WO2020025254A1 - Bipolarplatte für eine brennstoffzelle sowie brennstoffzelle - Google Patents
Bipolarplatte für eine brennstoffzelle sowie brennstoffzelle Download PDFInfo
- Publication number
- WO2020025254A1 WO2020025254A1 PCT/EP2019/068220 EP2019068220W WO2020025254A1 WO 2020025254 A1 WO2020025254 A1 WO 2020025254A1 EP 2019068220 W EP2019068220 W EP 2019068220W WO 2020025254 A1 WO2020025254 A1 WO 2020025254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- flow channels
- bipolar plate
- webs
- bipolar
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/026—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a bipolar plate for a fuel cell, with flow channels for the reactants formed in a plate body between webs as well as with lines for a coolant, and with the plate body assigned, formed in a gradient, hydrophilic structures.
- the invention further relates to a fuel cell.
- Fuel cells are used to provide electrical energy with an electrochemical reaction between a fuel, usually hydrogen, and an oxygen-containing gas, usually air.
- the fuel cell has a membrane electrode arrangement in which the anode is formed on one side of the membrane and the cathode is formed on the other side. Hydrogen gas is supplied to the anode while the cathode is supplied with air.
- bipolar plates are used which, in addition to the flow channels for the reactants, also have lines for a coolant.
- a bipolar plate according to the preamble of the main claim is known from US 2005/0221139 A1, in which the bipolar plate has a gradient of a hydrophilic structure, which is oriented perpendicular to a planar surface of the bipolar plate.
- DE 10 2008 034 546 A1 indicates that a drop of water dripped onto the surface is sucked into given microchannels due to capillary forces and is transported along these microchannels.
- the invention is based on the object of designing a bipolar plate of the type mentioned at the outset in such a way that the prevention of the flooding of functional layers is improved.
- the object of the invention is also to provide an improved fuel cell.
- the bipolar plate according to the invention is distinguished by the fact that there is improved water management because forces are provided in a targeted manner through different physical effects, which ensure that the water moves from the edge of the bipolar plate to the bottom of the flow channels, in particular being recognized that the capillary forces can bring about a directed transport of the water into the flow channels, in particular if the microchannels taper in the direction of the assigned flow channel.
- the bipolar plate is formed from a hydrophilic material.
- the invention can also be used if the bipolar plate is formed from a hydrophobic material, namely in that the hydrophilic structure is formed as a coating of the webs.
- reference can again be made to a metal oxide layer with a suitable arrangement of the particles of the metal oxide.
- the areal density of the mouths of the microchannels increases from the edge to the bottom of the flow channels, since this in turn promotes the transport of water from the edge region of the bipolar plate to the bottom of the flow channels. It has proven to be expedient and preferred with regard to production if the microchannels are oriented perpendicular to the interface.
- the base of the flow channels is more hydrophilic than the webs in their neighboring areas, in order to promote the transport of the liquid water from the web into the flow channel again.
- the product water is extracted from the functional layers adjacent to the bipolar plate, namely the membrane electrode arrangement. tion or the gas diffusion layer is quickly removed, so that improved water management is available for the fuel cell and the efficiency of the fuel cell is increased because the optimum operating conditions do not have to be left to discharge the water from the flow channels with the volume flow of the reactant gases.
- An improvement in the water management also has the effect that the bipolar plate has a higher hydrophilicity in the region of its webs facing the gas diffusion layer than the gas diffusion layer, since the water can be directed into the webs in a targeted manner in order to subsequently improve the water management exploit bipolar plate according to the invention.
- Figure 1 is a schematic representation of a cross section through a
- Figure 2 is a representation corresponding to Figure 1 of a known
- Figure 3 is a schematic representation of the increase in hydrophilicity from web to flow channel
- FIG. 4 shows a representation corresponding to FIG. 3 with the tapered microchannels assigned to the webs.
- a fuel cell is shown in FIG. 1 as part of a fuel cell stack, it being pointed out that the fuel cell stack is formed from a plurality of fuel cells stacked one above the other in a stacking direction.
- the fuel cell 1 comprises an anode and a cathode as well as a proton-conductive membrane 2 separating the anode from the cathode, which are combined in a membrane electrode arrangement 3.
- the membrane 2 is formed from a polymer, preferably from a sulfonated tetrafluoroethylene polymer (PTFE) or a polymer of perfluorinated sulfonic acid (PFSA).
- PTFE sulfonated tetrafluoroethylene polymer
- PFSA perfluorinated sulfonic acid
- the membrane 2 can be formed as a hydrocarbon membrane.
- a catalyst can additionally be mixed in the anodes and / or in the cathodes, the membranes 2 preferably being coated on their first side and / or on their second side with a catalyst layer composed of a noble metal or noble metals such as platinum, palladi or mixtures , Ruthenium or the like are coated, which serve as reaction accelerators in the reaction of the respective fuel cell.
- a noble metal or noble metals such as platinum, palladi or mixtures , Ruthenium or the like are coated, which serve as reaction accelerators in the reaction of the respective fuel cell.
- Hydrogen-containing fuel is supplied to the anode compartment of a fuel cell 1.
- a fuel cell In a polymer electrolyte membrane fuel cell (PEM fuel cell), hydrogen is split into protons and electrons at the anode.
- the membrane 2 lets the protons through, but is impermeable to the electrons.
- the protons pass through the membrane 2 to the cathode, the electrons are conducted to the cathode or to an energy store via an external circuit.
- Air or oxygen-containing air is supplied to the cathode compartments of a fuel cell 1, so that the following reaction takes place on the cathode side: 0 2 + 4FT + 4e _ -> FhO.
- the electrochemical reaction taking place in a fuel cell 1 leads to the production of product water.
- the fuel cell 1 has on both sides of the membrane electrode arrangement 3 on the one hand gas diffusion layers 4 and on the other hand bipolar plates 5, in which flow channels 6 are formed for the reactants and lines 7 for a coolant.
- the bipolar plates 5 are therefore used to conduct the hydrogen and oxygen to the membrane electrode arrangement 3 and to distribute them evenly with the aid of the gas diffusion layer 4.
- FIG. 2 schematically shows a fuel cell 1 known from the prior art, in which liquid water 9 symbolized as points accumulates under the webs 8 of the bipolar plate 5, so that the gas transport in the Gas diffusion layer 4 is hindered.
- FIG. 1 shows a fuel cell 1 in which the bipolar plates 5 according to the invention are used, in which there are hydrophilic structures formed in a gradient which are assigned to the webs 8.
- Figure 3 shows the increase in hydrophilicity from web 8 to channel 6, so that there is a force acting on the liquid water 9, which directs the liquid water 9 to the bottom of the flow channels 6.
- the gradient can be produced in a metal bipolar plate 5 when the corresponding oxides are irradiated into the blank plate.
- graphite bipolar plates 5 different wetting times can be used in the chemical deposition of the corresponding oxides on the formed bipolar plate 5.
- FIG. 4 shows that even with constant hydrophilicity, a force directed from the webs 8 into the flow channels 6 can be provided, namely by tapering microchannels 10, which are in the bipolar plates 5 by material removal by laser or by mechanical processing or by corresponding geometry can be manufactured in the casting or pressing tool.
- FIGS. 3 and 4 show that the microchannels 10 are oriented perpendicular to the interface of the flow channels 6 with a constant surface density of the mouths of the microchannels 10.
- the surface density of the mouths of the microchannels 10 increases from the edge to the bottom of the flow channels 6, so as to impart an advantageous direction to the water transport.
- the bottom of the flow channels 6 is more hydrophilic than the webs 8 in their adjacent areas, so that it also results from the fact that the liquid water 9 is transported to the bottom of the flow channels 6 in order to discharge it with the Support gas flow.
- the bipolar plates 5 in the area of their webs 8 which are assigned to the gas diffusion layer 4 have a higher hydrophilicity than the gas diffusion layer 4, in order to bring about a targeted relief of the functional layer threatened by flooding and the advantages of the improved bipolar plate 5 in terms of water management.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
Die Erfindung betrifft eine Bipolarplatte für eine Brennstoffzelle (1),mit in einem Plattenkörper zwischen Stegen (8) ausgebildeten Strömungskanälen (6) für die Reaktanten sowie mit Leitungen (7) für ein Kühlmittel, und mit dem Plattenkörper zugeordneten, in einem Gradienten ausgebildeten hydrophilen Strukturen. Der Gradient hydrophiler Strukturen ist den Stegen (8) zugeordnet mit zum Grund der Strömungskanäle (6) ansteigender Hydrophilizität, wobei in der Grenzfläche der Stege (8) zu den Strömungskanälen (6) in die Strömungskanäle (6) mündende, Kapillarkräfte erzeugende Mikrokanäle (10) ausgebildet sind. Die Erfindung betrifft weiterhin eine Brennstoffzelle.
Description
Bipolarplatte für eine Brennstoffzelle sowie Brennstoffzelle
BESCHREIBUNG: Die Erfindung betrifft eine Bipolarplatte für eine Brennstoffzelle, mit in einem Plattenkörper zwischen Stegen ausgebildeten Strömungskanälen für die Re- aktanten sowie mit Leitungen für ein Kühlmittel, und mit dem Plattenkörper zugeordneten, in einem Gradienten ausgebildeten hydrophilen Strukturen. Die Erfindung betrifft weiterhin eine Brennstoffzelle.
Brennstoffzellen werden genutzt, um mit einer elektrochemischen Reaktion zwischen einem Brennstoff, in der Regel Wasserstoff, und einem sauerstoff- haltigen Gas, in der Regel Luft, elektrische Energie bereitzustellen. Die Brennstoffzelle verfügt über eine Membranelektrodenanordnung, bei der auf der einen Seite der Membran die Anode und auf der anderen Seite die Ka- thode ausgebildet ist. Der Anode wird Wasserstoffgas zugeführt, während die Kathode mit Luft versorgt wird. Für dieses geordnete Zuführen der Reak- tanten zu den Elektroden werden Bipolarplatten genutzt, die neben den Strömungskanälen für die Reaktanten auch Leitungen für ein Kühlmittel auf- weisen.
Zu beachten ist, dass bei der elektrochemischen Reaktion Produktwasser generiert wird, das zu Leistungsverlusten der Brennstoffzelle führen kann, wenn die in der Brennstoffzelle vorhandenen Funktionsschichten, nämlich die Membranelektrodenanordnung sowie zwischen der Bipolarplatte und der Membranelektroden angeordnete Gasdiffusionsschichten geflutet werden. Dadurch werden die Strömungsquerschnitte in den Strömungskanälen her- abgesetzt und auch die Eignung der Gasdiffusionsschichten zur gleichmäßi- gen Verteilung der Reaktanten wird beeinträchtigt.
Zur Beseitigung dieses die Funktionsschichten flutenden Wasser war es üb- lich, durch Anpassung der Betriebsbedingungen die gefluteten Funktions- Schichten von dem Wasser zu befreien, nämlich indem beispielsweise der Volumenstrom der Gase hoch gesetzt wird, was allerdings zu einem vermin- derten Wirkungsgrad der Brennstoffzelle führt oder zu Degradationserschei- nungen bei der Anpassung weiterer Betriebsparameter wie Druck oder Tem- peratur.
In der DE 11 2006 000 613 B4 ist vorgeschlagen, Bipolarplatten für eine Brennstoffzelle hydrophil zu machen, da eine hydrophile Platte bewirkt, dass Wasser in den Kanälen einen dünnen Film bildet, der eine geringere Neigung zur Änderung der Strömungsverteilung entlang der Gruppierung von Kanälen besitzt. Die hydrophilen Eigenschaften werden durch eine äußere Me- talloxidbeschichtung generiert.
Aus der US 2005/0221139 A1 ist eine Bipolarplatte gemäß dem Oberbegriff des Flauptanspruches bekannt, bei dem die Bipolarplatte einen Gradienten einer hydrophilen Struktur aufweist, wobei dieser senkrecht zu einer planaren Oberfläche der Bipolarplatte ausgerichtet ist.
In der DE 10 2008 034 546 A1 wird zu einer superhydrophilen Oberfläche darauf hingewiesen, dass ein auf die Oberfläche getropfter Wassertropfen aufgrund von Kapillarkräften in gegebene Mikrokanäle eingesaugt und ent- lang dieser Mikrokanäle transportiert wird.
Der Erfindung liegt die Aufgabe zugrunde, eine Bipolarplatte der eingangs genannten Art so auszubilden, dass die Verhinderung der Flutung von Funk- tionsschichten verbessert wird. Aufgabe der Erfindung ist es weiterhin, eine verbesserte Brennstoffzelle bereitzustellen.
Diese Aufgabe wird durch eine Bipolarplatte mit den Merkmalen des An- spruch 1 und durch eine Brennstoffzelle mit den Merkmalen des Anspruches
7 gelöst. Vorteilhafte Ausgestaltung mit zweckmäßigen Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
Die erfindungsgemäße Bipolarplatte zeichnet sich dadurch aus, dass ein verbessertes Wassermanagement vorliegt, weil gezielt durch unterschiedli- che physikalische Effekte Kräfte bereitgestellt werden, die dafür sorgen, dass sich das Wasser vom Rand der Bipolarplatte zum Grund der Strömungska- näle bewegt, wobei insbesondere erkannt ist, dass die Kapillarkräfte einen gerichteten Transport des Wassers in die Strömungskanäle bewirken kön- nen, insbesondere wenn die Mikrokanäle sich in Richtung des zugeordneten Strömungskanals verjüngen.
Es besteht grundsätzlich die Möglichkeit, dass die Bipolarplatte aus einem hydrophilen Material gebildet ist. Allerdings ist die Erfindung auch einsetzbar, wenn die Bipolarplatte aus einem hydrophoben Material gebildet ist, nämlich indem die hydrophile Struktur als Beschichtung der Stege gebildet ist. Als Beispiel kann wiederum auf eine Metalloxidschicht verwiesen werden mit einer geeigneten Anordnung der Partikel des Metalloxid.
Zweckmäßig ist es weiterhin, wenn die Flächendichte der Mündungen der Mikrokanäle sich vom Rand zum Grund der Strömungskanäle erhöht, da so wiederum der Transport des Wassers vom Randbereich der Bipolarplatte zum Grund der Strömungskanäle gefördert wird. Als zweckmäßig und bevor- zugt hinsichtlich der Fertigung hat es sich gezeigt, wenn die Mikrokanäle senkrecht zu der Grenzfläche orientiert sind.
Günstig ist es weiterhin, wenn der Grund der Strömungskanäle stärker hyd- rophil ist als die Stege in ihren benachbarten Bereichen, umso wieder den Transport des Flüssigwasser vom Steg in den Strömungskanal zu begünsti- gen.
Wenn eine Brennstoffzelle mit den erfindungsgemäßen Bipolarplatten aus- gestattet gestattet wird, wird das Produktwasser aus den an die Bipolarplatte angrenzenden Funktionsschichten, nämlich der Membranelektrodenanord-
nung bzw. der Gasdiffusionsschicht schnell abtransportiert, sodass ein ver- bessertes Wassermanagement für die Brennstoffzelle bereitsteht und die Effizienz der Brennstoffzelle erhöht wird, weil für das Austragen des Wassers aus den Strömungskanäle mit dem Volumenstrom der Reaktantengase das Optimum der Betriebsbedingungen nicht verlassen werden muss.
Eine Verbesserung des Wassermanagement bewirkt auch, dass die Bipolar- platte im Bereich ihrer der Gasdiffusionsschicht zuweisenden Stege eine hö- here Hydrophilizität aufweist als die Gasdiffusionsschicht, da so gezielt das Wasser aus der Gasdiffusionsschicht in die Stege geleitet werden kann, um nachfolgend das verbesserte Wassermanagement der erfindungsgemäßen Bipolarplatte auszunutzen.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Ansprüchen, der nachfolgenden Beschreibung bevorzugter Ausfüh- rungsformen sowie anhand der Zeichnungen. Dabei zeigen:
Figur 1 eine schematische Darstellung eines Querschnitts durch eine
Brennstoffzelle,
Figur 2 eine der Figur 1 entsprechende Darstellung einer vorbekannten
Brennstoffzelle,
Figur 3 eine schematische Darstellung der Zunahme der Hydrophilizität von Steg zu Strömungskanal, und
Figur 4 eine der Figur 3 entsprechende Darstellung mit den den Stegen zugeordneten sich verjüngenden Mikrokanälen. In der Figur 1 ist als Teil eines Brennstoffzellenstapels eine Brennstoffzelle gezeigt, wobei darauf hinzuweisen ist, dass der Brennstoffzellenstapel aus einer Mehrzahl von in einer Stapelrichtung übereinandergestapelten Brenn- stoffzellen gebildet ist.
Die Brennstoffzelle 1 umfasst eine Anode und eine Kathode sowie eine die Anode von der Kathode trennende protonenleitfähige Membran 2, die in ei- ner Membranelektrodenanordnung 3 zusammengefasst sind. Die Membran 2 ist aus einem Polymer, vorzugsweise aus einem sulfonierten Tetrafluorethyl- en-Polymer (PTFE) oder einem Polymer der perfluorierten Sulfonsäure (PFSA) gebildet. Alternativ kann die Membran 2 als eine Hydrocarbonmemb- ran gebildet sein.
In den Anoden und/oder in den Kathoden kann zusätzlich ein Katalysator beigemischt sein, wobei die Membranen 2 vorzugsweise auf ihrer ersten Sei- te und/oder auf ihrer zweiten Seite mit einer Katalysatorschicht aus einem Edelmetall oder aus Gemischen umfassende Edelmetalle wie Platin, Palladi um, Ruthenium oder dergleichen beschichtet sind, die als Reaktionsbe- schleuniger bei der Reaktion der jeweiligen Brennstoffzelle dienen.
Dem Anodenraum einer Brennstoffzelle 1 wird wasserstoffhaltiger Brennstoff zugeführt. In einer Polymerelektrolytmembranbrennstoffzelle (PEM- Brennstoffzelle) werden an der Anode Wasserstoff in Protonen und Elektro- nen aufgespaltet. Die Membran 2 lässt die Protonen hindurch, ist aber un- durchlässig für die Elektronen. Während die Protonen durch die Membran 2 zur Kathode hindurchtreten, werden die Elektronen über einen externen Stromkreis an die Kathode oder an einen Energiespeicher geleitet.
Den Kathodenräumen einer Brennstoffzelle 1 wird Sauerstoff oder Sauerstoff enthaltende Luft zugeführt, so dass kathodenseitig die folgende Reaktion stattfindet: 02 + 4FT + 4e_— > FhO.
Die in einer Brennstoffzelle 1 stattfindende elektrochemische Reaktion führt zur Erzeugung von Produktwasser.
Die Brennstoffzelle 1 verfügt beidseitig der Membranelektrodenanordnung 3 zum einen über Gasdiffusionsschichten 4 und zum anderen über Bipolarplat- ten 5, in denen zum einen Strömungskanäle 6 für die Reaktanten und zum anderen Leitungen 7 für ein Kühlmittel ausgebildet sind. Die Bipolarplatten 5
werden also genutzt, um den Wasserstoff und den Sauerstoff zur Membra- nelektrodenanordnung 3 zu leiten und mithilfe der Gasdiffusionsschicht 4 gleichmäßig zu verteilen.
Zur Erläuterung des der Erfindung zugrunde liegenden Problems ist in der Figur 2 schematisch eine aus dem Stand der Technik bekannte Brennstoff- zelle 1 gezeigt, bei der sich unter den Stegen 8 der Bipolarplatte 5 als Punkte symbolisiertes Flüssigwasser 9 ansammelt, so dass der Gastransport in der Gasdiffusionsschicht 4 behindert ist.
Die Figur 1 zeigt eine Brennstoffzelle 1 , bei der die erfindungsgemäßen Bipo- larplatten 5 Verwendung finden, bei denen in einem Gradienten ausgebildete hydrophile Strukturen vorhanden sind, die den Stegen 8 zugeordnet sind. Figur 3 zeigt dabei die Zunahme der Hydrophilizität von Steg 8 zu Kanal 6, sodass sich eine auf das Flüssigwasser 9 wirkende Kraft ergibt, die das Flüssigwasser 9 zum Grund der Strömungskanäle 6 leitet.
Die Fertigung des Gradienten kann dabei in einer Metall-Bipolarplatte 5 beim Einstrahlen der entsprechen Oxide in den Platten-Rohling erfolgen. Bei Gra- phit-Bipolarplatten 5 können unterschiedliche Benetzungszeiten beim chemi- schen Abscheiden der entsprechenden Oxide auf der ausgeformten Bipolar- platte 5 genutzt werden.
Figur 4 zeigt, dass auch bei konstanter Hydrophilizität eine aus den Stegen 8 in die Strömungskanäle 6 gerichtete Kraft bereitgestellt werden kann, näm- lich durch sich verjüngende Mikrokanäle 10, die in den Bipolarplatten 5 durch Materialabtrag durch Laser oder durch mechanische Bearbeitung oder durch entsprechende Geometrieausprägung im Gieß- oder Preßwerkzeug gefertigt werden können.
Die Erfindung bietet eine Überlagerung dieser beiden in den Figuren 3 und 4 gezeigten Effekte, wobei Figur 4 zeigt, dass die Mikrokanäle 10 senkrecht zu der Grenzfläche der Strömungskanäle 6 orientiert ist mit einer konstanten Flächendichte der Mündungen der Mikrokanäle 10. Es besteht auch die Mög-
lichkeit, dass die Flächendichte der Mündungen der Mikrokanäle 10 sich vom Rand zum Grund der Strömungskanäle 6 erhöht, um so dem Wassertrans- port einer vorteilhafte Richtung aufzuprägen. Wie in Figur 1 symbolisiert dargestellt ist, ist der Grund der Strömungskanäle 6 stärker hydrophil als die Stegen 8 in ihren benachbarten Bereichen, sodass sich auch dadurch ergibt, dass das Flüssigwasser 9 zum Grund der Strö- mungskanäle 6 transportiert wird, um dessen Austrag mit dem Gasstrom zu unterstützen.
Zu beachten ist weiterhin, dass die Bipolarplatten 5 im Bereich ihrer der Gasdiffusionsschicht 4 zuweisen Stege 8 eine höhere Hyd rophil izität auf- weist als die Gasdiffusionsschicht 4, umso eine gezielte Entlastung der von Flutung bedrohten Funktionsschicht zu bewirken und die Vorteile der verbes- serten Bipolarplatte 5 hinsichtlich des Wassermanagements ausnutzen zu können.
BEZUGSZEICHENLISTE: 1 Brennstoffzelle
2 Membran
3 Membranelektrodenanordnung
4 Gasdiffusionsschicht
5 Bipolarplatte
6 Strömungskanal
7 Leitung
8 Steg
9 Flüssigwasser
10 Mikrokanäle
Claims
1. Bipolarplatte für eine Brennstoffzelle (1 ), mit in einem Plattenkörper zwischen Stegen (8) ausgebildeten Strömungskanälen (6) für die Re- aktanten sowie mit Leitungen (7) für ein Kühlmittel, und mit dem Plat- tenkörper zugeordneten, in einem Gradienten ausgebildeten hydrophi- len Strukturen, dadurch gekennzeichnet, dass der Gradient hydrophi- ler Strukturen den Stegen (8) zugeordnet ist mit zum Grund der Strö- mungskanäle (6) ansteigender Hydrophilizität, und dass in der Grenz- fläche der Stege (8) zu den Strömungskanälen (6) in die Strömungs- kanäle (6) mündende, Kapillarkräfte erzeugende Mikrokanäle (10) ausgebildet sind.
2. Bipolarplatte nach Anspruch 1 , dadurch gekennzeichnet, dass diese aus einem hydrophilen Material gebildet ist.
3. Bipolarplatte nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die hydrophilen Strukturen als Beschichtung der Stege (8) gebildet ist.
4. Bipolarplatte nach einem der Ansprüche 1 bis 3, dadurch gekenn- zeichnet, dass die Flächendichte der Mündungen der Mikrokanäle (10) sich vom Rand zum Grund der Strömungskanäle (6) erhöht.
5. Bipolarplatte nach einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, dass die Mikrokanäle (10) senkrecht zu der Grenzfläche ori entiert sind.
6. Bipolarplatte nach einem der Ansprüche 1 bis 5, dadurch gekenn- zeichnet, dass der Grund der Strömungskanäle (6) stärker hydrophil ist als die Stegen (8) in ihren benachbarten Bereichen.
7. Brennstoffzelle mit einer Membranelektrodenanordnung (3), mit Strö- mungskanäle (6) für die Reaktanten sowie Leitungen (7) für ein Kühl- mittel aufweisenden Bipolarplatten (5), und zwischen der Membra-
nelektrodenanordnung (3) und den Bipolarplatten (5) angeordneten Gasdiffusionsschichten (4), gekennzeichnet durch gemäß den An- sprüchen 1 bis 6 gestaltete Bipolarplatten (5).
8. Brennstoffzelle nach Anspruch 7, dadurch gekennzeichnet, dass die
Bipolarplatte (5) im Bereich ihrer der Gasdiffusionsschicht (4) zuwei- senden Stege (8) eine höhere Hydrophil izität aufweist als die Gasdif- fusionsschicht (4).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021505642A JP7060759B2 (ja) | 2018-08-02 | 2019-07-08 | 燃料電池用バイポーラプレート、および燃料電池 |
US17/265,156 US20220006106A1 (en) | 2018-08-02 | 2019-07-08 | Bipolar plate for a fuel cell, and fuel cell |
CN201980051132.8A CN112470313A (zh) | 2018-08-02 | 2019-07-08 | 用于燃料电池的双极板以及燃料电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018212878.2A DE102018212878A1 (de) | 2018-08-02 | 2018-08-02 | Bipolarplatte für eine Brennstoffzelle sowie Brennstoffzelle |
DE102018212878.2 | 2018-08-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020025254A1 true WO2020025254A1 (de) | 2020-02-06 |
Family
ID=67544149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/068220 WO2020025254A1 (de) | 2018-08-02 | 2019-07-08 | Bipolarplatte für eine brennstoffzelle sowie brennstoffzelle |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220006106A1 (de) |
JP (1) | JP7060759B2 (de) |
CN (1) | CN112470313A (de) |
DE (1) | DE102018212878A1 (de) |
WO (1) | WO2020025254A1 (de) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050181264A1 (en) * | 2004-02-17 | 2005-08-18 | Wenbin Gu | Capillary layer on flowfield for water management in PEM fuel cell |
US20050221139A1 (en) | 2004-03-15 | 2005-10-06 | Hampden-Smith Mark J | Modified carbon products, their use in bipolar plates and similar devices and methods relating to same |
DE102005011853A1 (de) * | 2004-03-18 | 2005-11-10 | General Motors Corp., Detroit | Ausgeglichene Befeuchtung in Protonenaustauschmembranen von Brennstoffzellen |
DE112005001954T5 (de) * | 2004-08-19 | 2007-08-30 | GM Global Technology Operations, Inc., Detroit | Verfahren zum Behandeln von Kompositplatten |
DE102008034546A1 (de) | 2008-07-24 | 2010-02-11 | GM Global Technology Operations, Inc., Detroit | Hydrophil/hydrophob gemusterte Oberflächen und Verfahren zur Herstellung und Verwendung derselben |
DE112008002184T5 (de) * | 2007-07-18 | 2010-08-26 | Toyota Jidosha Kabushiki Kaisha, Toyota-shi | Brennstoffzelle, die einen Anoden-Dead-End-Betrieb durchführt |
DE112006000613B4 (de) | 2005-03-24 | 2013-03-14 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Metalloxidbasierte hydrophile Beschichtungen für Bipolarplatten für PEM-Brennstoffzellen und Verfahren zu ihrer Herstellung |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3404363B2 (ja) | 2000-05-26 | 2003-05-06 | 株式会社リケン | 燃料電池用セパレータ |
US20040058218A1 (en) * | 2002-09-20 | 2004-03-25 | Ballard Power Systems Inc. | Flow fields with capillarity for solid polymer electrolyte fuel cells |
US20060216570A1 (en) * | 2005-03-24 | 2006-09-28 | Gayatri Vyas | Durable hydrophilic coatings for fuel cell bipolar plates |
JP2006351334A (ja) | 2005-06-15 | 2006-12-28 | Toyota Motor Corp | 燃料電池 |
JP2008146897A (ja) | 2006-12-07 | 2008-06-26 | Matsushita Electric Ind Co Ltd | 燃料電池用セパレータおよび燃料電池 |
US8277986B2 (en) | 2007-07-02 | 2012-10-02 | GM Global Technology Operations LLC | Bipolar plate with microgrooves for improved water transport |
JP5448532B2 (ja) | 2009-03-31 | 2014-03-19 | みずほ情報総研株式会社 | 燃料電池及び燃料電池に用いるセパレータ |
JP5011362B2 (ja) * | 2009-09-30 | 2012-08-29 | 株式会社日立製作所 | 燃料電池用バイポーラープレートおよび燃料電池 |
US9054347B2 (en) * | 2010-01-08 | 2015-06-09 | GM Global Technology Operations LLC | Reversible superhydrophilic-superhydrophobic coating for fuel cell bipolar plates and method of making the same |
CN106654290B (zh) * | 2015-10-30 | 2019-06-25 | 中国科学院大连化学物理研究所 | 多级阶梯状孔结构水传输板及其制备 |
-
2018
- 2018-08-02 DE DE102018212878.2A patent/DE102018212878A1/de active Pending
-
2019
- 2019-07-08 WO PCT/EP2019/068220 patent/WO2020025254A1/de active Application Filing
- 2019-07-08 JP JP2021505642A patent/JP7060759B2/ja active Active
- 2019-07-08 US US17/265,156 patent/US20220006106A1/en not_active Abandoned
- 2019-07-08 CN CN201980051132.8A patent/CN112470313A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050181264A1 (en) * | 2004-02-17 | 2005-08-18 | Wenbin Gu | Capillary layer on flowfield for water management in PEM fuel cell |
US20050221139A1 (en) | 2004-03-15 | 2005-10-06 | Hampden-Smith Mark J | Modified carbon products, their use in bipolar plates and similar devices and methods relating to same |
DE102005011853A1 (de) * | 2004-03-18 | 2005-11-10 | General Motors Corp., Detroit | Ausgeglichene Befeuchtung in Protonenaustauschmembranen von Brennstoffzellen |
DE112005001954T5 (de) * | 2004-08-19 | 2007-08-30 | GM Global Technology Operations, Inc., Detroit | Verfahren zum Behandeln von Kompositplatten |
DE112006000613B4 (de) | 2005-03-24 | 2013-03-14 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Metalloxidbasierte hydrophile Beschichtungen für Bipolarplatten für PEM-Brennstoffzellen und Verfahren zu ihrer Herstellung |
DE112008002184T5 (de) * | 2007-07-18 | 2010-08-26 | Toyota Jidosha Kabushiki Kaisha, Toyota-shi | Brennstoffzelle, die einen Anoden-Dead-End-Betrieb durchführt |
DE102008034546A1 (de) | 2008-07-24 | 2010-02-11 | GM Global Technology Operations, Inc., Detroit | Hydrophil/hydrophob gemusterte Oberflächen und Verfahren zur Herstellung und Verwendung derselben |
Also Published As
Publication number | Publication date |
---|---|
CN112470313A (zh) | 2021-03-09 |
US20220006106A1 (en) | 2022-01-06 |
JP7060759B2 (ja) | 2022-04-26 |
DE102018212878A1 (de) | 2020-02-06 |
JP2021532556A (ja) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005011853B4 (de) | Brennstoffzelle und Gasdiffusionsmedium zur ausgeglichenen Befeuchtung in Protonenaustauschmembranen von Brennstoffzellen | |
DE112005000978T5 (de) | Hybridbipolarplattenanordnung und Vorrichtungen, die diese enthalten | |
EP3326227A1 (de) | Brennstoffzelle und brennstoffzellenstapel | |
DE102016111638A1 (de) | Bipolarplatte mit variabler Breite der Reaktionsgaskanäle im Eintrittsbereich des aktiven Bereichs, Brennstoffzellenstapel und Brennstoffzellensystem mit solchen Bipolarplatten sowie Fahrzeug | |
DE102020215014A1 (de) | Bipolarplatte für eine elektrochemische Zelle und elektrochemische Zelle | |
WO2018108552A1 (de) | Bipolarplatte für eine brennstoffzelle und brennstoffzelle | |
WO2022111922A1 (de) | Bipolarplatte für eine elektrochemische zelle, anordnung elektrochemischer zellen und verfahren zum betrieb der anordnung elektrochemischer zellen | |
DE102016200802A1 (de) | Flusskörper-Gasdiffusionsschicht-Einheit für eine Brennstoffzelle, Brennstoffzellenstapel, Brennstoffzellensystem und Kraftfahrzeug | |
DE102020215024A1 (de) | Bipolarplatte für eine elektrochemische Zelle, Anordnung elektrochemischer Zellen und Verfahren zur Herstellung der Bipolarplatte | |
WO2020025254A1 (de) | Bipolarplatte für eine brennstoffzelle sowie brennstoffzelle | |
WO2017016980A1 (de) | Membran für eine membran-elektroden-einheit einer brennstoffzelle und herstellungsverfahren | |
DE102009043208B4 (de) | Materialauslegung, um eine Leistungsfähigkeit einer Brennstoffzelle bei hoher Mittentemperatur mit ultradünnen Elektroden zu ermöglichen | |
DE102020213574A1 (de) | Verteilerplatte für eine elektrochemische Zelle, elektrochemische Zelle und Verfahren zum Betrieb einer elektrochemischen Zelle | |
WO2022111924A1 (de) | Bipolarplatte für eine elektrochemische zelle, anordnung elektrochemischer zellen und verfahren zum betrieb einer anordnung elektrochemischer zellen | |
DE102020213591A1 (de) | Verteilerplatte für eine elektrochemische Zelle, Verfahren zur Herstellung der Verteilerplatte und elektrochemische Zelle sowie ein Verfahren zum Betrieb der elektrochemischen Zelle | |
DE102021209735A1 (de) | Verteilerplatte für eine elektrochemische Zelle und elektrochemische Zelle | |
DE102018212880A1 (de) | Bipolarplatte für eine Brennstoffzelle sowie Brennstoffzellenstapel | |
DE102020213578A1 (de) | Verteilerplatte für eine elektrochemische Zelle und elektrochemische Zelle | |
DE102020213585A1 (de) | Elektrochemische Zelle und Verfahren zur Herstellung einer elektrochemischen Zelle | |
DE102020213580A1 (de) | Verteilerplatte für eine elektrochemische Zelle und elektrochemische Zelle | |
WO2022089893A1 (de) | Verteilerplatte für eine elektrochemische zelle, elektrochemische zelle und verfahren zur herstellung der verteilerplatte | |
WO2022111926A1 (de) | Bipolarplatte für eine elektrochemische zelle, verfahren zur herstellung der bipolarplatte, anordnung elektrochemischer zellen und verfahren zum betrieb der anordnung elektrochemischer zellen | |
DE102022207328A1 (de) | Membran und Membran-Elektroden-Einheit für eine elektrochemische Zelle, sowie Elektrolysezelle und Verfahren zum Betreiben einer Elektrolysezelle | |
DE102022209886A1 (de) | Diffusionslage für eine elektrochemische Zelle sowie elektrochemische Zelle | |
DE102021214824A1 (de) | Medienverteilerstruktur, Bipolarplatte und elektrochemische Zelle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19749587 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021505642 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19749587 Country of ref document: EP Kind code of ref document: A1 |