WO2020032621A1 - 무선 통신 시스템에서 다수의 기지국들에 대한 채널 상태 정보를 송수신하는 방법 및 이에 대한 장치 - Google Patents
무선 통신 시스템에서 다수의 기지국들에 대한 채널 상태 정보를 송수신하는 방법 및 이에 대한 장치 Download PDFInfo
- Publication number
- WO2020032621A1 WO2020032621A1 PCT/KR2019/009971 KR2019009971W WO2020032621A1 WO 2020032621 A1 WO2020032621 A1 WO 2020032621A1 KR 2019009971 W KR2019009971 W KR 2019009971W WO 2020032621 A1 WO2020032621 A1 WO 2020032621A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- base station
- base stations
- information
- interference
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/336—Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0632—Channel quality parameters, e.g. channel quality indicator [CQI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0636—Feedback format
- H04B7/0639—Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0689—Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/0062—Avoidance of ingress interference, e.g. ham radio channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/26025—Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method for reporting channel state information (CSI) for a plurality of channels by a terminal supported by a plurality of base stations and an apparatus for supporting the same. will be.
- CSI channel state information
- Mobile communication systems have been developed to provide voice services while ensuring user activity.
- the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, shortage of resources and users demand faster services, a more advanced mobile communication system is required. .
- the present specification proposes a method of transmitting and receiving channel state information (CSI) for a plurality of base stations in a wireless communication system.
- CSI channel state information
- the present specification proposes a method of configuring CSI reporting related configuration information for CSI reporting for a plurality of base stations that perform CoMP (Coordinated Multi-Point) Joint Transmission.
- CoMP Coordinatd Multi-Point
- the present specification proposes a method of assuming a reception beam when calculating CSI and a method of calculating CSI for a plurality of base stations based on CSI reporting related configuration information.
- the present specification proposes a method for transmitting a CSI to at least one base station among a plurality of base stations performing a CoMP operation and an encoding method for the same.
- a method for reporting channel state information (CSI) by a user equipment (UE) supported by a plurality of base stations in a wireless communication system the plurality of base stations Receiving CSI report related configuration information from at least one of the base stations; Receiving a first reference signal (RS) through a specific reception beam from a first base station among the plurality of base stations; Receiving a second reference signal through the specific reception beam from at least one base station except the first base station among the plurality of base stations; Calculating the CSI by performing measurements on the first reference signal and the second reference signal; And transmitting the CSI to the first base station, when the plurality of base stations transmit independent layers, the terminal measures the second reference signal received through the specific reception beam as interference.
- the CSI can be calculated.
- the terminal may receive an independent layer from each of the plurality of base stations.
- the first reference signal and the second reference signal may be set in a quasi co-location (QCL) relationship with respect to a spatial RX parameter.
- QCL quasi co-location
- the CSI reporting related configuration information may include channel measurement resource information, interference measurement resource information, and CSI parameter information.
- the first reference signal and the interference measurement resource included in the interference measurement resource information may have a QCL relationship with a spatial RX parameter. It can be set to.
- the CSI reporting related configuration information may be set for each base station of the plurality of base stations.
- the interference measurement resource information of the CSI report related configuration information for the first base station may include the second reference signal.
- the method may further include receiving connection relationship information on the CSI reporting related configuration information set for each base station of the plurality of base stations.
- the interference measurement resource information is NZP (Non Zero Power) Channel State Information- CSI-RS. Reference Signal) may further include related information.
- the terminal may calculate the CSI in consideration of interference from the other terminal.
- the first interference received through the specific reception beam and the first base station among the plurality of base stations Compute the total interference based on the second interference received through the reception beam for the base stations except for the total interference is i) the sum of the first interference and the second interference, ii) the first interference and The average value of the second interference, iii) may be calculated as one of values obtained by multiplying each of the first interference and the second interference by a weight.
- the CSI includes Channel Quality Information (CQI), and the CQI corresponds to a value calculated when the terminal simultaneously receives layers from the plurality of base stations. can do.
- CQI Channel Quality Information
- the CSI when the CSI corresponds to a subband CSI report, the CSI is divided into parts 1 and 2 and encoded, and the part 2 is only a PMI for each base station. Can be configured.
- the CSI reporting related configuration information further includes uplink resource configuration for the CSI transmission, wherein the uplink resource configuration corresponds to the number of the plurality of base stations. Can be set.
- the terminal is supported by a plurality of base stations, and the radio signal A transceiver for transmitting and receiving, and a processor functionally connected to the transceiver, wherein the processor controls the transceiver to receive CSI report related configuration information from at least one of the base stations; Receiving a first reference signal (RS) through a specific reception beam from a first base station among the plurality of base stations, and from the at least one base station except the first base station among the plurality of base stations, the specific Receiving a second reference signal through a receive beam, and performing measurements on the first reference signal and the second reference signal to obtain the CSI.
- the CSI may be calculated by controlling the transceiver and transmitting the CSI to the first base station by measuring the second signal as interference.
- a plurality of base stations performing Coordinated Multi-Point Joint Transmission may be commonly or individually configured for CSI reporting (eg, report setting).
- CSI when calculating the CSI for a plurality of base stations performing Coordinated Multi-Point Joint Transmission (CoMP), an accurate method for each base station is assumed through a method of assuming a reception beam. CSI can be calculated.
- CoMP Coordinated Multi-Point Joint Transmission
- Figure 1 shows an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
- FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in this specification can be applied.
- FIG 3 shows an example of a frame structure in an NR system.
- FIG. 4 illustrates an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
- FIG. 5 shows examples of an antenna port and a number of resource grids for each of the numerologies to which the method proposed in this specification can be applied.
- FIG. 6 is a diagram illustrating an example of a physical resource block in an NR.
- FIG. 7 illustrates physical channels and general signal transmission used in a 3GPP system.
- FIG 8 shows an example of beam formation using SSB and CSI-RS.
- FIG. 9 is a flowchart for explaining a downlink beam management procedure using an SSB.
- 10 is a view for explaining a downlink beam management procedure using a CSI-RS.
- FIG. 11 is a diagram for describing a procedure of determining a reception beam in a downlink beam management procedure using CSI-RS.
- FIG. 12 is a diagram for describing a procedure of determining a transmission beam in a downlink beam management procedure using CSI-RS.
- FIG. 13 is a diagram illustrating resource allocation in time and frequency domains in a downlink beam management procedure using CSI-RS.
- FIG. 14 is a diagram for explaining an uplink beam management procedure using SRS.
- 15 is a flowchart illustrating an uplink beam management procedure using SRS.
- 16 is a flowchart illustrating an example of a CSI related procedure.
- 17 shows an example of two TPs performing a CoMP operation and a terminal supported by the two TPs.
- FIG. 18 shows an example of an operation flowchart of a terminal reporting channel state information to which the method proposed in this specification can be applied.
- FIG. 19 shows an example of an operation flowchart of a base station receiving channel state information to which the method proposed in this specification can be applied.
- FIG. 20 illustrates a block diagram of a wireless communication device to which the methods proposed herein can be applied.
- 21 is another example of a block diagram of a wireless communication device to which the methods proposed herein may be applied.
- FIG 22 illustrates an AI device 100 according to an embodiment of the present invention.
- FIG 23 illustrates an AI server 200 according to an embodiment of the present invention.
- downlink means communication from a base station to a terminal
- uplink means communication from a terminal to a base station.
- a transmitter may be part of a base station, and a receiver may be part of a terminal.
- a transmitter may be part of a terminal, and a receiver may be part of a base station.
- the base station may be represented by the first communication device and the terminal by the second communication device.
- a base station (BS) is a fixed station, a Node B, an evolved-NodeB (eNB), a Next Generation NodeB (gNB), a base transceiver system (BTS), an access point (AP), a network (5G).
- eNB evolved-NodeB
- gNB Next Generation NodeB
- BTS base transceiver system
- AP access point
- 5G 5G
- a terminal may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an advanced mobile AMS.
- UE user equipment
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- advanced mobile AMS advanced mobile AMS
- WT Wireless Terminal
- WT wireless terminal
- MTC machine-type communication
- M2M machine-to-machine
- D2D device-to-device
- vehicle robot
- AI module It may be replaced with terms such as a drone (Unmanned Aerial Vehicle, UAV), Augmented Reality (AR) device, and Virtual Reality (VR) device.
- UAV Unmanned Aerial Vehicle
- AR Augmented Reality
- VR Virtual Reality
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) / LTE-A pro is an evolution of 3GPP LTE.
- 3GPP NR New Radio or New Radio Access Technology is an evolution of 3GPP LTE / LTE-A / LTE-A pro.
- LTE refers to technology after 3GPP TS 36.xxx Release 8.
- LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
- LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro
- 3GPP NR means technology after TS 38.xxx Release 15.
- LTE / NR may be referred to as a 3GPP system.
- "xxx" means standard document detail number.
- LTE / NR may be collectively referred to as 3GPP system. Background, terminology, abbreviations, and the like used in the description of the present invention may refer to the matters described in the standard documents published prior to the present invention. For example, see the following document:
- RRC Radio Resource Control
- NR is an expression showing an example of 5G radio access technology (RAT).
- RAT 5G radio access technology
- the three key requirements areas for 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes the area of Ultra-reliable and Low Latency Communications (URLLC).
- eMBB Enhanced Mobile Broadband
- mMTC massive Machine Type Communication
- URLLC Ultra-reliable and Low Latency Communications
- KPI key performance indicator
- eMBB goes far beyond basic mobile Internet access and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
- Data is one of the key drivers of 5G and may not see dedicated voice services for the first time in the 5G era.
- voice is expected to be treated as an application simply using the data connection provided by the communication system.
- the main reasons for the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates.
- Streaming services audio and video
- interactive video and mobile Internet connections will become more popular as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
- Cloud storage and applications are growing rapidly in mobile communication platforms, which can be applied to both work and entertainment.
- cloud storage is a special use case that drives the growth of uplink data rates.
- 5G is also used for remote work in the cloud and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
- Entertainment For example, cloud gaming and video streaming are another key factor in increasing the need for mobile broadband capabilities. Entertainment is essential in smartphones and tablets anywhere, including in high mobility environments such as trains, cars and airplanes.
- Another use case is augmented reality and information retrieval for entertainment.
- augmented reality requires very low latency and instantaneous amount of data.
- one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all applications, namely mMTC.
- potential IoT devices are expected to reach 20 billion.
- Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
- URLLC includes new services that will transform the industry through ultra-reliable / low latency available links such as remote control of key infrastructure and self-driving vehicles.
- the level of reliability and latency is essential for smart grid control, industrial automation, robotics, drone control and coordination.
- 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams that are rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K and higher resolutions (6K, 8K and higher) as well as virtual and augmented reality.
- Virtual Reality (AVR) and Augmented Reality (AR) applications include nearly immersive sporting events. Certain applications may require special network settings. For example, for VR games, game companies may need to integrate core servers with network operator's edge network servers to minimize latency.
- Automotive is expected to be an important new driver for 5G, with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. This is because future users continue to expect high quality connections regardless of their location and speed.
- Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark above what the driver sees through the front window and overlays information that tells the driver about the distance and movement of the object.
- wireless modules enable communication between vehicles, information exchange between the vehicle and the supporting infrastructure, and information exchange between the vehicle and other connected devices (eg, devices carried by pedestrians).
- the safety system guides alternative courses of action to help drivers drive safer, reducing the risk of an accident.
- the next step will be a remotely controlled or self-driven vehicle.
- Smart cities and smart homes will be embedded in high-density wireless sensor networks.
- the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of the city or home. Similar settings can be made for each hypothesis.
- Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real time HD video may be required in certain types of devices for surveillance.
- Smart grids interconnect these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve the distribution of fuels such as electricity in efficiency, reliability, economics, sustainability of production and in an automated manner. Smart Grid can be viewed as another sensor network with low latency.
- the health sector has many applications that can benefit from mobile communications.
- the communication system can support telemedicine, providing clinical care at a distance. This can help reduce barriers to distance and improve access to health care services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
- a mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
- Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing the cables with reconfigurable wireless links is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operates with similar cable delay, reliability, and capacity, and that management is simplified. Low latency and very low error probability are new requirements that need to be connected in 5G.
- Logistics and freight tracking are important examples of mobile communications that enable the tracking of inventory and packages from anywhere using a location-based information system.
- the use of logistics and freight tracking typically requires low data rates but requires wide range and reliable location information.
- the new RAT system including the NR uses an OFDM transmission scheme or a similar transmission scheme.
- the new RAT system may follow different OFDM parameters than the OFDM parameters of LTE.
- the new RAT system can follow the existing numeric / numerology of LTE / LTE-A but have a larger system bandwidth (eg, 100 MHz).
- one cell may support a plurality of neurology. That is, terminals operating with different neurology may coexist in one cell.
- Numerology corresponds to one subcarrier spacing in the frequency domain.
- different numerology can be defined.
- eLTE eNB An eLTE eNB is an evolution of an eNB that supports connectivity to EPC and NGC.
- gNB Node that supports NR as well as connection with NGC.
- New RAN A radio access network that supports NR or E-UTRA or interacts with NGC.
- Network slice A network slice defined by the operator to provide an optimized solution for specific market scenarios that require specific requirements with end-to-end coverage.
- Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
- NG-C Control plane interface used for the NG2 reference point between the new RAN and NGC.
- NG-U User plane interface used for the NG3 reference point between the new RAN and NGC.
- Non-standalone NR A deployment configuration where a gNB requires an LTE eNB as an anchor for control plane connection to EPC or an eLTE eNB as an anchor for control plane connection to NGC.
- Non-Standalone E-UTRA Deployment configuration in which the eLTE eNB requires gNB as an anchor for control plane connection to NGC.
- User plane gateway The endpoint of the NG-U interface.
- Figure 1 shows an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
- the NG-RAN consists of gNBs that provide control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and user equipment (UE). do.
- RRC control plane
- the gNBs are interconnected via an X n interface.
- the gNB is also connected to the NGC via an NG interface.
- the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and to a User Plane Function (UPF) through an N3 interface.
- AMF Access and Mobility Management Function
- UPF User Plane Function
- the numerology may be defined by subcarrier spacing and cyclic prefix overhead.
- the plurality of subcarrier intervals may be represented by an integer N (or, May be derived by scaling.
- the used numerology may be selected independently of the frequency band.
- OFDM Orthogonal Frequency Division Multiplexing
- OFDM numerologies supported in the NR system may be defined as shown in Table 1.
- the NR system supports multiple numerologies (or subcarrier spacings) to support various 5G services. For example, when the SCS is 15 kHz, it supports wide area in traditional cellular bands, and when the SCS is 30 kHz / 60 kHz, dense-urban, lower latency And wider carrier carrier bandwidth, and when the SCS is 60 kHz or higher, it supports a bandwidth greater than 24.25 GHz to overcome phase noise.
- numerologies or subcarrier spacings
- the NR frequency band is defined as a frequency range of two types (FR1 and FR2).
- FR1 is in the range of 6GHz or less (eg 450Mhz ⁇ 6Ghz)
- FR2 is in the range of 6GHz or more (eg 24.25GHz ⁇ 52.6GHz) and may mean a millimeter wave (mmW).
- the FR1 supports SCSs of 15, 30 and 60 kHz
- the FR2 supports SCSs of 60, 120 and 240 kHz.
- the size of the various fields in the time domain Is expressed as a multiple of the time unit. From here, ego, to be.
- Downlink and uplink transmissions It consists of a radio frame having a section of (radio frame).
- each radio frame is It consists of 10 subframes having a section of.
- FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in this specification can be applied.
- transmission of an uplink frame number i from a user equipment (UE) is greater than the start of the corresponding downlink frame at the corresponding terminal. You must start before.
- Slot in subframe Start of OFDM symbol in the same subframe Is aligned with the beginning of time.
- Not all terminals can transmit and receive at the same time, which means that not all OFDM symbols of a downlink slot or an uplink slot can be used.
- Table 2 shows the number of OFDM symbols per slot in a normal CP. ), The number of slots per radio frame ( ), The number of slots per subframe ( Table 3 shows the number of OFDM symbols for each slot, the number of slots for each radio frame, and the number of slots for each subframe in the extended CP.
- 3 shows an example of a frame structure in an NR system. 3 is merely for convenience of description and does not limit the scope of the invention.
- one subframe may include four slots.
- one subframe ⁇ 1,2,4 ⁇ slots is an example, and the number of slot (s) that may be included in one subframe may be defined as shown in Table 2.
- mini-slot may consist of two, four or seven symbols, and may consist of more or fewer symbols.
- an antenna port In relation to physical resources in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
- the antenna port is defined so that the channel on which the symbol on the antenna port is carried can be inferred from the channel on which another symbol on the same antenna port is carried. If the large-scale property of a channel carrying a symbol on one antenna port can be deduced from the channel carrying the symbol on another antenna port, the two antenna ports are quasi co-located or QC / QCL. quasi co-location relationship.
- the wide range characteristics include one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
- FIG. 4 shows an example of a resource grid supported by a wireless communication system to which the method proposed in this specification can be applied.
- the resource grid is in the frequency domain Consisting of subcarriers, one subframe
- the configuration of OFDM symbols is described as an example, but is not limited thereto.
- the transmitted signal is One or more resource grids composed of subcarriers, and It is described by the OFDM symbols of. From here, to be. remind Denotes the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
- the numerology And one resource grid for each antenna port p.
- FIG. 5 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
- each element of the resource grid for antenna port p is referred to as a resource element and is an index pair Uniquely identified by From here, Is the index on the frequency domain, Refers to the position of a symbol within a subframe. Index pair when referring to a resource element in a slot This is used. From here, to be.
- Numerology Resource elements for antenna and antenna port p Is a complex value Corresponds to If there is no risk of confusion, or if a particular antenna port or numerology is not specified, the indices p and Can be dropped, so the complex value is or This can be
- the physical resource block is in the frequency domain It is defined as consecutive subcarriers.
- Point A serves as a common reference point of the resource block grid and can be obtained as follows.
- OffsetToPointA for the PCell downlink represents the frequency offset between the lowest subcarrier of the lowest resource block and point A overlapping with the SS / PBCH block used by the UE for initial cell selection, and a 15 kHz subcarrier spacing for FR1 and Represented in resource block units assuming a 60 kHz subcarrier spacing for FR2;
- absoluteFrequencyPointA indicates the frequency-location of point A expressed as in absolute radio-frequency channel number (ARFCN).
- Common resource blocks set subcarrier spacing It is numbered upwards from zero in the frequency domain for.
- Is It may be defined relative to point A to correspond to the subcarrier centered on this point A.
- Physical resource blocks are zero-based within the bandwidth part (BWP). Numbered until, Is the number of the BWP. Physical resource blocks on BWP i And common resource blocks Can be given by Equation 2 below.
- FIG. 6 shows an example of a physical resource block in an NR.
- a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
- the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type / use of the information transmitted and received.
- the UE When the UE is powered on or enters a new cell, the UE performs an initial cell search operation such as synchronizing with the base station (S701). To this end, the terminal may receive a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) from the base station to synchronize with the base station and obtain information such as a cell ID. Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain broadcast information in a cell. On the other hand, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
- PSS primary synchronization signal
- SSS secondary synchronization signal
- PBCH physical broadcast channel
- DL RS downlink reference signal
- the UE After completing the initial cell search, the UE acquires more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S702).
- PDSCH physical downlink control channel
- PDCCH physical downlink control channel
- the terminal may perform a random access procedure (RACH) for the base station (S703 to S706).
- RACH random access procedure
- the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S703 and S705), and a response message (RAR (Random Access) to the preamble through the PDCCH and the corresponding PDSCH. Response) message
- PRACH physical random access channel
- RAR Random Access
- a contention resolution procedure may be additionally performed (S706).
- the UE After performing the procedure as described above, the UE performs a PDCCH / PDSCH reception (S707) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
- Control Channel (PUCCH) transmission (S708) may be performed.
- the UE may receive downlink control information (DCI) through the PDCCH.
- DCI includes control information such as resource allocation information for the terminal, and the format may be applied differently according to the purpose of use.
- the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ) May be included.
- the UE may transmit the above-described control information such as CQI / PMI / RI through PUSCH and / or PUCCH.
- the BM procedure identifies a set of base stations (eg, gNB, TRP, etc.) and / or terminal (eg, UE) beams that can be used for downlink (DL) and uplink (UL) transmission / reception.
- base stations eg, gNB, TRP, etc.
- terminal eg, UE
- DL downlink
- UL uplink
- layer 1 / L2 layer 2
- Beam measurement the operation of the base station or UE measuring the characteristics of the received beamforming signal.
- Beam determination an operation in which a base station or a UE selects its Tx beam / Rx beam.
- Beam sweeping an operation of covering a spatial region using transmit and / or receive beams for a predetermined time interval in a predetermined manner.
- Beam report an operation in which a UE reports information of a beamformed signal based on beam measurement.
- the BM procedure may be classified into (1) a DL BM procedure using a synchronization signal (SS) / physical broadcast channel (PBCH) block or CSI-RS, and (2) a UL BM procedure using a sounding reference signal (SRS).
- each BM procedure may include Tx beam sweeping for determining the Tx beam and Rx beam sweeping for determining the Rx beam.
- the DL beam management procedure includes (1) a base station transmitting a beamforming DL RS (eg, a CSI-RS or SS block (SSB)) and (2) a terminal transmitting a beam report. It may include a step.
- a beamforming DL RS eg, a CSI-RS or SS block (SSB)
- SSB SS block
- beam reporting may include the preferred DL RS ID (identifier) (s) and the corresponding L1-RSRP.
- the DL RS ID may be an SSB resource indicator (SSBRI) or a CSI-RS resource indicator (CRI).
- SSBRI SSB resource indicator
- CRI CSI-RS resource indicator
- the SSB beam and the CSI-RS beam may be used for beam measurement.
- the measurement metric is L1-RSRP for each resource / block.
- SSB is used for coarse beam measurement, and CSI-RS can be used for fine beam measurement.
- SSB can be used for both Tx beam sweeping and Rx beam sweeping.
- Rx beam sweeping using SSB may be performed while the UE changes the Rx beam for the same SSBRI across multiple SSB bursts.
- one SS burst includes one or more SSBs
- one SS burst set includes one or more SSB bursts.
- FIG. 9 is a flowchart illustrating an example of a DL BM procedure using an SSB.
- the beam report setting using the SSB is performed at the time of CSI / beam configuration in the RRC connected state (or RRC connected mode).
- the terminal receives from the base station a CSI-ResourceConfig IE including a CSI-SSB-ResourceSetList including SSB resources used for BM (S910).
- Table 4 shows an example of the CSI-ResourceConfig IE. As shown in Table 4, the BM configuration using the SSB is not defined separately, and the SSB is set as the CSI-RS resource.
- the csi-SSB-ResourceSetList parameter represents a list of SSB resources used for beam management and reporting in one resource set.
- the SSB resource set may be set to ⁇ SSBx1, SSBx2, SSBx3, SSBx4, ... ⁇ .
- SSB index may be defined from 0 to 63.
- the terminal receives the SSB resource from the base station based on the CSI-SSB-ResourceSetList (S920).
- the terminal reports (beam) the best SSBRI and the corresponding L1-RSRP to the base station (S930).
- the terminal reports the best SSBRI and the corresponding L1-RSRP to the base station.
- the terminal When the CSI-RS resource is set in the same OFDM symbol (s) as the SSB (SS / PBCH Block), and the 'QCL-TypeD' is applicable, the terminal indicates that the CSI-RS and the SSB are the 'QCL-TypeD'. 'From the point of view, we can assume quasi co-located.
- the QCL TypeD may mean that QCL is interposed between antenna ports in view of spatial Rx parameter.
- the terminal receives a plurality of DL antenna ports in a QCL Type D relationship, the same reception beam may be applied.
- the UE does not expect the CSI-RS to be set in the RE overlapping the RE of the SSB.
- At least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is the same downlink space domain transmission filter Can be assumed to be transmitted.
- At least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through the same Tx beam.
- At least one CSI-RS resource in the NZP-CSI-RS-ResourceSet may be transmitted through another OFDM symbol or may be transmitted in another frequency domain (ie, through FDM).
- the case where at least one CSI-RS resource is a target of FDM is when the terminal is a multi-panel terminal.
- the terminal does not expect to receive different periodicity in periodicityAndOffset from all CSI-RS resources in the NZP-CSI-RS-ResourceSet.
- the terminal does not assume that at least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted to the same downlink spatial domain transmission filter.
- At least one CSI-RS resource in the NZP-CSI-RS-ResourceSet is transmitted through another TX bam.
- the repetition is set to "OFF" related to the transmit beam sweeping procedure of the base station.
- parameter repetition may be set only for the CSI-RS resource set associated with the CSI-ReportConfig with L1 RSRP or “No report or None”.
- the UE When the UE receives the CSI-ResourceConfig in which the reportQuantity is set to "cri-RSRP" or "none", the UE may be configured with the same number of ports (1-port or 2-port), and the NZP-CSI-RS- Define the "nrofPorts" parameter for all CSI-RS resources in the ResourceSet.
- CSI-RS is used for beam management unless parameter repetition is set in a specific CSI-RS resource set and TRS_info is not set.
- TRS Tracking Reference Signal
- CSI-RS is used to acquire CSI unless parameter iteration or TRS_info is configured.
- FIG. 10 is a diagram illustrating an example of a DL BM procedure using CSI-RS.
- FIG. 10 (a) illustrates an Rx beam determination (or refinement) procedure of a terminal
- FIG. 10 (b) illustrates a transmission beam determination procedure of a base station.
- FIG. 10A illustrates a case where parameter repetition is set to "on”
- FIG. 10B illustrates a case where "OFF" is set.
- FIG. 11 is a diagram for describing a procedure of determining a reception beam in a downlink beam management procedure using CSI-RS.
- the UE receives an NZP CSI-RS resource set IE including higher layer parameter repetition from the base station through RRC signaling (S1110). Parameter repetition is set to "ON".
- the UE repeatedly receives the CSI resource from the CSI-RS resource set in which repetition is set to “ON” from another OFDM symbol through the same Tx beam (or DL spatial domain transmission filter) (S1120).
- the terminal determines its own reception beam (S1130).
- the terminal may omit the CSI report, or may transmit the CSI report including the CRI / L1-RSRP to the base station (S1140).
- the reportQuantity of the CSI report Config may be configured as "No report (or None)" or "CRI and L1-RSRP".
- the UE may omit CSI reporting or report ID information (CRI) of the beam pair-related priority beam and its quality value (L1-RSRP).
- CRI report ID information
- L1-RSRP quality value
- FIG. 12 is a flowchart illustrating an example of a transmission beam determination procedure of a base station.
- the terminal receives an NZP CSI-RS resource set IE including higher layer parameter repetition from the base station through RRC signaling (S1210).
- the parameter repetition is set to "OFF" and is related to the Tx beam sweeping procedure of the base station.
- the terminal receives the CSI resource from the CSI-RS resource set in which repetition is set to “OFF” through another Tx beam (DL spatial domain transmission filter) (S1220).
- Tx beam DL spatial domain transmission filter
- the terminal selects (or determines) an optimal beam (S1230) and reports the ID and quality information (eg, L1-RSRP) of the selected beam to the base station (S1240).
- ID and quality information eg, L1-RSRP
- reportQuantity of CSI report Config may be configured as "CRI + L1-RSRP". That is, when the CSI-RS is transmitted for the BM, the terminal reports the corresponding CSI and L1-RSRP to the base station.
- FIG. 13 is a diagram illustrating an example of resource allocation in a time and frequency domain associated with the operation of FIG. 10.
- the UE may receive an RRC configuration list of up to M candidate transmission configuration indication (TCI) states for at least QCL (Quasi Co-location) indication.
- TCI transmission configuration indication
- QCL Quadrature Co-location
- Each TCI state may be set to one RS set.
- Each ID of the DL RS for at least spatial QCL purpose (QCL Type D) in the RS set may refer to one of DL RS types such as SSB, P-CSI RS, SP-CSI RS, A-CSI RS, and the like. .
- Initialization / update of the ID of the DL RS (s) in the RS set used for at least spatial QCL purposes may be performed at least via explicit signaling.
- Table 5 shows an example of the TCI-State IE.
- the TCI-State IE associates one or two DL reference signal (RS) corresponding quasi co-location (QCL) types.
- RS DL reference signal
- QCL quasi co-location
- the bwp-Id parameter indicates the DL BWP where the RS is located
- the cell parameter indicates the carrier where the RS is located
- the referencesignal parameter indicates the reference that is the source of the quasi co-location for the corresponding target antenna port (s).
- antenna port (s) may be CSI-RS, PDCCH DMRS, or PDSCH DMRS.
- a corresponding TCI state ID may be indicated in the NZP CSI-RS resource configuration information.
- the TCI state ID may be indicated in each CORESET configuration to indicate the QCL reference information on the PDCCH DMRS antenna port (s).
- the TCI state ID may be indicated through the DCI to indicate the QCL reference information on the PDSCH DMRS antenna port (s).
- the antenna port is defined so that the channel on which the symbol is carried on the antenna port can be inferred from the channel on which another symbol on the same antenna port is carried. If the property of a channel carrying a symbol on one antenna port can be inferred from a channel carrying a symbol on another antenna port, the two antenna ports are QC / QCL (quasi co-located or quasi co-location). Can be said to be in a relationship.
- the channel characteristics include delay spread, Doppler spread, frequency / Doppler shift, average received power, received timing / average delay, and average timing. delay), and one or more of the Spatial RX parameters.
- the Spatial Rx parameter means a spatial (receive) channel characteristic parameter such as an angle of arrival.
- the UE may be configured with a list of up to M TCI-State configurations in the higher layer parameter PDSCH-Config in order to decode the PDSCH according to the detected PDCCH having the DCI intended for the UE and a given serving cell.
- the M depends on the UE capability.
- Each TCI-State includes a parameter for configuring a quasi co-location relationship between one or two DL reference signals and a DM-RS port of a PDSCH.
- the quasi co-location relationship is set to the higher layer parameter qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS (if set).
- the QCL type is not the same regardless of whether the reference is the same DL RS or different DL RSs.
- the quasi co-location type corresponding to each DL RS is given by the higher layer parameter qcl-Type of QCL-Info, and can take one of the following values:
- 'QCL-TypeA' ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇
- the corresponding NZP CSI-RS antenna ports may be indicated / set as a specific TRS in a QCL-Type A viewpoint and a specific SSB and QCL in a QCL-Type D viewpoint. have.
- the UE receiving this indication / setting receives the corresponding NZP CSI-RS using the Doppler and delay values measured in the QCL-TypeA TRS, and applies the reception beam used to receive the QCL-TypeD SSB to the corresponding NZP CSI-RS reception. can do.
- the UE may receive an activation command by MAC CE signaling used to map up to eight TCI states to a codepoint of the DCI field 'Transmission Configuration Indication'.
- the UL BM may or may not establish a beam reciprocity (or beam correspondence) between the Tx beam and the Rx beam depending on the terminal implementation. If reciprocity is established between the Tx beam and the Rx beam in both the base station and the terminal, the UL beam pair may be matched through the DL beam pair. However, when either of the base station and the terminal does not establish a reciprocity between the Tx beam and the Rx beam, a UL beam pair determination process is required separately from the DL beam pair determination.
- the base station may use the UL BM procedure for DL Tx beam determination without the terminal requesting reporting of the preferred beam.
- UL BM may be performed through beamformed UL SRS transmission, and whether the UL BM is applied to the SRS resource set is set by (higher layer parameter) usage. If usage is set to 'BeamManagement (BM)', only one SRS resource can be transmitted to each of a plurality of SRS resource sets at a given time instant.
- BM BeamManagement
- the terminal may receive one or more Sounding Reference Symbol (SRS) resource sets (via higher layer signaling, RRC signaling, etc.) set by the (higher layer parameter) SRS-ResourceSet.
- SRS Sounding Reference Symbol
- the UE may be configured with K ⁇ 1 SRS resources (higher later parameter SRS-resource).
- K is a natural number and the maximum value of K is indicated by SRS_capability.
- the UL BM procedure may be divided into Tx beam sweeping of the terminal and Rx beam sweeping of the base station.
- FIG. 14 shows an example of a UL BM procedure using SRS.
- FIG. 14 (a) shows an Rx beam determination procedure of a base station
- FIG. 14 (b) shows a Tx beam sweeping procedure of a terminal.
- 15 is a flowchart illustrating an example of a UL BM procedure using SRS.
- the terminal receives an RRC signaling (eg, SRS-Config IE) including a higher layer parameter usage parameter set to 'beam management' from the base station (S1510).
- RRC signaling eg, SRS-Config IE
- Table 6 shows an example of an SRS-Config Information Element (IE), and the SRS-Config IE is used for SRS transmission configuration.
- the SRS-Config IE contains a list of SRS-Resources and a list of SRS-ResourceSets. Each SRS resource set means a set of SRS-resource.
- the network may trigger the transmission of the SRS resource set using the configured aperiodicSRS-ResourceTrigger (L1 DCI).
- usage indicates a higher layer parameter indicating whether the SRS resource set is used for beam management or for codebook based or non-codebook based transmission.
- the usage parameter corresponds to the L1 parameter 'SRS-SetUse'.
- 'spatialRelationInfo' is a parameter indicating the spatial relation setting between the reference RS and the target SRS.
- the reference RS may be SSB, CSI-RS or SRS corresponding to the L1 parameter 'SRS-SpatialRelationInfo'.
- the usage is set for each SRS resource set.
- the terminal determines a Tx beam for the SRS resource to be transmitted based on the SRS-SpatialRelation Info included in the SRS-Config IE (S1520).
- SRS-SpatialRelation Info is set for each SRS resource and indicates whether to apply the same beam as that used for SSB, CSI-RS, or SRS for each SRS resource.
- SRS-SpatialRelationInfo may or may not be set for each SRS resource.
- SRS-SpatialRelationInfo is configured in the SRS resource, the same beam as that used in SSB, CSI-RS or SRS is applied and transmitted. However, if the SRS-SpatialRelationInfo is not set in the SRS resource, the terminal arbitrarily determines the Tx beam and transmits the SRS through the determined Tx beam (S1530).
- the UE applies the same SRS resource by applying the same spatial domain transmission filter (or generated from that filter) as the spatial domain Rx filter used to receive the SSB / PBCH. Send it; or
- the UE transmits SRS resources by applying the same spatial domain transmission filter used for reception of periodic CSI-RS or SP CSI-RS;
- the UE transmits the corresponding SRS resource by applying the same spatial domain transmission filter used for transmission of periodic SRS.
- the beam determination and transmission operation may be applied.
- the UE may receive or not receive feedback on the SRS from the base station as in the following three cases (S1540).
- the terminal transmits the SRS in a beam indicated by the base station.
- the base station corresponds to Fig. 14A for the purpose of selecting the Rx beam.
- Spatial_Relation_Info may not be set for all SRS resources in the SRS resource set.
- the terminal may transmit while changing the SRS beam freely. That is, in this case, the UE sweeps the Tx beam and corresponds to FIG. 14B.
- Spatial_Relation_Info may be set only for some SRS resources in the SRS resource set.
- the SRS may be transmitted through the indicated beam with respect to the configured SRS resource, and the terminal may arbitrarily apply a Tx beam to the SRS resource for which Spatial_Relation_Info is not set.
- the channel state information-reference signal may include time and / or frequency tracking, CSI computation, layer 1 (L1) -RSRP (reference signal received). It is used for power computation and mobility.
- CSI computation is related to CSI acquisition
- L1-RSRP computation is related to beam management (BM).
- Channel state information refers to information that may indicate the quality of a wireless channel (or also referred to as a link) formed between a terminal and an antenna port.
- 16 is a flowchart illustrating an example of a CSI related procedure.
- a UE in order to perform one of the uses of the CSI-RS, may configure configuration information related to CSI through a base station (eg, RRC) via radio resource control (RRC) signaling.
- RRC radio resource control
- gNB general Node B
- the configuration information related to the CSI includes information related to CSI-IM (interference management) resources, information related to CSI measurement configuration, information related to CSI resource configuration, and information related to CSI-RS resource. Or CSI report configuration related information.
- CSI-IM interference management
- the CSI-IM resource related information may include CSI-IM resource information, CSI-IM resource set information, and the like.
- the CSI-IM resource set is identified by a CSI-IM resource set identifier (ID), and one resource set includes at least one CSI-IM resource.
- Each CSI-IM resource is identified by a CSI-IM resource ID.
- the CSI resource configuration related information may be represented by CSI-ResourceConfig IE.
- the CSI resource configuration related information defines a group including at least one of a non zero power (NZP) CSI-RS resource set, a CSI-IM resource set, or a CSI-SSB resource set. That is, the CSI resource configuration related information includes a CSI-RS resource set list, and the CSI-RS resource set list includes at least one of an NZP CSI-RS resource set list, a CSI-IM resource set list, or a CSI-SSB resource set list. It may include one.
- the CSI-RS resource set is identified by a CSI-RS resource set ID, and one resource set includes at least one CSI-RS resource. Each CSI-RS resource is identified by a CSI-RS resource ID.
- Table 7 shows an example of the NZP CSI-RS resource set IE.
- parameters indicating the usage of CSI-RS for each NZP CSI-RS resource set eg, a 'repetition' parameter related to BM and a 'trs-Info' parameter related to tracking
- a 'repetition' parameter related to BM and a 'trs-Info' parameter related to tracking may be set.
- the repetition parameter corresponding to the higher layer parameter corresponds to the 'CSI-RS-ResourceRep' of the L1 parameter.
- the CSI report configuration related information includes a reportConfigType parameter indicating a time domain behavior and a reportQuantity parameter indicating a CSI related quantity for reporting.
- the time domain behavior may be periodic, aperiodic or semi-persistent.
- CSI report configuration related information may be represented by CSI-ReportConfig IE, and Table 8 below shows an example of CSI-ReportConfig IE.
- the terminal measures the CSI based on the configuration information related to the CSI (S1620).
- the CSI measurement may include (1) a CSI-RS reception process (S1621) of the UE, and (2) a process (S1622) of calculating the CSI through the received CSI-RS, which will be described in detail. Will be described later.
- CSI-RS a mapping of a resource element (RE) of a CSI-RS resource is set in a time and frequency domain by a higher layer parameter CSI-RS-ResourceMapping.
- Table 9 shows an example of the CSI-RS-ResourceMapping IE.
- density (D) represents density of CSI-RS resources measured in RE / port / PRB (physical resource block), and nrofPorts represents the number of antenna ports.
- the terminal reports the measured CSI to the base station (S1630).
- the terminal may omit the report.
- the terminal may report to the base station.
- the report of the terminal can be omitted only when the repetition is set to 'ON'.
- the NR system supports more flexible and dynamic CSI measurement and reporting.
- the CSI measurement may include a procedure of receiving a CSI-RS, computing the received CSI-RS, and acquiring the CSI.
- CM semi-persistent / periodic channel measurement
- IM interference measurement
- CSI-IM based IMR of NR has a design similar to that of CSI-IM of LTE, and is configured independently of ZP CSI-RS resources for PDSCH rate matching.
- each port emulates an interference layer with (preferred channel and) precoded NZP CSI-RS. This is for intra-cell interference measurement for multi-user cases, and mainly targets MU interference.
- the base station transmits the precoded NZP CSI-RS to the terminal on each port of the configured NZP CSI-RS based IMR.
- the UE assumes a channel / interference layer for each port in the resource set and measures interference.
- the base station or network For a channel, if there is no PMI and RI feedback, multiple resources are set in the set, and the base station or network indicates a subset of NZP CSI-RS resources through DCI for channel / interference measurement.
- Each CSI resource setting 'CSI-ResourceConfig' includes a configuration for S ⁇ 1 CSI resource set (given by the higher layer parameter csi-RS-ResourceSetList).
- the CSI resource setting corresponds to the CSI-RS-resourcesetlist.
- S represents the number of the set CSI-RS resource set.
- the configuration for the S ⁇ 1 CSI resource set is the SS / PBCH block (SSB) used for each CSI resource set including LSI-RSRP computation and each CSI-RS resource (configured as NZP CSI-RS or CSI-IM). ) contains resources.
- SSB SS / PBCH block
- Each CSI resource setting is located in the DL bandwidth part (BWP) identified by the higher layer parameter bwp-id. And all CSI resource settings linked to the CSI reporting setting have the same DL BWP.
- BWP DL bandwidth part
- the time domain behavior of the CSI-RS resource in the CSI resource setting included in the CSI-ResourceConfig IE is indicated by a higher layer parameter resourceType and may be set to aperiodic, periodic, or semi-persistent.
- resourceType For Periodic and semi-persistent CSI resource settings, the number S of the set CSI-RS resource sets is limited to '1'.
- the set period and slot offset are given in the numerology of the associated DL BWP, as given by bwp-id.
- the same time domain behavior is set for the CSI-ResourceConfig.
- the same time domain behavior is set for the CSI-ResourceConfig.
- CM channel measurement
- IM interference measurement
- NZP CSI-RS resource for interference measurement
- NZP CSI-RS resource for channel measurement NZP CSI-RS resource for channel measurement.
- the CMR may be NZP CSI-RS for CSI acquisition
- the Interference Measurement Resource (IMR) may be NZP CSI-RS for CSI-IM and IM.
- CSI-IM (or ZP CSI-RS for IM) is mainly used for inter-cell interference measurement.
- NZP CSI-RS for IM is mainly used for intra-cell interference measurement from multi-user.
- the UE may assume that the CSI-RS resource (s) for channel measurement and the CSI-IM / NZP CSI-RS resource (s) for interference measurement configured for one CSI reporting are 'QCL-TypeD' for each resource. .
- a resource setting can mean a resource set list.
- each trigger state set using the higher layer parameter CSI-AperiodicTriggerState is associated with one or more CSI-ReportConfigs where each CSI-ReportConfig is linked to periodic, semi-persistent, or aperiodic resource settings. Associated.
- One reporting setting can be associated with up to three resource settings.
- the resource setting (given by the higher layer parameter resourcesForChannelMeasurement) is for channel measurement for the L1-RSRP computation.
- the first resource setting (given by the higher layer parameter resourcesForChannelMeasurement) is for channel measurement, and the second resource (given by csi-IM-ResourcesForInterference or nzp-CSI-RS -ResourcesForInterference).
- the setting is for interference measurements performed on the CSI-IM or NZP CSI-RS.
- the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement
- the second resource setting (given by csi-IM-ResourcesForInterference) is for CSI-IM based interference measurement
- the third resource setting (given by nzp-CSI-RS-ResourcesForInterference) is for NZP CSI-RS based interference measurement.
- each CSI-ReportConfig is linked to a periodic or semi-persistent resource setting.
- the resource setting is for channel measurement for L1-RSRP computation.
- the first resource setting (given by resourcesForChannelMeasurement) is for channel measurement, and the second resource setting (given by higher layer parameter csi-IM-ResourcesForInterference) is performed on CSI-IM. Used for interference measurement.
- each CSI-RS resource for channel measurement is associated with the CSI-IM resource by resource in the order of the CSI-RS resources and the CSI-IM resources in the corresponding resource set. .
- the number of CSI-RS resources for channel measurement is the same as the number of CSI-IM resources.
- the UE does not expect to be set to one or more NZP CSI-RS resources in the associated resource set within the resource setting for channel measurement.
- the UE configured with the higher layer parameter nzp-CSI-RS-ResourcesForInterference does not expect more than 18 NZP CSI-RS ports to be configured in the NZP CSI-RS resource set.
- the terminal assumes the following.
- Each NZP CSI-RS port configured for interference measurement corresponds to an interference transport layer.
- All interference transport layers of the NZP CSI-RS port for interference measurement take into account the energy per resource element (EPRE) ratio.
- EPRE energy per resource element
- the time and frequency resources available to the UE are controlled by the base station.
- Channel state information includes channel quality indicator (CQI), precoding matrix indicator (PMI), CSI-RS resource indicator (CRI), SS / PBCH block resource indicator (SSBRI), layer At least one of the indicator (LI), rank indicator (RI) or L1-RSRP.
- CQI channel quality indicator
- PMI precoding matrix indicator
- CRI CSI-RS resource indicator
- SSBRI SS / PBCH block resource indicator
- LI indicator
- RI rank indicator
- L1-RSRP L1-RSRP
- the UE For CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP, the UE is N ⁇ 1 CSI-ReportConfig reporting setting, M ⁇ 1 CSI-ResourceConfig resource setting and a list of one or two trigger states (aperiodicTriggerStateList and semiPersistentOnPUSCH) It is set by the higher layer (provided by TriggerStateList).
- Each trigger state in the aperiodicTriggerStateList includes an associated CSI-ReportConfigs list indicating the channel and optionally resource set IDs for interference.
- each trigger state contains one associated CSI-ReportConfig.
- time domain behavior of CSI reporting supports periodic, semi-persistent, and aperiodic.
- Periodic CSI reporting is performed on short PUCCH and long PUCCH. Periodic and slot offsets of Periodic CSI reporting can be set to RRC. Refer to CSI-ReportConfig IE.
- SP semi-periodic
- the period and slot offset are set to RRC and CSI reporting is activated / deactivated by separate MAC CE / DCI.
- SP CSI on PUSCH periodicity of SP CSI reporting is set to RRC, but slot offset is not set to RRC, and SP CSI reporting is activated / deactivated by DCI (format 0_1).
- DCI format 0_1
- SP-CSI C-RNTI SP-CSI C-RNTI
- the initial CSI reporting timing follows a PUSCH time domain allocation value indicated in DCI, and the subsequent CSI reporting timing follows a period set to RRC.
- DCI format 0_1 includes a CSI request field and may activate / deactivate a specific configured SP-CSI trigger state.
- SP CSI reporting has the same or similar activation / deactivation as the mechanism with data transmission on the SPS PUSCH.
- aperiodic CSI reporting is performed on PUSCH and triggered by DCI.
- information related to trigger of aperiodic CSI reporting may be delivered / instructed / configured through MAC-CE.
- AP CSI-RS timing is set by RRC and timing for AP CSI reporting is dynamically controlled by DCI.
- NR does not apply a method of dividing CSI in a plurality of reporting instances that were applied to PUCCH-based CSI reporting in LTE (eg, RI, WB PMI / CQI, and SB PMI / CQI in order). Instead, NR restricts the setting of specific CSI reporting on short / long PUCCH, and CSI omission rule is defined. And, with respect to the AP CSI reporting timing, the PUSCH symbol / slot location is dynamically indicated by the DCI. The candidate slot offsets are set by the RRC. For CSI reporting, slot offset (Y) is set for each reporting setting. For UL-SCH, slot offset K2 is set separately.
- Two CSI latency classes are defined in terms of CSI computation complexity.
- low latency CSI it is a WB CSI including up to 4 ports Type-I codebook or up to 4-ports non-PMI feedback CSI.
- High latency CSI refers to other CSI except low latency CSI.
- Z, Z ' is defined in units of OFDM symbols.
- Z represents the minimum CSI processing time from receiving the Aperiodic CSI triggering DCI to performing the CSI report.
- Z ' represents a minimum CSI processing time until receiving CSI-RS for channel / interference and performing CSI reporting.
- the terminal reports the number of CSI that can be calculated at the same time.
- the UE may be set to N ⁇ 1 CSI reporting settings, M ⁇ 1 Resource settings, and 1 CSI measurement setting, where the CSI measurement setting is L ⁇ 1 links (links). Each of the L links corresponds to a CSI report setting and a resource setting.
- At least the following configuration parameters may be timed via RRC for at least CSI acquisition:
- Each CSI reporting setting may include at least one of the following: reported CSI parameter (s), CSI Type (I or II) if reported, codebook configuration including codebook subset restriction, time-domain behavior, frequency granularity for CQI and PMI , measurement restriction configurations
- a configuration of S ⁇ 1 CSI-RS resource set (s) (Note: each set corresponds to a different selection from a "pool” of all CSI-RS resources configured for the UE), A configuration of Ks ⁇ 1 CSI-RS resources for each set s, including at least: mapping to REs, the number of ports, time-domain behavior, etc. May contain information
- Each of the L links of the CSI measurement setting may include: CSI reporting setting indication, resource setting indication, quantity to be measured (either channel or interference).
- One CSI reporting setting may be linked with one or multiple resource settings. Multiple CSI reporting settings may be linked to the same resource setting.
- At least the following content may be dynamically selected by the L1 or L2 signaling scheme.
- a single NR-PDCCH reserves a single NR-PDSCH in which a separate layer is transmitted in a separate TRP.
- NR-PDCCHs each scheduling a respective NR-PDSCH where each NR-PDSCH is transmitted from a separate TRP
- CoMP Coordinatd Multi-Point transmission and reception, CoMP
- CoMP Coordinated Multi-Point transmission and reception, CoMP
- JT joint transmission
- CS coordinated scheduling
- CB coordinated beamforming
- dynamic port selection of multiple base stations Operation scenarios).
- the CSI measurement and reporting method for multiple base stations supporting CoMP operation needs to be distinguished from the conventional CSI measurement and reporting method for one base station.
- the CSI measurement and / or reporting method for multiple base stations supporting CoMP joint transmission (JT) needs to be performed in a different way than CSI for one base station.
- the present invention proposes operations required when the UE calculates downlink CSI for a plurality of base stations supporting CoMP joint transmission (JT).
- JT CoMP joint transmission
- TP Transmission Point (can be replaced by terms such as base station, TRP, panel, etc.)
- UE User Equipment
- SINR Signal to Noise and Interference Ratio
- NZBI number of non-zero wideband amplitude coefficients
- -CSI-RS CSI Reference Signal (Channel State Information-Reference Signal)
- TP1 and TP2 may perform a CoMP operation, and TP1 and TP2 may simultaneously transmit a layer to UE A.
- the TP2 may simultaneously support two terminals.
- TP1 and TP2 can share data through backhaul.
- the channel or interference measurement is performed by applying the same Rx beam between two signals (for example, between CSI-RSs and between CSI-RSs and CSI-IMs). Equivalent to the assumption of spatial Rx parameter) or the assumption of the same QCL-Type D.
- Method 1 CSI setup and CSI calculation for multiple TPs that support CoMP operation
- TP1 and TP2 supporting CoMP operation transmit CSI-RS1 to the UE and TP2 transmit CSI-RS2 for CSI measurement.
- a plurality of TPs (eg, TP1 and TP2) supporting CoMP operation may transmit CSI report related configuration information to the UE in order to report downlink CSI.
- at least one of the plurality of TPs supporting CoMP operation may set one of the following report settings for CSI calculation and reporting to the UE.
- the CSI report setting may correspond to CSI report related setting information.
- the CSI reporting setting for multiple TPs performing CoMP joint transmission may be configured as one reporting setting.
- Table 10 is an example of one CSI reporting setting for TP1 and TP2.
- the CSI reporting setting may include information about CMR, IMR, and CSI parameters (contents) to be fed back for each TP.
- the CMR may include CSI-RS information for each TP
- the IMR may include CSI-IM information.
- the UE may calculate RI and PMI for a channel of CSI-RS for each TP based on the CSI report setting, and may calculate a CQI that can be achieved when all TPs performing CoMP joint transmission simultaneously transmit data.
- i may correspond to the index of the TP.
- the UE receives data of TP1 and data of TP2 through each of two different (analog) Rx beams (or Rx panels).
- the data of TP1 is received via Rx beam1 (which is the Rx beam of CSI-RS1), at which time it receives interference from other cells that do not participate in CoMP and noise received together in Rx beam1.
- the data of the TP2 received in the Rx beam 1 may act as inter layer interference.
- the UE may measure CSI-IM with Rx beam1 from which CSI-RS1 is received to estimate noise and interference from other cells not participating in CoMP.
- interlayer interference may be estimated by applying RI2 and PMI2 to a corresponding channel.
- the interference may be calculated (estimated) using the CSI-IM and CSI-RS1 received by Rx beam2.
- Equation 3 shows an equation in which the UE calculates an SINR (or CQI).
- H1 and H2 represent channels measured by the UE from CSI-RS1 and CSI-RS2, respectively, and N represents values measured by the UE through CSI-IM.
- x1 and x2 represent data symbols transmitted by TP1 and TP2, respectively.
- the UE may measure all of H1, H2, and N in Equation 6 from the Rx beam1 to calculate the received SINR of the data transmitted by the TP1.
- SINR (or CQI) can be calculated by measuring the signal power from H1 * PMI1 * x1, the interference power from TP2 from H2 * PMI2 * x2, and the interference power of noise and remaining cells from N. have.
- the UE may measure all of H1, H2, and N in Equation 6 from the Rx beam 2 to calculate the received SINR of the data transmitted by the TP2.
- the SINR (or CQI) can be calculated by measuring the signal power from H2 * PMI2 * x2, the interference power from H1 * PMI1 * x1, the interference power from TP1, and the noise and interference power of the remaining cells from N.
- the UE can assume the following for CSI-IM and measure interference.
- the CSI-IM may assume the same QCL-type D (QCL for spatial Rx parameter) as all CSI-RSs (eg, CSI-RS1 and CSI-RS2) given by CMR.
- QCL-Type D QCL for spatial Rx parameter
- CSI-IM and CSI-RSi may assume QCL-Type D. (Where i represents the index of the base station).
- the UE calculates SINR or CQI for each of a plurality of CSI-RSs given by CMR, that is, when calculating SINRi or CQIi for CSI-RSi, all remaining CSI-RSs are the same spatial reception parameter as CSI-RSi. Can be assumed to have (I.e., the rest of the CSI-RSs can be assumed to follow the QCL-Type D of the CSI-RSi, ignoring the original QCL-Type D attribute.)
- the UE may be configured with CSI reporting settings for a plurality of TPs performing CoMP joint transmission, respectively.
- Table 11 shows an example of setting CSI report settings for each of TP1 and TP2.
- report setting 1 is for TP1
- report setting 2 is for TP2.
- the CMR of TP2 may be included in the IMR of Report Setting 1 for TP1.
- the CMR of TP1 may be included in the IMR of report setting 2 for TP2.
- the UE may be configured that the report setting 1 and report setting 2 are connected to each other for CoMP CSI calculation from the TP.
- the UE may calculate CSI based on the reporting setting.
- the UE may receive CMR and IMR as Rx beam1, which is an Rx beam of CMR, based on report setting 1, and estimate H1, H2, and N in Equation 3.
- the UE may estimate the inter-layer interference received from TP2 by applying RI2 and PMI2 of report setting 2 connected to report setting 1 to the channel (estimated from CSI-RS2) H2, and receiving SINR of the data transmitted by TP1 ( Alternatively, CQI) can be calculated.
- the UE may receive the CMR and the IMR in the Rx beam 2, which is the Rx beam of the CMR, based on the report setting 2, and estimate H1, H2, and N in Equation 3.
- the UE may estimate the interlayer interference received from the TP1 by applying RI1 and PMI1 of the report setting 1 connected to the report setting 2 to the channel (estimated from the CSI-RS1), and receiving SINR of the data transmitted by the TP2.
- CQI can be calculated.
- the UE may be configured with CSI reporting settings for a plurality of TPs performing CoMP joint transmission, respectively.
- the IMR included in the report setting for any TP does not consider the CSI-RS transmitted in the other TP as the IMR.
- Table 12 shows an example of setting CSI report settings for each of TP1 and TP2.
- report setting 1 is for TP1
- report setting 2 is for TP2.
- the UE may be configured that the report setting 1 and the report setting 2 are connected to each other for CoMP CSI calculation from the TP.
- the UE may calculate CSI based on the reporting setting.
- the UE may receive the CMR and the CSI-IM as Rx beam1, which is the Rx beam of the CMR, based on the report setting 1, and estimate H1 and N in Equation 3.
- the UE measures H2 from the CMR of the report setting 2 connected to the report setting 1 to estimate the interlayer interference received from the TP2, and applies RI2, PMI2 to the channel (estimated from the CSI-RS2) H2 to receive the interlayer interference from the TP2.
- H2 may be estimated by measuring the CMR of the report setting 2 with the Rx beam 1 used to receive the CMR of the report setting 1. Using this, the UE can calculate the received SINR or CQI of the data transmitted by TP1.
- the UE may receive the CMR and the CSI-IM in the Rx beam2 which is the reception beam of the CMR, based on the report setting 2.
- H2 and N in Equation 3 can be estimated.
- the UE measures H1 from the CMR of Report Setting1 connected to Report Setting2 to estimate the interlayer interference received from TP1 and applies RI1, PMI1 to the channel (estimated from CSI-RS 1) H1 to receive from TP1.
- the interference can be calculated.
- H1 may be estimated by measuring the CMR of the report setting 1 with the Rx beam 2 used to receive the CMR of the report setting 2. Using this, the UE can calculate the received SINR or CQI of the data transmitted by TP2.
- the UE may request that the multiple reporting settings from the TP be set to CoMP CSI. It can be configured through explicit signaling that they are connected to each other for calculation. Or, it may be implicitly set that multiple report settings are linked to each other for CoMP CSI calculation, without an indication through explicit signaling. For example, if the PUCCH resource defined in each report setting and the PUCCH transmission period and offset are the same, the UE may assume that multiple report settings are connected to each other for CoMP CSI calculation. Or, if time and frequency resources corresponding to (semi-persistent or aperiodic) PUSCH overlap, the UE may assume that multiple reporting settings are connected to each other for CoMP CSI calculation.
- Case 1-1 to Case 1-3 assume that a plurality of TPs performing CoMP Joint Transmission transmit independent layers, respectively.
- a case may be considered in which a plurality of TPs performing CoMP joint transmission transmit a common layer.
- the UE receives the layer from both TPs.
- at least one of TP1 and TP2 may set the reporting settings of Case 1-1 or Case 1-3 described above to the UE.
- Equation 4 shows an equation for calculating SINR (or CQI) when the UE receives a common layer from TP1 and TP2.
- Equation 4 H1 and H2 represent channels measured by the UE from CSI-RS1 and CSI-RS2, respectively, and N represents a value measured by the UE through CSI-IM.
- x1 represents a data symbol transmitted simultaneously by TP1 and TP2.
- Equation 4 distinguishes PMI1 and PMI2, but in the case of coherent joint transmission using one PMI, It can be represented by being replaced by a single PMI.
- the UE may assume the following for the reception beam upon reception of CSI-RS1, CSI-RS2, and CSI-IM.
- the UE may assume the following for CSI-IM and measure interference.
- the CSI-IM may assume the same QCL-Type D (QCL for spatial reception parameter) for all CSI-RSs (eg, both CSI-RS1 and CSI-RS2) given by CMR. That is, the UE may receive the CSI-IM with the Rx beam 1 which is the Rx beam of the CSI-RS1 and simultaneously receive the CSI-IM with the Rx beam 2 which is the Rx beam of the CSI-RS2. Interference received through each of the Rx beams is represented as n1 and n2, respectively, and the UE may calculate one final interference N by performing one of the following operations.
- the final interference can be calculated by multiplying each interference by a weight.
- Each interference can be concatenated to generate one noise vector and can be calculated as the final interference.
- a situation in which at least one TP of the plurality of TPs provides services to two or more UEs may be considered.
- TP1 and TP2 transmit data to UE A through CoMP joint transmission
- at least one TP of TP1 or TP2 performs MU MIMO service to another UE B
- a method of calculating CSI of UE A is proposed.
- the UE calculating the CSI (eg UE A) has an NZP CSI-RS in addition to the IMR.
- the included reporting settings can be set.
- one more NZP CSI-RS may be added to the IMR.
- the UE may measure power for each port of the NZP CSI-RS and add it to the existing measured interference.
- Which Rx beam to receive the NZP CSI-RS may be determined in the same manner as the Rx beam to receive the CSI-IM.
- Table 13 is an example of a report setting in which NZP CSI-RS is added to IMR in Table 10.
- Equation 5 represents an equation considering interference from a UE (eg, UE B) scheduled together when the UE calculates an SINR (or CQI). Equation 5 corresponds to the interference of the UE (eg UE B) scheduled together in Equation 3 Is an added form. Can be calculated through the power measurement of each port of the NZP CSI-RS.
- the UE calculates H1, H2, N, After all are measured from Rx beam1, the signal power from H1 * PMI1 * x1, the interference power from TP2 from H2 * PMI2 * x2, the noise power from N and the interference power of the remaining cells, and the scheduled UE ( By measuring the interference of UE B), SINR (or CQI) can be calculated.
- the UE calculates H1, H2, N, Are measured from Rx beam2, then the signal power from H2 * PMI2 * x2, the interference power from TP1 from H1 * PMI1 * x1, the noise power from N and the interference power of the remaining cells, and the scheduled UE ( By measuring the interference of UE B), SINR (or CQI) can be calculated.
- the UE can assume the following for the NZP CSI-RS and measure the interference.
- the NZP CSI-RS may assume the same QCL-Type D (QCL for spatial reception parameter) as all CSI-RSs (eg, both CSI-RS1 and CSI-RS2) given by CMR.
- QCL-Type D of NZP CSI-RS and CSI-RSi may be assumed (i may correspond to an index of a base station). have.)
- Method 2 Report CSI for Multiple TPs Performing CoMP Operations
- a UE supported by multiple TPs may measure CSI and report CSI to at least one of the multiple TPs.
- PUCCH CSI report has been described with reference to examples for convenience of description, but this is only one example to help the understanding of the present invention and does not limit the scope of the present invention. Thus, as an example, it is of course applicable to semi-persistence PUSCH CSI reporting.
- two TPs perform a CoMP operation. Assume that the number of TPs (eg, TP index), the reference signal transmitted by each TP, and the number of CSI parameters for each TP correspond. For example, it may be represented by CSI-RS1 transmitted by TP1 and CSI1 parameters (eg, RI1, PMI1, CQI1) for TP1.
- CSI-RS1 transmitted by TP1
- CSI1 parameters eg, RI1, PMI1, CQI1
- the UE may divide the part 1 CSI and the part 2 CSI to encode each.
- WB subband
- CSI consists of a single part and all CSI contents are encoded at once.
- part 1 CSI consists only of contents whose payload size does not change
- part 2 CSI may be composed of contents whose payload size is variable.
- Table 14 shows an example of the CSI parameters of Part 1 and Part 2 constituting the subband CSI.
- Part 1 may include LI (if reported), CRI (if reported), NZBI (if reported), and CQI of the first codeword.
- Part 2 includes the PMI, and when RI> 4, may include the CQI of the second codeword.
- CSI reporting for a plurality of TPs supporting CoMP operation when reporting subband CSI, a method of encoding by dividing into parts 1 and 2 may be considered. In this case, it is assumed that the CSI reporting method for the plurality of TPs is set to be the same.
- the payload size of all CQIs since the payload size of all CQIs is fixed, it may be encoded in Part 1, and only PMIs (for example, PMI1 and PMI2) for each TP may be encoded in Part 2.
- PMIs for example, PMI1 and PMI2
- the UE reports one CQI for each TP, so that the number of TPs and corresponding CQIs are always part 1 CSI. You may have to report as.
- Table 15 shows an example of a CSI configuration according to the method proposed in the present invention.
- Table 16 shows an example of a CSI configuration according to the encoding method proposed by the present invention.
- CQI_A may be encoded as Part 1 and CQI_B may be encoded as Part 2.
- CQI_A means a CQI corresponding to a non-zero RI
- CQI_A and CQI_B may mean CQIs corresponding to RI1 and RI2, respectively.
- CQI_A may correspond to the CQI for the first codeword
- CQI_B may correspond to the CQI for the second codeword. If a non-zero RI is smaller than a specific value (for example, 4), only CQI_A is transmitted and CQI_B may be omitted in Part 2 and may not be transmitted.
- the CSI-RS for channel measurement is selected according to the value of the CRI.
- the CRI selects a specific CSI-RS
- only the CSI (eg, RI / PMI / CQI) for the corresponding CSI-RS may be transmitted.
- all CSIs eg, RI / PMI / CQI
- Part 1 has RI_A and CQI_A (which will be transmitted in any case regardless of CRI).
- RI_B, CQI_B, PMI1 and PMI2 (which may be transmitted or not according to CRI or may have variable payload size according to the value of Part 1) may be encoded to be transmitted through Part 2.
- Table 17 shows an example of a CSI configuration according to the method proposed in the present invention.
- RI_A RI1
- CQI_A CQI1
- RI_B PMI2 and CQI_B are not encoded and are not transmitted.
- RI1 RI1
- CQI_A CQI1
- RI_B PMI2 and CQI_B are not encoded and are not transmitted.
- RI1 RI1
- CQI_A CQI1
- RI_B RI_B
- PMI2 and CQI_B are not encoded and are not transmitted.
- CQI_A can be encoded as CQI for the first codeword
- CQI_B can be encoded as CQI for the second codeword.
- the encoding schemes proposed in Cases 2-1 to 2 may be applied to both the subband CSI report and the wideband CSI report.
- the above-described encoding scheme may be extended and applied.
- CSI reporting may be indicated for a plurality of TPs supporting CoMP operation.
- a wideband (subband) CSI report may be configured for TP1 and a subband (wideband) CSI report may be configured for TP2.
- wideband CSI feedback is set for TP1 (ie, CSI measuring channel with CSI-RS1)
- subband CSI feedback is set for TP2 (ie, CSI measuring channel with CSI-RS2).
- the UE may ignore the wideband CSI feedback setting for TP1 and report the subband CSI. That is, it can be set to preferentially follow more sophisticated CSI feedback settings.
- the wideband CSI having a small CSI payload size may be reported for TP1.
- the UE may report the wideband CSI by ignoring the subband CSI feedback setting for TP2.
- wideband CSI feedback is set for TP1 (ie, CSI measuring channel with CSI-RS 1) and subband CSI feedback is set for TP2 (ie, CSI measuring channel with CSI-RS 2).
- the UE reports wideband CSI for TP1 (ie, CSI measuring channel with CSI-RS 1), and reports wideband CSI for TP2 (ie, CSI measuring channel with CSI-RS 1).
- Subband CSI may be reported. In this case, it is necessary to consider the CSI encoding scheme.
- the UE encodes all the wideband CSI of TP1 into Part 1, and encodes the subband CSI of TP2 into Part 1 and Part 2.
- part 1 of TP1 and part 1 of TP2 mean the same part, it can be encoded as follows.
- the CQI corresponding to the second codeword may or may not exist. Accordingly, the CQI2 and the PMI2 of the TP2 in which the subband CSI reporting is set may be encoded into Part 2.
- Table 18 shows an example of a CSI configuration according to the method proposed in the present invention.
- Table 19 shows an example of a CSI configuration according to the method proposed in the present invention.
- Cases 2-1 to 2-5 described above are CSIs in an environment in which subband or wideband CSI reporting can be independently set for each CSI-RS resource within one CSI reporting configuration (eg, CSI reporting related configuration information). It can be applied as an encoding method.
- the UE may select and report which TPs participate in CoMP together with the CSI, wherein the calculated CSI assumes that only the selected TP participates in CoMP transmission.
- the UE selects the CSI-RS1 corresponding to TP1 and selects a non-CoMP transmission method for transmitting only TP1 data or corresponds to TP2.
- CSI-RS2 you can select a non-CoMP transmission method that transmits only TP2 data.
- CoMP transmission scheme in which TP1 and TP2 transmit data may be selected by selecting both CSI-RS1 and CSI-RS2. If you select the CSI-RS1 corresponding to TP1 and select the non-CoMP transmission method that transmits only TP1 data, CSI is reported according to the subband or wideband CSI reporting method corresponding to CSI-RS1, and the CSI corresponding to TP2.
- CSI can be reported according to subband or wideband CSI reporting corresponding to CSI-RS2.
- CSI-RS1 and CSI-RS2 are selected, CSI may be encoded and reported according to the subband and / or wideband reporting methods of Cases 2-1 to 2-5 described above.
- Cases 2-1 to 2-5 described above allow a plurality of CSI reports (ie, report settings) to be set to the UE, and can independently configure whether to report subband or wideband CSI for each report setting. It is also applicable to the CSI encoding method.
- the UE may be configured to receive the report setting 1 and the report setting 2 from the TP and set the two report settings for CoMP CSI feedback as shown in Table 14 of Case 1-2 described above.
- the UE may select a non-CoMP transmission method for transmitting data only TP1 by selecting report setting 1 corresponding to TP1 or a non-CoMP transmission method for transmitting data only TP2 by selecting report setting 2 corresponding to TP2.
- the UE may select both report setting 1 and report setting 2 to select a CoMP transmission scheme in which TP1 and TP2 transmit data. If report setting 1 is selected, the CSI is reported according to the subband or wideband CSI reporting method corresponding to report setting 1, and if report setting 2 is selected, the subband or wideband CSI reporting method corresponding to report setting 2 is selected. CSI can be reported accordingly.
- CSI encoding may be performed according to the subband and / or wideband reporting methods of Cases 2-1 to 2-5 described above.
- the CSI encoding scheme of the UE may be determined according to whether the CSI report corresponding to the two report settings collides.
- the CSI may be encoded and transmitted according to the subband or wideband CSI reporting method set by the report setting of each TP. (At this time, the UE may calculate and report a non-CoMP CSI.) If a collision occurs in the CSI reporting for two TPs, the UE may calculate and report a CoMP CSI, and in this case, Case 2 CSI encoding may be reported according to subband and / or wideband reporting methods of -1 to Case 2-5.
- the encoding order is the PMI corresponding to the row CSI-RS index according to the index of CSI-RS. May be concatenated first to generate a bit stream. That is, the wideband PMI1, the subband PMI1, the wideband PMI2, and the subband PMI2 may be connected in this order. Accordingly, a stronger channel coding may be applied to the PMI corresponding to the row index of the CSI-RS to be reported as a high protection state. In the same manner as the PMI, the CQI may be determined according to the row index of the CSI-RS.
- the bitstream may be generated by first connecting the wideband information in the order of wideband PMI1, wideband PMI2, subband PMI1, and subband PMI2.
- the CQI may be ordered in the same manner as the PMI.
- the CSI is reported to only one TP (or TRP) through one PUCCH and the CSI is shared to the other TP through a backhaul connection, additional delay may also occur in the CSI sharing due to the backhaul delay between the TPs. In order to prevent this, it may be desirable to report the CSI through the PUCCH set for each TP.
- Table 20 shows an example in which report settings for two TPs similar to Case1-1 described above are configured with one report setting.
- the UE calculates CSI for each TP.
- CSI may be transmitted through a PUCCH transmitted to each TP.
- the UE calculates CSI1 (eg RI1 / PMI1 / CQI1) for TP1 and CSI2 (eg RI2 / PMI2 / CQI2) for TP2, transmits CSI1 to TP1 through PUCCH resource1, and PUCCH resource 2 can transmit CSI2 to TP2.
- two PUCCH resources need to be set in one reporting setting. That is, as many PUCCH resources as the number of TPs need to be set in one reporting setting.
- Each PUCCH resource may be set with a different period and offset.
- the transmission time points of PUCCH1 and PUCCH2 are greatly different, it may not be desirable that CSI of PUCCH transmitted later becomes outdated. Therefore, there is a need to constrain the period and offset setting of the two PUCCH resources.
- two PUCCHs may set different offsets in the same period, but the difference between the two offsets may be equal to or less than a specific value P.
- P may be set by the base station to instruct the UE, or after the UE is instructed by the base station, or may use different fixed values according to sub-carrier spacing (SCS).
- SCS sub-carrier spacing
- two PUCCHs The period and offset may be set equal to each other, and time division multiplexing (TDM) or frequency division multiplexing (FDM) may be performed between PUCCH resources in the same slot.
- TDM time division multiplexing
- FDM frequency division multiplexing
- the period of the two PUCCH may be limited to a multiple relationship.
- the CSI reference resource is set to a time n-k that satisfies a valid condition based on the CSI reporting time n.
- the time nk is assumed as the CSI reference time by assuming that the PUCCH transmitted first is the representative reporting time n.
- the CSI1 and the CSI2 are calculated, and the calculated CSI may be transmitted through each PUCCH.
- Valid conditions may need to be satisfied for both TPs. The same scheme can be applied even when the reporting times of the two PUCCHs are the same.
- the UE performs the above operation when the difference in transmission time between two PUCCHs is smaller than a specific value (P). Otherwise, the UE sets CSI reference resources for each CSI reporting PUCCH in the same manner as the conventional scheme. CSI may be calculated and reported through each PUCCH.
- FIG. 18 shows an example of an operation flowchart of reporting channel state information by a terminal supported by a plurality of base stations to which the method proposed in this specification can be applied. 18 is merely for convenience of description and does not limit the scope of the invention.
- a terminal and / or a base station operates based on the methods and / or embodiments of the above-described methods 1 to 2.
- the beam (or panel) for each base station is independent. Some of the steps described in FIG. 18 may be merged or omitted.
- the CSI related operation of FIG. 16 may be considered / applied.
- the terminal may receive CSI report related configuration information (eg, report setting) from at least one base station among a plurality of base stations (S1810).
- the plurality of base stations may support CoMP operation.
- the plurality of base stations may perform CoMP joint transmission.
- the CSI reporting related configuration information may be based on the above-described method 1.
- the CSI reporting related configuration information may include channel measurement resource information, interference measurement resource information, and information on CSI parameter (s) to be reported. In addition, it may further include uplink resource configuration for CSI reporting.
- the CSI reporting related configuration information may be configured with one CSI reporting related configuration information in common for the plurality of base stations. This may correspond to Case 1-1 of Method 1 described above.
- CSI reporting related configuration information may be configured (configured) for each base station of the plurality of base stations. This may correspond to Case 1-2 to Case 1-3 of Method 1 described above.
- the interference measurement resource information of a specific base station eg, the first base station
- the interference measurement resource information of a specific base station may be a reference signal (or channel measurement resource) for channel measurement (eg, CSI) transmitted by base stations except the specific base station among the plurality of base stations. -RS, second reference signal).
- the CSI reporting related configuration information may be transmitted to the terminal for each base station of the plurality of base stations.
- the terminal may receive connection relationship information for the CSI reporting related configuration information set for each base station from at least one base station of the plurality of base stations. have.
- the connection relationship information may indicate that each CSI report related configuration information is connected to each other for CoMP CSI calculation.
- the connection relationship information may be transmitted to the terminal through explicit signaling. Or, it may be delivered to the terminal in an implicit manner. For example, when uplink resources (eg, PUCCH resources), CSI reporting periods (eg, PUCCH transmission periods) and transmission offsets for CSI reporting defined in each CSI reporting related configuration information are the same, the UE reports each CSI.
- uplink resources eg, PUCCH resources
- CSI reporting periods eg, PUCCH transmission periods
- transmission offsets for CSI reporting defined in each CSI reporting related configuration information are the same, the UE reports each CSI.
- the terminal may determine that the relevant configuration information is connected to each other for CoMP CSI calculation. Or, if time and frequency resources corresponding to the (semi-persistent or aperiodic) PUSCH overlap, the terminal may determine that each CSI report-related configuration information is connected to each other for CoMP CSI calculation.
- the interference to reflect the interference of the co-scheduled terminals together in the CSI calculation may be further included in the measurement resource information.
- NZP Non-zero power
- NZP channel state information-reference signal
- the terminal may calculate the CSI in consideration of interference from the terminal scheduled together.
- uplink resources corresponding to the number of the plurality of base stations may be allocated for CSI reporting for the plurality of base stations.
- Uplink resources (eg, PUCCH resources) corresponding to each base station may be set to different periods and offsets.
- each uplink resource eg, PUCCH resource
- each uplink resource may be set to different offsets in the same period, and the difference between any two offsets may be equal to or less than a specific value (P).
- the specific value P is determined by one of i) a base station set up and instructing the terminal, ii) a terminal set up and instructing the base station, and iii) using different fixed values according to sub-carrier spacing. Can be.
- the period and offset of all uplink resources may be always set to be the same, and time division multiplexing or frequency division multiplexing may be performed between uplink resources (eg, PUCCH resources) in the same slot.
- the period of each uplink resource eg, PUCCH resource
- the terminal may receive a reference signal (RS) from the base station (S1820). That is, reference signals (eg, first reference signals and second reference signals) may be received from each of the plurality of base stations.
- the terminal may receive the reference signal through a reception beam corresponding to each base station.
- the reference signal may be transmitted periodically or aperiodically from the base station.
- the reference signal (eg, the first reference signal and the second reference signal) may include a reference signal for channel measurement and a reference signal for interference measurement.
- the reference signal may include a CSI-RS for channel measurement and a CSI-IM for interference measurement.
- the UE may calculate the CSI by performing the measurement on the received reference signal (S1830). For example, the CSI calculation may be performed based on Method 1 described above.
- the UE may calculate RI and PMI for a channel of a channel measurement reference signal (eg, CSI-RS) for each base station based on the CSI report related configuration information and a reference signal.
- CSI-RS channel measurement reference signal
- the terminal may assume that the (analog) Rx beams (or Rx panels) for receiving data from each base station are different from each other.
- the terminal uses a reception beam for the first base station.
- a CSI eg, SINR, CQI
- the terminal uses a reception beam for the first base station.
- the terminal may receive a reference signal (eg, CSI-RS) for channel measurement with a reception (Rx) beam for the first base station and measure signal power.
- CSI-RS reference signal for channel measurement with a reception (Rx) beam for the first base station and measure signal power.
- a reference signal for example, CSI-IM
- a reception beam for example, a reception beam for a first base station
- a reference signal for example, CSI-RS
- Interference from other cells that do not participate in CoMP can be estimated.
- a channel measurement transmitted by other base stations eg, a base station except a first base station among a plurality of base stations
- a reception beam for example, a reception beam for a first base station
- the inter-layer interference power may be measured by applying RI and PMI for reference signals of each base station to reference signals transmitted by the base stations except for the first base station.
- interference of other terminals scheduled together through the reception beam may be measured. Based on this, the received SINR (or CQI) of data transmitted by the first base station can be calculated.
- a reference signal (eg, a first reference signal) transmitted by the first base station and a reference signal (eg, a second reference signal) transmitted by base stations except for the first base station among the plurality of base stations are spatially received.
- a quasi co-location (QCL-Type D) relationship with a parameter may be established.
- QCL-Type D quasi co-location
- a reference signal for channel measurement transmitted by base stations other than the first base station among the plurality of base stations ignores the QCL-Type D attribute that is originally present and a reference signal for channel measurement transmitted by the first base station. Can be assumed to follow QCL-Type D
- the reference signal (for example, the first reference signal) transmitted by the first base station and the interference measurement resource (for example, CSI-IM) included in the interference measurement resource information may include a QCL (spatial RX parameter) for a spatial RX parameter.
- QCL spatial RX parameter
- a quasi co-location relationship (QCL-Type D) can be established.
- a method for calculating CSI by a terminal receiving a common layer from a plurality of base stations may be based on Case 1-4 of Method 1 described above.
- the UE uses a reference signal for interference measurement (CSI-IM) to refer to a reference signal for channel measurement of each base station performing CoMP joint transmission (eg, It may be assumed that a QCL (Quasi co-location) relationship (QCL-Type D) for a spatial RX parameter that is the same as all of the CSI-RSs.
- CSI-IM reference signal for interference measurement
- QCL-Type D QCL (Quasi co-location) relationship
- the terminal may receive a reference signal (for example, CSI-RS) for channel measurement and a reference signal (CSI-IM) for interference measurement with a reception beam of the first base station, and at the same time as a reception beam of another base station.
- CSI-RS and CSI-IM can be received.
- the terminal may receive the interference received through the reception beam for the first base station (eg, the first interference) and the interference received through the reception beam for the base stations except the first base station among the plurality of base stations (
- the second interference may be calculated based on the total interference.
- the total interference is i) the sum of interference for each base station (e.g., the sum of the first and second interference), ii) the average value of interference for each base station (e.g.
- a sum value obtained by multiplying the interference for each base station by a weight (e.g., a value obtained by multiplying each of the first interference and the second interference by a weight) (the weight is set by the base station as a terminal) Iv) may be calculated as one of one noise vector value concatenating each interference.
- multiple base stations may apply one common PMI in case of coherent joint transmission.
- the terminal may calculate the CSI based on Case 1-5 of Method 1 described above.
- the UE may measure power for each port of the NZP CSI-RS and add it to the existing measured interference.
- Which Rx beam to receive the NZP CSI-RS may be determined in the same manner as the Rx beam to receive the CSI-IM.
- the UE may assume that the NZP CSI-RS has the same QCL-Type D (QCL for spatial reception parameter) relationship with all reference signals (eg, CSI-RS) for channel measurement.
- QCL-Type D QCL for spatial reception parameter
- CSI-RS reference signals
- the terminal may encode the calculated CSI and transmit it to at least one base station among the plurality of base stations (S1840).
- the CSI may be transmitted on PUCCH or semi-persistent PUSCH.
- the CSI includes channel quality information (CQI), and the CQI may correspond to a value calculated when a terminal simultaneously receives layers from a plurality of base stations.
- the terminal may encode the CSI to transmit the CSI to a base station.
- the method of encoding the CSI may be based on Method 2 described above.
- CSI reporting of the same scheme may be configured for the plurality of base stations.
- the encoding may be divided into part 1 and part 2. The encoding may be based on Case 2-1 to Case 2-3 of Method 2 described above.
- all CQIs for each base station may be encoded in Part 1, and all PMIs for each base station may be encoded in Part 2.
- CQIs corresponding to the number of base stations can always be encoded into part 1 CSI.
- the PMI is encoded in Part 2
- the CQI when the RI is not 0 is Part 1
- the CQI when the RI is 0. Can be encoded in Part 2. If RI is 0, it may be omitted in Part 2. However, when there is no value including 0 among RI values for a plurality of base stations, the base station 1 may be encoded into Part 1 and Part 2 corresponding to the index of each base station.
- the CQI for the first codeword may be encoded as part 1 and the CQI for the second codeword may be encoded as part 2. If a non-zero RI is smaller than a specific value (eg, 4), the CQI may be encoded only in Part 1 and may be omitted in Part 2.
- a specific value for example, 4
- Part 1 encodes RI and CQI (which will be transmitted in any case regardless of CRI), and whether or not the transmission depends on the CRI, or the payload size can vary depending on the value of Part 1 RI, CQI and PMI may be encoded in Part 2.
- CQI and PMI may be encoded in Part 2.
- the value of RI1 is greater than a specific value (for example, 4)
- the second codeword transmission is assumed, and therefore, the CQI should be transmitted for each codeword. Therefore, the CQI for the first codeword may be encoded in Part 1, and the CQI for the second codeword may be encoded in Part 2.
- different types of CSI reporting may be indicated for a plurality of base stations supporting CoMP operation.
- wideband (subband) CSI feedback may be configured for some of the plurality of base stations, and subband (wideband) CSI feedback may be configured for the remaining base stations.
- the UE may transmit the subband CSI feedback by ignoring the wideband CSI feedback setting by prioritizing the more sophisticated CSI feedback setting.
- the wideband CSI feedback having a small CSI payload size may be transmitted.
- the CSI may be transmitted by encoding the data according to the indicated CSI reporting method.
- a wideband CSI report is configured for one base station and a subband CSI report is configured for another base station.
- all of the wideband CSI reports may be encoded into Part 1, and the subband CSI reports may be encoded by dividing into Part 1 and Part 2.
- the CQI corresponding to the second codeword is encoded as part 2 Can be.
- the CQI may be encoded as Part 1
- the PMI may be encoded as Part 2 in Part 2.
- the UE may select and report which base stations participate in CoMP together with the CSI.
- the CSI may be calculated assuming that only selected base stations participate in CoMP transmission.
- the UE may select a non-CoMP transmission scheme in which only one base station transmits data by selecting only one channel.
- a CoMP transmission scheme in which a plurality of base stations transmit data by selecting a plurality of channels may be selected.
- CSI may be reported according to subband and / or wideband CSI reporting corresponding to each CSI-RS.
- each report setting is connected for CoMP CSI feedback.
- the UE may select a non-CoMP transmission scheme by selecting only one of a plurality of reporting settings.
- the terminal may select a plurality of reporting settings to select a CoMP transmission scheme. If a non-CoMP transmission scheme is selected, CSI may be reported according to subband and / or wideband CSI reporting indicated by the corresponding report setting.
- the CSI encoding scheme of the UE may be determined according to whether the CSI report corresponding to the two report settings collides.
- the CSI may be encoded and transmitted according to the subband or wideband CSI reporting method set by the report setting of each base station. (At this time, the UE may calculate and report a non-CoMP CSI.)
- the UE may calculate and report a CoMP CSI.
- the wideband CSI may be prioritized so that the wideband PMI and / or CQI are encoded before the subband PMI and / or CQI.
- FIG. 19 shows an example of an operation flowchart of a base station receiving channel state information of a terminal supported by a plurality of base stations to which the method proposed in this specification can be applied. 19 is merely for convenience of description and does not limit the scope of the present invention.
- a terminal and / or a base station operates based on the methods and / or embodiments of the above-described methods 1 to 2.
- the beam (or panel) for each base station is independent. Some of the steps described in FIG. 19 may be merged or omitted.
- the CSI related operation of FIG. 16 may be considered / applied.
- At least one of the plurality of base stations may transmit CSI report related configuration information (eg, report setting) to the terminal (S1910).
- the plurality of base stations may support CoMP operation.
- the plurality of base stations may perform CoMP joint transmission.
- the CSI reporting related configuration information may be based on the above-described method 1.
- the CSI reporting related configuration information may include channel measurement resource information, interference measurement resource information, and information on CSI parameter (s) (contents) to be reported.
- it may further include uplink resource configuration for CSI reporting.
- one piece of CSI reporting related configuration information common to the plurality of base stations may be configured. This may correspond to Case 1-1 of Method 1 described above.
- CSI reporting related configuration information may be configured (configured) for each base station of the plurality of base stations. This may correspond to Case 1-2 to Case 1-3 of Method 1 described above.
- the interference measurement resource information of a specific base station eg, the first base station
- the interference measurement resource information of a specific base station may be a reference signal (or channel measurement resource) for channel measurement (eg, CSI) transmitted by base stations except the specific base station among the plurality of base stations. -RS).
- the CSI reporting related configuration information may be transmitted to the terminal for each base station of the plurality of base stations.
- connection relationship information may be transmitted to the terminal through explicit signaling. Or, it may be delivered to the terminal in an implicit manner. For example, by setting uplink resources (eg, PUCCH resources), transmission periods (eg, PUCCH transmission periods) and transmission offsets for CSI reporting, which are defined in each CSI report-related configuration information, the UE is configured to be the same.
- the CSI reporting related configuration information may be determined to be connected to each other for CoMP CSI calculation.
- the UE may determine that each CSI report-related configuration information is connected to each other for CoMP CSI calculation.
- the NZP CSI-RS is included in the interference measurement resource information in consideration of interference on the terminal scheduled together. You can include more relevant information.
- uplink resources corresponding to the number of the plurality of base stations may be allocated.
- Uplink resources (eg, PUCCH resources) corresponding to each base station may be set to different periods and offsets.
- each uplink resource eg, PUCCH resource
- each uplink resource may be set to different offsets in the same period, and the difference between any two offsets may be equal to or less than a specific value (P).
- the specific value (P) may be determined by one of i) a base station set up and instructing the terminal, ii) a terminal set up and instructing the base station, and iii) using different fixed values according to sub-carrier spacing. Can be.
- the period and offset of all uplink resources may be always set to be the same, and time division multiplexing or frequency division multiplexing may be performed between uplink resources (eg, PUCCH resources) in the same slot.
- the period of each uplink resource eg, PUCCH resource
- Each of the plurality of base stations may transmit a reference signal (RS) to the terminal (S1920).
- Each base station may transmit the reference signal periodically or aperiodically.
- the reference signal (eg, the first reference signal and the second reference signal) may include a CSI-RS for channel measurement and a CSI-IM for interference measurement.
- the terminal transmits a reference signal (CSI-IM) for interference measurement and all reference signals for channel measurement of each base station performing CoMP joint transmission (eg, It may be assumed that the QCL (QCL-Type D) relationship for the same spatial reception parameter between CSI-RSs is assumed.
- CSI-IM reference signal
- QCL QCL-Type D
- At least one base station of the plurality of base stations may receive the CSI from the terminal (S1930).
- the CSI may be calculated based on Method 1 described above, and the CSI may be encoded based on Method 2 described above.
- the CSI calculation may correspond to step S1830 of FIG. 18, and the CSI encoding process may correspond to step S1840 of FIG. 18. In the following, overlapping descriptions will be omitted.
- the base station may receive the CSI on PUCCH or semi-persistent PUSCH.
- the CSI includes channel quality information (CQI), and the CQI may correspond to a value calculated when a terminal simultaneously receives layers from a plurality of base stations.
- CQI channel quality information
- the CSI may be reported to only one base station of the plurality of base stations and may share the CSI to the other base stations through a backhaul connection.
- the CSI may be reported through uplink resources (for example, PUCCH) set for each base station of the plurality of base stations.
- uplink resources for example, PUCCH
- the same encoded bits may be commonly received in each PUCCH resource.
- the CSI is encoded for each base station, it may be transmitted through each PUCCH resource.
- the base station may receive information on the base stations participating in CoMP with the CSI from the terminal.
- the terminal may select a non-CoMP transmission scheme by selecting one channel or one reporting setting and may report CSI for the corresponding base station.
- the terminal may select base stations performing CoMP transmission by selecting a plurality of channels or a plurality of report settings, and the base station may receive corresponding CSI.
- the terminal and / or the base station operating according to the steps of FIGS. 18 and 19 may be specifically realized by the apparatus of FIGS. 20 to 26 to be described later.
- FIG. 20 illustrates a block diagram of a wireless communication device to which the methods proposed herein can be applied.
- a wireless communication system may include a first device 2010 and a second device 2020.
- the first device 2010 includes a base station, a network node, a transmitting terminal, a receiving terminal, a transmitting device, a receiving device, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, Drones (Unmanned Aerial Vehicles, UAVs), AI (Artificial Intelligence) Modules, Robots, Augmented Reality Devices, Virtual Reality Devices, Mixed Reality Devices, Hologram Devices, Public Safety Devices, MTC Devices, IoT Devices, medical devices, fintech devices (or financial devices), security devices, climate / environment devices, 5G service related devices or other devices related to the fourth industrial revolution field.
- Drones Unmanned Aerial Vehicles, UAVs
- AI Artificial Intelligence
- Robots Augmented Reality Devices, Virtual Reality Devices, Mixed Reality Devices, Hologram Devices, Public Safety Devices, MTC Devices, IoT Devices, medical devices, fintech devices (or financial devices), security devices, climate / environment
- the second device 2020 may include a base station, a network node, a transmission terminal, a reception terminal, a transmission device, a reception device, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a connected car, Drones (Unmanned Aerial Vehicles, UAVs), AI (Artificial Intelligence) Modules, Robots, Augmented Reality Devices, Virtual Reality Devices, Mixed Reality Devices, Hologram Devices, Public Safety Devices, MTC Devices, IoT Devices, medical devices, fintech devices (or financial devices), security devices, climate / environment devices, 5G service related devices or other devices related to the fourth industrial revolution field.
- Drones Unmanned Aerial Vehicles, UAVs
- AI Artificial Intelligence
- Robots Augmented Reality Devices, Virtual Reality Devices, Mixed Reality Devices, Hologram Devices, Public Safety Devices, MTC Devices, IoT Devices, medical devices, fintech devices (or financial devices), security devices, climate / environment devices
- the terminal may be a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, a slate PC, a tablet. It may include a tablet PC, an ultrabook, a wearable device (eg, a smartwatch, a glass glass, a head mounted display), and the like.
- the HMD may be a display device worn on the head.
- the HMD can be used to implement VR, AR or MR.
- a drone may be a vehicle in which humans fly by radio control signals.
- the VR device may include a device that implements an object or a background of a virtual world.
- the AR device may include a device that connects and implements an object or a background of the virtual world to an object or a background of the real world.
- the MR device may include a device that fuses and implements an object or a background of the virtual world to an object or a background of the real world.
- the hologram device may include a device that records and reproduces stereoscopic information to realize a 360 degree stereoscopic image by utilizing interference of light generated by two laser lights, called holography, to meet each other.
- the public safety device may include an image relay device or an image device wearable on a human body of a user.
- the MTC device and the IoT device may be devices that do not require direct human intervention or manipulation.
- the MTC device and the IoT device may include a smart meter, a bending machine, a thermometer, a smart bulb, a door lock or various sensors.
- the medical device may be a device used for the purpose of diagnosing, treating, alleviating, treating or preventing a disease.
- a medical device may be a device used for the purpose of diagnosing, treating, alleviating or correcting an injury or disorder.
- a medical device may be a device used for the purpose of inspecting, replacing, or modifying a structure or function.
- the medical device may be a device used for controlling pregnancy.
- the medical device may include a medical device, a surgical device, an (in vitro) diagnostic device, a hearing aid or a surgical device, and the like.
- the security device may be a device installed to prevent a risk that may occur and to maintain safety.
- the security device may be a camera, a CCTV, a recorder or a black box.
- the fintech device may be a device capable of providing financial services such as mobile payment.
- the fintech device may include a payment device or a point of sales (POS).
- the climate / environmental device may include a device for monitoring or predicting the climate / environment.
- the first device 2010 may include at least one or more processors such as a processor 2011, at least one or more memories such as a memory 2012, and at least one or more transceivers, such as a transceiver 2013.
- the processor 2011 may perform the functions, procedures, and / or methods described above.
- the processor 2011 may perform one or more protocols.
- the processor 2011 may perform one or more layers of a radio interface protocol.
- the memory 2012 is connected to the processor 2011 and may store various types of information and / or instructions.
- the transceiver 2013 may be connected to the processor 2011 and may be controlled to transmit and receive a wireless signal.
- the processor 2011 may control the transceiver 2013 to transmit CSI report related configuration information to the second device 2020 (S1910). In addition, the processor 2011 may control the transceiver 2013 to transmit a reference signal to the second device 2020 (S1920). In addition, the processor 2011 may control the transceiver 2013 to receive the CSI from the second device 2020 (S1930).
- the second device 2020 may include at least one processor such as the processor 2021, at least one memory device such as the memory 2022, and at least one transceiver such as the transceiver 2023.
- the processor 2021 may perform the functions, procedures, and / or methods described above.
- the processor 2021 may implement one or more protocols.
- the processor 2021 may implement one or more layers of a radio interface protocol.
- the memory 2022 may be connected to the processor 2021 and store various types of information and / or instructions.
- the transceiver 2023 may be connected to the processor 2021 and controlled to transmit and receive a wireless signal.
- the processor 2021 may control the transceiver 2023 to receive the CSI report related configuration information from the first device 2010 (S1810).
- the processor 2021 may control the transceiver 2023 to receive a reference signal from the first device 2010 (S1820).
- the processor 2021 may calculate a CSI by performing a measurement on the reference signal (S1830).
- the processor 2021 may encode the CSI, control the transceiver 2023, and transmit the CSI to the first device 2010 (S1840).
- 21 is another example of a block diagram of a wireless communication device to which the methods proposed herein may be applied.
- a wireless communication system includes a base station 2110 and a plurality of terminals 2120 located in a base station area.
- the base station may be represented by a transmitting device, the terminal may be represented by a receiving device, and vice versa.
- the base station and the terminal are a processor (processors 2111, 2121), a memory (memory, 2114, 2124), one or more Tx / Rx RF modules (radio frequency modules, 2115, 2125), Tx processors (2112, 2122), Rx processors ( 2113 and 2123, and antennas 2116 and 2126.
- the processor implements the salping functions, processes and / or methods above.
- the processor 2111 implements the functionality of the L2 layer.
- the processor provides the terminal 2120 with multiplexing and radio resource allocation between the logical channel and the transport channel and is responsible for signaling to the terminal.
- the transmit (TX) processor 2112 implements various signal processing functions for the L1 layer (ie, the physical layer).
- the signal processing function facilitates forward error correction (FEC) in the terminal and includes coding and interleaving.
- FEC forward error correction
- the encoded and modulated symbols are divided into parallel streams, each stream mapped to an OFDM subcarrier, multiplexed with a reference signal (RS) in the time and / or frequency domain, and using an Inverse Fast Fourier Transform (IFFT).
- RS reference signal
- IFFT Inverse Fast Fourier Transform
- the OFDM stream is spatially precoded to produce multiple spatial streams.
- Each spatial stream may be provided to different antennas 2116 through separate Tx / Rx modules (or transceivers 2115).
- Each Tx / Rx module can modulate an RF carrier with each spatial stream for transmission.
- each Tx / Rx module (or transceiver 2125) receives a signal through each antenna 2126 of each Tx / Rx module.
- Each Tx / Rx module recovers information modulated onto an RF carrier and provides it to a receive (RX) processor 2123.
- the RX processor implements the various signal processing functions of layer 1.
- the RX processor may perform spatial processing on the information to recover any spatial stream destined for the terminal. If multiple spatial streams are directed to the terminal, it may be combined into a single OFDMA symbol stream by multiple RX processors.
- the RX processor uses fast Fourier transform (FFT) to convert the OFDMA symbol stream from the time domain to the frequency domain.
- the frequency domain signal includes a separate OFDMA symbol stream for each subcarrier of the OFDM signal.
- the symbols and reference signal on each subcarrier are recovered and demodulated by determining the most likely signal placement points sent by the base station. Such soft decisions may be based on channel estimate values. Soft decisions are decoded and deinterleaved to recover the data and control signals originally transmitted by the base station on the physical channel.
- the data and control signals are provided to the processor 2121.
- the UL (communication from terminal to base station) is processed at base station 2110 in a manner similar to that described with respect to receiver functionality at terminal 2120.
- Each Tx / Rx module 2125 receives a signal through each antenna 2126.
- Each Tx / Rx module provides an RF carrier and information to the RX processor 2123.
- the processor 2121 may be associated with a memory 2124 that stores program code and data.
- the memory may be referred to as a computer readable medium.
- FIG 22 illustrates an AI device 100 according to an embodiment of the present invention.
- the AI device 100 includes a TV, a projector, a mobile phone, a smartphone, a desktop computer, a notebook computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation device, a tablet PC, a wearable device, and a set-top box (STB). ), A DMB receiver, a radio, a washing machine, a refrigerator, a desktop computer, a digital signage, a robot, a vehicle, or the like.
- PDA personal digital assistant
- PMP portable multimedia player
- STB set-top box
- the terminal 100 connects the communication unit 110, the input unit 120, the running processor 130, the sensing unit 140, the output unit 150, the memory 170, the processor 180, and the like. It may include.
- the communicator 110 may transmit / receive data to / from external devices such as the other AI devices 100a to 100e or the AI server 200 using wired or wireless communication technology.
- the communicator 110 may transmit / receive sensor information, a user input, a learning model, a control signal, and the like with external devices.
- the communication technology used by the communication unit 110 may include Global System for Mobile Communication (GSM), Code Division Multi Access (CDMA), Long Term Evolution (LTE), 5G, Wireless LAN (WLAN), and Wireless-Fidelity (Wi-Fi). ), Bluetooth (Bluetooth®), RFID (Radio Frequency Identification), Infrared Data Association (IrDA), ZigBee, Near Field Communication (NFC), and the like.
- GSM Global System for Mobile Communication
- CDMA Code Division Multi Access
- LTE Long Term Evolution
- 5G Fifth Generation
- Wi-Fi Wireless LAN
- Wi-Fi Wireless-Fidelity
- Bluetooth Bluetooth
- RFID Radio Frequency Identification
- IrDA Infrared Data Association
- ZigBee ZigBee
- NFC Near Field Communication
- the input unit 120 may acquire various types of data.
- the input unit 120 may include a camera for inputting an image signal, a microphone for receiving an audio signal, a user input unit for receiving information from a user, and the like.
- a signal obtained from the camera or microphone may be referred to as sensing data or sensor information by treating the camera or microphone as a sensor.
- the input unit 120 may acquire input data to be used when acquiring an output using training data and a training model for model training.
- the input unit 120 may obtain raw input data, and in this case, the processor 180 or the running processor 130 may extract input feature points as preprocessing on the input data.
- the running processor 130 may train a model composed of artificial neural networks using the training data.
- the learned artificial neural network may be referred to as a learning model.
- the learning model may be used to infer result values for new input data other than the training data, and the inferred values may be used as a basis for judgment to perform an operation.
- the running processor 130 may perform AI processing together with the running processor 240 of the AI server 200.
- the running processor 130 may include a memory integrated with or implemented in the AI device 100.
- the running processor 130 may be implemented using the memory 170, an external memory directly coupled to the AI device 100, or a memory held in the external device.
- the sensing unit 140 may acquire at least one of internal information of the AI device 100, surrounding environment information of the AI device 100, and user information using various sensors.
- the sensors included in the sensing unit 140 include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint sensor, an ultrasonic sensor, an optical sensor, a microphone, and a li. , Radar and so on.
- the output unit 150 may generate an output related to visual, auditory, or tactile.
- the output unit 150 may include a display unit for outputting visual information, a speaker for outputting auditory information, and a haptic module for outputting tactile information.
- the memory 170 may store data supporting various functions of the AI device 100.
- the memory 170 may store input data, training data, training model, training history, and the like acquired by the input unit 120.
- the processor 180 may determine at least one executable operation of the AI device 100 based on the information determined or generated using the data analysis algorithm or the machine learning algorithm. In addition, the processor 180 may control the components of the AI device 100 to perform a determined operation.
- the processor 180 may request, search, receive, or utilize data of the running processor 130 or the memory 170, and may perform an operation predicted or determined to be preferable among the at least one executable operation.
- the components of the AI device 100 may be controlled to execute.
- the processor 180 may generate a control signal for controlling the corresponding external device and transmit the generated control signal to the corresponding external device.
- the processor 180 may obtain intention information about the user input, and determine the user's requirements based on the obtained intention information.
- the processor 180 uses at least one of a speech to text (STT) engine for converting a voice input into a string or a natural language processing (NLP) engine for obtaining intention information of a natural language. Intent information corresponding to the input can be obtained.
- STT speech to text
- NLP natural language processing
- At least one or more of the STT engine or the NLP engine may be configured as an artificial neural network, at least partly learned according to a machine learning algorithm. At least one of the STT engine or the NLP engine may be learned by the running processor 130, may be learned by the running processor 240 of the AI server 200, or may be learned by distributed processing thereof. It may be.
- the processor 180 collects history information including operation contents of the AI device 100 or feedback of a user about the operation, and stores the information in the memory 170 or the running processor 130, or the AI server 200. Can transmit to external device. The collected historical information can be used to update the learning model.
- the processor 180 may control at least some of the components of the AI device 100 to drive an application program stored in the memory 170. In addition, the processor 180 may operate by combining two or more of the components included in the AI device 100 to drive the application program.
- FIG 23 illustrates an AI server 200 according to an embodiment of the present invention.
- the AI server 200 may refer to an apparatus for learning an artificial neural network using a machine learning algorithm or using an learned artificial neural network.
- the AI server 200 may be composed of a plurality of servers to perform distributed processing, or may be defined as a 5G network.
- the AI server 200 may be included as a part of the AI device 100 to perform at least some of the AI processing together.
- the AI server 200 may include a communication unit 210, a memory 230, a running processor 240, a processor 260, and the like.
- the communication unit 210 may transmit / receive data with an external device such as the AI device 100.
- the memory 230 may include a model storage unit 231.
- the model storage unit 231 may store a trained model or a trained model (or artificial neural network 231a) through the running processor 240.
- the running processor 240 may train the artificial neural network 231a using the training data.
- the learning model may be used while mounted in the AI server 200 of the artificial neural network, or may be mounted and used in an external device such as the AI device 100.
- the learning model can be implemented in hardware, software or a combination of hardware and software. When some or all of the learning model is implemented in software, one or more instructions constituting the learning model may be stored in the memory 230.
- the processor 260 may infer a result value with respect to the new input data using the learning model, and generate a response or control command based on the inferred result value.
- the AI system 1 may include at least one of an AI server 200, a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e.
- This cloud network 10 is connected.
- the robot 100a to which the AI technology is applied, the autonomous vehicle 100b, the XR device 100c, the smartphone 100d or the home appliance 100e may be referred to as the AI devices 100a to 100e.
- the cloud network 10 may refer to a network that forms part of the cloud computing infrastructure or exists in the cloud computing infrastructure.
- the cloud network 10 may be configured using a 3G network, 4G or Long Term Evolution (LTE) network or a 5G network.
- LTE Long Term Evolution
- the devices 100a to 100e and 200 constituting the AI system 1 may be connected to each other through the cloud network 10.
- the devices 100a to 100e and 200 may communicate with each other through the base station, but may communicate with each other directly without passing through the base station.
- the AI server 200 may include a server that performs AI processing and a server that performs operations on big data.
- the AI server 200 includes at least one or more of the AI devices constituting the AI system 1, such as a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e. Connected via the cloud network 10, the AI processing of the connected AI devices 100a to 100e may help at least a part.
- the AI devices constituting the AI system 1 such as a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e.
- the AI processing of the connected AI devices 100a to 100e may help at least a part.
- the AI server 200 may train the artificial neural network according to the machine learning algorithm on behalf of the AI devices 100a to 100e and directly store the learning model or transmit the training model to the AI devices 100a to 100e.
- the AI server 200 receives input data from the AI devices 100a to 100e, infers a result value with respect to the received input data using a learning model, and generates a response or control command based on the inferred result value. Can be generated and transmitted to the AI device (100a to 100e).
- the AI devices 100a to 100e may infer a result value from input data using a direct learning model and generate a response or control command based on the inferred result value.
- the AI devices 100a to 100e to which the above-described technology is applied will be described.
- the AI devices 100a to 100e illustrated in FIG. 24 may be viewed as specific embodiments of the AI device 100 illustrated in FIG. 22.
- the robot 100a may be applied to an AI technology, and may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, or the like.
- the robot 100a may include a robot control module for controlling an operation, and the robot control module may refer to a software module or a chip implemented in hardware.
- the robot 100a acquires state information of the robot 100a by using sensor information obtained from various kinds of sensors, detects (recognizes) the surrounding environment and an object, generates map data, moves paths and travels. You can decide on a plan, determine a response to a user interaction, or determine an action.
- the robot 100a may use sensor information obtained from at least one sensor among a rider, a radar, and a camera to determine a movement route and a travel plan.
- the robot 100a may perform the above operations by using a learning model composed of at least one artificial neural network.
- the robot 100a may recognize the surrounding environment and the object using the learning model, and determine the operation using the recognized surrounding environment information or the object information.
- the learning model may be directly learned by the robot 100a or may be learned by an external device such as the AI server 200.
- the robot 100a may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly to perform an operation. You may.
- the robot 100a determines a movement route and a travel plan by using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the movement path and the travel plan. Accordingly, the robot 100a may be driven.
- the map data may include object identification information for various objects arranged in a space in which the robot 100a moves.
- the map data may include object identification information about fixed objects such as walls and doors and movable objects such as flower pots and desks.
- the object identification information may include a name, type, distance, location, and the like.
- the robot 100a may control the driving unit based on the control / interaction of the user, thereby performing an operation or driving.
- the robot 100a may acquire the intention information of the interaction according to the user's motion or voice utterance, and determine the response based on the obtained intention information to perform the operation.
- the autonomous vehicle 100b may be implemented by an AI technology and implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, or the like.
- the autonomous vehicle 100b may include an autonomous driving control module for controlling the autonomous driving function, and the autonomous driving control module may refer to a software module or a chip implemented in hardware.
- the autonomous driving control module may be included inside as a configuration of the autonomous driving vehicle 100b, but may be configured as a separate hardware and connected to the outside of the autonomous driving vehicle 100b.
- the autonomous vehicle 100b obtains state information of the autonomous vehicle 100b by using sensor information obtained from various types of sensors, detects (recognizes) an environment and an object, generates map data, A travel route and a travel plan can be determined, or an action can be determined.
- the autonomous vehicle 100b may use sensor information acquired from at least one sensor among a lidar, a radar, and a camera, similarly to the robot 100a, to determine a movement route and a travel plan.
- the autonomous vehicle 100b may receive or recognize sensor information from external devices or receive information directly recognized from external devices. .
- the autonomous vehicle 100b may perform the above operations by using a learning model composed of at least one artificial neural network.
- the autonomous vehicle 100b may recognize a surrounding environment and an object using a learning model, and determine a driving line using the recognized surrounding environment information or object information.
- the learning model may be learned directly from the autonomous vehicle 100b or may be learned from an external device such as the AI server 200.
- the autonomous vehicle 100b may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly. You can also do
- the autonomous vehicle 100b determines a moving route and a driving plan by using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the moving route and the driving plan. According to the plan, the autonomous vehicle 100b can be driven.
- the map data may include object identification information for various objects arranged in a space (eg, a road) on which the autonomous vehicle 100b travels.
- the map data may include object identification information about fixed objects such as street lights, rocks, buildings, and movable objects such as vehicles and pedestrians.
- the object identification information may include a name, type, distance, location, and the like.
- the autonomous vehicle 100b may perform an operation or drive by controlling the driving unit based on the user's control / interaction.
- the autonomous vehicle 100b may acquire the intention information of the interaction according to the user's motion or voice utterance, and determine the response based on the obtained intention information to perform the operation.
- AI technology is applied to the XR device 100c, and a head-mount display (HMD), a head-up display (HUD) provided in a vehicle, a television, a mobile phone, a smartphone, a computer, a wearable device, a home appliance, and a digital signage It may be implemented as a vehicle, a fixed robot or a mobile robot.
- HMD head-mount display
- HUD head-up display
- the XR apparatus 100c analyzes three-dimensional point cloud data or image data acquired through various sensors or from an external device to generate location data and attribute data for three-dimensional points, thereby providing information on the surrounding space or reality object. It can obtain and render XR object to output. For example, the XR apparatus 100c may output an XR object including additional information about the recognized object in correspondence with the recognized object.
- the XR apparatus 100c may perform the above-described operations using a learning model composed of at least one artificial neural network.
- the XR apparatus 100c may recognize a reality object in 3D point cloud data or image data using a learning model, and may provide information corresponding to the recognized reality object.
- the learning model may be learned directly from the XR device 100c or learned from an external device such as the AI server 200.
- the XR apparatus 100c may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly. It can also be done.
- the robot 100a may be implemented using an AI technology and an autonomous driving technology, such as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, or the like.
- an autonomous driving technology such as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, or the like.
- the robot 100a to which the AI technology and the autonomous driving technology are applied may mean a robot itself having an autonomous driving function, a robot 100a interacting with the autonomous vehicle 100b, and the like.
- the robot 100a having an autonomous driving function may collectively move devices according to a given copper line or determine a copper line by itself without controlling the user.
- the robot 100a and the autonomous vehicle 100b having the autonomous driving function may use a common sensing method to determine one or more of a movement route or a driving plan.
- the robot 100a and the autonomous vehicle 100b having the autonomous driving function may determine one or more of the movement route or the driving plan by using information sensed through the lidar, the radar, and the camera.
- the robot 100a which interacts with the autonomous vehicle 100b, is present separately from the autonomous vehicle 100b and is linked to the autonomous driving function inside or outside the autonomous vehicle 100b, or the autonomous vehicle 100b. ) May perform an operation associated with the user who boarded.
- the robot 100a interacting with the autonomous vehicle 100b acquires sensor information on behalf of the autonomous vehicle 100b and provides the sensor information to the autonomous vehicle 100b or obtains sensor information, By generating object information and providing the object information to the autonomous vehicle 100b, the autonomous vehicle function of the autonomous vehicle 100b can be controlled or assisted.
- the robot 100a interacting with the autonomous vehicle 100b may monitor a user in the autonomous vehicle 100b or control a function of the autonomous vehicle 100b through interaction with the user. .
- the robot 100a may activate the autonomous driving function of the autonomous vehicle 100b or assist the control of the driver of the autonomous vehicle 100b.
- the function of the autonomous vehicle 100b controlled by the robot 100a may include not only an autonomous vehicle function but also a function provided by a navigation system or an audio system provided inside the autonomous vehicle 100b.
- the robot 100a interacting with the autonomous vehicle 100b may provide information or assist a function to the autonomous vehicle 100b outside the autonomous vehicle 100b.
- the robot 100a may provide traffic information including signal information to the autonomous vehicle 100b, such as a smart signal light, or may interact with the autonomous vehicle 100b, such as an automatic electric charger of an electric vehicle. You can also automatically connect an electric charger to the charging port.
- the robot 100a may be applied to an AI technology and an XR technology, and may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, a drone, or the like.
- the robot 100a to which the XR technology is applied may mean a robot that is the object of control / interaction in the XR image.
- the robot 100a may be distinguished from the XR apparatus 100c and interlocked with each other.
- the robot 100a When the robot 100a that is the object of control / interaction in the XR image acquires sensor information from sensors including a camera, the robot 100a or the XR apparatus 100c generates an XR image based on the sensor information. In addition, the XR apparatus 100c may output the generated XR image. The robot 100a may operate based on a control signal input through the XR apparatus 100c or user interaction.
- the user may check an XR image corresponding to the viewpoint of the robot 100a that is remotely linked through an external device such as the XR device 100c, and may adjust the autonomous driving path of the robot 100a through interaction. You can control the movement or driving, or check the information of the surrounding objects.
- the autonomous vehicle 100b may be implemented by an AI technology and an XR technology, such as a mobile robot, a vehicle, an unmanned aerial vehicle, and the like.
- the autonomous vehicle 100b to which the XR technology is applied may mean an autonomous vehicle having a means for providing an XR image, or an autonomous vehicle that is the object of control / interaction in the XR image.
- the autonomous vehicle 100b, which is the object of control / interaction in the XR image is distinguished from the XR apparatus 100c and may be linked with each other.
- the autonomous vehicle 100b having means for providing an XR image may acquire sensor information from sensors including a camera and output an XR image generated based on the obtained sensor information.
- the autonomous vehicle 100b may provide a passenger with an XR object corresponding to a real object or an object in a screen by outputting an XR image with a HUD.
- the XR object when the XR object is output to the HUD, at least a part of the XR object may be output to overlap the actual object to which the occupant's eyes are directed.
- the XR object when the XR object is output on the display provided inside the autonomous vehicle 100b, at least a portion of the XR object may be output to overlap the object in the screen.
- the autonomous vehicle 100b may output XR objects corresponding to objects such as a road, another vehicle, a traffic light, a traffic sign, a motorcycle, a pedestrian, a building, and the like.
- the autonomous vehicle 100b that is the object of control / interaction in the XR image acquires sensor information from sensors including a camera
- the autonomous vehicle 100b or the XR apparatus 100c may be based on the sensor information.
- the XR image may be generated, and the XR apparatus 100c may output the generated XR image.
- the autonomous vehicle 100b may operate based on a user's interaction or a control signal input through an external device such as the XR apparatus 100c.
- Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
- an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
- the software code may be stored in memory and driven by the processor.
- the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
- the method of transmitting channel state information in the wireless communication system of the present invention has been described with reference to the example applied to the 3GPP LTE / LTE-A system and the 5G system (New RAT system), but can be applied to various wireless communication systems. Do.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명에서는 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 송수신하는 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 다수의 기지국들에 의해 지원되는 단말(User equipment, UE)이 채널 상태 정보(Channel State Information, CSI)를 보고하는 방법에 있어서, 상기 다수의 기지국들 중 적어도 하나의 기지국으로부터, CSI 보고 관련 설정 정보를 수신하는 단계; 상기 다수의 기지국들 중 제1 기지국으로부터 특정 수신 빔을 통해 제1 참조 신호(Reference Signal, RS)를 수신하는 단계; 상기 다수의 기지국들 중 상기 제1 기지국을 제외한 적어도 하나의 기지국으로부터, 상기 특정 수신 빔을 통해 제2 참조 신호를 수신하는 단계; 상기 제1 참조 신호 및 상기 제2 참조 신호에 대한 측정을 수행하여 상기 CSI를 계산하는 단계; 및 상기 제1 기지국으로 상기 CSI를 전송하는 단계;를 포함하되, 상기 단말은 상기 특정 수신 빔을 통해 수신된 상기 제2 참조 신호를 간섭으로 측정하여 상기 CSI를 계산할 수 있다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 다수의 기지국들에 의해 지원되는 단말이 다수의 채널들에 대한 채널 상태 정보(Channel State Information, CSI)를 보고하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는, 무선 통신 시스템에서 다수의 기지국들에 대한 채널 상태 정보(Channel State Information, CSI)를 송수신하는 방법을 제안한다.
구체적으로, 본 명세서는, CoMP(Coordinated Multi-Point) 공동 전송(Joint Transmission)을 수행하는 다수의 기지국들에 대한 CSI 보고를 위해 CSI 보고 관련 설정 정보를 구성하는 방법을 제안한다.
또한, 본 명세서는 CSI 계산 시 수신 빔을 가정하는 방법 및 CSI 보고 관련 설정 정보에 기반하여 다수의 기지국들에 대한 CSI를 계산하는 방법을 제안한다.
또한, 본 명세서는 단말이 CoMP 동작을 수행하는 다수의 기지국들 중 적어도 하나의 기지국으로 CSI를 전송하는 방법과 이를 위한 인코딩 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시 예에 따른 무선 통신 시스템에서 다수의 기지국들에 의해 지원되는 단말(User equipment, UE)이 채널 상태 정보(Channel State Information, CSI)를 보고하는 방법에 있어서, 상기 다수의 기지국들 중 적어도 하나의 기지국으로부터, CSI 보고 관련 설정 정보를 수신하는 단계; 상기 다수의 기지국들 중 제1 기지국으로부터 특정 수신 빔을 통해 제1 참조 신호(Reference Signal, RS)를 수신하는 단계; 상기 다수의 기지국들 중 상기 제1 기지국을 제외한 적어도 하나의 기지국으로부터, 상기 특정 수신 빔을 통해 제2 참조 신호를 수신하는 단계; 상기 제1 참조 신호 및 상기 제2 참조 신호에 대한 측정을 수행하여 상기 CSI를 계산하는 단계; 및 상기 제1 기지국으로 상기 CSI를 전송하는 단계를 포함하되, 상기 다수의 기지국들이 각각 독립적인 레이어를 전송하는 경우, 상기 단말은 상기 특정 수신 빔을 통해 수신된 상기 제2 참조 신호를 간섭으로 측정하여 상기 CSI를 계산할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 단말은 상기 다수의 기지국들로부터 각각 독립적인 레이어(Layer)를 수신할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 제1 참조 신호와 상기 제2 참조 신호는 공간 수신 파라미터(spatial RX parameter)에 대한 QCL(Quasi co-location) 관계로 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI 보고 관련 설정 정보는 채널 측정 자원 정보, 간섭 측정 자원 정보 및 CSI 파라미터에 대한 정보를 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 제1 참조 신호와 상기 간섭 측정 자원 정보에 포함된 간섭 측정 자원은 공간 수신 파라미터(spatial RX parameter)에 대한 QCL(Quasi co-location) 관계로 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI 보고 관련 설정 정보는 상기 다수의 기지국들의 각 기지국 별로 각각 설정될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 제1 기지국에 대한 CSI 보고 관련 설정 정보의 간섭 측정 자원 정보는 상기 제2 참조 신호를 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 다수의 기지국들의 각 기지국 별로 각각 설정된 상기 CSI 보고 관련 설정 정보에 대한 연결 관계 정보를 수신하는 단계를 더 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 제1 기지국이 상기 단말과 다른 단말을 함께 스케줄링 하는 경우, 상기 간섭 측정 자원 정보는 NZP(Non Zero Power) CSI-RS(Channel State Information-Reference Signal) 관련 정보를 더 포함할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 단말은 상기 다른 단말로부터의 간섭을 고려하여 상기 CSI를 계산할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 다수의 기지국들로부터 공통적인 레이어가 수신되는 경우, 상기 특정 수신 빔을 통해 수신된 제1 간섭과 상기 다수의 기지국들 중 상기 제1 기지국을 제외한 기지국들에 대한 수신 빔을 통해 수신된 제2 간섭에 기반하여 전체 간섭을 산출하되, 상기 전체 간섭은 i) 상기 제1 간섭과 상기 제2 간섭의 합산값, ii) 상기 제1 간섭과 상기 제2 간섭의 평균값, iii)상기 제1 간섭과 상기 제2 간섭 각각에 가중치를 곱하여 합산한 값 중 하나로 산출될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI는 CQI(Channel Quality Information)를 포함하며, 상기 CQI는 상기 단말이 상기 다수의 기지국들로부터 레이어를 동시에 수신하는 경우 산출되는 값에 해당할 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI가 서브밴드 CSI 보고에 해당하는 경우, 상기 CSI는 파트 1과 파트 2로 구분되어 인코딩되며, 상기 파트 2는 각 기지국에 대한 PMI로만 구성될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI 보고 관련 설정 정보는 상기 CSI 전송을 위한 상향링크 자원 설정을 더 포함하되, 상기 상향링크 자원 설정은 상기 다수의 기지국들의 수에 대응하여 설정될 수 있다.
본 발명의 일 실시 예에 따른 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 보고하는 단말(User equipment, UE)에 있어서, 상기 단말은, 다수의 기지국들에 의해 지원되며, 무선 신호를 송수신하기 위한 송수신부, 및 상기 송수신부와 기능적으로 연결된 프로세서를 포함하고, 상기 프로세서는, 상기 송수신부를 제어하여, 상기 다수의 기지국들 중 적어도 하나의 기지국으로부터, CSI 보고 관련 설정 정보를 수신하고, 상기 다수의 기지국들 중 제1 기지국으로부터 특정 수신 빔을 통해 제1 참조 신호(Reference Signal, RS)를 수신하며, 상기 다수의 기지국들 중 상기 제1 기지국을 제외한 적어도 하나의 기지국으로부터, 상기 특정 수신 빔을 통해 제2 참조 신호를 수신하고, 상기 제1 참조 신호 및 상기 제2 참조 신호에 대한 측정을 수행하여 상기 CSI를 계산하며, 상기 송수신부를 제어하여, 상기 제1 기지국으로 상기 CSI를 전송하되, 상기 제2 신호를 간섭으로 측정하여 상기 CSI를 계산할 수 있다.
본 발명의 실시 예에 따르면, CoMP(Coordinated Multi-Point) 공동 전송(Joint Transmission)을 수행하는 다수의 기지국들에 대해 공통으로 또는 각각 CSI 보고 관련 설정(예: 보고 세팅)을 할 수 있다.
또한, 본 발명의 실시 예에 따르면, CoMP(Coordinated Multi-Point) 공동 전송(Joint Transmission)을 수행하는 다수의 기지국들에 대한 CSI를 계산할 때, 수신 빔을 가정하는 방법을 통해 각 기지국에 대한 정확한 CSI를 산출할 수 있다.
또한, 본 발명의 실시 예에 따르면, CoMP(Coordinated Multi-Point)로 동작하는 다수의 기지국들에 대한 CSI 보고를 수행할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 NR 시스템에서의 프레임 구조의 일례를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 6은 NR에서의 물리 자원 블록의 일례를 나타낸 도이다.
도 7은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다.
도 8은 SSB와 CSI-RS를 이용한 빔 형성의 일례를 나타낸다.
도 9는 SSB를 사용하는 하향 링크 빔 관리 절차를 설명하기 위한 흐름도이다.
도 10은 CSI-RS를 사용하는 하향 링크 빔 관리 절차를 설명하기 위한 도면이다.
도 11은 CSI-RS를 사용하는 하향 링크 빔 관리 절차에서 수신 빔을 결정하는 절차를 설명하기 위한 도면이다.
도 12는 CSI-RS를 사용하는 하향 링크 빔 관리 절차에서 송신 빔을 결정하는 절차를 설명하기 위한 도면이다.
도 13은 CSI-RS를 사용하는 하향 링크 빔 관리 절차에서 시간, 주파수 도메인에서의 자원 할당을 설명하기 위한 도면이다.
도 14는 SRS를 사용하는 상향 링크 빔 관리 절차를 설명하기 위한 도면이다.
도 15는 SRS를 사용하는 상향 링크 빔 관리 절차를 설명하기 위한 흐름도이다.
도 16은 CSI 관련 절차의 일례를 나타낸 흐름도이다.
도 17은 CoMP 동작을 수행하는 두 개의 TP들과 두 TP들에 의해 지원되는 단말의 일례를 나타낸다.
도 18은 본 명세서에서 제안하는 방법이 적용될 수 있는 채널 상태 정보를 보고하는 단말의 동작 순서도의 일 예를 나타낸다.
도 19는 본 명세서에서 제안하는 방법이 적용될 수 있는 채널 상태 정보를 수신하는 기지국의 동작 순서도의 일 예를 나타낸다.
도 20은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 21은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도의 또 다른 예시이다.
도 22는 본 발명의 일 실시 예에 따른 AI 장치(100)를 나타낸다.
도 23은 본 발명의 일 실시 예에 따른 AI 서버(200)를 나타낸다.
도 24는 본 발명의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제 1 통신 장치로, 단말은 제 2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI 시스템, RSU(road side unit), 차량(vehicle), 로봇, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈, 드론(Unmanned Aerial Vehicle, UAV), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 발명의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE
- 36.211: Physical channels and modulation
- 36.212: Multiplexing and channel coding
- 36.213: Physical layer procedures
- 36.300: Overall description
- 36.331: Radio Resource Control (RRC)
3GPP NR
- 38.211: Physical channels and modulation
- 38.212: Multiplexing and channel coding
- 38.213: Physical layer procedures for control
- 38.214: Physical layer procedures for data
- 38.300: NR and NG-RAN Overall Description
- 36.331: Radio Resource Control (RRC) protocol specification
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 radio access technology 에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 reliability 및 latency 에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 radio access technology 의 도입이 논의되고 있으며, 본 명세서에서는 편의상 해당 technology 를 NR 이라고 부른다. NR은 5G 무선 접속 기술(radio access technology, RAT)의 일례를 나타낸 표현이다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤로지로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다.
뉴머로러지(numerology)는 주파수 영역에서 하나의 subcarrier spacing에 대응한다. Reference subcarrier spacing을 정수 N으로 scaling함으로써, 상이한 numerology가 정의될 수 있다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 X
n 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
NR 시스템은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1은 6GHz 이하(예: 450Mhz~6Ghz)의 범위이며, FR2는 6GHz 이상(예: 24.25GHz~52.6GHz)의 범위로 밀리미터 웨이브(millimiter wave, mmW)를 의미할 수 있다. FR1에서는 15, 30, 60 kHz의 SCS를 지원하고, FR2에서는 60, 120, 240kHz의 SCS를 지원할 수 있다.
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
의 시간 단위의 배수로 표현된다. 여기에서,
이고,
이다. 하향링크(downlink) 및 상향크(uplink) 전송은
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
이전에 시작해야 한다.
뉴머롤로지
에 대하여, 슬롯(slot)들은 서브프레임 내에서
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
의 연속하는 OFDM 심볼들로 구성되고,
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
의 시작은 동일 서브프레임에서 OFDM 심볼
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 일반(normal) CP에서 슬롯 별 OFDM 심볼의 개수(
), 무선 프레임 별 슬롯의 개수(
), 서브프레임 별 슬롯의 개수(
)를 나타내며, 표 3은 확장(extended) CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
도 3은 NR 시스템에서의 프레임 구조의 일례를 나타낸다. 도 3은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
표 3의 경우, μ=2인 경우, 즉 서브캐리어 간격(subcarrier spacing, SCS)이 60kHz인 경우의 일례로서, 표 2를 참고하면 1 서브프레임(또는 프레임)은 4개의 슬롯들을 포함할 수 있으며, 도 3에 도시된 1 서브프레임={1,2,4} 슬롯들은 일례로서, 1 서브프레임에 포함될 수 있는 스롯(들)의 개수는 표 2와 같이 정의될 수 있다.
또한, 미니-슬롯(mini-slot)은 2, 4 또는 7 심볼(symbol)들로 구성될 수도 있고, 더 많거나 또는 더 적은 심볼들로 구성될 수도 있다.
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.
도 4를 참고하면, 자원 그리드가 주파수 영역 상으로
서브캐리어들로 구성되고, 하나의 서브프레임이
OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
의 OFDM 심볼들에 의해 설명된다. 여기에서,
이다. 상기
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
에 의해 고유적으로 식별된다. 여기에서,
는 주파수 영역 상의 인덱스이고,
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
이 이용된다. 여기에서,
이다.
뉴머롤로지
및 안테나 포트 p에 대한 자원 요소
는 복소 값(complex value)
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
또는
이 될 수 있다.
Point A는 자원 블록 그리드의 공통 참조 지점(common reference point)으로서 역할을 하며 다음과 같이 획득될 수 있다.
- PCell 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 UE에 의해 사용된 SS/PBCH 블록과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타내며, FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현되고;
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.
서브캐리어 간격 설정
에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호(number)
와 서브캐리어 간격 설정
에 대한 자원 요소(k,l)은 아래 수학식 1과 같이 주어질 수 있다.
여기에서,
는
이 point A를 중심으로 하는 subcarrier에 해당하도록 point A에 상대적으로 정의될 수 있다. 물리 자원 블록들은 대역폭 파트(bandwidth part, BWP) 내에서 0부터
까지 번호가 매겨지고,
는 BWP의 번호이다. BWP i에서 물리 자원 블록
와 공통 자원 블록
간의 관계는 아래 수학식 2에 의해 주어질 수 있다.
도 6은 NR에서의 물리 자원 블록의 일례를 나타낸다.
물리 채널 및 일반적인 신호 전송
도 7은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S701). 이를 위해, 단말은 기지국으로부터 주 동기 신호(Primary Synchronization Signal, PSS) 및 부 동기 신호(Secondary Synchronization Signal, SSS)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S702).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우, 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure, RACH)을 수행할 수 있다(S703 내지 S706). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S703 및 S705), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지((RAR(Random Access Response) message)를 수신할 수 있다. 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S706).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S707) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S708)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information, DCI)를 수신할 수 있다. 여기서, DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 사용 목적에 따라 포맷이 서로 다르게 적용될 수 있다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함할 수 있다. 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
빔 관리(Beam Management, BM)
BM 절차는 다운링크(downlink, DL) 및 업링크(uplink, UL) 송/수신에 사용될 수 있는 기지국(예: gNB, TRP 등) 및/또는 단말(예: UE) 빔들의 세트(set)를 획득하고 유지하기 위한 L1(layer 1)/L2(layer 2) 절차들로서, 아래와 같은 절차 및 용어를 포함할 수 있다.
- 빔 측정(beam measurement): 기지국 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 결정(beam determination): 기지국 또는 UE가 자신의 송신 빔(Tx beam) / 수신 빔(Rx beam)을 선택하는 동작.
- 스위핑 (Beam sweeping): 미리 결정된 방식으로 일정 시간 간격 동안 송신 및/또는 수신 빔을 이용하여 공간 영역을 커버하는 동작.
- 빔 보고(beam report): UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
BM 절차는 (1) SS(synchronization signal)/PBCH(physical broadcast channel) Block 또는 CSI-RS를 이용하는 DL BM 절차와, (2) SRS(sounding reference signal)을 이용하는 UL BM 절차로 구분할 수 있다. 또한, 각 BM 절차는 Tx beam을 결정하기 위한 Tx beam sweeping과 Rx beam을 결정하기 위한 Rx beam sweeping을 포함할 수 있다.
하향링크 빔 관리 절차(DL BM Procedure)
하향링크 빔 관리 절차(DL BM 절차)는 (1) 기지국이 빔 형성 DL RS(예를 들어, CSI-RS 또는 SS 블록 (SSB))를 전송하는 단계 및 (2) 단말이 빔 보고를 송신하는 단계를 포함할 수 있다.
여기서, 빔 보고(beam reporting)는 바람직한 DL RS ID (식별자) (들) 및 그에 대응하는 L1-RSRP를 포함할 수 있다.
DL RS ID는 SSB resource indicator(SSBRI) 또는 CSI-RS resource indicator(CRI) 일 수 있다.
도8은 SSB와 CSI-RS를 이용한 빔 형성의 일례를 나타낸다.
도 8와 같이, SSB 빔과 CSI-RS 빔은 빔 측정을 위해 사용될 수 있다. 측정 메트릭(measurement metric)은 자원(resource)/블록(block) 별 L1-RSRP이다. SSB는 coarse한 빔 측정을 위해 사용되며, CSI-RS는 fine한 빔 측정을 위해 사용될 수 있다. SSB는 Tx 빔 스위핑과 Rx 빔 스위핑 모두에 사용될 수 있다. SSB를 이용한 Rx 빔 스위핑은 다수의 SSB bursts에 걸쳐서(across) 동일 SSBRI에 대해 UE가 Rx 빔을 변경하면서 수행될 수 있다. 여기서, 하나의 SS burst는 하나 또는 그 이상의 SSB들을 포함하고, 하나의 SS burst set은 하나 또는 그 이상의 SSB burst들을 포함한다.
1. SSB를 이용한 DL BM
도 9은 SSB를 이용한 DL BM 절차의 일례를 나타낸 흐름도이다.
SSB를 이용한 빔 보고(beam report)에 대한 설정은 RRC connected state(또는 RRC connected mode)에서 CSI/beam configuration 시에 수행된다.
- 단말은 BM을 위해 사용되는 SSB resource들을 포함하는 CSI-SSB-ResourceSetList를 포함하는 CSI-ResourceConfig IE를 기지국으로부터 수신한다(S910).
표 4는 CSI-ResourceConfig IE의 일례를 나타내며, 표 4과 같이, SSB를 이용한 BM configuration은 별도로 정의되지 않고, SSB를 CSI-RS resource처럼 설정한다.
표 4에서, csi-SSB-ResourceSetList parameter는 하나의 resource set에서 beam management 및 reporting을 위해 사용되는 SSB resource들의 리스트를 나타낸다. 여기서, SSB resource set은 {SSBx1, SSBx2, SSBx3, SSBx4,...}으로 설정될 수 있다. SSB index는 0부터 63까지 정의될 수 있다.
- 단말은 상기 CSI-SSB-ResourceSetList에 기초하여 SSB resource를 상기 기지국으로부터 수신한다(S920).
- SSBRI 및 L1-RSRP에 대한 보고와 관련된 CSI-RS reportConfig가 설정된 경우, 상기 단말은 best SSBRI 및 이에 대응하는 L1-RSRP를 기지국으로 (빔) report한다(S930).
즉, 상기 CSI-RS reportConfig IE의 reportQuantity가 'ssb-Index-RSRP'로 설정된 경우, 단말은 기지국으로 best SSBRI 및 이에 대응하는 L1-RSRP를 보고한다.
그리고, 단말은 SSB(SS/PBCH Block)와 동일한 OFDM 심볼(들)에서 CSI-RS resource가 설정되고, 'QCL-TypeD'가 적용 가능한 경우, 상기 단말은 CSI-RS와 SSB가 'QCL-TypeD' 관점에서 quasi co-located라고 가정할 수 있다.
여기서, 상기 QCL TypeD는 spatial Rx parameter 관점에서 antenna port들 간에 QCL되어 있음을 의미할 수 있다. 단말이 QCL Type D 관계에 있는 복수의 DL antenna port들을 수신 시에는 동일한 수신 빔을 적용하여도 무방하다. 또한, 단말은 SSB의 RE와 중첩하는 RE에서 CSI-RS가 설정될 것으로 기대하지 않는다.
2. CSI-RS를 이용하는 하향 링크 빔 관리 절차(DL BM procedure using CSI-RS)
단말이 (상위 계층 파라미터) 반복이 "ON"으로 설정된 NZP-CSI-RS-ResourceSet의 구성을 수신하면, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 리소스가 동일한 다운 링크 공간 도메인 송신 필터로 송신 송신된다고 가정할 수 있다.
즉, NZP-CSI-RS-ResourceSet에 있는 적어도 하나의 CSI-RS 자원이 동일한 Tx 빔을 통해 전송된다.
여기서, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원은 다른 OFDM 심볼을 통해 전송될 수 있거나 다른 주파수 영역에서 (즉, FDM을 통해) 전송될 수 있다.
적어도 하나의 CSI-RS 자원이 FDM의 대상이 되는 경우는 단말이 다중 패널 단말 일 때이다.
또한, 반복이 "ON"으로 설정된 경우는 단말의 Rx 빔 스위핑 절차와 관련된다.
단말은 NZP-CSI-RS-ResourceSet 내의 모든 CSI-RS 자원으로부터 periodicityAndOffset에 상이한 주기성을 수신 할 것을 기대하지 않는다.
또한, 반복이 "OFF"로 설정되면, 단말은 NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 리소스가 동일한 다운 링크 공간 도메인 송신 필터로 송신된다고 가정하지 않는다.
즉, NZP-CSI-RS-ResourceSet 내의 적어도 하나의 CSI-RS 자원이 다른 TX bam을 통해 전송된다.
반복이 "OFF"로 설정되는 경우는 기지국의 송신 빔 스위핑 절차와 관련된다.
또한 매개 변수 반복(parameter repetition)은 L1 RSRP 또는 "No report or None" 을 갖는 CSI-ReportConfig와 연관된 CSI-RS 자원 세트에 대해서만 설정될 수 있다.
단말이 reportQuantity가 "cri-RSRP"또는 "none"으로 설정된 CSI-ResourceConfig를 수신한 경우, 단말은 동일한 수 (1- 포트 또는 2- 포트)의 포트로 구성될 수 있으며, NZP-CSI-RS-ResourceSet의 모든 CSI-RS 자원에 대한 "nrofPorts" 매개 변수를 정의합니다. 여기서 CSI-ResourceConfig는 상위 계층 파라미터 "trs-Info"를 포함하지 않지만 상위 계층 파라미터 "repetition"(= ON)으로 설정된 NZP-CSI-RS-ResourceSet을 포함한다.
보다 구체적으로는, CSI-RS의 목적과 관련하여, 특정 CSI-RS 자원 세트에 파라미터 반복이 설정되고 TRS_info가 설정되지 않으면, CSI-RS는 빔 관리에 사용된다.
또한, 파라미터 반복이 설정되지 않고 TRS 정보가 설정되면 CSI-RS는 TRS (Tracking Reference Signal)로 사용됩니다.
또한 매개 변수 반복이나 TRS_info가 구성되지 않으면 CSI-RS가 CSI 획득에 사용됩니다.
도 10은 CSI-RS를 이용한 DL BM 절차의 일례를 도시한 도면이다.
도 10(a)는 단말의 Rx 빔 결정(또는 refinement) 절차를 도시하고, 도 10(b)는 기지국의 송신 빔 결정 절차를 도시한 것이다. 구체적으로 도 10(a)는 파라미터 반복이 "on"으로 설정된 경우이며, 도 10(b)는 "OFF"로 설정된 경우이다.
도 10(a) 및 도 11을 참조하여, 이하 단말의 수신 빔 결정 과정을 설명한다.
도 11은 CSI-RS를 사용하는 하향 링크 빔 관리 절차에서 수신 빔을 결정하는 절차를 설명하기 위한 도면이다.
도 11에서 단말은 RRC 시그널링을 통해 상위 계층 파라미터 반복을 포함하는 NZP CSI-RS 자원 세트 IE를 기지국으로부터 수신한다 (S1110). 파라미터 반복은 "ON"으로 설정된다.
단말은 동일한 Tx 빔(또는 DL 공간 도메인 송신 필터)을 통해 다른 OFDM 심볼로부터 반복을 "ON"으로 설정한 CSI-RS 자원 세트에서 CSI 자원을 반복적으로 수신한다(S1120).
이때, 단말은 자신의 수신 빔을 결정한다 (S1130).
단말은 CSI보고를 생략 할 수도 있고, CRI / L1-RSRP를 포함하는 CSI보고를 기지국으로 전송할 수도 있다 (S1140).
이 경우 CSI report Config의 reportQuantity가 "No report (또는 None)"또는 "CRI 및 L1-RSRP"로 구성될 수 있다.
즉, 반복을 "ON"으로 설정한 경우, 단말은 CSI 보고를 생략하거나 빔 쌍 관련 우선 빔의 ID 정보(CRI)와 그 품질 값 (L1-RSRP)을 보고할 수 있다.
도 10(b) 및 도 12을 참조하여, 기지국의 송신 빔 결정 과정을 이하 설명한다.
도 12는 기지국의 송신 빔 결정 절차의 일례를 도시 한 흐름도이다.
단말은 RRC 시그널링을 통해 상위 계층 파라미터 반복을 포함하는 NZP CSI-RS 리소스 세트 IE를 기지국으로부터 수신한다 (S1210).
파라미터 반복은 "OFF"로 설정되며 기지국의 Tx 빔 스위핑 절차와 관련된다.
단말은 다른 Tx 빔(DL 공간 도메인 송신 필터)을 통해 반복이 "OFF"로 설정된 CSI-RS 자원 세트에서 CSI 자원을 수신한다(S1220).
단말은 최적의 빔을 선택 (또는 결정)하고(S1230), 선택된 빔의 ID 및 품질 정보 (예 : L1-RSRP)를 기지국으로 보고한다(S1240).
이 경우 CSI report Config의 reportQuantity는 "CRI + L1-RSRP"로 구성 될 수 있다. 즉, BM을 위해 CSI-RS가 전송되면, 단말은 그에 대응하는 CSI와 L1-RSRP를 기지국으로 보고한다.
도 13은 도 10의 동작과 관련된 시간 및 주파수 영역에서의 자원 할당의 예를 도시한 도면이다.
도 13를 참조하면, CSI-RS 자원 세트에 대해 반복을 "ON"으로 설정된 경우 동일한 Tx 빔을 통해 복수의 CSI-RS 자원이 반복적으로 사용된다. CSI-RS에 대한 반복이 "OFF"로 설정된 경우 상이한 CSI-RS 자원이 상이한 송신 빔을 통해 송신된다.
3. DL BM 관련 빔 지시(beam indication)
단말은 적어도 QCL(Quasi Co-location) indication의 목적을 위해 최대 M 개의 후보(candidate) 전송 설정 지시 (Transmission Configuration Indication, TCI) 상태(state)들에 대한 리스트를 RRC 설정 받을 수 있다. 여기서, M은 64일 수 있다.
각 TCI state는 하나의 RS set으로 설정될 수 있다. 적어도 RS set 내의 spatial QCL 목적(QCL Type D)을 위한 DL RS의 각각의 ID는 SSB, P-CSI RS, SP-CSI RS, A-CSI RS 등의 DL RS type들 중 하나를 참조할 수 있다.
최소한 spatial QCL 목적을 위해 사용되는 RS set 내의 DL RS(들)의 ID의 초기화(initialization)/업데이트(update)는 적어도 명시적 시그널링(explicit signaling)을 통해 수행될 수 있다.
표 5는 TCI-State IE의 일례를 나타낸다.
TCI-State IE는 하나 또는 두 개의 DL reference signal(RS) 대응하는 quasi co-location (QCL) type과 연관시킨다.
표 5에서, bwp-Id parameter는 RS가 위치되는 DL BWP를 나타내며, cell parameter는 RS가 위치되는 carrier를 나타내며, referencesignal parameter는 해당 target antenna port(s)에 대해 quasi co-location 의 source가 되는 reference antenna port(s) 혹은 이를 포함하는reference signal을 나타낸다. 상기 target antenna port(s)는 CSI-RS, PDCCH DMRS, 또는 PDSCH DMRS 일 수 있다. 일례로 NZP CSI-RS에 대한 QCL reference RS정보를 지시하기 위해 NZP CSI-RS 자원 설정 정보에 해당 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDCCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 각 CORESET설정에 TCI state ID를 지시할 수 있다. 또 다른 일례로 PDSCH DMRS antenna port(s)에 대한 QCL reference 정보를 지시하기 위해 DCI를 통해 TCI state ID를 지시할 수 있다.
4. QCL(Quasi-Co Location)
안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 특성(property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다.
여기서, 상기 채널 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수/도플러 쉬프트(Frequency/Doppler shift), 평균 수신 파워(Average received power), 수신 타이밍/평균지연(Received Timing / average delay), Spatial RX parameter 중 하나 이상을 포함한다. 여기서 Spatial Rx parameter는 angle of arrival과 같은 공간적인 (수신) 채널 특성 파라미터를 의미한다.
단말은 해당 단말 및 주어진 serving cell에 대해 의도된 DCI를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하기 위해, higher layer parameter PDSCH-Config 내 M 개까지의 TCI-State configuration의 리스트로 설정될 수 있다. 상기 M은 UE capability에 의존한다.
각각의 TCI-State는 하나 또는 두 개의 DL reference signal과 PDSCH의 DM-RS port 사이의 quasi co-location 관계를 설정하기 위한 파라미터를 포함한다.
Quasi co-location 관계는 첫 번째 DL RS에 대한 higher layer parameter qcl-Type1과 두 번째 DL RS에 대한 qcl-Type2 (설정된 경우)로 설정된다. 두 개의 DL RS의 경우, reference가 동일한 DL RS 또는 서로 다른 DL RS인지에 관계없이 QCL type은 동일하지 않다.
각 DL RS에 대응하는 quasi co-location type은 QCL-Info의 higher layer parameter qcl-Type에 의해 주어지며, 다음 값 중 하나를 취할 수 있다:
- 'QCL-TypeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'QCL-TypeB': {Doppler shift, Doppler spread}
- 'QCL-TypeC': {Doppler shift, average delay}
- 'QCL-TypeD': {Spatial Rx parameter}
예를 들어, target antenna port가 특정 NZP CSI-RS 인 경우, 해당 NZP CSI-RS antenna ports는 QCL-Type A관점에서는 특정 TRS와, QCL-Type D관점에서는 특정 SSB과 QCL되었다고 지시/설정될 수 있다. 이러한 지시/설정을 받은 단말은 QCL-TypeA TRS에서 측정된 Doppler, delay값을 이용해서 해당 NZP CSI-RS를 수신하고, QCL-TypeD SSB 수신에 사용된 수신 빔을 해당 NZP CSI-RS 수신에 적용할 수 있다.
UE는 8개까지의 TCI state들을 DCI 필드 'Transmission Configuration Indication'의 codepoint에 매핑하기 위해 사용되는 MAC CE signaling에 의한 activation command를 수신할 수 있다.
UL BM 절차
UL BM은 단말 구현에 따라 Tx beam - Rx beam 간 beam reciprocity(또는 beam correspondence)가 성립할 수 있거나 또는, 성립하지 않을 수 있다. 만약 기지국과 단말 모두에서 Tx beam - Rx beam 간 reciprocity가 성립하는 경우, DL beam pair를 통해 UL beam pair를 맞출 수 있다. 하지만, 기지국과 단말 중 어느 하나라도 Tx beam - Rx beam 간 reciprocity가 성립하지 않는 경우, DL beam pair 결정과 별개로 UL beam pair 결정 과정이 필요하다.
또한, 기지국과 단말 모두 beam correspondence를 유지하고 있는 경우에도, 단말이 선호(preferred) beam의 보고를 요청하지 않고도 기지국은 DL Tx beam 결정을 위해 UL BM 절차를 사용할 수 있다.
UL BM은 beamformed UL SRS 전송을 통해 수행될 수 있으며, SRS resource set의 UL BM의 적용 여부는 (higher layer parameter) usage에 의해 설정된다. usage가 'BeamManagement(BM)'로 설정되면, 주어진 time instant에 복수의 SRS resource set들 각각에 하나의 SRS resource만 전송될 수 있다.
단말은 (higher layer parameter) SRS-ResourceSet에 의해 설정되는 하나 또는 그 이상의 Sounding Reference Symbol (SRS) resource set들을 (higher layer signaling, RRC signaling 등을 통해) 설정받을 수 있다. 각각의 SRS resource set에 대해, UE는 K≥1 SRS resource들 (higher later parameter SRS-resource)이 설정될 수 있다. 여기서, K는 자연수이며, K의 최대 값은 SRS_capability에 의해 지시된다.
DL BM과 마찬가지로, UL BM 절차도 단말의 Tx beam sweeping과 기지국의 Rx beam sweeping으로 구분될 수 있다.
도 14는 SRS를 이용한 UL BM 절차의 일례를 나타낸다.
도 14(a)는 기지국의 Rx beam 결정 절차를 나타내고, 도 14(b)는 단말의 Tx beam sweeping 절차를 나타낸다.
도 15는 SRS를 이용한 UL BM 절차의 일례를 나타낸 흐름도이다.
- 단말은 'beam management'로 설정된 (higher layer parameter) usage parameter를 포함하는 RRC signaling(예: SRS-Config IE)를 기지국으로부터 수신한다(S1510).
표 6은 SRS-Config IE(Information Element)의 일례를 나타내며, SRS-Config IE는 SRS 전송 설정을 위해 사용된다. SRS-Config IE는 SRS-Resources의 list와 SRS-ResourceSet들의 list를 포함한다. 각 SRS resource set는 SRS-resource들의 set를 의미한다.
네트워크는 설정된 aperiodicSRS-ResourceTrigger (L1 DCI)를 사용하여 SRS resource set의 전송을 트리거할 수 있다.
표 6에서, usage는 SRS resource set이 beam management를 위해 사용되는지, codebook 기반 또는 non-codebook 기반 전송을 위해 사용되는지를 지시하는 higher layer parameter를 나타낸다. usage parameter는 L1 parameter 'SRS-SetUse'에 대응한다. 'spatialRelationInfo'는 reference RS와 target SRS 사이의 spatial relation의 설정을 나타내는 parameter이다. 여기서, reference RS는 L1 parameter 'SRS-SpatialRelationInfo'에 해당하는 SSB, CSI-RS 또는 SRS가 될 수 있다. 상기, usage는 SRS resource set 별로 설정된다.
- 단말은 상기 SRS-Config IE에 포함된 SRS-SpatialRelation Info에 기초하여 전송할 SRS resource에 대한 Tx beam을 결정한다(S1520). 여기서, SRS-SpatialRelation Info는 SRS resource 별로 설정되고, SRS resource 별로 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용할지를 나타낸다. 또한, 각 SRS resource에 SRS-SpatialRelationInfo가 설정되거나 또는 설정되지 않을 수 있다.
- 만약 SRS resource에 SRS-SpatialRelationInfo가 설정되면 SSB, CSI-RS 또는 SRS에서 사용되는 beam과 동일한 beam을 적용하여 전송한다. 하지만, SRS resource에 SRS-SpatialRelationInfo가 설정되지 않으면, 상기 단말은 임의로 Tx beam을 결정하여 결정된 Tx beam을 통해 SRS를 전송한다(S1530).
보다 구체적으로, 'SRS-ResourceConfigType'가 'periodic'으로 설정된 P-SRS에 대해:
i) SRS-SpatialRelationInfo가 'SSB/PBCH'로 설정되는 경우, UE는 SSB/PBCH의 수신을 위해 사용한 spatial domain Rx filter와 동일한 (혹은 해당 filter로부터 생성된) spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다; 또는
ii) SRS-SpatialRelationInfo가 'CSI-RS'로 설정되는 경우, UE는 periodic CSI-RS 또는 SP CSI-RS의 수신을 위해 사용되는 동일한 spatial domain transmission filter를 적용하여 SRS resource를 전송한다; 또는
iii) SRS-SpatialRelationInfo가 'SRS'로 설정되는 경우, UE는 periodic SRS의 전송을 위해 사용된 동일한 spatial domain transmission filter를 적용하여 해당 SRS resource를 전송한다.
'SRS-ResourceConfigType'이 'SP-SRS' 또는 'AP-SRS'로 설정된 경우에도 위와 유사하게 빔 결정 및 전송 동작이 적용될 수 있다.
- 추가적으로, 단말은 기지국으로부터 SRS에 대한 feedback을 다음 3가지 경우와 같이, 수신받거나 또는 수신받지 않을 수 있다(S1540).
i) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되는 경우, 단말은 기지국이 지시한 빔으로 SRS를 전송한다. 예를 들어, Spatial_Relation_Info가 모두 동일한 SSB, CRI 또는 SRI를 지시하는 경우, 단말은 동일 빔으로 SRS를 반복 전송한다. 이 경우는, 기지국이 Rx beam을 selection하는 용도로서 도 14(a)에 대응한다.
ii) SRS resource set 내의 모든 SRS resource들에 대해 Spatial_Relation_Info가 설정되지 않을 수 있다. 이 경우, 단말은 자유롭게 SRS beam을 바꾸어가면서 전송할 수 있다. 즉, 이 경우는 단말이 Tx beam을 sweeping하는 용도로서, 도 14(b)에 대응한다.
iii) SRS resource set 내의 일부 SRS resource들에 대해서만 Spatial_Relation_Info가 설정될 수 있다. 이 경우, 설정된 SRS resource에 대해서는 지시된 빔으로 SRS를 전송하고, Spatial_Relation_Info가 설정되지 않은 SRS resource에 대해서는 단말이 임의로 Tx beam을 적용해서 전송할 수 있다.
CSI 관련 동작
NR(New Radio) 시스템에서, CSI-RS(channel state information-reference signal)은 시간 및/또는 주파수 트래킹(time/frequency tracking), CSI 계산(computation), L1(layer 1)-RSRP(reference signal received power) 계산(computation) 및 이동성(mobility)를 위해 사용된다. 여기서, CSI computation은 CSI 획득(acquisition)과 관련되며, L1-RSRP computation은 빔 관리(beam management, BM)와 관련된다.
CSI(channel state information)은 단말과 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다.
도 16은 CSI 관련 절차의 일례를 나타낸 흐름도이다.
도 16을 참고하면, CSI-RS의 용도 중 하나를 수행하기 위해, 단말(예: user equipment, UE)은 CSI와 관련된 설정(configuration) 정보를 RRC(radio resource control) signaling을 통해 기지국(예: general Node B, gNB)으로부터 수신한다(S1610).
상기 CSI와 관련된 configuration 정보는 CSI-IM(interference management) 자원(resource) 관련 정보, CSI 측정 설정(measurement configuration) 관련 정보, CSI 자원 설정(resource configuration) 관련 정보, CSI-RS 자원(resource) 관련 정보 또는 CSI 보고 설정(report configuration) 관련 정보 중 적어도 하나를 포함할 수 있다.
CSI-IM 자원 관련 정보는 CSI-IM 자원 정보(resource information), CSI-IM 자원 세트 정보(resource set information) 등을 포함할 수 있다. CSI-IM resource set은 CSI-IM resource set ID(identifier)에 의해 식별되며, 하나의 resource set은 적어도 하나의 CSI-IM resource를 포함한다. 각각의 CSI-IM resource는 CSI-IM resource ID에 의해 식별된다.
CSI resource configuration 관련 정보는 CSI-ResourceConfig IE로 표현될 수 있다. CSI resource configuration 관련 정보는 NZP(non zero power) CSI-RS resource set, CSI-IM resource set 또는 CSI-SSB resource set 중 적어도 하나를 포함하는 그룹을 정의한다. 즉, 상기 CSI resource configuration 관련 정보는 CSI-RS resource set list를 포함하며, 상기 CSI-RS resource set list는 NZP CSI-RS resource set list, CSI-IM resource set list 또는 CSI-SSB resource set list 중 적어도 하나를 포함할 수 있다. CSI-RS resource set은 CSI-RS resource set ID에 의해 식별되고, 하나의 resource set은 적어도 하나의 CSI-RS resource를 포함한다. 각각의 CSI-RS resource는 CSI-RS resource ID에 의해 식별된다.
표 7은 NZP CSI-RS resource set IE의 일례를 나타낸다. 표 7을 참고하면, NZP CSI-RS resource set 별로 CSI-RS의 용도를 나타내는 parameter들(예: BM 관련 'repetition' parameter, tracking 관련 'trs-Info' parameter)이 설정될 수 있다.
그리고, higher layer parameter에 해당하는 repetition parameter는 L1 parameter의 'CSI-RS-ResourceRep'에 대응한다.
CSI 보고 설정(report configuration) 관련 정보는 시간 영역 행동(time domain behavior)을 나타내는 보고 설정 타입(reportConfigType) parameter 및 보고하기 위한 CSI 관련 quantity를 나타내는 보고량(reportQuantity) parameter를 포함한다. 상기 시간 영역 동작(time domain behavior)은 periodic, aperiodic 또는 semi-persistent일 수 있다.
CSI report configuration 관련 정보는 CSI-ReportConfig IE로 표현될 수 있으며, 아래 표 8은 CSI-ReportConfig IE의 일례를 나타낸다.
단말은 상기 CSI와 관련된 configuration 정보에 기초하여 CSI를 측정(measurement)한다(S1620). 상기 CSI 측정은 (1) 단말의 CSI-RS 수신 과정(S1621)과, (2) 수신된 CSI-RS를 통해 CSI를 계산(computation)하는 과정(S1622)을 포함할 수 있으며, 이에 대하여 구체적인 설명은 후술한다.
CSI-RS는 higher layer parameter CSI-RS-ResourceMapping에 의해 시간(time) 및 주파수(frequency) 영역에서 CSI-RS resource의 RE(resource element) 매핑이 설정된다.
표 9는 CSI-RS-ResourceMapping IE의 일례를 나타낸다.
표 9에서, 밀도(density, D)는 RE/port/PRB(physical resource block)에서 측정되는 CSI-RS resource의 density를 나타내며, nrofPorts는 안테나 포트의 개수를 나타낸다.
단말은 상기 측정된 CSI를 기지국으로 보고(report)한다(S1630).
여기서, 표 10의 CSI-ReportConfig의 quantity가 'none(또는 No report)'로 설정된 경우, 상기 단말은 상기 report를 생략할 수 있다.
다만, 상기 quantity가 'none(또는 No report)'로 설정된 경우에도 상기 단말은 기지국으로 report를 할 수도 있다.
상기 quantity가 'none'으로 설정된 경우는 aperiodic TRS를 trigger하는 경우 또는 repetition이 설정된 경우이다.
여기서, repetition이 'ON'으로 설정된 경우에만 상기 단말의 report를 생략할 수 있다.
CSI 측정
NR 시스템은 보다 유연하고 동적인 CSI measurement 및 reporting을 지원한다. 여기서, 상기 CSI measurement는 CSI-RS를 수신하고, 수신된 CSI-RS를 computation하여 CSI를 acquisition하는 절차를 포함할 수 있다.
CSI measurement 및 reporting의 time domain behavior로서, aperiodic/semi-persistent/periodic CM(channel measurement) 및 IM(interference measurement)이 지원된다. CSI-IM의 설정을 위해 4 port NZP CSI-RS RE pattern을 이용한다.
NR의 CSI-IM 기반 IMR은 LTE의 CSI-IM과 유사한 디자인을 가지며, PDSCH rate matching을 위한 ZP CSI-RS resource들과는 독립적으로 설정된다. 그리고, NZP CSI-RS 기반 IMR에서 각각의 port는 (바람직한 channel 및) precoded NZP CSI-RS를 가진 interference layer를 emulate한다. 이는, multi-user case에 대해 intra-cell interference measurement에 대한 것으로, MU interference를 주로 target 한다.
기지국은 설정된 NZP CSI-RS 기반 IMR의 각 port 상에서 precoded NZP CSI-RS를 단말로 전송한다.
단말은 resource set에서 각각의 port에 대해 channel / interference layer를 가정하고 interference를 측정한다.
채널에 대해, 어떤 PMI 및 RI feedback도 없는 경우, 다수의 resource들은 set에서 설정되며, 기지국 또는 네트워크는 channel / interference measurement에 대해 NZP CSI-RS resource들의 subset을 DCI를 통해 지시한다.
resource setting 및 resource setting configuration에 대해 보다 구체적으로 살펴본다.
자원 세팅 (resource setting)
각각의 CSI resource setting 'CSI-ResourceConfig'는 (higher layer parameter csi-RS-ResourceSetList에 의해 주어진) S≥1 CSI resource set에 대한 configuration을 포함한다. CSI resource setting은 CSI-RS- resourcesetlist에 대응한다. 여기서, S는 설정된 CSI-RS resource set의 수를 나타낸다. 여기서, S≥1 CSI resource set에 대한 configuration은 (NZP CSI-RS 또는 CSI-IM으로 구성된) CSI-RS resource들을 포함하는 각각의 CSI resource set과 L1-RSRP computation에 사용되는 SS/PBCH block (SSB) resource를 포함한다.
각 CSI resource setting은 higher layer parameter bwp-id로 식별되는 DL BWP(bandwidth part)에 위치된다. 그리고, CSI reporting setting에 링크된 모든 CSI resource setting들은 동일한 DL BWP를 갖는다.
CSI-ResourceConfig IE에 포함되는 CSI resource setting 내에서 CSI-RS resource의 time domain behavior는 higher layer parameter resourceType에 의해 지시되며, aperiodic, periodic 또는 semi-persistent로 설정될 수 있다. Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 CSI-RS resource set의 수(S)는 '1'로 제한된다. Periodic 및 semi-persistent CSI resource setting에 대해, 설정된 주기(periodicity) 및 슬롯 오프셋(slot offset)은 bwp-id에 의해 주어지는 것과 같이, 연관된 DL BWP의 numerology에서 주어진다.
UE가 동일한 NZP CSI-RS resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.
UE가 동일한 CSI-IM resource ID를 포함하는 다수의 CSI-ResourceConfig들로 설정될 때, 동일한 time domain behavior는 CSI-ResourceConfig에 대해 설정된다.
다음은 channel measurement (CM) 및 interference measurement(IM)을 위한 하나 또는 그 이상의 CSI resource setting들은 higher layer signaling을 통해 설정된다.
- interference measurement에 대한 CSI-IM resource.
- interference measurement에 대한 NZP CSI-RS 자원.
- channel measurement에 대한 NZP CSI-RS 자원.
즉, CMR(channel measurement resource)는 CSI acquisition을 위한 NZP CSI-RS일 수 있으며, IMR(Interference measurement resource)는 CSI-IM과 IM을 위한 NZP CSI-RS일 수 있다.
여기서, CSI-IM(또는 IM을 위한 ZP CSI-RS)는 주로 inter-cell interference measurement에 대해 사용된다.
그리고, IM을 위한 NZP CSI-RS는 주로 multi-user로부터 intra-cell interference measurement를 위해 사용된다.
UE는 채널 측정을 위한 CSI-RS resource(들) 및 하나의 CSI reporting을 위해 설정된 interference measurement를 위한 CSI-IM / NZP CSI-RS resource(들)이 자원 별로 'QCL-TypeD'라고 가정할 수 있다.
자원 세팅 설정 (resource setting configuration)
살핀 것처럼, resource setting은 resource set list를 의미할 수 있다.
aperiodic CSI에 대해, higher layer parameter CSI-AperiodicTriggerState를 사용하여 설정되는 각 트리거 상태(trigger state)는 각각의 CSI-ReportConfig가 periodic, semi-persistent 또는 aperiodic resource setting에 링크되는 하나 또는 다수의 CSI-ReportConfig와 연관된다.
하나의 reporting setting은 최대 3개까지의 resource setting과 연결될 수 있다.
- 하나의 resource setting이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) resource setting 은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.
- 두 개의 resource setting들이 설정되면, (higher layer parameter resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference 또는 nzp-CSI-RS -ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 또는 NZP CSI-RS 상에서 수행되는 interference measurement를 위한 것이다.
- 세 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이고, (csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 기반 interference measurement를 위한 것이고, (nzp-CSI-RS-ResourcesForInterference에 의해 주어지는) 세 번째 resource setting 은 NZP CSI-RS 기반 interference measurement를 위한 것이다.
Semi-persistent 또는 periodic CSI에 대해, 각 CSI-ReportConfig는 periodic 또는 semi-persistent resource setting에 링크된다.
- (resourcesForChannelMeasurement에 의해 주어지는) 하나의 resource setting 이 설정되면, 상기 resource setting은 L1-RSRP computation을 위한 channel measurement에 대한 것이다.
- 두 개의 resource setting들이 설정되면, (resourcesForChannelMeasurement에 의해 주어지는) 첫 번째 resource setting은 channel measurement를 위한 것이며, (higher layer parameter csi-IM-ResourcesForInterference에 의해 주어지는) 두 번째 resource setting은 CSI-IM 상에서 수행되는 interference measurement를 위해 사용된다.
CSI 계산 (computation)
간섭 측정이 CSI-IM 상에서 수행되면, 채널 측정을 위한 각각의 CSI-RS resource는 대응하는 resource set 내에서 CSI-RS resource들 및 CSI-IM resource들의 순서에 의해 CSI-IM resource와 자원 별로 연관된다. 채널 측정을 위한 CSI-RS resource의 수는 CSI-IM resource의 수와 동일하다.
그리고, interference measurement가 NZP CSI-RS에서 수행되는 경우, UE는 채널 측정을 위한 resource setting 내에서 연관된 resource set에서 하나 이상의 NZP CSI-RS resource로 설정될 것으로 기대하지 않는다.
Higher layer parameter nzp-CSI-RS-ResourcesForInterference가 설정된 단말은 NZP CSI-RS resource set 내에 18 개 이상의 NZP CSI-RS port가 설정될 것으로 기대하지 않는다.
CSI 측정을 위해, 단말은 아래 사항을 가정한다.
- 간섭 측정을 위해 설정된 각각의 NZP CSI-RS port는 간섭 전송 계층에 해당한다.
- 간섭 측정을 위한 NZP CSI-RS port의 모든 간섭 전송 레이어는 EPRE(energy per resource element) 비율을 고려한다.
- 채널 측정을 위한 NZP CSI-RS resource의 RE(s) 상에서 다른 간섭 신호, 간섭 측정을 위한 NZP CSI-RS resource 또는 간섭 측정을 위한 CSI-IM resource.
CSI 보고
CSI 보고를 위해, UE가 사용할 수 있는 time 및 frequency 자원은 기지국에 의해 제어된다.
CSI(channel state information)은 채널 품질 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자 (precoding matrix indicator, PMI), CSI-RS resource indicator (CRI), SS/PBCH block resource indicator (SSBRI), layer indicator (LI), rank indicator (RI) 또는 L1-RSRP 중 적어도 하나를 포함할 수 있다.
CQI, PMI, CRI, SSBRI, LI, RI, L1-RSRP에 대해, 단말은 N≥1 CSI-ReportConfig reporting setting, M≥1 CSI-ResourceConfig resource setting 및 하나 또는 두 개의 trigger state들의 리스트(aperiodicTriggerStateList 및 semiPersistentOnPUSCH-TriggerStateList에 의해 제공되는)로 higher layer에 의해 설정된다. 상기 aperiodicTriggerStateList에서 각 trigger state는 channel 및 선택적으로 interference 대한 resource set ID들을 지시하는 연관된 CSI-ReportConfigs 리스트를 포함한다. semiPersistentOnPUSCH-TriggerStateList에서 각 trigger state는 하나의 연관된 CSI-ReportConfig가 포함된다.
그리고, CSI reporting의 time domain behavior는 periodic, semi-persistent, aperiodic을 지원한다.
i) periodic CSI reporting은 short PUCCH, long PUCCH 상에서 수행된다. Periodic CSI reporting의 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정될 수 있으며, CSI-ReportConfig IE를 참고한다.
ii) SP(semi-periodic) CSI reporting은 short PUCCH, long PUCCH, 또는 PUSCH 상에서 수행된다.
Short/long PUCCH 상에서 SP CSI인 경우, 주기(periodicity) 및 슬롯 오프셋(slot offset)은 RRC로 설정되며, 별도의 MAC CE / DCI로 CSI 보고가 activation/deactivation 된다.
PUSCH 상에서 SP CSI인 경우, SP CSI reporting의 periodicity는 RRC로 설정되지만, slot offset은 RRC로 설정되지 않으며, DCI(format 0_1)에 의해 SP CSI reporting은 활성화/비활성화(activation/deactivation)된다. PUSCH 상에서 SP CSI reporting에 대해, 분리된 RNTI(SP-CSI C-RNTI)가 사용된다.
최초 CSI 보고 타이밍은 DCI에서 지시되는 PUSCH time domain allocation 값을 따르며, 후속되는 CSI 보고 타이밍은 RRC로 설정된 주기에 따른다.
DCI format 0_1은 CSI request field를 포함하고, 특정 configured SP-CSI trigger state를 activation/deactivation할 수 있다. SP CSI reporting은, SPS PUSCH 상에서 data 전송을 가진 mechanism과 동일 또는 유사한 활성화/비활성화를 가진다.
iii) aperiodic CSI reporting은 PUSCH 상에서 수행되며, DCI에 의해 trigger된다. 이 경우, aperiodic CSI reporting의 trigger와 관련된 정보는 MAC-CE를 통해 전달/지시/설정될 수 있다.
AP CSI-RS를 가지는 AP CSI의 경우, AP CSI-RS timing은 RRC에 의해 설정되고, AP CSI reporting에 대한 timing은 DCI에 의해 동적으로 제어된다.
NR은 LTE에서 PUCCH 기반 CSI 보고에 적용되었던 다수의 reporting instance들에서 CSI를 나누어 보고하는 방식 (예를 들어, RI, WB PMI/CQI, SB PMI/CQI 순서로 전송)이 적용되지 않는다. 대신, NR은 short/long PUCCH에서 특정 CSI 보고를 설정하지 못하도록 제한하고, CSI omission rule이 정의된다. 그리고, AP CSI reporting timing과 관련하여, PUSCH symbol/slot location은 DCI에 의해 동적으로 지시된다. 그리고, candidate slot offset들은 RRC에 의해 설정된다. CSI reporting에 대해, slot offset(Y)는 reporting setting 별로 설정된다. UL-SCH에 대해, slot offset K2는 별개로 설정된다.
2개의 CSI latency class(low latency class, high latency class)는 CSI computation complexity의 관점에서 정의된다. Low latency CSI의 경우, 최대 4 ports Type-I codebook 또는 최대 4-ports non-PMI feedback CSI를 포함하는 WB CSI이다. High latency CSI는 low latency CSI를 제외한 다른 CSI를 말한다. Normal 단말에 대해, (Z, Z')는 OFDM symbol들의 unit에서 정의된다. 여기서, Z는 Aperiodic CSI triggering DCI를 수신한 후 CSI 보고를 수행하기 까지의 최소 CSI processing time을 나타낸다. 또한, Z'는 channel/interference에 대한 CSI-RS를 수신한 후 CSI 보고를 수행하기까지의 최소 CSI processing time을 나타낸다.
추가적으로, 단말은 동시에 calculation할 수 있는 CSI의 개수를 report한다.
CSI 프레임워크 관련 내용
NR 시스템에서는, CSI 프레임워크(framework)와 관련하여 아래와 같은 내용이 논의되고 있다.
UE는 N≥1 CSI 보고 세팅들(reporting settings), M≥1 자원 세팅들(Resource settings), 및 1 CSI 측정 세팅(measurement setting)으로 설정될 수 있으며, 상기 CSI 측정 세팅은 L ≥1 링크들(links)을 포함한다. L 링크들 각각은 CSI 보고 세팅 및 자원 세팅에 해당된다.
적어도 다음의 구성 파라미터들은 적어도 CSI 획득을 위하여 RRC를 통해 시기널링 될 수 있다:
- N, M, 및 L - 명시적으로 또는 암시적으로 지시됨
- 각 CSI 보고 세팅 안에는 적어도 다음 중 하나가 포함될 수 있다: reported CSI parameter(s), CSI Type (I or II) if reported, codebook configuration including codebook subset restriction, time-domain behavior, frequency granularity for CQI and PMI, measurement restriction configurations
- 각 자원 세팅 안에는: A configuration of S≥1 CSI-RS resource set(s) (Note: 각 세트는 UE에게 설정된 모든 CSI-RS 자원들의 "pool"로부터 다른 선택에 대응됨), A configuration of Ks ≥1 CSI-RS resources for each set s, including at least: mapping to REs, the number of ports, time-domain behavior, etc. 의 정보가 포함될 수 있다
- CSI 측정 세팅의 L 링크들 각각에는: CSI reporting setting indication, Resource setting indication, quantity to be measured (either channel or interference)를 포함할 수 있다. 하나의 CSI 보고 세팅은 하나 또는 다수의 자원 세팅들과 링크될 수 있다. 다수의 CSI 보고 세팅들은 동일한 자원 세팅에 링크될 수 있다.
적어도 다음의 내용은 L1 또는 L2 신호 방식에 의해 동적으로 선택될 수 있다.
- 상기 CSI 측정 세팅 내 하나 또는 다수의 CSi 보고 세팅들
- 적어도 하나의 자원 세팅으로부터 선택 된 하나 또는 다수의 CSI-RS 자원 세트들
- 적어도 하나의 CSI-RS 자원 세트로부터 선택 된 하나 또는 다수의 CSI-RS 자원들
한편, 복수의 TRP(multi-TRP) 동작과 관련하여 NR 수신을 위하여 다음의 내용이 논의되고 있다.
- 단일 NR-PDCCH는 별도의 레이어가 별도의 TRP에서 전송되는 단일 NR-PDSCH를 예약한다.
- 각각의 NR-PDSCH가 개별 TRP로부터 전송되는 각각의 NR-PDSCH를 각각 스케줄링하는 다수의 NR-PDCCHs
- Note: 단일 NR-PDCCH가 모든 TRP에서 공동으로 전송되는 단일 NR-PDSCH의 경우는 투명한 방식으로 수행 될 수 있다. 위의 경우에 대한 CSI 피드백 세부 사항은 별도로 논의 할 수 있다.
다 지점 협력 통신(Coordinated Multi-Point transmission and reception, CoMP)(이하, CoMP)은 이동 통신망에서 셀(cell)의 경계에 있는 단말에 대한 전송 품질을 향상시키기 위하여, 다수의 기지국들이 협력하여 통신하는 기술을 말한다. 둘 이상의 기지국들이 CoMP로 동작함으로써, 전송 효율을 향상시킬 수 있다. 단말 및 시스템 성능을 향상시키기 위한 CoMP 기술은 다수의 기지국들의 공동 전송(Joint transmission, JT), 협력 스케줄링(Coordinated scheduling, CS), 협력 빔포밍(Coordinated beamforming, CB), 동적 포트 선택(dynamic port selection, DPS) 등의 동작 시나리오를 포함한다.
CoMP 동작을 지원하는 다수의 기지국들에 대한 CSI 측정 및 보고 방법은 종래 하나의 기지국에 대한 CSI 측정 및 보고 방법과는 구별될 필요가 있다. 특히, CoMP 공동 전송(joint transmission, JT)을 지원하는 다수의 기지국들에 대한 CSI 측정 및/또는 보고 방법은 하나의 기지국에 대한 CSI와는 다른 방식으로 수행될 필요가 있다.
이하, 본 발명에서는 CoMP 공동 전송(joint transmission, JT)을 지원하는 다수의 기지국들을 위해 UE가 하향링크 CSI를 계산할 때 필요한 동작들을 제안한다.
본 명세서에서는 설명의 편의를 위해 다음과 같은 용어를 통일하여 사용한다. 다만, 이러한 용어들이 본 발명의 범위를 제한하는 것은 아니다.
- CMR : 채널 측정 자원(Channel Measurement Resource)
- IMR : 간섭 측정 자원(Interference Measurement Resource)
- TP : 전송 포인트 (Transmission Point) (기지국, TRP, 패널(panel) 등의 용어로 대체될 수 있음)
- UE : 단말 (User Equipment)
- CSI : 채널 상태 정보 (Channel State Information)
- RI : 랭크 지시자 (Rank Indicator)
- LI : 레이어 지시자 (Layer Indicator)
- PMI : 프리코딩 행렬 지시자 (Precoding Matrix Indicator)
- CQI : 채널 품질 정보 (Channel Quality Information)
- SINR : 신호 대 잡음 비(Signal to Noise and Interference Ratio)
- NZBI : non-zero wideband amplitude coefficients 의 수
- CSI-RS : CSI 참조 신호(Channel State Information-Reference Signal)
- CoMP : 다 지점 협력 통신 (Coordinated Multi-Point)
- QCL : Quasi-co-location
- Rx : 수신 (Reception)
- Tx : 송신 (Transmission)
또한, 본 명세서에서는 설명의 편의를 위해, 2개의 TP가 CoMP 공동 전송을 수행하고, 각각의 TP가 전송하는 레이어는 서로 독립적인(다른) 레이어(Layer)라고 가정한다. TP의 번호(예: TP 인덱스)와 각 TP에서 전송하는 참조 신호 및 각 TP에 대한 CSI 파라미터의 번호는 대응된다고 가정한다. 예를 들어, TP1이 전송하는 CSI-RS1, 및 TP1에 대한 CSI1 파라미터(예: RI1, PMI1, CQI1)으로 나타낼 수 있다. 다만, 상기 가정들은 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다. 따라서, 3개 이상의 TP가 CoMP 공동 전송을 수행하는 경우에도 확장하여 적용할 수 있으며, 각 TP가 독립적인 레이어를 전송하는 경우뿐만 아니라 공통적인(동일한) 레이어를 전송하는 간섭성(coherent) 또는 비간섭성(non-coherent) 공동 전송에도 확장 적용 가능하다.
도 17은 상기 가정에 기초하여 CoMP 동작을 수행하는 두 개의 TP들과 두 TP들에 의해 지원되는 단말의 일례를 나타낸다. 도 17은 발명에 대한 이해를 돕기 위한 하나의 예시일 뿐, 본 발명의 범위를 제한하지는 않는다. 도 17을 참고하면, TP1과 TP2는 CoMP 동작을 수행할 수 있으며, TP1과 TP2가 UE A로 동시에 레이어를 전송할 수 있다. 상기 TP2는 두 개의 단말을 동시에 지원할 수도 있다. TP1과 TP2는 백홀(backhaul)을 통해 데이터를 공유할 수 있다.
본 명세서에서 두 신호 간(예: CSI-RS 간, CSI-RS와 CSI-IM 간)에 동일 수신 빔(Rx beam)을 적용하여 채널 또는 간섭을 측정한다는 의미는 두 신호 간에 동일한 공간적 수신 파라미터(spatial Rx parameter)를 가정한다는 의미 또는 동일 QCL-Type D를 가정한다는 의미와 동일하다.
또한, 본 명세서에서 설명되는 방법들/실시 예들은 설명의 편의를 위해 구분된 것일 뿐, 어느 방법/실시 예의 일부 구성이 다른 방법/ 실시 예의 일부 구성과 치환되거나, 상호 간에 결합되어 적용될 수 있음은 물론이다.
방법 1: CoMP 동작을 지원하는 다수의 TP들에 대한 CSI 관련 설정 및 CSI 계산
CoMP 동작을 지원하는 TP1과 TP2는 CSI 측정을 위하여, TP1은 UE에게 CSI-RS1을 전송하고 TP2는 CSI-RS2를 전송하는 상황을 가정한다. CoMP 동작을 지원하는 다수의 TP(예: TP1 및 TP2)들은 하향링크 CSI를 보고받기 위하여, UE에게 CSI 보고 관련 설정 정보를 전송할 수 있다. 다시 말해, CoMP 동작을 지원하는 다수의 TP들 중 적어도 하나의 TP는 UE에게 CSI 계산 및 보고를 위해 아래와 같은 보고 세팅(report setting) 중 하나를 설정할 수 있다. CSI 보고 세팅은 CSI 보고 관련 설정 정보와 대응될 수 있다.
< Case 1-1>
CoMP 공동 전송을 수행하는 다수의 TP들에 대한 CSI 보고 세팅을 하나의 보고 세팅으로 구성할 수 있다. 표 10은 TP1과 TP2에 대한 하나의 CSI 보고 세팅의 예시이다. 표 13을 참고하면, CSI 보고 세팅은 각 TP에 대한 CMR, IMR, 피드백 해야 할 CSI 파라미터들(내용들)에 대한 정보를 포함할 수 있다. CMR에는 각 TP에 대한 CSI-RS 정보가 포함되고, IMR에는 CSI-IM 정보가 포함될 수 있다.
UE는 CSI 보고 세팅에 기초하여, 각 TP 별 CSI-RS의 채널에 대해 RI, PMI를 계산하고, CoMP 공동 전송을 수행하는 전체 TP들이 동시에 데이터를 전송할 때 달성 가능한 CQI를 계산할 수 있다. 구체적인 예로, UE는 CSI-RSi의 채널에 대해 RIi, PMIi을 계산하고(i=1,2), TP1이 RI1, PMI1를 적용하여 데이터를 전송하고 동시에 TP2가 RI2, PMI2를 적용하여 데이터를 전송할 때 달성 가능한 CQI를 계산할 수 있다. 여기서, i는 TP의 인덱스에 대응될 수 있다.
이 때, UE는 두 개의 서로 다른 (아날로그) Rx 빔(또는, Rx 패널) 각각을 통해 TP1의 데이터와 TP2의 데이터를 수신함을 가정한다.
TP1의 데이터는 (CSI-RS1의 Rx 빔인) Rx 빔1을 통해 수신되고, 이 때 Rx 빔1에서 함께 수신되는 노이즈 및 CoMP에 참여하지 않는 다른 셀(cell)로부터의 간섭을 받게 된다. 뿐만 아니라, Rx 빔1에서 수신된 TP2의 데이터는 층간 간섭(inter layer interference)으로 작용할 수 있다. 구체적으로, UE는 TP1으로부터의 데이터 수신 SINR(또는 CQI)계산 시, CSI-RS1이 수신되는 Rx 빔1으로 CSI-IM을 측정하여 노이즈 및 CoMP에 참여하지 않는 다른 셀로부터의 간섭을 추정할 수 있고, Rx 빔1으로 CSI-RS2를 측정한 후 해당 채널에 RI2, PMI2를 적용하여 층간 간섭을 추정할 수 있다. 마찬가지로, TP2의 데이터 수신 SINR(또는, CQI) 계산 시, Rx 빔2로 수신한 CSI-IM과 CSI-RS1을 이용하여 간섭을 계산(추정)할 수 있다.
수학식 3은 UE가 SINR(또는 CQI)를 계산하는 식을 나타낸다.
수학식 3에서 H1, H2는 각각 CSI-RS1과 CSI-RS2로부터 UE가 측정한 채널을 나타내고, N은 UE가 CSI-IM을 통해 측정한 값을 나타낸다. x1, x2는 TP1, TP2가 각각 전송하는 데이터 심볼을 나타낸다.
CSI 계산 시, UE는 TP1이 송신하는 데이터의 수신 SINR 계산을 위해 수학식 6의 H1, H2, N을 모두 Rx 빔1으로부터 측정할 수 있다. 구체적으로, H1*PMI1*x1으로부터 신호 전력(power)을, H2*PMI2*x2으로부터 TP2로부터의 간섭 전력을 그리고 N으로부터 노이즈 및 나머지 셀의 간섭 전력을 측정하여, SINR(또는 CQI)를 계산할 수 있다.
CSI 계산 시, UE는 TP2가 송신하는 데이터의 수신 SINR 계산을 위해 수학식 6의 H1, H2, N을 모두 Rx 빔2으로부터 측정할 수 있다. 구체적으로, H2*PMI2*x2으로부터 신호 전력을, H1*PMI1*x1으로부터 TP1로부터의 간섭 전력을 그리고 N으로부터 노이즈 및 나머지 셀의 간섭 전력을 측정하여, SINR(또는 CQI)를 계산할 수 있다.
결과적으로, UE는 CSI-IM에 대해 다음을 가정하고 간섭을 측정할 수 있다. CSI-IM은 CMR로 주어진 모든 CSI-RS들(예: CSI-RS1 및 CSI-RS2)과 동일한 QCL- type D (공간적 수신 파라미터(Spatial Rx parameter)에 대한 QCL)를 가정할 수 있다. 단, CSI-RSi를 원하는(desired) 채널로 가정하는 SINRi 또는 CQIi를 계산할 때 CSI-IM과 CSI-RSi가 QCL-Type D를 가정할 수 있다. (여기서, i는 기지국의 인덱스를 나타낸다.)
또한, UE는 CMR로 주어진 복수의 CSI-RS들 각각에 대해 SINR 또는 CQI를 계산할 때, 즉 CSI-RSi에 대한 SINRi 또는 CQIi를 계산할 때, 나머지 CSI-RS들은 모두 CSI-RSi와 동일한 공간적 수신 파라미터를 가진다고 가정할 수 있다. (즉, 나머지 CSI-RS들은 원래 가지고 있는 QCL-Type D 속성을 무시하고 CSI-RSi의 QCL-Type D를 따른다고 가정할 수 있다.)
<Case 1-2>
UE는 CoMP 공동 전송을 수행하는 다수의 TP들에 대해 각각 CSI 보고 세팅을 설정 받을 수 있다. 표 11은 TP1, TP2 각각에 대한 CSI 보고 세팅의 설정 예시이다. 표 11에서 보고 세팅1은 TP1에 대한 것이며, 보고 세팅2는 TP2에 대한 것이다. TP1에 대한 보고 세팅1의 IMR에 TP2의 CMR이 포함될 수 있다. 마찬가지로, TP2에 대한 보고 세팅2의 IMR에 TP1의 CMR이 포함될 수 있다. 또한, UE는 TP로부터 보고 세팅1과 보고 세팅2가 CoMP CSI 계산을 위해 서로 연결되어 있음을 설정 받을 수 있다.
UE는 보고 세팅에 기반하여 CSI를 산출할 수 있다. 구체적으로, UE는 보고 세팅1에 기초하여, CMR의 Rx 빔인 Rx 빔1로 CMR과 IMR을 수신할 수 있고, 수학식 3의 H1, H2, N을 추정할 수 있다. 또한, UE는 보고 세팅1에 연결된 보고 세팅2의 RI2, PMI2를 (CSI-RS2로부터 추정된 채널) H2에 적용하여 TP2로부터 받는 층간 간섭을 추정할 수 있으며, TP1이 송신하는 데이터의 수신 SINR(또는, CQI)을 계산할 수 있다. UE는 보고 세팅2에 기초하여, CMR의 Rx 빔인 Rx 빔2로 CMR과 IMR을 수신 할 수 있고, 수학식 3의 H1, H2, N을 추정할 수 있다. 또한, UE는 보고 세팅2에 연결된 보고 세팅1의 RI1, PMI1를 (CSI-RS1로부터 추정된 채널) H1에 적용하여 TP1로부터 받는 층간 간섭을 추정할 수 있으며, TP2가 송신하는 데이터의 수신 SINR(또는, CQI)을 계산할 수 있다.
<Case 1-3>
UE는 CoMP 공동 전송을 수행하는 다수의 TP들에 대해 각각 CSI 보고 세팅을 설정 받을 수 있다. 이때, 임의의 TP에 대한 보고 세팅에 포함된 IMR은 다른 TP에서 전송되는 CSI-RS를 IMR로 고려하지 않는다. 표 12는 TP1, TP2 각각에 대한 CSI 보고 세팅의 설정 예시이다. 표 12에서, 보고 세팅1은 TP1에 대한 것이며, 보고 세팅2는 TP2에 대한 것이다. 또한, UE는 TP로부터 보고 세팅1과 보고 세팅2가 CoMP CSI 계산을 위해 서로 연결되어 있음을 설정 받을 수 있다.
UE는 보고 세팅에 기반하여 CSI를 산출할 수 있다. 구체적으로, UE는 보고 세팅1에 기초하여, CMR의 Rx 빔인 Rx 빔1로 CMR과 CSI-IM을 수신할 수 있고, 수학식 3의 H1, N을 추정할 수 있다. 또한, UE는 TP2로부터 받는 층간 간섭을 추정하기 위해 보고 세팅1에 연결된 보고 세팅2의 CMR로부터 H2를 측정하고 RI2, PMI2를 (CSI-RS2로부터 추정된 채널) H2에 적용하여 TP2로부터 받는 층간 간섭을 계산할 수 있다. 이 때, 보고 세팅1의 CMR 수신에 사용되는 Rx 빔1으로 보고 세팅2의 CMR을 측정하여 H2를 추정할 수 있다. 이를 이용하여 UE는 TP1이 송신하는 데이터의 수신 SINR 또는 CQI을 계산할 수 있다.
UE는 보고 세팅2에 기초하여, CMR의 수신 빔인 Rx 빔2로 CMR과 CSI-IM을 수신할 수 있다. 그 결과 수학식 3의 H2, N을 추정할 수 있다. 또한, UE는 TP1로부터 받는 층간 간섭을 추정하기 위해 보고 세팅2에 연결된 보고 세팅1의 CMR로부터 H1를 측정하고 RI1, PMI1를 (CSI-RS 1로부터 추정된 채널) H1에 적용하여 TP1로부터 받는 층간 간섭을 계산할 수 있다. 이 때, 보고 세팅2의 CMR 수신에 사용되는 Rx 빔2으로 보고 세팅1의 CMR을 측정하여 H1를 추정할 수 있다. 이를 이용하여 UE는 TP2이 송신하는 데이터의 수신 SINR 또는 CQI을 계산할 수 있다.
상술한 Case 1-2 또는 Case 1-3의 보고 세팅과 같이, 다수의 TP(또는, TRP, 패널)에 상응하는 다수의 보고 세팅들이 설정되었을 때, UE는 TP로부터 다수의 보고 세팅들이 CoMP CSI 계산을 위해 서로 연결되어 있음을 명시적인 시그널링을 통해 설정 받을 수 있다. 또는, 명시적인 시그널링을 통한 지시 없이, 암시적으로 다수의 보고 세팅들이 CoMP CSI 계산을 위해 서로 연결되어 있음을 설정 받을 수도 있다. 예를 들어, 각 보고 세팅 내에 정의된 PUCCH 자원과 PUCCH 전송 주기 및 오프셋이 동일한 경우, UE는 다수의 보고 세팅들이 CoMP CSI 계산을 위해 서로 연결되어 있음을 가정할 수 있다. 또는, (반-지속적 또는 비주기적) PUSCH에 해당하는 시간 및 주파수 자원이 중첩되는 경우, UE는 다수의 보고 세팅들이 CoMP CSI 계산을 위해 서로 연결되어 있음을 가정할 수 있다.
<Case 1-4>
상술한 Case 1-1 내지 Case 1-3의 방법들은 CoMP 공동 전송(Joint Transmission)을 수행하는 다수의 TP들이 독립적인 레이어를 각각 전송하는 것을 가정하였다. 추가적으로, CoMP 공동 전송을 수행하는 다수의 TP들이 공통적인 레이어를 전송하는 경우를 고려할 수 있다. CoMP 공동 전송을 수행하는 TP1과 TP2가 공통적인 레이어(Layer)를 전송하면, UE는 두 TP 모두로부터 해당 레이어를 수신하게 된다. 이 경우, TP1 및 TP2 중 적어도 하나는 UE에게 상술한 Case 1-1 또는 Case 1-3의 보고 세팅을 설정할 수 있다.
수학식 4는 UE가 TP1과 TP2 로부터 공통적인 레이어를 수신하는 경우 SINR(또는 CQI)를 계산하는 식을 나타낸다.
수학식 4에서 H1, H2는 각각 CSI-RS1과 CSI-RS2로부터 UE가 측정한 채널을 나타내며, N은 CSI-IM을 통해 UE가 측정한 값을 나타낸다. x1은 TP1와 TP2가 동시에 전송하는 데이터 심볼을 나타낸다. (수학식 4에서 PMI1과 PMI2를 구분했지만, 하나의 PMI를 사용하는 간섭성(coherent) 공동 전송의 경우에
와 같이 하나의 PMI로 대체되어 표현될 수 있다.)
UE는 CSI-RS1, CSI-RS2, CSI-IM 수신 시 수신 빔에 대해 다음과 같이 가정할 수 있다. UE는 CSI-IM에 대해 다음을 가정하고 간섭을 측정할 수 있다. CSI-IM은 CMR로 주어진 모든 CSI-RS들(예: CSI-RS1 및 CSI-RS2 모두)에 대해 동일한 QCL-Type D (공간적 수신 파라미터에 대한 QCL)를 가정할 수 있다. 즉, UE는 CSI-RS1의 Rx 빔인 Rx 빔1으로 CSI-IM을 수신하고 동시에 CSI-RS2의 Rx 빔인 Rx 빔2으로 CSI-IM을 수신할 수 있다. 각 Rx 빔들을 통해 수신된 간섭을 각각 n1, n2라고 표현하고, UE는 다음 동작 중 하나를 수행하여 최종 간섭 N을 산출할 수 있다.
- UE는 각 간섭을 합산하여, 최종 간섭을 산출할 수 있다. (N=n1+n2)
- UE는 각 간섭의 평균값을 산출하여, 최종 간섭을 산출할 수 있다. (N=avg(n1,n2))
- 각 간섭에 가중치를 곱하여 합한 값으로 최종 간섭을 산출할 수 있다. 여기서 가중치를 나타내는 계수(예: a1, a2)는 기지국이 UE에게 지정해줄 수 있다. (N=a1n1+a2n2)
<Case 1-5>
CoMP 공동 전송(Joint Transmission)을 수행하는 다수의 TP들과 하나의 UE가 동작하는 상황 이외에, 상기 다수의 TP들 중 적어도 하나의 TP가 둘 이상의 UE들에게 서비스를 제공하는 상황을 고려할 수 있다. 구체적으로, TP1과 TP2가 UE A에게 CoMP 공동 전송으로 데이터를 전송함과 동시에, TP1 또는 TP2 중 적어도 하나의 TP가 다른 UE B에게 MU MIMO 서비스 하는 경우, UE A의 CSI 계산 방법을 제안한다.
함께 스케줄 된(Co-scheduled) UE(예: UE B)로부터의 간섭을 SINR(또는, CQI)에 반영하기 위해, CSI를 계산하는 UE(예: UE A)는 IMR에 추가적으로 NZP CSI-RS이 포함된 보고 세팅을 설정 받을 수 있다. 다시 말해, 상술한 Case 1-1 내지 Case 1-3에서 IMR에 NZP CSI-RS가 하나 더 추가될 수 있다. UE는 NZP CSI-RS의 각 포트에 대해 전력(power)을 측정하고 이를 기존 측정된 간섭에 추가할 수 있다. 상기 NZP CSI-RS를 어떤 Rx 빔으로 수신할 것인지는 CSI-IM을 어떤 Rx 빔으로 수신할 것 인지와 동일한 방식으로 결정할 수 있다.
구체적인 예로, 상술한 Case 1-1의 보고 세팅을 예로 설명한다. 표 13은 표 10에서 IMR에 NZP CSI-RS가 추가된 보고 세팅의 예시이다.
수학식 5는 UE가 SINR(또는 CQI)를 계산할 때, 함께 스케줄 된 UE(예: UE B)로부터의 간섭을 고려한 식을 나타낸다. 수학식 5는 수학식 3에서 함께 스케줄 된 UE(예: UE B)의 간섭에 해당하는
가 추가된 형태이다.
는 NZP CSI-RS의 포트 별 전력 측정을 통해 산출될 수 있다.
CSI 계산 시, UE는 TP1이 송신하는 데이터의 수신 SINR 계산을 위해 수학식 8에서 H1, H2, N,
을 모두 Rx 빔1으로부터 측정한 뒤, H1*PMI1*x1으로부터 신호 전력을, H2*PMI2*x2으로부터 TP2로부터의 간섭 전력을, N으로부터 노이즈 및 나머지 셀의 간섭 전력을, 그리고 함께 스케줄 된 UE(UE B)의 간섭을 측정하여, SINR(또는, CQI)를 계산할 수 있다.
CSI 계산 시, UE는 TP2가 송신하는 데이터의 수신 SINR 계산을 위해 수학식 8에서 H1, H2, N,
을 모두 Rx 빔2으로부터 측정한 뒤, H2*PMI2*x2으로부터 신호 전력을, H1*PMI1*x1으로부터 TP1로부터의 간섭 전력을, N으로부터 노이즈 및 나머지 셀의 간섭 전력을, 그리고 함께 스케줄 된 UE(UE B)의 간섭을 측정하여, SINR(또는, CQI)를 계산할 수 있다.
결과적으로, UE는 NZP CSI-RS에 대해 다음을 가정하고 간섭을 측정할 수 있다. NZP CSI-RS은 CMR로 주어진 모든 CSI-RS들(예: CSI-RS1 및 CSI-RS2 모두)와 동일한 QCL-Type D (공간적 수신 파라미터에 대한 QCL)을 가정할 수 있다. 단, CSI-RSi를 원하는(desired) 채널로 가정하는 SINRi 또는 CQIi를 계산할 때, NZP CSI-RS와 CSI-RSi의 QCL-Type D를 가정할 수 있다.(i는 기지국의 인덱스에 대응될 수 있다.)
방법 2: CoMP 동작을 수행하는 다수의 TP들에 대한 CSI 보고
다수의 TP들에 의해 지원되는 UE는 CSI를 측정하여, 다수의 TP들 중 적어도 하나의 TP에게 CSI를 보고할 수 있다. 이하에서, CoMP로 동작하는 다수의 TP들에 대한 CSI 보고를 위하여 CSI를 계산, 인코딩 및 보고 방법을 제안한다.
설명의 편의를 위하여 PUCCH CSI 보고를 예를 중심으로 기술하였으나, 이는 발명의 이해를 돕기 위한 하나의 예시일 뿐, 본 발명의 범위를 제한하지는 않는다. 따라서, 일례로, 반-지속적(semi-persistence) PUSCH CSI 보고에도 적용 가능함은 물론이다. 또한, 2개의 TP들이 CoMP 동작을 수행하는 것으로 가정하고 설명한다. TP의 번호(예: TP 인덱스)와 각 TP에서 전송하는 참조 신호 및 각 TP에 대한 CSI 파라미터의 번호는 대응된다고 가정한다. 예를 들어, TP1이 전송하는 CSI-RS1, 및 TP1에 대한 CSI1 파라미터(예: RI1, PMI1, CQI1)으로 나타낼 수 있다. 다만, 상기 가정들은 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다. 따라서, CoMP 동작을 수행하는 3개 이상의 TP들에 대해 CSI를 보고하는 경우에도 적용 가능하다.
NR 시스템에서 UE가 TP로 서브밴드(sub band, SB) CSI를 보고하는 경우, 파트(part) 1 CSI와 파트 2 CSI로 나누어 각각 인코딩 할 수 있다. (와이드밴드(wideband, WB) CSI는 단일 파트로 구성되어 모든 CSI 내용들이 한번에 인코딩 된다.) 서브밴드 CSI에서, 파트 1 CSI는 페이로드 크기가 변하지 않는 내용들(contents)로만 구성되고, 파트 2 CSI는 페이로드 크기가 가변적이 내용들로 구성될 수 있다.
표 14는 서브밴드 CSI를 구성하는 파트 1과 파트 2의 CSI 파라미터들의 예시이다. 구체적으로, 표17을 참고하면, Part 1은 (보고 되는 경우)LI, (보고 되는 경우)CRI, (보고 되는 경우)NZBI, RI, 첫 번째 코드워드의 CQI를 포함할 수 있다. Part 2는 PMI를 포함하고, RI> 4 일 때, 두 번째 코드워드의 CQI를 포함될 수 있다.
CoMP 동작을 지원하는 다수의 TP들에 대한 CSI 보고에서, 서브밴드 CSI를 보고하는 경우, 파트 1과 파트 2로 나누어 인코딩 하는 방법을 고려할 수 있다. 이때, 다수의 TP들에 대한 CSI 보고 방식이 동일하게 설정된 것으로 가정한다.
<Case 2-1>
각 TP 별로 서로 다른 하나의 CQI를 보고하는 경우, 모든 CQI의 페이로드 크기는 고정되므로 파트 1으로 인코딩 하고, 각 TP에 대한 PMI(예: PMI1, PMI2)만 파트 2로 인코딩 할 수 있다. 예를 들어, CoMP 동작을 수행하는 다수의 TP들 각각이 서로 다른 하나의 코드워드를 전송하는 경우, UE는 각 TP 별 하나의 CQI를 보고하므로, TP의 수와 대응되는 CQI들을 항상 파트 1 CSI로 보고해야 할 수 있다. 표 15는 본 발명에서 제안하는 상기 방법에 따른 CSI 구성의 일례를 나타낸다.
<Case 2-2>
UE가 RI=0를 보고할 수 있는 경우, RI=0에 해당하는 CQI는 보고되지 않는다. 즉, RI1, RI2 중 하나의 RI가 0인 경우에는 하나의 CQI를 보고하며, 모든 RI가 0이 아닌 경우 두 개의 CQI를 보고하게 된다. 따라서 CQI 중 하나는 파트 1, 나머지는 파트 2로 보고하도록 인코딩 할 수 있다.
표 16은 본 발명에서 제안하는 상기 인코딩 방법에 따른 CSI 구성의 일례를 나타낸다. 표 16를 참고하면, CQI_A는 파트 1으로, CQI_B는 파트 2로 인코딩 될 수 있다. 하나의 RI가 0인 경우, CQI_A는 0이 아닌 RI에 해당하는 CQI를 의미하고, CQI_B는 0인 RI에 해당하므로 파트 2에서 생략될 수 있다. (RI=0에 해당하는 PMI도 파트 2에서 생략될 수 있다.) 두 RI 모두 0이 아닌 경우, CQI_A와 CQI_B는 각각 RI1과 RI2에 해당하는 CQI를 의미할 수 있다.
상기 방법에서 하나의 RI만 0이 아닌 경우에도 해당 RI가 특정 값(예: 4)보다 큰 경우라면 2번 째 코드워드 전송을 가정하였으므로 CQI는 각 코드워드 별로 전송되어야 할 필요가 있다. 따라서 CQI_A는 첫 번째 코드워드에 대한 CQI에 해당하며, CQI_B는 두 번째 코드워드에 대한 CQI에 해당할 수 있다. 0이 아닌 RI가 특정 값(예: 4)보다 작은 경우라면 CQI_A만 전송하며 CQI_B는 파트 2에서 생략되고 전송하지 않을 수 있다.
<Case 2-3>
CRI의 값에 따라서 채널 측정용 CSI-RS를 선택하게 되는데, CRI가 특정 하나의 CSI-RS를 선택하는 경우에는 해당 CSI-RS에 대한 CSI(예: RI/PMI/CQI) 만을 전송할 수 있다. 복수 개의 CSI-RS들을 선택하는 경우에는 각 CSI-RS에 대한 CSI(예: RI/PMI/CQI)를 모두 전송할 수 있다. (예: RI1/PMI1/CQI1 및 RI2/PMI2/CQI2 모두) 따라서, CRI가 특정 하나의 CSI-RS를 선택할 가능성을 고려하여 파트 1에는 (CRI에 상관없이 어떤 경우에든 전송하게 되는) RI_A 및 CQI_A를 인코딩 하고, (CRI에 따라 전송여부가 결정되거나, 파트 1의 값에 따라 페이로드 크기가 가변 할 수 있는) RI_B, CQI_B, PMI1 및 PMI2는 파트 2를 통해 전송하도록 인코딩 할 수 있다. 표 17은 본 발명에서 제안하는 상기 방법에 따른 CSI 구성의 일례를 나타낸다.
예를 들어, CRI에 기초하여 CSI-RS1을 선택한 경우, RI_A=RI1, CQI_A=CQI1 이며, RI_B, PMI2 및 CQI_B는 인코딩 되지 않고, 전송되지 않는다. 이 때에도 RI1의 값이 특정 값(예: 4)보다 큰 경우라면 두 번째 코드워드 전송을 가정하였으므로 CQI는 각 코드워드 별로 전송되어야 한다. 따라서 CQI_A는 첫 번 째 코드워드에 대한 CQI로 인코딩 하고, CQI_B는 두 번째 코드워드에 대한 CQI로 인코딩 할 수 있다.
또한, 상술한 Case2-1 내지 Case2-3에서 제안하는 인코딩 방식은 서브밴드 CSI 보고와 와이드밴드 CSI 보고의 경우에 모두 적용할 수 있다. 예를 들어, 와이드밴드 CSI를 파트 1 및 파트 2로 구분하여 인코딩하는 경우, 상술한 인코딩 방식이 확장되어 적용될 수도 있다.
한편, CoMP 동작을 지원하는 다수의 TP들에 대해 각각 다른 방식의 CSI 보고가 지시될 수도 있다. 예를 들어, TP1에 대해서는 와이드밴드(서브밴드) CSI 보고가 설정되고, TP2에 대해서는 서브밴드(와이드밴드) CSI 보고가 설정될 수 있다.
일례로, TP1에 대해 (즉, CSI-RS1으로 채널을 측정하는 CSI) 와이드밴드 CSI 피드백이 설정되고, TP2에 대해 (즉, CSI-RS 2으로 채널을 측정하는 CSI) 서브밴드 CSI 피드백이 설정되는 경우, UE는 TP1에 대한 와이드밴드 CSI 피드백 설정을 무시하고 서브밴드 CSI를 보고할 수 있다. 즉, 보다 정교한 CSI 피드백 설정을 우선하여 따르도록 설정될 수 있다. 또는, 반대로 TP1에 대하여 CSI 페이로드 크기가 작은 와이드밴드 CSI를 보고하도록 할 수도 있다. UE는 TP2에 대한 서브밴드 CSI 피드백 설정을 무시하고 와이드밴드 CSI를 보고할 수 있다.
또는, TP1에 대해 (즉, CSI-RS 1으로 채널을 측정하는 CSI) 와이드밴드 CSI 피드백이 설정되고 TP2에 대해 (즉, CSI-RS 2으로 채널을 측정하는 CSI) 서브밴드 CSI 피드백이 설정되는 경우, 각 설정에 따라, UE는 TP1에 대해 (즉, CSI-RS 1으로 채널을 측정하는 CSI) 와이드밴드 CSI를 보고하고, TP2에 대해 (즉, CSI-RS 1으로 채널을 측정하는 CSI) 서브밴드 CSI를 보고할 수 있다. 이 경우, CSI 인코딩 방식을 고려할 필요가 있다.
UE는 TP1의 와이드밴드 CSI는 모두 파트 1으로 인코딩 하고, TP2의 서브밴드 CSI는 파트 1과 파트 2로 나누어 인코딩 할 수 있다. 이 때 TP1의 파트 1과 TP2의 파트 1은 동일한 파트를 의미하므로, 아래와 같이 인코딩 할 수 있다.
<Case 2-4>
TP1과 TP2의 전체 랭크(즉, RI1+RI2)에 따라서 단일 코드워드를 전송할지 복수의 코드워드를 전송할 지가 결정되는 경우, 2번 째 코드워드에 해당하는 CQI는 존재하거나 존재하지 않을 수 있다. 따라서, 서브밴드 CSI 보고가 설정된 TP2의 CQI2와 PMI2를 파트 2로 인코딩할 수 있다. 표 18은 본 발명에서 제안하는 상기 방법에 따른 CSI 구성의 일례를 나타낸다.
<Case 2-5>
전체 랭크에 무관하게 각 TP 별로 서로 다른 하나의 CQI를 보고하는 경우에 두 CQI는 항상 전송되므로 파트 1으로 인코딩 하고, 파트 2에는 서브밴드 CSI 보고가 설정된 TP2의 PMI2만 인코딩 할 수 있다. 표 19는 본 발명에서 제안하는 상기 방법에 따른 CSI 구성의 일례를 나타낸다.
상술한 Case 2-1 내지 2-5는 하나의 CSI 보고 설정(예: CSI 보고 관련 설정 정보) 내에서 CSI-RS 자원 별로 서브밴드 또는 와이드밴드 CSI 보고 여부가 독립적으로 설정될 수 있는 환경에서 CSI 인코딩 방법으로 적용될 수 있다. UE는 CSI와 함께 어떤 TP가 CoMP에 참여하는지를 선택하여 보고할 수 있으며, 이 때 계산된 CSI는 선택된 TP만 CoMP 전송에 참여했다고 가정하고 CSI가 계산된다.
예를 들어, 상술한 Case 1-1의 표 13과 같이 보고 세팅이 설정된 경우, UE는 TP1에 해당하는 CSI-RS1을 선택하여 TP1만 데이터 전송하는 non-CoMP 전송 방식을 선택하거나 TP2에 해당하는 CSI-RS2을 선택하여 TP2만 데이터 전송하는 non-CoMP 전송 방식을 선택할 수 있다. 또는, CSI-RS1 및 CSI-RS2를 모두 선택하여 TP1 및 TP2 가 데이터를 전송하는 CoMP 전송 방식을 선택할 수 있다. TP1에 해당하는 CSI-RS1을 선택하여 TP1만 데이터 전송하는 non-CoMP 전송 방식을 선택한 경우에는 CSI-RS1에 해당하는 서브밴드 또는 와이드밴드 CSI 보고 방식에 따라 CSI를 보고하고, TP2에 해당하는 CSI-RS2을 선택한 경우에는 CSI-RS2에 해당하는 서브밴드 또는 와이드밴드 CSI 보고에 따라 CSI를 보고할 수 있다. CSI-RS1 및 CSI-RS2를 모두 선택한 경우에는 상술한 Case 2-1 내지 Case 2-5의 서브밴드 및/또는 와이드밴드 보고 방식에 따라 CSI를 인코딩하여 보고할 수 있다.
상술한 Case 2-1 내지 2-5는 UE에게 복수 개의 CSI 보고(즉, 보고 세팅)들이 설정되고, 각 보고 세팅 별로 서브밴드 또는 와이드밴드 CSI 보고 여부에 대한 설정을 독립적으로 할 수 있게 하는 환경에서도 CSI 인코딩 방법으로 적용 가능하다. 예를 들어, UE는 TP로부터 상술한 Case 1-2의 표 14와 같이 보고 세팅1과 보고 세팅2를 설정 받고 두 보고 세팅들이 CoMP CSI 피드백을 위해 연결되어 있음을 설정 받을 수 있다.
UE는 TP1에 해당하는 보고 세팅1을 선택하여 TP1만 데이터 전송하는 non- CoMP 전송 방식을 선택하거나 TP2에 해당하는 보고 세팅2을 선택하여 TP2만 데이터 전송하는 non-CoMP 전송 방식을 선택할 수 있다. 또는, UE는 보고 세팅1과 보고 세팅2를 모두 선택하여 TP1 및 TP2가 데이터를 전송하는 CoMP 전송 방식을 선택할 수 있다. 보고 세팅1을 선택한 경우에는 보고 세팅1에 해당하는 서브밴드 또는 와이드밴드 CSI 보고 방식에 따라 CSI를 보고하고, 보고 세팅2을 선택한 경우에는 보고 세팅2에 해당하는 서브밴드 또는 와이드밴드 CSI 보고 방식에 따라 CSI를 보고할 수 있다. 두 보고 세팅들을 모두 선택한 경우에는 상술한 Case 2-1 내지 Case 2-5의 서브밴드 및/또는 와이드밴드 보고 방식에 따라 CSI 인코딩하여 보고할 수 있다.
또는, 보고 세팅에 대응하여 CSI가 주기적으로 전송되는 경우에는, 두 보고 세팅들에 대응되는 CSI 보고가 충돌(collision)되는 지에 따라 UE의 CSI 인코딩 방식이 결정될 수 있다. 두 TP에 대한 CSI 보고가 충돌되지 않은 경우에는 각 TP의 보고 세팅에 의해 설정된 서브밴드 또는 와이드밴드 CSI 보고 방식에 따라 CSI를 인코딩하여 전송할 수 있다. (이 때, UE는 non-CoMP CSI를 계산하여 보고할 수 있다.) 두 TP에 대한 CSI 보고에 충돌이 발생하는 경우, UE는 CoMP CSI를 계산하여 보고할 수 있으며, 이 때 상술한 Case 2-1 내지 Case 2-5의 서브밴드 및/또는 와이드밴드 보고 방식에 따라 CSI 인코딩하여 보고할 수 있다.
PMI1과 PMI2가 하나의 포트로 인코딩 되고, 두 PMI들이 각각 와이드밴드 PMI와 서브밴드 PMI로 모두 보고되는 경우, 인코딩 순서는 CSI-RS의 인덱스에 따라 열(row) CSI-RS 인덱스에 해당하는 PMI를 먼저 연결(concatenation)하여 비트 스트림을 생성할 수 있다. 즉, 와이드밴드 PMI1, 서브밴드 PMI1, 와이드밴드 PMI2, 서브밴드 PMI2 순서로 연결할 수 있다. 이에 따라, CSI-RS의 열(row) 인덱스에 해당하는 PMI에 더욱 강한 채널 코딩이 적용되어 높은 보호(protection) 상태로 보고될 수 있다. CQI도 PMI와 마찬가지의 방식으로 CSI-RS의 열(row) 인덱스에 따라 순서가 결정될 수 있다.
또는, 와이드밴드 정보를 우선하여 와이드밴드 PMI1, 와이드밴드 PMI2, 서브밴드 PMI1, 서브밴드 PMI2 순서로 연결하여 비트 스트림을 생성할 수 있다. CQI도 PMI와 마찬가지의 방식으로 순서가 결정될 수 있다.
하나의 PUCCH를 통해서 하나의 TP(또는, TRP)로만 CSI가 보고되고 백홀(backhaul) 연결을 통해 나머지 TP로 CSI를 공유하는 경우, TP 간에 백홀 지연으로 인해서 CSI 공유에도 추가 지연이 발생할 수 있다. 이를 방지하기 위해, 각 TP 별로 설정된 PUCCH를 통해 CSI를 보고하는 것이 바람직할 수 있다.
표 20은 상술한 Case1-1과 유사한 두 TP에 대한 보고 세팅이 하나의 보고 세팅으로 구성된 예시이다.
상술한 Case 1-1 및 표 23의 보고 세팅과 같이, 복수 개의 TP(또는, TRP, 패널)들에 대한 보고 세팅이 하나의 보고 세팅으로 설정되는 경우, UE는 각 TP에 대한 CSI를 계산하여, 각 TP에 전송되는 PUCCH를 통해 CSI를 전송할 수 있다. 구체적인 예로, UE는 TP1에 대한 CSI1(예: RI1/PMI1/CQI1)과 TP2에 대한 CSI2(예: RI2/PMI2/CQI2)를 계산하고, PUCCH 자원1을 통해 CSI1을 TP1으로 전송하고, PUCCH 자원2를 통해 TP2로 CSI2를 전송할 수 있다.
UE가 상술한 Case 2-1 내지 Case 2-5의 방법을 이용하여 TP1에 대한 CSI1과 TP2에 대한 CSI2를 함께 인코딩 한 경우, 동일한 인코딩 된(encoded) 비트들을 PUCCH 자원1과 PUCCH 자원2로 전송할 수 있다. CSI1과 CSI2를 각각 인코딩 한 경우에는 CSI1 (즉, CSI-RS1을 CMR로 계산한 CSI)는 PUCCH1을 통해 전송하고 CSI2 (즉, CSI-RS2을 CMR로 계산한 CSI)는 PUCCH2를 통해 전송할 수 있다.
이를 위해, 하나의 보고 세팅 내에 두 개의 PUCCH 자원들이 설정되어야 할 필요가 있다. 즉, 하나의 보고 세팅 내에 TP의 수만큼의 PUCCH 자원들이 설정될 필요가 있다. 각 PUCCH 자원은 서로 다른 주기 및 오프셋을 설정 받을 수 있다. 그러나, PUCCH1과 PUCCH2의 전송 시점이 크게 차이 나는 경우, 나중에 전송되는 PUCCH의 CSI가 구식이 되어(outdated) 바람직하지 못할 수 있다. 따라서, 두 PUCCH 자원들의 주기 및 오프셋 설정에 제약을 둘 필요가 있다.
예를 들어, 두 PUCCH는 동일 주기에 다른 오프셋을 설정하되, 두 오프셋의 차이는 특정 값(P) 이하가 되도록 할 수 있다. (P는 기지국이 설정하여 UE에게 지시하거나, UE가 설정 후 기지국에게 지시하거나, 서브-캐리어 간격(Sub-Carrier Spacing, SCS)에 따라 서로 다른 고정된 값을 사용할 수 있다.) 또는, 두 PUCCH의 주기와 오프셋을 항상 같게 설정하고, PUCCH 자원들 간에는 동일 슬롯에서 시분할 다중화(Time Division Multiplexing, TDM) 되거나 주파수 분할 다중화(Frequency Division Multiplexing, FDM) 되도록 할 수 있다. 또는, 두 PUCCH의 주기가 배수 관계가 되도록 제한 할 수 있다.
UE가 CSI 계산을 위해 시간 영역에서의 CSI 참조 자원(reference resource)을 설정할 때, CSI 보고 시간(reporting time) n을 기준으로 유효 조건을 만족하는 시간 n-k로 CSI 참조 자원을 설정한다. 이를 CoMP 시나리오에서의 CSI 보고에 적용하는 방법을 고려하면, 두 TP에 대한 CSI 보고에서 두 PUCCH의 보고 시간이 다른 경우, 먼저 전송되는 PUCCH를 대표 보고 시간 n으로 가정하여 시간 n-k를 CSI 참조 시간으로 설정하고, CSI1과 CSI2를 계산하여, 산출된 CSI를 각 PUCCH를 통해 전송할 수 있다. 유효 조건은 두 TP 모두에 대해 만족해야 할 수 있다. 두 PUCCH의 보고 시간이 같은 경우에도 동일한 방식을 적용할 수 있다.
UE는 두 PUCCH 의 전송 시간의 차이가 특정 값(P) 보다 작은 경우 상기 동작을 수행하며, 그렇지 않은 경우에는 기존 방식과 동일하게 각 CSI 보고 PUCCH 별로 CSI 참조 자원을 설정하고, 상술한 방법들로 CSI를 계산하여 각 PUCCH를 통해 보고할 수 있다.
도 18은 본 명세서에서 제안하는 방법이 적용될 수 있는 다수의 기지국에 의해 지원되는 단말이 채널 상태 정보를 보고하는 동작 순서도의 일 예를 나타낸다. 도 18은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 18을 참고하면, 단말 및/또는 기지국은 상술한 방법 1 내지 방법 2의 방법들 및/또는 실시 예들에 기반하여 동작하는 경우가 가정된다. 또한, 각 기지국 별 빔(또는, 패널)이 독립적이라고 가정한다. 도 18에서 설명되는 단계들 중 일부는 병합되거나, 생략될 수도 있다. 또한, 이하 설명되는 절차들을 수행함에 있어, 도 16의 CSI 관련 동작이 고려/적용될 수 있다.
단말은 다수의 기지국들 중 적어도 하나의 기지국으로부터 CSI 보고 관련 설정 정보(예: 보고 세팅)를 수신할 수 있다(S1810). 상기 다수의 기지국들은 CoMP 동작을 지원할 수 있다. 특히, 상기 다수의 기지국들은 CoMP 공동 전송을 수행할 수 있다.
예를 들어, 상기 CSI 보고 관련 설정 정보는 상술한 방법 1에 기반할 수 있다. 상기 CSI 보고 관련 설정 정보는 채널 측정 자원 정보, 간섭 측정 자원 정보, 보고할 CSI 파라미터(들)에 대한 정보를 포함할 수 있다. 또한, CSI 보고를 위한 상향링크 자원 설정을 더 포함할 수 있다.
구체적인 예로, 상기 CSI 보고 관련 설정 정보는 상기 다수의 기지국들에 대해 공통적으로 하나의 CSI 보고 관련 설정 정보로 구성될 수 있다. 이는 상술한 방법 1의 Case 1-1과 대응될 수 있다.
또 다른 예로, 상기 다수의 기지국들의 각 기지국 별로 CSI 보고 관련 설정 정보가 각각 구성(설정)될 수 있다. 이는 상술한 방법 1의 Case 1-2 내지 Case 1-3과 대응될 수 있다. 이 경우, 특정 기지국(예: 제1 기지국)의 간섭 측정 자원 정보는 상기 다수의 기지국들 중 상기 특정 기지국을 제외한 기지국들이 전송하는 채널 측정을 위한 참조 신호(또는, 채널 측정 자원)(예: CSI-RS, 제2 참조 신호)을 포함할 수 있다. 또한, 상기 다수의 기지국들의 각 기지국 별로 단말에게 자신의 CSI 보고 관련 설정 정보를 전송할 수 있다.
상기 다수의 기지국들의 각 기지국 별로 CSI 보고 관련 설정 정보가 설정되는 경우, 단말은 상기 다수의 기지국들 중 적어도 하나의 기지국으로부터 기지국 별로 각각 설정된 상기 CSI 보고 관련 설정 정보에 대한 연결 관계 정보를 수신할 수 있다. 상기 연결 관계 정보는 각 CSI 보고 관련 설정 정보가 CoMP CSI 계산을 위해 서로 연결되었음을 나타낼 수 있다. 상기 연결 관계 정보는 명시적인 시그널링을 통해 단말로 전송될 수 있다. 또는, 암시적인 방법으로 단말로 전달 될 수도 있다. 일례로, 각 CSI 보고 관련 설정 정보 내에 정의된 CSI 보고를 위한 상향링크 자원(예: PUCCH 자원), CSI 보고의 전송 주기(예: PUCCH 전송 주기) 및 전송 오프셋이 동일한 경우, 단말은 각 CSI 보고 관련 설정 정보가 CoMP CSI 계산을 위해 서로 연결되었다고 판단할 수 있다. 또는, (반-지속적 또는 비주기적) PUSCH에 해당하는 시간 및 주파수 자원이 중첩되는 경우, 단말은 각 CSI 보고 관련 설정 정보가 CoMP CSI 계산을 위해 서로 연결되었다고 판단할 수 있다.
또 다른 예로, 상기 다수의 기지국들 중 적어도 하나의 기지국(예: 제1 기지국)이 둘 이상의 단말을 동시에 스케줄링 하는 경우, 함께 스케줄 된(Co-scheduled) 단말의 간섭을 CSI 계산에 반영하기 위해 간섭 측정 자원 정보에 NZP(Non Zero Power) CSI-RS(Channel State Information-Reference Signal) 관련 정보가 더 포함될 수 있다. 이는 상술한 방법 1의 Case 1-5와 대응될 수 있다. 이 경우, 단말은 함께 스케줄 된 단말로부터의 간섭을 고려하여 CSI를 계산할 수 있다.
CSI 보고를 위한 상향링크 자원 설정과 관련하여, 상기 다수의 기지국들에 대한 CSI 보고를 위하여 상기 다수의 기지국들의 수에 해당하는 상향링크 자원(예: PUCCH 자원)들이 할당될 수 있다. 각 기지국에 대응하는 상향링크 자원(예: PUCCH 자원)은 서로 다른 주기 및 오프셋으로 설정될 수 있다. 또는, 각 상향링크 자원(예: PUCCH 자원)은 동일 주기에 다른 오프셋을 설정 받을 수 있으며, 임의의 두 오프셋의 차이는 특정 값(P) 이하가 되도록 할 수 있다. 여기서, 상기 특정 값(P)는 i) 기지국이 설정하여 단말에게 지시, ii) 단말이 설정 후 기지국에게 지시, iii) 서브-캐리어 간격에 따라 서로 다른 고정된 값을 사용 중 하나의 방법으로 결정될 수 있다. 또는, 모든 상향링크 자원(예: PUCCH 자원)들의 주기와 오프셋을 항상 같게 설정하고, 상향링크 자원(예: PUCCH 자원)들 간에는 동일 슬롯에서 시분할 다중화 또는 주파수 분할 다중화되도록 할 수 있다. 또는, 각 상향링크 자원(예: PUCCH 자원)의 주기가 배수 관계가 되도록 설정할 수 있다.
단말은 기지국으로부터 참조 신호(Reference Signal, RS)를 수신할 수 있다(S1820). 즉, 다수의 기지국들 각각으로부터 참조 신호(예: 제1 참조 신호, 제2 참조 신호)를 수신할 수 있다. 단말은 각 기지국에 대응하는 수신 빔을 통해 상기 참조 신호를 수신할 수 있다. 상기 참조 신호는 기지국으로부터 주기적으로 또는 비주기적으로 전송될 수 있다. 상기 참조 신호(예: 제1 참조 신호, 제2 참조 신호)는 채널 측정을 위한 참조 신호와 간섭 측정을 위한 참조 신호를 포함할 수 있다. 구체적인 예로, 상기 참조 신호는 채널 측정을 위한 CSI-RS, 간섭 측정을 위한 CSI-IM를 포함할 수 있다.
단말은 수신한 참조 신호에 대한 측정을 수행하여 CSI를 계산할 수 있다(S1830). 예를 들어, 상기 CSI 계산은 상술한 방법 1에 기반하여 수행될 수 있다. 단말은 CSI 보고 관련 설정 정보 및 참조 신호에 기반하여 각 기지국 별 채널 측정 참조 신호(예: CSI-RS)의 채널에 대해 RI, PMI를 계산할 수 있다. 산출된 RI, PMI를 적용하여, CoMP 공동 전송을 수행하는 전체 기지국들이 동시에 데이터를 전송할 때 달성 가능한 CQI를 계산할 수 있다. 여기서, 단말은 각 기지국으로부터 데이터가 수신되는 (아날로그) Rx 빔(또는, Rx 패널)이 서로 다르다고 가정할 수 있다.
구체적인 예로, CoMP 공동 전송을 지원하는 다수의 기지국들이 각각 독립적인 레이어를 전송하는 경우, 제1 기지국에 대한 CSI(예: SINR, CQI) 계산을 위하여, 단말은 제1 기지국에 대한 수신 빔을 통해, 데이터 신호, 간섭 신호, 노이즈 등을 수신할 수 있다. 단말은 제1 기지국에 대한 수신(Rx) 빔으로 채널 측정을 위한 참조 신호(예: CSI-RS)를 수신하여 신호 전력(power)을 측정할 수 있다. 또한, 채널 측정을 위한 참조 신호(예: CSI-RS)가 수신되는 수신 빔(예: 제1 기지국에 대한 수신 빔)으로 간섭 측정을 위한 참조 신호(예: CSI-IM)를 수신하여 노이즈 및 CoMP에 참여하지 않는 다른 셀로부터의 간섭을 추정할 수 있다. 또한, 상기 채널 측정을 위한 참조 신호가 수신되는 수신 빔(예: 제1 기지국에 대한 수신 빔)으로 다른 기지국들(예: 다수의 기지국들 중 제1 기지국을 제외한 기지국)이 전송하는 채널 측정을 위한 참조 신호를 수신하여, 층간 간섭을 추정할 수 있다. 이때, 제1 기지국을 제외한 상기 기지국들이 전송하는 참조 신호에 각 기지국의 참조 신호에 대한 RI, PMI를 적용하여 상기 층간 간섭 전력을 측정할 수 있다. 또한, 상기 수신 빔을 통해 함께 스케줄 된 다른 단말의 간섭을 측정할 수 있다. 이를 기초로, 상기 제1 기지국이 송신하는 데이터의 수신 SINR(또는, CQI)를 계산할 수 있다.
결과적으로, 상기 제1 기지국이 전송하는 참조 신호(예: 제1 참조 신호)와 상기 다수의 기지국들 중 상기 제1 기지국을 제외한 기지국들이 전송하는 참조 신호(예: 제2 참조 신호)는 공간 수신 파라미터(spatial RX parameter)에 대한 QCL(Quasi co-location) 관계(QCL-Type D)가 성립할 수 있다. (즉, 상기 다수의 기지국들 중 상기 제1 기지국을 제외한 기지국들이 전송하는 채널 측정을 위한 참조 신호는 원래 가지고 있는 QCL-Type D 속성을 무시하고 상기 제1 기지국이 전송하는 채널 측정을 위한 참조 신호의 QCL-Type D를 따른다고 가정할 수 있다.)
또한, 상기 제1 기지국이 전송하는 참조 신호(예: 제1 참조 신호)와 간섭 측정 자원 정보에 포함된 간섭 측정 자원(예: CSI-IM)은 공간 수신 파라미터(spatial RX parameter)에 대한 QCL(Quasi co-location) 관계(QCL-Type D)가 성립할 수 있다.
또 다른 예로, 다수의 기지국들로부터 공통적인 레이어를 수신한 단말이 CSI를 계산하는 방법은 상술한 방법 1의 Case 1-4에 기반할 수 있다. CoMP 공동 전송을 수행하는 다수의 기지국들로부터 공통적인 레이어를 수신하는 경우, 단말은 간섭 측정을 위한 참조 신호(CSI-IM)은 CoMP 공동 전송을 수행하는 각 기지국들의 채널 측정을 위한 참조 신호(예: CSI-RS) 모두와 동일한 공간 수신 파라미터(spatial RX parameter)에 대한 QCL(Quasi co-location) 관계(QCL-Type D)를 가정할 수 있다. 즉, 단말은 제1 기지국의 수신 빔으로 채널 측정을 위한 참조 신호(예: CSI-RS) 및 간섭 측정을 위한 참조 신호(CSI-IM)를 수신할 수 있으며, 동시에 다른 기지국의 수신 빔으로도 CSI-RS 및 CSI-IM을 수신할 수 있다.
이 경우, 단말은 상기 제1 기지국에 대한 수신 빔을 통해 수신된 간섭(예: 제1 간섭)과 상기 다수의 기지국들 중 상기 제1 기지국을 제외한 기지국들에 대한 수신 빔을 통해 수신된 간섭(예: 제2 간섭)에 기반하여 전체 간섭을 산출할 수 있다. 상기 전체 간섭은 i) 각 기지국에 대한 간섭의 합산 값 (예: 상기 제1 간섭과 상기 제2 간섭의 합산 값), ii) 각 기지국에 대한 간섭의 평균 값 (예: 상기 제1 간섭과 상기 제2 간섭의 평균값), iii) 각 기지국에 대한 간섭에 가중치를 곱한 합산 값 (예: 상기 제1 간섭과 상기 제2 간섭 각각에 가중치를 곱하여 합산한 값) (상기 가중치는 기지국이 단말로 설정할 수 있다), iv) 각 간섭을 연결(concatenation)한 하나의 노이즈 벡터 값 중 하나로 산출될 수 있다.
또한, 다수의 기지국들이 간섭성(coherent) 공동 전송의 경우에 하나의 공통된 PMI를 적용할 수 있다.
또 다른 예로, 다수의 기지국들 중 적어도 하나의 기지국이 둘 이상의 단말들에게 서비스를 제공하는 경우, 단말은 상술한 방법 1의 Case 1-5에 기반하여 CSI를 계산할 수 있다. 단말은 NZP CSI-RS의 각 포트에 대해 전력(power)을 측정하고 이를 기존 측정된 간섭에 추가할 수 있다. 상기 NZP CSI-RS를 어떤 Rx 빔으로 수신할 것인지는 CSI-IM을 어떤 Rx 빔으로 수신할 것 인지와 동일한 방식으로 결정할 수 있다.
결과적으로, 단말은 NZP CSI-RS는 채널 측정을 위한 모든 참조 신호들(예: CSI-RS)들과 동일한 QCL-Type D (공간적 수신 파라미터에 대한 QCL) 관계를 가정할 수 있다. 제1 기지국에 대한 CSI를 계산할 때, 제1 기지국이 전송하는 채널 측정을 위한 참조 신호(예: CSI-RS)와 NZP CSI-RS가 QCL-Type D 관계가 성립한다고 판단할 수 있다.
단말은 산출한 CSI를 인코딩 하여 상기 다수의 기지국들 중 적어도 하나의 기지국으로 전송할 수 있다(S1840). 상기 CSI는 PUCCH 또는 반-지속적 PUSCH를 통해 전송될 수 있다. 상기 CSI는 CQI(Channel Quality Information)를 포함하며, 상기 CQI는 단말이 다수의 기지국들로부터 레이어를 동시에 수신하는 경우 산출되는 값에 해당할 수 있다. 단말은 기지국으로 상기 CSI를 전송하기 위하여 상기 CSI를 인코딩 할 수 있다. 예를 들어, 상기 CSI를 인코딩 하는 방법은 상술한 방법 2에 기반할 수 있다.
일례로, 상기 다수의 기지국들에 대해 동일한 방식(예: 와이드밴드 CSI 보고, 서브밴드 CSI 보고)의 CSI 보고가 설정될 수 있다. CoMP 동작을 지원하는 다수의 기지국들에 대해 서브밴드 CSI 보고가 설정되는 경우, 파트 1과 파트 2로 나누어 인코딩 할 수 있다. 상기 인코딩은 상술한 방법 2의 Case 2-1 내지 Case 2-3에 기반할 수 있다.
구체적인 예로, 각 기지국에 대한 모든 CQI는 파트 1으로 인코딩 되고, 각 기지국에 대한 모든 PMI는 파트 2로 인코딩 될 수 있다. 이 경우, 각 기지국 별로 하나의 CQI가 보고되므로, 기지국의 수에 대응되는 CQI들이 항상 파트 1 CSI로 인코딩 될 수 있다.
또 다른 예로, PMI는 파트 2로 인코딩 된다는 가정 아래, 다수의 기지국들에 대한 RI 값 중 0을 포함하는 경우, RI가 0이 아닌 경우의 CQI는 파트 1로, RI가 0인 경우의 CQI는 파트 2로 인코딩 될 수 있다. RI가 0인 경우에는 파트 2에서 생략될 수 있다. 다만, 다수의 기지국들에 대한 RI 값 중 0을 포함하는 값이 없는 경우에는 각 기지국의 인덱스에 대응하여 파트 1과 파트 2로 각각 인코딩 될 수 있다. 또한, 상기 방법에서 하나의 RI만 0이 아닌 경우에도 해당 RI가 특정 값(예: 4)보다 큰 경우라면 2번 째 코드워드 전송을 가정하였으므로 CQI는 각 코드워드 별로 전송되어야 할 필요가 있다. 따라서 첫 번째 코드워드에 대한 CQI는 파트 1로, 두 번째 코드워드에 대한 CQI는 파트 2로 인코딩 될 수 있다. 만약, 0이 아닌 RI가 특정 값(예: 4)보다 작은 경우라면 파트 1로만 CQI가 인코딩 되고, 파트 2에서 생략될 수 있다.
또 다른 예로, 파트 1에는 (CRI에 상관없이 어떤 경우에든 전송하게 되는) RI 및 CQI를 인코딩 하고, (CRI에 따라 전송여부가 결정되거나, 파트 1의 값에 따라 페이로드 크기가 가변 할 수 있는) RI, CQI 및 PMI는 파트 2로 인코딩 될 수 있다. 이 때에도 RI1의 값이 특정 값(예: 4)보다 큰 경우라면 2번 째 코드워드 전송을 가정하였으므로 CQI는 각 코드워드 별로 전송되어야 한다. 따라서, 첫 번째 코드워드에 대한 CQI는 파트 1로 인코딩 하고, 두 번째 코드워드에 대한 CQI는 파트 2로 인코딩 될 수 있다.
한편, CoMP 동작을 지원하는 다수의 기지국들에 대해 각각 다른 방식의 CSI 보고가 지시될 수도 있다. 다시 말해, 다수의 기지국들 중 일부에 대해서는 와이드밴드(서브밴드) CSI 피드백이 설정되고, 나머지 기지국들에 대해서는 서브밴드(와이드밴드) CSI 피드백이 설정될 수 있다. 이 경우, 단말은 보다 정교한 CSI 피드백 설정을 우선하여 와이드밴드 CSI 피드백 설정을 무시하고 서브밴드 CSI 피드백을 전송할 수 있다. 또는, 반대로 CSI 페이로드 크기가 작은 와이드밴드 CSI 피드백을 전송하도록 할 수도 있다. 또는, 지시된 CSI 보고 방식에 따라 각각 인코딩하여 CSI를 전송할 수 있다.
예를 들어, 하나의 기지국에 대해 와이드밴드 CSI 보고가 설정되고, 다른 기지국에 대해 서브밴드 CSI 보고가 설정된 경우를 가정한다. 이 경우, 와이드밴드 CSI 보고는 모두 파트 1으로 인코딩 될 수 있고, 서브밴드 CSI 보고는 파트 1과 파트 2로 나누어 인코딩 될 수 있다. 이 때, 각 기지국들의 파트 1에 대해, 다수의 기지국들의 전체 랭크에 따라서 단일 코드워드를 전송할지 복수의 코드워드를 전송할 지가 결정되는 경우, 2번 째 코드워드에 해당하는 CQI는 파트 2로 인코딩 될 수 있다. 또는, 전체 랭크에 무관하게 각 기지국 별로 서로 다른 하나의 CQI를 보고하는 경우, CQI는 파트 1으로 인코딩 되고, 파트 2에는 PMI는 파트 2로 인코딩 될 수 있다.
한편, 단말은 CSI와 함께 어떤 기지국들이 CoMP에 참여하는지를 선택하여 보고할 수도 있다. 이 때 CSI는 선택된 기지국들만 CoMP 전송에 참여한다고 가정하여 계산될 수 있다.
예를 들어, 다수의 기지국들에 대한 CSI 보고가 하나의 보고 세팅으로 설정된 경우, 단말은 하나의 채널만을 선택하여 하나의 기지국만 데이터를 전송하는 non-CoMP 전송 방식을 선택할 수 있다. 또는, 다수의 채널을 선택하여 다수의 기지국들이 데이터를 전송하는 CoMP 전송 방식을 선택할 수 있다. 단말이 non-CoMP 전송 방식을 선택한 경우에는 각 CSI-RS에 해당하는 서브밴드 및/또는 와이드밴드 CSI 보고에 따라 CSI를 보고할 수 있다.
또 다른 예로, 다수의 기지국들에 대한 CSI 보고 세팅들이 각각 설정되는 경우, 각 보고 세팅들이 CoMP CSI 피드백을 위해 연결되어 있음을 지시 받을 수 있다. 단말은 다수의 보고 세팅들 중 하나만을 선택하여 non-CoMP 전송 방식을 선택할 수 있다. 또는, 단말은 다수의 보고 세팅들을 모두 선택하여 CoMP 전송 방식을 선택할 수 있다. Non-CoMP 전송방식을 선택한 경우, 해당 보고 세팅에서 지시하는 서브밴드 및/또는 와이드밴드 CSI 보고에 따라 CSI를 보고할 수 있다.
또 다른 예로, 보고 세팅에 대응하여 CSI가 주기적으로 전송되는 경우에는, 두 보고 세팅들에 대응되는 CSI 보고가 충돌(collision)되는 지에 따라 단말의 CSI 인코딩 방식이 결정될 수 있다. 두 기지국에 대한 CSI 보고가 충돌되지 않은 경우에는 각 기지국의 보고 세팅에 의해 설정된 서브밴드 또는 와이드밴드 CSI 보고 방식에 따라 CSI를 인코딩하여 전송할 수 있다. (이 때, UE는 non-CoMP CSI를 계산하여 보고할 수 있다.) 반면, 두 기지국에 대한 CSI 보고에 충돌이 발생하는 경우 단말은 CoMP CSI를 계산하여 보고할 수 있다.
다수의 기지국들에 대한 PMI 및/또는 CQI가 하나의 포트로 인코딩 되고, 각각 와이드밴드 PMI 및/또는 CQI와 서브밴드 PMI 및/또는 CQI가 모두 보고되는 경우, CSI-RS의 열(row) 인덱스 순서에 따라 비트 스트림으로 인코딩 될 수 있다. 이에 따라 CSI-RS 열 인덱스에 해당하는 PMI 및/또는 CQI에 더욱 강한 채널 코딩이 적용될 수 있다. 또는, 와이드밴드 CSI를 우선하여 와이드밴드 PMI 및/또는 CQI가 서브밴드 PMI 및/또는 CQI보다 먼저 인코딩 되도록 할 수 있다.
도 19는 본 명세서에서 제안하는 방법이 적용될 수 있는 다수의 기지국에 의해 지원되는 단말의 채널 상태 정보를 수신하는 기지국의 동작 순서도의 일 예를 나타낸다. 도 19는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 19를 참고하면, 단말 및/또는 기지국은 상술한 방법 1 내지 방법 2의 방법들 및/또는 실시 예들에 기반하여 동작하는 경우가 가정된다. 또한, 각 기지국 별 빔(또는, 패널)이 독립적이라고 가정한다. 도 19에서 설명되는 단계들 중 일부는 병합되거나, 생략될 수도 있다. 또한, 이하 설명되는 절차들을 수행함에 있어, 도 16의 CSI 관련 동작이 고려/적용될 수 있다.
다수의 기지국들 중 적어도 하나의 기지국은 단말로 CSI 보고 관련 설정 정보(예: 보고 세팅)를 전송할 수 있다(S1910). 상기 다수의 기지국들은 CoMP 동작을 지원할 수 있다. 특히, 상기 다수의 기지국들은 CoMP 공동 전송을 수행할 수 있다.
예를 들어, 상기 CSI 보고 관련 설정 정보는 상술한 방법 1에 기반할 수 있다. 상기 CSI 보고 관련 설정 정보는 채널 측정 자원 정보, 간섭 측정 자원 정보, 보고할 CSI 파라미터(들)(내용들)에 대한 정보를 포함할 수 있다. 또한, CSI 보고를 위한 상향링크 자원 설정을 더 포함할 수 있다.
구체적인 예로, 상기 다수의 기지국들에 대해 공통적인 하나의 CSI 보고 관련 설정 정보를 구성할 수 있다. 이는 상술한 방법 1의 Case 1-1과 대응될 수 있다.
또 다른 예로, 상기 다수의 기지국들의 각 기지국 별로 CSI 보고 관련 설정 정보가 각각 구성(설정)될 수 있다. 이는 상술한 방법 1의 Case 1-2 내지 Case 1-3과 대응될 수 있다. 이 경우, 특정 기지국(예: 제1 기지국)의 간섭 측정 자원 정보는 상기 다수의 기지국들 중 상기 특정 기지국을 제외한 기지국들이 전송하는 채널 측정을 위한 참조 신호(또는, 채널 측정 자원)(예: CSI-RS)을 포함할 수 있다. 또한, 상기 다수의 기지국들의 각 기지국 별로 단말에게 자신의 CSI 보고 관련 설정 정보를 전송할 수 있다.
상기 다수의 기지국들의 각 기지국 별로 CSI 보고 관련 설정 정보가 구성되는 경우, 상기 다수의 기지국들 중 적어도 하나의 기지국은 상기 단말로 CoMP CSI 계산을 위해 각 CSI 보고 관련 설정 정보들의 연결 관계 정보를 더 전송할 수 있다. 상기 연결 관계 정보는 명시적인 시그널링을 통해 단말로 전송될 수 있다. 또는, 암시적인 방법으로 단말로 전달 될 수도 있다. 일례로, 각 CSI 보고 관련 설정 정보 내에 정의된 CSI 보고를 위한 상향링크 자원(예: PUCCH 자원), CSI 보고의 전송 주기(예: PUCCH 전송 주기) 및 전송 오프셋을 동일하게 설정하여, 단말이 각 CSI 보고 관련 설정 정보가 CoMP CSI 계산을 위해 서로 연결되었다고 판단하도록 할 수 있다. 또는, (반-지속적 또는 비주기적) PUSCH에 해당하는 시간 및 주파수 자원을 중첩되도록 설정 하여, 단말이 각 CSI 보고 관련 설정 정보가 CoMP CSI 계산을 위해 서로 연결되었다고 판단하도록 할 수 있다.
또 다른 예로, 상기 다수의 기지국들 중 적어도 하나의 기지국(예: 제1 기지국)이 둘 이상의 단말들을 동시에 스케줄링 하는 경우, 함께 스케줄링 하는 단말에 대한 간섭을 고려하여 간섭 측정 자원 정보에 NZP CSI-RS 관련 정보를 더 포함시킬 수 있다.
CSI 보고를 위한 상향링크 자원 설정과 관련하여, 상기 다수의 기지국들의 수에 해당하는 상향링크 자원(예: PUCCH 자원)들을 할당할 수 있다. 각 기지국에 대응하는 상향링크 자원(예: PUCCH 자원)은 서로 다른 주기 및 오프셋으로 설정될 수 있다. 또는, 각 상향링크 자원(예: PUCCH 자원)은 동일 주기에 다른 오프셋을 설정 받을 수 있으며, 임의의 두 오프셋의 차이는 특정 값(P) 이하가 되도록 할 수 있다. 여기서, 상기 특정 값(P)는 i) 기지국이 설정하여 단말에게 지시, ii) 단말이 설정 후 기지국에게 지시, iii) 서브-캐리어 간격에 따라 서로 다른 고정된 값을 사용 중 하나의 방법으로 결정될 수 있다. 또는, 모든 상향링크 자원(예: PUCCH 자원)들의 주기와 오프셋을 항상 같게 설정하고, 상향링크 자원(예: PUCCH 자원)들 간에는 동일 슬롯에서 시분할 다중화 또는 주파수 분할 다중화되도록 할 수 있다. 또는, 각 상향링크 자원(예: PUCCH 자원)의 주기가 배수 관계가 되도록 설정할 수 있다.
상기 다수의 기지국들 각각은 단말로 참조 신호(Reference Signal, RS)를 전송할 수 있다(S1920). 각 기지국은 상기 참조 신호를 주기적으로 또는 비주기적으로 전송할 수 있다. 상기 참조 신호(예: 제1 참조 신호, 제2 참조 신호)는 채널 측정을 위한 CSI-RS, 간섭 측정을 위한 CSI-IM을 포함할 수 있다.
CoMP 공동 전송을 수행하는 각 기지국들이 공통적인 레이어를 전송하는 경우, 단말은 간섭 측정을 위한 참조 신호(CSI-IM)와 CoMP 공동 전송을 수행하는 각 기지국들의 채널 측정을 위한 모든 참조 신호들(예: CSI-RS) 간에 동일한 공간적 수신 파라미터에 대한 QCL(QCL-Type D) 관계를 가정할 수 있다.
상기 다수의 기지국들 중 적어도 하나의 기지국은 상기 단말로부터 CSI를 수신할 수 있다(S1930). 예를 들어, 상기 CSI는 상술한 방법 1에 기반하여 계산될 수 있으며, 상기 CSI는 상술한 방법 2에 기반하여 인코딩 될 수 있다. CSI 계산은 도 18의 S1830 단계와 대응될 수 있으며, CSI 인코딩 과정은 도 18의 S1840 단계와 대응될 수 있다. 이하, 중복되는 설명은 생략한다.
기지국은 PUCCH 또는 반-지속적 PUSCH를 통해 상기 CSI를 수신할 수 있다. 상기 CSI는 CQI(Channel Quality Information)를 포함하며, 상기 CQI는 단말이 다수의 기지국들로부터 레이어를 동시에 수신하는 경우 산출되는 값에 해당할 수 있다.
상기 다수의 기지국들 중 하나의 기지국으로만 상기 CSI가 보고되고 백홀(backhaul) 연결을 통해 나머지 기지국들로 상기 CSI를 공유할 수 있다. 또는, 기지국 간 백홀 지연으로 인한 CSI 공유 지연을 방지하기 위하여, 상기 다수의 기지국들의 각 기지국 별로 설정된 상향링크 자원(예: PUCCH)를 통해 상기 CSI를 각각 보고받을 수 있다. 각 기지국에 대한 CSI 가 함께 인코딩 된 경우는 동일한 인코딩 된 비트들은 각 PUCCH 자원에서 공통적으로 수신할 수 있다. CSI가 기지국 별로 인코딩 된 경우, 각 PUCCH 자원을 통해 전송될 수 있다.
또한, 기지국은 단말로부터 CSI와 함께 CoMP에 참여하는 기지국들에 대한 정보를 수신할 수도 있다. 예를 들어, 단말은 하나의 채널 또는 하나의 보고 세팅을 선택하여 non-CoMP 전송 방식을 선택할 수 있고, 해당 기지국에 대한 CSI를 보고할 수 있다. 또는, 단말은 다수의 채널 또는 다수의 보고 세팅을 선택하여 CoMP 전송을 수행하는 기지국들을 선택할 수 있고, 기지국은 해당 CSI를 수신할 수 있다.
상술한 방법들 및 실시예들을 통해, CoMP로 동작하는 다수의 기지국들에 대한 CSI를 측정 및 보고할 수 있다. 또한, 상술한 방법들 및 실시예, 도 18 및 도 19의 각 단계들에 따라 동작하는 단말 및/또는 기지국은 후술할 도 20 내지 도 26의 장치에 의해 구체적으로 실현될 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 20은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 20을 참조하면, 무선 통신 시스템은 제 1 장치(2010)와 제 2 장치(2020)를 포함할 수 있다.
상기 제 1 장치(2010)는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 전송 장치, 수신 장치, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 커넥티드카(Connected Car), 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MR(Mixed Reality) 장치, 홀로그램 장치, 공공 안전 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, 5G 서비스와 관련된 장치 또는 그 이외 4차 산업 혁명 분야와 관련된 장치일 수 있다.
상기 제 2 장치(2020)는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 전송 장치, 수신 장치, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 커넥티드카(Connected Car), 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MR(Mixed Reality) 장치, 홀로그램 장치, 공공 안전 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, 5G 서비스와 관련된 장치 또는 그 이외 4차 산업 혁명 분야와 관련된 장치일 수 있다.
예를 들어, 단말은 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)) 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치일 수 있다. 예를 들어, HMD는 VR, AR 또는 MR을 구현하기 위해 사용될 수 있다.
예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, VR 장치는 가상 세계의 객체 또는 배경 등을 구현하는 장치를 포함할 수 있다. 예를 들어, AR 장치는 현실 세계의 객체 또는 배경 등에 가상 세계의 객체 또는 배경을 연결하여 구현하는 장치를 포함할 수 있다. 예를 들어, MR 장치는 현실 세계의 객체 또는 배경 등에 가상 세계의 객체 또는 배경을 융합하여 구현하는 장치를 포함할 수 있다. 예를 들어, 홀로그램 장치는 홀로그래피라는 두 개의 레이저 광이 만나서 발생하는 빛의 간섭현상을 활용하여, 입체 정보를 기록 및 재생하여 360도 입체 영상을 구현하는 장치를 포함할 수 있다. 예를 들어, 공공 안전 장치는 영상 중계 장치 또는 사용자의 인체에 착용 가능한 영상 장치 등을 포함할 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락 또는 각종 센서 등을 포함할 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 상해 또는 장애를 진단, 치료, 경감 또는 보정할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 임신을 조절할 목적으로 사용되는 장치일 수 있다. 예를 들어, 의료 장치는 진료용 장치, 수술용 장치, (체외) 진단용 장치, 보청기 또는 시술용 장치 등을 포함할 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치일 수 있다. 예를 들어, 보안 장치는 카메라, CCTV, 녹화기(recorder) 또는 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치일 수 있다. 예를 들어, 핀테크 장치는 결제 장치 또는 POS(Point of Sales) 등을 포함할 수 있다. 예를 들어, 기후/환경 장치는 기후/환경을 모니터링 또는 예측하는 장치를 포함할 수 있다.
상기 제 1 장치(2010)는 프로세서(2011)와 같은 적어도 하나 이상의 프로세서와, 메모리(2012)와 같은 적어도 하나 이상의 메모리와, 송수신기(2013)과 같은 적어도 하나 이상의 송수신기를 포함할 수 있다. 상기 프로세서(2011)는 전술한 기능, 절차, 및/또는 방법들을 수행할 수 있다. 상기 프로세서(2011)는 하나 이상의 프로토콜을 수행할 수 있다. 예를 들어, 상기 프로세서(2011)는 무선 인터페이스 프로토콜의 하나 이상의 계층들을 수행할 수 있다. 상기 메모리(2012)는 상기 프로세서(2011)와 연결되고, 다양한 형태의 정보 및/또는 명령을 저장할 수 있다. 상기 송수신기(2013)는 상기 프로세서(2011)와 연결되고, 무선 시그널을 송수신하도록 제어될 수 있다.
구체적인 예로, 프로세서(2011)은 송수신기(2013)를 제어하여 제 2 장치(2020)로 CSI 보고 관련 설정 정보를 전송할 수 있다(S1910). 또한, 프로세서(2011)은 송수신기(2013)를 제어하여 제 2 장치(2020)로 참조 신호를 전송할 수 있다(S1920). 또한, 프로세서(2011)은 송수신기(2013)를 제어하여 상기 제 2 장치(2020)로부터, CSI를 수신할 수 있다(S1930).
상기 제 2 장치(2020)는 프로세서(2021)와 같은 적어도 하나의 프로세서와, 메모리(2022)와 같은 적어도 하나 이상의 메모리 장치와, 송수신기(2023)와 같은 적어도 하나의 송수신기를 포함할 수 있다. 상기 프로세서(2021)는 전술한 기능, 절차, 및/또는 방법들을 수행할 수 있다. 상기 프로세서(2021)는 하나 이상의 프로토콜을 구현할 수 있다. 예를 들어, 상기 프로세서(2021)는 무선 인터페이스 프로토콜의 하나 이상의 계층들을 구현할 수 있다. 상기 메모리(2022)는 상기 프로세서(2021)와 연결되고, 다양한 형태의 정보 및/또는 명령을 저장할 수 있다. 상기 송수신기(2023)는 상기 프로세서(2021)와 연결되고, 무선 시그널을 송수신하도록 제어될 수 있다.
구체적인 예로, 프로세서(2021)는 송수신기(2023)를 제어하여 제 1 장치(2010)로부터 CSI 보고 관련 설정 정보를 수신할 수 있다(S1810). 또한, 프로세서(2021)는 송수신기(2023)를 제어하여 제 1 장치(2010)로부터 참조 신호를 수신할 수 있다(S1820). 또한, 프로세서(2021)는 참조 신호에 대한 측정을 수행하여 CSI를 계산할 수 있다(S1830). 또한, 프로세서(2021)는 CSI를 인코딩 하고, 송수신기(2023)를 제어하여 제 1 장치(2010)로 상기 CSI를 전송할 수 있다(S1840).
도 21은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도의 또 다른 예시이다.
도 21을 참조하면, 무선 통신 시스템은 기지국(2110)과 기지국 영역 내에 위치한 다수의 단말(2120)을 포함한다. 기지국은 송신 장치로, 단말은 수신 장치로 표현될 수 있으며, 그 반대도 가능하다. 기지국과 단말은 프로세서(processor, 2111,2121), 메모리(memory, 2114,2124), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 2115,2125), Tx 프로세서(2112,2122), Rx 프로세서(2113,2123), 안테나(2116,2126)를 포함한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 보다 구체적으로, DL(기지국에서 단말로의 통신)에서, 코어 네트워크로부터의 상위 계층 패킷은 프로세서(2111)에 제공된다. 프로세서는 L2 계층의 기능을 구현한다. DL에서, 프로세서는 논리 채널과 전송 채널 간의 다중화(multiplexing), 무선 자원 할당을 단말(2120)에 제공하며, 단말로의 시그널링을 담당한다. 전송(TX) 프로세서(2112)는 L1 계층 (즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 신호 처리 기능은 단말에서 FEC(forward error correction)을 용이하게 하고, 코딩 및 인터리빙(coding and interleaving)을 포함한다. 부호화 및 변조된 심볼은 병렬 스트림으로 분할되고, 각각의 스트림은 OFDM 부반송파에 매핑되고, 시간 및/또는 주파수 영역에서 기준 신호(Reference Signal, RS)와 멀티플렉싱되며, IFFT (Inverse Fast Fourier Transform)를 사용하여 함께 결합되어 시간 영역 OFDMA 심볼 스트림을 운반하는 물리적 채널을 생성한다. OFDM 스트림은 다중 공간 스트림을 생성하기 위해 공간적으로 프리코딩된다. 각각의 공간 스트림은 개별 Tx/Rx 모듈(또는 송수신기,2115)를 통해 상이한 안테나(2116)에 제공될 수 있다. 각각의 Tx/Rx 모듈은 전송을 위해 각각의 공간 스트림으로 RF 반송파를 변조할 수 있다. 단말에서, 각각의 Tx/Rx 모듈(또는 송수신기,2125)는 각 Tx/Rx 모듈의 각 안테나(2126)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 캐리어로 변조된 정보를 복원하여, 수신(RX) 프로세서(2123)에 제공한다. RX 프로세서는 layer 1의 다양한 신호 프로세싱 기능을 구현한다. RX 프로세서는 단말로 향하는 임의의 공간 스트림을 복구하기 위해 정보에 공간 프로세싱을 수행할 수 있다. 만약 다수의 공간 스트림들이 단말로 향하는 경우, 다수의 RX 프로세서들에 의해 단일 OFDMA 심볼 스트림으로 결합될 수 있다. RX 프로세서는 고속 푸리에 변환 (FFT)을 사용하여 OFDMA 심볼 스트림을 시간 영역에서 주파수 영역으로 변환한다. 주파수 영역 신호는 OFDM 신호의 각각의 서브 캐리어에 대한 개별적인 OFDMA 심볼 스트림을 포함한다. 각각의 서브캐리어 상의 심볼들 및 기준 신호는 기지국에 의해 전송된 가장 가능성 있는 신호 배치 포인트들을 결정함으로써 복원되고 복조된다. 이러한 연 판정(soft decision)들은 채널 추정 값들에 기초할 수 있다. 연판정들은 물리 채널 상에서 기지국에 의해 원래 전송된 데이터 및 제어 신호를 복원하기 위해 디코딩 및 디인터리빙되다. 해당 데이터 및 제어 신호는 프로세서(2121)에 제공된다.
UL(단말에서 기지국으로의 통신)은 단말(2120)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 기지국(2110)에서 처리된다. 각각의 Tx/Rx 모듈(2125)는 각각의 안테나(2126)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(2123)에 제공한다. 프로세서 (2121)는 프로그램 코드 및 데이터를 저장하는 메모리 (2124)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
도 22는 본 발명의 일 실시 예에 따른 AI 장치(100)를 나타낸다.
AI 장치(100)는 TV, 프로젝터, 휴대폰, 스마트폰, 데스크탑 컴퓨터, 노트북, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), DMB 수신기, 라디오, 세탁기, 냉장고, 데스크탑 컴퓨터, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 22를 참조하면, 단말기(100)는 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 메모리(170) 및 프로세서(180) 등을 포함할 수 있다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 장치(100a 내지 100e)나 AI 서버(200) 등의 외부 장치들과 데이터를 송수신할 수 있다. 예컨대, 통신부(110)는 외부 장치들과 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등을 송수신할 수 있다.
이때, 통신부(110)가 이용하는 통신 기술에는 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), LTE(Long Term Evolution), 5G, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), 블루투스(Bluetooth쪠), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), ZigBee, NFC(Near Field Communication) 등이 있다.
입력부(120)는 다양한 종류의 데이터를 획득할 수 있다.
이때, 입력부(120)는 영상 신호 입력을 위한 카메라, 오디오 신호를 수신하기 위한 마이크로폰, 사용자로부터 정보를 입력 받기 위한 사용자 입력부 등을 포함할 수 있다. 여기서, 카메라나 마이크로폰을 센서로 취급하여, 카메라나 마이크로폰으로부터 획득한 신호를 센싱 데이터 또는 센서 정보라고 할 수도 있다.
입력부(120)는 모델 학습을 위한 학습 데이터 및 학습 모델을 이용하여 출력을 획득할 때 사용될 입력 데이터 등을 획득할 수 있다. 입력부(120)는 가공되지 않은 입력 데이터를 획득할 수도 있으며, 이 경우 프로세서(180) 또는 러닝 프로세서(130)는 입력 데이터에 대하여 전처리로써 입력 특징점(input feature)을 추출할 수 있다.
러닝 프로세서(130)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 여기서, 학습된 인공 신경망을 학습 모델이라 칭할 수 있다. 학습 모델은 학습 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있고, 추론된 값은 어떠한 동작을 수행하기 위한 판단의 기초로 이용될 수 있다.
이때, 러닝 프로세서(130)는 AI 서버(200)의 러닝 프로세서(240)과 함께 AI 프로세싱을 수행할 수 있다.
이때, 러닝 프로세서(130)는 AI 장치(100)에 통합되거나 구현된 메모리를 포함할 수 있다. 또는, 러닝 프로세서(130)는 메모리(170), AI 장치(100)에 직접 결합된 외부 메모리 또는 외부 장치에서 유지되는 메모리를 사용하여 구현될 수도 있다.
센싱부(140)는 다양한 센서들을 이용하여 AI 장치(100) 내부 정보, AI 장치(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 획득할 수 있다.
이때, 센싱부(140)에 포함되는 센서에는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등이 있다.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다.
이때, 출력부(150)에는 시각 정보를 출력하는 디스플레이부, 청각 정보를 출력하는 스피커, 촉각 정보를 출력하는 햅틱 모듈 등이 포함될 수 있다.
메모리(170)는 AI 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예컨대, 메모리(170)는 입력부(120)에서 획득한 입력 데이터, 학습 데이터, 학습 모델, 학습 히스토리 등을 저장할 수 있다.
프로세서(180)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 장치(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 프로세서(180)는 AI 장치(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다.
이를 위해, 프로세서(180)는 러닝 프로세서(130) 또는 메모리(170)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 장치(100)의 구성 요소들을 제어할 수 있다.
이때, 프로세서(180)는 결정된 동작을 수행하기 위하여 외부 장치의 연계가 필요한 경우, 해당 외부 장치를 제어하기 위한 제어 신호를 생성하고, 생성한 제어 신호를 해당 외부 장치에 전송할 수 있다.
프로세서(180)는 사용자 입력에 대하여 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 사용자의 요구 사항을 결정할 수 있다.
이때, 프로세서(180)는 음성 입력을 문자열로 변환하기 위한 STT(Speech To Text) 엔진 또는 자연어의 의도 정보를 획득하기 위한 자연어 처리(NLP: Natural Language Processing) 엔진 중에서 적어도 하나 이상을 이용하여, 사용자 입력에 상응하는 의도 정보를 획득할 수 있다.
이때, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 적어도 일부가 머신 러닝 알고리즘에 따라 학습된 인공 신경망으로 구성될 수 있다. 그리고, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 러닝 프로세서(130)에 의해 학습된 것이나, AI 서버(200)의 러닝 프로세서(240)에 의해 학습된 것이거나, 또는 이들의 분산 처리에 의해 학습된 것일 수 있다.
프로세서(180)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리(170) 또는 러닝 프로세서(130)에 저장하거나, AI 서버(200) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
프로세서(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, AI 장치(100)의 구성 요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는 상기 응용 프로그램의 구동을 위하여, AI 장치(100)에 포함된 구성 요소들 중 둘 이상을 서로 조합하여 동작시킬 수 있다.
도 23은 본 발명의 일 실시 예에 따른 AI 서버(200)를 나타낸다.
도 23을 참조하면, AI 서버(200)는 머신 러닝 알고리즘을 이용하여 인공 신경망을 학습시키거나 학습된 인공 신경망을 이용하는 장치를 의미할 수 있다. 여기서, AI 서버(200)는 복수의 서버들로 구성되어 분산 처리를 수행할 수도 있고, 5G 네트워크로 정의될 수 있다. 이때, AI 서버(200)는 AI 장치(100)의 일부의 구성으로 포함되어, AI 프로세싱 중 적어도 일부를 함께 수행할 수도 있다.
AI 서버(200)는 통신부(210), 메모리(230), 러닝 프로세서(240) 및 프로세서(260) 등을 포함할 수 있다.
통신부(210)는 AI 장치(100) 등의 외부 장치와 데이터를 송수신할 수 있다.
메모리(230)는 모델 저장부(231)를 포함할 수 있다. 모델 저장부(231)는 러닝 프로세서(240)을 통하여 학습 중인 또는 학습된 모델(또는 인공 신경망, 231a)을 저장할 수 있다.
러닝 프로세서(240)는 학습 데이터를 이용하여 인공 신경망(231a)을 학습시킬 수 있다. 학습 모델은 인공 신경망의 AI 서버(200)에 탑재된 상태에서 이용되거나, AI 장치(100) 등의 외부 장치에 탑재되어 이용될 수도 있다.
학습 모델은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 학습 모델의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델을 구성하는 하나 이상의 명령어(instruction)는 메모리(230)에 저장될 수 있다.
프로세서(260)는 학습 모델을 이용하여 새로운 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수 있다.
도 24는 본 발명의 일 실시 예에 따른 AI 시스템(1)을 나타낸다.
도 24를 참조하면, AI 시스템(1)은 AI 서버(200), 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 등을 AI 장치(100a 내지 100e)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템(1)을 구성하는 각 장치들(100a 내지 100e, 200)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(100a 내지 100e, 200)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(200)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(200)는 AI 시스템(1)을 구성하는 AI 장치들인 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(100a 내지 100e)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(100a 내지 100e)에 전송할 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(100a 내지 100e)로 전송할 수 있다.
또는, AI 장치(100a 내지 100e)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
이하에서는, 상술한 기술이 적용되는 AI 장치(100a 내지 100e)의 다양한 실시 예들을 설명한다. 여기서, 도 24에 도시된 AI 장치(100a 내지 100e)는 도 22에 도시된 AI 장치(100)의 구체적인 실시 예로 볼 수 있다.
본 발명이 적용될 수 있는 AI 및 로봇
로봇(100a)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(100a)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(100a)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(100a)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(100a)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(100a)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(100a)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(100a)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
본 발명이 적용될 수 있는 AI 및 자율주행
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 자율 주행 차량(100b)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율 주행 차량(100b)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율 주행 차량(100b)을 주행시킬 수 있다.
맵 데이터에는 자율 주행 차량(100b)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율 주행 차량(100b)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 자율 주행 차량(100b)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
본 발명이 적용될 수 있는 AI 및 XR
XR 장치(100c)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(100c)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(100c)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(100c)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(100c)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(100c)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, XR 장치(100c)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
본 발명이 적용될 수 있는 AI, 로봇 및 자율주행
로봇(100a)은 AI 기술 및 자율 주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율 주행 기술이 적용된 로봇(100a)은 자율 주행 기능을 가진 로봇 자체나, 자율 주행 차량(100b)과 상호작용하는 로봇(100a) 등을 의미할 수 있다.
자율 주행 기능을 가진 로봇(100a)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)과 별개로 존재하면서, 자율 주행 차량(100b)의 내부 또는 외부에서 자율 주행 기능에 연계되거나, 자율 주행 차량(100b)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이때, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)을 대신하여 센서 정보를 획득하여 자율 주행 차량(100b)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율 주행 차량(100b)에 제공함으로써, 자율 주행 차량(100b)의 자율 주행 기능을 제어하거나 보조할 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율 주행 차량(100b)의 기능을 제어할 수 있다. 예컨대, 로봇(100a)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율 주행 차량(100b)의 자율 주행 기능을 활성화하거나 자율 주행 차량(100b)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(100a)이 제어하는 자율 주행 차량(100b)의 기능에는 단순히 자율 주행 기능뿐만 아니라, 자율 주행 차량(100b)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)의 외부에서 자율 주행 차량(100b)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(100a)은 스마트 신호등과 같이 자율 주행 차량(100b)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율 주행 차량(100b)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
본 발명이 적용될 수 있는 AI, 로봇 및 XR
로봇(100a)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(100a)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(100a)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(100a)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(100a) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(100a)은 XR 장치(100c)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(100c) 등의 외부 장치를 통해 원격으로 연동된 로봇(100a)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(100a)의 자율 주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
본 발명이 적용될 수 있는 AI, 자율주행 및 XR
자율 주행 차량(100b)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율 주행 차량(100b)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(100b)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율 주행 차량(100b)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(100b)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율 주행 차량(100b) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율 주행 차량(100b)은 XR 장치(100c) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 채널 상태 정보를 전송하는 방안은 3GPP LTE/LTE-A 시스템, 5G 시스템(New RAT 시스템)에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (15)
- 무선 통신 시스템에서 다수의 기지국들에 의해 지원되는 단말(User equipment, UE)이 채널 상태 정보(Channel State Information, CSI)를 보고하는 방법에 있어서,상기 다수의 기지국들 중 적어도 하나의 기지국으로부터, CSI 보고 관련 설정 정보를 수신하는 단계;상기 다수의 기지국들 중 제1 기지국으로부터, 특정 수신 빔을 통해 제1 참조 신호(Reference Signal, RS)를 수신하는 단계;상기 다수의 기지국들 중 상기 제1 기지국을 제외한 적어도 하나의 기지국으로부터, 상기 특정 수신 빔을 통해 제2 참조 신호를 수신하는 단계;상기 제1 참조 신호 및 상기 제2 참조 신호에 대한 측정을 수행하여 상기 CSI를 계산하는 단계; 및상기 제1 기지국으로 상기 CSI를 전송하는 단계를 포함하되,상기 단말은 상기 특정 수신 빔을 통해 수신된 상기 제2 참조 신호를 간섭으로 측정하여 상기 CSI를 계산하는 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 단말은 상기 다수의 기지국들로부터 각각 독립적인 레이어(Layer)를 수신하는 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 제1 참조 신호와 상기 제2 참조 신호는 공간 수신 파라미터(spatial RX parameter)에 대한 QCL(Quasi co-location) 관계로 설정되는 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 CSI 보고 관련 설정 정보는 채널 측정 자원 정보, 간섭 측정 자원 정보 및 CSI 파라미터에 대한 정보를 포함하는 것을 특징으로 하는 방법.
- 제 4항에 있어서,상기 제1 참조 신호와 상기 간섭 측정 자원 정보에 포함된 간섭 측정 자원은 공간 수신 파라미터(spatial RX parameter)에 대한 QCL(Quasi co-location) 관계로 설정되는 것을 특징으로 하는 방법.
- 제 4항에 있어서,상기 CSI 보고 관련 설정 정보는 상기 다수의 기지국들의 각 기지국 별로 각각 설정되는 것을 특징으로 하는 방법.
- 제 6항에 있어서,상기 제1 기지국에 대한 CSI 보고 관련 설정 정보의 간섭 측정 자원 정보는 상기 제2 참조 신호를 포함하는 것을 특징으로 하는 방법.
- 제 6항에 있어서,상기 다수의 기지국들의 각 기지국 별로 각각 설정된 상기 CSI 보고 관련 설정 정보에 대한 연결 관계 정보를 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
- 제 4항에 있어서,상기 제1 기지국이 상기 단말과 다른 단말을 함께 스케줄링 하는 경우,상기 간섭 측정 자원 정보는 NZP(Non Zero Power) CSI-RS(Channel State Information-Reference Signal) 관련 정보를 더 포함하는 것을 특징으로 하는 방법.
- 제 9항에 있어서,상기 단말은 상기 다른 단말로부터의 간섭을 고려하여 상기 CSI를 계산하는 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 다수의 기지국들로부터 공통적인 레이어가 수신되는 경우,상기 특정 수신 빔을 통해 수신된 제1 간섭과 상기 다수의 기지국들 중 상기 제1 기지국을 제외한 기지국들에 대한 수신 빔을 통해 수신된 제2 간섭에 기반하여 전체 간섭을 산출하되, 상기 전체 간섭은i) 상기 제1 간섭과 상기 제2 간섭의 합산값, ii) 상기 제1 간섭과 상기 제2 간섭의 평균값, iii)상기 제1 간섭과 상기 제2 간섭 각각에 가중치를 곱하여 합산한 값 중 하나로 산출되는 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 CSI는 CQI(Channel Quality Information)를 포함하며,상기 CQI는 상기 단말이 상기 다수의 기지국들로부터 레이어를 동시에 수신하는 경우 산출되는 값에 해당하는 것을 특징으로 하는 방법.
- 제 1항에 있어서,상기 CSI가 서브밴드(subband) CSI 보고에 해당하는 경우,상기 CSI는 파트 1과 파트 2로 구분되어 인코딩되며, 상기 파트 2는 각 기지국에 대한 PMI(Precoding Matrix Indicator)로만 구성되는 것을 특징으로 하는 방법.
- 제 4항에 있어서,상기 CSI 보고 관련 설정 정보는 상기 CSI 전송을 위한 상향링크 자원 설정을 더 포함하되,상기 상향링크 자원 설정은 상기 다수의 기지국들의 수에 대응하여 설정되는 것을 특징으로 하는 방법.
- 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 보고하는 단말(User equipment, UE)에 있어서, 상기 단말은,다수의 기지국들에 의해 지원되며,무선 신호를 송수신하기 위한 송수신부, 및상기 송수신부와 기능적으로 연결된 프로세서를 포함하고, 상기 프로세서는,상기 송수신부를 제어하여, 상기 다수의 기지국들 중 적어도 하나의 기지국으로부터, CSI 보고 관련 설정 정보를 수신하고,상기 다수의 기지국들 중 제1 기지국으로부터, 특정 수신 빔을 통해 제1 참조 신호(Reference Signal, RS)를 수신하며,상기 다수의 기지국들 중 상기 제1 기지국을 제외한 적어도 하나의 기지국으로부터, 상기 특정 수신 빔을 통해 제2 참조 신호를 수신하고,상기 제1 참조 신호 및 상기 제2 참조 신호에 대한 측정을 수행하여 상기 CSI를 계산하며,상기 송수신부를 제어하여, 상기 제1 기지국으로 상기 CSI를 전송하되,상기 제2 참조 신호를 간섭으로 측정하여 상기 CSI를 계산하는 것을 특징으로 하는 단말.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980053408.6A CN112567645B (zh) | 2018-08-08 | 2019-08-08 | 在无线通信系统中发送或者接收用于多个基站的信道状态信息的方法及其设备 |
DE112019003523.1T DE112019003523T5 (de) | 2018-08-08 | 2019-08-08 | Verfahren zum Senden oder Empfangen von Kanalzustandsinformationen für eine Vielzahl von Basisstationen in einem drahtlosen Kommunikationssystem, und Gerät dafür |
US17/266,563 US12081297B2 (en) | 2018-08-08 | 2019-08-08 | Method for transmitting or receiving channel state information for plurality of base stations in wireless communication system, and device therefor |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180092574 | 2018-08-08 | ||
KR10-2018-0092574 | 2018-08-08 | ||
KR10-2018-0114465 | 2018-09-21 | ||
KR20180114465 | 2018-09-21 | ||
KR20190004196 | 2019-01-11 | ||
KR10-2019-0004196 | 2019-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020032621A1 true WO2020032621A1 (ko) | 2020-02-13 |
Family
ID=69415078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/009971 WO2020032621A1 (ko) | 2018-08-08 | 2019-08-08 | 무선 통신 시스템에서 다수의 기지국들에 대한 채널 상태 정보를 송수신하는 방법 및 이에 대한 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12081297B2 (ko) |
CN (1) | CN112567645B (ko) |
DE (1) | DE112019003523T5 (ko) |
WO (1) | WO2020032621A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021214711A1 (en) * | 2020-04-24 | 2021-10-28 | Lenovo (Singapore) Pte. Ltd. | Channel state information reporting |
WO2021226964A1 (en) | 2020-05-14 | 2021-11-18 | Apple Inc. | Channel state information report for multi-trp operation |
WO2022149064A1 (en) * | 2021-01-08 | 2022-07-14 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Methods and apparatuses for beam measurement and reporting for multi-trp |
US20220264584A1 (en) * | 2019-11-08 | 2022-08-18 | Huawei Technologies Co., Ltd. | Measurement and reporting method and apparatus |
US20230170976A1 (en) * | 2021-11-30 | 2023-06-01 | Qualcomm Incorporated | Beam selection and codebook learning based on xr perception |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11569967B2 (en) * | 2018-09-12 | 2023-01-31 | Samsung Electronics Co., Ltd. | Method and apparatus for uplink control information transmission and reception |
KR102586001B1 (ko) * | 2018-09-21 | 2023-10-10 | 삼성전자주식회사 | 무선 통신 시스템에서 우선 순위를 고려한 물리계층 채널 송수신 방법 및 장치 |
US12113591B2 (en) * | 2019-05-31 | 2024-10-08 | Ntt Docomo, Inc. | User equipment and communication method |
US12132545B2 (en) * | 2020-02-12 | 2024-10-29 | Apple Inc. | Channel state information reporting |
US11936452B2 (en) * | 2020-02-28 | 2024-03-19 | Qualcomm Incorporated | Neural network based channel state information feedback |
WO2021198928A1 (en) * | 2020-03-31 | 2021-10-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Channel quality indication (cqi) saturation mitigation |
US11695466B2 (en) * | 2021-09-17 | 2023-07-04 | Qualcomm Incorporated | Reconfigurable intelligent surface or repeater assisted synchronization signal block transmission and initial access |
CN115843021A (zh) * | 2021-09-18 | 2023-03-24 | 维沃移动通信有限公司 | 数据传输方法及装置 |
CN116017497A (zh) * | 2021-10-22 | 2023-04-25 | 维沃移动通信有限公司 | 信道状态信息csi测量方法、终端及网络侧设备 |
CN116418419A (zh) * | 2021-12-31 | 2023-07-11 | 华为技术有限公司 | 一种通信方法及装置 |
CN117941337A (zh) * | 2022-01-27 | 2024-04-26 | 联发科技(新加坡)私人有限公司 | 用于高效信道状态信息表示的方法和装置 |
CN116567683A (zh) * | 2022-01-27 | 2023-08-08 | 中国移动通信有限公司研究院 | 一种信息采集方法、终端及计算机可读存储介质 |
WO2023203467A1 (en) * | 2022-04-19 | 2023-10-26 | Lenovo (Singapore) Pte. Ltd. | Configuring information for a channel state information report |
WO2023245581A1 (en) * | 2022-06-23 | 2023-12-28 | Nec Corporation | Methods, devices, and medium for communication |
WO2024026754A1 (zh) * | 2022-08-03 | 2024-02-08 | 北京小米移动软件有限公司 | 一种传输测量配置信息的方法、装置、设备以及存储介质 |
WO2024077621A1 (zh) * | 2022-10-14 | 2024-04-18 | Oppo广东移动通信有限公司 | 信道信息反馈的方法、发端设备和收端设备 |
WO2024168491A1 (en) * | 2023-02-13 | 2024-08-22 | Zte Corporation | Systems and methods for channel sounding and channel state information (csi) feedback for distributed multiple input/multiple output (mimo) precoding |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150035555A (ko) * | 2012-07-02 | 2015-04-06 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치 |
WO2016153163A1 (en) * | 2015-03-22 | 2016-09-29 | Lg Electronics Inc. | Method and apparatus for transmitting feedback of multi-feedback chain-based channel status information for 3d mimo in a wireless communication system |
WO2018026241A1 (en) * | 2016-08-04 | 2018-02-08 | Samsung Electronics Co., Ltd. | Method and apparatus for coordinating multi-point transmission in advanced wireless systems |
US20180076873A1 (en) * | 2012-01-30 | 2018-03-15 | Futurewei Technologies, Inc. | System and Method for Wireless Communications Measurements and CSI Feedback |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104135346B (zh) * | 2009-04-24 | 2018-04-10 | 夏普株式会社 | 无线通信系统、无线通信装置及无线通信方法 |
US9537638B2 (en) * | 2012-05-11 | 2017-01-03 | Qualcomm Incorporated | Method and apparatus for performing coordinated multipoint feedback under multiple channel and interference assumptions |
MX351755B (es) * | 2013-07-09 | 2017-10-27 | Lg Electronics Inc | Método para reportar el estado del canal en el sistema de comunicación inalámbrica y aparato para lo mismo. |
US9735818B2 (en) * | 2013-10-28 | 2017-08-15 | Lg Electronics Inc. | Method and apparatus for cancelling interference and receiving signal in wireless communication system |
US10200168B2 (en) * | 2015-08-27 | 2019-02-05 | Futurewei Technologies, Inc. | Systems and methods for adaptation in a wireless network |
KR102188747B1 (ko) * | 2015-10-12 | 2020-12-08 | 에스케이텔레콤 주식회사 | 하이브리드 빔포밍을 이용한 무선 통신 방법 및 장치 |
KR20180013811A (ko) * | 2016-07-29 | 2018-02-07 | 아서스테크 컴퓨터 인코포레이션 | 무선 통신 시스템에서 빔 동작을 위한 채널 상태 정보 리포트를 위한 방법 및 장치 |
EP3668231A4 (en) * | 2017-08-11 | 2021-02-17 | Fujitsu Limited | METHOD AND APPARATUS FOR CONFIGURING A TRIGGERING CONDITIONS FOR A WAVEBACK FAILURE EVENT, AND COMMUNICATION SYSTEM |
KR20230162141A (ko) * | 2018-02-26 | 2023-11-28 | 텔레폰악티에볼라겟엘엠에릭슨(펍) | 다중 가설을 갖는 채널 상태 정보(csi) 피드백 |
-
2019
- 2019-08-08 WO PCT/KR2019/009971 patent/WO2020032621A1/ko active Application Filing
- 2019-08-08 DE DE112019003523.1T patent/DE112019003523T5/de active Pending
- 2019-08-08 US US17/266,563 patent/US12081297B2/en active Active
- 2019-08-08 CN CN201980053408.6A patent/CN112567645B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180076873A1 (en) * | 2012-01-30 | 2018-03-15 | Futurewei Technologies, Inc. | System and Method for Wireless Communications Measurements and CSI Feedback |
KR20150035555A (ko) * | 2012-07-02 | 2015-04-06 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널상태정보 보고 방법 및 장치 |
WO2016153163A1 (en) * | 2015-03-22 | 2016-09-29 | Lg Electronics Inc. | Method and apparatus for transmitting feedback of multi-feedback chain-based channel status information for 3d mimo in a wireless communication system |
WO2018026241A1 (en) * | 2016-08-04 | 2018-02-08 | Samsung Electronics Co., Ltd. | Method and apparatus for coordinating multi-point transmission in advanced wireless systems |
Non-Patent Citations (1)
Title |
---|
QUALCOMM INCORPORATED: "Maintenance for CSI Measurement", R1-1807339. 3GPP TSG RAN WG1 MEETING #93, vol. RAN WG1, 12 May 2018 (2018-05-12), Busan, Korea, pages 1 - 9, XP051463031 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220264584A1 (en) * | 2019-11-08 | 2022-08-18 | Huawei Technologies Co., Ltd. | Measurement and reporting method and apparatus |
WO2021214711A1 (en) * | 2020-04-24 | 2021-10-28 | Lenovo (Singapore) Pte. Ltd. | Channel state information reporting |
WO2021226964A1 (en) | 2020-05-14 | 2021-11-18 | Apple Inc. | Channel state information report for multi-trp operation |
CN115552983A (zh) * | 2020-05-14 | 2022-12-30 | 苹果公司 | 用于多trp操作的信道状态信息报告 |
EP4133808A4 (en) * | 2020-05-14 | 2023-09-06 | Apple Inc. | CHANNEL STATUS INFORMATION REPORT FOR MULTI-TRP OPERATION |
EP4236134A3 (en) * | 2020-05-14 | 2023-11-22 | Apple Inc. | Channel state information report for multi-trp operation |
WO2022149064A1 (en) * | 2021-01-08 | 2022-07-14 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Methods and apparatuses for beam measurement and reporting for multi-trp |
US20230170976A1 (en) * | 2021-11-30 | 2023-06-01 | Qualcomm Incorporated | Beam selection and codebook learning based on xr perception |
US12068832B2 (en) * | 2021-11-30 | 2024-08-20 | Qualcomm Incorporated | Beam selection and codebook learning based on XR perception |
Also Published As
Publication number | Publication date |
---|---|
US12081297B2 (en) | 2024-09-03 |
CN112567645B (zh) | 2023-08-29 |
US20210297135A1 (en) | 2021-09-23 |
DE112019003523T5 (de) | 2021-05-27 |
CN112567645A (zh) | 2021-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020032621A1 (ko) | 무선 통신 시스템에서 다수의 기지국들에 대한 채널 상태 정보를 송수신하는 방법 및 이에 대한 장치 | |
WO2020027601A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2020032685A1 (ko) | 무선 통신 시스템에서 빔 실패 검출을 수행하는 방법 및 이에 대한 장치 | |
WO2020040572A1 (ko) | 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치 | |
WO2020009511A1 (ko) | 무선 통신 시스템에서 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치 | |
WO2020209597A1 (ko) | 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 그 장치 | |
WO2021040353A1 (ko) | 무선 통신 시스템에서 상향링크 채널 송수신 방법 및 그 장치 | |
WO2021034069A1 (ko) | 무선 통신 시스템에서 코드북에 기반한 상향링크 신호 전송 방법 및 이에 대한 장치 | |
WO2021034070A1 (ko) | 무선 통신 시스템에서 코드북에 기반한 상향링크 신호 전송 방법 및 이에 대한 장치 | |
WO2019216737A1 (ko) | 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치 | |
WO2020005004A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치 | |
WO2020091544A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 | |
WO2019235906A1 (ko) | 무선 통신 시스템에서 참조 신호 패턴을 적응적으로 설정하는 방법 및 이를 위한 장치 | |
WO2020027503A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2020231189A1 (ko) | 무선 통신 시스템에서 빔 정보를 보고 하는 방법 및 이를 위한 장치 | |
WO2020080916A1 (ko) | 무선 통신 시스템에서 복수의 물리 하향링크 공유 채널들을 송수신하는 방법 및 이를 위한 장치 | |
WO2020231190A1 (ko) | 무선 통신 시스템에서 빔 정보를 보고 하는 방법 및 이를 위한 장치 | |
WO2020080915A1 (ko) | 무선 통신 시스템에서 복수의 물리 하향링크 공유 채널들을 송수신하는 방법 및 이를 위한 장치 | |
WO2020060379A1 (ko) | Comp 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치 | |
WO2020032737A1 (ko) | 무선 통신 시스템에서 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치 | |
WO2020162735A1 (ko) | 무선 통신 시스템에서 물리 샹항링크 공유 채널을 전송하는 방법 및 이를 위한 장치 | |
WO2020060340A1 (ko) | 무선 통신 시스템에서 상향링크 송수신을 수행하기 위한 방법 및 이를 위한 장치 | |
WO2019245234A1 (ko) | 무선 통신 시스템에서 위치 결정을 위한 측정 결과 보고 방법 및 그 장치 | |
WO2020197353A1 (ko) | 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치 | |
WO2021020835A1 (ko) | 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19846520 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19846520 Country of ref document: EP Kind code of ref document: A1 |