WO2020039979A1 - 熱延鋼板およびその製造方法 - Google Patents
熱延鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2020039979A1 WO2020039979A1 PCT/JP2019/031667 JP2019031667W WO2020039979A1 WO 2020039979 A1 WO2020039979 A1 WO 2020039979A1 JP 2019031667 W JP2019031667 W JP 2019031667W WO 2020039979 A1 WO2020039979 A1 WO 2020039979A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- hot
- ferrite
- steel
- steel sheet
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a hot-rolled steel sheet having high strength and a low yield ratio, excellent in toughness, and a method for producing the same, which is suitable for building structural members.
- the hot-rolled steel sheet of the present invention is suitably used particularly as a raw material of a square steel pipe manufactured by cold roll forming.
- a square steel pipe (square column) used as a column material of a building is required to have mechanical properties of a yield strength of 385 MPa or more and a tensile strength of 520 MPa or more, and furthermore have high plastic deformability and excellent from the viewpoint of earthquake resistance. It is also required to have toughness. Therefore, it is necessary to appropriately select the material of the square steel pipe.
- the square steel pipe is generally manufactured by using a hot-rolled steel plate (hot-rolled steel strip) or a thick plate as a raw material and cold-forming the raw material.
- a method of cold forming there is a method of cold press bending or a method of cold roll forming.
- the hot rolled steel sheet is first formed into a round steel pipe, and then the round steel pipe is subjected to cold forming to form a square steel pipe.
- This method of manufacturing a rectangular steel pipe by roll forming has the advantage that the productivity is higher than that of a method of manufacturing a square steel pipe by press bending and that the manufacturing can be performed in a short delivery time.
- an appropriate hot-rolled steel sheet (hot-rolled steel strip) or thick plate is selected in consideration of changes in mechanical properties such as an increase in yield ratio and a decrease in toughness due to roll forming. Is required.
- Patent Document 1 discloses that C ⁇ 0.02%, Si ⁇ 1.0%, Mn: 0.05 to 2.0%, and S ⁇ 0.02% by weight. , Al: 0.01 to 0.1%, Nb: 0.08 to 0.25%, Ti ⁇ 0.2%, B ⁇ 0.0020%, and one of Ni, Cr, Sn and Cu Or, two or more are contained in a total amount of 0.02% or more and 0.3% or less, the balance is composed of Fe and inevitable impurities, and the Nb amount is Nb ⁇ 0.05 + 7.75C-1.98Ti + 6.64N + 0.000035 / (B + 0.0004) is satisfied, the metal structure is such that the volume fraction of the ferrite phase is 70% or more, the ferrite grain size is 10.5 or more and 15 or less, and the yield ratio at room temperature is 70%. By the following, a low yield ratio refractory hot rolled steel sheet excellent in toughness is disclosed That.
- Patent Document 2 C: 0.07 to 0.18%, Mn: 0.3 to 1.5%, P: 0.03% or less, S: 0.015% or less, Al: The composition contains 0.01 to 0.06%, N: 0.006% or less, the balance being Fe and inevitable impurities, ferrite as a main phase, and pearlite or pearlite and bainite as a second phase.
- the frequency of the second phase defined by the predetermined formula is 0.20 to 0.42 and the average crystal grain size including the main phase and the second phase is 7 to 15 ⁇ m, the toughness is improved.
- a thick hot-rolled steel sheet for square steel pipes for building structural members, which is improved in the above, is disclosed.
- Patent Document 3 discloses that C: 0.06 to 0.12% (meaning by mass%, the same applies hereinafter), Si: 0.05 to 0.5%, Mn: 1.0 to 1.8%, Al: 0.01 to 0.06%, P: 0.025% or less (excluding 0%), S: 0.01% or less (excluding 0%), Nb: 0.005 to 0.025%, Ti: 0.005 to 0.03%, N: 0.002 to 0.009%, and B: 0.0005 to 0.003%, respectively, and the carbon equivalent Ceq defined by a predetermined formula is 0.
- the balance being iron and unavoidable impurities, consisting of a structure mainly composed of a bainite phase, adjacent to each other at a depth t / 4 (t represents a plate thickness, the same applies hereinafter) from the surface.
- t represents a plate thickness, the same applies hereinafter
- an average equivalent-circle diameter D A is 10 ⁇ m or less as measured by Zobo
- maximum expected where the particle size of the crystal grains was measured by the electron backscatter diffraction pattern method is calculated by the extreme value statistics method based on a predetermined formula particle size D M is, by a 80 ⁇ m or less, high-tensile steel sheet excellent high heat input welding to the base metal low-temperature toughness is disclosed.
- Patent Document 4 contains C: 0.04 to 0.25%, N: 0.0050 to 0.0150%, and Ti: 0.003 to 0.050% by weight and is determined by a predetermined formula.
- the steel has a carbon equivalent (Ceq.) Of 0.10 to 0.45%, a pearlite phase in an area fraction of 5 to 20%, and an average particle size of 1 to 4% in the steel.
- Patent Document 5 0.43% carbon equivalent Ceq is 0.33% or more, which is calculated from the steel component (mass%) or less, the weld crack susceptibility composition P CM 0.24% 0.15% or less, the welding A thick steel plate for a cold press-formed square steel pipe made of steel having a composition with a heat-affected zone toughness index f HAZ of 0.30% to 0.47% is disclosed.
- the steel structure of the cold press-formed thick steel plate for rectangular steel pipes of Patent Document 5 is composed of ferrite and the remainder bainite or pearlite.
- Patent Document 6 discloses that, in mass%, C: 0.05 to 0.20%, Si: 0.10 to 0.40%, Mn: 1.20 to 1.50%, Al: 0.003 to 0
- a steel material containing 0.06%, Ti: 0.005 to 0.050%, the balance being Fe and impurities, and having a Ceq defined by the following formula of 0.34 or more is heated to 900 to 1200 ° C. after starts rolling, after completion of rolling in Ar 3 point or more, and water cooling from below the Ar 3 point to Ar 3 point -400 ° C. or less, then the manufacturing method of square steel for steel sheets for tempering at 500 ° C. or less It has been disclosed.
- the steel plate for a square steel pipe disclosed in Patent Document 6 has a steel structure composed of soft ferrite and hard bainite or martensite.
- Japanese Patent No. 4276324 Japanese Patent No. 5589885 Japanese Patent No. 5096087 JP-A-7-224351 JP 2016-11439A Japanese Patent No. 5565525
- the average crystal grain size including the main phase and the second phase is 7 to 15 ⁇ m. In the range of the average crystal grain size, there is a problem that a tensile strength of 520 MPa or more cannot be obtained after roll forming.
- a bainite phase is mainly used (70 area% or more). Since the area ratio of hard bainite is high, there is a problem that the yield ratio exceeds 0.75.
- Patent Document 4 The technology of Patent Document 4 is a composite structure steel of soft ferrite and hard pearlite. For this reason, the yield ratio is low but the toughness is poor, so that there is a problem that the toughness required for the square steel pipe cannot be secured.
- Patent Document 6 The steel sheet manufactured by the above manufacturing method of Patent Document 6 requires a tempering treatment after hot rolling and subsequent cooling in order to make the yield ratio 0.75 or less. This is disadvantageous in terms of manufacturing cost.
- the present invention has been made in view of the above circumstances, and provides a thick hot-rolled steel sheet having high strength and a low yield ratio, excellent in toughness and suitable for building structural members, and a method for producing the same. With the goal.
- the “high strength” in the present invention refers to a hot-rolled steel sheet (square steel pipe) which is a material of a square steel pipe manufactured by cold roll forming (hereinafter, also referred to as a cold roll-formed square steel pipe).
- Hot-rolled steel sheet has a yield strength of 330 MPa or more and a tensile strength of 520 MPa or more.
- excellent in toughness as used in the present invention means that the material has a Charpy absorbed energy at -40 ° C of 170 J or more.
- the term “thick” in the present invention indicates that the plate thickness is more than 20 mm.
- the hot-rolled steel sheet of the above material includes a hot-rolled steel strip.
- the present inventors have conducted intensive studies to solve the above-mentioned problems.
- the material to be roll-formed needs to be appropriately selected in consideration of changes in mechanical properties such as an increase in yield ratio and a decrease in toughness due to roll-forming.
- a square steel pipe manufactured by cold roll forming the material is examined for a material that can have a yield strength of 385 MPa or more, a tensile strength of 520 MPa or more, and high plastic deformation ability and excellent toughness. did.
- the following findings (i) to (iii) were obtained as a result of further study on a material (hot-rolled steel sheet for a cold roll formed square steel pipe) satisfying the above mechanical properties.
- the C content is 0.04 mass% or more, and the main structure of the steel sheet is a mixed structure of ferrite and bainite;
- the average equivalent circle diameter of the crystal grain needs to be less than 7.0 ⁇ m.
- the remaining structure of the steel sheet must be one or more selected from hard pearlite, martensite, and austenite. is there.
- the adjacent crystals are surrounded by a boundary having a misorientation of 15 ° or more.
- the region to be formed is a crystal grain, it is necessary to set the volume ratio of the crystal grain having a circle equivalent diameter of 40.0 ⁇ m or more to 30% or less.
- the present invention has been completed based on these findings, and has the following gist.
- the component composition is expressed in mass% C: 0.04% or more and 0.50% or less, Si: 2.0% or less, Mn: 0.5% or more and 3.0% or less, P: 0.10% or less, S: 0.05% or less, Al: 0.005% or more and 0.10% or less, N: 0.010% or less, the balance being Fe and unavoidable impurities,
- the steel structure at a position ⁇ t of the thickness t from the steel plate surface is By volume percentage, ferrite is more than 30%, bainite is 10% or more, The total of the ferrite and the bainite is 70% or more and 95% or less with respect to the entire steel structure at the 1 / 2t position;
- the balance consists of one or more selected from pearlite, martensite, and austenite, When a region surrounded by a boundary where the difference in orientation between adjacent crystals is 15 ° or more is a crystal grain, The average
- a method for producing a hot-rolled steel sheet comprising, after the hot rolling, cooling at an average cooling rate of 10 ° C / s to 30 ° C / s at a thickness center temperature and a cooling stop temperature of 450 ° C to 650 ° C. [5] The method for producing a hot-rolled steel sheet according to the above [4], wherein the hot-rolled steel sheet has a thickness of more than 20 mm.
- the present invention has a high strength and a low yield ratio, and has excellent toughness, that is, a yield strength of 330 MPa or more, a tensile strength of 520 MPa or more, a yield ratio of 0.75 or less, and a Charpy absorbed energy at ⁇ 40 ° C. of 170 J.
- the hot-rolled steel sheet and the method for manufacturing the same as described above can be provided.
- C 0.04% to 0.50%, Si: 2.0%, Mn: 0.5% to 3.0%, P: 0. It contains 10% or less, S: 0.05% or less, Al: 0.005% or more and 0.10% or less, and N: 0.010% or less, with the balance having a composition of Fe and unavoidable impurities.
- the steel structure at a position 1/2 t of the plate thickness t from the surface of the steel plate has a ferrite content of more than 30% and a bainite content of 10% or more by volume ratio, and the total of the ferrite and the bainite is a steel structure at the 1/2 t position.
- crystal orientation difference an average equivalent circle diameter of the crystal grain
- crystal grain size The total of crystal grains having a circle equivalent diameter (hereinafter, also referred to as “crystal grain size”) of 40.0 ⁇ m or more is less than 7.0 ⁇ m, The volume ratio is 30% or less based on the whole.
- C 0.04% or more and 0.50% or less
- C is an element that increases the strength of steel by solid solution strengthening.
- C is an element that promotes the formation of pearlite, enhances the hardenability, contributes to the formation of martensite, and contributes to the stabilization of austenite, thereby contributing to the formation of a hard phase.
- C needs to be contained at 0.04% or more.
- the C content is set to 0.04% or more and 0.50% or less.
- the C content is preferably at least 0.08%, more preferably more than 0.12%, and even more preferably at least 0.14%. Further, the C content is preferably 0.30% or less, more preferably 0.25% or less, and still more preferably 0.22% or less.
- Si 2.0% or less
- Si is an element that increases the strength of steel by solid solution strengthening, and can be contained as necessary. In order to obtain such an effect, it is desirable that Si is contained at 0.01% or more. However, when the Si content exceeds 2.0%, the weldability deteriorates. Also, the toughness decreases. Therefore, the Si content is set to 2.0% or less.
- the Si content is preferably at least 0.01%, more preferably at least 0.10%. Further, the Si content is preferably 0.5% or less, more preferably 0.4% or less, and even more preferably 0.3% or less.
- Mn 0.5% or more and 3.0% or less
- Mn is an element that increases the strength of steel by solid solution strengthening.
- Mn is an element that contributes to the refinement of the structure by lowering the ferrite transformation start temperature.
- Mn needs to be contained at 0.5% or more.
- the Mn content is set to 0.5% or more and 3.0% or less.
- the Mn content is preferably at least 0.7%, more preferably at least 0.9%, and even more preferably at least 1.0%. Further, the Mn content is preferably 2.5% or less, more preferably 2.0% or less.
- P 0.10% or less P segregates at the grain boundary and causes inhomogeneity of the material. Therefore, it is preferable to reduce P as an inevitable impurity as much as possible, but the content of 0.10% or less is acceptable. Therefore, the P content is in the range of 0.10% or less.
- the P content is preferably 0.03% or less, more preferably 0.020% or less, and even more preferably 0.015% or less.
- P is preferably set to 0.002% or more because excessive reduction leads to an increase in smelting cost.
- S 0.05% or less S is usually present as MnS in steel, but MnS is thinly stretched in the hot rolling step and adversely affects ductility. For this reason, in the present invention, it is preferable to reduce S as much as possible, but a content of 0.05% or less is acceptable. Therefore, the S content is set to 0.05% or less.
- the S content is preferably 0.015% or less, more preferably 0.010% or less, and even more preferably 0.008% or less.
- S is preferably set to 0.0002% or more.
- Al 0.005% or more and 0.10% or less
- Al is an element that acts as a strong deoxidizing agent. To obtain such an effect, Al needs to be contained at 0.005% or more. However, when the Al content exceeds 0.10%, the weldability deteriorates, and the amount of alumina-based inclusions increases, and the surface properties deteriorate. Also, the toughness of the weld decreases. Therefore, the Al content is set to 0.005% or more and 0.10% or less.
- the Al content is preferably at least 0.01%, more preferably at least 0.027%. Further, the Al content is preferably 0.07% or less, more preferably 0.04% or less.
- N 0.010% or less
- N is an unavoidable impurity, and is an element having an effect of reducing toughness by firmly fixing dislocation motion.
- the N content is set to 0.010% or less.
- the N content is preferably 0.0080% or less, more preferably 0.0040% or less, and even more preferably 0.0035% or less.
- the N content is preferably set to 0.0010% or more, more preferably 0.0015% or more.
- the balance is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, it does not refuse to contain O at 0.005% or less.
- the above components are the basic component compositions of the hot rolled steel sheet in the present invention. Although the properties required in the present invention can be obtained with the above essential elements, the following elements can be contained as necessary.
- Nb at least 0.15%
- Ti at most 0.15%
- V at least one selected from the group consisting of at most 0.15%
- Ti and V are all fine carbides in steel .
- Nb, Ti, and V it is preferable that Nb: 0.005% or more, Ti: 0.005% or more, and V: 0.005% or more, respectively.
- an excessive content may cause an increase in the yield ratio and a decrease in toughness.
- Nb, Ti, and V when Nb, Ti, and V are contained, it is preferable to set Nb: 0.15% or less, Ti: 0.15% or less, and V: 0.15% or less, respectively. Therefore, when Nb, Ti, and V are contained, it is preferable to set Nb: 0.15% or less, Ti: 0.15% or less, and V: 0.15% or less, respectively. It is preferable that Nb: 0.005% or more, Ti: 0.005% or more, and V: 0.005% or more. More preferably, Nb: 0.008% to 0.10%, Ti: 0.008% to 0.10%, V: 0.008% to 0.10%.
- Nb 0.010% or more and 0.035% or less
- Ti 0.010% or more and 0.040% or less
- V 0.010% or more and 0.035% or less.
- the total amount (the amount of Nb + Ti + V) may be set to 0.150% or less because the yield ratio may be increased and the toughness may be reduced. Is preferred.
- Cr 1.0% or less
- Mo 1.0% or less
- Cu 0.5% or less
- Ni 0.3% or less
- Ca 0.010% or less
- B 0.010% or less
- Mo: 1.0% or less Cr and Mo are elements that increase the hardenability of steel and increase the strength of steel. Can be contained.
- Cr and Mo it is preferable that Cr: 0.01% or more and Mo: 0.01% or more, respectively.
- an excessive content may cause a decrease in toughness and a deterioration in weldability. Therefore, when Cr and Mo are contained, it is preferable to make Cr: 1.0% or less and Mo: 1.0% or less, respectively.
- Cr and Mo when Cr and Mo are contained, it is preferable to make Cr: 1.0% or less and Mo: 1.0% or less, respectively. It is preferable that Cr: 0.01% or more and Mo: 0.01% or more. More preferably, Cr: 0.10% to 0.50%, Mo: 0.10% to 0.50%.
- Cu: 0.5% or less, Ni: 0.3% or less Cu and Ni are elements that increase the strength of steel by solid solution strengthening, and can be contained as necessary.
- an excessive content may cause a decrease in toughness and a deterioration in weldability. Therefore, when Cu and Ni are contained, it is preferable that Cu: 0.5% or less and Ni: 0.3% or less, respectively. Therefore, when Cu and Ni are contained, it is preferable that Cu: 0.5% or less and Ni: 0.3% or less, respectively.
- Cu: 0.01% or more and Ni: 0.01% or more More preferably, Cu: 0.10% or more and 0.4% or less, and Ni: 0.10% or more and 0.2% or less.
- Ca 0.010% or less
- Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS, which are thinly drawn in the hot rolling step, and may be contained as necessary. it can.
- MnS spheroidizing sulfides
- the Ca content is preferably set to 0.010% or less.
- the Ca content is preferably set to 0.0005% or more. More preferably, the Ca content is 0.0010% or more and 0.0050% or less.
- B 0.010% or less
- B is an element that contributes to refinement of the structure by lowering the ferrite transformation start temperature.
- B when B is contained, it is preferably contained at 0.0003% or more.
- the B content exceeds 0.010%, the yield ratio may increase. Therefore, when B is contained, the content is preferably set to 0.010% or less. Note that the content is preferably 0.0003% or more. More preferably, the B content is 0.0005% or more and 0.0050% or less.
- the steel structure at the position of the thickness of the steel sheet: 1 / 2t (t represents the thickness, the same applies hereinafter) has a volume fraction of more than 30% ferrite and more than 10% bainite.
- the total of the ferrite and the bainite is 70% or more and 95% or less with respect to the entire steel structure at the 1 / 2t position, and the balance is one or two selected from pearlite, martensite, and austenite. It consists of the above.
- the average grain equivalent diameter (average crystal grain size) of the crystal grain is less than 7.0 ⁇ m and the circle is equivalent.
- the total of the crystal grains having a diameter (crystal grain size) of 40.0 ⁇ m or more is 30% or less in volume ratio with respect to the entire steel structure at the 1 / 2t position.
- volume ratio of ferrite more than 30%, volume ratio of bainite: 10% or more, total volume ratio of ferrite and bainite with respect to the entire steel structure: 70% to 95%
- Ferrite is a soft structure, and has another hard structure.
- a low yield ratio can be realized.
- the volume ratio of ferrite needs to exceed 30%.
- the volume fraction of ferrite is preferably at least 40%, more preferably at least 43%, and even more preferably at least 45%.
- the upper limit is not particularly defined, but the volume ratio of ferrite is preferably less than 75%, more preferably less than 70%, and still more preferably 60% or less in order to secure a desired yield ratio. .
- Bainite is a structure having intermediate hardness and increases the strength of steel. Since the yield strength and tensile strength intended in the present invention cannot be obtained only with the above ferrite, the volume ratio of bainite must be 10% or more.
- the volume fraction of bainite is preferably at least 15%, more preferably at least 20%, and even more preferably at least 25%. Although the upper limit is not particularly defined, the volume ratio of bainite is preferably 55% or less, more preferably 50% or less, and still more preferably 45% or less, in order to secure a desired yield ratio. .
- the total volume fraction of ferrite and bainite is less than 70%, the yield ratio and toughness desired in the present invention cannot be obtained.
- the sum of the volume fractions of ferrite and bainite exceeds 95%, the yield strength and the yield ratio intended in the present invention cannot be obtained.
- One or more selected from pearlite, martensite, and austenite are hard structures, and in particular, increase the tensile strength of steel and mix it with soft ferrite. A low yield ratio can be realized.
- pearlite, martensite, and austenite have a total volume ratio of 5% or more and 30% or less. More preferably, it is 7% or more and 25% or less. Still more preferably, it is 10% or more and 20% or less.
- the volume fraction of ferrite, bainite, pearlite, martensite, and austenite can be measured by a method described in Examples described later.
- the steel structure of the present invention comprises a soft structure and a hard structure.
- the mixed steel hereinafter, referred to as “composite structure steel”.
- the composite structure steel has lower toughness than the single structure steel.
- the average crystal grain size of the crystal grain is defined.
- the average grain size of the crystal grains is preferably 6.5 ⁇ m or less, more preferably 6.0 ⁇ m or less.
- the grain size distribution in a single-structure steel or a steel close to a single-structure steel has a single logarithmic distribution that has one peak, spreads largely on the side with a large variable, and is limited on the side with a small variable.
- the steel structure of the present invention that is, in the composite structure steel in which the volume ratio of ferrite is more than 30% and the volume ratio of bainite is 10% or more, a peak of bainite is newly found on the coarse grain side in the crystal grain size distribution. Appears in This indicates that coarse bainite is mixed.
- the mixture of coarse bainite causes the toughness to be greatly deteriorated.
- the proportion of coarse bainite cannot be suppressed low. Therefore, in order to obtain good toughness, it is necessary to define the upper limit of the ratio of the presence of coarse crystal grains.
- Bainite does not grow beyond boundaries with large misorientation (austenite grain boundaries and subboundaries formed by accumulation of dislocations).
- the finish rolling in hot rolling is performed at a temperature as low as possible, a large amount of dislocations are introduced into austenite, the subboundary area is increased, and a fine subgrain structure is formed. (Hereinafter, also referred to as “miniaturization”) is particularly effective.
- the toughness of the steel according to the present invention is improved by increasing the total area of the grain boundaries that serves as resistance to brittle fracture.
- Preliminary experiments have newly found that if the volume fraction of coarse crystal grains having a crystal grain size of 40.0 ⁇ m or more exceeds 30%, it is not possible to secure a sufficient grain boundary area to obtain necessary toughness. Therefore, in the present invention, in addition to specifying the upper limit of the average crystal grain size of the crystal grains to be less than 7.0 ⁇ m, the volume ratio of the crystal grains having a crystal grain size of 40.0 ⁇ m or more is 30% or less. It is stipulated that The volume fraction of crystal grains having a crystal grain size of 40.0 ⁇ m or more is preferably 20% or less, more preferably 15% or less.
- crystal orientation difference the average crystal grain size, and the volume ratio of crystal grains having a crystal grain size of 40.0 ⁇ m or more can be measured by the SEM / EBSD method. Can be measured by the method.
- the hot-rolled steel sheet of the present invention is obtained, for example, by heating a steel material having the above-described composition to a heating temperature of 1100 ° C. or more and 1300 ° C. or less, and then completing a rough rolling end temperature: 850 ° C. or more and 1150 ° C. or less, and a finish rolling end temperature.
- ° C.” regarding temperature is the surface temperature of a steel material or a steel plate (hot rolled plate) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like. Further, the temperature at the thickness center of the steel sheet can be obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis, and correcting the result by the surface temperature of the steel sheet.
- the method of smelting a steel material is not particularly limited, and any known smelting method such as a converter, an electric furnace, and a vacuum melting furnace is suitable.
- the casting method is also not particularly limited, but is manufactured to a desired size by a known casting method such as a continuous casting method. It should be noted that there is no problem even if the ingot-bulking rolling method is applied instead of the continuous casting method.
- the molten steel may be further subjected to secondary refining such as ladle refining.
- Heating temperature 1100 ° C. or more and 1300 ° C. or less If the heating temperature is less than 1100 ° C., the deformation resistance of the material to be rolled becomes large and rolling becomes difficult. On the other hand, when the heating temperature exceeds 1300 ° C., the austenite grains become coarse, and fine austenite grains cannot be obtained in the subsequent rolling (rough rolling, finish rolling), and the average crystal grain of the hot-rolled steel sheet intended in the present invention is obtained. It is difficult to secure the diameter. Further, it is difficult to suppress the formation of coarse bainite, and it is difficult to control the volume ratio of crystal grains having a crystal grain size of 40.0 ⁇ m or more to a range intended in the present invention. For this reason, the heating temperature in the hot rolling step is 1100 ° C. or more and 1300 ° C. or less. More preferably, it is 1120 ° C or more and 1280 ° C or less.
- Rough rolling end temperature 850 ° C. or higher and 1150 ° C. or lower If the rough rolling end temperature is lower than 850 ° C., the steel sheet surface temperature becomes equal to or lower than the ferrite transformation start temperature during the subsequent finish rolling, and the danger of ferrite formation increases. . The generated ferrite becomes processed ferrite grains elongated in the rolling direction by the subsequent finish rolling, which causes an increase in the yield ratio. On the other hand, when the rough rolling end temperature exceeds 1150 ° C., the rolling reduction in the austenite non-recrystallization temperature region is insufficient, and fine austenite grains cannot be obtained. Is difficult to secure. Further, it becomes difficult to suppress the generation of coarse bainite.
- the rough rolling end temperature is set to 850 ° C or higher and 1150 ° C or lower. It is more preferably 860 ° C or more and 1000 ° C or less. It is even more preferably 870 ° C or more and 980 ° C or less.
- Finish rolling finish temperature 750 ° C. or more and 850 ° C. or less
- the finish rolling finish temperature is less than 750 ° C.
- the surface temperature of the steel sheet becomes equal to or lower than the ferrite transformation start temperature during finish rolling, and the danger of forming ferrite increases.
- the ferrite generated as described above becomes processed ferrite grains elongated in the rolling direction by subsequent rolling, and causes an increase in the yield ratio.
- the finish rolling end temperature exceeds 850 ° C., the amount of reduction in the austenite non-recrystallization temperature region is insufficient, and fine austenite grains cannot be obtained. Is difficult to secure. Further, it becomes difficult to suppress the generation of coarse bainite.
- the finish rolling end temperature is 750 ° C. or more and 850 ° C. or less. It is more preferably 770 ° C or higher and 830 ° C or lower. It is even more preferably 780 ° C or higher and 820 ° C or lower.
- the austenite in the hot rolling step by reducing the austenite in the hot rolling step, ferrite, bainite and the remaining structure generated in the subsequent cooling step and the winding step are refined by reducing the austenite in the hot rolling step.
- a hot-rolled steel sheet having the desired strength and toughness according to the invention can be obtained.
- the total rolling reduction from 930 ° C. to the finish rolling end temperature is 65% or more. If the total rolling reduction up to the finish rolling temperature of 930 ° C.
- the total rolling reduction from 930 ° C. to the finish rolling end temperature is more preferably 70% or more, and even more preferably 71% or more. There is no particular upper limit, but if it exceeds 80%, the effect of improving the toughness against an increase in the reduction becomes small and only the equipment load increases, so that the total reduction up to the finish rolling temperature of 930 ° C. or less is 80% or less. Is preferred. It is more preferably at most 75%, even more preferably at most 74%.
- the reason why the temperature is set to 930 ° C. or less is that if the temperature exceeds 930 ° C., austenite is recrystallized in the rolling step, dislocations introduced by rolling disappear, and fine austenite cannot be obtained.
- the above-mentioned total rolling reduction refers to the total rolling reduction of each rolling pass in a temperature range from 930 ° C. to the finish rolling end temperature.
- hot rolling may be performed in which both the rough rolling and the finish rolling have a total draft of 65% or more at 930 ° C. or less to the finish rolling end temperature, or only the finish rolling may be performed.
- Hot rolling may be performed at a total reduction ratio of 930 ° C. or less to a finish rolling end temperature of 65% or more. In the latter case, when the total rolling reduction to 930 ° C. or less to the finish rolling end temperature cannot be made 65% or more only by finish rolling, the slab is cooled during the rough rolling to reduce the temperature to 930 ° C. or less.
- the total rolling reduction from 930 ° C. to the finish rolling end temperature in both the rough rolling and the finish rolling may be 65% or more.
- the upper limit of the finished plate thickness is not particularly limited, but is preferably 32 mm or less from the viewpoint of securing the required draft and controlling the temperature of the steel plate.
- the hot rolled sheet is subjected to a cooling step.
- cooling is performed at an average cooling rate up to the cooling stop temperature: 10 ° C./s to 30 ° C./s, and at a cooling stop temperature: 450 ° C. to 650 ° C.
- Average cooling rate from the start of cooling to the stop of cooling (end of cooling) 10 ° C./s or more and 30 ° C./s or less
- the average cooling rate in the temperature range from the start of cooling to the stop of cooling described below.
- the frequency of ferrite nucleation decreases and ferrite grains become coarse, so that the average crystal grain size cannot be reduced to less than 7.0 ⁇ m.
- the average cooling rate is preferably at least 15 ° C./s, more preferably at least 17 ° C./s. It is preferably at most 25 ° C / s, more preferably at most 23 ° C / s.
- Cooling stop temperature 450 ° C. or more and 650 ° C. or less
- the cooling stop temperature is preferably 480 ° C or higher, and more preferably 490 ° C or higher.
- it is 620 ° C or lower, more preferably 600 ° C or lower.
- the average cooling rate is a value obtained by ((thickness center temperature of hot rolled sheet before cooling ⁇ thickness center temperature of hot rolled sheet after cooling) / cooling time).
- (Cooling rate) examples include water cooling such as injection of water from a nozzle and cooling by injection of a cooling gas.
- a winding step of winding the hot rolled sheet and then allowing it to cool is performed.
- the winding temperature is more preferably 480 to 620 ° C, and even more preferably 490 to 590 ° C.
- the hot-rolled steel sheet of the present invention is manufactured.
- a hot-rolled steel sheet having a yield strength of at least 330 MPa, a tensile strength of at least 520 MPa, a yield ratio of at most 0.75, and a Charpy absorbed energy at ⁇ 40 ° C. of at least 170 J can be obtained.
- the cold roll formed square steel pipe manufactured using the obtained hot-rolled steel sheet as a raw material has a yield strength of 385 MPa or more, a tensile strength of 520 MPa or more, and can have high plastic deformability and excellent toughness. This makes it possible to produce a high-strength rectangular steel pipe with higher productivity and shorter delivery time as compared with cold press bending.
- This cold-rolled rectangular steel pipe can be suitably used especially for building members of large buildings such as factories, warehouses, commercial facilities, etc., and can greatly contribute to reduction of construction costs.
- ⁇ Molten steel having the component composition shown in Table 1 was smelted in a converter and made into a slab (steel material: wall thickness 250 mm) by a continuous casting method.
- the obtained slab was subjected to a hot rolling step, a cooling step, and a winding step under the conditions shown in Table 2 to obtain a hot-rolled steel sheet having a finished plate thickness (mm) shown in Table 2.
- Test specimens were obtained from the obtained hot-rolled steel sheets, and the following structure observation, tensile test, and Charpy impact test were performed.
- the test piece for structure observation was prepared by collecting and polishing the observation surface so that the observation surface was a cross section in the rolling direction at the time of hot rolling and the position of the plate thickness t t, and then polished and nital-corroded.
- the structure was observed by using an optical microscope (magnification: 1000 times) or a scanning electron microscope (SEM, magnification: 1000 times) to observe and image the structure of the steel sheet at a position of 1 / 2t in thickness. From the obtained optical microscope image and SEM image, the area ratio of ferrite, pearlite, bainite and the remaining structure was determined.
- the area ratio of each tissue was observed in five or more visual fields, and calculated as an average value obtained in each visual field.
- the area ratio obtained by observing the tissue was defined as the volume ratio of each tissue.
- ferrite is a product by diffusion transformation, and exhibits a structure with low dislocation density and almost recovered. This includes polygonal ferrite and pseudopolygonal ferrite. Bainite has a double phase structure of lath-like ferrite and cementite having a high dislocation density.
- the area ratio of the structure observed as martensite or austenite was measured from the obtained SEM image, and then the austenite was measured by a method described later.
- the value obtained by subtracting the volume ratio was defined as the martensite volume ratio.
- the measurement of the volume fraction of austenite was performed by X-ray diffraction.
- a test piece for observing the structure was prepared by grinding the diffraction surface so as to be at a position corresponding to a thickness of 1/2 t of the steel sheet, and then performing chemical polishing to remove the surface processed layer.
- the K ⁇ line of Mo was used for the measurement, and the volume fraction of austenite was determined from the integrated intensity of the (200), (220), and (311) faces of fcc iron and the (200) and (211) faces of bcc iron.
- the volume ratio of crystal grains having an average equivalent circle diameter (average crystal grain diameter) and an equivalent circle diameter (crystal grain diameter) of 40.0 ⁇ m or more was measured using the SEM / EBSD method.
- the measurement area was 500 ⁇ m ⁇ 500 ⁇ m, and the measurement step size was 0.5 ⁇ m.
- the crystal grain size was obtained by determining the azimuth difference between adjacent crystal grains, and setting a boundary where the azimuth difference was 15 ° or more as a crystal grain boundary.
- the arithmetic mean of the particle size was determined from the obtained crystal grain boundaries, and the result was defined as the average crystal particle size. In the crystal grain size analysis, those having a crystal grain size of 2.0 ⁇ m or less were excluded from the analysis as measurement noise, and the obtained area ratio was assumed to be equal to the volume ratio.
- steel No. 1, 4, 11, 12, 16, 21 to 28, 30 to 40, and 42 are examples of the present invention, and steel Nos. 2, 3, 5 to 10, 13 to 15, 17 to 20, 29, 41, and 43 are comparative examples.
- Each of the steel structures of the present invention includes ferrite having a volume ratio of more than 30% and 10% or more of bainite, the total volume ratio of ferrite and bainite being 70% or more and 95% or less, and the balance being pearlite or martensite. And one or more selected from austenite, and the average grain size of the crystal grains is less than 7.0 ⁇ m, and the volume ratio of the crystal grains having a crystal grain size of 40.0 ⁇ m or more is 30%. It was below. Regarding the mechanical properties of these examples of the present invention, the yield strength was 330 MPa or more, the tensile strength was 520 MPa or more, the yield ratio was 0.75 or less, and the Charpy absorbed energy at ⁇ 40 ° C. was 170 J or more.
- the steel No. of the comparative example In No. 2, the yield strength and the tensile strength were out of the range of the present invention because the content of C was lower than the range of the present invention.
- Steel No. of the comparative example In No. 3, since the Mn content was below the range of the present invention, the crystal grains were coarsened, and the volume fraction of the crystal grains having an average crystal grain size and a crystal grain size of 40.0 ⁇ m or more was out of the range of the present invention. Therefore, the yield strength, tensile strength and Charpy absorbed energy at ⁇ 40 ° C. did not reach desired values.
- composition and structure of the hot-rolled steel sheet within the scope of the present invention, used for building members of large buildings, high strength with excellent toughness, for cold roll formed square steel pipe with a low yield ratio.
- a hot rolled steel sheet can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
(i)素材が、本発明で目的とする降伏強度および引張強度を満足するためには、C含有量を0.04質量%以上とし、さらに鋼板の主体組織をフェライトとベイナイトの混合組織とし、かつ隣り合う結晶の方位差が15°以上の境界によって囲まれる領域を結晶粒としたとき、結晶粒の平均円相当径を7.0μm未満とすることが必要である。
(ii)素材が、本発明で目的とする降伏比を満足するためには、鋼板の残部組織を硬質なパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上とすることが必要である。
(iii)素材が上記した(i)および(ii)の両方を満足する鋼組織において、さらに本発明で目的とする靱性を備えるためには、隣り合う結晶の方位差15°以上の境界によって囲まれる領域を結晶粒としたとき、円相当径40.0μm以上の結晶粒の体積率を30%以下とすることが必要である。
[1] 成分組成は、質量%で、
C :0.04%以上0.50%以下、
Si:2.0%以下、
Mn:0.5%以上3.0%以下、
P :0.10%以下、
S :0.05%以下、
Al:0.005%以上0.10%以下、
N :0.010%以下
を含有し、残部がFeおよび不可避的不純物からなり、
鋼板表面から板厚tの1/2t位置における鋼組織は、
体積率で、フェライトが30%超、ベイナイトが10%以上であり、
該フェライトおよび該ベイナイトの合計が、1/2t位置における鋼組織全体に対して70%以上95%以下であり、
残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、
隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、
該結晶粒の平均円相当径が7.0μm未満であり、
かつ、円相当径で40.0μm以上の該結晶粒の合計が、1/2t位置における鋼組織全体に対して体積率で30%以下である、熱延鋼板。
[2] 前記成分組成に加えてさらに、質量%で、下記A群およびB群のうちから選ばれた1群または2群を含有する、上記[1]に記載の熱延鋼板。
記
A群:Nb:0.15%以下、Ti:0.15%以下、V:0.15%以下のうちから選ばれた1種または2種以上
B群:Cr:1.0%以下、Mo:1.0%以下、Cu:0.5%以下、Ni:0.3%以下、Ca:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上
[3] 板厚が20mm超である、上記[1]または[2]に記載の熱延鋼板。
[4] 上記[1]または[2]に記載の成分組成を有する鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、
粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上850℃以下、かつ、930℃以下での合計圧下率:65%以上である熱間圧延を施し、
前記熱間圧延後に、板厚中心温度で平均冷却速度:10℃/s以上30℃/s以下、冷却停止温度:450℃以上650℃以下で冷却する、熱延鋼板の製造方法。
[5] 前記熱延鋼板の板厚が20mm超である、上記[4]に記載の熱延鋼板の製造方法。
Cは固溶強化により鋼の強度を上昇させる元素である。また、Cはパーライトの生成を促進し、焼入れ性を高めてマルテンサイトの生成に寄与し、オーステナイトの安定化に寄与することから、硬質相の形成にも寄与する元素である。本発明で目的とする強度および降伏比を確保するため、Cは0.04%以上含有することを必要とする。しかし、C含有量が0.50%を超えると、硬質相の割合が高くなり降伏比が上昇し、靱性が低下し、また溶接性も悪化する。このため、C含有量は0.04%以上0.50%以下とする。C含有量は、好ましくは0.08%以上であり、より好ましくは0.12%超であり、より一層好ましくは0.14%以上である。また、C含有量は、好ましくは0.30%以下であり、より好ましくは0.25%以下であり、より一層好ましくは0.22%以下である。
Siは固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、Siは0.01%以上含有することが望ましい。しかし、Si含有量が2.0%を超えると溶接性が悪化する。また靱性も低下する。このため、Si含有量は2.0%以下とする。Si含有量は、好ましくは0.01%以上であり、より好ましくは0.10%以上である。また、Si含有量は、好ましくは0.5%以下であり、より好ましくは0.4%以下であり、より一層好ましくは0.3%以下である。
Mnは固溶強化により鋼の強度を上昇させる元素である。また、Mnはフェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。本発明で目的とする強度および組織を確保するためには、Mnは0.5%以上含有することを必要とする。しかし、Mn含有量が3.0%を超えると溶接性が悪化する。また降伏強度が高くなり所望の降伏比が得られなくなる。このため、Mn含有量は0.5%以上3.0%以下とする。Mn含有量は、好ましくは0.7%以上であり、より好ましくは0.9%以上であり、より一層好ましくは1.0%以上である。また、Mn含有量は、好ましくは2.5%以下であり、より好ましくは2.0%以下である。
Pは、粒界に偏析し材料の不均質を招くため、不可避的不純物としてできるだけ低減することが好ましいが、0.10%以下の含有量までは許容できる。このため、P含有量は0.10%以下の範囲内とする。P含有量は、好ましくは0.03%以下であり、より好ましくは0.020%以下であり、より一層好ましくは0.015%以下である。なお、特にPの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、Pは0.002%以上とすることが好ましい。
Sは、鋼中では通常、MnSとして存在するが、MnSは、熱間圧延工程で薄く延伸され、延性に悪影響を及ぼす。このため、本発明ではSをできるだけ低減することが好ましいが、0.05%以下の含有量までは許容できる。このため、S含有量は0.05%以下とする。S含有量は、好ましくは0.015%以下であり、より好ましくは0.010%以下であり、より一層好ましくは0.008%以下である。なお、特にSの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。
Alは、強力な脱酸剤として作用する元素である。このような効果を得るためには、Alは0.005%以上含有することを必要とする。しかし、Al含有量が0.10%を超えると溶接性が悪化するとともに、アルミナ系介在物が多くなり、表面性状が悪化する。また溶接部の靱性も低下する。このため、Al含有量は0.005%以上0.10%以下とする。Al含有量は、好ましくは0.01%以上であり、より好ましくは0.027%以上である。また、Al含有量は、好ましくは0.07%以下であり、より好ましくは0.04%以下である。
Nは、不可避的不純物であり、転位の運動を強固に固着することで靭性を低下させる作用を有する元素である。本発明では、Nは不純物としてできるだけ低減することが望ましいが、Nの含有量は0.010%までは許容できる。このため、N含有量は0.010%以下とする。N含有量は、好ましくは0.0080%以下であり、より好ましくは0.0040%以下であり、より一層好ましくは0.0035%以下である。なお、過度の低減は製錬コストの高騰を招くため、N含有量は0.0010%以上とすることが好ましく、0.0015%以上とすることがより好ましい。
Nb、Ti、Vは、いずれも鋼中で微細な炭化物、窒化物を形成し、析出強化を通じて鋼の強度向上に寄与する元素であり、必要に応じて含有することができる。このような効果を得るため、Nb、Ti、Vを含有する場合には、それぞれNb:0.005%以上、Ti:0.005%以上、V:0.005%以上とすることが好ましい。一方、過度の含有は、降伏比の上昇および靱性の低下を招く恐れがある。よって、Nb、Ti、Vを含有する場合には、それぞれNb:0.15%以下、Ti:0.15%以下、V:0.15%以下とすることが好ましい。このため、Nb、Ti、Vを含有する場合には、それぞれNb:0.15%以下、Ti:0.15%以下、V:0.15%以下とすることが好ましい。なお、Nb:0.005%以上、Ti:0.005%以上、V:0.005%以上とすることが好ましい。より好ましくは、Nb:0.008%以上0.10%以下、Ti:0.008%以上0.10%以下、V:0.008%以上0.10%以下である。より一層好ましくは、Nb:0.010%以上0.035%以下、Ti:0.010%以上0.040%以下、V:0.010%以上0.035%以下である。なお、Nb、Ti、Vのうちから選ばれた2種以上を含有する場合、降伏比の上昇および靱性の低下を招く恐れがあるため、合計量(Nb+Ti+Vの量)を0.150%以下とすることが好ましい。
Cr:1.0%以下、Mo:1.0%以下
Cr、Moは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Cr、Moを含有する場合には、それぞれCr:0.01%以上、Mo:0.01%以上とすることが好ましい。一方、過度の含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Cr、Moを含有する場合には、それぞれCr:1.0%以下、Mo:1.0%以下とすることが好ましい。このため、Cr、Moを含有する場合には、それぞれCr:1.0%以下、Mo:1.0%以下とすることが好ましい。なお、Cr:0.01%以上、Mo:0.01%以上とすることが好ましい。
より好ましくは、Cr:0.10%以上0.50%以下、Mo:0.10%以上0.50%以下である。
Cu、Niは、固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Cu、Niを含有する場合には、それぞれCu:0.01%以上、Ni:0.01%以上とすることが好ましい。一方、過度の含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Cu、Niを含有する場合には、それぞれCu:0.5%以下、Ni:0.3%以下とすることが好ましい。このため、Cu、Niを含有する場合には、それぞれCu:0.5%以下、Ni:0.3%以下とすることが好ましい。なお、Cu:0.01%以上、Ni:0.01%以上とすることが好ましい。より好ましくは、Cu:0.10%以上0.4%以下、Ni:0.10%以上0.2%以下である。
Caは、熱間圧延工程で薄く延伸されるMnS等の硫化物を、球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有することができる。このような効果を得るため、Caを含有する場合は、0.0005%以上含有することが好ましい。しかし、Ca含有量が0.010%を超えると、鋼中にCa酸化物クラスターが形成され、靱性が悪化する場合がある。このため、Caを含有する場合は、Ca含有量は0.010%以下とすることが好ましい。なお、Ca含有量は0.0005%以上とすることが好ましい。より好ましくは、Ca含有量は0.0010%以上0.0050%以下である。
Bは、フェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。このような効果を得るため、Bを含有する場合は、0.0003%以上含有することが好ましい。しかし、B含有量が0.010%を超えると、降伏比が上昇する場合がある。このため、Bを含有する場合は、0.010%以下とすることが好ましい。なお、0.0003%以上とすることが好ましい。
より好ましくは、B含有量は0.0005%以上0.0050%以下である。
フェライトは軟質な組織であり、他の硬質な組織と混合させることで、低降伏比を実現することができる。このような効果により本発明で目的とする低降伏比を得るためには、フェライトの体積率は30%を超える必要がある。フェライトの体積率は、好ましくは40%以上であり、より好ましくは43%以上であり、より一層好ましくは45%以上である。なお、特に上限は規定しないが、所望の降伏比を確保するため、フェライトの体積率は、好ましくは75%未満であり、より好ましくは70%未満であり、より一層好ましくは60%以下である。
パーライト、マルテンサイト、およびオーステナイトは硬質な組織であり、特に鋼の引張強度を上昇させるとともに、軟質なフェライトと混合させることで低降伏比を実現できる。このような効果を得るためには、パーライト、マルテンサイト、およびオーステナイトは、各体積率の合計で5%以上30%以下とすることが好ましい。より好ましくは、7%以上25%以下である。より一層好ましくは、10%以上20%以下である。なお、フェライト、ベイナイト、パーライト、マルテンサイト、およびオーステナイトの体積率は、後述する実施例に記載の方法で測定することができる。
上述のとおり、本発明の鋼組織は、本発明で目的とする低降伏比、降伏強度、および引張強度を得るために、軟質組織と硬質組織を混合させた鋼(以下、「複合組織鋼」と称する)とする。しかし、複合組織鋼は、単一組織鋼と比較して靱性が悪い。そこで、本発明では、上記機械特性と優れた靱性を両立するため、結晶方位差が15°以上の境界によって囲まれた領域を結晶粒としたとき、結晶粒の平均結晶粒径を規定する。結晶粒の平均結晶粒径が7.0μm以上の場合、フェライト粒が十分に微細でないため、所望の降伏強度および靱性が得られない。このため、結晶粒の平均結晶粒径を7.0μm未満とすることにより、本発明で目的とする降伏強度を得るとともに靱性を確保する。結晶粒の平均結晶粒径は、好ましくは6.5μm以下とし、より好ましくは6.0μm以下とする。
加熱温度が1100℃未満である場合、被圧延材の変形抵抗が大きくなり圧延が困難となる。一方、加熱温度が1300℃を超えると、オーステナイト粒が粗大化し、後の圧延(粗圧延、仕上圧延)において微細なオーステナイト粒が得られず、本発明で目的とする熱延鋼板の平均結晶粒径を確保することが困難となる。また、粗大なベイナイトの生成を抑制することが困難となり、結晶粒径が40.0μm以上の結晶粒の体積率を、本発明で目的とする範囲に制御することが難しい。このため、熱間圧延工程における加熱温度は、1100℃以上1300℃以下とする。より好ましくは1120℃以上1280℃以下である。
粗圧延終了温度が850℃未満である場合、後の仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、フェライトが生成する危険性が増大する。生成したフェライトは、その後の仕上圧延により圧延方向に伸長した加工フェライト粒となり、降伏比上昇の原因となる。一方、粗圧延終了温度が1150℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られず、本発明で目的とする熱延鋼板の平均結晶粒径を確保することが困難となる。また、粗大なベイナイトの生成を抑制することが困難となる。このため、粗圧延終了温度は、850℃以上1150℃以下とする。より好ましくは860℃以上1000℃以下である。より一層好ましくは870℃以上980℃以下である。
仕上圧延終了温度が750℃未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、フェライトが生成する危険性が高くなる。上記のように生成したフェライトは、その後の圧延により圧延方向に伸長した加工フェライト粒となり、降伏比上昇の原因となる。一方、仕上圧延終了温度が850℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られず、本発明で目的とする熱延鋼板の平均結晶粒径を確保することが困難となる。また、粗大なベイナイトの生成を抑制することが困難となる。このため、仕上圧延終了温度は、750℃以上850℃以下とする。より好ましくは770℃以上830℃以下である。より一層好ましくは780℃以上820℃以下である。
本発明では、熱間圧延工程においてオーステナイトを微細化することで、続く冷却工程、巻取工程で生成するフェライト、ベイナイトおよび残部組織を微細化し、本発明で目的とする強度および靱性を有する熱延鋼板を得られる。熱間圧延工程においてオーステナイトを微細化するためには、オーステナイト未再結晶温度域での圧下率を高くし、十分な加工ひずみを導入する必要がある。これを達成するため、本発明では、930℃以下仕上圧延終了温度までの合計圧下率を65%以上とする。930℃以下仕上圧延終了温度までの合計圧下率が65%未満である場合、熱間圧延工程において十分な加工ひずみを導入することができないため、本発明で目的とする結晶粒径を有する組織が得られない。930℃以下仕上圧延終了温度までの合計圧下率は、より好ましくは70%以上であり、より一層好ましくは71%以上である。特に上限は規定しないが、80%を超えると圧下率の上昇に対する靱性向上効果が小さくなり、設備負荷が増大するのみとなるため、930℃以下仕上圧延終了温度までの合計圧下率は80%以下が好ましい。より好ましくは75%以下であり、より一層好ましくは74%以下である。
熱延板の板厚中心温度で、冷却開始から後述する冷却停止までの温度域における平均冷却速度が、10℃/s未満では、フェライトの核生成頻度が減少し、フェライト粒が粗大化するため、平均結晶粒径を7.0μm未満とすることができない。また、本発明で目的とする結晶粒径が40.0μm以上の体積率の範囲に制御することが困難である。一方で、平均冷却速度が30℃/sを超えると、鋼板の板厚t/2の位置において多量のマルテンサイトが生成し、フェライトとベイナイトの体積率の合計が70%未満となる。平均冷却速度は、好ましくは15℃/s以上であり、より好ましくは17℃/s以上である。好ましくは25℃/s以下であり、より好ましくは23℃/s以下である。
熱延板の板厚中心温度で、冷却停止温度が450℃未満では、鋼板の板厚1/2t位置において多量のマルテンサイトが生成し、フェライトとベイナイトの体積率の合計が70%未満となる場合がある。また、フェライトの体積率が30%以下となる場合がある。一方で、冷却停止温度が650℃を超えると、フェライトの核生成頻度が減少し、フェライト粒が粗大化するとともに、ベイナイト変態開始温度を上回るためベイナイトの体積率を10%以上とすることができない。冷却停止温度は、好ましくは480℃以上であり、より好ましくは490℃以上である。好ましくは620℃以下であり、より好ましくは600℃以下である。
巻取工程では、鋼板組織の観点より、巻取温度:450~650℃で巻取ることが好ましい。巻取温度が450℃未満では、多量のマルテンサイトが生成し、フェライトとベイナイトの体積率の合計が70%未満となる場合がある。また、フェライトの体積率が30%以下となる場合がある。巻取温度が650℃超えでは、フェライトの核生成頻度が減少し、フェライト粒が粗大化するとともに、ベイナイト変態開始温度を上回るためベイナイトの体積率を10%以上とすることができない場合がある。巻取温度は、より好ましくは480~620℃であり、より一層好ましくは490~590℃である。
組織観察用の試験片は、観察面が熱間圧延時の圧延方向断面かつ板厚1/2t位置となるように採取し、研磨した後、ナイタール腐食して作製した。組織観察は、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、鋼板の板厚1/2t位置における組織を観察し、撮像した。得られた光学顕微鏡像およびSEM像から、フェライト、パーライト、ベイナイトおよび残部組織の面積率を求めた。各組織の面積率は、5視野以上で観察を行い、各視野で得られた値の平均値として算出した。ここでは、組織観察により得られた面積率を、各組織の体積率とした。
なお、結晶粒径解析においては、結晶粒径が2.0μm以下のものは測定ノイズとして解析対象から除外し、得られた面積率が体積率と等しいとした。
引張試験は、引張方向が圧延方向と平行になるように、JIS5号の引張試験片を採取し、JIS Z 2241の規定に準拠して実施した。降伏強度YS、引張強度TSを測定し、(降伏強度)/(引張強度)で定義される降伏比を算出した。
シャルピー衝撃試験は、得られた熱延鋼板の板厚1/2t位置から、試験片長手方向が圧延方向と平行となるように、Vノッチ試験片を採取した。JIS Z 2242の規定に準拠して、試験温度:-40℃でシャルピー衝撃試験を実施し、吸収エネルギー(J)を求めた。なお、試験片の本数は各3本とし、その平均値を算出して吸収エネルギー(J)を求めた。
Claims (5)
- 成分組成は、質量%で、
C :0.04%以上0.50%以下、
Si:2.0%以下、
Mn:0.5%以上3.0%以下、
P :0.10%以下、
S :0.05%以下、
Al:0.005%以上0.10%以下、
N :0.010%以下
を含有し、残部がFeおよび不可避的不純物からなり、
鋼板表面から板厚tの1/2t位置における鋼組織は、
体積率で、フェライトが30%超、ベイナイトが10%以上であり、
該フェライトおよび該ベイナイトの合計が、1/2t位置における鋼組織全体に対して70%以上95%以下であり、
残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、
隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、
該結晶粒の平均円相当径が7.0μm未満であり、
かつ、円相当径で40.0μm以上の該結晶粒の合計が、1/2t位置における鋼組織全体に対して体積率で30%以下である、熱延鋼板。 - 前記成分組成に加えてさらに、質量%で、下記A群およびB群のうちから選ばれた1群または2群を含有する、請求項1に記載の熱延鋼板。
記
A群:Nb:0.15%以下、Ti:0.15%以下、V:0.15%以下のうちから選ばれた1種または2種以上
B群:Cr:1.0%以下、Mo:1.0%以下、Cu:0.5%以下、Ni:0.3%以下、Ca:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上 - 板厚が20mm超である、請求項1または2に記載の熱延鋼板。
- 請求項1または2に記載の成分組成を有する鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、
粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上850℃以下、かつ、930℃以下での合計圧下率:65%以上である熱間圧延を施し、
前記熱間圧延後に、板厚中心温度で平均冷却速度:10℃/s以上30℃/s以下、冷却停止温度:450℃以上650℃以下で冷却する、熱延鋼板の製造方法。 - 前記熱延鋼板の板厚が20mm超である、請求項4に記載の熱延鋼板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217004945A KR102498956B1 (ko) | 2018-08-23 | 2019-08-09 | 열연 강판 및 그 제조 방법 |
JP2019565048A JP6693607B1 (ja) | 2018-08-23 | 2019-08-09 | 熱延鋼板およびその製造方法 |
CN201980054490.4A CN112585289B (zh) | 2018-08-23 | 2019-08-09 | 热轧钢板及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018155940 | 2018-08-23 | ||
JP2018-155940 | 2018-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020039979A1 true WO2020039979A1 (ja) | 2020-02-27 |
Family
ID=69593217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/031667 WO2020039979A1 (ja) | 2018-08-23 | 2019-08-09 | 熱延鋼板およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6693607B1 (ja) |
KR (1) | KR102498956B1 (ja) |
CN (1) | CN112585289B (ja) |
TW (1) | TWI705143B (ja) |
WO (1) | WO2020039979A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022004112A1 (ja) * | 2020-06-30 | 2022-01-06 | 株式会社神戸製鋼所 | 厚鋼板およびその製造方法 |
KR20220089374A (ko) * | 2020-12-21 | 2022-06-28 | 주식회사 포스코 | 내진성이 우수한 고강도 강 및 그 제조방법 |
JP7588717B2 (ja) | 2020-10-23 | 2024-11-22 | ポスコ カンパニー リミテッド | 成形性に優れた高強度厚板鋼板及びその製造方法 |
JP7620460B2 (ja) | 2020-06-30 | 2025-01-23 | 株式会社神戸製鋼所 | 厚鋼板およびその製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108796362B (zh) * | 2017-04-26 | 2020-12-22 | 宝山钢铁股份有限公司 | 具有优异低温抗动态撕裂性能的x70管线钢及其制造方法 |
WO2023276516A1 (ja) * | 2021-07-02 | 2023-01-05 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
CN118119725A (zh) | 2021-11-19 | 2024-05-31 | 杰富意钢铁株式会社 | 厚钢板及其制造方法 |
CN118679276A (zh) * | 2022-06-01 | 2024-09-20 | 杰富意钢铁株式会社 | 大线能量焊接用钢板及其制造方法 |
CN115572915B (zh) * | 2022-09-15 | 2024-01-19 | 舞阳钢铁有限责任公司 | 一种超大厚度SA204GrB钢板及其生产方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010248599A (ja) * | 2009-04-20 | 2010-11-04 | Kobe Steel Ltd | 低降伏比高靭性厚鋼板 |
JP2012132088A (ja) * | 2010-11-30 | 2012-07-12 | Jfe Steel Corp | 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法 |
JP2012153963A (ja) * | 2011-01-28 | 2012-08-16 | Jfe Steel Corp | 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法 |
JP2013204103A (ja) * | 2012-03-29 | 2013-10-07 | Jfe Steel Corp | 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法 |
WO2016132545A1 (ja) * | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | 熱延鋼板 |
WO2016152170A1 (ja) * | 2015-03-26 | 2016-09-29 | Jfeスチール株式会社 | 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管 |
JP2017137521A (ja) * | 2016-02-01 | 2017-08-10 | 新日鐵住金株式会社 | 厚鋼板およびその製造方法 |
JP2017193759A (ja) * | 2016-04-21 | 2017-10-26 | 新日鐵住金株式会社 | 厚鋼板およびその製造方法 |
JP2018012853A (ja) * | 2016-07-19 | 2018-01-25 | 新日鐵住金株式会社 | 厚鋼板とその製造方法 |
WO2018110152A1 (ja) * | 2016-12-12 | 2018-06-21 | Jfeスチール株式会社 | 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3219820B2 (ja) * | 1991-12-27 | 2001-10-15 | 川崎製鉄株式会社 | 低降伏比高強度熱延鋼板およびその製造方法 |
JPH07224351A (ja) | 1994-02-14 | 1995-08-22 | Japan Casting & Forging Corp | 冷間加工後の一様伸びの優れた高強度熱延鋼板およびその製造方法 |
JP4276324B2 (ja) | 1999-02-26 | 2009-06-10 | 新日本製鐵株式会社 | 靭性に優れた低降伏比型耐火用熱延鋼板及び鋼管並びにそれらの製造方法 |
US8084143B2 (en) * | 2003-09-30 | 2011-12-27 | Nippon Steel Corporation | High-yield-ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield-ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same |
JP4997805B2 (ja) * | 2005-03-31 | 2012-08-08 | Jfeスチール株式会社 | 高強度厚鋼板およびその製造方法、ならびに高強度鋼管 |
JP5096087B2 (ja) | 2007-09-11 | 2012-12-12 | 株式会社神戸製鋼所 | 母材低温靭性に優れた大入熱溶接用高張力鋼板 |
WO2010087511A1 (ja) * | 2009-01-30 | 2010-08-05 | Jfeスチール株式会社 | 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法 |
JP5533145B2 (ja) * | 2010-03-31 | 2014-06-25 | 新日鐵住金株式会社 | 冷延鋼板およびその製造方法 |
JP5655725B2 (ja) | 2011-07-06 | 2015-01-21 | 新日鐵住金株式会社 | 角形鋼管用鋼板およびその製造方法 |
CN104011245B (zh) * | 2011-12-27 | 2017-03-01 | 杰富意钢铁株式会社 | 高张力热轧钢板及其制造方法 |
JP5838796B2 (ja) * | 2011-12-27 | 2016-01-06 | Jfeスチール株式会社 | 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法 |
JP5994356B2 (ja) * | 2012-04-24 | 2016-09-21 | Jfeスチール株式会社 | 形状凍結性に優れた高強度薄鋼板およびその製造方法 |
JP5605526B2 (ja) * | 2012-09-13 | 2014-10-15 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
JP5783229B2 (ja) * | 2013-11-28 | 2015-09-24 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
JP6435122B2 (ja) | 2014-06-27 | 2018-12-05 | 新日鐵住金株式会社 | 冷間プレス成形角形鋼管用厚鋼板、冷間プレス成形角形鋼管、及び溶接方法 |
-
2019
- 2019-08-09 WO PCT/JP2019/031667 patent/WO2020039979A1/ja active Application Filing
- 2019-08-09 JP JP2019565048A patent/JP6693607B1/ja active Active
- 2019-08-09 KR KR1020217004945A patent/KR102498956B1/ko active IP Right Grant
- 2019-08-09 CN CN201980054490.4A patent/CN112585289B/zh active Active
- 2019-08-21 TW TW108129779A patent/TWI705143B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010248599A (ja) * | 2009-04-20 | 2010-11-04 | Kobe Steel Ltd | 低降伏比高靭性厚鋼板 |
JP2012132088A (ja) * | 2010-11-30 | 2012-07-12 | Jfe Steel Corp | 建築構造部材向け角形鋼管用厚肉熱延鋼板およびその製造方法 |
JP2012153963A (ja) * | 2011-01-28 | 2012-08-16 | Jfe Steel Corp | 建築構造部材向け角形鋼管用厚肉熱延鋼板の製造方法 |
JP2013204103A (ja) * | 2012-03-29 | 2013-10-07 | Jfe Steel Corp | 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法 |
WO2016132545A1 (ja) * | 2015-02-20 | 2016-08-25 | 新日鐵住金株式会社 | 熱延鋼板 |
WO2016152170A1 (ja) * | 2015-03-26 | 2016-09-29 | Jfeスチール株式会社 | 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管 |
JP2017137521A (ja) * | 2016-02-01 | 2017-08-10 | 新日鐵住金株式会社 | 厚鋼板およびその製造方法 |
JP2017193759A (ja) * | 2016-04-21 | 2017-10-26 | 新日鐵住金株式会社 | 厚鋼板およびその製造方法 |
JP2018012853A (ja) * | 2016-07-19 | 2018-01-25 | 新日鐵住金株式会社 | 厚鋼板とその製造方法 |
WO2018110152A1 (ja) * | 2016-12-12 | 2018-06-21 | Jfeスチール株式会社 | 低降伏比角形鋼管用熱延鋼板およびその製造方法並びに低降伏比角形鋼管およびその製造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022004112A1 (ja) * | 2020-06-30 | 2022-01-06 | 株式会社神戸製鋼所 | 厚鋼板およびその製造方法 |
CN115279933A (zh) * | 2020-06-30 | 2022-11-01 | 株式会社神户制钢所 | 厚钢板及其制造方法 |
CN115279933B (zh) * | 2020-06-30 | 2023-08-22 | 株式会社神户制钢所 | 厚钢板及其制造方法 |
JP7620460B2 (ja) | 2020-06-30 | 2025-01-23 | 株式会社神戸製鋼所 | 厚鋼板およびその製造方法 |
JP7588717B2 (ja) | 2020-10-23 | 2024-11-22 | ポスコ カンパニー リミテッド | 成形性に優れた高強度厚板鋼板及びその製造方法 |
KR20220089374A (ko) * | 2020-12-21 | 2022-06-28 | 주식회사 포스코 | 내진성이 우수한 고강도 강 및 그 제조방법 |
KR102492029B1 (ko) * | 2020-12-21 | 2023-01-26 | 주식회사 포스코 | 내진성이 우수한 고강도 강 및 그 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR102498956B1 (ko) | 2023-02-10 |
CN112585289A (zh) | 2021-03-30 |
TW202016327A (zh) | 2020-05-01 |
JP6693607B1 (ja) | 2020-05-13 |
TWI705143B (zh) | 2020-09-21 |
KR20210032497A (ko) | 2021-03-24 |
CN112585289B (zh) | 2022-04-29 |
JPWO2020039979A1 (ja) | 2020-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6693607B1 (ja) | 熱延鋼板およびその製造方法 | |
JP5476763B2 (ja) | 延性に優れた高張力鋼板及びその製造方法 | |
JP6693606B1 (ja) | 角形鋼管およびその製造方法並びに建築構造物 | |
KR20120062006A (ko) | 저항복비, 고강도 및 고일정 연신을 가진 강판 및 그 제조 방법 | |
JP6923103B1 (ja) | 厚鋼板および厚鋼板の製造方法 | |
TWI762881B (zh) | 電焊鋼管及其製造方法以及鋼管樁 | |
JP6947333B2 (ja) | 電縫鋼管およびその製造方法ならびにラインパイプおよび建築構造物 | |
JP7529049B2 (ja) | 角形鋼管およびその製造方法、熱延鋼板およびその製造方法、並びに建築構造物 | |
KR20230060522A (ko) | 전봉 강관 및 그 제조 방법 | |
JP7424551B1 (ja) | 熱延鋼板、角形鋼管、それらの製造方法および建築構造物 | |
JP7088417B2 (ja) | 電縫鋼管およびその製造方法 | |
JP6690787B1 (ja) | 電縫鋼管およびその製造方法、並びに鋼管杭 | |
JP6123734B2 (ja) | 鋼管杭向け低降伏比高強度電縫鋼管およびその製造方法 | |
JP2004143509A (ja) | 高強度高靭性低降伏比鋼管素材およびその製造方法 | |
JP2004076101A (ja) | 溶接性に優れた高強度高靭性鋼管素材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019565048 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19852571 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217004945 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19852571 Country of ref document: EP Kind code of ref document: A1 |