WO2020024202A1 - Dynamic adjustment of pdcch monitoring occasions - Google Patents
Dynamic adjustment of pdcch monitoring occasions Download PDFInfo
- Publication number
- WO2020024202A1 WO2020024202A1 PCT/CN2018/098239 CN2018098239W WO2020024202A1 WO 2020024202 A1 WO2020024202 A1 WO 2020024202A1 CN 2018098239 W CN2018098239 W CN 2018098239W WO 2020024202 A1 WO2020024202 A1 WO 2020024202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- physical downlink
- control channel
- downlink control
- bitmap
- symbols
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
Definitions
- the present disclosure relates to Physical Downlink Channel (PDCCH) monitoring.
- PDCCH Physical Downlink Channel
- New Radio (NR) standard in Third Generation Partnership Project (3GPP) is being designed to provide service for multiple use cases such as enhanced Mobile Broadband (eMBB) , Ultra-Reliable and Low Latency Communication (URLLC) , and Machine Type Communication (MTC) .
- eMBB enhanced Mobile Broadband
- URLLC Ultra-Reliable and Low Latency Communication
- MTC Machine Type Communication
- eMBB enhanced Mobile Broadband
- URLLC Ultra-Reliable and Low Latency Communication
- MTC Machine Type Communication
- mini-slots are shorter transmission time intervals using Type A or B scheduling, also known as mini-slots.
- NR in addition to transmission in a slot, a mini-slot transmission is also allowed to reduce latency.
- a mini-slot may consist of any number of 1 to 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols.
- OFDM Orthogonal Frequency Division Multiplexing
- the concepts of slot and mini-slot are not specific to a specific service, meaning that a mini-slot may be used for either eMBB, URLLC, or other services.
- mini-slot is not the standardized name. In the 3GPP standards, mini-slots are referred to as transmission time intervals using Type A or B scheduling.
- Figure 1 illustrates an exemplary radio resource in NR.
- a User Equipment device can be configured with up to four carrier bandwidth parts in the downlink with a single downlink carrier bandwidth part being active at a given time.
- a UE can be configured with up to four carrier bandwidth parts in the uplink with a single uplink carrier bandwidth part being active at a given time. If a UE is configured with a supplementary uplink, the UE can in addition be configured with up to four carrier bandwidth parts in the supplementary uplink with a single supplementary uplink carrier bandwidth part being active at a given time.
- a contiguous set of Physical Resource Blocks are defined and numbered from 0 to where i is the index of the carrier bandwidth part.
- a RB is defined as 12 consecutive subcarriers in the frequency domain.
- OFDM numerologies ⁇ are supported in NR as given by Table 1, where the subcarrier spacing, ⁇ f, and the cyclic prefix for a carrier bandwidth part are configured by different higher layer parameters for downlink and uplink, respectively.
- Table 1 Supported transmission numerologies.
- a downlink physical channel corresponds to a set of resource elements carrying information originating from higher layers.
- the following downlink physical channels are defined:
- PBCH Physical Broadcast Channel
- PDSCH is the main physical channel used for unicast downlink data transmission, but also for transmission of Random Access Response (RAR) , certain system information blocks, and paging information.
- PBCH carries the basic system information, required by the UE to access the network.
- PDCCH is used for transmitting Downlink Control Information (DCl) , mainly scheduling decisions, required for reception of PDSCH, and for uplink scheduling grants enabling transmission on Physical Uplink Shared Channel (PUSCH) .
- DCl Downlink Control Information
- An uplink physical channel corresponds to a set of resource elements carrying information originating from higher layers.
- the following uplink physical channels are defined:
- PUCCH Physical Uplink Control Channel
- PUSCH is the uplink counterpart to the PDSCH.
- PUCCH is used by UEs to transmit uplink control information, including Hybrid Automatic Repeat Request (HARQ) acknowledgements, channel state information reports, etc.
- HARQ Hybrid Automatic Repeat Request
- PRACH is used for random access preamble transmission.
- a UE shall determine the RB assignment in the frequency domain for PUSCH or PDSCH using the resource allocation field in the detected DCl carried in PDCCH.
- the frequency domain resource assignment is signaled by using the uplink grant contained in RAR.
- RRC Radio Resource Control
- the RB indexing for uplink/downlink type 0 and type 1 resource allocation is determined within the UE′s active carrier bandwidth part, and the UE shall, upon detection of PDCCH intended for the UE, determine first the uplink/downlink carrier bandwidth part and then the resource allocation within the carrier bandwidth part.
- the uplink bandwidth part for PUSCH carrying msg3 is configured by higher layer parameters.
- Synchronization Signal (SS) /PBCH block, PDSCH carrying Remaining Minimum System Information (RMSI) /RAR /msg4 scheduled by PDCCH channels carrying DCI, PRACH channels and PUSCH channel carrying msg3.
- SS and PBCH block (SS/PBCH block, or SSB in shorter format) comprises the above signals (Primary Synchronization Signal (PSS) , Secondary Synchronization Signal (SSS) , and PBCH Demodulation Reference Signal (DMRS) ) , and PBCH.
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- DMRS PBCH Demodulation Reference Signal
- SSB may have 15 kilohertz (kHz) , 30 kHz, 120 kHz, or 240 kHz Subcarrier Spacing (SCS) depending on the frequency range.
- DCI is received over the PDCCH.
- the PDCCH may carry DCI in messages with different formats.
- DCI format 0_0 and 0_1 are DCI messages used to convey uplink grants to the UE for transmission of the physical layer data channel in the uplink (PUSCH) and DCI format 1_0 and 1_1 are used to convey downlink grants for transmission of the physical layer data channel on the downlink (PDSCH) .
- Other DCI formats (2_0, 2_1, 2_2, and 2_3) are used for other purposes such as transmission of slot format information, reserved resource, transmit power control information, etc.
- a PDCCH candidate is searched within a common or UE-specific search space which is mapped to a set of time and frequency resources referred to as a Control Resource Set (CORESET) .
- the search spaces within which PDCCH candidates must be monitored are configured to the UE via RRC signaling.
- a monitoring periodicity is also configured for different PDCCH candidates.
- the UE may be configured to monitor multiple PDCCH candidates in multiple search spaces which may be mapped to one or more CORESETs. PDCCH candidates may need to be monitored multiple times in a slot, once every slot, or once in multiple of slots.
- the smallest unit used for defining CORESETs is a Resource Element Group (REG) , which is defined as spanning 1 PRB x 1OFDM symbol in frequency and time.
- Each REG contains DMRSs to aid in the estimation of the radio channel over which that REG was transmitted.
- a precoder could be used to apply weights at the transmit antennas based on some knowledge of the radio channel prior to transmission. It is possible to improve channel estimation performance at the UE by estimating the channel over multiple REGs that are proximate in time and frequency if the precoder used at the transmitter for the REGs is not different.
- the multiple REGs can be grouped together to form a REG bundle and the REG bundle size for a CORESET is indicated to the UE.
- the UE may assume that any precoder used for the transmission of the PDCCH is the same for all the REGs in the REG bundle.
- a REG bundle may consist of 2, 3, or 6 REGs.
- a Control Channel Element consists of 6 REGs.
- the REGs within a CCE may either be contiguous or distributed in frequency.
- the CORESET is said to be using an interleaved mapping of REGs to a CCE and if the REGs are not distributed in frequency, a non-interleaved mapping is said to be used.
- Interleaving can provide frequency diversity. Not using interleaving is beneficial for cases where knowledge of the channel allows the use of a precoder in a particular part of the spectrum to improve the Signal to Interference plus Noise Ratio (SINR) at the receiver.
- SINR Signal to Interference plus Noise Ratio
- a PDCCH candidate may span 1, 2, 4, 8, or 16 CCEs. If more than one CCE is used, the information in the first CCE is repeated in the other CCEs. Therefore, the number of aggregated CCEs used is referred to as the aggregation level for the PDCCH candidate.
- a hashing function is used to determine the CCEs corresponding to PDCCH candidates that a UE must monitor within a search space set. The hashing is done differently for different UEs so that the CCEs used by the UEs are randomized and the probability of collisions between multiple UEs for which PDCCH messages are included in a CORESET is reduced.
- An NR slot consists of 14 OFDM symbols.
- Figure 2 shows a subframe with 14 OFDM symbols.
- T s and T symb denote the slot and OFDM symbol duration, respectively.
- a slot may also be shortened to accommodate downlink/uplink transient period or both downlink and uplink transmissions. Potential variations are shown in Figure 3.
- NR also defines Type B scheduling, also known as mini-slots.
- Mini-slots are shorter than slots (according to current agreements from 1 or 2 symbols up to number of symbols in a slot minus one) and can start at any symbol. Mini-slots are used if the transmission duration of a slot is too long or the occurrence of the next slot start (slot alignment) is too late.
- Applications of mini-slots include among others latency critical transmissions (in this case both mini-slot length and frequent opportunity of mini-slot are important) and unlicensed spectrum where a transmission should start immediately after Listen-Before-Talk (LBT) succeeded (here the frequent opportunity of mini-slot is especially important) .
- LBT Listen-Before-Talk
- An example of mini-slots is shown in Figure 4, which illustrates a mini-slot with 2 OFDM symbols.
- a node For a node to be allowed to transmit in unlicensed spectrum, e.g. the 5 gigahertz (GHz) band, it typically needs to perform a Clear Channel Assessment (CCA) .
- CCA Clear Channel Assessment
- This procedure typically includes sensing the medium to be idle for a number of time intervals. Sensing the medium to be idle can be done in different ways, e.g. using energy detection, preamble detection, or using virtual carrier sensing. The latter implies that the node reads control information from other transmitting nodes informing when a transmission ends.
- TXOP Transmission Opportunity
- the length of the TXOP depends on regulation and type of CCA that has been performed, but typically ranges from 1 millisecond (ms) to 10 ms.
- the mini-slot concept in NR allows a node to access the channel at a much finer granularity compared to, e.g., LTE License Assisted Access (LAA) , where the channel could only be accessed at 500 microsecond ( ⁇ s) intervals.
- LAA License Assisted Access
- the channel can be accessed at 36 ⁇ s intervals.
- LTE LAA supports several methods for reducing the complexity of control channel monitoring for unlicensed band UEs.
- the enhanced or evolved Node B can enable/disable monitoring of certain DCI formats using RRC signaling.
- the eNB can configure the number of blind decodes for each aggregation level for a given DCI format.
- NR-Unlicensed NR-Unlicensed
- NR-U NR-Unlicensed
- NR-U NR-Unlicensed
- MHz megahertz
- the device can decide which part (s) of the supported bandwidth to use based on its LBT outcome.
- CA Carrier Aggregation
- CC Component Carrier
- SCH Physical Shared Channel
- Figure 5 shows an example for the wideband operations using CA and single system carrier wideband of 80 MHz. Different UEs may operate on different maximum bandwidth sizes and transmit with different number of RBs depending on their LBT’s outcomes.
- NR New Radio
- gNB base station
- UEs User Equipment devices
- PDCCH Physical Downlink Channel
- L1 i.e., physical layer
- Figure 1 illustrates an exemplary radio resource in Third Generation Partnership Project (3GPP) New Radio (NR) ;
- 3GPP Third Generation Partnership Project
- NR New Radio
- Figure 2 illustrates a slot structure in 3GPP NR
- Figure 3 illustrates potential variations of a slot in 3GPP NR
- Figure 4 illustrates an example of a mini-slot
- FIG. 5 illustrates Carrier Aggregation (CA) and single carrier wideband transmissions
- Figure 6 illustrates one example of a cellular communications network according to some embodiments of the present disclosure
- Figure 7 illustrates he operation of a base station and a User Equipment device (UE) in accordance with at least some of the embodiments described herein;
- UE User Equipment device
- Figure 8 is a schematic block diagram of a radio access node according to some embodiments of the present disclosure.
- Figure 9 is a schematic block diagram that illustrates a virtualized embodiment of the radio access node of Figure 8 according to some embodiments of the present disclosure
- Figure 10 is a schematic block diagram of the radio access node of Figure 8 according to some other embodiments of the present disclosure.
- Figure 11 is a schematic block diagram of a UE according to some embodiments of the present disclosure.
- Figure 12 is a schematic block diagram of the UE of Figure 11 according to some other embodiments of the present disclosure.
- Figure 13 illustrates a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments of the present disclosure
- Figure 14 is a generalized block diagram of a host computer communicating via a base station with a UE over a partially wireless connection in accordance with some embodiments of the present disclosure
- Figure 15 is a flowchart illustrating a method implemented in a communication system in accordance with one embodiment of the present disclosure
- Figure 16 is a flowchart illustrating a method implemented in a communication system in accordance with one embodiment of the present disclosure
- Figure 17 is a flowchart illustrating a method implemented in a communication system in accordance with one embodiment of the present disclosure.
- Figure 18 is a flowchart illustrating a method implemented in a communication system in accordance with one embodiment of the present disclosure.
- Radio Node As used herein, a “radio node” is either a radio access node or a wireless device.
- Radio Access Node As used herein, a “radio access node” or “radio network node” is any node in a radio access network of a cellular communications network that operates to wirelessly transmit and/or receive signals.
- a radio access node include, but are not limited to, a base station (e.g., a New Radio (NR) base station (gNB) in a Third Generation Partnership Project (3GPP) Fifth Generation (5G) NR network or an enhanced or evolved Node B (eNB) in a 3GPP Long Term Evolution (LTE) network) , a high-power or macro base station, a low-power base station (e.g., a micro base station, a pico base station, a home eNB, or the like) , and a relay node.
- a base station e.g., a New Radio (NR) base station (gNB) in a Third Generation Partnership Project (3GPP) Fifth Generation (5G) NR network or an enhanced or evolved Node B (eNB
- a “core network node” is any type of node in a core network.
- Some examples of a core network node include, e.g., a Mobility Management Entity (MME) , a Packet Data Network Gateway (P-GW) , a Service Capability Exposure Function (SCEF) , or the like.
- MME Mobility Management Entity
- P-GW Packet Data Network Gateway
- SCEF Service Capability Exposure Function
- a “wireless device” is any type of device that has access to (i.e., is served by) a cellular communications network by wirelessly transmitting and/or receiving signals to a radio access node (s) .
- a wireless device include, but are not limited to, a User Equipment device (UE) in a 3GPP network and a Machine Type Communication (MTC) device.
- UE User Equipment device
- MTC Machine Type Communication
- Network Node As used herein, a “network node” is any node that is either part of the radio access network or the core network of a cellular communications network/system.
- the gNB indicates for nonscheduled UEs to skip monitoring PDCCH for one or more slots.
- this indication comprises an UE specific Slot Format Indicator (SFI) , where the UE is not expected to monitor PDCCH on symbols/slots that are set to the uplink direction in the indicated UE specific SFI.
- SFI UE specific Slot Format Indicator
- the PDCCH monitoring information per search space is configured via Radio Resource Control (RRC) .
- RRC Radio Resource Control
- monitoringSlotPeriodicityAndOffset Slots for PDCCH monitoring configured as periodicity and offset
- ⁇ monitoringSymbolsWithinSlot Symbols for PDCCH monitoring in the slots configured for PDCCH monitoring.
- the field is a bitmap of 14 symbols.
- the most significant (left) bit represents the first Orthogonal Frequency Division Multiplexing (OFDM) in a slot.
- the least significant (right) bit represents the last symbol.
- OFDM Orthogonal Frequency Division Multiplexing
- Each PDCCH monitoring occasion is a unit (e.g., a period of time) , which may correspond to slots or symbols of one or more slots, in which the UE is expected to (e.g., shall) monitor PDCCH.
- the gNB may indicate additional PDCCH monitoring information to the UEs.
- the information is sent using layer 1 signaling that may: (1) overwrite the RRC configuration or (2) come on top of (i.e., modify) the RRC configuration, and by that exclude dynamically some RRC configured PDCCH occasion.
- the PDCCH monitoring information is sent in PDCCH, but the below embodiments may be applicable also to the case in which another message is used to convey such information, such as a different downlink physical channel or Medium Access Control (MAC) Control Element (CE) .
- MAC Medium Access Control
- CE Control Element
- the gNB indicates in which symbols of one or more slots the UE is expected to monitor PDCCH.
- the indication can be UE specific or sent to a group of UEs. As a non-limiting example,
- the indication comprises (e.g., is) a bitmap where each bit is mapped to one of the symbols indicated as true in the RRC parameter “monitoringSymbolsWithinSlot. ” For example, if the value of monitoringSymbolsWithinSlot configured for a UE is 10010010000000 then the bitmap composes only 3 bits. If the received PDCCH monitoring bitmap is 100, the UE monitors PDCCH only for symbol #0 for this slot instead of in symbols #0, #3, and #6 as configured by RRC.
- the indication comprises (e.g., is) a bitmap where each bit is mapped to one of the symbols indicated by “monitoringSymbolsWithinSlot, ” where “true” implies that the corresponding symbol in monitoringSymbolsWithinSlot is set to ‘1. ’ For example, if the value of monitoringSymbolsWithinSlot configured for a UE is 10010010000000 and the received PDCCH monitoring bitmap is 10000000000000, then the UE monitors PDCCH only for symbol #0 for this slot instead of in symbols #0, #3, and #6 as configured by RRC.
- the UE first combines their respective RRC parameter “monitoringSymbolsWithinSlot” and indicates the combined “monitoringSymbolsWithinSlot” as true or not. For example, if the values of monitoringSymbolsWithinSlot in two search spaces configured for a UE are ‘10001000100000’ and ‘00010001000100, ’ then the combined value is ‘10011001100100. ’ Then the length of bitmap will be 6 bits. If it is ‘100000, ’ the UE will only monitor symbol #0.
- the PDCCH monitoring information is applied starting from one of the next symbols with value ‘1’ in monitoringSymbolsWithinSlot with respect to the symbol in which the PDCCH is received. For example, if monitoringSymbolsWithinSlot is ‘00010001000100’ and the PDCCH containing the PDCCH monitoring information is received in the symbol corresponding to the #4 ‘1’ in monitoringSymbolsWithinSlot, the bit corresponding to the #4 symbol in the bitmap indicated in PDCCH shall be set to ‘0. ’ In one method the PDCCH containing the monitoring information is always sent in a fixed specific symbol corresponding to one of the bits set to ‘1’ in monitoringSymbolsWithinSlot; for example, it is always sent in the symbol corresponding the first bit with value ‘1. ’ In one method, if the PDCCH is not received in such specific symbol, the UE stops monitoring the PDCCH in the other symbols within this slot.
- the PDCCH monitoring information is applied starting from the next slot that the UE will monitor, i.e. if the PDCCH is received in some of the symbols in slot X, the UE shall apply the bitmap indicated in PDCCH starting from the slot X+Y, where Y is the monitoring periodicity indicated in monitoringSlotPeriodicityAndOffset.
- the gNB configures in RRC a set of possible bitmaps where each bitmap corresponds to a possible combination of symbols within a slot in which the UE may monitor PDCCH.
- Each of such combinations is associated in RRC with an index and possibly with one or more cell indexes corresponding to the cells in which such bitmap shall be applied by the UE.
- Each of such combination may or may not overlap with the field “monitoringSlotPeriodicityAndOffset. ”
- the gNB when starting transmission may indicate in PDCCH which of such possible configured bitmaps the UE shall apply, i.e. shall activate.
- PDCCH contains the index of the bitmap configured in RRC that the UE shall apply, and optionally the cell index to which the bitmap shall be applied; otherwise, the UE applies the bitmap in the cell in which the PDCCH is received.
- More than one bitmap for multiple slots can be sent by the gNB together.
- the gNB may configure different possible slot periodicities/offsets in RRC, e.g. multiple configurations of monitoringSlotPeriodicityAndOffset, and each of such slot periodicities/offset configurations is associated to an index.
- the gNB when starting transmission may indicate in PDCCH both the bitmap representing the symbols within the slot to be monitored (following any of the previously disclosed methods) , and the index associated to the slot periodicity/offset that the UE shall apply for the indicated bitmap, e.g. the gNB may indicate to the UE to monitor the symbol #0 and #3 every 5 slots, where 5 is one possible slot periodicity/offset configuration.
- each bitmap indicating the symbol to monitor within the slot is associated to one periodicity/offset configuration, so that when the gNB indicates in PDCCH to apply such bitmap, the UE also applies the associated periodicity/offset configuration.
- the gNB only configures one possible periodicity/offset configuration that will be applied to any symbol bitmap when indicated in PDCCH monitoring information.
- the gNB configures one or more possible bitmaps, where each bit in each bitmap, when set to ‘1 , ’ represents the slot within a given Discontinuous Reception (DRX) active window in which the UE shall apply the “symbol within slot” configuration indicated in the PDCCH monitoring information, as per the above methods.
- the bits of the bitmap that correspond to slots in which the UE is in DRX sleeping mode shall be set to ‘0’ or shall be ignored by the UE.
- More than one bitmap for multiple configured cells can be sent by the gNB together, following some of the above disclosed embodiments.
- More than one bitmap for multiple Listen-Before-Talk (LBT) bandwidth pieces can be sent by the gNB together, in which case the PDCCH may indicate the LBT bandwidth pieces (e.g., through an index associated to each LBT bandwidth piece) to which the bitmap shall be applied.
- LBT Listen-Before-Talk
- More than one bitmap for a combination of multiple slots and/or multiple cells and/or multiple LBT bandwidth pieces can be sent by the gNB together, using some combinations of the previously disclosed methods.
- the indication can be sent based on:
- PDCCH Physical Downlink Control Channel
- This PDCCH may be addressed to a Cell Radio Network Temporary Identifier (C-RNTI) , or a Temporary C-RNTI (TC-RNTI) or another temporary UE.
- C-RNTI Cell Radio Network Temporary Identifier
- TC-RNTI Temporary C-RNTI
- the PDCCH may be addressed with group common Radio Network Temporary Identifier (RNTI) so multiple UEs can receive the monitoring information.
- RNTI Radio Network Temporary Identifier
- bitmap information is encoded directly with Reed Muller code without attaching a Cyclic Redundancy Check (CRC) .
- CRC Cyclic Redundancy Check
- the new PHY channel can occupy similar frequency and time resources as a PDCCH such that the new PHY channel can be multiplexed within a control resource set with other regular PDCCH.
- Control Resource Set (CORESET) 1 is linked to only one search space with “monitoringSymbolsWithinSlot” as ‘100010001000. ’
- the indicated rate matching pattern is also updated.
- the bitmap could be also an indicator of activated search space. For example, if two search spaces are configured for one UE, i.e. slot-based and mini-slot based, the gNB could set the bitmap as ‘10’ to activate slot-based search space and deactivate mini-slot based search space. In order to update rate matching pattern easily, the gNB will configure two CORESET Identifiers (IDs) linked to different search spaces respectively even the frequency resources of these two CORESETs are the same. In this way, different CORESET IDs mean different rate matching patterns.
- IDs CORESET Identifiers
- the UE may skip PDCCH monitoring on a symbol that is scheduled for PDSCH transmission.
- a new signaling is introduced that indicates if the UE is expected to monitor a certain PDCCH occasion. If the UE does not detect this signal at the configured PDCCH occasion, the UE may skip PDCCH decoding.
- the UE is expected to monitor common search space according to the RRC configuration.
- the UE is expected to monitor the UE specific search space only if the information on the common search space indicates that the gNB will send control information on the UE specific search space.
- FIG. 6 illustrates one example of a cellular communications network 600 in which the embodiments described above may be implemented.
- the cellular communications network 600 is a 5G NR network.
- the embodiments are not limited thereto.
- the cellular communications network 600 includes base stations 602-1 and 602-2, which in 5G NR are referred to as gNBs, controlling corresponding macro cells 604-1 and 604-2.
- the base stations 602-1 and 602-2 are generally referred to herein collectively as base stations 602 and individually as base station 602.
- the macro cells 604-1 and 604-2 are generally referred to herein collectively as macro cells 604 and individually as macro cell 604.
- the cellular communications network 600 may also include a number of low power nodes 606-1 through 606-4 controlling corresponding small cells 608-1 through 608-4.
- the low power nodes 606-1 through 606-4 can be small base stations (such as pico or femto base stations) or Remote Radio Heads (RRHs) , or the like.
- RRHs Remote Radio Heads
- one or more of the small cells 608-1 through 608-4 may alternatively be provided by the base stations 602.
- the low power nodes 606-1 through 606-4 are generally referred to herein collectively as low power nodes 606 and individually as low power node 606.
- the small cells 608-1 through 608-4 are generally referred to herein collectively as small cells 608 and individually as small cell 608.
- the base stations 602 (and optionally the low power nodes 606) are connected to a core network 610.
- the base stations 602 and the low power nodes 606 provide service to wireless devices 612-1 through 612-5 in the corresponding cells 604 and 608.
- the wireless devices 612-1 through 612-5 are generally referred to herein collectively as wireless devices 612 and individually as wireless device 612.
- the wireless devices 612 are also sometimes referred to herein as UEs.
- FIG. 7 illustrates the operation of a base station 602 (or 606) and a UE 612 in accordance with at least some of the embodiments described herein. Optional steps are represented with dashed lines.
- the base station 602 optionally sends a semi-static configuration of PDCCH monitoring occasions to the UE 612 (step 700) .
- this semi-static configuration is provided via RRC signaling.
- this semi-static configuration of PDCCH monitoring occasions for the UE 612 includes, for each of one or more search spaces configured for the UE 612, the following parameters:
- monitoringSlotPeriodicityAndOffset Slots for PDCCH monitoring configured as periodicity and offset
- ⁇ monitoringSymbolsWithinSlot Symbols for PDCCH monitoring in the slots configured for PDCCH monitoring.
- the field is a bitmap of 14 symbols. The most significant (left) bit represents the first OFDM in a slot. The least significant (right) bit represents the last symbol.
- Each PDCCH monitoring occasion is a unit which may correspond to slots or symbols of one or more slots in which the UE is expected to (e.g., shall) monitor PDCCH.
- the base station 602 sends a dynamic configuration of PDCCH monitoring occasions to the UE 612 (step 702) .
- This dynamic configuration is preferably sent via layer 1 signaling (e.g., via PDCCH signaling) .
- the dynamic configuration of PDCCH monitoring occasions indicates PDCCH monitoring occasions from among those configured by the semi-static configuration in which the UE 612 is not expected to monitor PDCCH (i.e., indicates PDCCH monitoring occasions from among those configured by the semi-static configuration that are excluded from PDCCH monitoring) .
- the dynamic configuration comprises an indication of a UE specific SFI, where the UE 612 is not expected to monitor PDCCH on symbols/slots that are set to the uplink direction in the indicated UE specific SFI.
- the dynamic configuration includes PDCCH monitoring information that overrides the semi-static configuration or modifies the semi-static configuration such that one or more of the PDCCH monitoring occasions indicated in the semi-static configuration are excluded from PDCCH monitoring (i.e., the UE 612 is not expected to perform PDCCH monitoring for those PDCCH monitoring occasions) .
- the dynamic configuration may be signaling that indicates whether the UE 612 is to skip PDCCH monitoring on a symbol that is scheduled for PDSCH transmission.
- the dynamic configuration is provided by new signaling that indicates if the UE 612 is expected to monitor a certain PDCCH occasion. For instance, for each of the PDCCH occasions indicated in the semi-static configuration of step 700, the UE 612 monitors PDCCH in that PDCCH monitoring occasion only if the UE 612 detects this new signaling at or for that particular PDCCH monitoring occasion.
- the dynamic configuration includes information sent by the base station 602 in a common search space where the UE is expected to monitor a UE specific search space only if the information on the common search space indicates that the base station 602 will send control information on the UE specific search space.
- the UE 612 monitors PDCCH in accordance with the dynamic configuration (step 704) .
- the UE 612 monitors PDCCH only on those PDCCH monitoring occasions not excluded from PDCCH monitoring by the dynamic configuration.
- the base station 602 may update the PDCCH monitoring configuration for the UE 612 at a later time by sending a new dynamic configuration of PDCCH monitoring occasions to the UE 612 (step 706) .
- the UE 612 then monitors PDCCH in accordance with the new configuration (step 708) .
- FIG 8 is a schematic block diagram of a radio access node 800 according to some embodiments of the present disclosure.
- the radio access node 800 may be, for example, a base station 602 or 606.
- the radio access node 800 includes a control system 802 that includes one or more processors 804 (e.g., Central Processing Units (CPUs) , Application Specific Integrated Circuits (ASICs) , Field Programmable Gate Arrays (FPGAs) , and/or the like) , memory 806, and a network interface 808.
- the one or more processors 804 are also referred to herein as processing circuitry.
- the radio access node 800 includes one or more radio units 810 that each includes one or more transmitters 812 and one or more receivers 814 coupled to one or more antennas 816.
- the radio units 810 may be referred to or be part of radio interface circuitry.
- the radio unit (s) 810 is external to the control system 802 and connected to the control system 802 via, e.g., a wired connection (e.g., an optical cable) .
- the radio unit (s) 810 and potentially the antenna (s) 816 are integrated together with the control system 802.
- the one or more processors 804 operate to provide one or more functions of a radio access node 800 as described herein.
- the function (s) are implemented in software that is stored, e.g., in the memory 806 and executed by the one or more processors 804.
- Figure 9 is a schematic block diagram that illustrates a virtualized embodiment of the radio access node 800 according to some embodiments of the present disclosure. This discussion is equally applicable to other types of network nodes. Further, other types of network nodes may have similar virtualized architectures.
- a “virtualized” radio access node is an implementation of the radio access node 800 in which at least a portion of the functionality of the radio access node 800 is implemented as a virtual component (s) (e.g., via a virtual machine (s) executing on a physical processing node (s) in a network (s)) .
- the radio access node 800 includes the control system 802 that includes the one or more processors 804 (e.g., CPUs, ASICs, FPGAs, and/or the like) , the memory 806, and the network interface 808 and the one or more radio units 810 that each includes the one or more transmitters 812 and the one or more receivers 814 coupled to the one or more antennas 816, as described above.
- the control system 802 is connected to the radio unit (s) 810 via, for example, an optical cable or the like.
- the control system 802 is connected to one or more processing nodes 900 coupled to or included as part of a network (s) 902 via the network interface 808.
- Each processing node 900 includes one or more processors 904 (e.g., CPUs, ASICs, FPGAs, and/or the like) , memory 906, and a network interface 908.
- functions 910 of the radio access node 800 described herein are implemented at the one or more processing nodes 900 or distributed across the control system 802 and the one or more processing nodes 900 in any desired manner.
- some or all of the functions 910 of the radio access node 800 described herein are implemented as virtual components executed by one or more virtual machines implemented in a virtual environment (s) hosted by the processing node (s) 900.
- additional signaling or communication between the processing node (s) 900 and the control system 802 is used in order to carry out at least some of the desired functions 910.
- the control system 802 may not be included, in which case the radio unit (s) 810 communicate directly with the processing node (s) 900 via an appropriate network interface (s) .
- a computer program including instructions which, when executed by at least one processor, causes the at least one processor to carry out the functionality of radio access node 800 or a node (e.g., a processing node 900) implementing one or more of the functions 910 of the radio access node 800 in a virtual environment according to any of the embodiments described herein is provided.
- a carrier comprising the aforementioned computer program product is provided. The carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (e.g., a non-transitory computer readable medium such as memory) .
- FIG 10 is a schematic block diagram of the radio access node 800 according to some other embodiments of the present disclosure.
- the radio access node 800 includes one or more modules 1000, each of which is implemented in software.
- the module (s) 1000 provide the functionality of the radio access node 800 described herein. This discussion is equally applicable to the processing node 900 of Figure 9 where the modules 1000 may be implemented at one of the processing nodes 900 or distributed across multiple processing nodes 900 and/or distributed across the processing node (s) 900 and the control system 802.
- FIG 11 is a schematic block diagram of a U E 1100 according to some embodiments of the present disclosure.
- the UE 1100 includes one or more processors 1102 (e.g., CPUs, ASICs, FPGAs, and/or the like) , memory 1104, and one or more transceivers 1106 each including one or more transmitters 1108 and one or more receivers 1110 coupled to one or more antennas 1112.
- the transceiver (s) 1106 includes radio-front end circuitry connected to the antenna (s) 1112 that is configured to condition signals communicated between the antenna (s) 1112 and the processor (s) 1102, as will be appreciated by on of ordinary skill in the art.
- the processors 1102 are also referred to herein as processing circuitry.
- the transceivers 1106 are also referred to herein as radio circuitry.
- the functionality of the UE 1100 described above may be fully or partially implemented in software that is, e.g., stored in the memory 1104 and executed by the processor (s) 1102.
- the UE 1100 may include additional components not illustrated in Figure 11 such as, e.g., one or more user interface components (e.g., an input/output interface including a display, buttons, a touch screen, a microphone, a speaker (s) , and/or the like and/or any other components for allowing input of information into the UE 1100 and/or allowing output of information from the UE 1100) , a power supply (e.g., a battery and associated power circuitry) , etc.
- user interface components e.g., an input/output interface including a display, buttons, a touch screen, a microphone, a speaker (s) , and/or the like and/or any other components for allowing input of information into the UE 1100 and/or allowing output of information from the UE 1100
- a power supply e.g., a battery and associated power circuitry
- a computer program including instructions which, when executed by at least one processor, causes the at least one processor to carry out the functionality of the UE 1100 according to any of the embodiments described herein is provided.
- a carrier comprising the aforementioned computer program product is provided.
- the carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (e.g., a non-transitory computer readable medium such as memory) .
- FIG 12 is a schematic block diagram of the U E 1100 according to some other embodiments of the present disclosure.
- the UE 1100 includes one or more modules 1200, each of which is implemented in software.
- the module (s) 1200 provide the functionality of the UE 1100 described herein.
- a communication system includes a telecommunication network 1300, such as a 3GPP-type cellular network, which comprises an access network 1302, such as a RAN, and a core network 1304.
- the access network 1302 comprises a plurality of base stations 1306A, 1306B, 1306C, such as NBs, eNBs, gNBs, or other types of wireless Access Points (APs) , each defining a corresponding coverage area 1308A, 1308B, 1308C.
- Each base station 1306A, 1306B, 1306C is connectable to the core network 1304 over a wired or wireless connection 1310.
- a first UE 1312 located in coverage area 1308C is configured to wirelessly connect to, or be paged by, the corresponding base station 1306C.
- a second UE 1314 in coverage area 1308A is wirelessly connectable to the corresponding base station 1306A. While a plurality of UEs 1312, 1314 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station 1306.
- the telecommunication network 1300 is itself connected to a host computer 1316, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server, or as processing resources in a server farm.
- the host computer 1316 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider.
- Connections 1318 and 1320 between the telecommunication network 1300 and the host computer 1316 may extend directly from the core network 1304 to the host computer 1316 or may go via an optional intermediate network 1322.
- the intermediate network 1322 may be one of, or a combination of more than one of, a public, private, or hosted network; the intermediate network 1322, if any, may be a backbone network or the Internet; in particular, the intermediate network 1322 may comprise two or more sub-networks (not shown) .
- the communication system of Figure 13 as a whole enables connectivity between the connected UEs 1312, 1314 and the host computer 1316.
- the connectivity may be described as an Over-the-Top (OTT) connection 1324.
- the host computer 1316 and the connected UEs 1312, 1314 are configured to communicate data and/or signaling via the OTT connection 1324, using the access network 1302, the core network 1304, any intermediate network 1322, and possible further infrastructure (not shown) as intermediaries.
- the OTT connection 1324 may be transparent in the sense that the participating communication devices through which the OTT connection 1324 passes are unaware of routing of uplink and downlink communications.
- the base station 1306 may not or need not be informed about the past routing of an incoming downlink communication with data originating from the host computer 1316 to be forwarded (e.g., handed over) to a connected UE 1312. Similarly, the base station 1306 need not be aware of the future routing of an outgoing uplink communication originating from the U E 1312 towards the host computer 1316.
- a host computer 1402 comprises hardware 1404 including a communication interface 1406 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of the communication system 1400.
- the host computer 1402 further comprises processing circuitry 1408, which may have storage and/or processing capabilities.
- the processing circuitry 1408 may comprise one or more programmable processors, ASICs, FPGAs, or combinations of these (not shown) adapted to execute instructions.
- the host computer 1402 further comprises software 1410, which is stored in or accessible by the host computer 1402 and executable by the processing circuitry 1408.
- the software 1410 includes a host application 1412.
- the host application 1412 may be operable to provide a service to a remote user, such as a UE 1414 connecting via an OTT connection 1416 terminating at the UE 1414 and the host computer 1402.
- the host application 1412 may provide user data which is transmitted using the OTT connection 1416.
- the communication system 1400 further includes a base station 1418 provided in a telecommunication system and comprising hardware 1420 enabling it to communicate with the host computer 1402 and with the UE 1414.
- the hardware 1420 may include a communication interface 1422 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of the communication system 1400, as well as a radio interface 1424 for setting up and maintaining at least a wireless connection 1426 with the UE 1414 located in a coverage area (not shown in Figure 14) served by the base station 1418.
- the communication interface 1422 may be configured to facilitate a connection 1428 to the host computer 1402.
- connection 1428 may be direct or it may pass through a core network (not shown in Figure 14) of the telecommunication system and/or through one or more intermediate networks outside the telecommunication system.
- the hardware 1420 of the base station 1418 further includes processing circuitry 1430, which may comprise one or more programmable processors, ASICs, FPGAs, or combinations of these (not shown) adapted to execute instructions.
- the base station 1418 further has software 1432 stored internally or accessible via an external connection.
- the communication system 1400 further includes the UE 1414 already referred to.
- the UE’s 1414 hardware 1434 may include a radio interface 1436 configured to set up and maintain a wireless connection 1426 with a base station serving a coverage area in which the UE 1414 is currently located.
- the hardware 1434 of the UE 1414 further includes processing circuitry 1438, which may comprise one or more programmable processors, ASICs, FPGAs, or combinations of these (not shown) adapted to execute instructions.
- the UE 1414 further comprises software 1440, which is stored in or accessible by the UE 1414 and executable by the processing circuitry 1438.
- the software 1440 includes a client application 1442.
- the client application 1442 may be operable to provide a service to a human or non-human user via the UE 1414, with the support of the host computer 1402.
- the executing host application 1412 may communicate with the executing client application 1442 via the OTT connection 1416 terminating at the UE 1414 and the host computer 1402.
- the client application 1442 may receive request data from the host application 1412 and provide user data in response to the request data.
- the OTT connection 1416 may transfer both the request data and the user data.
- the client application 1442 may interact with the user to generate the user data that it provides.
- the host computer 1402, the base station 1418, and the UE 1414 illustrated in Figure 14 may be similar or identical to the host computer 1316, one of the base stations 1306A, 1306B, 1306C, and one of the UEs 1312, 1314 of Figure 13, respectively.
- the inner workings of these entities may be as shown in Figure 14 and independently, the surrounding network topology may be that of Figure 13.
- the OTT connection 1416 has been drawn abstractly to illustrate the communication between the host computer 1402 and the UE 1414 via the base station 1418 without explicit reference to any intermediary devices and the precise routing of messages via these devices.
- the network infrastructure may determine the routing, which may be configured to hide from the UE 1414 or from the service provider operating the host computer 1402, or both. While the OTT connection 1416 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
- the wireless connection 1426 between the UE 1414 and the base station 1418 is in accordance with the teachings of the embodiments described throughout this disclosure.
- One or more of the various embodiments improve the performance of OTT services provided to the UE 1414 using the OTT connection 1416, in which the wireless connection 1426 forms the last segment. More precisely, the teachings of these embodiments may decrease power consumption and thereby provide benefits such as extended battery lifetime.
- a measurement procedure may be provided for the purpose of monitoring data rate, latency, and other factors on which the one or more embodiments improve.
- the measurement procedure and/or the network functionality for reconfiguring the OTT connection 1416 may be implemented in the software 1410 and the hardware 1404 of the host computer 1402 or in the software 1440 and the hardware 1434 of the UE 1414, or both.
- sensors may be deployed in or in association with communication devices through which the OTT connection 1416 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which the software 1410, 1440 may compute or estimate the monitored quantities.
- the reconfiguring of the OTT connection 1416 may include message format, retransmission settings, preferred routing, etc.; the reconfiguring need not affect the base station 1418, and it may be unknown or imperceptible to the base station 1418. Such procedures and functionalities may be known and practiced in the art.
- measurements may involve proprietary UE signaling facilitating the host computer’s 1402 measurements of throughput, propagation times, latency, and the like. The measurements may be implemented in that the software 1410 and 1440 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using the OTT connection 1416 while it monitors propagation times, errors, etc.
- FIG. 15 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
- the communication system includes a host computer, a base station, and a UE which may be those described with reference to Figures 13 and 14. For simplicity of the present disclosure, only drawing references to Figure 15 will be included in this section.
- the host computer provides user data.
- sub-step 1502 (which may be optional) of step 1500, the host computer provides the user data by executing a host application.
- the host computer initiates a transmission carrying the user data to the UE.
- step 1506 the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure.
- step 1508 the UE executes a client application associated with the host application executed by the host computer.
- FIG 16 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
- the communication system includes a host computer, a base station, and a UE which may be those described with reference to Figures 13 and 14. For simplicity of the present disclosure, only drawing references to Figure 16 will be included in this section.
- the host computer provides user data.
- the host computer provides the user data by executing a host application.
- the host computer initiates a transmission carrying the user data to the UE.
- the transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure.
- step 1604 (which may be optional) , the UE receives the user data carried in the transmission.
- FIG 17 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
- the communication system includes a host computer, a base station, and a UE which may be those described with reference to Figures 13 and 14. For simplicity of the present disclosure, only drawing references to Figure 17 will be included in this section.
- step 1700 the UE receives input data provided by the host computer. Additionally or alternatively, in step 1702, the UE provides user data.
- sub-step 1704 (which may be optional) of step 1700, the UE provides the user data by executing a client application.
- sub-step 1706 (which may be optional) of step 1702, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer.
- the executed client application may further consider user input received from the user.
- the UE initiates, in sub-step 1708 (which may be optional) , transmission of the user data to the host computer.
- step 1710 of the method the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
- FIG 18 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment.
- the communication system includes a host computer, a base station, and a UE which may be those described with reference to Figures 13 and 14. For simplicity of the present disclosure, only drawing references to Figure 18 will be included in this section.
- the base station receives user data from the UE.
- the base station initiates transmission of the received user data to the host computer.
- the host computer receives the user data carried in the transmission initiated by the base station.
- any appropriate steps, methods, features, functions, or benefits disclosed herein may be performed through one or more functional units or modules of one or more virtual apparatuses.
- Each virtual apparatus may comprise a number of these functional units.
- These functional units may be implemented via processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include Digital Signal Processors (DSPs) , special-purpose digital logic, and the like.
- the processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as Read Only Memory (ROM) , Random Access Memory (RAM) , cache memory, flash memory devices, optical storage devices, etc.
- Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein.
- the processing circuitry may be used to cause the respective functional unit to perform corresponding functions according one or more embodiments of the present disclosure.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Systems and methods are disclosed herein for dynamic control of Physical Downlink Control Channel (PDCCH) monitoring occasions for a User Equipment (UE) using, e.g., layer 1 signaling.
Description
The present disclosure relates to Physical Downlink Channel (PDCCH) monitoring.
New Radio (NR) standard in Third Generation Partnership Project (3GPP) is being designed to provide service for multiple use cases such as enhanced Mobile Broadband (eMBB) , Ultra-Reliable and Low Latency Communication (URLLC) , and Machine Type Communication (MTC) . Each of these services has different technical requirements. For example, the general requirement for eMBB is high data rate with moderate latency and moderate coverage, while URLLC service requires a low latency and high reliability transmission but perhaps for moderate data rates.
One of the solutions for low latency data transmission is shorter transmission time intervals using Type A or B scheduling, also known as mini-slots. In NR in addition to transmission in a slot, a mini-slot transmission is also allowed to reduce latency. A mini-slot may consist of any number of 1 to 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols. It should be noted that the concepts of slot and mini-slot are not specific to a specific service, meaning that a mini-slot may be used for either eMBB, URLLC, or other services. It should also be noted that the term “mini-slot” is not the standardized name. In the 3GPP standards, mini-slots are referred to as transmission time intervals using Type A or B scheduling.
Figure 1 illustrates an exemplary radio resource in NR.
Resource Blocks (RBs)
In Release (Rel) 15 NR, a User Equipment device (UE) can be configured with up to four carrier bandwidth parts in the downlink with a single downlink carrier bandwidth part being active at a given time. A UE can be configured with up to four carrier bandwidth parts in the uplink with a single uplink carrier bandwidth part being active at a given time. If a UE is configured with a supplementary uplink, the UE can in addition be configured with up to four carrier bandwidth parts in the supplementary uplink with a single supplementary uplink carrier bandwidth part being active at a given time.
For a carrier bandwidth part with a given numerology μ
i, a contiguous set of Physical Resource Blocks (PRBs) are defined and numbered from 0 to
where i is the index of the carrier bandwidth part. A RB is defined as 12 consecutive subcarriers in the frequency domain.
Numerologies
Multiple OFDM numerologies, μ, are supported in NR as given by Table 1, where the subcarrier spacing, Δf, and the cyclic prefix for a carrier bandwidth part are configured by different higher layer parameters for downlink and uplink, respectively.
Table 1: Supported transmission numerologies.
Physical Channels
A downlink physical channel corresponds to a set of resource elements carrying information originating from higher layers. The following downlink physical channels are defined:
● Physical Downlink Shared Channel (PDSCH)
● Physical Broadcast Channel (PBCH)
● Physical Downlink Control Channel (PDCCH)
PDSCH is the main physical channel used for unicast downlink data transmission, but also for transmission of Random Access Response (RAR) , certain system information blocks, and paging information. PBCH carries the basic system information, required by the UE to access the network. PDCCH is used for transmitting Downlink Control Information (DCl) , mainly scheduling decisions, required for reception of PDSCH, and for uplink scheduling grants enabling transmission on Physical Uplink Shared Channel (PUSCH) .
An uplink physical channel corresponds to a set of resource elements carrying information originating from higher layers. The following uplink physical channels are defined:
● PUSCH
● Physical Uplink Control Channel (PUCCH)
● Physical Random Access Channel (PRACH)
PUSCH is the uplink counterpart to the PDSCH. PUCCH is used by UEs to transmit uplink control information, including Hybrid Automatic Repeat Request (HARQ) acknowledgements, channel state information reports, etc. PRACH is used for random access preamble transmission.
Frequency Resource Allocation for PUSCH and PDSCH
In general, a UE shall determine the RB assignment in the frequency domain for PUSCH or PDSCH using the resource allocation field in the detected DCl carried in PDCCH. For PUSCH carrying msg3 in a random access procedure, the frequency domain resource assignment is signaled by using the uplink grant contained in RAR.
In NR, two frequency resource allocation schemes, type 0 and type 1, are supported for PUSCH and PDSCH. Which type to use for a PUSCH/PDSCH transmission is either defined by a Radio Resource Control (RRC) configured parameter or indicated directly in the corresponding DCl or uplink grant in RAR (for which type 1 is used) .
The RB indexing for uplink/downlink type 0 and type 1 resource allocation is determined within the UE′s active carrier bandwidth part, and the UE shall, upon detection of PDCCH intended for the UE, determine first the uplink/downlink carrier bandwidth part and then the resource allocation within the carrier bandwidth part. The uplink bandwidth part for PUSCH carrying msg3 is configured by higher layer parameters.
Cell Search and Initial Access Related Channels and Signals
For cell search and initial access, these channels are included: Synchronization Signal (SS) /PBCH block, PDSCH carrying Remaining Minimum System Information (RMSI) /RAR /msg4 scheduled by PDCCH channels carrying DCI, PRACH channels and PUSCH channel carrying msg3. SS and PBCH block (SS/PBCH block, or SSB in shorter format) comprises the above signals (Primary Synchronization Signal (PSS) , Secondary Synchronization Signal (SSS) , and PBCH Demodulation Reference Signal (DMRS) ) , and PBCH. SSB may have 15 kilohertz (kHz) , 30 kHz, 120 kHz, or 240 kHz Subcarrier Spacing (SCS) depending on the frequency range.
PDCCH Monitoring
In 3GPP NR standard, DCI is received over the PDCCH. The PDCCH may carry DCI in messages with different formats. DCI format 0_0 and 0_1 are DCI messages used to convey uplink grants to the UE for transmission of the physical layer data channel in the uplink (PUSCH) and DCI format 1_0 and 1_1 are used to convey downlink grants for transmission of the physical layer data channel on the downlink (PDSCH) . Other DCI formats (2_0, 2_1, 2_2, and 2_3) are used for other purposes such as transmission of slot format information, reserved resource, transmit power control information, etc.
A PDCCH candidate is searched within a common or UE-specific search space which is mapped to a set of time and frequency resources referred to as a Control Resource Set (CORESET) . The search spaces within which PDCCH candidates must be monitored are configured to the UE via RRC signaling. A monitoring periodicity is also configured for different PDCCH candidates. In any particular slot the UE may be configured to monitor multiple PDCCH candidates in multiple search spaces which may be mapped to one or more CORESETs. PDCCH candidates may need to be monitored multiple times in a slot, once every slot, or once in multiple of slots.
The smallest unit used for defining CORESETs is a Resource Element Group (REG) , which is defined as spanning 1 PRB x 1OFDM symbol in frequency and time. Each REG contains DMRSs to aid in the estimation of the radio channel over which that REG was transmitted. When transmitting the PDCCH, a precoder could be used to apply weights at the transmit antennas based on some knowledge of the radio channel prior to transmission. It is possible to improve channel estimation performance at the UE by estimating the channel over multiple REGs that are proximate in time and frequency if the precoder used at the transmitter for the REGs is not different. To assist the UE with channel estimation the multiple REGs can be grouped together to form a REG bundle and the REG bundle size for a CORESET is indicated to the UE. The UE may assume that any precoder used for the transmission of the PDCCH is the same for all the REGs in the REG bundle. A REG bundle may consist of 2, 3, or 6 REGs.
A Control Channel Element (CCE) consists of 6 REGs. The REGs within a CCE may either be contiguous or distributed in frequency. When the REGs are distributed in frequency, the CORESET is said to be using an interleaved mapping of REGs to a CCE and if the REGs are not distributed in frequency, a non-interleaved mapping is said to be used.
Interleaving can provide frequency diversity. Not using interleaving is beneficial for cases where knowledge of the channel allows the use of a precoder in a particular part of the spectrum to improve the Signal to Interference plus Noise Ratio (SINR) at the receiver.
A PDCCH candidate may span 1, 2, 4, 8, or 16 CCEs. If more than one CCE is used, the information in the first CCE is repeated in the other CCEs. Therefore, the number of aggregated CCEs used is referred to as the aggregation level for the PDCCH candidate.
A hashing function is used to determine the CCEs corresponding to PDCCH candidates that a UE must monitor within a search space set. The hashing is done differently for different UEs so that the CCEs used by the UEs are randomized and the probability of collisions between multiple UEs for which PDCCH messages are included in a CORESET is reduced.
Slot Structure
An NR slot consists of 14 OFDM symbols. Figure 2 shows a subframe with 14 OFDM symbols. In Figure 2, T
s and T
symb denote the slot and OFDM symbol duration, respectively.
In addition, a slot may also be shortened to accommodate downlink/uplink transient period or both downlink and uplink transmissions. Potential variations are shown in Figure 3.
Furthermore, NR also defines Type B scheduling, also known as mini-slots. Mini-slots are shorter than slots (according to current agreements from 1 or 2 symbols up to number of symbols in a slot minus one) and can start at any symbol. Mini-slots are used if the transmission duration of a slot is too long or the occurrence of the next slot start (slot alignment) is too late. Applications of mini-slots include among others latency critical transmissions (in this case both mini-slot length and frequent opportunity of mini-slot are important) and unlicensed spectrum where a transmission should start immediately after Listen-Before-Talk (LBT) succeeded (here the frequent opportunity of mini-slot is especially important) . An example of mini-slots is shown in Figure 4, which illustrates a mini-slot with 2 OFDM symbols.
Operation in Unlicensed Spectrum
For a node to be allowed to transmit in unlicensed spectrum, e.g. the 5 gigahertz (GHz) band, it typically needs to perform a Clear Channel Assessment (CCA) . This procedure typically includes sensing the medium to be idle for a number of time intervals. Sensing the medium to be idle can be done in different ways, e.g. using energy detection, preamble detection, or using virtual carrier sensing. The latter implies that the node reads control information from other transmitting nodes informing when a transmission ends. After sensing the medium idle a node is typically allowed to transmit for a certain amount of time, sometimes referred to as Transmission Opportunity (TXOP) . The length of the TXOP depends on regulation and type of CCA that has been performed, but typically ranges from 1 millisecond (ms) to 10 ms.
The mini-slot concept in NR allows a node to access the channel at a much finer granularity compared to, e.g., LTE License Assisted Access (LAA) , where the channel could only be accessed at 500 microsecond (μs) intervals. Using for example 60 kHz subcarrier spacing and a two symbol mini-slot in NR, the channel can be accessed at 36 μs intervals.
LTE LAA supports several methods for reducing the complexity of control channel monitoring for unlicensed band UEs. The enhanced or evolved Node B (eNB) can enable/disable monitoring of certain DCI formats using RRC signaling. For the DCI formats that the UE monitors, the eNB can configure the number of blind decodes for each aggregation level for a given DCI format.
LB T Bandwidth Pieces
Similar to NR, it is expected that NR-Unlicensed (NR-U) will support transmissions with wide bandwidth, e.g., up to several hundreds of megahertz (MHz) bandwidth. However, there could be different radio technologies with different device capabilities that simultaneously share the same spectrum. It will be unlikely that a device will sense the channel free over the whole wide bandwidth, especially at high load. Thus, it is beneficial for NR-U to support transmissions with dynamic bandwidth, in which the device can decide which part (s) of the supported bandwidth to use based on its LBT outcome.
There are two common approaches for the device to use in wideband transmissions: Carrier Aggregation (CA) and single carrier wideband transmissions. In CA transmissions (similar to LTE-based LAA) , the device performs LBT per Component Carrier (CC) (of, e.g., 20 MHz) , then transmits on each free CC. In single carrier wideband transmissions, the device performs LBT per LBT bandwidth piece (of 20 MHz) and aggregates resources from each free LBT bandwidth piece in a single physical Shared Channel (SCH) . Figure 5 shows an example for the wideband operations using CA and single system carrier wideband of 80 MHz. Different UEs may operate on different maximum bandwidth sizes and transmit with different number of RBs depending on their LBT’s outcomes.
Note that separate CORESETs and search spaces need to be configured for different LBT bandwidth pieces to ensure the availability of control signaling when at least one LBT bandwidth piece is available. In the example shown in Figure 5 (B) , UE2 needs to monitor both CORESET2 and CORESET3 since the channel may be available only in LBT bandwidth piece 2 or only in LBT bandwidth piece 3. Similarly, UE3 shall monitor all four CORESETs to get its PDCCH. Furthermore, it is undesirable to configure a wide CORESET across LBT bandwidth pieces. Either the PDCCH is interleaved across the LBT bandwidth pieces or all PDCCH candidates locate in the unavailable LBT bandwidth pieces when part of the channel is busy. Both results in loss of scheduling opportunities. There is hence no difference between the CA and wide bandwidth part approaches in terms of number of CORESETs and search spaces to monitor by the UE.
Summary
To allow a New Radio (NR) access point or base station (gNB) to access the channel using mini-slots, User Equipment devices (UEs) must be configured to monitor the control region with a high periodicity. This is costly in terms of processing resources and power consumption. Therefore, there is a tradeoff between maximizing the channel access granularity and the UE power consumption. There is a need to minimize the UE power consumption without compromising the channel access granularity.
Systems and methods are disclosed herein for dynamic control of the Physical Downlink Channel (PDCCH) monitoring occasions, e.g., using L1 (i.e., physical layer) signaling. This enables dynamic changes to PDCCH monitoring occasions to reduce UE power consumption.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
Figure 1 illustrates an exemplary radio resource in Third Generation Partnership Project (3GPP) New Radio (NR) ;
Figure 2 illustrates a slot structure in 3GPP NR;
Figure 3 illustrates potential variations of a slot in 3GPP NR;
Figure 4 illustrates an example of a mini-slot;
Figure 5 illustrates Carrier Aggregation (CA) and single carrier wideband transmissions;
Figure 6 illustrates one example of a cellular communications network according to some embodiments of the present disclosure;
Figure 7 illustrates he operation of a base station and a User Equipment device (UE) in accordance with at least some of the embodiments described herein;
Figure 8 is a schematic block diagram of a radio access node according to some embodiments of the present disclosure;
Figure 9 is a schematic block diagram that illustrates a virtualized embodiment of the radio access node of Figure 8 according to some embodiments of the present disclosure;
Figure 10 is a schematic block diagram of the radio access node of Figure 8 according to some other embodiments of the present disclosure;
Figure 11 is a schematic block diagram of a UE according to some embodiments of the present disclosure;
Figure 12 is a schematic block diagram of the UE of Figure 11 according to some other embodiments of the present disclosure;
Figure 13 illustrates a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments of the present disclosure;
Figure 14 is a generalized block diagram of a host computer communicating via a base station with a UE over a partially wireless connection in accordance with some embodiments of the present disclosure;
Figure 15 is a flowchart illustrating a method implemented in a communication system in accordance with one embodiment of the present disclosure;
Figure 16 is a flowchart illustrating a method implemented in a communication system in accordance with one embodiment of the present disclosure;
Figure 17 is a flowchart illustrating a method implemented in a communication system in accordance with one embodiment of the present disclosure; and
Figure 18 is a flowchart illustrating a method implemented in a communication system in accordance with one embodiment of the present disclosure.
The embodiments set forth below represent information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure.
Radio Node: As used herein, a “radio node” is either a radio access node or a wireless device.
Radio Access Node: As used herein, a “radio access node” or “radio network node” is any node in a radio access network of a cellular communications network that operates to wirelessly transmit and/or receive signals. Some examples of a radio access node include, but are not limited to, a base station (e.g., a New Radio (NR) base station (gNB) in a Third Generation Partnership Project (3GPP) Fifth Generation (5G) NR network or an enhanced or evolved Node B (eNB) in a 3GPP Long Term Evolution (LTE) network) , a high-power or macro base station, a low-power base station (e.g., a micro base station, a pico base station, a home eNB, or the like) , and a relay node.
Core Network Node: As used herein, a “core network node” is any type of node in a core network. Some examples of a core network node include, e.g., a Mobility Management Entity (MME) , a Packet Data Network Gateway (P-GW) , a Service Capability Exposure Function (SCEF) , or the like.
Wireless Device: As used herein, a “wireless device” is any type of device that has access to (i.e., is served by) a cellular communications network by wirelessly transmitting and/or receiving signals to a radio access node (s) . Some examples of a wireless device include, but are not limited to, a User Equipment device (UE) in a 3GPP network and a Machine Type Communication (MTC) device.
Network Node: As used herein, a “network node” is any node that is either part of the radio access network or the core network of a cellular communications network/system.
Note that the description given herein focuses on a 3GPP cellular communications system and, as such, 3GPP terminology or terminology similar to 3GPP terminology is oftentimes used. However, the concepts disclosed herein are not limited to a 3GPP system.
Note that, in the description herein, reference may be made to the term “cell” ; however, particularly with respect to 5G NR concepts, beams may be used instead of cells and, as such, it is important to note that the concepts described herein are equally applicable to both cells and beams.
Systems and methods are disclosed herein that enable dynamic control of Physical Downlink Channel (PDCCH) monitoring occasions for a UE 612 using, e.g., L1 signaling. Note that while 3GPP NR terminology is used in much of the discussion below, the embodiments described herein are not limited to 3GPP NR. Further, while a number of embodiments are described below separately (i.e., under separate headings) , these embodiments may be used alone or in any desired combination.
Once a gNB starts transmission, other unscheduled UEs may be configured with frequent PDCCH monitoring patterns based on PDSCH type B as well. This is costly and a waste in terms of complexity and power consumption for these unscheduled UEs. To help these UEs determine how to monitor PDCCH for saving power, the gNB indicates for nonscheduled UEs to skip monitoring PDCCH for one or more slots. As a non-limiting example, this indication comprises an UE specific Slot Format Indicator (SFI) , where the UE is not expected to monitor PDCCH on symbols/slots that are set to the uplink direction in the indicated UE specific SFI.
In NR, the PDCCH monitoring information per search space is configured via Radio Resource Control (RRC) . For each configured search space, the following parameters are included:
● monitoringSlotPeriodicityAndOffset: Slots for PDCCH monitoring configured as periodicity and offset
● monitoringSymbolsWithinSlot: Symbols for PDCCH monitoring in the slots configured for PDCCH monitoring. The field is a bitmap of 14 symbols. The most significant (left) bit represents the first Orthogonal Frequency Division Multiplexing (OFDM) in a slot. The least significant (right) bit represents the last symbol.
Together, the monitoringSlotPeriodicityAndOffset and monitoringSymbolsWithinSlot define a number of PDCCH monitoring occasions for the UE. Each PDCCH monitoring occasion is a unit (e.g., a period of time) , which may correspond to slots or symbols of one or more slots, in which the UE is expected to (e.g., shall) monitor PDCCH.
Once a gNB starts transmission, the gNB may indicate additional PDCCH monitoring information to the UEs. The information is sent using layer 1 signaling that may: (1) overwrite the RRC configuration or (2) come on top of (i.e., modify) the RRC configuration, and by that exclude dynamically some RRC configured PDCCH occasion.
In the following embodiments, it is considered that the PDCCH monitoring information is sent in PDCCH, but the below embodiments may be applicable also to the case in which another message is used to convey such information, such as a different downlink physical channel or Medium Access Control (MAC) Control Element (CE) .
The gNB indicates in which symbols of one or more slots the UE is expected to monitor PDCCH. The indication can be UE specific or sent to a group of UEs. As a non-limiting example,
● The indication comprises (e.g., is) a bitmap where each bit is mapped to one of the symbols indicated as true in the RRC parameter “monitoringSymbolsWithinSlot. ” For example, if the value of monitoringSymbolsWithinSlot configured for a UE is 10010010000000 then the bitmap composes only 3 bits. If the received PDCCH monitoring bitmap is 100, the UE monitors PDCCH only for symbol # 0 for this slot instead of in symbols # 0, #3, and #6 as configured by RRC.
● The indication comprises (e.g., is) a bitmap where each bit is mapped to one of the symbols indicated by “monitoringSymbolsWithinSlot, ” where “true” implies that the corresponding symbol in monitoringSymbolsWithinSlot is set to ‘1. ’ For example, if the value of monitoringSymbolsWithinSlot configured for a UE is 10010010000000 and the received PDCCH monitoring bitmap is 10000000000000, then the UE monitors PDCCH only for symbol # 0 for this slot instead of in symbols # 0, #3, and #6 as configured by RRC.
○If multiple search spaces are configured, the UE first combines their respective RRC parameter “monitoringSymbolsWithinSlot” and indicates the combined “monitoringSymbolsWithinSlot” as true or not. For example, if the values of monitoringSymbolsWithinSlot in two search spaces configured for a UE are ‘10001000100000’ and ‘00010001000100, ’ then the combined value is ‘10011001100100. ’ Then the length of bitmap will be 6 bits. If it is ‘100000, ’ the UE will only monitor symbol # 0.
○ The PDCCH monitoring information is applied starting from one of the next symbols with value ‘1’ in monitoringSymbolsWithinSlot with respect to the symbol in which the PDCCH is received. For example, if monitoringSymbolsWithinSlot is ‘00010001000100’ and the PDCCH containing the PDCCH monitoring information is received in the symbol corresponding to the #4 ‘1’ in monitoringSymbolsWithinSlot, the bit corresponding to the #4 symbol in the bitmap indicated in PDCCH shall be set to ‘0. ’ In one method the PDCCH containing the monitoring information is always sent in a fixed specific symbol corresponding to one of the bits set to ‘1’ in monitoringSymbolsWithinSlot; for example, it is always sent in the symbol corresponding the first bit with value ‘1. ’ In one method, if the PDCCH is not received in such specific symbol, the UE stops monitoring the PDCCH in the other symbols within this slot.
In another method, the PDCCH monitoring information is applied starting from the next slot that the UE will monitor, i.e. if the PDCCH is received in some of the symbols in slot X, the UE shall apply the bitmap indicated in PDCCH starting from the slot X+Y, where Y is the monitoring periodicity indicated in monitoringSlotPeriodicityAndOffset.
● In another method, the gNB configures in RRC a set of possible bitmaps where each bitmap corresponds to a possible combination of symbols within a slot in which the UE may monitor PDCCH. Each of such combinations is associated in RRC with an index and possibly with one or more cell indexes corresponding to the cells in which such bitmap shall be applied by the UE. Each of such combination may or may not overlap with the field “monitoringSlotPeriodicityAndOffset. ”
The gNB when starting transmission may indicate in PDCCH which of such possible configured bitmaps the UE shall apply, i.e. shall activate. Such PDCCH contains the index of the bitmap configured in RRC that the UE shall apply, and optionally the cell index to which the bitmap shall be applied; otherwise, the UE applies the bitmap in the cell in which the PDCCH is received.
● More than one bitmap for multiple slots can be sent by the gNB together. For example, the gNB may configure different possible slot periodicities/offsets in RRC, e.g. multiple configurations of monitoringSlotPeriodicityAndOffset, and each of such slot periodicities/offset configurations is associated to an index. The gNB when starting transmission may indicate in PDCCH both the bitmap representing the symbols within the slot to be monitored (following any of the previously disclosed methods) , and the index associated to the slot periodicity/offset that the UE shall apply for the indicated bitmap, e.g. the gNB may indicate to the UE to monitor the symbol # 0 and #3 every 5 slots, where 5 is one possible slot periodicity/offset configuration.
In an alternative method, each bitmap indicating the symbol to monitor within the slot is associated to one periodicity/offset configuration, so that when the gNB indicates in PDCCH to apply such bitmap, the UE also applies the associated periodicity/offset configuration.
In another alternative method, the gNB only configures one possible periodicity/offset configuration that will be applied to any symbol bitmap when indicated in PDCCH monitoring information.
In another alternative method, the gNB configures one or more possible bitmaps, where each bit in each bitmap, when set to ‘1 , ’ represents the slot within a given Discontinuous Reception (DRX) active window in which the UE shall apply the “symbol within slot” configuration indicated in the PDCCH monitoring information, as per the above methods. The bits of the bitmap that correspond to slots in which the UE is in DRX sleeping mode shall be set to ‘0’ or shall be ignored by the UE.
● More than one bitmap for multiple configured cells can be sent by the gNB together, following some of the above disclosed embodiments.
● More than one bitmap for multiple Listen-Before-Talk (LBT) bandwidth pieces can be sent by the gNB together, in which case the PDCCH may indicate the LBT bandwidth pieces (e.g., through an index associated to each LBT bandwidth piece) to which the bitmap shall be applied.
● More than one bitmap for a combination of multiple slots and/or multiple cells and/or multiple LBT bandwidth pieces can be sent by the gNB together, using some combinations of the previously disclosed methods.
The indication can be sent based on:
● One format for this feedback is based on PDCCH. This PDCCH may be addressed to a Cell Radio Network Temporary Identifier (C-RNTI) , or a Temporary C-RNTI (TC-RNTI) or another temporary UE. The PDCCH may be addressed with group common Radio Network Temporary Identifier (RNTI) so multiple UEs can receive the monitoring information.
● Another format for this is a new PHY channel that requires less decoding complexity as compared to PDCCH. In one non-limiting embodiment, the bitmap information is encoded directly with Reed Muller code without attaching a Cyclic Redundancy Check (CRC) . The lower decoding complexity is to help the UE determine the necessary PDCCH monitoring symbols as fast as possible.
○ The new PHY channel can occupy similar frequency and time resources as a PDCCH such that the new PHY channel can be multiplexed within a control resource set with other regular PDCCH.
If PDCCH monitoring occasions are dynamically changed, the rate matching pattern related with this search space is also updated accordingly. For example, if Control Resource Set (CORESET) 1 is linked to only one search space with “monitoringSymbolsWithinSlot” as ‘100010001000. ’ When PDCCH monitoring occasions change to ‘100000000000, ’ the indicated rate matching pattern is also updated.
As a further sub-embodiment, the bitmap could be also an indicator of activated search space. For example, if two search spaces are configured for one UE, i.e. slot-based and mini-slot based, the gNB could set the bitmap as ‘10’ to activate slot-based search space and deactivate mini-slot based search space. In order to update rate matching pattern easily, the gNB will configure two CORESET Identifiers (IDs) linked to different search spaces respectively even the frequency resources of these two CORESETs are the same. In this way, different CORESET IDs mean different rate matching patterns.
The UE may skip PDCCH monitoring on a symbol that is scheduled for PDSCH transmission.
A new signaling is introduced that indicates if the UE is expected to monitor a certain PDCCH occasion. If the UE does not detect this signal at the configured PDCCH occasion, the UE may skip PDCCH decoding.
To save power, the UE is expected to monitor common search space according to the RRC configuration. The UE is expected to monitor the UE specific search space only if the information on the common search space indicates that the gNB will send control information on the UE specific search space.
Figure 6 illustrates one example of a cellular communications network 600 in which the embodiments described above may be implemented. In the embodiments described herein, the cellular communications network 600 is a 5G NR network. However, the embodiments are not limited thereto. In this example, the cellular communications network 600 includes base stations 602-1 and 602-2, which in 5G NR are referred to as gNBs, controlling corresponding macro cells 604-1 and 604-2. The base stations 602-1 and 602-2 are generally referred to herein collectively as base stations 602 and individually as base station 602. Likewise, the macro cells 604-1 and 604-2 are generally referred to herein collectively as macro cells 604 and individually as macro cell 604. The cellular communications network 600 may also include a number of low power nodes 606-1 through 606-4 controlling corresponding small cells 608-1 through 608-4. The low power nodes 606-1 through 606-4 can be small base stations (such as pico or femto base stations) or Remote Radio Heads (RRHs) , or the like. Notably, while not illustrated, one or more of the small cells 608-1 through 608-4 may alternatively be provided by the base stations 602. The low power nodes 606-1 through 606-4 are generally referred to herein collectively as low power nodes 606 and individually as low power node 606. Likewise, the small cells 608-1 through 608-4 are generally referred to herein collectively as small cells 608 and individually as small cell 608. The base stations 602 (and optionally the low power nodes 606) are connected to a core network 610.
The base stations 602 and the low power nodes 606 provide service to wireless devices 612-1 through 612-5 in the corresponding cells 604 and 608. The wireless devices 612-1 through 612-5 are generally referred to herein collectively as wireless devices 612 and individually as wireless device 612. The wireless devices 612 are also sometimes referred to herein as UEs.
Figure 7 illustrates the operation of a base station 602 (or 606) and a UE 612 in accordance with at least some of the embodiments described herein. Optional steps are represented with dashed lines. As illustrated, the base station 602 optionally sends a semi-static configuration of PDCCH monitoring occasions to the UE 612 (step 700) . In some embodiments, this semi-static configuration is provided via RRC signaling. As described above, in some embodiments, this semi-static configuration of PDCCH monitoring occasions for the UE 612 includes, for each of one or more search spaces configured for the UE 612, the following parameters:
● monitoringSlotPeriodicityAndOffset: Slots for PDCCH monitoring configured as periodicity and offset
● monitoringSymbolsWithinSlot: Symbols for PDCCH monitoring in the slots configured for PDCCH monitoring. The field is a bitmap of 14 symbols. The most significant (left) bit represents the first OFDM in a slot. The least significant (right) bit represents the last symbol.
Together, the monitoringSlotPeriodicityAndOffset and monitoringSymbolsWithinSlot define a number of PDCCH monitoring occasions for the UE. Each PDCCH monitoring occasion is a unit which may correspond to slots or symbols of one or more slots in which the UE is expected to (e.g., shall) monitor PDCCH.
Once the base station 602 starts to transmit, the base station 602 sends a dynamic configuration of PDCCH monitoring occasions to the UE 612 (step 702) . This dynamic configuration is preferably sent via layer 1 signaling (e.g., via PDCCH signaling) . In some embodiments, the dynamic configuration of PDCCH monitoring occasions indicates PDCCH monitoring occasions from among those configured by the semi-static configuration in which the UE 612 is not expected to monitor PDCCH (i.e., indicates PDCCH monitoring occasions from among those configured by the semi-static configuration that are excluded from PDCCH monitoring) . For example, in Embodiment 1, the dynamic configuration comprises an indication of a UE specific SFI, where the UE 612 is not expected to monitor PDCCH on symbols/slots that are set to the uplink direction in the indicated UE specific SFI. In Embodiment 2, the dynamic configuration includes PDCCH monitoring information that overrides the semi-static configuration or modifies the semi-static configuration such that one or more of the PDCCH monitoring occasions indicated in the semi-static configuration are excluded from PDCCH monitoring (i.e., the UE 612 is not expected to perform PDCCH monitoring for those PDCCH monitoring occasions) . In Embodiment 3, as an example, the dynamic configuration may be signaling that indicates whether the UE 612 is to skip PDCCH monitoring on a symbol that is scheduled for PDSCH transmission. In Embodiment 4, the dynamic configuration is provided by new signaling that indicates if the UE 612 is expected to monitor a certain PDCCH occasion. For instance, for each of the PDCCH occasions indicated in the semi-static configuration of step 700, the UE 612 monitors PDCCH in that PDCCH monitoring occasion only if the UE 612 detects this new signaling at or for that particular PDCCH monitoring occasion. In Embodiment 5, the dynamic configuration includes information sent by the base station 602 in a common search space where the UE is expected to monitor a UE specific search space only if the information on the common search space indicates that the base station 602 will send control information on the UE specific search space.
The UE 612 monitors PDCCH in accordance with the dynamic configuration (step 704) . For example, the UE 612 monitors PDCCH only on those PDCCH monitoring occasions not excluded from PDCCH monitoring by the dynamic configuration.
Optionally, the base station 602 may update the PDCCH monitoring configuration for the UE 612 at a later time by sending a new dynamic configuration of PDCCH monitoring occasions to the UE 612 (step 706) . The UE 612 then monitors PDCCH in accordance with the new configuration (step 708) .
Figure 8 is a schematic block diagram of a radio access node 800 according to some embodiments of the present disclosure. The radio access node 800 may be, for example, a base station 602 or 606. As illustrated, the radio access node 800 includes a control system 802 that includes one or more processors 804 (e.g., Central Processing Units (CPUs) , Application Specific Integrated Circuits (ASICs) , Field Programmable Gate Arrays (FPGAs) , and/or the like) , memory 806, and a network interface 808. The one or more processors 804 are also referred to herein as processing circuitry. In addition, the radio access node 800 includes one or more radio units 810 that each includes one or more transmitters 812 and one or more receivers 814 coupled to one or more antennas 816. The radio units 810 may be referred to or be part of radio interface circuitry. In some embodiments, the radio unit (s) 810 is external to the control system 802 and connected to the control system 802 via, e.g., a wired connection (e.g., an optical cable) . However, in some other embodiments, the radio unit (s) 810 and potentially the antenna (s) 816 are integrated together with the control system 802. The one or more processors 804 operate to provide one or more functions of a radio access node 800 as described herein. In some embodiments, the function (s) are implemented in software that is stored, e.g., in the memory 806 and executed by the one or more processors 804.
Figure 9 is a schematic block diagram that illustrates a virtualized embodiment of the radio access node 800 according to some embodiments of the present disclosure. This discussion is equally applicable to other types of network nodes. Further, other types of network nodes may have similar virtualized architectures.
As used herein, a “virtualized” radio access node is an implementation of the radio access node 800 in which at least a portion of the functionality of the radio access node 800 is implemented as a virtual component (s) (e.g., via a virtual machine (s) executing on a physical processing node (s) in a network (s)) . As illustrated, in this example, the radio access node 800 includes the control system 802 that includes the one or more processors 804 (e.g., CPUs, ASICs, FPGAs, and/or the like) , the memory 806, and the network interface 808 and the one or more radio units 810 that each includes the one or more transmitters 812 and the one or more receivers 814 coupled to the one or more antennas 816, as described above. The control system 802 is connected to the radio unit (s) 810 via, for example, an optical cable or the like. The control system 802 is connected to one or more processing nodes 900 coupled to or included as part of a network (s) 902 via the network interface 808. Each processing node 900 includes one or more processors 904 (e.g., CPUs, ASICs, FPGAs, and/or the like) , memory 906, and a network interface 908.
In this example, functions 910 of the radio access node 800 described herein are implemented at the one or more processing nodes 900 or distributed across the control system 802 and the one or more processing nodes 900 in any desired manner. In some particular embodiments, some or all of the functions 910 of the radio access node 800 described herein are implemented as virtual components executed by one or more virtual machines implemented in a virtual environment (s) hosted by the processing node (s) 900. As will be appreciated by one of ordinary skill in the art, additional signaling or communication between the processing node (s) 900 and the control system 802 is used in order to carry out at least some of the desired functions 910. Notably, in some embodiments, the control system 802 may not be included, in which case the radio unit (s) 810 communicate directly with the processing node (s) 900 via an appropriate network interface (s) .
In some embodiments, a computer program including instructions which, when executed by at least one processor, causes the at least one processor to carry out the functionality of radio access node 800 or a node (e.g., a processing node 900) implementing one or more of the functions 910 of the radio access node 800 in a virtual environment according to any of the embodiments described herein is provided. In some embodiments, a carrier comprising the aforementioned computer program product is provided. The carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (e.g., a non-transitory computer readable medium such as memory) .
Figure 10 is a schematic block diagram of the radio access node 800 according to some other embodiments of the present disclosure. The radio access node 800 includes one or more modules 1000, each of which is implemented in software. The module (s) 1000 provide the functionality of the radio access node 800 described herein. This discussion is equally applicable to the processing node 900 of Figure 9 where the modules 1000 may be implemented at one of the processing nodes 900 or distributed across multiple processing nodes 900 and/or distributed across the processing node (s) 900 and the control system 802.
Figure 11 is a schematic block diagram of a U E 1100 according to some embodiments of the present disclosure. As illustrated, the UE 1100 includes one or more processors 1102 (e.g., CPUs, ASICs, FPGAs, and/or the like) , memory 1104, and one or more transceivers 1106 each including one or more transmitters 1108 and one or more receivers 1110 coupled to one or more antennas 1112. The transceiver (s) 1106 includes radio-front end circuitry connected to the antenna (s) 1112 that is configured to condition signals communicated between the antenna (s) 1112 and the processor (s) 1102, as will be appreciated by on of ordinary skill in the art. The processors 1102 are also referred to herein as processing circuitry. The transceivers 1106 are also referred to herein as radio circuitry. In some embodiments, the functionality of the UE 1100 described above may be fully or partially implemented in software that is, e.g., stored in the memory 1104 and executed by the processor (s) 1102. Note that the UE 1100 may include additional components not illustrated in Figure 11 such as, e.g., one or more user interface components (e.g., an input/output interface including a display, buttons, a touch screen, a microphone, a speaker (s) , and/or the like and/or any other components for allowing input of information into the UE 1100 and/or allowing output of information from the UE 1100) , a power supply (e.g., a battery and associated power circuitry) , etc.
In some embodiments, a computer program including instructions which, when executed by at least one processor, causes the at least one processor to carry out the functionality of the UE 1100 according to any of the embodiments described herein is provided. In some embodiments, a carrier comprising the aforementioned computer program product is provided. The carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (e.g., a non-transitory computer readable medium such as memory) .
Figure 12 is a schematic block diagram of the U E 1100 according to some other embodiments of the present disclosure. The UE 1100 includes one or more modules 1200, each of which is implemented in software. The module (s) 1200 provide the functionality of the UE 1100 described herein.
With reference to Figure 13, in accordance with an embodiment, a communication system includes a telecommunication network 1300, such as a 3GPP-type cellular network, which comprises an access network 1302, such as a RAN, and a core network 1304. The access network 1302 comprises a plurality of base stations 1306A, 1306B, 1306C, such as NBs, eNBs, gNBs, or other types of wireless Access Points (APs) , each defining a corresponding coverage area 1308A, 1308B, 1308C. Each base station 1306A, 1306B, 1306C is connectable to the core network 1304 over a wired or wireless connection 1310. A first UE 1312 located in coverage area 1308C is configured to wirelessly connect to, or be paged by, the corresponding base station 1306C. A second UE 1314 in coverage area 1308A is wirelessly connectable to the corresponding base station 1306A. While a plurality of UEs 1312, 1314 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station 1306.
The telecommunication network 1300 is itself connected to a host computer 1316, which may be embodied in the hardware and/or software of a standalone server, a cloud-implemented server, a distributed server, or as processing resources in a server farm. The host computer 1316 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider. Connections 1318 and 1320 between the telecommunication network 1300 and the host computer 1316 may extend directly from the core network 1304 to the host computer 1316 or may go via an optional intermediate network 1322. The intermediate network 1322 may be one of, or a combination of more than one of, a public, private, or hosted network; the intermediate network 1322, if any, may be a backbone network or the Internet; in particular, the intermediate network 1322 may comprise two or more sub-networks (not shown) .
The communication system of Figure 13 as a whole enables connectivity between the connected UEs 1312, 1314 and the host computer 1316. The connectivity may be described as an Over-the-Top (OTT) connection 1324. The host computer 1316 and the connected UEs 1312, 1314 are configured to communicate data and/or signaling via the OTT connection 1324, using the access network 1302, the core network 1304, any intermediate network 1322, and possible further infrastructure (not shown) as intermediaries. The OTT connection 1324 may be transparent in the sense that the participating communication devices through which the OTT connection 1324 passes are unaware of routing of uplink and downlink communications. For example, the base station 1306 may not or need not be informed about the past routing of an incoming downlink communication with data originating from the host computer 1316 to be forwarded (e.g., handed over) to a connected UE 1312. Similarly, the base station 1306 need not be aware of the future routing of an outgoing uplink communication originating from the U E 1312 towards the host computer 1316.
Example implementations, in accordance with an embodiment, of the UE, base station, and host computer discussed in the preceding paragraphs will now be described with reference to Figure 14. In a communication system 1400, a host computer 1402 comprises hardware 1404 including a communication interface 1406 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of the communication system 1400. The host computer 1402 further comprises processing circuitry 1408, which may have storage and/or processing capabilities. In particular, the processing circuitry 1408 may comprise one or more programmable processors, ASICs, FPGAs, or combinations of these (not shown) adapted to execute instructions. The host computer 1402 further comprises software 1410, which is stored in or accessible by the host computer 1402 and executable by the processing circuitry 1408. The software 1410 includes a host application 1412. The host application 1412 may be operable to provide a service to a remote user, such as a UE 1414 connecting via an OTT connection 1416 terminating at the UE 1414 and the host computer 1402. In providing the service to the remote user, the host application 1412 may provide user data which is transmitted using the OTT connection 1416.
The communication system 1400 further includes a base station 1418 provided in a telecommunication system and comprising hardware 1420 enabling it to communicate with the host computer 1402 and with the UE 1414. The hardware 1420 may include a communication interface 1422 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of the communication system 1400, as well as a radio interface 1424 for setting up and maintaining at least a wireless connection 1426 with the UE 1414 located in a coverage area (not shown in Figure 14) served by the base station 1418. The communication interface 1422 may be configured to facilitate a connection 1428 to the host computer 1402. The connection 1428 may be direct or it may pass through a core network (not shown in Figure 14) of the telecommunication system and/or through one or more intermediate networks outside the telecommunication system. In the embodiment shown, the hardware 1420 of the base station 1418 further includes processing circuitry 1430, which may comprise one or more programmable processors, ASICs, FPGAs, or combinations of these (not shown) adapted to execute instructions. The base station 1418 further has software 1432 stored internally or accessible via an external connection.
The communication system 1400 further includes the UE 1414 already referred to. The UE’s 1414 hardware 1434 may include a radio interface 1436 configured to set up and maintain a wireless connection 1426 with a base station serving a coverage area in which the UE 1414 is currently located. The hardware 1434 of the UE 1414 further includes processing circuitry 1438, which may comprise one or more programmable processors, ASICs, FPGAs, or combinations of these (not shown) adapted to execute instructions. The UE 1414 further comprises software 1440, which is stored in or accessible by the UE 1414 and executable by the processing circuitry 1438. The software 1440 includes a client application 1442. The client application 1442 may be operable to provide a service to a human or non-human user via the UE 1414, with the support of the host computer 1402. In the host computer 1402, the executing host application 1412 may communicate with the executing client application 1442 via the OTT connection 1416 terminating at the UE 1414 and the host computer 1402. In providing the service to the user, the client application 1442 may receive request data from the host application 1412 and provide user data in response to the request data. The OTT connection 1416 may transfer both the request data and the user data. The client application 1442 may interact with the user to generate the user data that it provides.
It is noted that the host computer 1402, the base station 1418, and the UE 1414 illustrated in Figure 14 may be similar or identical to the host computer 1316, one of the base stations 1306A, 1306B, 1306C, and one of the UEs 1312, 1314 of Figure 13, respectively. This is to say, the inner workings of these entities may be as shown in Figure 14 and independently, the surrounding network topology may be that of Figure 13.
In Figure 14, the OTT connection 1416 has been drawn abstractly to illustrate the communication between the host computer 1402 and the UE 1414 via the base station 1418 without explicit reference to any intermediary devices and the precise routing of messages via these devices. The network infrastructure may determine the routing, which may be configured to hide from the UE 1414 or from the service provider operating the host computer 1402, or both. While the OTT connection 1416 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network) .
The wireless connection 1426 between the UE 1414 and the base station 1418 is in accordance with the teachings of the embodiments described throughout this disclosure. One or more of the various embodiments improve the performance of OTT services provided to the UE 1414 using the OTT connection 1416, in which the wireless connection 1426 forms the last segment. More precisely, the teachings of these embodiments may decrease power consumption and thereby provide benefits such as extended battery lifetime.
A measurement procedure may be provided for the purpose of monitoring data rate, latency, and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring the OTT connection 1416 between the host computer 1402 and the UE 1414, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring the OTT connection 1416 may be implemented in the software 1410 and the hardware 1404 of the host computer 1402 or in the software 1440 and the hardware 1434 of the UE 1414, or both. In some embodiments, sensors (not shown) may be deployed in or in association with communication devices through which the OTT connection 1416 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which the software 1410, 1440 may compute or estimate the monitored quantities. The reconfiguring of the OTT connection 1416 may include message format, retransmission settings, preferred routing, etc.; the reconfiguring need not affect the base station 1418, and it may be unknown or imperceptible to the base station 1418. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling facilitating the host computer’s 1402 measurements of throughput, propagation times, latency, and the like. The measurements may be implemented in that the software 1410 and 1440 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using the OTT connection 1416 while it monitors propagation times, errors, etc.
Figure 15 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station, and a UE which may be those described with reference to Figures 13 and 14. For simplicity of the present disclosure, only drawing references to Figure 15 will be included in this section. In step 1500, the host computer provides user data. In sub-step 1502 (which may be optional) of step 1500, the host computer provides the user data by executing a host application. In step 1504, the host computer initiates a transmission carrying the user data to the UE. In step 1506 (which may be optional) , the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure. In step 1508 (which may also be optional) , the UE executes a client application associated with the host application executed by the host computer.
Figure 16 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station, and a UE which may be those described with reference to Figures 13 and 14. For simplicity of the present disclosure, only drawing references to Figure 16 will be included in this section. In step 1600 of the method, the host computer provides user data. In an optional sub-step (not shown) the host computer provides the user data by executing a host application. In step 1602, the host computer initiates a transmission carrying the user data to the UE. The transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure. In step 1604 (which may be optional) , the UE receives the user data carried in the transmission.
Figure 17 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station, and a UE which may be those described with reference to Figures 13 and 14. For simplicity of the present disclosure, only drawing references to Figure 17 will be included in this section. In step 1700 (which may be optional) , the UE receives input data provided by the host computer. Additionally or alternatively, in step 1702, the UE provides user data. In sub-step 1704 (which may be optional) of step 1700, the UE provides the user data by executing a client application. In sub-step 1706 (which may be optional) of step 1702, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer. In providing the user data, the executed client application may further consider user input received from the user. Regardless of the specific manner in which the user data was provided, the UE initiates, in sub-step 1708 (which may be optional) , transmission of the user data to the host computer. In step 1710 of the method, the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.
Figure 18 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station, and a UE which may be those described with reference to Figures 13 and 14. For simplicity of the present disclosure, only drawing references to Figure 18 will be included in this section. In step 1800 (which may be optional) , in accordance with the teachings of the embodiments described throughout this disclosure, the base station receives user data from the UE. In step 1802 (which may be optional) , the base station initiates transmission of the received user data to the host computer. In step 1804 (which may be optional) , the host computer receives the user data carried in the transmission initiated by the base station.
Any appropriate steps, methods, features, functions, or benefits disclosed herein may be performed through one or more functional units or modules of one or more virtual apparatuses. Each virtual apparatus may comprise a number of these functional units. These functional units may be implemented via processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include Digital Signal Processors (DSPs) , special-purpose digital logic, and the like. The processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as Read Only Memory (ROM) , Random Access Memory (RAM) , cache memory, flash memory devices, optical storage devices, etc. Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein. In some implementations, the processing circuitry may be used to cause the respective functional unit to perform corresponding functions according one or more embodiments of the present disclosure.
While processes in the figures may show a particular order of operations performed by certain embodiments of the present disclosure, it should be understood that such order is exemplary (e.g., alternative embodiments may perform the operations in a different order, combine certain operations, overlap certain operations, etc. ) .
At least some of the following abbreviations may be used in this disclosure. If there is an inconsistency between abbreviations, preference should be given to how it is used above. If listed multiple times below, the first listing should be preferred over any subsequent listing (s) .
● μs Microsecond
● 3GPP Third Generation Partnership Project
● 5G Fifth Generation
● AP Access Point
● ASIC Application Specific Integrated Circuit
● CA Carrier Aggregation
● CC Component Carrier
● CCA Clear Channel Assessment
● CCE Control Channel Element
● CE Control Element
● CORESET Control Resource Set
● CPU Central Processing Unit
● CRC Cyclic Redundancy Check
● C-RNTI Cell Radio Network Temporary Identifier
● DCI Downlink Control Information
● DMRS Demodulation Reference Signal
● DRX Discontinuous Reception
● DSP Digital Signal Processor
● eMBB Enhanced Mobile Broadband
● eNB Enhanced or Evolved Node B
● FPGA Field Programmable Gate Array
● GHz Gigahertz
● gNB New Radio Access Point or Base Station
● HARQ Hybrid Automatic Repeat Request
● ID Identifier
● kHz Kilohertz
● LAA License Assisted Access
● LBT Listen-Before-Talk
● LTE Long Term Evolution
● MAC Medium Access Control
● MHz Megahertz
● MME Mobility Management Entity
● ms Millisecond
● MTC Machine Type Communication
● NR New Radio
● NR-U New Radio -Unlicensed
● OFDM Orthogonal Frequency Division Multiplexing
● OTT Over-the-Top
● PBCH Physical Broadcast Channel
● PDCCH Physical Downlink Channel
● PDSCH Physical Downlink Shared Channel
● P-GW Packet Data Network Gateway
● PRACH Physical Random Access Channel
● PRB Physical Resource Block
● PSS Primary Synchronization Signal
● PUCCH Physical Uplink Control Channel
● PUSCH Physical Uplink Shared Channel
● RAM Random Access Memory
● RAR Random Access Response
● RB Resource Block
● REG Resource Element Group
● Rel Release
● RMSI Remaining Minimum System Information
● RNTI Radio Network Temporary Identifier
● ROM Read Only Memory
● RRC Radio Resource Control
● RRH Remote Radio Head
● SCEF Service Capability Exposure Function
● SCH Shared Channel
● SCS Smaller Subcarrier Spacing
● SFI Slot Format Indicator
● SINR Signal to Interference plus Noise Ratio
● SS Synchronization Signal
● SSB Synchronization Signal and Physical Broadcast
Channel Block
● SSS Secondary Synchronization Signal
● TC-RNTI Temporary Cell Radio Network Temporary Identifier
● TXOP Transmission Opportunity
● UE User Equipment
● URLLC Ultra-Reliable and Low Latency Communication
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein.
Claims (108)
- A base station (602, 606, 800) for communicating with a User Equipment, UE, (612) , the base station (602, 606, 800) comprising:one or more radio units (810) ; andprocessing circuitry (804) configured to:dynamically configure physical downlink control channel monitoring occasions for a UE (612) , wherein each physical downlink control channel monitoring occasion is a unit (e.g., one or more slots or one or more symbols) in which the UE (612) is to perform physical downlink control channel monitoring.
- The base station (602, 606, 800) of claim 1 wherein, in order to dynamically configure the physical downlink control channel monitoring occasions for the UE (612) , the processing circuitry (804) is further configured to dynamically signal physical downlink control channel monitoring information to the UE (612) via the one or more radio units (810) using physical layer signaling.
- The base station (602, 606, 800) of claim 2 wherein the physical layer signaling is physical downlink control channel signaling.
- The base station (602, 606, 800) of any one of claims 1 to 3 wherein, in order to dynamically configure the physical downlink control channel monitoring occasions for the UE (612) , the processing circuitry (804) is further configured to:signal, to the UE (612) at a first time, first physical downlink control channel monitoring information that indicates that the UE (612) is expected to monitor a first set of physical downlink control channel monitoring occasions; andsignal, to the UE (612) at a second time that occurs after the first time, second physical downlink control channel monitoring information that indicates that the UE (612) is expected to monitor a second set of physical downlink control channel monitoring occasions, wherein the first set of physical downlink control channel monitoring occasions is different than the second set of physical downlink control channel monitoring occasions.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the physical downlink control channel monitoring information comprises a UE specific Slot Format Indicator, SFI, of a SFI in which the UE (612) is not expected to monitor a physical downlink control channel on symbols or slots that are set to an uplink direction.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the physical downlink control channel monitoring information indicates in which symbols of one or more slots that the UE (612) is expected to monitor a physical downlink control channel.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the processing circuitry (804) is further configured to:send, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information comprises a second bitmap that either overrides the first bitmap or modifies the first bitmap to exclude from physical downlink control channel monitoring at least one of the plurality of symbols within the slot indicated by the first bitmap as a symbol in which the UE (612) is expected to monitor the physical downlink control channel.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the processing circuitry (804) is further configured to:send, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap that indicates that the UE (612) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the processing circuitry (804) is further configured to:send, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the processing circuitry (804) is further configured to:send, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring such that the second bitmap overrides the first bitmap.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the processing circuitry (804) is further configured to:send, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , two or more first bitmaps of a plurality of symbols within a slot for two or more search spaces, respectively, where each bit in each of the two or more first bitmaps is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols in a respective one of the two or more search spaces;wherein the physical downlink control channel monitoring information comprises a second bitmap that either:overrides a combined bitmap, the combined bitmap being a combination of the two or more first bitmaps; ormodifies the combined bitmap to exclude from physical downlink control channel monitoring at least one of the plurality of symbols within the slot indicated by the combined bitmap as a symbol in which the UE (612) is expected to monitor the physical downlink control channel.
- The base station (602, 606, 800) of claim 11 wherein the combined bitmap is a bit-wise Boolean OR of the two or more first bitmaps.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the processing circuitry (804) is further configured to:send, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information is applied starting from one of next symbols indicated in the first bitmap as being a symbol during which the UE (612) is expected to monitor the physical downlink control channel.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the physical downlink control channel monitoring information is applied starting from a next slot in which the UE (612) is expected to monitor a physical downlink control channel.
- The base station (602, 606, 800) of any one of claims 2 to 4 wherein the processing circuitry (804) is further configured to:send, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , two or more bitmaps each for a plurality of symbols within a slot where each bit in each of the two or more bitmaps is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols; andwherein the physical downlink control channel monitoring information comprises an indication of one of the two or more bitmaps to be used by the UE (612) .
- The base station (602, 606, 800) of any one of claims 2 to 15 wherein the processing circuitry (804) is further configured to:send, to the UE (612) via semi-static signaling (e.g., RRC signaling) , two or more possible slot periodicity and/or offset configurations for physical downlink control channel monitoring; andwherein the physical downlink control channel monitoring information comprises an indication of one of the two or more possible slot periodicity and/or offset configurations to be used by the UE (612) .
- The base station (602, 606, 800) of any one of claims 1 to 16 wherein the UE (612) is expected to skip physical downlink control channel monitoring on a symbol that is scheduled for physical downlink shared channel transmission.
- The base station (602, 606, 800) of claim 1 wherein, in order to dynamically configure the physical downlink control channel monitoring occasions for the UE (612) , the processing circuitry (804) is further configured to, for a particular physical downlink control channel monitoring occasion configured for the UE (612) , signal to the UE (612) an indication if the UE (612) is expected to monitor a physical downlink control channel during the particular physical downlink control channel monitoring occasion.
- The base station (602, 606, 800) of claim 18 wherein the indication is signaled to the UE (612) via physical layer signaling (e.g., physical downlink control channel signaling) .
- The base station (602, 606, 800) of claim 1 wherein, in order to dynamically configure the physical downlink control channel monitoring occasions for the UE (612) , the processing circuitry (804) is further configured to send, to the UE (612) in a common search space, an indication of whether the base station (602, 606, 800) will send control information to the UE (612) in a UE specific search space configured for the UE (612) .
- A communication system including a host computer comprising:processing circuitry configured to provide user data; anda communication interface configured to forward the user data to a cellular network for transmission to a User Equipment, UE,wherein the cellular network comprises a base station having a radio interface and processing circuitry, the base station’s processing circuitry configured to operate as claimed in any one of claims 1 to 20.
- The communication system of claim 21 further including the base station.
- The communication system of claim 22, further including the UE, wherein the UE is configured to communicate with the base station.
- The communication system of claim 23, wherein:the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; andthe UE comprises processing circuitry configured to execute a client application associated with the host application.
- A method implemented in a base station (602, 606, 800) , comprising:dynamically configuring physical downlink control channel monitoring occasions for a User Equipment device, UE, (612) .
- The method of claim 25 wherein dynamically configuring the physical downlink control channel monitoring occasions for the UE (612) comprises dynamically signaling physical downlink control channel monitoring information to the UE (612) via one or more radio units (810) using physical layer signaling.
- The method of claim 26 wherein the physical layer signaling is physical downlink control channel signaling.
- The method of any one of claims 25 to 27 wherein dynamically configuring the physical downlink control channel monitoring occasions for the UE (612) comprises:signaling, to the UE (612) at a first time, first physical downlink control channel monitoring information that indicates that the UE (612) is expected to monitor a first set of physical downlink control channel monitoring occasions; andsignaling, to the UE (612) at a second time that occurs after the first time, second physical downlink control channel monitoring information that indicates that the UE (612) is expected to monitor a second set of physical downlink control channel monitoring occasions, wherein the first set of physical downlink control channel monitoring occasions is different than the second set of physical downlink control channel monitoring occasions.
- The method of any one of claims 26 to 28 wherein the physical downlink control channel monitoring information comprises a UE specific SFI of a SFI in which the UE (612) is not expected to monitor a physical downlink control channel on symbols or slots that are set to an uplink direction.
- The method of any one of claims 26 to 28 wherein the physical downlink control channel monitoring information indicates in which symbols of one or more slots that the UE (612) is expected to monitor a physical downlink control channel.
- The method of any one of claims 26 to 28 further comprising:sending, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information comprises a second bitmap that either overrides the first bitmap or modifies the first bitmap to exclude from physical downlink control channel monitoring at least one of the plurality of symbols within the slot indicated by the first bitmap as a symbol in which the UE (612) is expected to monitor the physical downlink control channel.
- The method of any one of claims 26 to 28 further comprising:sending, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap that indicates that the UE (612) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring.
- The method of any one of claims 26 to 28 further comprising:sending, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring.
- The method of any one of claims 26 to 28 further comprising:sending, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring such that the second bitmap overrides the first bitmap.
- The method of any one of claims 26 to 28 further comprising:sending, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , two or more first bitmaps of a plurality of symbols within a slot for two or more search spaces, respectively, where each bit in each of the two or more first bitmaps is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols in a respective one of the two or more search spaces;wherein the physical downlink control channel monitoring information comprises a second bitmap that either:overrides a combined bitmap, the combined bitmap being a combination of the two or more first bitmaps; ormodifies the combined bitmap to exclude from physical downlink control channel monitoring at least one of the plurality of symbols within the slot indicated by the combined bitmap as a symbol in which the UE (612) is expected to monitor the physical downlink control channel.
- The method of claim 35 wherein the combined bitmap is a bit-wise Boolean OR of the two or more first bitmaps.
- The method of any one of claims 26 to 28 further comprising:sending, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols;wherein the physical downlink control channel monitoring information is applied starting from one of the next symbols indicated in the first bitmap as being a symbol during which the UE (612) is expected to monitor the physical downlink control channel.
- The method of any one of claims 26 to 28 wherein the physical downlink control channel monitoring information is applied starting from a next slot in which the UE (612) is expected to monitor a physical downlink control channel.
- The method of any one of claims 26 to 28 further comprising:sending, to the UE (612) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , two or more bitmaps each for a plurality of symbols within a slot where each bit in each of the two or more bitmaps is mapped to a respective one of the plurality of symbols and indicates whether the UE (612) is expected to monitor a physical downlink control channel during the respective one of the plurality of symbols; andwherein the physical downlink control channel monitoring information comprises an indication of one of the two or more bitmaps to be used by the UE (612) .
- The method of any one of claims 26 to 39 further comprising:sending, to the UE (612) via semi-static signaling (e.g., RRC signaling) , two or more possible slot periodicity and/or offset configurations for physical downlink channel monitoring; andwherein the physical downlink control channel monitoring information comprises an indication of one of the two or more possible slot periodicity and/or offset configurations to be used by the UE (612) .
- The method of any one of claims 25 to 40 wherein the UE (612) is expected to skip physical downlink control channel monitoring on a symbol that is scheduled for physical downlink shared channel transmission.
- The method of claim 25 wherein dynamically configuring the physical downlink control channel monitoring occasions for the UE (612) comprises, for a particular physical downlink control channel monitoring occasion configured for the UE (612) , signaling to the UE (612) an indication if the UE (612) is expected to monitor a physical downlink control channel during the particular physical downlink control channel monitoring occasion.
- The method of claim 42 wherein the indication is signaled to the UE (612) via physical layer signaling (e.g., physical downlink control channel signaling) .
- The method of claim 25 wherein dynamically configuring the physical downlink control channel monitoring occasions for the UE (612) comprises sending, to the UE (612) in a common search space, an indication of whether the base station (602, 606, 800) will send control information to the UE (612) in a UE specific search space configured for the UE (612) .
- A method implemented in a communication system including a host computer, abase station, and a User Equipment, UE, the method comprising:at the host computer, providing user data; andat the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station, wherein the base station performs the method of any one of claims 25 to 44.
- The method of claim 45, further comprising:at the base station, transmitting the user data.
- The method of claim 46, wherein the user data is provided at the host computer by executing a host application, the method further comprising:at the UE, executing a client application associated with the host application.
- A User Equipment, UE, (612, 1100) configured to communicate with a base station (602, 606) , the UE (612, 1100) comprising a radio interface and processing circuitry (1102) configured to:receive, from a base station (602, 606) , dynamic signaling of a configuration of physical downlink control channel monitoring occasions for the UE (612, 1100) .
- The UE (612, 1100) of claim 48 wherein the processing circuitry (1102) is further configured to monitor a physical downlink control channel in accordance with the dynamic signaling of the configuration of physical downlink control channel monitoring occasions for the UE (612, 1100) .
- The UE (612, 1100) of claim 48 or 49 wherein signaling is physical layer signaling.
- The UE (612, 1100) of claim 50 wherein the physical layer signaling is physical downlink control channel signaling.
- The UE (612, 1100) of any one of claims 49 to 51 wherein, in order to receive the dynamic signaling of the configuration of the physical downlink control channel monitoring occasions for the UE (612, 1100) , the processing circuitry (1102) is further configured to:receive, from the base station (602, 606) at a first time, first physical downlink control channel monitoring information that indicates that the UE (612, 1100) is expected to monitor a first set of physical downlink control channel monitoring occasions; andreceive, from the base station (602, 606) at a second time that occurs after the first time, second physical downlink control channel monitoring information that indicates that the UE (612, 1100) is expected to monitor a second set of physical downlink control channel monitoring occasions, wherein the first set of physical downlink control channel monitoring occasions is different than the second set of physical downlink control channel monitoring occasions.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the first and/or second physical downlink control channel monitoring information comprises a UE specific SFI of a SFI in which the UE (612, 1100) is not expected to monitor the physical downlink control channel on symbols or slots that are set to an uplink direction.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the first and/or second physical downlink control channel monitoring information indicates in which symbols of one or more slots that the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the processing circuitry (1102) is further configured to:receive, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap that either overrides the first bitmap or modifies the first bitmap to exclude from physical downlink control channel monitoring at least one of the plurality of symbols within the slot indicated by the first bitmap as a symbol in which the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the processing circuitry (1102) is further configured to:receive, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap that indicates that the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the processing circuitry (1102) is further configured to:receive, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the processing circuitry (1102) is further configured to:receive, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring such that the second bitmap overrides the first bitmap.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the processing circuitry (1102) is further configured to:receive, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , two or more first bitmaps of a plurality of symbols within a slot for two or more search spaces, respectively, where each bit in each of the two or more first bitmaps is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols in a respective one of the two or more search spaces;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap that either:overrides a combined bitmap, the combined bitmap being an combination of the two or more first bitmaps; ormodifies the combined bitmap to exclude from physical downlink control channel monitoring at least one of the plurality of symbols within the slot indicated by the combined bitmap as a symbol in which the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The UE (612, 1100) of claim 59 wherein the combined bitmap is a bit-wise Boolean OR of the two or more first bitmaps.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the processing circuitry (1102) is further configured to:receive, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information is applied starting from one of the next symbols indicated in the first bitmap as being a symbol during which the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the UE (612, 1100) applies the first and/or second physical downlink control channel monitoring information starting from a next slot in which the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The UE (612, 1100) of any one of claims 50 to 52 wherein the processing circuitry (1102) is further configured to:receive, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , two or more bitmaps each for a plurality of symbols within a slot where each bit in each of the two or more bitmaps is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols; andwherein the first and/or second physical downlink control channel monitoring information comprises an indication of one of the two or more bitmaps to be used by the UE (612, 1100) .
- The UE of any one of claims 50 to 63 wherein the processing circuitry (1102) is further configured to:receive, from the base station (602, 606) via semi-static signaling (e.g., RRC signaling) , two or more possible slot periodicity and/or offset configurations for physical downlink channel monitoring; andwherein the first and/or second physical downlink control channel monitoring information comprises an indication of one of the two or more possible slot periodicity and/or offset configurations to be used by the UE (612, 1100) .
- The UE (612, 1100) of any one of claims 48 to 64 wherein the UE (612, 1100) skips physical downlink control channel monitoring on a symbol that is scheduled for physical downlink shared channel transmission.
- The UE (612, 1100) of claim 48 wherein, in order to receive the dynamic configuration of the physical downlink control channel monitoring occasions for the UE (612, 1100) , the processing circuitry (1102) is further configured to, for a particular physical downlink control channel monitoring occasion configured for the UE (612, 1100) , receive, from the base station (602, 606) , an indication if the UE (612, 1100) is expected to monitor a physical downlink control channel during the particular physical downlink control channel monitoring occasion.
- The UE (612, 1100) of claim 66 wherein the indication is received by the UE (612, 1100) via physical layer signaling (e.g., physical downlink control channel signaling) .
- The UE (612, 1100) of claim 48 wherein, in order to receive the dynamic signaling of the configuration of the physical downlink control channel monitoring occasions for the UE (612, 1100) , the processing circuitry (1102) is further configured to receive, from the base station (602, 606) in a common search space, an indication of whether the base station (602, 606) will send control information to the UE (612, 1100) in a UE specific search space configured for the UE (612, 1100) .
- A communication system including a host computer comprising:processing circuitry configured to provide user data; anda communication interface configured to forward user data to a cellular network for transmission to a User Equipment, UE,wherein the UE comprises a radio interface and processing circuitry, the UE’s processing circuitry configured to operate as claimed in any one of claims 48 to 68.
- The communication system of claim 69, further including the UE.
- The communication system of claim 70, wherein the cellular network further includes a base station configured to communicate with the UE.
- The communication system of claim 70 or 71, wherein:the processing circuitry of the host computer is configured to execute a host application, thereby providing the user data; andthe UE’s processing circuitry is configured to execute a client application associated with the host application.
- A method implemented in a User Equipment, UE, (612, 1100) comprising:receiving, from a base station (602, 606) , dynamic signaling of a configuration of physical downlink control channel monitoring occasions for the UE (612, 1100) .
- The method of claim 73 further comprising monitoring a physical downlink control channel in accordance with the dynamic signaling of the configuration of physical downlink control channel monitoring occasions for the UE (612, 1100) .
- The method of claim 73 or 74 wherein the dynamic signaling is physical layer signaling.
- The method of claim 75 wherein the physical layer signaling is physical downlink control channel signaling.
- The method of any one of claims 74 to 76 wherein receiving the dynamic signaling of the configuration of the physical downlink control channel monitoring occasions for the UE (612, 1100) comprises:receiving, from the base station (602, 606) at a first time, first physical downlink control channel monitoring information that indicates that the UE (612, 1100) is expected to monitor a first set of physical downlink control channel monitoring occasions; andreceiving, from the base station (602, 606) at a second time that occurs after the first time, second physical downlink control channel monitoring information that indicates that the UE (612, 1100) is expected to monitor a second set of physical downlink control channel monitoring occasions, wherein the first set of physical downlink control channel monitoring occasions is different than the second set of physical downlink control channel monitoring occasions.
- The method of any one of claims 75 to 77 wherein the first and/or second physical downlink control channel monitoring information comprises a UE specific SFI of a SFI in which the UE (612, 1100) is not expected to monitor the physical downlink control channel on symbols or slots that are set to an uplink direction.
- The method of any one of claims 75 to 77 wherein the first and/or second physical downlink control channel monitoring information indicates in which symbols of one or more slots that the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The method of any one of claims 75 to 77 further comprising:receiving, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap that either overrides the first bitmap or modifies the first bitmap to exclude from physical downlink control channel monitoring at least one of the plurality of symbols within the slot indicated by the first bitmap as a symbol in which the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The method of any one of claims 75 to 77 further comprising:receiving, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap that indicates that the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring.
- The method of any one of claims 75 to 77 further comprising:receiving, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring.
- The method of any one of claims 75 to 77 further comprising:receiving, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap, where each bit of the second bitmap: (a) is mapped to a respective one of the bits in the first bitmap and (b) indicates whether the respective one of the plurality of symbols is to be excluded from physical downlink control channel monitoring such that the second bitmap overrides the first bitmap.
- The method of any one of claims 75 to 77 further comprising:receiving, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , two or more first bitmaps of a plurality of symbols within a slot for two or more search spaces, respectively, where each bit in each of the two or more first bitmaps is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols in a respective one of the two or more search spaces;wherein the first and/or second physical downlink control channel monitoring information comprises a second bitmap that either:overrides a combined bitmap, the combined bitmap being an combination of the two or more first bitmaps; ormodifies the combined bitmap to exclude from physical downlink control channel monitoring at least one of the plurality of symbols within the slot indicated by the combined bitmap as a symbol in which the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The method of claim 84 wherein the combined bitmap is a bit-wise Boolean OR of the two or more first bitmaps.
- The method of any one of claims 75 to 77 further comprising:receiving, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , afirst bitmap of a plurality of symbols within a slot where each bit in the first bitmap is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols;wherein the first and/or second physical downlink control channel monitoring information is applied starting from one of the next symbols indicated in the first bitmap as being a symbol during which the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The method of any one of claims 75 to 77 wherein monitoring the physical downlink control channel in accordance with the dynamic signaling of the configuration of physical downlink control channel monitoring occasions for the UE (612, 1100) comprises applying the physical downlink control channel monitoring information starting from a next slot in which the UE (612, 1100) is expected to monitor the physical downlink control channel.
- The method of any one of claims 75 to 77 further comprising:receiving, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , two or more bitmaps each for a plurality of symbols within a slot where each bit in each of the two or more bitmaps is mapped to a respective one of the plurality of symbols and indicates whether the UE (612, 1100) is expected to monitor the physical downlink control channel during the respective one of the plurality of symbols; andwherein the first and/or second physical downlink control channel monitoring information comprises an indication of one of the two or more bitmaps to be used by the UE (612, 1100) .
- The method of any one of claims 75 to 88 further comprising:receiving, from the base station (602, 606) via semi-static signaling (e.g., Radio Resource Control, RRC, signaling) , two or more possible slot periodicity and/or offset configurations for physical downlink channel monitoring; andwherein the first and/or second physical downlink control channel monitoring information comprises an indication of one of the two or more possible slot periodicity and/or offset configurations to be used by the UE (612, 1100) .
- The method of any one of claims 73 to 89 further comprising skipping physical downlink control channel monitoring on a symbol that is scheduled for physical downlink shared channel transmission.
- The method of claim 73 wherein receiving the dynamic configuration of the physical downlink control channel monitoring occasions for the UE (602, 606) comprises, for a particular physical downlink control channel monitoring occasion configured for the UE (602, 606) , receiving, from the base station (602, 606) , an indication if the UE (602, 606) is expected to monitor the physical downlink control channel during the particular physical downlink control channel monitoring occasion.
- The method of claim 91 wherein the indication is received by the UE (602, 606) via physical layer signaling (e.g., physical downlink control channel signaling) .
- The method of claim 73 wherein receiving the dynamic signaling of the configuration of the physical downlink control channel monitoring occasions for the UE (602, 606) comprises receiving, from the base station (602, 606) in a common search space, an indication of whether the base station (602, 606) will send control information to the UE (602, 606) in a UE specific search space configured for the UE (602, 606) .
- A method implemented in a communication system including a host computer, abase station, and a User Equipment, UE, the method comprising:at the host computer, providing user data; andat the host computer, initiating a transmission carrying the user data to the UE via a cellular network comprising the base station, wherein the UE performs the method of any one of claims 73 to 93.
- The method of claim 94, further comprising:at the UE, receiving the user data from the base station.
- A communication system including a host computer comprising:a communication interface configured to receive user data originating from a transmission from a User Equipment, UE, to a base station,wherein the UE comprises a radio interface and processing circuitry, the UE’s processing circuitry configured to operate as claimed in any one of claims 48 to 68.
- The communication system of claim 96, further including the UE.
- The communication system of claim 97, further including the base station, wherein the base station comprises a radio interface configured to communicate with the UE and a communication interface configured to forward to the host computer the user data carried by a transmission from the UE to the base station.
- The communication system of claim 97 or 98, wherein:the processing circuitry of the host computer is configured to execute a host application; andthe UE’s processing circuitry is configured to execute a client application associated with the host application, thereby providing the user data.
- The method of any one of claims 73 to 93, further comprising:providing user data; andforwarding the user data to a host computer via the transmission to the base station.
- A method implemented in a communication system including a host computer, abase station, and a User Equipment UE, the method comprising:at the host computer, receiving user data transmitted to the base station from the UE, wherein the UE performs the method of any one of claims 73 to 93.
- The method of claim 101, further comprising:at the UE, providing the user data to the base station.
- The method of claim 102, further comprising:at the UE, executing a client application, thereby providing the user data to be transmitted; andat the host computer, executing a host application associated with the client application.
- The method of claim 102, further comprising:at the UE, executing a client application; andat the UE, receiving input data to the client application, the input data being provided at the host computer by executing a host application associated with the client application,wherein the user data to be transmitted is provided by the client application in response to the input data.
- A communication system including a host computer comprising a communication interface configured to receive user data originating from a transmission from a User Equipment, UE, to a base station, wherein the base station comprises a radio interface and processing circuitry, the base station’s processing circuitry configured to operate as claimed in any one of claims 1 to 20.
- The communication system of claim 105, further including the base station.
- The communication system of claim 106, further including the UE, wherein the UE is configured to communicate with the base station.
- The communication system of claim 107, wherein:the processing circuitry of the host computer is configured to execute a host application;the UE is configured to execute a client application associated with the host application, thereby providing the user data to be received by the host computer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/098239 WO2020024202A1 (en) | 2018-08-02 | 2018-08-02 | Dynamic adjustment of pdcch monitoring occasions |
PCT/IB2019/056624 WO2020026213A1 (en) | 2018-08-02 | 2019-08-02 | Dynamic adjustment of physical downlink control channel (pdcch) monitoring occasions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/098239 WO2020024202A1 (en) | 2018-08-02 | 2018-08-02 | Dynamic adjustment of pdcch monitoring occasions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020024202A1 true WO2020024202A1 (en) | 2020-02-06 |
Family
ID=68084878
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/098239 WO2020024202A1 (en) | 2018-08-02 | 2018-08-02 | Dynamic adjustment of pdcch monitoring occasions |
PCT/IB2019/056624 WO2020026213A1 (en) | 2018-08-02 | 2019-08-02 | Dynamic adjustment of physical downlink control channel (pdcch) monitoring occasions |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2019/056624 WO2020026213A1 (en) | 2018-08-02 | 2019-08-02 | Dynamic adjustment of physical downlink control channel (pdcch) monitoring occasions |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2020024202A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114640428A (en) * | 2020-12-15 | 2022-06-17 | 上海朗帛通信技术有限公司 | Method and apparatus in a node used for wireless communication |
WO2022127679A1 (en) * | 2020-12-15 | 2022-06-23 | 维沃移动通信有限公司 | Information transmission method and apparatus, and terminal and network side device |
US11470596B2 (en) | 2019-07-18 | 2022-10-11 | Samsung Electronics Co., Ltd. | Determination of start time of PDCCH monitoring occasion |
WO2024033690A1 (en) * | 2022-08-12 | 2024-02-15 | Nokia Technologies Oy | Non-monotonic control channel monitoring |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130229965A1 (en) * | 2012-03-05 | 2013-09-05 | Qualcomm Incorporated | Paging during connected mode discontinuous reception (drx) operations |
CN107079311A (en) * | 2013-10-18 | 2017-08-18 | 诺基亚通信公司 | Dynamic uplink/downlink configuration |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113225172B (en) * | 2012-01-27 | 2024-05-24 | 交互数字专利控股公司 | Method performed by a WTRU for ePDCCH |
CN107371255B (en) * | 2016-05-12 | 2020-08-18 | 华硕电脑股份有限公司 | Method and apparatus for improving uplink grants in shortened transmission time intervals |
KR102164967B1 (en) * | 2017-01-06 | 2020-10-13 | 한국전자통신연구원 | Method and apparatus for transmitting and receiving control channel in communication system |
US10959206B2 (en) * | 2017-01-09 | 2021-03-23 | Qualcomm Incorporated | Conveying paging group information through control channel transmissions |
-
2018
- 2018-08-02 WO PCT/CN2018/098239 patent/WO2020024202A1/en active Application Filing
-
2019
- 2019-08-02 WO PCT/IB2019/056624 patent/WO2020026213A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130229965A1 (en) * | 2012-03-05 | 2013-09-05 | Qualcomm Incorporated | Paging during connected mode discontinuous reception (drx) operations |
CN107079311A (en) * | 2013-10-18 | 2017-08-18 | 诺基亚通信公司 | Dynamic uplink/downlink configuration |
Non-Patent Citations (2)
Title |
---|
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control(Release 15)", TS 38.213 V15.2.0, 30 June 2018 (2018-06-30), XP051454109 * |
SAMSUNG: "CR to TS 38.213 capturing the RANl#92bis and RAN1#93 meeting agreements and aligning higher layer parameters with TS 38.331", 3GPP TSG-RAN1 MEETING #93,R1-1807957, 25 May 2018 (2018-05-25), XP051452985 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11470596B2 (en) | 2019-07-18 | 2022-10-11 | Samsung Electronics Co., Ltd. | Determination of start time of PDCCH monitoring occasion |
US11917645B2 (en) | 2019-07-18 | 2024-02-27 | Samsung Electronics Co., Ltd. | Determination of start time of PDCCH monitoring occasion |
CN114640428A (en) * | 2020-12-15 | 2022-06-17 | 上海朗帛通信技术有限公司 | Method and apparatus in a node used for wireless communication |
WO2022127679A1 (en) * | 2020-12-15 | 2022-06-23 | 维沃移动通信有限公司 | Information transmission method and apparatus, and terminal and network side device |
CN114640428B (en) * | 2020-12-15 | 2024-04-12 | 上海朗帛通信技术有限公司 | Method and apparatus in a node for wireless communication |
WO2024033690A1 (en) * | 2022-08-12 | 2024-02-15 | Nokia Technologies Oy | Non-monotonic control channel monitoring |
Also Published As
Publication number | Publication date |
---|---|
WO2020026213A1 (en) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11382029B2 (en) | Method and user equipment (UE) for provisioning minimum system information (MSI) in wireless communication system | |
JP7453985B2 (en) | Time resources for new radio configured uplinks (UL) | |
US20240073898A1 (en) | Method and Apparatus for Using Indication Information of Time Domain Resource Allocation | |
US20170005770A1 (en) | Terminal device, base station device, and communication method | |
US20190166619A1 (en) | User terminal and radio communication method | |
JP6451969B2 (en) | Communications system | |
US20240064770A1 (en) | Dci based dl tci state and ul tci state activation | |
US20230300834A1 (en) | Systems and methods of signaling time domain resource allocation for pdsch transmission | |
CN114531938B (en) | UL with repeated configuration | |
WO2020026213A1 (en) | Dynamic adjustment of physical downlink control channel (pdcch) monitoring occasions | |
US20230199793A1 (en) | Systems and methods for updating active tci state for multi-pdcch based multi-trp | |
WO2022024079A1 (en) | Indication of tci states for aperiodic csi-rs with low configuration overhead | |
WO2021205415A1 (en) | Methods of compact trs configuration for nr ue | |
WO2021069506A1 (en) | Systems and methods for control of configured ul and dl transmissions | |
WO2020225142A9 (en) | Method for accessing a cellular communications network in unlicensed spectrum | |
US20220377714A1 (en) | Physical resource block (prb) set availability indication | |
US20240107612A1 (en) | Method for handling dl ul tci states |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18928587 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18928587 Country of ref document: EP Kind code of ref document: A1 |