) required by the water quality standard of surface water is met, at the same time, the composite process can be used to treat the effluent SS The value drops to below 10mg/L, and this goal cannot be achieved by using only inorganic coagulants, which ensures that the effluent meets the national sewage discharge standards.
  • Figure 1 is the infrared spectrum of starch and modified starch flocculant.
  • Figure 2 is a schematic diagram of the effect of phosphorus removal and turbidity of the composite flocculant
  • Figure 2-1 is the relationship between the dosage of ferric chloride and the total phosphorus residue
  • Figure 2-2 is the relationship between the dosage of ferric chloride and the turbidity after treatment Figure.
  • St-CTA 3-chloro-2-hydroxypropyltrimethylammonium chloride modified starch
  • St-CTA uses starch as raw material and 3-chloro-2-hydroxypropyltrimethylammonium chloride as the etherifying agent to obtain the required agent St-CTA through a one-step etherification reaction (see: Flocculation and antimicrobial properties of a cationized starch, Zhouzhou Liu, Mu Huang, Aimin Li, Hu Yang, Water Research, 2017,119,57-66.).
  • the infrared spectrum of starch and modified starch flocculant is shown in Figure 1.
  • Starch (St) has obvious characteristic peaks at 982, 2925, and 3298cm -1 , which belong to CH bending vibration, CH 2 deformation and -OH stretching vibration, respectively.
  • the starch-modified flocculant St-CTA has a new absorption peak at 1478 cm -1 , which is mainly due to the vibration absorption of the CH bond on the quaternary ammonium salt group introduced by CTA etherification. This shows that the starch and CTA successfully carried out the etherification reaction.
  • the phosphorus-containing wastewater is a laboratory-made potassium dihydrogen phosphate and kaolin suspension.
  • the initial total phosphorus in the simulated wastewater is 2.5mg/L and the initial turbidity is 30NTU.
  • This process uses a spectrophotometer (at a wavelength of 700 nm) to observe the actual dephosphorization effect of the resulting product; observes its actual deturbidity effect through a turbidity meter.
  • Figure 2 is a diagram of the effect of the composite flocculant on phosphorus and turbidity removal of this water sample.
  • a composite flocculant was prepared by compounding ferric sulfate (commercially available) and chitosan (commercially available). Specific steps: Take a certain volume of chitosan aqueous solution (mass concentration: 10%) and ferric sulfate aqueous solution (mass concentration: 1%), mix thoroughly according to the volume ratio: 1:100, and ripen 0.5 under 80 conditions h, to get the final product. Among them, the ratio of the mass of iron sulfate to the mass of chitosan is 10:1.
  • the laboratory-made potassium dihydrogen phosphate and kaolin suspension were used as the treatment water sample, and its performance was similar to that of Example 1, ie, the same simulated water sample as Example 1 was used, when the amount of composite flocculant was 10mg/L
  • the total phosphorus content in the water has been reduced to four types of water effluent indicators (0.3mg/L), the effluent turbidity value is 0.8NTU, and the effluent SS value is 2.4mg/L.
  • Composite flocculant was prepared by compounding ferric chloride (commercially available) and self-made starch graft polyacrylic acid (St-g-PAA).
  • St-g-PAA uses starch as raw material, acrylic acid as monomer, ammonium persulfate as initiator, through a one-step graft copolymerization reaction to obtain the required agent St-g-PAA (see: Evaluation of the structural morphology on the scale -inhibition efficiency of starch-graft-poly (acrylic acid), Wei Yu, Yawen Wang, Aimin Li, Hu Yang, Water Research, 2018, 141, 86-95.).
  • Specific dephosphorization and turbidity removal steps Take a certain volume of St-g-PAA (mass concentration: 1%) and polyferric chloride (mass concentration: 1%) aqueous solution, and mix thoroughly according to the volume ratio: 1:10. And aging at 60 °C for 2h to obtain the final product. Among them, the ratio of the mass of polyferric chloride to the mass of St-g-PAA is 10:1.
  • the laboratory-made potassium dihydrogen phosphate and kaolin suspension were used as the treatment water sample, and its performance was similar to that of Example 1, that is, the same simulated water sample as Example 1 was used, when the amount of composite flocculant was 10mg/L
  • the total phosphorus content in the water body has dropped to four types of water effluent indicators (0.3mg/L), the effluent turbidity value is 1.1NTU, and the effluent SS value is 3.3mg/L.
  • a composite flocculant was prepared by compounding aluminum chloride (commercially available) and homemade carboxymethyl cellulose grafted polymethacryloyloxyethyltrimethylammonium chloride (CMC-g-PDMC).
  • CMC-g-PDMC uses cellulose as the raw material, first uses chloroacetic acid as the etherifying agent to prepare carboxymethyl cellulose to improve the water solubility of cellulose, and then uses methacryloyloxyethyltrimethylammonium chloride as the single Body, cerium ammonium nitrate is used as the initiator, and the required agent CMC-g-PDMC is obtained through graft copolymerization (see: Evaluation of chain architectures and charge properties of variable starch-based flocculants for floculation from humic acid from water, HuWu, Zhouzhou Liu, Hu Yang, Aimin Li, Water Research, 2016, 96, 126-135.).
  • the composite flocculant is prepared by compounding aluminum sulfate (commercially available) and the laboratory-made 3-chloro-2-hydroxypropyltrimethylammonium chloride modified starch flocculant (see: Flocculation and antimicrobial properties of of catalized starch) , Zhouzhou Liu, Mu Huang, Aimin Li, Hu Yang, Water Research, 2017, 119, 57-66.).
  • Specific dephosphorization and turbidity removal steps Take a certain volume of St-CTA (mass concentration: 1%) and aluminum sulfate (mass concentration: 3%) aqueous solution, mix according to the volume ratio: 1:10, and mix at 40°C Under conditions of aging for 3h, the final product is obtained.
  • the ratio of the mass of aluminum sulfate to the mass of St-CTA is 30:1.
  • the laboratory-made potassium dihydrogen phosphate and kaolin suspension were used as the treatment water samples, and the performance was similar to that of Example 1, that is, the same simulated water samples as in Example 1 were used, when the amount of composite flocculant was 8mg/L
  • the total phosphorus content in the water has been reduced to four types of water effluent indicators (0.3mg/L), the turbidity value of the effluent is 0.4NTU, and the SS value of the effluent is 1.2mg/L.
  • the composite flocculant is prepared by compounding polyaluminum chloride (commercially available) and the laboratory-made 3-chloro-2-hydroxypropyltrimethylammonium chloride modified starch flocculant (see: Flocculation and antimicrobial properties of a) cationized starch, Zhouzhou Liu, Mu Huang, Aimin Li, Hu Yang, Water Research, 2017, 119, 57-66.). Specific dephosphorization and turbidity removal steps: Take a certain volume of St-CTA (mass concentration: 1%) and polyaluminum chloride (mass concentration: 7.5%) aqueous solution, mix thoroughly according to the volume ratio: 1:1, and The final product is obtained by aging at 50°C for 2h.
  • the ratio of the mass of polyaluminum chloride to the mass of St-CTA is 7.5:1.
  • the laboratory-made potassium dihydrogen phosphate and kaolin suspension were used as the treatment water sample, and its performance was similar to that of Example 1, namely: the same simulated water sample as in Example 1 was used, when the amount of composite flocculant was 9.5mg/L At that time, the total phosphorus content in the water body had dropped to four types of water effluent indicators (0.3mg/L), the effluent turbidity value was 0.9NTU, and the effluent SS value was 2.7mg/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种应用于废水除磷去浊的复合絮凝剂及其制备方法,它是一种天然高分子絮凝剂和无机盐混凝剂混合和熟化制得的一种复合絮凝剂。该复合絮凝剂直接投加处理含磷废水。在达到地表四类水这一水质标准要求的水中总磷含量的条件(TP<0.3mg/L)下,使用该复合絮凝剂可将出水SS值降至10mg/L以下,而仅采用无机混凝剂无法达到这一目标,这保证了出水符合国家污水排放标准。

Description

一种应用于废水除磷去浊的复合絮凝剂及其制法及应用 技术领域
本发明涉及改性天然高分子絮凝剂与无机混凝剂经熟化制备复合絮凝剂,以达到同时去除水体中含磷物质并有效降低浊度的效果。
背景技术
近年来随着我国经济水平的稳步提升,公众开始逐渐将视野投入到环境保护领域。水域污染治理作为环境治理的重要领域之一,更是当下环境保护的热门话题。环境治理过程中,不仅要保证出水结果达到国家要求,整个治理过程也应符合无害绿色,采用环保的治理材料和工艺方法。
磷元素是常见的废水中存在的营养元素,同时,其也是构成ATP等物质的元素之一。从植物生长的角度来说,植物营养元素是植物生长中所不可或缺的一类元素,然而,过多的磷元素进入生态系统中的自然水体,则会带来严重的危害,造成水体的富营养化。“富营养化”是湖沼学中的一个概念,研究表明,水体衰老的一大重要特征便是富营养化。自然水体中的营养元素过量增加,将引起水生植物和藻类的过量增殖,导致水体中水生动物的生活空间遭到挤压越来越小。同时,由于过量增值导致藻类间的种群竞争,使得水体中藻类的种类减少而个体数量迅速增加。藻类过度繁殖,会大量消耗水体中已经存在的溶解氧,使得水中溶解氧的含量越来越低,而伴随着大量的藻类的呼吸作用和死亡分解,其消耗的溶解氧迅速增加,水体将处于严重缺氧状态,严重影响其余动植物生存,并使得水体进一步发展为干地。
同时,由于藻类物质的大量繁殖,藻类会向水体中分泌大量的藻毒素。这些不易消解的毒素进入水体,对人体和水生生物会造成健康危害。产生藻毒素的藻类多为蓝藻,其中,铜绿微囊藻、节球藻、水华鱼腥藻、水华束丝藻毒性最大。微囊藻毒素是目前为止分布最广、最复杂的一类毒素,也是目前已知的对肝肿瘤的形成有最明显的促进作用的毒素。
近些年来,通过向含磷废水中投加铁盐试剂,如:氯化铁、硫酸铁以及聚合硫酸铁等,使得水中磷元素与三价铁离子形成沉淀去除的工艺在众多污水处理厂得到了广泛的 应用,并且取得了较为良好的效果。然而,在实际工程应用过程中,该工艺暴露出工艺处理后,水中的SS值(指标水体中悬浮物含量)较高,无法达到污水排放要求的缺点。对采用该工艺进行污水处理,如何在现有工艺上进行改进达到最佳的处理效果成为亟需解决的问题。而絮凝工艺因其对SS值的高去除效果,成为了解决此问题的一大办法。
絮凝是常规水处理工艺的第一步,也是最为关键的一步工序。在此工序中,絮凝剂的选择直接决定了絮凝效果的好坏。就目前而言,无机絮凝剂材料(以铝盐和铁盐为主),因具有效果好、价格相对低廉,来源广泛等优势,在水的絮凝处理中得到了极为广泛的应用。但这类絮凝剂在使用时,必然会使得微量的金属离子残留在水体中,如果人们长期饮用这种水,必定会对健康造成损害。近年来被广泛报导的阿尔茨海默病(老年痴呆)便是由铝离子在人体中沉积而引发的一类病症。同时,无机盐类絮凝剂材料对环境危害较大,对温度、pH等条件十分敏感,且难以去除较小的颗粒,这些缺点都阻碍了无机絮凝剂材料的进一步发展。此外,合成有机高分子絮凝剂,如聚丙烯酰胺等,其效果优于无机絮凝剂,且用量少,但售价较高,而且尽管高聚物本身没有毒性,但其所包含在高聚物内部没有参加反应的单体,如丙烯酰胺等却具有很大的毒性。因此,现在普遍认为,水处理工艺中应慎重使用无机和合成高分子絮凝剂来净化水体。
天然高分子是自然界中动、植物以及微生物资源中的大分子,它们在被废弃后很容易分解成水、二氧化碳等,且来源广、无毒害,是环境友好材料,如:纤维素、淀粉、壳聚糖等等。式1是一种来源十分广泛的天然高分子材料——淀粉的分子结构式。此外,更为值得一提的是,天然高分子材料是完全脱离石油资源的一类可再生资源,可以说是取之不尽用之不竭。正是由于天然高分子材料具有上述的优异性能,其目前在生物、医药及食品加工等诸多领域中已有着广泛的应用。在水处理领域中,由于天然高分子分子链上分布着大量的游离羟基、胺基等活性基团,具有良好的水体净化功能,已被视为21世纪的绿色絮凝剂。此外,由于天然高分子分子链上含有上述活性功能基团,适于化学改性。通过对天然高分子进行适当的化学改性制得天然高分子改性絮凝剂,进一步提高其絮凝性能,无疑具有重要的现实意义。
Figure PCTCN2019114520-appb-000001
式1
然而,天然高分子絮凝剂在除磷去浊过程中,也存在絮体密度较低不易沉降等问题,无疑与其它高密度无机混凝剂材料复合以增强其除磷去浊性能是一条可行之路。本发明人发现天然高分子絮凝剂(如:淀粉、纤维素、壳聚糖、海藻酸及其衍生物等)与无机盐混凝剂复合,能充分发挥天然高分子絮凝剂与无机盐混凝剂各自的特点和优势,提高絮体密度加强其沉降性能,增强实际除磷去浊效果。
发明内容
本发明的目的是提供一种天然高分子絮凝剂与无机盐混凝剂合成新型复合絮凝剂及其制法,在污水中应用以达到同时去除水体中含磷物质并有效降低浊度的效果;同时,减少水体中无机盐的投放量,且不引入其它潜在的有机污染物,保证水体的清洁和安全。
本发明的目的是通过下列技术方案实现的:
一种应用于废水除磷去浊的复合絮凝剂,它是一种天然高分子絮凝剂和无机盐混凝剂混合和熟化制得的一种复合絮凝剂。
上述的复合絮凝剂,所述的天然高分子絮凝剂可以是中性、阳离子型、阴离子型或两性型的天然高分子絮凝剂。
上述的复合絮凝剂,所述的天然高分子絮凝剂可以是市售的或自制的。
上述的复合絮凝剂,所述的中性的天然高分子絮凝剂可以是壳聚糖。
上述的复合絮凝剂,所述的阳离子型天然高分子絮凝剂可以是3-氯-2-羟丙基三甲基氯化铵改性淀粉(St-CTA)。
上述的复合絮凝剂,所述的阴离子型天然高分子絮凝剂可以是淀粉接枝聚丙烯酸(St-g-PAA)絮凝剂。
上述的复合絮凝剂,所述的两性型天然高分子絮凝剂可以是羧甲基纤维素接枝聚甲基丙烯酰氧乙基三甲基氯化铵(CMC-g-PDMC)。
一种上述的复合絮凝剂的制法,它是将天然高分子絮凝剂与无机盐混凝剂分别溶于水中,充分溶解后,天然高分子絮凝剂质量浓度为:1%-10%,无机盐混凝剂质量浓度为:1%-7.5%,然后将无机盐混凝剂水溶液与天然高分子絮凝剂水溶液按:1-100:1体积比混合,并于30-80℃条件下熟化0.5-5h,即得到最终复合絮凝剂产品。
最终产品中无机盐混凝剂与天然高分子絮凝剂质量之比为7.5:1-30:1。将该复合絮 凝剂直接投加处理含磷废水。结果表明,采用这一工序处理实际生活污水,在达到地表四类水这一水质标准要求的水中总磷含量的条件(TP<0.3mg/L)下,同时,使用该复合工艺可将出水SS值降至10mg/L以下,而仅采用无机混凝剂无法达到这一目标,这保证了出水符合国家污水排放标准。
附图说明
图1为淀粉及改性型淀粉絮凝剂红外光谱图。
图2为复合絮凝剂除磷去浊效果示意图,图2-1为氯化铁投加量与总磷残留量关系图;图2-2为为氯化铁投加量与处理后浊度关系图。
具体实施方式
以下通过实施例进一步说明本发明。
实施例1:
采用六水合氯化铁(市售)和实验室自制的3-氯-2-羟丙基三甲基氯化铵改性淀粉(St-CTA)进行除磷去浊实验。St-CTA以淀粉为原料,以3-氯-2-羟丙基三甲基氯化铵为醚化剂,通过一步法醚化反应得到所需药剂St-CTA(参见:Flocculation and antimicrobial properties of a cationized starch,Zhouzhou Liu,Mu Huang,Aimin Li,Hu Yang,Water Research,2017,119,57-66.)。淀粉及改性型淀粉絮凝剂红外光谱图见图1,淀粉(St)在982、2925、和3298cm -1处有明显的特征峰,分别属于C-H弯曲振动、CH 2变形和-OH伸缩振动。有别于淀粉,淀粉改性絮凝剂St-CTA在1478cm -1处均出现了新的吸收峰,这主要是由于与CTA醚化引入的季铵盐基团上C-H键的振动吸收。这说明淀粉与CTA成功地进行了醚化反应。
分别取一定体积的St-CTA(质量浓度为:1%)和六水合氯化铁(质量浓度为:7.5%)水溶液,按照体积比:1:1充分混合,并于30℃条件下熟化0.5h,即得最终产品。其中,六水合氯化铁质量与St-CTA质量之比为7.5:1。
含磷废水为实验室自制的磷酸二氢钾与高岭土悬浊液,模拟废水初始总磷为2.5mg/L,初始浊度为30NTU。本工艺通过分光光度计(波长700nm处),观察所得产品实际除磷效果;通过浊度仪观察其实际去浊效果。图2是复合絮凝剂对该水样的除磷去浊效果图。从图中可以看到当复合絮凝剂用量在9mg/L时,水体中总磷含量已降至四类水出水指标(0.3mg/L),出水浊度值为0.5NTU,出水SS值为1.5mg/L;与仅使用氯 化铁需投加13.5mg/L相比,可节省约33.3%的氯化铁药剂;同时,就去浊效果而言,复合絮凝剂的使用使得去浊效果有了进一步提升。
实施例2:
采用硫酸铁(市售)和壳聚糖(市售)进行复合制得复合絮凝剂。具体步骤:分别取一定体积的壳聚糖水溶液(质量浓度为:10%)和硫酸铁水溶液(质量浓度为:1%),按照体积比:1:100充分混合,并于80条件下熟化0.5h,即得最终产品。其中,硫酸铁质量与壳聚糖质量之比为10:1。以实验室自制的磷酸二氢钾与高岭土悬浊液为处理水样,其性能类同实施例1,即:采用与实施例1相同的模拟水样,当复合絮凝剂用量在10mg/L时,水体中总磷含量已降至四类水出水指标(0.3mg/L),出水浊度值为0.8NTU,出水SS值为2.4mg/L。
实施例3:
采用聚合氯化铁(市售)和自制的淀粉接枝聚丙烯酸(St-g-PAA)进行复合制得复合絮凝剂。St-g-PAA以淀粉为原料,以丙烯酸为单体,过硫酸铵为引发剂,通过一步法接枝共聚反应得到所需药剂St-g-PAA(参见:Evaluation of the structural morphology on the scale-inhibition efficiency of starch-graft-poly(acrylic acid),Wei Yu,Yawen Wang,Aimin Li,Hu Yang,Water Research,2018,141,86-95.)。具体除磷去浊步骤:分别取一定体积的St-g-PAA(质量浓度为:1%)和聚合氯化铁(质量浓度为:1%)水溶液,按照体积比:1:10充分混合,并于60℃条件下熟化2h,即得最终产品。其中,聚合氯化铁质量与St-g-PAA质量之比为10:1。以实验室自制的磷酸二氢钾与高岭土悬浊液为处理水样,其性能类同实施例1,即:采用与实施例1相同的模拟水样,当复合絮凝剂用量在10mg/L时,水体中总磷含量已降至四类水出水指标(0.3mg/L),出水浊度值为1.1NTU,出水SS值为3.3mg/L。
实施例4:
采用氯化铝(市售)和自制的羧甲基纤维素接枝聚甲基丙烯酰氧乙基三甲基氯化铵(CMC-g-PDMC)进行复合制得复合絮凝剂。CMC-g-PDMC以纤维素为原料,先以氯乙酸为醚化剂制备羧甲基纤维素以改善纤维素的水溶性,再以甲基丙烯酰氧乙基三甲基氯化铵为单体,硝酸铈铵为引发剂,通过接枝共聚反应得到所需药剂CMC-g-PDMC(参 见:Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water,Hu Wu,Zhouzhou Liu,Hu Yang,Aimin Li,Water Research,2016,96,126-135.)。具体除磷去浊步骤:分别取一定体积的CMC-g-PDMC(质量浓度为:10%)和氯化铝(质量浓度为:1%)水溶液,按照体积比:1:150充分混合,并于50℃条件下熟化3h,即得最终产品。其中,氯化铝质量与CMC-g-PDMC质量之比为15:1。以实验室自制的磷酸二氢钾与高岭土悬浊液为处理水样,其性能类同实施例1,即:采用与实施例1相同的模拟水样,当复合絮凝剂用量在9.5mg/L时,水体中总磷含量已降至四类水出水指标(0.3mg/L),出水浊度值为0.6NTU,出水SS值为1.8mg/L。
实施例5:
采用硫酸铝(市售)和实验室自制的3-氯-2-羟丙基三甲基氯化铵改性淀粉絮凝剂进行复合制得复合絮凝剂(参见:Flocculation and antimicrobial properties of a cationized starch,Zhouzhou Liu,Mu Huang,Aimin Li,Hu Yang,Water Research,2017,119,57-66.)。具体除磷去浊步骤:分别取一定体积的St-CTA(质量浓度为:1%)和硫酸铝(质量浓度为:3%)水溶液,按照体积比:1:10充分混合,并于40℃条件下熟化3h,即得最终产品。其中,硫酸铝质量与St-CTA质量之比为30:1。以实验室自制的磷酸二氢钾与高岭土悬浊液为处理水样,其性能类同实施例1,即:采用与实施例1相同的模拟水样,当复合絮凝剂用量在8mg/L时,水体中总磷含量已降至四类水出水指标(0.3mg/L),出水浊度值为0.4NTU,出水SS值为1.2mg/L。
实施例6:
采用聚合氯化铝(市售)和实验室自制的3-氯-2-羟丙基三甲基氯化铵改性淀粉絮凝剂进行复合制得复合絮凝剂(参见:Flocculation and antimicrobial properties of a cationized starch,Zhouzhou Liu,Mu Huang,Aimin Li,Hu Yang,Water Research,2017,119,57-66.)。具体除磷去浊步骤:分别取一定体积的St-CTA(质量浓度为:1%)和聚合氯化铝(质量浓度为:7.5%)水溶液,按照体积比:1:1充分混合,并于50℃条件下熟化2h,即得最终产品。其中,聚合氯化铝质量与St-CTA质量之比为7.5:1。以实验室自制的磷酸二氢钾与高岭土悬浊液为处理水样,其性能类同实施例1,即:采用与实施例1相同的模拟水样,当复合絮凝剂用量在9.5mg/L时,水体中总磷含量已降至四类水出水指标(0.3mg/L),出水浊度值为0.9NTU,出水SS值为2.7mg/L。

Claims (9)

  1. 一种应用于废水除磷去浊的复合絮凝剂,其特征是:它是一种天然高分子絮凝剂和无机盐混凝剂混合和熟化制得的一种复合絮凝剂。
  2. 根据权利要求1所述的复合絮凝剂,其特征是:所述的天然高分子絮凝剂是中性、阳离子型、阴离子型或两性型的天然高分子絮凝剂。
  3. 根据权利要求1所述的复合絮凝剂,其特征是:所述的天然高分子絮凝剂是市售的或自制的。
  4. 根据权利要求2上述的复合絮凝剂,其特征是:所述的中性的天然高分子絮凝剂是壳聚糖。
  5. 根据权利要求2所述的复合絮凝剂,其特征是:所述的阳离子型天然高分子絮凝剂是3-氯-2-羟丙基三甲基氯化铵改性淀粉(St-CTA)。
  6. 根据权利要求2所述的复合絮凝剂,其特征是:所述的阴离子型天然高分子絮凝剂是淀粉接枝聚丙烯酸(St-g-PAA)絮凝剂。
  7. 根据权利要求2所述的复合絮凝剂,其特征是:所述的两性型天然高分子絮凝剂是羧甲基纤维素接枝聚甲基丙烯酰氧乙基三甲基氯化铵(CMC-g-PDMC)。
  8. 一种权利要求1所述的复合絮凝剂的制法,其特征是:它是将天然高分子絮凝剂与无机盐混凝剂分别溶于水中,充分溶解后,天然高分子絮凝剂质量浓度为:1%-10%,无机盐混凝剂质量浓度为:1%-7.5%,然后将无机盐混凝剂水溶液与天然高分子絮凝剂水溶液按:1-100:1体积比混合,并于30-80℃条件下熟化0.5-5h,即得到最终复合絮凝剂产品。
  9. 权利要求1所述的应用于废水除磷去浊的复合絮凝剂在废水除磷去浊中的应用。
PCT/CN2019/114520 2019-01-10 2019-10-31 一种应用于废水除磷去浊的复合絮凝剂及其制法及应用 WO2020143282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/02733A ZA202102733B (en) 2019-01-10 2021-04-23 Composite flocculant for removing phosphorus and turbidity of waste water, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910026092.3A CN110422915A (zh) 2019-01-10 2019-01-10 一种应用于废水除磷去浊的复合絮凝剂及其制法及应用
CN201910026092.3 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143282A1 true WO2020143282A1 (zh) 2020-07-16

Family

ID=68408325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114520 WO2020143282A1 (zh) 2019-01-10 2019-10-31 一种应用于废水除磷去浊的复合絮凝剂及其制法及应用

Country Status (3)

Country Link
CN (1) CN110422915A (zh)
WO (1) WO2020143282A1 (zh)
ZA (1) ZA202102733B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118324277A (zh) * 2024-05-11 2024-07-12 中国农业大学 一种改性复合混凝剂及其在处理有机废水方面的应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114477712B (zh) * 2021-09-07 2022-10-18 南京大学 一种天然高分子絮凝剂与粘土材料的绿色高效复合污泥脱水工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531119A (zh) * 2011-10-27 2012-07-04 常州大学 一种复合絮凝剂的制备方法及其应用
CN102658097A (zh) * 2012-05-09 2012-09-12 中国地质大学(北京) 高效除磷多孔性颗粒吸附剂的制备方法
CN106746068A (zh) * 2016-11-29 2017-05-31 广东工业大学 一种含高浓度有机磷废水的处理方法
WO2017089330A1 (en) * 2015-11-27 2017-06-01 Kemira Oyj Improve phosphorus precipitation and membrane flux in membrane bioreactors
CN106882860A (zh) * 2015-12-16 2017-06-23 营口渤海科技有限公司 一种氧化镁-淀粉复合絮凝剂的制备方法
CN109665610A (zh) * 2018-12-05 2019-04-23 南京大学 一种天然高分子絮凝剂与铁盐联合深度除磷去浊工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087265A (zh) * 2013-02-17 2013-05-08 南京大学 一种接枝型两性淀粉絮凝剂的制备方法
CN104017136B (zh) * 2014-03-05 2017-01-18 南京大学 一种两性接枝型改性纤维素絮凝剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531119A (zh) * 2011-10-27 2012-07-04 常州大学 一种复合絮凝剂的制备方法及其应用
CN102658097A (zh) * 2012-05-09 2012-09-12 中国地质大学(北京) 高效除磷多孔性颗粒吸附剂的制备方法
WO2017089330A1 (en) * 2015-11-27 2017-06-01 Kemira Oyj Improve phosphorus precipitation and membrane flux in membrane bioreactors
CN106882860A (zh) * 2015-12-16 2017-06-23 营口渤海科技有限公司 一种氧化镁-淀粉复合絮凝剂的制备方法
CN106746068A (zh) * 2016-11-29 2017-05-31 广东工业大学 一种含高浓度有机磷废水的处理方法
CN109665610A (zh) * 2018-12-05 2019-04-23 南京大学 一种天然高分子絮凝剂与铁盐联合深度除磷去浊工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
潘汉平等 (PAN, HANPING ET AL.): "铝铁改性淀粉复合絮凝剂对甲基紫的絮凝机理 (Flocculation Mechanism of the Methyl Violet by Combined Aluminum-Ferrous-Starch Flocculant (CAFS))", 环境化学 (ENVIRONMENTAL CHEMISTRY), vol. 31, no. 06, 15 June 2012 (2012-06-15), ISSN: 0245-6108, DOI: 9000307 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118324277A (zh) * 2024-05-11 2024-07-12 中国农业大学 一种改性复合混凝剂及其在处理有机废水方面的应用

Also Published As

Publication number Publication date
ZA202102733B (en) 2021-06-30
CN110422915A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN102774947B (zh) 一种生物复配絮凝剂及其应用
CN102757119B (zh) 一种复合型无机高分子絮凝剂的制备方法及其应用
JP6378342B2 (ja) 有機性廃水の処理方法
US10392276B2 (en) TiO2 base coagulant and its application
CN104724809B (zh) 一种基于天然高分子的三元共聚絮凝剂及其制备方法
US20100300962A1 (en) Methods for treating wastewater using an organic coagulant
WO2020143282A1 (zh) 一种应用于废水除磷去浊的复合絮凝剂及其制法及应用
CN113697917B (zh) 一种天然材料复合絮凝剂及其制备方法与应用
CN109665610A (zh) 一种天然高分子絮凝剂与铁盐联合深度除磷去浊工艺
CN105906023A (zh) 一种高效除磷复配混凝剂
CN102153177A (zh) 一种用于废水处理的高效脱磷剂
CN104030421B (zh) 一种复合cod去除剂及其废水cod去除方法
CN115893621B (zh) 一种复合型植物净水剂及其制备方法和应用
CN102285709B (zh) 一种生态型高效复合絮凝剂的制备方法
CN110606577A (zh) 一种复合除磷脱氮剂及其制备方法
JP2011016048A (ja) リグニン及び/又はタンニンを含有する排水の脱色浄化処理方法
CN1202022C (zh) 一种生态安全复合型铁系高效絮凝剂的制备方法
CN111908619A (zh) 一种高效生物化学联用复合型除磷剂及其制备方法
Tadz et al. Evaluation of sludge from coagulation of palm oil mill effluent with chitosan based coagulant
CN103771622A (zh) 一种生活污水除磷方法
CN102874909B (zh) 一种复合除磷除浊混凝剂及其除磷除浊方法
CN108996643B (zh) 一种城市污水处理用脱磷絮凝剂及其制备方法与应用
CN102627343A (zh) 一种海洋多糖双组分絮凝剂处理海水养殖废水的方法
CN112777706B (zh) 一种用于回收废水中蛋白质的复合生物絮凝剂试剂组合和使用方法
CN112723502B (zh) 一种除磷去藻剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908443

Country of ref document: EP

Kind code of ref document: A1