WO2020036151A1 - Separating material, method of manufacturing separating material, and column - Google Patents
Separating material, method of manufacturing separating material, and column Download PDFInfo
- Publication number
- WO2020036151A1 WO2020036151A1 PCT/JP2019/031740 JP2019031740W WO2020036151A1 WO 2020036151 A1 WO2020036151 A1 WO 2020036151A1 JP 2019031740 W JP2019031740 W JP 2019031740W WO 2020036151 A1 WO2020036151 A1 WO 2020036151A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- separation material
- hydrophilic polymer
- hydroxyl group
- polymer particles
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/24—Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/282—Porous sorbents
- B01J20/285—Porous sorbents based on polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/14—Extraction; Separation; Purification
- C07K1/16—Extraction; Separation; Purification by chromatography
Definitions
- the present invention relates to a separation material, a method for producing the separation material, and a column.
- ion exchangers based on porous synthetic polymers and ion exchange based on crosslinked gels of hydrophilic natural polymers are generally used.
- the body is used.
- an ion exchanger having a porous synthetic polymer as a base the volume change due to the salt concentration is small. Therefore, when the ion exchanger is packed in a column and used for chromatography, it tends to be excellent in pressure resistance during liquid passage.
- an ion exchanger whose base is a crosslinked gel of a hydrophilic natural polymer represented by a polysaccharide such as dextran or agarose has an advantage that there is almost no nonspecific adsorption of proteins.
- this ion exchanger has the disadvantage that it swells remarkably in an aqueous solution, the volume change due to the ionic strength of the solution, the volume change between the free acid form and the loaded form is large, and the mechanical strength is not sufficient.
- a crosslinked gel is used for chromatography, there is a disadvantage that the pressure loss at the time of passing the liquid is large and the gel is compacted by the passing of the liquid.
- the conventional separation material has room for improvement in column characteristics such as liquid permeability when used as a column.
- an object of the present invention is to provide a separation material having excellent liquid permeability when used as a column, a column including the separation material, and a method for producing the separation material.
- the present invention provides a separation material, a method for producing a separation material, and a column according to the following [1] to [8].
- R represents an alkylene group having 1 to 5 carbon atoms
- L represents a carboxy group or a group represented by an alkali metal salt of a carboxy group.
- Separation material [2] The separation material according to [1], wherein the content of the group represented by —ORL is 100 ⁇ mol or more per 1 mL of the separation material.
- hydrophobic polymer particles are particles containing a polymer having a structural unit derived from a styrene-based monomer.
- hydrophilic polymer contains a hydrophilic polymer derived from at least one selected from the group consisting of polysaccharides and modified products thereof.
- hydrophilic polymer includes a hydrophilic polymer derived from at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof.
- the present invention it is possible to provide a separating material having excellent liquid permeability when used as a column, a column including the separating material, and a method for producing the separating material. Further, the present invention can also provide a separation material which is excellent in column characteristics such as protein dynamic adsorption and recovery while reducing non-specific adsorption of proteins.
- the separation material according to the present embodiment includes hydrophobic polymer particles and a coating layer that covers at least a part of the surface of the hydrophobic polymer particles.
- the coating layer includes a hydrophilic polymer, and has a high hydrophilicity.
- -ORL O represents an oxygen atom derived from the hydroxyl group
- R represents an alkylene group having 1 to 5 carbon atoms
- L represents a carboxy group or an alkali metal salt of a carboxy group.
- the separation material of the present embodiment has excellent liquid permeability when packed in a column.
- the separation material of the present embodiment has excellent durability and alkali resistance, can reduce non-specific adsorption of protein, and has a sufficiently high dynamic adsorption amount and recovery rate of protein when packed in a column. It is considered high.
- the separating material of the present embodiment has excellent strength and can have a shape close to a true sphere.
- a truly spherical separating material is considered hydrodynamically advantageous when used in chromatography. Therefore, such a separation material is considered to be easy to suppress the pressure loss and to perform the chromatography operation, for example.
- the “surface of the hydrophobic polymer particles” includes not only the outer surface of the hydrophobic polymer particles but also the surface of the pores inside the hydrophobic polymer particles.
- the hydrophobic polymer particles according to the present embodiment are particles containing a polymer having hydrophobicity.
- the method for producing the hydrophobic polymer particles is not particularly limited, and examples thereof include a method of polymerizing a monomer capable of forming a polymer having hydrophobicity.
- the monomer is not particularly limited as long as it can form a polymer having hydrophobicity, and examples thereof include a styrene-based monomer. That is, the hydrophobic polymer particles may include, for example, a polymer having a structural unit derived from a styrene-based monomer. Such hydrophobic polymer particles are considered to be excellent in durability and alkali resistance.
- the hydrophobic polymer particles according to the present embodiment may have a porous structure. That is, the hydrophobic polymer particles according to the present embodiment may be, for example, hydrophobic porous polymer particles.
- the porous polymer particles are, for example, particles containing a polymer obtained by polymerizing a monomer in the presence of a porosifying agent, and can be synthesized by conventional suspension polymerization, emulsion polymerization, or the like.
- Specific examples of the monomer include the following polyfunctional monomers and monofunctional monomers.
- the polyfunctional monomer examples include divinyl compounds such as divinylbenzene, divinylbiphenyl, divinylnaphthalene, and divinylphenanthrene. These polyfunctional monomers can be used alone or in combination of two or more. Among them, the monomer preferably contains divinylbenzene from the viewpoint of durability, acid resistance and alkali resistance. That is, the hydrophobic polymer particles preferably include a polymer having a structural unit derived from divinylbenzene.
- Examples of the monofunctional monomer include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2,4- Dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn-dodecyl Styrene such as styrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, and 3,4-dichlorosty
- the monomer preferably contains styrene from the viewpoint of excellent acid resistance and alkali resistance.
- a styrene derivative having a functional group such as a carboxy group, an amino group, a hydroxyl group, and an aldehyde group can also be used.
- the porosifying agent examples include an organic solvent that promotes phase separation during polymerization and promotes porosity of particles, such as aliphatic or aromatic hydrocarbons, esters, ketones, ethers, and alcohols. Can be used.
- the porosifying agent include diethylbenzene, toluene, xylene, cyclohexane, octane, butyl acetate, dibutyl phthalate, methyl ethyl ketone, dibutyl ether, 1-hexanol, 2-octanol, decanol, lauryl alcohol and cyclohexanol. These porosifying agents can be used alone or in combination of two or more.
- the above-mentioned porous agent can be used in an amount of 0 to 200% by mass based on the total mass of the monomers.
- the porosity of the hydrophobic polymer particles can be controlled by the amount of the porosifying agent.
- the size and shape of the pores of the hydrophobic polymer particles can be controlled by the type of the porosifying agent.
- Water used as a solvent can be used as a porosifying agent.
- the oil-soluble surfactant is dissolved in the monomer, and the droplets of the monomer absorb the water, whereby the particles can be made porous.
- oil-soluble surfactant used for making the porous material examples include a sorbitan monoester of a branched C16-C24 fatty acid, a chain unsaturated C16-C22 fatty acid or a chain saturated C12-C14 fatty acid, for example, sorbitan monolaurate, sorbitan Sorbitan monoesters derived from monooleate, sorbitan monomyristate or coconut fatty acids; diglycerol monoesters of branched C16-C24 fatty acids, chain unsaturated C16-C22 fatty acids or chain saturated C12-C14 fatty acids, such as Glycerol monooleate (for example, diglycerol monoester of C18: 1 fatty acid (18 carbon atoms, 1 double bond) fatty acid), diglycerol monomyristate, diglycerol monoisostearate or coconut fatty acid diglycerol monoester Ester; Branch C16 ⁇ 24 alcohol (e.g., Guerbet alcohols
- sorbitan monolaurate e.g., SPAN® 20, having a purity preferably greater than about 40%, more preferably greater than about 50%, and even more preferably greater than about 70%
- sorbitan monooleate e.g, SPAN® 80, preferably having a purity of greater than about 40%, more preferably greater than about 50%, even more preferably greater than about 70%
- Diglycerol monooleate e.g, diglycerol monooleate having a purity preferably greater than about 40%, more preferably greater than about 50%, even more preferably greater than about 70%
- diglycerol monoisostearate Eg, having a purity preferably greater than about 40%, more preferably about 50% More preferably more than about 70% diglycerol monoisostearate
- diglycerol monomyristate purity preferably more than about 40%, more preferably more than about 50%, even more preferably more than about 70%.
- Diglycerol monomyristate cocoyl (e.g., lauryl, myristo
- oil-soluble surfactants are preferably used in the range of 5 to 80% by mass based on the total mass of the monomers.
- the use amount of the oil-soluble surfactant is 5% by mass or more, the stability of water droplets becomes sufficient, so that it is difficult to form large single holes.
- the amount of the oil-soluble surfactant used is 80% by mass or less, the shape of the hydrophobic polymer particles can be more easily maintained after the polymerization.
- aqueous medium used for the polymerization reaction examples include water, a mixed medium of water and a water-soluble solvent (for example, lower alcohol) and the like.
- the aqueous medium may contain a surfactant.
- the surfactant any of anionic, cationic, nonionic and zwitterionic surfactants can be used.
- anionic surfactants include fatty acid oils such as sodium oleate and castor oil, alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfones.
- Acid salts alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, etc., alkenyl succinates (eg, dipotassium alkenyl succinate), alkyl phosphate salts, naphthalene sulfonic acid formalin condensates, polyoxyethylene Polyoxyethylene alkyl ether sulfates such as alkyl phenyl ether sulfate, sodium polyoxyethylene lauryl ether sulfate, and polyoxyethylene alkyl sulfate; Ester salts.
- alkenyl succinates eg, dipotassium alkenyl succinate
- alkyl phosphate salts alkyl phosphate salts
- naphthalene sulfonic acid formalin condensates polyoxyethylene Polyoxyethylene alkyl ether sulfates such as alkyl phenyl ether sulf
- cationic surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
- nonionic surfactant examples include, for example, hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, and amides.
- hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, and amides.
- agents polyether-modified silicon-based nonionic surfactants such as polyethylene oxide adducts of silicon and polypropylene oxide adducts of silicon, and fluorine-based nonionic surfactants such as perfluoroalkyl glycols.
- amphoteric surfactant examples include a hydrocarbon surfactant such as lauryl dimethylamine oxide, a phosphate ester surfactant, and a phosphite ester surfactant.
- the surfactant may be used alone or in combination of two or more.
- anionic surfactants are preferable from the viewpoint of dispersion stability during polymerization of monomers.
- polymerization initiator examples include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, tert-butyl peroxide.
- Organic peroxides such as oxy-2-ethylhexanoate and di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2 ′ Azo compounds such as -azobis (2,4-dimethylvaleronitrile);
- the polymerization initiator can be used in the range of 0.1 to 7.0 parts by mass based on 100 parts by mass of the monomer.
- the polymerization temperature can be appropriately selected according to the type of the monomer and the polymerization initiator.
- the polymerization temperature is preferably from 25 to 110 ° C, more preferably from 50 to 100 ° C.
- a polymer dispersion stabilizer may be used to improve the dispersion stability of the particles.
- polymer dispersion stabilizer examples include polyvinyl alcohol, polycarboxylic acid, celluloses (such as hydroxyethylcellulose, carboxymethylcellulose, and methylcellulose) and polyvinylpyrrolidone, and an inorganic water-soluble polymer compound such as sodium tripolyphosphate is also used in combination. can do. Of these, polyvinyl alcohol or polyvinylpyrrolidone is preferred.
- the addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by mass based on 100 parts by mass of the monomer.
- a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamins B, citric acid, and polyphenols may be used.
- the average particle size of the hydrophobic polymer particles is preferably 500 ⁇ m or less, more preferably 150 ⁇ m or less, and further preferably 110 ⁇ m or less.
- the average particle size of the hydrophobic polymer particles is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, and further preferably 50 ⁇ m or more, from the viewpoint of improving liquid permeability.
- the coefficient of variation (CV) of the particle diameter of the hydrophobic polymer particles is preferably from 3 to 15%, more preferably from 5 to 15%, from the viewpoint of improving liquid permeability. More preferably, it is 10%.
- CV coefficient of variation
- a method of monodispersing with an emulsifying apparatus such as a microprocess server (manufactured by Hitachi, Ltd.) can be mentioned.
- the average particle diameter and the coefficient of variation of the particle diameter of the hydrophobic polymer particles or the separating material can be determined by the following measurement methods. 1) Disperse the hydrophobic polymer particles or the separating material in water (including a dispersant such as a surfactant) using an ultrasonic dispersing device and include 1% by mass of the hydrophobic polymer particles or the separating material. Prepare a dispersion. 2) Using a particle size distribution meter (Sysmex Flow, manufactured by Sysmex Corporation), the average particle size and the coefficient of variation of the particle size are measured from the image of the hydrophobic polymer particles or about 10,000 separating materials in the dispersion. .
- a particle size distribution meter Sysmex Flow, manufactured by Sysmex Corporation
- the pore volume (porosity) of the hydrophobic polymer particles is preferably 30% by volume to 70% by volume, and more preferably 40% by volume to 70% by volume based on the total volume of the hydrophobic polymer particles. Is more preferred.
- the hydrophobic polymer particles preferably have pores having a pore diameter (mode diameter) of 0.05 ⁇ m or more and less than 0.6 ⁇ m, that is, macropores (macropores).
- the pore diameter of the hydrophobic polymer particles is more preferably 0.2 ⁇ m or more and less than 0.5 ⁇ m. When the pore diameter is 0.05 ⁇ m or more, the substance tends to easily enter the pores, and when the pore diameter is less than 0.6 ⁇ m, the specific surface area tends to be sufficient.
- the pore volume and the pore diameter can be adjusted by the above-mentioned porosifying agent.
- the specific surface area of the hydrophobic polymer particles is preferably 20 m 2 / g or more. In light of higher practicality, the specific surface area is more preferably equal to or greater than 35 m 2 / g, and still more preferably equal to or greater than 40 m 2 / g. If the specific surface area is 20 m 2 / g or more, the amount of adsorption of the substance to be separated tends to increase.
- the mode diameter (or average pore diameter), specific surface area, and porosity in the pore diameter distribution of the hydrophobic polymer particles and the separating material are values measured by a mercury intrusion measuring device (Autopore: manufactured by Shimadzu Corporation). . These can be measured as follows. A sample of about 0.05 g is taken in a standard 5 mL powder cell (stem volume: 0.4 mL) and measured under conditions of an initial pressure of 21 kPa (about 3 psia, pore diameter of about 60 ⁇ m). The mercury parameters are set to a device default mercury contact angle of 130 degrees and a mercury surface tension of 485 dynes / cm. Each value is calculated limited to the range of the pore diameter of 0.05 to 5 ⁇ m.
- the coating layer according to this embodiment includes a hydroxyl group and —ORL (O represents an oxygen atom derived from the hydroxyl group, R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or a carboxy group. And a group represented by an alkali metal salt of a group).
- the separation material according to the present embodiment is excellent in liquid permeability when used as a column, because the coating layer contains a hydrophilic polymer having a hydroxyl group and a group represented by —ORL.
- the separation material according to the present embodiment tends to be excellent in characteristics such as dynamic adsorption property and recovery rate of protein while reducing non-specific adsorption of protein by providing the above-mentioned coating layer.
- the alkylene group constituting R may be linear or branched, but is preferably linear from the viewpoint of better liquid permeability.
- R is preferably an alkylene group having 1 to 4 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms, from the viewpoint of more excellent liquid permeability.
- L preferably contains at least one selected from the group consisting of a carboxy group, a sodium salt of a carboxy group, and a potassium salt of a carboxy group, from the viewpoint of more excellent liquid permeability, and is composed of a sodium salt of a carboxy group and a carboxy group. More preferably, it contains at least one member selected from the group.
- the hydrophilic polymer having a hydroxyl group and a group represented by —ORL may include a hydrophilic polymer derived from at least one selected from the group consisting of polysaccharides and modified products thereof.
- the hydrophilic polymer may be a hydrophilic polymer derived from at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof.
- the hydrophilic polymer may be cross-linked.
- the hydrophobic polymer particles By coating the hydrophobic polymer particles with a hydrophilic polymer having a hydroxyl group, non-specific adsorption of proteins tends to be easily suppressed. Further, the hydrophilic polymer having a hydroxyl group is preferably crosslinked. That is, the coating layer preferably contains a crosslinked body of a hydrophilic polymer having a hydroxyl group. Since the hydrophilic polymer having a hydroxyl group is crosslinked, an increase in column pressure tends to be suppressed.
- the hydrophilic polymer having a hydroxyl group preferably has two or more hydroxyl groups in one molecule.
- examples of the hydrophilic polymer having a hydroxyl group include a polysaccharide or a modified product thereof, and a polyvinyl alcohol or a modified product thereof.
- the hydrophilic polymer having a hydroxyl group is preferably a polysaccharide or a modified product thereof.
- the hydrophilic polymer having a hydroxyl group may include at least one selected from the group consisting of polysaccharides and modified products thereof. Polysaccharides include, for example, agarose, dextran, cellulose, pullulan and chitosan.
- hydrophilic polymer having a hydroxyl group for example, a polymer having an average molecular weight of about 10,000 to 200,000 can be used.
- the hydrophilic polymer having a hydroxyl group may include at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof.
- the hydrophilic polymer having a hydroxyl group is preferably a modified polymer having a hydrophobic group introduced from the viewpoint of improving the interfacial adsorption ability.
- the hydrophobic group include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms.
- the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group and a propyl group.
- Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group.
- the hydrophobic group is obtained by reacting a functional group (for example, an epoxy group) that reacts with a hydroxyl group and a compound (for example, glycidyl phenyl ether) having a hydrophobic group with a hydrophilic polymer having a hydroxyl group by a conventionally known method. , Can be introduced.
- a functional group for example, an epoxy group
- a compound for example, glycidyl phenyl ether
- the content of the hydrophobic group in the modified hydrophilic polymer in which the hydrophobic group is introduced is determined from the balance between the retention of the hydrophobic interaction force for adsorption on the particle surface and the suppression of non-specific adsorption of the protein. It is preferably from 5 to 30% by mass, more preferably from 10 to 20% by mass, even more preferably from 12 to 17% by mass.
- the separating material of the present embodiment includes a step (1) of coating at least a part of the surface of the hydrophobic polymer particles with a hydrophilic polymer having a hydroxyl group, and a step of coating a hydrogen atom of the hydroxyl group of the coated hydrophilic polymer.
- Step (2) of partially substituting a part of the group represented by -RL R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or an alkali metal salt of a carboxy group.
- the coated hydrophilic polymer may be cross-linked before step (2).
- the method for producing the separation material of the present embodiment includes, for example, a step of adsorbing a hydrophilic polymer having a hydroxyl group on the surface of the hydrophobic polymer particles, a step of cross-linking the adsorbed hydrophilic polymer, And introducing a group represented by —RL into the hydrophilic polymer via a hydroxyl group.
- the coating layer according to the present embodiment can be formed, for example, by the following method.
- a solution of a hydrophilic polymer having a hydroxyl group is adsorbed on the surface of the hydrophobic polymer particles.
- the solvent for the solution of the hydrophilic polymer having a hydroxyl group is not particularly limited as long as it can dissolve the hydrophilic polymer having a hydroxyl group, but water is the most common.
- the concentration of the hydrophilic polymer dissolved in the solvent is preferably 5 to 20 (mg / mL).
- This solution is impregnated with hydrophobic polymer particles.
- hydrophobic polymer particles are added to a solution of a hydrophilic polymer having a hydroxyl group, and the solution is left for a predetermined time.
- the impregnation time varies depending on the surface state of the hydrophobic polymer particles. However, if the impregnation is carried out for 24 hours, the concentration of the hydrophilic polymer is in an equilibrium state between the inside and the outside of the hydrophobic polymer particles. Thereafter, washing with a solvent such as water or alcohol is performed to remove the hydrophilic polymer having a hydroxyl group that has not been adsorbed.
- Crosslinking treatment Next, a crosslinking agent is added to cause a crosslinking reaction of the hydrophilic polymer having a hydroxyl group adsorbed on the surface of the hydrophobic polymer particles, thereby forming a crosslinked body. At this time, the crosslinked body has a three-dimensional crosslinked network structure having a hydroxyl group.
- crosslinking agent examples include two or more functional groups active on hydroxyl groups such as epihalohydrin such as epichlorohydrin, dialdehyde compounds such as glutaraldehyde, diisocyanate compounds such as methylene diisocyanate, and glycidyl compounds such as ethylene glycol diglycidyl ether.
- epihalohydrin such as epichlorohydrin
- dialdehyde compounds such as glutaraldehyde
- diisocyanate compounds such as methylene diisocyanate
- glycidyl compounds such as ethylene glycol diglycidyl ether.
- a catalyst is usually used for this crosslinking reaction.
- a conventionally known catalyst can be appropriately used according to the type of the crosslinking agent.
- an alkali such as sodium hydroxide
- the crosslinking agent is a dialdehyde compound.
- a mineral acid such as hydrochloric acid is effective.
- the crosslinking reaction with a crosslinking agent is usually performed by adding a crosslinking agent to a system in which a separating material is dispersed and suspended in an appropriate medium.
- a crosslinking agent is in the range of 0.1 to 100 moles per mole of one unit of the monosaccharide forming the polysaccharide. Within, it can be selected according to the performance of the separating material. In general, when the amount of the cross-linking agent is reduced, the coating layer tends to be easily separated from the hydrophobic polymer particles. If the amount of the crosslinking agent added is excessive and the reaction rate with the hydroxyl group-containing hydrophilic polymer is high, the properties of the raw material hydroxyl group-containing hydrophilic polymer tend to be impaired.
- the amount of the catalyst used depends on the type of the cross-linking agent. Usually, when a polysaccharide is used as the hydrophilic polymer having a hydroxyl group, when one unit of the monosaccharide forming the polysaccharide is 1 mol, Is used in a range of 0.01 to 10 mole times, preferably 0.1 to 5 mole times.
- the cross-linking reaction conditions are temperature conditions
- the temperature of the reaction system is increased, and when the temperature reaches the reaction temperature, a cross-linking reaction occurs.
- Specific examples of the medium include water, alcohol, and the like.
- the crosslinking reaction is usually performed at a temperature in the range of 5 to 90 ° C. for 1 to 24 hours.
- the temperature is in the range of 30 to 90 ° C.
- the crosslinking reaction may be performed stepwise.
- the degree of crosslinking can also be adjusted by subjecting the particles that have undergone a crosslinking reaction to a crosslinking reaction again.
- the degree of cross-linking is evaluated at the temperature at which 5% weight loss due to thermal decomposition occurs. When the degree of progress of crosslinking is high, the temperature at which weight loss starts is high, and when the degree of progress of crosslinking is low, the temperature at which weight loss starts is also low.
- the temperature at the time of 5% thermal weight loss is preferably from 200 to 350 ° C, more preferably from 220 to 330 ° C, and more preferably from 230 to 320 ° C, from the viewpoint of maintaining the characteristics of the hydrophilic polymer having a hydroxyl group. Is more preferable. If the degree of cross-linking is too low, the hydrophilic polymer having a hydroxyl group tends to fall off the particles. If the degree of cross-linking is too high, the hydrophilic polymer having a hydroxyl group can be prevented from falling off the particles, but the hydrophilic polymer has Swelling or a decrease in the amount of functional groups tends to decrease the amount of dynamic adsorption.
- the generated particles are separated by filtration, and then washed with a hydrophilic organic solvent such as methanol and ethanol to remove unreacted polymer and suspending medium. Particles at least part of the surface of which are coated with a coating layer containing a hydrophilic polymer having a hydroxyl group (hereinafter sometimes referred to as “coated particles”) are obtained.
- a hydrophilic organic solvent such as methanol and ethanol
- a carboxy group can be introduced into the coated particles via a hydroxyl group of the hydrophilic polymer. That is, in the coating layer according to the present embodiment, a group represented by —ORL, in which an alkylene group having a carboxy group is directly bonded to an oxygen atom derived from a hydroxyl group of the hydrophilic polymer, is introduced. ing.
- a method for introducing a group represented by —ORL for example, a method using a halogenated alkyl compound can be mentioned.
- the alkyl halide compound include monohalogenoacetic acid, monohalogenopropionic acid, monohalogenobutanoic acid, monohalogenopentanoic acid, monohalogenohexanoic acid, and alkali metal salts thereof.
- the alkyl halide compound is a bromide or chloride.
- the hydroxyl group of the hydrophilic polymer is reacted with a diglycidyl compound such as epichlorohydrin or ethylene glycol diglycidyl ether such as epichlorohydrin to introduce an epoxy group, and then the epoxy group is converted into a carboxylic acid thiol such as thioglycolic acid.
- a carboxy group can be introduced.
- the introduction of the epoxy group also causes the cross-linking reaction of the coating layer to the hydrophilic polymer to proceed in parallel, so that the swellability of the hydrophilic polymer such as a sugar chain is impaired, and the amount of dynamic adsorption of the protein decreases. There is a tendency.
- the method for introducing a group represented by —ORL according to the present embodiment does not involve a step of introducing an epoxy group, and thus avoids the progress of the crosslinking reaction as described above. It is possible to improve the protein dynamic adsorption amount.
- a separation material having excellent liquid permeability can be produced.
- the content of the group represented by -ORL in the separation material is preferably 100 ⁇ mol or more, more preferably 110 ⁇ mol or more, and more preferably 120 ⁇ mol per 1 mL of the separation material. More preferably, it is more preferably at least 125 ⁇ mol.
- the amount of the carboxy group is 100 ⁇ mol or more per 1 mL of the separation material, the liquid permeability of the separation material can be further improved, and the electrostatic force of the separation material increases. Can be increased.
- the content of the group represented by —ORL in the separation material is too large, the protein is hardly diffused into the separation material from the viewpoint of difficulty in diffusing the protein into the separation material.
- the amount is preferably 1000 ⁇ mol or less, more preferably 950 ⁇ mol or less per 1 mL of the separation material.
- the separation material of the present embodiment has a coating layer of 30 to 500 mg per 1 g of the hydrophobic polymer particles.
- the amount of the coating layer can be measured by a weight loss due to thermal decomposition or the like.
- the liquid passing speed in the present specification indicates a liquid passing speed when a separating material of the present embodiment is packed in a stainless steel column of ⁇ 7.8 ⁇ 300 mm and the liquid is passed.
- the flow rate of water is preferably 1300 cm / h or more when water is passed so that the pressure of the column becomes 0.3 MPa. It is more preferably at least 1500 cm / h, even more preferably at least 2000 cm / h.
- the flow rate of a protein solution or the like is generally in the range of 400 cm / h or less.
- a normal protein separation speed is used. It can be used at a flow rate of 1300 cm / h or more, which is faster than the separation material.
- the average particle size of the separating material is preferably from 10 to 500 ⁇ m, more preferably from 30 to 300 ⁇ m, further preferably from 50 to 150 ⁇ m, and more preferably from 50 to 110 ⁇ m, from the viewpoint of improving liquid permeability. Is particularly preferred.
- the coefficient of variation (CV) of the particle size of the separating material is preferably 3 to 15%, more preferably 5 to 15%, and more preferably 5 to 10% from the viewpoint of improving liquid permeability. It is even more preferred.
- the pore volume of the separating material is preferably 30% by volume or more and 70% by volume or less, more preferably 40% by volume or more and 70% by volume or less, and more preferably 50% by volume or more and 70% by volume based on the total volume of the separating material. % Is more preferable.
- the separation material preferably has pores having a pore diameter of 0.05 ⁇ m or more and less than 0.6 ⁇ m, that is, macropores (macropores).
- the pore size of the separation material is more preferably 0.1 ⁇ m or more and less than 0.5 ⁇ m. When the pore diameter is 0.05 ⁇ m or more, the substance tends to easily enter the pores, and when the pore diameter is less than 0.6 ⁇ m, the specific surface area tends to be sufficient.
- the specific surface area of the separation material is preferably 20 m 2 / g or more. In light of higher practicality, the specific surface area is more preferably equal to or greater than 35 m 2 / g, and still more preferably equal to or greater than 40 m 2 / g. If the specific surface area is 20 m 2 / g or more, the amount of adsorption of the substance to be separated tends to increase.
- the average pore diameter, specific surface area and the like of the separating material can be adjusted by appropriately selecting the raw material of the hydrophobic polymer particles, the porosifying agent, the hydrophilic polymer having a hydroxyl group and the like.
- the 5% compressive deformation elastic modulus in water of the separating material may be, for example, 70 MPa or more, 100 MPa or more, 150 MPa or more, or 200 MPa or more.
- the upper limit of the 5% compressive deformation elastic modulus is not particularly limited.
- the 5% compressive deformation elastic modulus (5% K value) of the separating material in water can be calculated as follows. Using a micro-compression tester (manufactured by Fisher), the separation material previously immersed in water was applied at a load application speed of 1 mN / sec at room temperature (25 ° C.) and a smooth end surface (50 ⁇ m ⁇ 50 ⁇ m) of a square pillar. The load and the compression displacement when compressed to 50 mN are measured. From the obtained measured values, the compression elastic modulus (5% K value) when the separation material undergoes 5% compression deformation can be obtained by the following equation. The load at the point where the amount of displacement changes the most during the measurement is defined as the breaking strength (mN).
- a ligand eg, protein A
- an ion exchange group can be introduced into the separation material of the present embodiment via the carboxy group in the group represented by —ORL.
- a ligand for example, protein A
- an ion exchange group can be introduced into the separation material of the present embodiment in addition to the group represented by —ORL.
- the separation material of the present embodiment can be suitably used for ion exchange purification, affinity purification, separation of biological macromolecules such as proteins by electrostatic interaction, and the like.
- the separating material of the present embodiment is added to a mixed solution containing a protein, and only the protein is adsorbed to the separating material by electrostatic interaction.
- the separation material of the present embodiment can be used in column chromatography.
- a water-soluble substance is preferable.
- proteins such as blood proteins such as serum albumin and immunoglobulin, enzymes present in living bodies, protein bioactive substances produced by biotechnology, DNA, and biopolymers such as bioactive peptides.
- the molecular weight of the biopolymer is preferably 2,000,000 or less, more preferably 500,000 or less.
- the properties of the separation material, separation conditions, and the like can be selected depending on the isoelectric point, ionization state, and the like of the protein.
- Known methods include, for example, the method described in JP-A-60-169427.
- the separation material of the present embodiment by introducing a carboxy group or an alkali metal salt of a carboxy group which serves as an ion exchange group into the coating layer, particles of natural polymer or synthetic polymer can be used for separating biopolymers such as proteins. Each particle has the advantages of molecules.
- the separation material of the present embodiment has excellent liquid permeability, reduces nonspecific adsorption of proteins, and tends to easily cause protein adsorption and desorption. Further, the separation material of the present embodiment tends to have a large adsorption amount (dynamic adsorption amount) of proteins and the like under the same flow rate.
- the column of the present embodiment includes the above-described separation material.
- the column can be manufactured by packing the above-mentioned separating material in the column.
- the method for filling the column with the separating material is not particularly limited, and for example, a known method can be employed.
- the particle size of the hydrophobic polymer particles was measured by a flow type particle size measuring device, and the average particle size and the coefficient of variation (CV) of the particle size were calculated.
- the average particle size of the hydrophobic polymer particles is 102 ⁇ m, and the C.I. V. Was 8%.
- an agarose constituent unit means a disaccharide unit of agarose
- a modified agarose constituent unit means one in which a phenyl group is introduced into at least one of the hydroxyl groups in the disaccharide unit of agarose. I do.
- A: true absorbance of denatured agarose absorbance of denatured agarose-absorbance of undenatured agarose ⁇
- -Concentration of undenatured agarose constituent unit (g / L) sample concentration of denatured agarose (% by mass) x 10-concentration of denatured agarose constituent unit (g / L) Absorption of undenatured aga
- Example 1 ⁇ Formation of coating layer> Hydrophobic polymer particles are added to a 20 mg / mL modified agarose aqueous solution at a concentration of 70 mL / g of particles, and the mixture is stirred at 55 ° C. for 24 hours to adsorb the modified agarose to the hydrophobic polymer particles. And washed with hot water.
- the modified agarose adsorbed on the hydrophobic polymer particles was crosslinked as follows. 10 g of the particles onto which the modified agarose had been adsorbed were dispersed in a 0.4 M aqueous sodium hydroxide solution, and 0.02 M epichlorohydrin was added thereto, followed by stirring at room temperature for 24 hours. Thereafter, the resultant was washed with a 2% by mass aqueous solution of hot sodium dodecyl sulfate, and then washed with pure water to obtain coated particles having a crosslinked product of modified agarose as a coating layer. The amount of the coating layer was measured by weight loss due to thermal decomposition, and the coating amount (mg / g) per 1 g of the hydrophobic polymer particles was calculated. Table 1 shows the results.
- Non-specific adsorption amount of protein 0.2 g of the obtained coated particles was added to 20 mL of a Tris-hydrochloride buffer (pH 8.0) having a BSA (Bovine Serum Albumin) concentration of 24 mg / mL, and the mixture was stirred at room temperature for 24 hours. Thereafter, the supernatant was collected by centrifugation. Based on the BSA concentration of the supernatant, the amount of BSA adsorbed on the particles was calculated. The BSA concentration was confirmed from the absorbance at 280 nm of the supernatant with a spectrophotometer.
- BSA Bovine Serum Albumin
- Non-specific adsorption was evaluated as “A” when the amount of BSA adsorbed per 1 mL of the separating material was less than 1 mg, “B” when it was 1 to 10 mg, and “C” when it exceeded 10 mg. Table 1 shows the results. In Comparative Example 1, nonspecific adsorption could not be evaluated.
- the particle size of the separation material was measured with a flow type particle size measuring device, and the average particle size and the coefficient of variation (CV) of the particle size were calculated.
- the mode pore diameter, specific surface area, and porosity of the separation material were measured with a mercury intrusion measuring device. Table 1 shows the results.
- the buffer was flowed through the packed column for 10 column volumes. Thereafter, a buffer containing a protein at a concentration of 2 mg / mL was passed through the packed column with a residence time of 2 minutes, and the protein concentration at the column outlet was measured by UV measurement. The solution was allowed to flow until the protein concentration at the inlet and the column of the column coincided with each other. Thereafter, a solution obtained by adding a 1 M NaCl solution to the buffer was passed through 10 column volumes as a desorption solution, and the adsorbed protein was recovered.
- the dynamic adsorption amount (10% Dynamic Binding Capacity: hereinafter, 10% DBC) at 10% breakthrough was calculated using the following equation.
- the amount of protein in the recovered solution was calculated, and the recovery rate R (%) of the protein relative to the amount of dynamic adsorption was calculated from the following equation.
- a buffer a 20 mmol / L sodium acetate buffer (pH 5.0) was used.
- the protein used was IgG (immunoglobulin G). Table 2 shows the results.
- Example 2 A separation material having a group in which —CH 2 COOH or —CH 2 COONa is bonded to an oxygen atom derived from a hydroxyl group of modified agarose was prepared in the same manner as in Example 1 except that monochloroacetic acid 40 g was changed to monochloroacetic acid 20 g. Evaluation was performed in the same manner as in Example 1.
- Example 3 Performed in the same manner as in Example 1 except that 40 g of monochloroacetic acid was changed to 40 g of 3-chloropropionic acid, and then 40 g of DMF (N, N-dimethylformamide) was added after adding 3-chloropropionic acid.
- a separation material having a group in which — (CH 2 ) 2 COOH or — (CH 2 ) 2 COONa was bonded to the oxygen atom of was prepared, and evaluated in the same manner as in Example 1.
- Example 4 Monochloroacetic acid 40g 4-chlorobutane was changed to acid 40g, 4-chlorobutane except that after the acid addition further DMF was added 40g is as in Example 1 and the oxygen atom derived from the hydroxyl group of the denaturing agarose - (CH 2) 3 A separating material having a group to which COOH or — (CH 2 ) 3 COONa was bonded was prepared and evaluated in the same manner as in Example 1.
- Example 5 The same procedure as in Example 1 was carried out except that 40 g of monochloroacetic acid was changed to 40 g of 5-chloropentanoic acid, and 40 g of DMF was further added after the addition of 5-chloropentanoic acid, and the oxygen atom derived from the hydroxyl group of the modified agarose was replaced with-(CH 2 ) 4 COOH, or - (CH 2) 4 COONa to form a separation member having the bonded groups, was evaluated in the same manner as in example 1.
- Example 6 The same procedure as in Example 1 was carried out except that 40 g of monochloroacetic acid was changed to 40 g of 6-chlorohexanoic acid, and 40 g of DMF was further added after the addition of 6-chlorohexanoic acid.
- the oxygen atom derived from the hydroxyl group of the modified agarose was replaced with-(CH 2 ) 5 COOH or - (CH 2) 5 COONa is prepared separation material having attached groups, was evaluated in the same manner as in example 1.
- Example 1 Evaluation was performed in the same manner as in Example 1 using a commercially available ion exchange chromatography carrier “CM Sepharose Fast Flow” (manufactured by GE Healthcare Japan) as a separating material.
- CM Sepharose Fast Flow commercially available ion exchange chromatography carrier “CM Sepharose Fast Flow” (manufactured by GE Healthcare Japan) as a separating material.
- the separation materials of Examples 1 to 6 were excellent in liquid permeability when packed in a column, and high in the amount of dynamic adsorption of protein and the recovery rate. In addition, it was also confirmed that the separation materials of Examples 1 to 6 can suppress nonspecific adsorption of proteins and have a high 5% compressive deformation elastic modulus.
- the present invention it is possible to provide a separation material having excellent liquid permeability when used as a column, a column including the separation material, and a method for producing the separation material.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
The purpose of the present invention is to provide a separating material which has excellent liquid permeability when used as a column. This separating material comprises a hydrophilic polymer that includes hydrophobic polymer particles and a coating layer that coats at least a portion of the surface of the hydrophobic polymer particles. The coating layer comprises a hydroxyl group and a group represented by -O-R-L (O is an oxygen atom derived from a hydroxyl group, R is an alkylene group having 1 to 5 carbon atoms, and L is a carboxyl group or alkali metal salt of a carboxyl group).
Description
本発明は、分離材、分離材の製造方法及びカラムに関する。
The present invention relates to a separation material, a method for producing the separation material, and a column.
従来、タンパク質に代表される生体高分子を分離精製する場合、一般的には、多孔質型の合成高分子を母体とするイオン交換体、親水性天然高分子の架橋ゲルを母体とするイオン交換体等が用いられている。多孔質型の合成高分子を母体とするイオン交換体の場合、塩濃度による体積変化が小さいため、カラムに充填してクロマトグラフィーで用いると、通液時の耐圧性に優れる傾向がある。しかし、このイオン交換体は、タンパク質等の分離に用いると、疎水的相互作用に基づく不可逆吸着等の非特異吸着が起こるため、ピークの非対称化が発生する、又は、該疎水的相互作用でイオン交換体に吸着されたタンパク質が吸着されたまま回収できないという問題点がある。
Conventionally, in the case of separating and purifying biopolymers represented by proteins, generally, ion exchangers based on porous synthetic polymers and ion exchange based on crosslinked gels of hydrophilic natural polymers are generally used. The body is used. In the case of an ion exchanger having a porous synthetic polymer as a base, the volume change due to the salt concentration is small. Therefore, when the ion exchanger is packed in a column and used for chromatography, it tends to be excellent in pressure resistance during liquid passage. However, when this ion exchanger is used for separation of proteins and the like, nonspecific adsorption such as irreversible adsorption based on hydrophobic interaction occurs, so that peak asymmetry occurs, or ionization occurs due to the hydrophobic interaction. There is a problem that the protein adsorbed on the exchanger cannot be recovered while being adsorbed.
一方、デキストラン、アガロース等の多糖に代表される親水性天然高分子の架橋ゲルを母体とするイオン交換体の場合、タンパク質の非特異吸着がほとんどないという利点がある。ところが、このイオン交換体は、水溶液中で著しく膨潤し、溶液のイオン強度による体積変化、及び、遊離酸形と負荷形との体積変化が大きく、機械的強度も充分ではないという欠点を有する。特に、架橋ゲルをクロマトグラフィーで使用する場合、通液時の圧力損失が大きく、通液によりゲルが圧密化するといった欠点がある。
On the other hand, an ion exchanger whose base is a crosslinked gel of a hydrophilic natural polymer represented by a polysaccharide such as dextran or agarose has an advantage that there is almost no nonspecific adsorption of proteins. However, this ion exchanger has the disadvantage that it swells remarkably in an aqueous solution, the volume change due to the ionic strength of the solution, the volume change between the free acid form and the loaded form is large, and the mechanical strength is not sufficient. In particular, when a crosslinked gel is used for chromatography, there is a disadvantage that the pressure loss at the time of passing the liquid is large and the gel is compacted by the passing of the liquid.
親水性天然高分子の架橋ゲルの欠点を克服するため、多孔性高分子の細孔内に天然高分子ゲル等のゲルを保持した複合体が、ペプチド合成の分野で知られている(例えば、特許文献1参照)。このような複合体を用いることにより、反応性物質の負荷係数を高め、高収率の合成が可能となる。また、硬質な合成高分子物質でゲルを包囲するため、カラムベッドの形態で使用しても、容積変化がなく、カラムを通過するフロースルーの圧力が変化しないという利点を有する。
In order to overcome the drawbacks of the crosslinked gel of a hydrophilic natural polymer, a complex in which a gel such as a natural polymer gel is retained in the pores of a porous polymer is known in the field of peptide synthesis (for example, Patent Document 1). By using such a complex, the load coefficient of the reactive substance can be increased, and high-yield synthesis can be achieved. Further, since the gel is surrounded by the hard synthetic polymer material, there is an advantage that even when used in the form of a column bed, there is no change in volume and the pressure of the flow-through passing through the column does not change.
マクロネットワーク構造のコポリマの細孔を、モノマから合成した架橋共重合体のゲルで埋めたハイブリッドコポリマのイオン交換体が知られている(例えば、特許文献2参照)。架橋共重合体ゲルは、架橋度が低い場合、圧力損失、体積変化等の問題があるが、ハイブリッドコポリマにすることで通液特性が改善され、圧力損失が少なく、イオン交換容量が向上し、リーク挙動が改善される。
(2) There is known an ion exchanger of a hybrid copolymer in which pores of a copolymer having a macro network structure are filled with a gel of a crosslinked copolymer synthesized from a monomer (for example, see Patent Document 2). The crosslinked copolymer gel has problems such as pressure loss and volume change when the degree of crosslinking is low.However, by using a hybrid copolymer, the liquid permeation characteristics are improved, the pressure loss is reduced, and the ion exchange capacity is improved. The leak behavior is improved.
また、有機合成ポリマ基体の細孔内に巨大網目構造を有する親水性天然高分子の架橋ゲルを充填した複合化充填材が提案されている(例えば、特許文献3及び4参照)。
複合 Further, composite fillers in which a crosslinked gel of a hydrophilic natural polymer having a giant network structure is filled in pores of an organic synthetic polymer substrate have been proposed (for example, see Patent Documents 3 and 4).
従来の分離材には、カラムとして用いたときの通液性等のカラム特性において改善の余地がある。
The conventional separation material has room for improvement in column characteristics such as liquid permeability when used as a column.
そこで、本発明は、カラムとして用いたときの通液性に優れる分離材、該分離材を備えるカラム、及び該分離材の製造方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a separation material having excellent liquid permeability when used as a column, a column including the separation material, and a method for producing the separation material.
本発明は、下記[1]~[8]に記載の分離材、分離材の製造方法及びカラムを提供する。
[1]疎水性高分子粒子と、該疎水性高分子粒子の表面の少なくとも一部を被覆する被覆層とを備え、被覆層が、水酸基と、-O-R-L(Oは水酸基に由来する酸素原子を示し、Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基と、を有する親水性高分子を含む、分離材。
[2]-O-R-Lで表される基の含有量が、分離材1mL当たり100μmol以上である、[1]に記載の分離材。
[3]疎水性高分子粒子が、スチレン系モノマに由来する構造単位を有するポリマを含む粒子である、[1]又は[2]に記載の分離材。
[4]親水性高分子が、多糖類及びその変性体からなる群より選ばれる少なくとも1種に由来する親水性高分子を含む、[1]~[3]のいずれかに記載の分離材。
[5]親水性高分子が、アガロース、デキストラン、セルロース、プルラン、キトサン及びこれらの変性体からなる群より選ばれる少なくとも1種に由来する親水性高分子を含む、[1]~[4]のいずれかに記載の分離材。
[6]親水性高分子が、架橋されている、[1]~[5]のいずれかに記載の分離材。
[7][1]~[6]のいずれかに記載の分離材を備える、カラム。
[8][1]~[6]のいずれかに記載の分離材の製造方法であって、疎水性高分子粒子の表面の少なくとも一部に、水酸基を有する親水性高分子を被覆する工程と、被覆された親水性高分子が有する水酸基の水素原子の一部を-R-L(Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基に置換する工程と、を備える、分離材の製造方法。
[9]水酸基を有する親水性高分子が、多糖類及びその変性体からなる群より選ばれる少なくとも1種を含む、[8]に記載の分離材の製造方法。
[10]水酸基を有する親水性高分子が、アガロース、デキストラン、セルロース、プルラン、キトサン及びこれらの変性体からなる群より選ばれる少なくとも1種を含む、[8]又は[9]に記載の分離材の製造方法。 The present invention provides a separation material, a method for producing a separation material, and a column according to the following [1] to [8].
[1] Hydrophobic polymer particles and a coating layer that covers at least a part of the surface of the hydrophobic polymer particles, wherein the coating layer is formed of a hydroxyl group and —ORL (O is derived from a hydroxyl group). R represents an alkylene group having 1 to 5 carbon atoms, L represents a carboxy group or a group represented by an alkali metal salt of a carboxy group.) , Separation material.
[2] The separation material according to [1], wherein the content of the group represented by —ORL is 100 μmol or more per 1 mL of the separation material.
[3] The separation material according to [1] or [2], wherein the hydrophobic polymer particles are particles containing a polymer having a structural unit derived from a styrene-based monomer.
[4] The separation material according to any one of [1] to [3], wherein the hydrophilic polymer contains a hydrophilic polymer derived from at least one selected from the group consisting of polysaccharides and modified products thereof.
[5] The method of any of [1] to [4], wherein the hydrophilic polymer includes a hydrophilic polymer derived from at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof. The separating material according to any one of the above.
[6] The separation material according to any one of [1] to [5], wherein the hydrophilic polymer is crosslinked.
[7] A column comprising the separation material according to any one of [1] to [6].
[8] The method for producing a separation material according to any one of [1] to [6], wherein at least a part of the surface of the hydrophobic polymer particles is coated with a hydrophilic polymer having a hydroxyl group. A part of the hydrogen atom of the hydroxyl group of the coated hydrophilic polymer is -RL (R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or an alkali metal salt of a carboxy group. ), A method of producing a separating material.
[9] The method for producing a separation material according to [8], wherein the hydrophilic polymer having a hydroxyl group contains at least one selected from the group consisting of polysaccharides and modified products thereof.
[10] The separation material according to [8] or [9], wherein the hydrophilic polymer having a hydroxyl group contains at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof. Manufacturing method.
[1]疎水性高分子粒子と、該疎水性高分子粒子の表面の少なくとも一部を被覆する被覆層とを備え、被覆層が、水酸基と、-O-R-L(Oは水酸基に由来する酸素原子を示し、Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基と、を有する親水性高分子を含む、分離材。
[2]-O-R-Lで表される基の含有量が、分離材1mL当たり100μmol以上である、[1]に記載の分離材。
[3]疎水性高分子粒子が、スチレン系モノマに由来する構造単位を有するポリマを含む粒子である、[1]又は[2]に記載の分離材。
[4]親水性高分子が、多糖類及びその変性体からなる群より選ばれる少なくとも1種に由来する親水性高分子を含む、[1]~[3]のいずれかに記載の分離材。
[5]親水性高分子が、アガロース、デキストラン、セルロース、プルラン、キトサン及びこれらの変性体からなる群より選ばれる少なくとも1種に由来する親水性高分子を含む、[1]~[4]のいずれかに記載の分離材。
[6]親水性高分子が、架橋されている、[1]~[5]のいずれかに記載の分離材。
[7][1]~[6]のいずれかに記載の分離材を備える、カラム。
[8][1]~[6]のいずれかに記載の分離材の製造方法であって、疎水性高分子粒子の表面の少なくとも一部に、水酸基を有する親水性高分子を被覆する工程と、被覆された親水性高分子が有する水酸基の水素原子の一部を-R-L(Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基に置換する工程と、を備える、分離材の製造方法。
[9]水酸基を有する親水性高分子が、多糖類及びその変性体からなる群より選ばれる少なくとも1種を含む、[8]に記載の分離材の製造方法。
[10]水酸基を有する親水性高分子が、アガロース、デキストラン、セルロース、プルラン、キトサン及びこれらの変性体からなる群より選ばれる少なくとも1種を含む、[8]又は[9]に記載の分離材の製造方法。 The present invention provides a separation material, a method for producing a separation material, and a column according to the following [1] to [8].
[1] Hydrophobic polymer particles and a coating layer that covers at least a part of the surface of the hydrophobic polymer particles, wherein the coating layer is formed of a hydroxyl group and —ORL (O is derived from a hydroxyl group). R represents an alkylene group having 1 to 5 carbon atoms, L represents a carboxy group or a group represented by an alkali metal salt of a carboxy group.) , Separation material.
[2] The separation material according to [1], wherein the content of the group represented by —ORL is 100 μmol or more per 1 mL of the separation material.
[3] The separation material according to [1] or [2], wherein the hydrophobic polymer particles are particles containing a polymer having a structural unit derived from a styrene-based monomer.
[4] The separation material according to any one of [1] to [3], wherein the hydrophilic polymer contains a hydrophilic polymer derived from at least one selected from the group consisting of polysaccharides and modified products thereof.
[5] The method of any of [1] to [4], wherein the hydrophilic polymer includes a hydrophilic polymer derived from at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof. The separating material according to any one of the above.
[6] The separation material according to any one of [1] to [5], wherein the hydrophilic polymer is crosslinked.
[7] A column comprising the separation material according to any one of [1] to [6].
[8] The method for producing a separation material according to any one of [1] to [6], wherein at least a part of the surface of the hydrophobic polymer particles is coated with a hydrophilic polymer having a hydroxyl group. A part of the hydrogen atom of the hydroxyl group of the coated hydrophilic polymer is -RL (R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or an alkali metal salt of a carboxy group. ), A method of producing a separating material.
[9] The method for producing a separation material according to [8], wherein the hydrophilic polymer having a hydroxyl group contains at least one selected from the group consisting of polysaccharides and modified products thereof.
[10] The separation material according to [8] or [9], wherein the hydrophilic polymer having a hydroxyl group contains at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof. Manufacturing method.
本発明によれば、カラムとして用いたときの通液性に優れる分離材、当該分離材を備えるカラム及び当該分離材の製造方法を提供することができる。また、本発明は、タンパク質の非特異吸着を低減しつつ、タンパク質の動的吸着性及び回収率等のカラム特性に優れる分離材を提供することもできる。
According to the present invention, it is possible to provide a separating material having excellent liquid permeability when used as a column, a column including the separating material, and a method for producing the separating material. Further, the present invention can also provide a separation material which is excellent in column characteristics such as protein dynamic adsorption and recovery while reducing non-specific adsorption of proteins.
以下、本発明の好適な実施形態について詳細に説明するが、本発明はこれらの実施形態に何ら限定されるものではない。
Hereinafter, preferred embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments.
<分離材>
本実施形態に係る分離材は、疎水性高分子粒子と、該疎水性高分子粒子の表面の少なくとも一部を被覆する被覆層とを備え、被覆層が親水性高分子を含み、親水性高分子が、水酸基と、-O-R-L(Oは水酸基に由来する酸素原子を示し、Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基と、を有する。本実施形態の分離材によれば、カラムに充填したときに優れた通液性を有する。また、本実施形態の分離材は、耐久性及び耐アルカリ性に優れるとともに、タンパク質の非特異吸着を低減させることができ、カラムに充填したときのタンパク質の動的吸着量及び回収率も実用上充分に高いと考えられる。本実施形態の分離材は、強度にも優れると共に、真球に近い形状とすることもできる。真球状の分離材は、クロマトグラフィーで使用した場合、流体力学的に有利であると考えられる。したがって、このような分離材は、例えば、圧力損失を抑制し易く、クロマトグラフィーの操作がし易いと考えられる。なお、本明細中、「疎水性高分子粒子の表面」とは、疎水性高分子粒子の外側の表面のみでなく、疎水性高分子粒子の内部における細孔の表面を含むものとする。 <Separation material>
The separation material according to the present embodiment includes hydrophobic polymer particles and a coating layer that covers at least a part of the surface of the hydrophobic polymer particles. The coating layer includes a hydrophilic polymer, and has a high hydrophilicity. When the molecule is a hydroxyl group, -ORL (O represents an oxygen atom derived from the hydroxyl group, R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or an alkali metal salt of a carboxy group. And a group represented by: The separation material of the present embodiment has excellent liquid permeability when packed in a column. In addition, the separation material of the present embodiment has excellent durability and alkali resistance, can reduce non-specific adsorption of protein, and has a sufficiently high dynamic adsorption amount and recovery rate of protein when packed in a column. It is considered high. The separating material of the present embodiment has excellent strength and can have a shape close to a true sphere. A truly spherical separating material is considered hydrodynamically advantageous when used in chromatography. Therefore, such a separation material is considered to be easy to suppress the pressure loss and to perform the chromatography operation, for example. In the present specification, the “surface of the hydrophobic polymer particles” includes not only the outer surface of the hydrophobic polymer particles but also the surface of the pores inside the hydrophobic polymer particles.
本実施形態に係る分離材は、疎水性高分子粒子と、該疎水性高分子粒子の表面の少なくとも一部を被覆する被覆層とを備え、被覆層が親水性高分子を含み、親水性高分子が、水酸基と、-O-R-L(Oは水酸基に由来する酸素原子を示し、Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基と、を有する。本実施形態の分離材によれば、カラムに充填したときに優れた通液性を有する。また、本実施形態の分離材は、耐久性及び耐アルカリ性に優れるとともに、タンパク質の非特異吸着を低減させることができ、カラムに充填したときのタンパク質の動的吸着量及び回収率も実用上充分に高いと考えられる。本実施形態の分離材は、強度にも優れると共に、真球に近い形状とすることもできる。真球状の分離材は、クロマトグラフィーで使用した場合、流体力学的に有利であると考えられる。したがって、このような分離材は、例えば、圧力損失を抑制し易く、クロマトグラフィーの操作がし易いと考えられる。なお、本明細中、「疎水性高分子粒子の表面」とは、疎水性高分子粒子の外側の表面のみでなく、疎水性高分子粒子の内部における細孔の表面を含むものとする。 <Separation material>
The separation material according to the present embodiment includes hydrophobic polymer particles and a coating layer that covers at least a part of the surface of the hydrophobic polymer particles. The coating layer includes a hydrophilic polymer, and has a high hydrophilicity. When the molecule is a hydroxyl group, -ORL (O represents an oxygen atom derived from the hydroxyl group, R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or an alkali metal salt of a carboxy group. And a group represented by: The separation material of the present embodiment has excellent liquid permeability when packed in a column. In addition, the separation material of the present embodiment has excellent durability and alkali resistance, can reduce non-specific adsorption of protein, and has a sufficiently high dynamic adsorption amount and recovery rate of protein when packed in a column. It is considered high. The separating material of the present embodiment has excellent strength and can have a shape close to a true sphere. A truly spherical separating material is considered hydrodynamically advantageous when used in chromatography. Therefore, such a separation material is considered to be easy to suppress the pressure loss and to perform the chromatography operation, for example. In the present specification, the “surface of the hydrophobic polymer particles” includes not only the outer surface of the hydrophobic polymer particles but also the surface of the pores inside the hydrophobic polymer particles.
[疎水性高分子粒子]
本実施形態に係る疎水性高分子粒子は、疎水性を有する高分子を含む粒子である。疎水性高分子粒子の製造方法に特に制限はないが、例えば、疎水性を有する高分子を形成可能なモノマを重合させる方法が挙げられる。モノマとしては、疎水性を有する高分子を形成可能なものであれば、特に限定されないが、例えば、スチレン系モノマが挙げられる。すなわち、上記疎水性高分子粒子は、例えば、スチレン系モノマに由来する構造単位を有するポリマを含んでいてもよい。このような疎水性高分子粒子は、耐久性及び耐アルカリ性に優れると考えられる。 [Hydrophobic polymer particles]
The hydrophobic polymer particles according to the present embodiment are particles containing a polymer having hydrophobicity. The method for producing the hydrophobic polymer particles is not particularly limited, and examples thereof include a method of polymerizing a monomer capable of forming a polymer having hydrophobicity. The monomer is not particularly limited as long as it can form a polymer having hydrophobicity, and examples thereof include a styrene-based monomer. That is, the hydrophobic polymer particles may include, for example, a polymer having a structural unit derived from a styrene-based monomer. Such hydrophobic polymer particles are considered to be excellent in durability and alkali resistance.
本実施形態に係る疎水性高分子粒子は、疎水性を有する高分子を含む粒子である。疎水性高分子粒子の製造方法に特に制限はないが、例えば、疎水性を有する高分子を形成可能なモノマを重合させる方法が挙げられる。モノマとしては、疎水性を有する高分子を形成可能なものであれば、特に限定されないが、例えば、スチレン系モノマが挙げられる。すなわち、上記疎水性高分子粒子は、例えば、スチレン系モノマに由来する構造単位を有するポリマを含んでいてもよい。このような疎水性高分子粒子は、耐久性及び耐アルカリ性に優れると考えられる。 [Hydrophobic polymer particles]
The hydrophobic polymer particles according to the present embodiment are particles containing a polymer having hydrophobicity. The method for producing the hydrophobic polymer particles is not particularly limited, and examples thereof include a method of polymerizing a monomer capable of forming a polymer having hydrophobicity. The monomer is not particularly limited as long as it can form a polymer having hydrophobicity, and examples thereof include a styrene-based monomer. That is, the hydrophobic polymer particles may include, for example, a polymer having a structural unit derived from a styrene-based monomer. Such hydrophobic polymer particles are considered to be excellent in durability and alkali resistance.
本実施形態に係る疎水性高分子粒子は、多孔構造を有していてもよい。すなわち、本実施形態に係る疎水性高分子粒子は、例えば、疎水性の多孔質高分子粒子であってもよい。多孔質高分子粒子は、例えば、多孔質化剤の存在下でモノマを重合させて得られるポリマを含む粒子であり、従来の懸濁重合、乳化重合等により合成することができる。具体的なモノマとしては、以下のような多官能性モノマ、単官能性モノマ等が挙げられる。
疎 水 The hydrophobic polymer particles according to the present embodiment may have a porous structure. That is, the hydrophobic polymer particles according to the present embodiment may be, for example, hydrophobic porous polymer particles. The porous polymer particles are, for example, particles containing a polymer obtained by polymerizing a monomer in the presence of a porosifying agent, and can be synthesized by conventional suspension polymerization, emulsion polymerization, or the like. Specific examples of the monomer include the following polyfunctional monomers and monofunctional monomers.
多官能性モノマとしては、例えば、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ジビニルフェナントレン等のジビニル化合物が挙げられる。これらの多官能性モノマは、1種を単独で又は2種以上を組み合わせて用いることができる。上記の中でも、耐久性、耐酸性及び耐アルカリ性の観点より、モノマがジビニルベンゼンを含有することが好ましい。すなわち、疎水性高分子粒子は、ジビニルベンゼンに由来する構造単位を有するポリマを含むことが好ましい。
(4) Examples of the polyfunctional monomer include divinyl compounds such as divinylbenzene, divinylbiphenyl, divinylnaphthalene, and divinylphenanthrene. These polyfunctional monomers can be used alone or in combination of two or more. Among them, the monomer preferably contains divinylbenzene from the viewpoint of durability, acid resistance and alkali resistance. That is, the hydrophobic polymer particles preferably include a polymer having a structural unit derived from divinylbenzene.
単官能性モノマとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-t-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン等のスチレン及びその誘導体が挙げられる。これらの単官能性モノマは、1種を単独で又は2種以上を組み合わせて用いることができる。上記の中でも、耐酸性及び耐アルカリ性に優れるという観点から、モノマがスチレンを含有することが好ましい。また、カルボキシ基、アミノ基、水酸基、アルデヒド基等の官能基を有するスチレン誘導体も使用することができる。
Examples of the monofunctional monomer include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, 2,4- Dimethylstyrene, pn-butylstyrene, pt-butylstyrene, pn-hexylstyrene, pn-octylstyrene, pn-nonylstyrene, pn-decylstyrene, pn-dodecyl Styrene such as styrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, and 3,4-dichlorostyrene, and derivatives thereof. These monofunctional monomers can be used alone or in combination of two or more. Among them, the monomer preferably contains styrene from the viewpoint of excellent acid resistance and alkali resistance. Further, a styrene derivative having a functional group such as a carboxy group, an amino group, a hydroxyl group, and an aldehyde group can also be used.
多孔質化剤としては、重合時に相分離を促し、粒子の多孔質化を促進する有機溶媒である、脂肪族又は芳香族の炭化水素類、エステル類、ケトン類、エーテル類、アルコール類等を用いることができる。多孔質化剤として、例えば、ジエチルベンゼン、トルエン、キシレン、シクロヘキサン、オクタン、酢酸ブチル、フタル酸ジブチル、メチルエチルケトン、ジブチルエーテル、1-ヘキサノール、2-オクタノール、デカノール、ラウリルアルコール及びシクロヘキサノールが挙げられる。これらの多孔質化剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
Examples of the porosifying agent include an organic solvent that promotes phase separation during polymerization and promotes porosity of particles, such as aliphatic or aromatic hydrocarbons, esters, ketones, ethers, and alcohols. Can be used. Examples of the porosifying agent include diethylbenzene, toluene, xylene, cyclohexane, octane, butyl acetate, dibutyl phthalate, methyl ethyl ketone, dibutyl ether, 1-hexanol, 2-octanol, decanol, lauryl alcohol and cyclohexanol. These porosifying agents can be used alone or in combination of two or more.
上記多孔質化剤は、モノマ全質量に対して0~200質量%使用することができる。多孔質化剤の量によって、疎水性高分子粒子の空隙率をコントロールすることができる。さらに、多孔質化剤の種類によって、疎水性高分子粒子の細孔の大きさ及び形状をコントロールすることができる。
The above-mentioned porous agent can be used in an amount of 0 to 200% by mass based on the total mass of the monomers. The porosity of the hydrophobic polymer particles can be controlled by the amount of the porosifying agent. Furthermore, the size and shape of the pores of the hydrophobic polymer particles can be controlled by the type of the porosifying agent.
溶媒として使用する水を多孔質化剤とすることもできる。水を多孔質化剤とする場合は、モノマに油溶性界面活性剤を溶解させ、モノマの液滴が水を吸収することによって、粒子を多孔質化することが可能となる。
水 Water used as a solvent can be used as a porosifying agent. When water is used as the porosifying agent, the oil-soluble surfactant is dissolved in the monomer, and the droplets of the monomer absorb the water, whereby the particles can be made porous.
多孔質化に使用される油溶性界面活性剤としては、分岐C16~C24脂肪酸、鎖状不飽和C16~C22脂肪酸又は鎖状飽和C12~C14脂肪酸のソルビタンモノエステル、例えば、ソルビタンモノラウレート、ソルビタンモノオレエート、ソルビタンモノミリステート又はヤシ脂肪酸から誘導されるソルビタンモノエステル;分岐C16~C24脂肪酸、鎖状不飽和C16~C22脂肪酸又は鎖状飽和C12~C14脂肪酸のジグリセロールモノエステル、例えば、ジグリセロールモノオレエート(例えば、C18:1(炭素数18個、二重結合数1個)脂肪酸のジグリセロールモノエステル)、ジグリセロールモノミリステート、ジグリセロールモノイソステアレート又はヤシ脂肪酸のジグリセロールモノエステル;分岐C16~C24アルコール(例えば、ゲルベアルコール)、鎖状不飽和C16~C22アルコール又は鎖状飽和C12~C14アルコール(例えば、ヤシ脂肪アルコール)のジグリセロールモノ脂肪族エーテル;及びこれらの混合物が挙げられる。
Examples of the oil-soluble surfactant used for making the porous material include a sorbitan monoester of a branched C16-C24 fatty acid, a chain unsaturated C16-C22 fatty acid or a chain saturated C12-C14 fatty acid, for example, sorbitan monolaurate, sorbitan Sorbitan monoesters derived from monooleate, sorbitan monomyristate or coconut fatty acids; diglycerol monoesters of branched C16-C24 fatty acids, chain unsaturated C16-C22 fatty acids or chain saturated C12-C14 fatty acids, such as Glycerol monooleate (for example, diglycerol monoester of C18: 1 fatty acid (18 carbon atoms, 1 double bond) fatty acid), diglycerol monomyristate, diglycerol monoisostearate or coconut fatty acid diglycerol monoester Ester; Branch C16 ~ 24 alcohol (e.g., Guerbet alcohols), linear unsaturated C16 ~ C22 alcohols or linear saturated C12 ~ C14 alcohols (e.g., coconut fatty alcohols) diglycerol mono-fatty ethers; and mixtures thereof.
これらのうち、ソルビタンモノラウレート(例えば、SPAN(スパン、登録商標)20、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるソルビタンモノラウレート)、ソルビタンモノオレエート(例えば、SPAN(スパン、登録商標)80、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるソルビタンモノオレエート)、ジグリセロールモノオレエート(例えば、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるジグリセロールモノオレエート)、ジグリセロールモノイソステアレート(例えば、純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるジグリセロールモノイソステアレート)、ジグリセロールモノミリステート(純度が好ましくは約40%を超える、より好ましくは約50%を超える、更に好ましくは約70%を超えるジグリセロールモノミリステート)、ジグリセロールのココイル(例えば、ラウリル基、ミリストイル基等)エーテル、又は、これらの混合物が好ましい。
Of these, sorbitan monolaurate (e.g., SPAN® 20, having a purity preferably greater than about 40%, more preferably greater than about 50%, and even more preferably greater than about 70%) Rate), sorbitan monooleate (eg, SPAN® 80, preferably having a purity of greater than about 40%, more preferably greater than about 50%, even more preferably greater than about 70%) ), Diglycerol monooleate (eg, diglycerol monooleate having a purity preferably greater than about 40%, more preferably greater than about 50%, even more preferably greater than about 70%), diglycerol monoisostearate (Eg, having a purity preferably greater than about 40%, more preferably about 50% More preferably more than about 70% diglycerol monoisostearate), diglycerol monomyristate (purity preferably more than about 40%, more preferably more than about 50%, even more preferably more than about 70%). Diglycerol monomyristate), cocoyl (e.g., lauryl, myristoyl, etc.) ethers of diglycerol, or mixtures thereof.
これらの油溶性界面活性剤は、モノマ全質量に対して、5~80質量%の範囲で用いることが好ましい。油溶性界面活性剤の使用量が5質量%以上であると、水滴の安定性が充分となることから、大きな単一孔を形成し難くなる。また、油溶性界面活性剤の使用量が80質量%以下であると、重合後に疎水性高分子粒子の形状をより保持し易くなる。
These oil-soluble surfactants are preferably used in the range of 5 to 80% by mass based on the total mass of the monomers. When the use amount of the oil-soluble surfactant is 5% by mass or more, the stability of water droplets becomes sufficient, so that it is difficult to form large single holes. When the amount of the oil-soluble surfactant used is 80% by mass or less, the shape of the hydrophobic polymer particles can be more easily maintained after the polymerization.
重合反応に用いられる水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体等が挙げられる。水性媒体には、界面活性剤が含まれていてもよい。界面活性剤としては、アニオン系、カチオン系、ノニオン系及び両性イオン系の界面活性剤のうち、いずれも用いることができる。
水性 Examples of the aqueous medium used for the polymerization reaction include water, a mixed medium of water and a water-soluble solvent (for example, lower alcohol) and the like. The aqueous medium may contain a surfactant. As the surfactant, any of anionic, cationic, nonionic and zwitterionic surfactants can be used.
アニオン系界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、アルケルニルコハク酸塩(例えばアルケルニルコハク酸ジカリウム塩)、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩及びポリオキシエチレンアルキル硫酸エステル塩が挙げられる。
Examples of anionic surfactants include fatty acid oils such as sodium oleate and castor oil, alkyl sulfates such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfones. Acid salts, alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, etc., alkenyl succinates (eg, dipotassium alkenyl succinate), alkyl phosphate salts, naphthalene sulfonic acid formalin condensates, polyoxyethylene Polyoxyethylene alkyl ether sulfates such as alkyl phenyl ether sulfate, sodium polyoxyethylene lauryl ether sulfate, and polyoxyethylene alkyl sulfate; Ester salts.
カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩が挙げられる。
Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
ノニオン系界面活性剤としては、例えば、ポリエチレングリコールアルキルエーテル類、ポリエチレングリコールアルキルアリールエーテル類、ポリエチレングリコールエステル類、ポリエチレングリコールソルビタンエステル類、ポリアルキレングリコールアルキルアミン又はアミド類等の炭化水素系ノニオン界面活性剤、シリコンのポリエチレンオキサイド付加物類、シリコンのポリプロピレンオキサイド付加物類等のポリエーテル変性シリコン系ノニオン界面活性剤、パーフルオロアルキルグリコール類等のフッ素系ノニオン界面活性剤が挙げられる。
Examples of the nonionic surfactant include, for example, hydrocarbon nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol alkyl aryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines, and amides. Agents, polyether-modified silicon-based nonionic surfactants such as polyethylene oxide adducts of silicon and polypropylene oxide adducts of silicon, and fluorine-based nonionic surfactants such as perfluoroalkyl glycols.
両性イオン系界面活性剤としては、例えば、ラウリルジメチルアミンオキサイド等の炭化水素界面活性剤、リン酸エステル系界面活性剤、亜リン酸エステル系界面活性剤が挙げられる。
Examples of the amphoteric surfactant include a hydrocarbon surfactant such as lauryl dimethylamine oxide, a phosphate ester surfactant, and a phosphite ester surfactant.
界面活性剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。上記界面活性剤の中でも、モノマ重合時の分散安定性の観点から、アニオン系界面活性剤が好ましい。
は The surfactant may be used alone or in combination of two or more. Among the above surfactants, anionic surfactants are preferable from the viewpoint of dispersion stability during polymerization of monomers.
必要に応じて添加される重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物が挙げられる。重合開始剤は、モノマ100質量部に対して、0.1~7.0質量部の範囲で使用することができる。
Examples of the polymerization initiator that is added as needed include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, tert-butyl peroxide. Organic peroxides such as oxy-2-ethylhexanoate and di-tert-butyl peroxide; 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2 ′ Azo compounds such as -azobis (2,4-dimethylvaleronitrile); The polymerization initiator can be used in the range of 0.1 to 7.0 parts by mass based on 100 parts by mass of the monomer.
重合温度は、モノマ及び重合開始剤の種類に応じて、適宜選択することができる。重合温度は、25~110℃が好ましく、50~100℃がより好ましい。
The polymerization temperature can be appropriately selected according to the type of the monomer and the polymerization initiator. The polymerization temperature is preferably from 25 to 110 ° C, more preferably from 50 to 100 ° C.
疎水性高分子粒子の合成において、粒子の分散安定性を向上させるために、高分子分散安定剤を用いてもよい。
に お い て In the synthesis of the hydrophobic polymer particles, a polymer dispersion stabilizer may be used to improve the dispersion stability of the particles.
高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース等)、ポリビニルピロリドンが挙げられ、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物も併用することができる。これらのうち、ポリビニルアルコール又はポリビニルピロリドンが好ましい。高分子分散安定剤の添加量は、モノマ100質量部に対して1~10質量部が好ましい。
Examples of the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, celluloses (such as hydroxyethylcellulose, carboxymethylcellulose, and methylcellulose) and polyvinylpyrrolidone, and an inorganic water-soluble polymer compound such as sodium tripolyphosphate is also used in combination. can do. Of these, polyvinyl alcohol or polyvinylpyrrolidone is preferred. The addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by mass based on 100 parts by mass of the monomer.
モノマが単独で重合することを抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。
In order to suppress the monomer from being polymerized alone, a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamins B, citric acid, and polyphenols may be used.
疎水性高分子粒子の平均粒径は、好ましくは500μm以下、より好ましくは150μm以下、更に好ましくは110μm以下である。また、疎水性高分子粒子の平均粒径は、通液性の向上の観点から、好ましくは10μm以上、より好ましくは30μm以上、更に好ましくは50μm以上である。
平均 The average particle size of the hydrophobic polymer particles is preferably 500 µm or less, more preferably 150 µm or less, and further preferably 110 µm or less. The average particle size of the hydrophobic polymer particles is preferably 10 μm or more, more preferably 30 μm or more, and further preferably 50 μm or more, from the viewpoint of improving liquid permeability.
疎水性高分子粒子の粒径の変動係数(C.V.)は、通液性の向上の観点から、3~15%であることが好ましく、5~15%であることがより好ましく、5~10%であることが更に好ましい。C.V.を低減する方法としては、例えば、マイクロプロセスサーバー(株式会社日立製作所製)等の乳化装置により単分散化する方法が挙げられる。
The coefficient of variation (CV) of the particle diameter of the hydrophobic polymer particles is preferably from 3 to 15%, more preferably from 5 to 15%, from the viewpoint of improving liquid permeability. More preferably, it is 10%. C. V. For example, a method of monodispersing with an emulsifying apparatus such as a microprocess server (manufactured by Hitachi, Ltd.) can be mentioned.
疎水性高分子粒子又は分離材の平均粒径及び粒径の変動係数は、以下の測定法により求めることができる。
1)疎水性高分子粒子又は分離材を、超音波分散装置を使用して水(界面活性剤等の分散剤を含む)に分散させ、1質量%の疎水性高分子粒子又は分離材を含む分散液を調製する。
2)粒度分布計(シスメックスフロー、シスメックス株式会社製)を用いて、上記分散液中の疎水性高分子粒子又は分離材約1万個の画像により平均粒径及び粒径の変動係数を測定する。 The average particle diameter and the coefficient of variation of the particle diameter of the hydrophobic polymer particles or the separating material can be determined by the following measurement methods.
1) Disperse the hydrophobic polymer particles or the separating material in water (including a dispersant such as a surfactant) using an ultrasonic dispersing device and include 1% by mass of the hydrophobic polymer particles or the separating material. Prepare a dispersion.
2) Using a particle size distribution meter (Sysmex Flow, manufactured by Sysmex Corporation), the average particle size and the coefficient of variation of the particle size are measured from the image of the hydrophobic polymer particles or about 10,000 separating materials in the dispersion. .
1)疎水性高分子粒子又は分離材を、超音波分散装置を使用して水(界面活性剤等の分散剤を含む)に分散させ、1質量%の疎水性高分子粒子又は分離材を含む分散液を調製する。
2)粒度分布計(シスメックスフロー、シスメックス株式会社製)を用いて、上記分散液中の疎水性高分子粒子又は分離材約1万個の画像により平均粒径及び粒径の変動係数を測定する。 The average particle diameter and the coefficient of variation of the particle diameter of the hydrophobic polymer particles or the separating material can be determined by the following measurement methods.
1) Disperse the hydrophobic polymer particles or the separating material in water (including a dispersant such as a surfactant) using an ultrasonic dispersing device and include 1% by mass of the hydrophobic polymer particles or the separating material. Prepare a dispersion.
2) Using a particle size distribution meter (Sysmex Flow, manufactured by Sysmex Corporation), the average particle size and the coefficient of variation of the particle size are measured from the image of the hydrophobic polymer particles or about 10,000 separating materials in the dispersion. .
疎水性高分子粒子の細孔容積(空隙率)は、疎水性高分子粒子の全体積基準で30体積%以上70体積%以下であることが好ましく、40体積%以上70体積%以下であることがより好ましい。疎水性高分子粒子は、細孔径(モード径)が0.05μm以上0.6μm未満である細孔、すなわちマクロポアー(マクロ孔)を有することが好ましい。疎水性高分子粒子の細孔径として、より好ましくは、0.2μm以上0.5μm未満である。細孔径が0.05μm以上であると、細孔内に物質が入り易くなる傾向があり、細孔径が0.6μm未満であると、比表面積が充分なものになる傾向がある。細孔容積及び細孔径は上述の多孔質化剤により調整可能である。
The pore volume (porosity) of the hydrophobic polymer particles is preferably 30% by volume to 70% by volume, and more preferably 40% by volume to 70% by volume based on the total volume of the hydrophobic polymer particles. Is more preferred. The hydrophobic polymer particles preferably have pores having a pore diameter (mode diameter) of 0.05 μm or more and less than 0.6 μm, that is, macropores (macropores). The pore diameter of the hydrophobic polymer particles is more preferably 0.2 μm or more and less than 0.5 μm. When the pore diameter is 0.05 μm or more, the substance tends to easily enter the pores, and when the pore diameter is less than 0.6 μm, the specific surface area tends to be sufficient. The pore volume and the pore diameter can be adjusted by the above-mentioned porosifying agent.
疎水性高分子粒子の比表面積は、20m2/g以上であることが好ましい。より高い実用性の観点から、比表面積は35m2/g以上であることがより好ましく、40m2/g以上であることが更に好ましい。比表面積が20m2/g以上であると、分離する物質の吸着量が大きくなる傾向がある。
The specific surface area of the hydrophobic polymer particles is preferably 20 m 2 / g or more. In light of higher practicality, the specific surface area is more preferably equal to or greater than 35 m 2 / g, and still more preferably equal to or greater than 40 m 2 / g. If the specific surface area is 20 m 2 / g or more, the amount of adsorption of the substance to be separated tends to increase.
疎水性高分子粒子及び分離材の、細孔径分布におけるモード径(又は平均細孔径)、比表面積、空隙率は、水銀圧入測定装置(オートポア:株式会社島津製作所製)にて測定した値である。これらは以下のようにして測定することができる。約0.05gの試料を、標準5mL粉体用セル(ステム容積0.4mL)に採り、初期圧21kPa(約3psia、細孔直径約60μm相当)の条件で測定する。水銀パラメータは、装置デフォルトの水銀接触角130degrees、水銀表面張力485dynes/cmに設定する。細孔径0.05~5μmの範囲に限定してそれぞれの値を算出する。
The mode diameter (or average pore diameter), specific surface area, and porosity in the pore diameter distribution of the hydrophobic polymer particles and the separating material are values measured by a mercury intrusion measuring device (Autopore: manufactured by Shimadzu Corporation). . These can be measured as follows. A sample of about 0.05 g is taken in a standard 5 mL powder cell (stem volume: 0.4 mL) and measured under conditions of an initial pressure of 21 kPa (about 3 psia, pore diameter of about 60 μm). The mercury parameters are set to a device default mercury contact angle of 130 degrees and a mercury surface tension of 485 dynes / cm. Each value is calculated limited to the range of the pore diameter of 0.05 to 5 μm.
[被覆層]
本実施形態に係る被覆層は、水酸基と、-O-R-L(Oは水酸基に由来する酸素原子を示し、Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基と、を有する親水性高分子を含む。本実施形態に係る分離材は、被覆層に水酸基と-O-R-Lで表される基とを有する親水性高分子を含むことにより、カラムとして用いたときの通液性に優れる。また、本実施形態に係る分離材は、上述のような被覆層を備えることにより、タンパク質の非特異吸着を低減しつつ、タンパク質の動的吸着性及び回収率等の特性に優れる傾向がある。 [Coating layer]
The coating layer according to this embodiment includes a hydroxyl group and —ORL (O represents an oxygen atom derived from the hydroxyl group, R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or a carboxy group. And a group represented by an alkali metal salt of a group). The separation material according to the present embodiment is excellent in liquid permeability when used as a column, because the coating layer contains a hydrophilic polymer having a hydroxyl group and a group represented by —ORL. In addition, the separation material according to the present embodiment tends to be excellent in characteristics such as dynamic adsorption property and recovery rate of protein while reducing non-specific adsorption of protein by providing the above-mentioned coating layer.
本実施形態に係る被覆層は、水酸基と、-O-R-L(Oは水酸基に由来する酸素原子を示し、Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基と、を有する親水性高分子を含む。本実施形態に係る分離材は、被覆層に水酸基と-O-R-Lで表される基とを有する親水性高分子を含むことにより、カラムとして用いたときの通液性に優れる。また、本実施形態に係る分離材は、上述のような被覆層を備えることにより、タンパク質の非特異吸着を低減しつつ、タンパク質の動的吸着性及び回収率等の特性に優れる傾向がある。 [Coating layer]
The coating layer according to this embodiment includes a hydroxyl group and —ORL (O represents an oxygen atom derived from the hydroxyl group, R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or a carboxy group. And a group represented by an alkali metal salt of a group). The separation material according to the present embodiment is excellent in liquid permeability when used as a column, because the coating layer contains a hydrophilic polymer having a hydroxyl group and a group represented by —ORL. In addition, the separation material according to the present embodiment tends to be excellent in characteristics such as dynamic adsorption property and recovery rate of protein while reducing non-specific adsorption of protein by providing the above-mentioned coating layer.
Rを構成するアルキレン基は、直鎖状であってもよく、分岐状であってもよいが、通液性により優れる観点から、直鎖状であることが好ましい。また、Rは、通液性により優れる観点から、炭素数1~4のアルキレン基であることが好ましく、炭素数1~3のアルキレン基であることがより好ましい。Lは、通液性により優れる観点から、カルボキシ基、カルボキシ基のナトリウム塩及びカルボキシ基のカリウム塩からなる群より選ばれる少なくとも1種を含むことが好ましく、カルボキシ基及びカルボキシ基のナトリウム塩からなる群より選ばれる少なくとも1種を含むことがより好ましい。
The alkylene group constituting R may be linear or branched, but is preferably linear from the viewpoint of better liquid permeability. R is preferably an alkylene group having 1 to 4 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms, from the viewpoint of more excellent liquid permeability. L preferably contains at least one selected from the group consisting of a carboxy group, a sodium salt of a carboxy group, and a potassium salt of a carboxy group, from the viewpoint of more excellent liquid permeability, and is composed of a sodium salt of a carboxy group and a carboxy group. More preferably, it contains at least one member selected from the group.
水酸基と-O-R-Lで表される基とを有する親水性高分子は、多糖類及びその変性体からなる群より選ばれる少なくとも1種に由来する親水性高分子を含んでもよい。当該親水性高分子は、アガロース、デキストラン、セルロース、プルラン、キトサン及びこれらの変性体からなる群より選ばれる少なくとも1種に由来する親水性高分子であってもよい。当該親水性高分子は、架橋されていてもよい。
The hydrophilic polymer having a hydroxyl group and a group represented by —ORL may include a hydrophilic polymer derived from at least one selected from the group consisting of polysaccharides and modified products thereof. The hydrophilic polymer may be a hydrophilic polymer derived from at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof. The hydrophilic polymer may be cross-linked.
水酸基を有する親水性高分子で、疎水性高分子粒子を被覆することにより、タンパク質の非特異吸着を抑制し易くなる傾向がある。また、水酸基を有する親水性高分子は、架橋されていることが好ましい。すなわち、被覆層は、水酸基を有する親水性高分子の架橋体を含むことが好ましい。水酸基を有する親水性高分子が架橋されていることにより、カラム圧の上昇を抑制できる傾向がある。
非 By coating the hydrophobic polymer particles with a hydrophilic polymer having a hydroxyl group, non-specific adsorption of proteins tends to be easily suppressed. Further, the hydrophilic polymer having a hydroxyl group is preferably crosslinked. That is, the coating layer preferably contains a crosslinked body of a hydrophilic polymer having a hydroxyl group. Since the hydrophilic polymer having a hydroxyl group is crosslinked, an increase in column pressure tends to be suppressed.
(水酸基を有する親水性高分子)
水酸基を有する親水性高分子は、1分子中に2個以上の水酸基を有することが好ましい。水酸基を有する親水性高分子としては、例えば、多糖類又はその変性体、及び、ポリビニルアルコール又はその変性体が挙げられる。水酸基を有する親水性高分子は、多糖類又はその変性体であることが好ましい。水酸基を有する親水性高分子は、多糖類及びその変性体からなる群より選ばれる少なくとも1種を含んでもよい。多糖類としては、例えば、アガロース、デキストラン、セルロース、プルラン及びキトサンが挙げられる。水酸基を有する親水性高分子として、例えば、平均分子量1万~20万程度の高分子を使用することができる。水酸基を有する親水性高分子は、アガロース、デキストラン、セルロース、プルラン、キトサン、及びこれらの変性体からなる群より選ばれる少なくとも1種を含んでもよい。 (Hydrophilic polymer having hydroxyl group)
The hydrophilic polymer having a hydroxyl group preferably has two or more hydroxyl groups in one molecule. Examples of the hydrophilic polymer having a hydroxyl group include a polysaccharide or a modified product thereof, and a polyvinyl alcohol or a modified product thereof. The hydrophilic polymer having a hydroxyl group is preferably a polysaccharide or a modified product thereof. The hydrophilic polymer having a hydroxyl group may include at least one selected from the group consisting of polysaccharides and modified products thereof. Polysaccharides include, for example, agarose, dextran, cellulose, pullulan and chitosan. As the hydrophilic polymer having a hydroxyl group, for example, a polymer having an average molecular weight of about 10,000 to 200,000 can be used. The hydrophilic polymer having a hydroxyl group may include at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof.
水酸基を有する親水性高分子は、1分子中に2個以上の水酸基を有することが好ましい。水酸基を有する親水性高分子としては、例えば、多糖類又はその変性体、及び、ポリビニルアルコール又はその変性体が挙げられる。水酸基を有する親水性高分子は、多糖類又はその変性体であることが好ましい。水酸基を有する親水性高分子は、多糖類及びその変性体からなる群より選ばれる少なくとも1種を含んでもよい。多糖類としては、例えば、アガロース、デキストラン、セルロース、プルラン及びキトサンが挙げられる。水酸基を有する親水性高分子として、例えば、平均分子量1万~20万程度の高分子を使用することができる。水酸基を有する親水性高分子は、アガロース、デキストラン、セルロース、プルラン、キトサン、及びこれらの変性体からなる群より選ばれる少なくとも1種を含んでもよい。 (Hydrophilic polymer having hydroxyl group)
The hydrophilic polymer having a hydroxyl group preferably has two or more hydroxyl groups in one molecule. Examples of the hydrophilic polymer having a hydroxyl group include a polysaccharide or a modified product thereof, and a polyvinyl alcohol or a modified product thereof. The hydrophilic polymer having a hydroxyl group is preferably a polysaccharide or a modified product thereof. The hydrophilic polymer having a hydroxyl group may include at least one selected from the group consisting of polysaccharides and modified products thereof. Polysaccharides include, for example, agarose, dextran, cellulose, pullulan and chitosan. As the hydrophilic polymer having a hydroxyl group, for example, a polymer having an average molecular weight of about 10,000 to 200,000 can be used. The hydrophilic polymer having a hydroxyl group may include at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof.
水酸基を有する親水性高分子は、界面吸着能を向上させる観点から、疎水性基を導入した変性体であることが好ましい。疎水性基としては、例えば、炭素数1~6のアルキル基及び炭素数6~10のアリール基が挙げられる。炭素数1~6のアルキル基としては、例えば、メチル基、エチル基及びプロピル基が挙げられる。炭素数6~10のアリール基としては、例えば、フェニル基及びナフチル基が挙げられる。疎水性基は、水酸基と反応する官能基(例えば、エポキシ基)及び疎水性基を有する化合物(例えば、グリシジルフェニルエーテル)を、水酸基を有する親水性高分子と従来公知の方法で反応させることにより、導入することができる。
The hydrophilic polymer having a hydroxyl group is preferably a modified polymer having a hydrophobic group introduced from the viewpoint of improving the interfacial adsorption ability. Examples of the hydrophobic group include an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group and a propyl group. Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group. The hydrophobic group is obtained by reacting a functional group (for example, an epoxy group) that reacts with a hydroxyl group and a compound (for example, glycidyl phenyl ether) having a hydrophobic group with a hydrophilic polymer having a hydroxyl group by a conventionally known method. , Can be introduced.
疎水性基を導入した親水性高分子の変性体における疎水性基の含有量は、粒子表面に吸着するための疎水的相互作用力の保持と、タンパク質の非特異吸着の抑制とのバランスから、5~30質量%であることが好ましく、10~20質量%であることがより好ましく、12~17質量%であることが更に好ましい。
The content of the hydrophobic group in the modified hydrophilic polymer in which the hydrophobic group is introduced is determined from the balance between the retention of the hydrophobic interaction force for adsorption on the particle surface and the suppression of non-specific adsorption of the protein. It is preferably from 5 to 30% by mass, more preferably from 10 to 20% by mass, even more preferably from 12 to 17% by mass.
<分離材の製造方法>
本実施形態の分離材は、疎水性高分子粒子の表面の少なくとも一部に水酸基を有する親水性高分子を被覆する工程(1)と、被覆された親水性高分子が有する水酸基の水素原子の一部を、-R-L(Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基に置換する工程(2)と、を備える方法により、製造することができる。被覆された親水性高分子は、工程(2)の前に、架橋されてもよい。本実施形態の分離材の製造方法は、例えば、疎水性高分子粒子の表面に水酸基を有する親水性高分子を吸着する工程と、吸着された親水性高分子を架橋する工程と、架橋された親水性高分子に水酸基を介して-R-Lで表される基を導入する工程とを含んでいてよい。 <Production method of separation material>
The separating material of the present embodiment includes a step (1) of coating at least a part of the surface of the hydrophobic polymer particles with a hydrophilic polymer having a hydroxyl group, and a step of coating a hydrogen atom of the hydroxyl group of the coated hydrophilic polymer. Step (2) of partially substituting a part of the group represented by -RL (R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or an alkali metal salt of a carboxy group). And can be manufactured by a method comprising: The coated hydrophilic polymer may be cross-linked before step (2). The method for producing the separation material of the present embodiment includes, for example, a step of adsorbing a hydrophilic polymer having a hydroxyl group on the surface of the hydrophobic polymer particles, a step of cross-linking the adsorbed hydrophilic polymer, And introducing a group represented by —RL into the hydrophilic polymer via a hydroxyl group.
本実施形態の分離材は、疎水性高分子粒子の表面の少なくとも一部に水酸基を有する親水性高分子を被覆する工程(1)と、被覆された親水性高分子が有する水酸基の水素原子の一部を、-R-L(Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基に置換する工程(2)と、を備える方法により、製造することができる。被覆された親水性高分子は、工程(2)の前に、架橋されてもよい。本実施形態の分離材の製造方法は、例えば、疎水性高分子粒子の表面に水酸基を有する親水性高分子を吸着する工程と、吸着された親水性高分子を架橋する工程と、架橋された親水性高分子に水酸基を介して-R-Lで表される基を導入する工程とを含んでいてよい。 <Production method of separation material>
The separating material of the present embodiment includes a step (1) of coating at least a part of the surface of the hydrophobic polymer particles with a hydrophilic polymer having a hydroxyl group, and a step of coating a hydrogen atom of the hydroxyl group of the coated hydrophilic polymer. Step (2) of partially substituting a part of the group represented by -RL (R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or an alkali metal salt of a carboxy group). And can be manufactured by a method comprising: The coated hydrophilic polymer may be cross-linked before step (2). The method for producing the separation material of the present embodiment includes, for example, a step of adsorbing a hydrophilic polymer having a hydroxyl group on the surface of the hydrophobic polymer particles, a step of cross-linking the adsorbed hydrophilic polymer, And introducing a group represented by —RL into the hydrophilic polymer via a hydroxyl group.
[被覆層の形成方法]
本実施形態に係る被覆層は、例えば、以下に示す方法により形成することができる。 [Method of forming coating layer]
The coating layer according to the present embodiment can be formed, for example, by the following method.
本実施形態に係る被覆層は、例えば、以下に示す方法により形成することができる。 [Method of forming coating layer]
The coating layer according to the present embodiment can be formed, for example, by the following method.
(水酸基を有する親水性高分子の吸着)
まず、水酸基を有する親水性高分子の溶液を疎水性高分子粒子表面に吸着させる。水酸基を有する親水性高分子の溶液の溶媒としては、水酸基を有する親水性高分子を溶解することのできるものであれば、特に限定されないが、水が最も一般的である。溶媒に溶解させる親水性高分子の濃度は、5~20(mg/mL)が好ましい。 (Adsorption of hydrophilic polymer having hydroxyl group)
First, a solution of a hydrophilic polymer having a hydroxyl group is adsorbed on the surface of the hydrophobic polymer particles. The solvent for the solution of the hydrophilic polymer having a hydroxyl group is not particularly limited as long as it can dissolve the hydrophilic polymer having a hydroxyl group, but water is the most common. The concentration of the hydrophilic polymer dissolved in the solvent is preferably 5 to 20 (mg / mL).
まず、水酸基を有する親水性高分子の溶液を疎水性高分子粒子表面に吸着させる。水酸基を有する親水性高分子の溶液の溶媒としては、水酸基を有する親水性高分子を溶解することのできるものであれば、特に限定されないが、水が最も一般的である。溶媒に溶解させる親水性高分子の濃度は、5~20(mg/mL)が好ましい。 (Adsorption of hydrophilic polymer having hydroxyl group)
First, a solution of a hydrophilic polymer having a hydroxyl group is adsorbed on the surface of the hydrophobic polymer particles. The solvent for the solution of the hydrophilic polymer having a hydroxyl group is not particularly limited as long as it can dissolve the hydrophilic polymer having a hydroxyl group, but water is the most common. The concentration of the hydrophilic polymer dissolved in the solvent is preferably 5 to 20 (mg / mL).
この溶液を、疎水性高分子粒子に含浸させる。含浸方法は、水酸基を有する親水性高分子の溶液に疎水性高分子粒子を加えて一定時間放置する。含浸時間は、疎水性高分子粒子の表面状態によっても変わるが、通常一昼夜含浸すれば親水性高分子濃度が疎水性高分子粒子の内部と外部とで平衡状態となる。その後、水、アルコール等の溶媒で洗浄し、未吸着分の水酸基を有する親水性高分子を除去する。
This solution is impregnated with hydrophobic polymer particles. In the impregnation method, hydrophobic polymer particles are added to a solution of a hydrophilic polymer having a hydroxyl group, and the solution is left for a predetermined time. The impregnation time varies depending on the surface state of the hydrophobic polymer particles. However, if the impregnation is carried out for 24 hours, the concentration of the hydrophilic polymer is in an equilibrium state between the inside and the outside of the hydrophobic polymer particles. Thereafter, washing with a solvent such as water or alcohol is performed to remove the hydrophilic polymer having a hydroxyl group that has not been adsorbed.
(架橋処理)
次いで、架橋剤を加えて疎水性高分子粒子表面に吸着された水酸基を有する親水性高分子を架橋反応させて、架橋体を形成する。このとき、架橋体は、水酸基を有する3次元架橋網目構造を有する。 (Cross-linking treatment)
Next, a crosslinking agent is added to cause a crosslinking reaction of the hydrophilic polymer having a hydroxyl group adsorbed on the surface of the hydrophobic polymer particles, thereby forming a crosslinked body. At this time, the crosslinked body has a three-dimensional crosslinked network structure having a hydroxyl group.
次いで、架橋剤を加えて疎水性高分子粒子表面に吸着された水酸基を有する親水性高分子を架橋反応させて、架橋体を形成する。このとき、架橋体は、水酸基を有する3次元架橋網目構造を有する。 (Cross-linking treatment)
Next, a crosslinking agent is added to cause a crosslinking reaction of the hydrophilic polymer having a hydroxyl group adsorbed on the surface of the hydrophobic polymer particles, thereby forming a crosslinked body. At this time, the crosslinked body has a three-dimensional crosslinked network structure having a hydroxyl group.
架橋剤としては、例えば、エピクロルヒドリン等のエピハロヒドリン、グルタルアルデヒド等のジアルデヒド化合物、メチレンジイソシアネート等のジイソシアネート化合物、エチレングリコールジグリシジルエーテル等のグリシジル化合物などのような水酸基に活性な官能基を2個以上有する化合物が挙げられる。また、水酸基を有する親水性高分子としてキトサンのようなアミノ基を有する化合物を使用する場合には、ジクロロオクタンのようなジハライド化合物も架橋剤として使用できる。
Examples of the crosslinking agent include two or more functional groups active on hydroxyl groups such as epihalohydrin such as epichlorohydrin, dialdehyde compounds such as glutaraldehyde, diisocyanate compounds such as methylene diisocyanate, and glycidyl compounds such as ethylene glycol diglycidyl ether. Compounds. When a compound having an amino group such as chitosan is used as the hydrophilic polymer having a hydroxyl group, a dihalide compound such as dichlorooctane can also be used as a crosslinking agent.
この架橋反応には通常触媒が用いられる。該触媒は架橋剤の種類に合わせて適宜従来公知のものを用いることができ、例えば、架橋剤がエピクロルヒドリン等の場合には水酸化ナトリウム等のアルカリが有効であり、架橋剤がジアルデヒド化合物の場合には塩酸等の鉱酸が有効である。
通常 A catalyst is usually used for this crosslinking reaction. As the catalyst, a conventionally known catalyst can be appropriately used according to the type of the crosslinking agent.For example, when the crosslinking agent is epichlorohydrin or the like, an alkali such as sodium hydroxide is effective, and the crosslinking agent is a dialdehyde compound. In this case, a mineral acid such as hydrochloric acid is effective.
架橋剤による架橋反応は、通常、分離材を適当な媒体中に分散、懸濁させた系に架橋剤を添加することによって行われる。架橋剤の添加量は、水酸基を有する親水性高分子として多糖類を使用した場合、多糖類を形成する単糖類の1単位を1モルとすると、それに対して0.1~100モル倍の範囲内で、分離材の性能に応じて選定することができる。一般に、架橋剤の添加量を少なくすると、被覆層が疎水性高分子粒子から剥離し易くなる傾向がある。また、架橋剤の添加量が過剰で、かつ、水酸基を有する親水性高分子との反応率が高い場合、原料の水酸基を有する親水性高分子の特性が損なわれる傾向がある。
架橋 The crosslinking reaction with a crosslinking agent is usually performed by adding a crosslinking agent to a system in which a separating material is dispersed and suspended in an appropriate medium. When a polysaccharide is used as the hydrophilic polymer having a hydroxyl group, the amount of the crosslinking agent is in the range of 0.1 to 100 moles per mole of one unit of the monosaccharide forming the polysaccharide. Within, it can be selected according to the performance of the separating material. In general, when the amount of the cross-linking agent is reduced, the coating layer tends to be easily separated from the hydrophobic polymer particles. If the amount of the crosslinking agent added is excessive and the reaction rate with the hydroxyl group-containing hydrophilic polymer is high, the properties of the raw material hydroxyl group-containing hydrophilic polymer tend to be impaired.
触媒の使用量としては、架橋剤の種類により異なるが、通常、水酸基を有する親水性高分子として多糖類を使用する場合に、多糖類を形成する単糖類の1単位を1モルとすると、これに対して0.01~10モル倍の範囲、好ましくは0.1~5モル倍の範囲で使用される。
The amount of the catalyst used depends on the type of the cross-linking agent. Usually, when a polysaccharide is used as the hydrophilic polymer having a hydroxyl group, when one unit of the monosaccharide forming the polysaccharide is 1 mol, Is used in a range of 0.01 to 10 mole times, preferably 0.1 to 5 mole times.
例えば、該架橋反応条件を温度条件とした場合、反応系の温度を上げ、その温度が反応温度に達すれば架橋反応が生起する。
For example, when the cross-linking reaction conditions are temperature conditions, the temperature of the reaction system is increased, and when the temperature reaches the reaction temperature, a cross-linking reaction occurs.
水酸基を有する親水性高分子の溶液等を含浸させた疎水性高分子粒子を分散、懸濁させる媒体は、含浸させた高分子溶液から高分子、架橋剤等を抽出してしまうことなく、かつ、架橋反応に不活性なものである必要がある。媒体の具体例としては水、アルコール等が挙げられる。
A medium for dispersing and suspending hydrophobic polymer particles impregnated with a solution of a hydrophilic polymer having a hydroxyl group, without extracting polymers, cross-linking agents, etc. from the impregnated polymer solution, and Must be inert to the crosslinking reaction. Specific examples of the medium include water, alcohol, and the like.
架橋反応は、通常、5~90℃の範囲の温度で、1~24時間かけて行う。好ましくは、30~90℃の範囲の温度である。
The crosslinking reaction is usually performed at a temperature in the range of 5 to 90 ° C. for 1 to 24 hours. Preferably, the temperature is in the range of 30 to 90 ° C.
架橋の進行度を調整する際は、該架橋反応を段階的に行ってもよい。例えば、一度架橋反応させた粒子を再度架橋反応させることでも架橋の進行度を調整できる。架橋の進行度は、熱分解の5%重量減少時の温度で評価する。架橋の進行度が高い場合、重量減少開始温度は高くなり、架橋の進行度が低い場合、重量減少開始温度も低くなる。
調整 When adjusting the degree of progress of crosslinking, the crosslinking reaction may be performed stepwise. For example, the degree of crosslinking can also be adjusted by subjecting the particles that have undergone a crosslinking reaction to a crosslinking reaction again. The degree of cross-linking is evaluated at the temperature at which 5% weight loss due to thermal decomposition occurs. When the degree of progress of crosslinking is high, the temperature at which weight loss starts is high, and when the degree of progress of crosslinking is low, the temperature at which weight loss starts is also low.
5%熱重量減少量時の温度は、水酸基を有する親水性高分子の特性を保つ観点から、200~350℃であることが好ましく、220~330℃であることがより好ましく、230~320℃であることが更に好ましい。架橋度が低過ぎると水酸基を有する親水性高分子が粒子から脱落し易くなる傾向があり、架橋度が高過ぎると水酸基を有する親水性高分子の粒子からの脱落は防げるが、親水性高分子の膨潤又は官能基量の低下により動的吸着量が低下する傾向がある。
The temperature at the time of 5% thermal weight loss is preferably from 200 to 350 ° C, more preferably from 220 to 330 ° C, and more preferably from 230 to 320 ° C, from the viewpoint of maintaining the characteristics of the hydrophilic polymer having a hydroxyl group. Is more preferable. If the degree of cross-linking is too low, the hydrophilic polymer having a hydroxyl group tends to fall off the particles.If the degree of cross-linking is too high, the hydrophilic polymer having a hydroxyl group can be prevented from falling off the particles, but the hydrophilic polymer has Swelling or a decrease in the amount of functional groups tends to decrease the amount of dynamic adsorption.
架橋反応終了後、生成した粒子をろ別し、次いで、メタノール、エタノール等の親水性有機溶媒で洗浄し、未反応の高分子、懸濁用媒体等を除去すれば、疎水性高分子粒子の表面の少なくとも一部が、水酸基を有する親水性高分子を含む被覆層により被覆された粒子(以下、場合により「被覆粒子」という。)が得られる。
After the cross-linking reaction is completed, the generated particles are separated by filtration, and then washed with a hydrophilic organic solvent such as methanol and ethanol to remove unreacted polymer and suspending medium. Particles at least part of the surface of which are coated with a coating layer containing a hydrophilic polymer having a hydroxyl group (hereinafter sometimes referred to as “coated particles”) are obtained.
(-O-R-Lで表される基の導入)
上記被覆粒子には、親水性高分子が有する水酸基を介してカルボキシ基を導入することができる。すなわち、本実施形態に係る被覆層には、親水性高分子の水酸基に由来する酸素原子に、カルボキシ基を有するアルキレン基が直接結合した、-O-R-Lで表される基が導入されている。 (Introduction of a group represented by —ORL)
A carboxy group can be introduced into the coated particles via a hydroxyl group of the hydrophilic polymer. That is, in the coating layer according to the present embodiment, a group represented by —ORL, in which an alkylene group having a carboxy group is directly bonded to an oxygen atom derived from a hydroxyl group of the hydrophilic polymer, is introduced. ing.
上記被覆粒子には、親水性高分子が有する水酸基を介してカルボキシ基を導入することができる。すなわち、本実施形態に係る被覆層には、親水性高分子の水酸基に由来する酸素原子に、カルボキシ基を有するアルキレン基が直接結合した、-O-R-Lで表される基が導入されている。 (Introduction of a group represented by —ORL)
A carboxy group can be introduced into the coated particles via a hydroxyl group of the hydrophilic polymer. That is, in the coating layer according to the present embodiment, a group represented by —ORL, in which an alkylene group having a carboxy group is directly bonded to an oxygen atom derived from a hydroxyl group of the hydrophilic polymer, is introduced. ing.
-O-R-Lで表される基を導入する手法としては、例えば、ハロゲン化アルキル化合物を用いる方法が挙げられる。ハロゲン化アルキル化合物としては、例えば、モノハロゲノ酢酸、モノハロゲノプロピオン酸、モノハロゲノブタン酸、モノハロゲノペンタン酸、モノハロゲノヘキサン酸及びこれらのアルカリ金属塩が挙げられる。ハロゲン化アルキル化合物は、臭化物又は塩化物であることが好ましい。親水性高分子が有する水酸基にアルカリ条件下で、ハロゲン化アルキル化合物を反応させることにより、水酸基の水素原子を、-R-Lで表される基に置換することができる。
As a method for introducing a group represented by —ORL, for example, a method using a halogenated alkyl compound can be mentioned. Examples of the alkyl halide compound include monohalogenoacetic acid, monohalogenopropionic acid, monohalogenobutanoic acid, monohalogenopentanoic acid, monohalogenohexanoic acid, and alkali metal salts thereof. Preferably, the alkyl halide compound is a bromide or chloride. By reacting the hydroxyl group of the hydrophilic polymer with an alkyl halide compound under alkaline conditions, the hydrogen atom of the hydroxyl group can be replaced with a group represented by -RL.
ここで、親水性高分子が有する水酸基に、エピクロルヒドリン等のエピハロヒドリン又はエチレングリコールジグリシジルエーテル等のジグリシジル化合物を反応させてエポキシ基を導入した後に、エポキシ基に、チオグリコール酸等のカルボン酸チオールを反応させて、カルボキシ基を導入することもできる。しかし、エポキシ基の導入は、被覆層の親水性高分子に対する架橋反応の進行も並行して生じるため、糖鎖等の親水性高分子の膨潤性が損なわれタンパク質の動的吸着量が減少する傾向にある。
Here, the hydroxyl group of the hydrophilic polymer is reacted with a diglycidyl compound such as epichlorohydrin or ethylene glycol diglycidyl ether such as epichlorohydrin to introduce an epoxy group, and then the epoxy group is converted into a carboxylic acid thiol such as thioglycolic acid. By reacting, a carboxy group can be introduced. However, the introduction of the epoxy group also causes the cross-linking reaction of the coating layer to the hydrophilic polymer to proceed in parallel, so that the swellability of the hydrophilic polymer such as a sugar chain is impaired, and the amount of dynamic adsorption of the protein decreases. There is a tendency.
これに対して、本実施形態に係る-O-R-Lで表される基の導入方法は、エポキシ基を導入する工程を経ないため、上記のような架橋反応の進行を回避することができ、タンパク質の動的吸着量を向上させることができる。親水性高分子が有する水酸基を介して、カルボキシ基を導入することにより、通液性に優れる分離材を作製することができる。
On the other hand, the method for introducing a group represented by —ORL according to the present embodiment does not involve a step of introducing an epoxy group, and thus avoids the progress of the crosslinking reaction as described above. It is possible to improve the protein dynamic adsorption amount. By introducing a carboxy group through the hydroxyl group of the hydrophilic polymer, a separation material having excellent liquid permeability can be produced.
分離材における-O-R-Lで表される基の含有量(導入されるカルボキシ基の量)は、分離材1mL当たり100μmol以上であることが好ましく、110μmol以上であることがより好ましく、120μmol以上であることが更に好ましく、125μmol以上であることが特に好ましい。カルボキシ基の量は、分離材1mL当たり100μmol以上であることにより、分離材の通液性をより向上させることができると共に、分離材が有する静電力が強くなるため、タンパク質の動的吸着量を増加することができる。また、分離材における-O-R-Lで表される基の含有量(導入されるカルボキシ基の量)が多すぎる場合、分離材内にタンパク質が拡散し難くなる観点から、当該カルボキシ基の量は、分離材1mL当たり1000μmol以下であることが好ましく、950μmol以下であることがより好ましい。
The content of the group represented by -ORL in the separation material (the amount of the introduced carboxy group) is preferably 100 µmol or more, more preferably 110 µmol or more, and more preferably 120 µmol per 1 mL of the separation material. More preferably, it is more preferably at least 125 μmol. When the amount of the carboxy group is 100 μmol or more per 1 mL of the separation material, the liquid permeability of the separation material can be further improved, and the electrostatic force of the separation material increases. Can be increased. If the content of the group represented by —ORL in the separation material (the amount of the introduced carboxy group) is too large, the protein is hardly diffused into the separation material from the viewpoint of difficulty in diffusing the protein into the separation material. The amount is preferably 1000 μmol or less, more preferably 950 μmol or less per 1 mL of the separation material.
本実施形態の分離材は、疎水性高分子粒子1g当たり30~500mgの被覆層を備えると好ましい。被覆層の量は熱分解の重量減少等で測定することができる。
分離 It is preferable that the separation material of the present embodiment has a coating layer of 30 to 500 mg per 1 g of the hydrophobic polymer particles. The amount of the coating layer can be measured by a weight loss due to thermal decomposition or the like.
本明細書における通液速度とは、φ7.8×300mmのステンレスカラムに本実施形態の分離材を充填し、液を通した際の通液速度を表す。本実施形態の分離材は、カラムに充填した場合、カラムの圧力が0.3MPaとなるように水を通液させたときに、水の通液速度が1300cm/h以上であることが好ましく、1500cm/h以上であることがより好ましく、2000cm/h以上であることが更に好ましい。カラムクロマトグラフィーでタンパク質の分離を行う場合、タンパク質溶液等の通液速度としては、一般に400cm/h以下の範囲であるが、本実施形態の分離材を使用した場合は、通常のタンパク質分離用の分離材よりも速い通液速度1300cm/h以上で使用することができる。
通 The liquid passing speed in the present specification indicates a liquid passing speed when a separating material of the present embodiment is packed in a stainless steel column of φ7.8 × 300 mm and the liquid is passed. When the separation material of the present embodiment is packed in a column, the flow rate of water is preferably 1300 cm / h or more when water is passed so that the pressure of the column becomes 0.3 MPa. It is more preferably at least 1500 cm / h, even more preferably at least 2000 cm / h. When separating proteins by column chromatography, the flow rate of a protein solution or the like is generally in the range of 400 cm / h or less. However, when the separation material of the present embodiment is used, a normal protein separation speed is used. It can be used at a flow rate of 1300 cm / h or more, which is faster than the separation material.
分離材の平均粒径は、通液性向上の観点から10~500μmであることが好ましく、30~300μmであることがより好ましく、50~150μmであることが更に好ましく、50~110μmであることが特に好ましい。分離材の粒径の変動係数(C.V.)は、通液性向上の観点から、3~15%であることが好ましく、5~15%であることがより好ましく、5~10%であることが更に好ましい。
The average particle size of the separating material is preferably from 10 to 500 μm, more preferably from 30 to 300 μm, further preferably from 50 to 150 μm, and more preferably from 50 to 110 μm, from the viewpoint of improving liquid permeability. Is particularly preferred. The coefficient of variation (CV) of the particle size of the separating material is preferably 3 to 15%, more preferably 5 to 15%, and more preferably 5 to 10% from the viewpoint of improving liquid permeability. It is even more preferred.
分離材の細孔容積は、分離材の全体積基準で30体積%以上70体積%以下であることが好ましく、40体積%以上70体積%以下であることがより好ましく、50体積%以上70体積%以下であることが更に好ましい。分離材は、細孔径が0.05μm以上0.6μm未満である細孔、すなわちマクロポアー(マクロ孔)を有することが好ましい。分離材の細孔径として、より好ましくは、0.1μm以上0.5μm未満である。細孔径が0.05μm以上であると、細孔内に物質が入り易くなる傾向があり、細孔径が0.6μm未満であると、比表面積が充分なものになる傾向がある。
The pore volume of the separating material is preferably 30% by volume or more and 70% by volume or less, more preferably 40% by volume or more and 70% by volume or less, and more preferably 50% by volume or more and 70% by volume based on the total volume of the separating material. % Is more preferable. The separation material preferably has pores having a pore diameter of 0.05 μm or more and less than 0.6 μm, that is, macropores (macropores). The pore size of the separation material is more preferably 0.1 μm or more and less than 0.5 μm. When the pore diameter is 0.05 μm or more, the substance tends to easily enter the pores, and when the pore diameter is less than 0.6 μm, the specific surface area tends to be sufficient.
分離材の比表面積は、20m2/g以上であることが好ましい。より高い実用性の観点から、比表面積は35m2/g以上であることがより好ましく、40m2/g以上であることが更に好ましい。比表面積が20m2/g以上であると、分離する物質の吸着量が大きくなる傾向がある。
The specific surface area of the separation material is preferably 20 m 2 / g or more. In light of higher practicality, the specific surface area is more preferably equal to or greater than 35 m 2 / g, and still more preferably equal to or greater than 40 m 2 / g. If the specific surface area is 20 m 2 / g or more, the amount of adsorption of the substance to be separated tends to increase.
分離材の平均細孔径、比表面積等は、疎水性高分子粒子の原料、多孔質化剤、水酸基を有する親水性高分子等を適宜選択することによって、調整することができる。
平均 The average pore diameter, specific surface area and the like of the separating material can be adjusted by appropriately selecting the raw material of the hydrophobic polymer particles, the porosifying agent, the hydrophilic polymer having a hydroxyl group and the like.
分離材の水中での5%圧縮変形弾性率(湿潤状態での5%圧縮変形弾性率)は、例えば、70MPa以上、100MPa以上、150MPa以上又は200MPa以上であってもよい。5%圧縮変形弾性率の上限値は、特に限定されない。
The 5% compressive deformation elastic modulus in water of the separating material (5% compressive deformation elastic modulus in a wet state) may be, for example, 70 MPa or more, 100 MPa or more, 150 MPa or more, or 200 MPa or more. The upper limit of the 5% compressive deformation elastic modulus is not particularly limited.
分離材の水中での5%圧縮変形弾性率(5%K値)は、以下のようにして算出することができる。微小圧縮試験機(Fisher製)を用いて、室温(25℃)条件にて荷重負荷速度1mN/秒で、四角柱の平滑な端面(50μm×50μm)により、予め水中に浸漬させた分離材を50mNまで圧縮したときの荷重及び圧縮変位を測定する。得られた測定値から、分離材が5%圧縮変形したときの圧縮弾性率(5%K値)を下記式により求めることができる。また、上記測定中の変位量が最も大きく変化する点の荷重を破壊強度(mN)とする。
5%K値(MPa)=(3/21/2)・F・S-3/2・R-1/2
F:分離材が5%圧縮変形したときの荷重(mN)
S:分離材が5%圧縮変形したときの圧縮変位(mm)
R:分離材の半径(mm) The 5% compressive deformation elastic modulus (5% K value) of the separating material in water can be calculated as follows. Using a micro-compression tester (manufactured by Fisher), the separation material previously immersed in water was applied at a load application speed of 1 mN / sec at room temperature (25 ° C.) and a smooth end surface (50 μm × 50 μm) of a square pillar. The load and the compression displacement when compressed to 50 mN are measured. From the obtained measured values, the compression elastic modulus (5% K value) when the separation material undergoes 5% compression deformation can be obtained by the following equation. The load at the point where the amount of displacement changes the most during the measurement is defined as the breaking strength (mN).
5% K value (MPa) = (3/2 1/2 ) ・FS -3 / 2・ R- /
F: Load (mN) when the separation material is compressed and deformed by 5%
S: Compressive displacement (mm) when the separating material is compressed and deformed by 5%
R: radius of separation material (mm)
5%K値(MPa)=(3/21/2)・F・S-3/2・R-1/2
F:分離材が5%圧縮変形したときの荷重(mN)
S:分離材が5%圧縮変形したときの圧縮変位(mm)
R:分離材の半径(mm) The 5% compressive deformation elastic modulus (5% K value) of the separating material in water can be calculated as follows. Using a micro-compression tester (manufactured by Fisher), the separation material previously immersed in water was applied at a load application speed of 1 mN / sec at room temperature (25 ° C.) and a smooth end surface (50 μm × 50 μm) of a square pillar. The load and the compression displacement when compressed to 50 mN are measured. From the obtained measured values, the compression elastic modulus (5% K value) when the separation material undergoes 5% compression deformation can be obtained by the following equation. The load at the point where the amount of displacement changes the most during the measurement is defined as the breaking strength (mN).
5% K value (MPa) = (3/2 1/2 ) ・FS -3 / 2・ R- /
F: Load (mN) when the separation material is compressed and deformed by 5%
S: Compressive displacement (mm) when the separating material is compressed and deformed by 5%
R: radius of separation material (mm)
本実施形態の分離材には、上記-O-R-Lで表される基におけるカルボキシ基を介して、例えば、リガンド(例えば、プロテインA)又はイオン交換基を導入することができる。また、本実施形態の分離材には、-O-R-Lで表される基とは別に、例えばリガンド(例えば、プロテインA)又はイオン交換基を導入することもできる。
リ ガ ン ド For example, a ligand (eg, protein A) or an ion exchange group can be introduced into the separation material of the present embodiment via the carboxy group in the group represented by —ORL. In addition, for example, a ligand (for example, protein A) or an ion exchange group can be introduced into the separation material of the present embodiment in addition to the group represented by —ORL.
本実施形態の分離材は、イオン交換精製、アフィニティ精製、タンパク質等の生体高分子の静電的相互作用による分離等に好適に使用することができる。例えば、タンパク質を含む混合溶液の中に本実施形態の分離材を添加し、静電的相互作用によりタンパク質だけを該分離材に吸着させた後、該分離材を溶液からろ別し、塩濃度の高い水溶液中に添加すれば、分離材に吸着しているタンパク質を容易に脱離して回収することができる。また、本実施形態の分離材は、カラムクロマトグラフィーにおいて使用することも可能である。
分離 The separation material of the present embodiment can be suitably used for ion exchange purification, affinity purification, separation of biological macromolecules such as proteins by electrostatic interaction, and the like. For example, the separating material of the present embodiment is added to a mixed solution containing a protein, and only the protein is adsorbed to the separating material by electrostatic interaction. When added to an aqueous solution having a high concentration, the protein adsorbed on the separation material can be easily desorbed and recovered. Further, the separation material of the present embodiment can be used in column chromatography.
本実施形態の分離材を用いて分離できる生体高分子としては、水溶性物質が好ましい。具体的には、血清アルブミン、免疫グロブリン等の血液タンパク質などのタンパク質、生体中に存在する酵素、バイオテクノロジーにより生産されるタンパク質生理活性物質、DNA、生理活性をするペプチド等の生体高分子が挙げられる。生体高分子の分子量は、好ましくは200万以下、より好ましくは50万以下である。また、公知の方法に従い、タンパク質の等電点、イオン化状態等によって、分離材の性質、分離条件等を選ぶことができる。公知の方法としては、例えば、特開昭60-169427号公報等に記載の方法が挙げられる。
水溶 As the biopolymer that can be separated using the separation material of the present embodiment, a water-soluble substance is preferable. Specific examples include proteins such as blood proteins such as serum albumin and immunoglobulin, enzymes present in living bodies, protein bioactive substances produced by biotechnology, DNA, and biopolymers such as bioactive peptides. Can be The molecular weight of the biopolymer is preferably 2,000,000 or less, more preferably 500,000 or less. In addition, according to a known method, the properties of the separation material, separation conditions, and the like can be selected depending on the isoelectric point, ionization state, and the like of the protein. Known methods include, for example, the method described in JP-A-60-169427.
本実施形態の分離材は、被覆層にイオン交換基となるカルボキシ基又はカルボキシ基のアルカリ金属塩を導入することにより、タンパク質等の生体高分子の分離において、天然高分子からなる粒子又は合成高分子からなる粒子のそれぞれの利点を有する。本実施形態の分離材は、上述のような被覆層を備えることにより、通液性に優れるとともに、タンパク質の非特異吸着を低減し、タンパク質の吸脱着が起こり易い傾向がある。また、本実施形態の分離材は、同一流速下でのタンパク質等の吸着量(動的吸着量)が大きい傾向がある。
In the separation material of the present embodiment, by introducing a carboxy group or an alkali metal salt of a carboxy group which serves as an ion exchange group into the coating layer, particles of natural polymer or synthetic polymer can be used for separating biopolymers such as proteins. Each particle has the advantages of molecules. By providing the above-described coating layer, the separation material of the present embodiment has excellent liquid permeability, reduces nonspecific adsorption of proteins, and tends to easily cause protein adsorption and desorption. Further, the separation material of the present embodiment tends to have a large adsorption amount (dynamic adsorption amount) of proteins and the like under the same flow rate.
<カラム>
本実施形態のカラムは、上述の分離材を備える。該カラムは、カラム内に上述の分離材を充填させることで製造することができる。カラム内に分離材を充填させる方法は、特に制限されるものではなく、例えば、公知の方法を採用することができる。 <Column>
The column of the present embodiment includes the above-described separation material. The column can be manufactured by packing the above-mentioned separating material in the column. The method for filling the column with the separating material is not particularly limited, and for example, a known method can be employed.
本実施形態のカラムは、上述の分離材を備える。該カラムは、カラム内に上述の分離材を充填させることで製造することができる。カラム内に分離材を充填させる方法は、特に制限されるものではなく、例えば、公知の方法を採用することができる。 <Column>
The column of the present embodiment includes the above-described separation material. The column can be manufactured by packing the above-mentioned separating material in the column. The method for filling the column with the separating material is not particularly limited, and for example, a known method can be employed.
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
(疎水性高分子粒子)
500mLの三口フラスコに、純度96%のジビニルベンゼン(新日鉄住金化学株式会社製、商品名「DVB960」)16g、ヘキサノール16g、ジエチルベンゼン16g及び過酸化ベンゾイル0.64gを、0.5質量%のポリビニルアルコール水溶液に加え、マイクロプロセスサーバー(株式会社日立製作所製)を使用して乳化させた後、得られた乳化液をフラスコに移し、80℃のウォーターバスで加熱しながら、攪拌機を用いて約8時間撹拌をした。得られた粒子をろ過により取り出した後、アセトンで洗浄を行い、疎水性高分子粒子を得た。 (Hydrophobic polymer particles)
In a 500 mL three-necked flask, 16 g of 96% pure divinylbenzene (trade name “DVB960” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), 16 g of hexanol, 16 g of diethylbenzene, and 0.64 g of benzoyl peroxide were added to 0.5% by mass of polyvinyl alcohol. In addition to the aqueous solution, the mixture was emulsified using a micro process server (manufactured by Hitachi, Ltd.), and the obtained emulsion was transferred to a flask and heated with a water bath at 80 ° C. for about 8 hours using a stirrer. Stirred. After the obtained particles were taken out by filtration, they were washed with acetone to obtain hydrophobic polymer particles.
500mLの三口フラスコに、純度96%のジビニルベンゼン(新日鉄住金化学株式会社製、商品名「DVB960」)16g、ヘキサノール16g、ジエチルベンゼン16g及び過酸化ベンゾイル0.64gを、0.5質量%のポリビニルアルコール水溶液に加え、マイクロプロセスサーバー(株式会社日立製作所製)を使用して乳化させた後、得られた乳化液をフラスコに移し、80℃のウォーターバスで加熱しながら、攪拌機を用いて約8時間撹拌をした。得られた粒子をろ過により取り出した後、アセトンで洗浄を行い、疎水性高分子粒子を得た。 (Hydrophobic polymer particles)
In a 500 mL three-necked flask, 16 g of 96% pure divinylbenzene (trade name “DVB960” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), 16 g of hexanol, 16 g of diethylbenzene, and 0.64 g of benzoyl peroxide were added to 0.5% by mass of polyvinyl alcohol. In addition to the aqueous solution, the mixture was emulsified using a micro process server (manufactured by Hitachi, Ltd.), and the obtained emulsion was transferred to a flask and heated with a water bath at 80 ° C. for about 8 hours using a stirrer. Stirred. After the obtained particles were taken out by filtration, they were washed with acetone to obtain hydrophobic polymer particles.
疎水性高分子粒子の粒径をフロー型粒径測定装置で測定し、平均粒径及び粒径の変動係数(C.V.)を算出した。疎水性高分子粒子の平均粒径は102μmであり、粒径のC.V.は8%であった。
粒径 The particle size of the hydrophobic polymer particles was measured by a flow type particle size measuring device, and the average particle size and the coefficient of variation (CV) of the particle size were calculated. The average particle size of the hydrophobic polymer particles is 102 μm, and the C.I. V. Was 8%.
(変性アガロース)
2質量%のアガロース水溶液480mLに、水酸化ナトリウム0.98g及びグリシジルフェニルエーテル4.90gを投入して60℃で6時間反応させ、アガロースに疎水性基としてフェニル基を導入した。得られた変性アガロースをイソプロピルアルコールで再沈殿させ、洗浄した。変性アガロースの疎水性基含有量を下記方法により算出したところ、14.2%であった。 (Denatured agarose)
0.98 g of sodium hydroxide and 4.90 g of glycidyl phenyl ether were added to 480 mL of a 2% by mass aqueous agarose solution, and reacted at 60 ° C. for 6 hours to introduce a phenyl group into the agarose as a hydrophobic group. The resulting denatured agarose was reprecipitated with isopropyl alcohol and washed. When the hydrophobic group content of the modified agarose was calculated by the following method, it was 14.2%.
2質量%のアガロース水溶液480mLに、水酸化ナトリウム0.98g及びグリシジルフェニルエーテル4.90gを投入して60℃で6時間反応させ、アガロースに疎水性基としてフェニル基を導入した。得られた変性アガロースをイソプロピルアルコールで再沈殿させ、洗浄した。変性アガロースの疎水性基含有量を下記方法により算出したところ、14.2%であった。 (Denatured agarose)
0.98 g of sodium hydroxide and 4.90 g of glycidyl phenyl ether were added to 480 mL of a 2% by mass aqueous agarose solution, and reacted at 60 ° C. for 6 hours to introduce a phenyl group into the agarose as a hydrophobic group. The resulting denatured agarose was reprecipitated with isopropyl alcohol and washed. When the hydrophobic group content of the modified agarose was calculated by the following method, it was 14.2%.
乾燥状態の粉末アガロース(変性されていないアガロース)と、揮発分0.1質量%未満まで乾燥させた疎水性基導入アガロース(変性アガロース)とを、それぞれ70℃の純水に溶解させ、0.05質量%の水溶液サンプルを調製した。分光光度計により各水溶液の269nmの吸光度を測定して濃度を求めることで、下記式より疎水性基含有量を算出した。下記において、アガロース構成単位とは、アガロースの二糖単位のことを意味し、変性アガロース構成単位とは、アガロースの二糖単位中の水酸基のうち少なくとも1つにフェニル基が導入されたものを意味する。
・疎水性基含有量(%)=(CAG/(CHAG+CAG))×100
・CAG:変性アガロース構成単位の濃度(mmol/L)=A/εGPE×1000
・CHAG:変性されていないアガロース構成単位の濃度(mmol/L)=(変性されていないアガロース構成単位の濃度(g/L)/アガロース構成単位(306g/mol)
)×1000
・A:変性アガロースの真の吸光度=変性アガロースの吸光度-変性されていないアガロースの吸収
・εGPE:グリシジルフェニルエーテルの吸光係数=1372(L/(mol・cm))
・変性されていないアガロース構成単位の濃度(g/L)=変性アガロースのサンプル濃度(質量%)×10-変性アガロース構成単位の濃度(g/L)
・変性されていないアガロースの吸収=変性されていないアガロースの吸光度×(変性アガロースのサンプル濃度(mmol/L)/変性されていないアガロースのサンプル濃度(mmol/L))
・変性アガロース構成単位の濃度(g/L)=(CAG×変性アガロース構成単位(456g/mol))/1000 Dry agarose (unmodified agarose) and hydrophobic group-introduced agarose (modified agarose) dried to a volatile content of less than 0.1% by mass were each dissolved in pure water at 70 ° C. A 05% by mass aqueous solution sample was prepared. The hydrophobic group content was calculated from the following formula by measuring the absorbance at 269 nm of each aqueous solution using a spectrophotometer to determine the concentration. In the following, an agarose constituent unit means a disaccharide unit of agarose, and a modified agarose constituent unit means one in which a phenyl group is introduced into at least one of the hydroxyl groups in the disaccharide unit of agarose. I do.
Hydrophobic group content (%) = (C AG / (C HAG + C AG)) × 100
CAG : Concentration of denatured agarose constituent unit (mmol / L) = A / εGPE × 1000
C HAG : concentration of unmodified agarose constituent unit (mmol / L) = (concentration of unmodified agarose constituent unit (g / L) / agarose constituent unit (306 g / mol)
) × 1000
A: true absorbance of denatured agarose = absorbance of denatured agarose-absorbance of undenatured agarose ε GPE : extinction coefficient of glycidyl phenyl ether = 1372 (L / (mol · cm))
-Concentration of undenatured agarose constituent unit (g / L) = sample concentration of denatured agarose (% by mass) x 10-concentration of denatured agarose constituent unit (g / L)
Absorption of undenatured agarose = absorbance of undenatured agarose × (sample concentration of denatured agarose (mmol / L) / sample concentration of undenatured agarose (mmol / L))
-Concentration of denatured agarose constituent unit (g / L) = ( CAG x denatured agarose constituent unit (456 g / mol)) / 1000
・疎水性基含有量(%)=(CAG/(CHAG+CAG))×100
・CAG:変性アガロース構成単位の濃度(mmol/L)=A/εGPE×1000
・CHAG:変性されていないアガロース構成単位の濃度(mmol/L)=(変性されていないアガロース構成単位の濃度(g/L)/アガロース構成単位(306g/mol)
)×1000
・A:変性アガロースの真の吸光度=変性アガロースの吸光度-変性されていないアガロースの吸収
・εGPE:グリシジルフェニルエーテルの吸光係数=1372(L/(mol・cm))
・変性されていないアガロース構成単位の濃度(g/L)=変性アガロースのサンプル濃度(質量%)×10-変性アガロース構成単位の濃度(g/L)
・変性されていないアガロースの吸収=変性されていないアガロースの吸光度×(変性アガロースのサンプル濃度(mmol/L)/変性されていないアガロースのサンプル濃度(mmol/L))
・変性アガロース構成単位の濃度(g/L)=(CAG×変性アガロース構成単位(456g/mol))/1000 Dry agarose (unmodified agarose) and hydrophobic group-introduced agarose (modified agarose) dried to a volatile content of less than 0.1% by mass were each dissolved in pure water at 70 ° C. A 05% by mass aqueous solution sample was prepared. The hydrophobic group content was calculated from the following formula by measuring the absorbance at 269 nm of each aqueous solution using a spectrophotometer to determine the concentration. In the following, an agarose constituent unit means a disaccharide unit of agarose, and a modified agarose constituent unit means one in which a phenyl group is introduced into at least one of the hydroxyl groups in the disaccharide unit of agarose. I do.
Hydrophobic group content (%) = (C AG / (C HAG + C AG)) × 100
CAG : Concentration of denatured agarose constituent unit (mmol / L) = A / εGPE × 1000
C HAG : concentration of unmodified agarose constituent unit (mmol / L) = (concentration of unmodified agarose constituent unit (g / L) / agarose constituent unit (306 g / mol)
) × 1000
A: true absorbance of denatured agarose = absorbance of denatured agarose-absorbance of undenatured agarose ε GPE : extinction coefficient of glycidyl phenyl ether = 1372 (L / (mol · cm))
-Concentration of undenatured agarose constituent unit (g / L) = sample concentration of denatured agarose (% by mass) x 10-concentration of denatured agarose constituent unit (g / L)
Absorption of undenatured agarose = absorbance of undenatured agarose × (sample concentration of denatured agarose (mmol / L) / sample concentration of undenatured agarose (mmol / L))
-Concentration of denatured agarose constituent unit (g / L) = ( CAG x denatured agarose constituent unit (456 g / mol)) / 1000
[実施例1]
<被覆層の形成>
20mg/mLの変性アガロース水溶液に、疎水性高分子粒子を70mL/粒子gの濃度で投入し、55℃で24時間攪拌して、疎水性高分子粒子に変性アガロースを吸着させた後、ろ過を行い、熱水で洗浄した。 [Example 1]
<Formation of coating layer>
Hydrophobic polymer particles are added to a 20 mg / mL modified agarose aqueous solution at a concentration of 70 mL / g of particles, and the mixture is stirred at 55 ° C. for 24 hours to adsorb the modified agarose to the hydrophobic polymer particles. And washed with hot water.
<被覆層の形成>
20mg/mLの変性アガロース水溶液に、疎水性高分子粒子を70mL/粒子gの濃度で投入し、55℃で24時間攪拌して、疎水性高分子粒子に変性アガロースを吸着させた後、ろ過を行い、熱水で洗浄した。 [Example 1]
<Formation of coating layer>
Hydrophobic polymer particles are added to a 20 mg / mL modified agarose aqueous solution at a concentration of 70 mL / g of particles, and the mixture is stirred at 55 ° C. for 24 hours to adsorb the modified agarose to the hydrophobic polymer particles. And washed with hot water.
(架橋処理)
疎水性高分子粒子に吸着した変性アガロースは次のようにして架橋した。変性アガロースが吸着した粒子10gを0.4M水酸化ナトリウム水溶液に分散させ、0.02Mのエピクロロヒドリンを添加し、24時間室温にて攪拌した。その後、2質量%の熱ドデシル硫酸ナトリウム水溶液で洗浄後、純水で洗浄して、変性アガロースの架橋体を被覆層として有する被覆粒子を得た。被覆層の量は、熱分解の重量減少で測定し、疎水性高分子粒子1g当たりの被覆量(mg/g)を算出した。結果を表1に示す。 (Cross-linking treatment)
The modified agarose adsorbed on the hydrophobic polymer particles was crosslinked as follows. 10 g of the particles onto which the modified agarose had been adsorbed were dispersed in a 0.4 M aqueous sodium hydroxide solution, and 0.02 M epichlorohydrin was added thereto, followed by stirring at room temperature for 24 hours. Thereafter, the resultant was washed with a 2% by mass aqueous solution of hot sodium dodecyl sulfate, and then washed with pure water to obtain coated particles having a crosslinked product of modified agarose as a coating layer. The amount of the coating layer was measured by weight loss due to thermal decomposition, and the coating amount (mg / g) per 1 g of the hydrophobic polymer particles was calculated. Table 1 shows the results.
疎水性高分子粒子に吸着した変性アガロースは次のようにして架橋した。変性アガロースが吸着した粒子10gを0.4M水酸化ナトリウム水溶液に分散させ、0.02Mのエピクロロヒドリンを添加し、24時間室温にて攪拌した。その後、2質量%の熱ドデシル硫酸ナトリウム水溶液で洗浄後、純水で洗浄して、変性アガロースの架橋体を被覆層として有する被覆粒子を得た。被覆層の量は、熱分解の重量減少で測定し、疎水性高分子粒子1g当たりの被覆量(mg/g)を算出した。結果を表1に示す。 (Cross-linking treatment)
The modified agarose adsorbed on the hydrophobic polymer particles was crosslinked as follows. 10 g of the particles onto which the modified agarose had been adsorbed were dispersed in a 0.4 M aqueous sodium hydroxide solution, and 0.02 M epichlorohydrin was added thereto, followed by stirring at room temperature for 24 hours. Thereafter, the resultant was washed with a 2% by mass aqueous solution of hot sodium dodecyl sulfate, and then washed with pure water to obtain coated particles having a crosslinked product of modified agarose as a coating layer. The amount of the coating layer was measured by weight loss due to thermal decomposition, and the coating amount (mg / g) per 1 g of the hydrophobic polymer particles was calculated. Table 1 shows the results.
(タンパク質の非特異吸着量)
得られた被覆粒子0.2gをBSA(Bovine Serum Albumin)濃度24mg/mLのTris-塩酸緩衝液(pH8.0)20mLに投入し、24時間室温で攪拌を行った。その後、遠心分離で上澄み液をとった。当該上澄み液のBSA濃度により、粒子に吸着したBSA量を算出した。BSA濃度は、分光光度計で上澄み液の280nmの吸光度から確認した。分離材1mLあたりのBSA吸着量が、1mg未満である場合を「A」、1~10mgである場合を「B」、10mgを超える場合を「C」として、非特異吸着を評価した。結果を表1に示す。なお、比較例1では、非特異吸着を評価することはできなかった。 (Non-specific adsorption amount of protein)
0.2 g of the obtained coated particles was added to 20 mL of a Tris-hydrochloride buffer (pH 8.0) having a BSA (Bovine Serum Albumin) concentration of 24 mg / mL, and the mixture was stirred at room temperature for 24 hours. Thereafter, the supernatant was collected by centrifugation. Based on the BSA concentration of the supernatant, the amount of BSA adsorbed on the particles was calculated. The BSA concentration was confirmed from the absorbance at 280 nm of the supernatant with a spectrophotometer. Non-specific adsorption was evaluated as “A” when the amount of BSA adsorbed per 1 mL of the separating material was less than 1 mg, “B” when it was 1 to 10 mg, and “C” when it exceeded 10 mg. Table 1 shows the results. In Comparative Example 1, nonspecific adsorption could not be evaluated.
得られた被覆粒子0.2gをBSA(Bovine Serum Albumin)濃度24mg/mLのTris-塩酸緩衝液(pH8.0)20mLに投入し、24時間室温で攪拌を行った。その後、遠心分離で上澄み液をとった。当該上澄み液のBSA濃度により、粒子に吸着したBSA量を算出した。BSA濃度は、分光光度計で上澄み液の280nmの吸光度から確認した。分離材1mLあたりのBSA吸着量が、1mg未満である場合を「A」、1~10mgである場合を「B」、10mgを超える場合を「C」として、非特異吸着を評価した。結果を表1に示す。なお、比較例1では、非特異吸着を評価することはできなかった。 (Non-specific adsorption amount of protein)
0.2 g of the obtained coated particles was added to 20 mL of a Tris-hydrochloride buffer (pH 8.0) having a BSA (Bovine Serum Albumin) concentration of 24 mg / mL, and the mixture was stirred at room temperature for 24 hours. Thereafter, the supernatant was collected by centrifugation. Based on the BSA concentration of the supernatant, the amount of BSA adsorbed on the particles was calculated. The BSA concentration was confirmed from the absorbance at 280 nm of the supernatant with a spectrophotometer. Non-specific adsorption was evaluated as “A” when the amount of BSA adsorbed per 1 mL of the separating material was less than 1 mg, “B” when it was 1 to 10 mg, and “C” when it exceeded 10 mg. Table 1 shows the results. In Comparative Example 1, nonspecific adsorption could not be evaluated.
(カルボキシ基の導入)
得られた被覆粒子10gを10MのNaOH水溶液80g中に分散させた分散液に、40gのモノクロロ酢酸を添加し、70℃で3時間反応させた。反応後、水洗し、過剰なモノクロロ酢酸を除去して、変性アガロースの水酸基由来の酸素原子に-CH2COOH又は-CH2COONaが結合した基を有する分離材を得た。 (Introduction of carboxy group)
40 g of monochloroacetic acid was added to a dispersion obtained by dispersing 10 g of the obtained coated particles in 80 g of a 10 M aqueous NaOH solution, and reacted at 70 ° C. for 3 hours. After the reaction, the resultant was washed with water to remove excess monochloroacetic acid to obtain a separation material having a group in which —CH 2 COOH or —CH 2 COONa was bonded to an oxygen atom derived from a hydroxyl group of modified agarose.
得られた被覆粒子10gを10MのNaOH水溶液80g中に分散させた分散液に、40gのモノクロロ酢酸を添加し、70℃で3時間反応させた。反応後、水洗し、過剰なモノクロロ酢酸を除去して、変性アガロースの水酸基由来の酸素原子に-CH2COOH又は-CH2COONaが結合した基を有する分離材を得た。 (Introduction of carboxy group)
40 g of monochloroacetic acid was added to a dispersion obtained by dispersing 10 g of the obtained coated particles in 80 g of a 10 M aqueous NaOH solution, and reacted at 70 ° C. for 3 hours. After the reaction, the resultant was washed with water to remove excess monochloroacetic acid to obtain a separation material having a group in which —CH 2 COOH or —CH 2 COONa was bonded to an oxygen atom derived from a hydroxyl group of modified agarose.
(カルボキシ基量の測定)
得られた分離材のカルボキシ基量を以下のように測定した。湿潤状態の分離材1.0mLに、0.1mol/LのHCl水溶液20gを加え、室温で30分撹拌した。撹拌後、吸引ろ過により分離材を純水で洗浄し、洗浄液のpHが5を超えるまで洗浄を続けた。その後、0.5MのNaCl溶液20g中に分離材を分散し、30分撹拌した。この粒子分散液に0.01MのNaOH水溶液を滴下した。カルボキシ基量は以下の式から算出した。結果を表1に示す。
カルボキシ基導入量(μmol/mL)=0.01(mol/L)×滴下した0.01MのNaOH水溶液量(mL)/測定に使用した分離材の体積(mL)×1000 (Measurement of carboxy group content)
The carboxy group content of the obtained separation material was measured as follows. 20 g of a 0.1 mol / L aqueous HCl solution was added to 1.0 mL of the wet separating material, and the mixture was stirred at room temperature for 30 minutes. After stirring, the separation material was washed with pure water by suction filtration, and the washing was continued until the pH of the washing solution exceeded 5. Thereafter, the separating material was dispersed in 20 g of a 0.5 M NaCl solution and stirred for 30 minutes. An aqueous solution of 0.01 M NaOH was added dropwise to the particle dispersion. The carboxy group content was calculated from the following equation. Table 1 shows the results.
Carboxy group introduction amount (μmol / mL) = 0.01 (mol / L) × Drop amount of 0.01M NaOH aqueous solution (mL) / Volume of separation material used for measurement (mL) × 1000
得られた分離材のカルボキシ基量を以下のように測定した。湿潤状態の分離材1.0mLに、0.1mol/LのHCl水溶液20gを加え、室温で30分撹拌した。撹拌後、吸引ろ過により分離材を純水で洗浄し、洗浄液のpHが5を超えるまで洗浄を続けた。その後、0.5MのNaCl溶液20g中に分離材を分散し、30分撹拌した。この粒子分散液に0.01MのNaOH水溶液を滴下した。カルボキシ基量は以下の式から算出した。結果を表1に示す。
カルボキシ基導入量(μmol/mL)=0.01(mol/L)×滴下した0.01MのNaOH水溶液量(mL)/測定に使用した分離材の体積(mL)×1000 (Measurement of carboxy group content)
The carboxy group content of the obtained separation material was measured as follows. 20 g of a 0.1 mol / L aqueous HCl solution was added to 1.0 mL of the wet separating material, and the mixture was stirred at room temperature for 30 minutes. After stirring, the separation material was washed with pure water by suction filtration, and the washing was continued until the pH of the washing solution exceeded 5. Thereafter, the separating material was dispersed in 20 g of a 0.5 M NaCl solution and stirred for 30 minutes. An aqueous solution of 0.01 M NaOH was added dropwise to the particle dispersion. The carboxy group content was calculated from the following equation. Table 1 shows the results.
Carboxy group introduction amount (μmol / mL) = 0.01 (mol / L) × Drop amount of 0.01M NaOH aqueous solution (mL) / Volume of separation material used for measurement (mL) × 1000
(分離材の平均粒径等の測定)
分離材の粒径をフロー型粒径測定装置で測定し、平均粒径及び粒径の変動係数(C.V.)を算出した。また、分離材のモード細孔径、比表面積、空隙率は、水銀圧入測定装置にて測定した。結果を表1に示す。 (Measurement of average particle size of separation material)
The particle size of the separation material was measured with a flow type particle size measuring device, and the average particle size and the coefficient of variation (CV) of the particle size were calculated. The mode pore diameter, specific surface area, and porosity of the separation material were measured with a mercury intrusion measuring device. Table 1 shows the results.
分離材の粒径をフロー型粒径測定装置で測定し、平均粒径及び粒径の変動係数(C.V.)を算出した。また、分離材のモード細孔径、比表面積、空隙率は、水銀圧入測定装置にて測定した。結果を表1に示す。 (Measurement of average particle size of separation material)
The particle size of the separation material was measured with a flow type particle size measuring device, and the average particle size and the coefficient of variation (CV) of the particle size were calculated. The mode pore diameter, specific surface area, and porosity of the separation material were measured with a mercury intrusion measuring device. Table 1 shows the results.
(5%圧縮変形弾性率)
分離材の水中での5%圧縮変形弾性率は、上述の方法で測定した。結果を表2に示す。 (5% compression deformation elastic modulus)
The 5% compressive deformation elastic modulus in water of the separating material was measured by the method described above. Table 2 shows the results.
分離材の水中での5%圧縮変形弾性率は、上述の方法で測定した。結果を表2に示す。 (5% compression deformation elastic modulus)
The 5% compressive deformation elastic modulus in water of the separating material was measured by the method described above. Table 2 shows the results.
(通液性)
得られた分離材をメタノールに分散して、濃度30質量%のスラリーを調製した。このスラリーをφ7.8×300mmのステンレスカラムに15分かけて充填し、充填カラムを得た。その後、カラムに流速を変えながら水を流し、流速とカラム圧との関係を測定し、カラム圧0.3MPaの通液速度(線流速)を測定した。結果を表2に示す。 (Liquid permeability)
The obtained separation material was dispersed in methanol to prepare a slurry having a concentration of 30% by mass. This slurry was packed in a φ7.8 × 300 mm stainless steel column over 15 minutes to obtain a packed column. Thereafter, water was flowed through the column while changing the flow rate, the relationship between the flow rate and the column pressure was measured, and the liquid passing rate (linear flow rate) at a column pressure of 0.3 MPa was measured. Table 2 shows the results.
得られた分離材をメタノールに分散して、濃度30質量%のスラリーを調製した。このスラリーをφ7.8×300mmのステンレスカラムに15分かけて充填し、充填カラムを得た。その後、カラムに流速を変えながら水を流し、流速とカラム圧との関係を測定し、カラム圧0.3MPaの通液速度(線流速)を測定した。結果を表2に示す。 (Liquid permeability)
The obtained separation material was dispersed in methanol to prepare a slurry having a concentration of 30% by mass. This slurry was packed in a φ7.8 × 300 mm stainless steel column over 15 minutes to obtain a packed column. Thereafter, water was flowed through the column while changing the flow rate, the relationship between the flow rate and the column pressure was measured, and the liquid passing rate (linear flow rate) at a column pressure of 0.3 MPa was measured. Table 2 shows the results.
(動的吸着量及び回収率の測定)
緩衝液を充填カラムに10カラム容量分流した。その後、濃度2mg/mLでタンパク質を含む緩衝液を充填カラムにレジデンスタイム2分で流し、UV測定によりカラム出口でのタンパク質濃度を測定した。カラム入口と出口でのタンパク質濃度が一致するまで液を流し、その後、緩衝液に1M NaCl溶液を加えた溶液を脱離溶液として10カラム容量分通液し、吸着したタンパク質を回収した。10% breakthroughにおける動的吸着量(10%Dynamic Binding Capacity:以下、10%DBC)を、以下の式を用いて算出した。また、回収液中のタンパク質量を算出し、動的吸着量に対するタンパク質の回収率R(%)を以下の式から算出した。緩衝液は、20mmol/Lの酢酸ナトリウム緩衝液(pH5.0)を使用した。タンパク質は、IgG(免疫グロブリンG)を使用した。結果を表2に示す。
q10=cfF(t10-t0)/VB
r10=cr×Vr/VB
R=r10/q10×100
q10:10% breakthroughにおける動的吸着量(mg/mL wet resin)
cf:注入しているIgG濃度
F:流速(mL/min)
VB:ベッド体積(mL)
t10:10%breakthroughにおける時間(min)
t0:IgG注入開始時間(min)
r10:タンパク質の回収量(mg/mL wet resin)
cr=回収した脱離液中のIgG濃度(mg/mL)
Vr=回収した脱離液の体積(mL)
R:回収率(%) (Measurement of dynamic adsorption amount and recovery rate)
The buffer was flowed through the packed column for 10 column volumes. Thereafter, a buffer containing a protein at a concentration of 2 mg / mL was passed through the packed column with a residence time of 2 minutes, and the protein concentration at the column outlet was measured by UV measurement. The solution was allowed to flow until the protein concentration at the inlet and the column of the column coincided with each other. Thereafter, a solution obtained by adding a 1 M NaCl solution to the buffer was passed through 10 column volumes as a desorption solution, and the adsorbed protein was recovered. The dynamic adsorption amount (10% Dynamic Binding Capacity: hereinafter, 10% DBC) at 10% breakthrough was calculated using the following equation. Further, the amount of protein in the recovered solution was calculated, and the recovery rate R (%) of the protein relative to the amount of dynamic adsorption was calculated from the following equation. As a buffer, a 20 mmol / L sodium acetate buffer (pH 5.0) was used. The protein used was IgG (immunoglobulin G). Table 2 shows the results.
q 10 = c ff (t 10 −t 0 ) / V B
r 10 = c r × V r / V B
R = r 10 / q 10 × 100
q 10 : Dynamic adsorption amount (mg / mL wet resin) at 10% breakthrough
cf: IgG concentration injected F: flow rate (mL / min)
V B : bed volume (mL)
t 10 : time (min) at 10% breakthrough
t 0 : IgG injection start time (min)
r 10 : Recovered amount of protein (mg / mL wet resin)
cr = IgG concentration (mg / mL) in the collected desorbed solution
Vr = volume of recovered desorbed liquid (mL)
R: Recovery rate (%)
緩衝液を充填カラムに10カラム容量分流した。その後、濃度2mg/mLでタンパク質を含む緩衝液を充填カラムにレジデンスタイム2分で流し、UV測定によりカラム出口でのタンパク質濃度を測定した。カラム入口と出口でのタンパク質濃度が一致するまで液を流し、その後、緩衝液に1M NaCl溶液を加えた溶液を脱離溶液として10カラム容量分通液し、吸着したタンパク質を回収した。10% breakthroughにおける動的吸着量(10%Dynamic Binding Capacity:以下、10%DBC)を、以下の式を用いて算出した。また、回収液中のタンパク質量を算出し、動的吸着量に対するタンパク質の回収率R(%)を以下の式から算出した。緩衝液は、20mmol/Lの酢酸ナトリウム緩衝液(pH5.0)を使用した。タンパク質は、IgG(免疫グロブリンG)を使用した。結果を表2に示す。
q10=cfF(t10-t0)/VB
r10=cr×Vr/VB
R=r10/q10×100
q10:10% breakthroughにおける動的吸着量(mg/mL wet resin)
cf:注入しているIgG濃度
F:流速(mL/min)
VB:ベッド体積(mL)
t10:10%breakthroughにおける時間(min)
t0:IgG注入開始時間(min)
r10:タンパク質の回収量(mg/mL wet resin)
cr=回収した脱離液中のIgG濃度(mg/mL)
Vr=回収した脱離液の体積(mL)
R:回収率(%) (Measurement of dynamic adsorption amount and recovery rate)
The buffer was flowed through the packed column for 10 column volumes. Thereafter, a buffer containing a protein at a concentration of 2 mg / mL was passed through the packed column with a residence time of 2 minutes, and the protein concentration at the column outlet was measured by UV measurement. The solution was allowed to flow until the protein concentration at the inlet and the column of the column coincided with each other. Thereafter, a solution obtained by adding a 1 M NaCl solution to the buffer was passed through 10 column volumes as a desorption solution, and the adsorbed protein was recovered. The dynamic adsorption amount (10% Dynamic Binding Capacity: hereinafter, 10% DBC) at 10% breakthrough was calculated using the following equation. Further, the amount of protein in the recovered solution was calculated, and the recovery rate R (%) of the protein relative to the amount of dynamic adsorption was calculated from the following equation. As a buffer, a 20 mmol / L sodium acetate buffer (pH 5.0) was used. The protein used was IgG (immunoglobulin G). Table 2 shows the results.
q 10 = c ff (t 10 −t 0 ) / V B
r 10 = c r × V r / V B
R = r 10 / q 10 × 100
q 10 : Dynamic adsorption amount (mg / mL wet resin) at 10% breakthrough
cf: IgG concentration injected F: flow rate (mL / min)
V B : bed volume (mL)
t 10 : time (min) at 10% breakthrough
t 0 : IgG injection start time (min)
r 10 : Recovered amount of protein (mg / mL wet resin)
cr = IgG concentration (mg / mL) in the collected desorbed solution
Vr = volume of recovered desorbed liquid (mL)
R: Recovery rate (%)
[実施例2]
モノクロロ酢酸40gをモノクロロ酢酸20gに変更した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子上に-CH2COOH又は-CH2COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 2]
A separation material having a group in which —CH 2 COOH or —CH 2 COONa is bonded to an oxygen atom derived from a hydroxyl group of modified agarose was prepared in the same manner as in Example 1 except that monochloroacetic acid 40 g was changed to monochloroacetic acid 20 g. Evaluation was performed in the same manner as in Example 1.
モノクロロ酢酸40gをモノクロロ酢酸20gに変更した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子上に-CH2COOH又は-CH2COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 2]
A separation material having a group in which —CH 2 COOH or —CH 2 COONa is bonded to an oxygen atom derived from a hydroxyl group of modified agarose was prepared in the same manner as in Example 1 except that monochloroacetic acid 40 g was changed to monochloroacetic acid 20 g. Evaluation was performed in the same manner as in Example 1.
[実施例3]
モノクロロ酢酸40gを3-クロロプロピオン酸40gに変更し、3-クロロプロピオン酸添加後さらにDMF(N,N-ジメチルホルムアミド)を40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)2COOH又は-(CH2)2COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 3]
Performed in the same manner as in Example 1 except that 40 g of monochloroacetic acid was changed to 40 g of 3-chloropropionic acid, and then 40 g of DMF (N, N-dimethylformamide) was added after adding 3-chloropropionic acid. A separation material having a group in which — (CH 2 ) 2 COOH or — (CH 2 ) 2 COONa was bonded to the oxygen atom of was prepared, and evaluated in the same manner as in Example 1.
モノクロロ酢酸40gを3-クロロプロピオン酸40gに変更し、3-クロロプロピオン酸添加後さらにDMF(N,N-ジメチルホルムアミド)を40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)2COOH又は-(CH2)2COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 3]
Performed in the same manner as in Example 1 except that 40 g of monochloroacetic acid was changed to 40 g of 3-chloropropionic acid, and then 40 g of DMF (N, N-dimethylformamide) was added after adding 3-chloropropionic acid. A separation material having a group in which — (CH 2 ) 2 COOH or — (CH 2 ) 2 COONa was bonded to the oxygen atom of was prepared, and evaluated in the same manner as in Example 1.
[実施例4]
モノクロロ酢酸40gを4-クロロブタン酸40gに変更し、4-クロロブタン酸添加後さらにDMFを40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)3COOH又は-(CH2)3COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 4]
Monochloroacetic acid 40g 4-chlorobutane was changed to acid 40g, 4-chlorobutane except that after the acid addition further DMF was added 40g is as in Example 1 and the oxygen atom derived from the hydroxyl group of the denaturing agarose - (CH 2) 3 A separating material having a group to which COOH or — (CH 2 ) 3 COONa was bonded was prepared and evaluated in the same manner as in Example 1.
モノクロロ酢酸40gを4-クロロブタン酸40gに変更し、4-クロロブタン酸添加後さらにDMFを40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)3COOH又は-(CH2)3COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 4]
Monochloroacetic acid 40g 4-chlorobutane was changed to acid 40g, 4-chlorobutane except that after the acid addition further DMF was added 40g is as in Example 1 and the oxygen atom derived from the hydroxyl group of the denaturing agarose - (CH 2) 3 A separating material having a group to which COOH or — (CH 2 ) 3 COONa was bonded was prepared and evaluated in the same manner as in Example 1.
[実施例5]
モノクロロ酢酸40gを5-クロロペンタン酸40gに変更し、5-クロロペンタン酸添加後さらにDMFを40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)4COOH又は-(CH2)4COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 5]
The same procedure as in Example 1 was carried out except that 40 g of monochloroacetic acid was changed to 40 g of 5-chloropentanoic acid, and 40 g of DMF was further added after the addition of 5-chloropentanoic acid, and the oxygen atom derived from the hydroxyl group of the modified agarose was replaced with-(CH 2 ) 4 COOH, or - (CH 2) 4 COONa to form a separation member having the bonded groups, was evaluated in the same manner as in example 1.
モノクロロ酢酸40gを5-クロロペンタン酸40gに変更し、5-クロロペンタン酸添加後さらにDMFを40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)4COOH又は-(CH2)4COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 5]
The same procedure as in Example 1 was carried out except that 40 g of monochloroacetic acid was changed to 40 g of 5-chloropentanoic acid, and 40 g of DMF was further added after the addition of 5-chloropentanoic acid, and the oxygen atom derived from the hydroxyl group of the modified agarose was replaced with-(CH 2 ) 4 COOH, or - (CH 2) 4 COONa to form a separation member having the bonded groups, was evaluated in the same manner as in example 1.
[実施例6]
モノクロロ酢酸40gを6-クロロヘキサン酸40gに変更し、6-クロロヘキサン酸添加後さらにDMFを40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)5COOH又は-(CH2)5COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 6]
The same procedure as in Example 1 was carried out except that 40 g of monochloroacetic acid was changed to 40 g of 6-chlorohexanoic acid, and 40 g of DMF was further added after the addition of 6-chlorohexanoic acid. The oxygen atom derived from the hydroxyl group of the modified agarose was replaced with-(CH 2 ) 5 COOH or - (CH 2) 5 COONa is prepared separation material having attached groups, was evaluated in the same manner as in example 1.
モノクロロ酢酸40gを6-クロロヘキサン酸40gに変更し、6-クロロヘキサン酸添加後さらにDMFを40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)5COOH又は-(CH2)5COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Example 6]
The same procedure as in Example 1 was carried out except that 40 g of monochloroacetic acid was changed to 40 g of 6-chlorohexanoic acid, and 40 g of DMF was further added after the addition of 6-chlorohexanoic acid. The oxygen atom derived from the hydroxyl group of the modified agarose was replaced with-(CH 2 ) 5 COOH or - (CH 2) 5 COONa is prepared separation material having attached groups, was evaluated in the same manner as in example 1.
[比較例1]
市販のイオン交換クロマトグラフィー担体「CM Sepharose Fast Flow」(GEヘルスケア・ジャパン株式会社製)を分離材として用い、実施例1と同様に評価を行った。 [Comparative Example 1]
Evaluation was performed in the same manner as in Example 1 using a commercially available ion exchange chromatography carrier “CM Sepharose Fast Flow” (manufactured by GE Healthcare Japan) as a separating material.
市販のイオン交換クロマトグラフィー担体「CM Sepharose Fast Flow」(GEヘルスケア・ジャパン株式会社製)を分離材として用い、実施例1と同様に評価を行った。 [Comparative Example 1]
Evaluation was performed in the same manner as in Example 1 using a commercially available ion exchange chromatography carrier “CM Sepharose Fast Flow” (manufactured by GE Healthcare Japan) as a separating material.
[比較例2]
モノクロロ酢酸40gを11-ブロモウンデカン酸40gに変更し、11-ブロモウンデカン酸添加後さらにDMFを40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)10COOH又は-(CH2)10COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Comparative Example 2]
Change the monochloroacetic acid 40g in 11-bromo undecanoic acid 40g, 11 bromo undecanoic acid added after addition DMF except for adding 40g the same manner as in Example 1, the oxygen atom derived from the hydroxyl group of the denaturing agarose - (CH 2 A separation material having a group to which 10 COOH or — (CH 2 ) 10 COONa was bonded was prepared and evaluated in the same manner as in Example 1.
モノクロロ酢酸40gを11-ブロモウンデカン酸40gに変更し、11-ブロモウンデカン酸添加後さらにDMFを40g添加した以外は実施例1と同様に行い、変性アガロースの水酸基由来の酸素原子に-(CH2)10COOH又は-(CH2)10COONaが結合した基を有する分離材を作製し、実施例1と同様に評価を行った。 [Comparative Example 2]
Change the monochloroacetic acid 40g in 11-bromo undecanoic acid 40g, 11 bromo undecanoic acid added after addition DMF except for adding 40g the same manner as in Example 1, the oxygen atom derived from the hydroxyl group of the denaturing agarose - (CH 2 A separation material having a group to which 10 COOH or — (CH 2 ) 10 COONa was bonded was prepared and evaluated in the same manner as in Example 1.
実施例1~6の分離材は、カラムに充填したときの通液性に優れているとともに、タンパク質の動的吸着量及び回収率が高いことが確認された。また、実施例1~6の分離材は、タンパク質の非特異吸着を抑制することができ、5%圧縮変形弾性率が高いことも確認された。
分離 It was confirmed that the separation materials of Examples 1 to 6 were excellent in liquid permeability when packed in a column, and high in the amount of dynamic adsorption of protein and the recovery rate. In addition, it was also confirmed that the separation materials of Examples 1 to 6 can suppress nonspecific adsorption of proteins and have a high 5% compressive deformation elastic modulus.
以上説明したとおり、本発明によれば、カラムとして用いたときの通液性に優れる分離材、当該分離材を備えるカラム及び当該分離材の製造方法を提供することができる。
As described above, according to the present invention, it is possible to provide a separation material having excellent liquid permeability when used as a column, a column including the separation material, and a method for producing the separation material.
Claims (10)
- 疎水性高分子粒子と、該疎水性高分子粒子の表面の少なくとも一部を被覆する被覆層とを備え、
前記被覆層が、水酸基と、-O-R-L(Oは前記水酸基に由来する酸素原子を示し、Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基と、を有する親水性高分子を含む、分離材。 Hydrophobic polymer particles, comprising a coating layer covering at least a part of the surface of the hydrophobic polymer particles,
The coating layer comprises a hydroxyl group and —ORL (O represents an oxygen atom derived from the hydroxyl group, R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or an alkali carboxy group. And a hydrophilic polymer having a group represented by the following formula: - 前記-O-R-Lで表される基の含有量が、分離材1mL当たり100μmol以上である、請求項1に記載の分離材。 分離 The separation material according to claim 1, wherein the content of the group represented by -ORL is 100 µmol or more per 1 mL of the separation material.
- 前記疎水性高分子粒子が、スチレン系モノマに由来する構造単位を有するポリマを含む粒子である、請求項1又は2に記載の分離材。 The separation material according to claim 1 or 2, wherein the hydrophobic polymer particles are particles containing a polymer having a structural unit derived from a styrene-based monomer.
- 前記親水性高分子が、多糖類及びその変性体からなる群より選ばれる少なくとも1種に由来する親水性高分子を含む、請求項1~3のいずれか一項に記載の分離材。 4. The separation material according to claim 1, wherein the hydrophilic polymer includes a hydrophilic polymer derived from at least one selected from the group consisting of polysaccharides and modified products thereof.
- 前記親水性高分子が、アガロース、デキストラン、セルロース、プルラン、キトサン及びこれらの変性体からなる群より選ばれる少なくとも1種に由来する親水性高分子を含む、請求項1~4のいずれか一項に記載の分離材。 5. The hydrophilic polymer according to claim 1, wherein the hydrophilic polymer includes a hydrophilic polymer derived from at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof. The separating material according to the above.
- 前記親水性高分子が、架橋されている、請求項1~5のいずれか一項に記載の分離材。 分離 The separation material according to any one of claims 1 to 5, wherein the hydrophilic polymer is cross-linked.
- 請求項1~6のいずれか一項に記載の分離材を備える、カラム。 カ ラ ム A column comprising the separation material according to any one of claims 1 to 6.
- 請求項1~6のいずれか一項に記載の分離材の製造方法であって、
疎水性高分子粒子の表面の少なくとも一部に、水酸基を有する親水性高分子を被覆するする工程と、
前記被覆された親水性高分子が有する水酸基の水素原子の一部を、-R-L(Rは、炭素数1~5のアルキレン基を示し、Lはカルボキシ基又はカルボキシ基のアルカリ金属塩を示す。)で表される基に置換する工程と、
を備える、分離材の製造方法。 A method for producing a separation material according to any one of claims 1 to 6, wherein
A step of coating at least a part of the surface of the hydrophobic polymer particles with a hydrophilic polymer having a hydroxyl group,
A part of the hydrogen atom of the hydroxyl group of the coated hydrophilic polymer may be represented by -RL (R represents an alkylene group having 1 to 5 carbon atoms, and L represents a carboxy group or an alkali metal salt of a carboxy group. A) a group represented by the following formula:
A method for producing a separation material, comprising: - 前記水酸基を有する親水性高分子が、多糖類及びその変性体からなる群より選ばれる少なくとも1種を含む、請求項8に記載の分離材の製造方法。 The method for producing a separation material according to claim 8, wherein the hydrophilic polymer having a hydroxyl group contains at least one selected from the group consisting of polysaccharides and modified products thereof.
- 前記水酸基を有する親水性高分子が、アガロース、デキストラン、セルロース、プルラン、キトサン及びこれらの変性体からなる群より選ばれる少なくとも1種を含む、請求項8又は9に記載の分離材の製造方法。 The method for producing a separation material according to claim 8, wherein the hydrophilic polymer having a hydroxyl group includes at least one selected from the group consisting of agarose, dextran, cellulose, pullulan, chitosan, and modified products thereof.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018152608A JP2021181037A (en) | 2018-08-14 | 2018-08-14 | Separation material, method for producing separation material, and column |
JP2018-152608 | 2018-08-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020036151A1 true WO2020036151A1 (en) | 2020-02-20 |
Family
ID=69524735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/031740 WO2020036151A1 (en) | 2018-08-14 | 2019-08-09 | Separating material, method of manufacturing separating material, and column |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021181037A (en) |
WO (1) | WO2020036151A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022257560A1 (en) * | 2021-06-09 | 2022-12-15 | 深圳普门科技股份有限公司 | Vinyl monomer-polyvinyl crosslinking agent copolymer non-porous microsphere, preparation method therfor, and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016117574A1 (en) * | 2015-01-19 | 2016-07-28 | 日立化成株式会社 | Separation material |
JP2017196544A (en) * | 2016-04-25 | 2017-11-02 | 日立化成株式会社 | Separation material and column |
WO2018181738A1 (en) * | 2017-03-30 | 2018-10-04 | 日立化成株式会社 | Separation material |
-
2018
- 2018-08-14 JP JP2018152608A patent/JP2021181037A/en active Pending
-
2019
- 2019-08-09 WO PCT/JP2019/031740 patent/WO2020036151A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016117574A1 (en) * | 2015-01-19 | 2016-07-28 | 日立化成株式会社 | Separation material |
JP2017196544A (en) * | 2016-04-25 | 2017-11-02 | 日立化成株式会社 | Separation material and column |
WO2018181738A1 (en) * | 2017-03-30 | 2018-10-04 | 日立化成株式会社 | Separation material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022257560A1 (en) * | 2021-06-09 | 2022-12-15 | 深圳普门科技股份有限公司 | Vinyl monomer-polyvinyl crosslinking agent copolymer non-porous microsphere, preparation method therfor, and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2021181037A (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6778382B2 (en) | Separator | |
JP6790834B2 (en) | Separator | |
JP2017192897A (en) | Separation material and column | |
JPWO2018181738A1 (en) | Separation material | |
JP6648565B2 (en) | Separation material | |
WO2020036151A1 (en) | Separating material, method of manufacturing separating material, and column | |
JP6972606B2 (en) | Separation material, column, and method for manufacturing the separation material | |
JP2021007915A (en) | Production method for coated particle and column production method | |
JP6627514B2 (en) | Separation material, column, and method for producing separation material | |
WO2016117567A1 (en) | Separation material | |
JP2017125815A (en) | Separation material and column | |
JP6676975B2 (en) | Separation materials and columns | |
JP6759679B2 (en) | Separator and column | |
WO2018181925A1 (en) | Separating material for gel filtration and method for purifying water-soluble polymer substance | |
JP6746919B2 (en) | Separation material and column | |
JP2020044496A (en) | Separation material and filling column | |
JP6939021B2 (en) | Separator and column | |
JP6676976B2 (en) | Separation materials and columns | |
JP6926573B2 (en) | Separator and column | |
JP6852259B2 (en) | Separator and column | |
JP6874276B2 (en) | Separator and column | |
JP2020018989A (en) | Separation material | |
JPWO2018174022A1 (en) | Separation material | |
JP6746915B2 (en) | Separation material and column | |
JP6778378B2 (en) | Separator and column |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19849686 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19849686 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |