WO2020022017A1 - Rotating electric machine - Google Patents
Rotating electric machine Download PDFInfo
- Publication number
- WO2020022017A1 WO2020022017A1 PCT/JP2019/026569 JP2019026569W WO2020022017A1 WO 2020022017 A1 WO2020022017 A1 WO 2020022017A1 JP 2019026569 W JP2019026569 W JP 2019026569W WO 2020022017 A1 WO2020022017 A1 WO 2020022017A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnet
- stator
- axis
- circumferential direction
- rotor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/14—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/22—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
Definitions
- the disclosure in this specification relates to a rotating electric machine.
- Patent Document 1 proposes a rotating electric machine applied to household appliances, industrial machines, amusement machines, agricultural construction machines, and automobiles.
- a so-called slot which is a winding accommodating portion partitioned by teeth, is formed in a stator core (that is, an iron core), and a conductor such as a copper wire or an aluminum wire is accommodated in the slot, thereby forming a stator winding. Lines are configured.
- a slotless motor in which the teeth of the stator are eliminated has been proposed (for example, Patent Document 1).
- Patent Document 1 proposes a motor having an outer rotor structure in which a rotor having a magnet is arranged radially outside a stator.
- the present disclosure has been made in view of the above circumstances, and a main object of the present disclosure is to provide a rotating electric machine capable of suitably stopping rotation of a magnet.
- Means 1 A field element having a magnet portion including a plurality of magnetic poles having alternating polarities in a circumferential direction, and a cylindrical magnet holding portion fixed in a state where the magnet portions are stacked in a radial direction, and a multiphase magnetic field element.
- An armature having an armature winding comprising: a rotating electric machine having one of the field element and the armature as a rotor, The magnet unit is oriented such that the direction of the easy axis of magnetization is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, compared to the q-axis side, which is the boundary of the magnetic pole, and the magnets are aligned along the easy axis of magnetization.
- the magnet holding portion is disposed closer to the armature side than the magnet portion in the radial direction, and has a protrusion protruding toward the magnet portion in the radial direction, In the radial direction, a portion of the magnet portion on the side opposite to the armature is provided with a concave portion that opens on the opposite side of the armature and engages with the convex portion in the circumferential direction.
- the concave portion is provided on the d-axis side rather than the q-axis side in the circumferential direction.
- the direction of the easy axis is oriented so as to be parallel to the d-axis as compared with the q-axis side which is the magnetic pole boundary, and a magnet magnetic path is formed along the easy axis.
- the magnet is used for the magnet part.
- this magnet is composed of a plurality of magnets, in order to obtain a magnetic flux density distribution close to a sine wave shape and to increase the magnetic flux density in the d-axis, it is desirable to minimize the gap between magnets adjacent in the circumferential direction. . However, if the gap between the adjacent magnets is made small, the engagement portion arranged in the gap becomes thin, and it becomes impossible to suitably perform the rotation stop.
- the magnet is one magnet formed in an annular shape
- the magnetic flux density distribution is close to a sine wave shape, and the magnetic flux density on the d-axis can be increased. You will not be able to do it.
- the portion on the side opposite to the armature is a portion where the magnet magnetic path is easily shortened and demagnetized easily. That is, even if this portion is deleted, the influence on the magnetic flux density generated from the d-axis is small.
- a concave portion is provided on the side opposite to the armature, that is, on the side of the magnet holding portion.
- a convex portion which engages with the concave portion in the circumferential direction.
- the rotation stop in the circumferential direction.
- the concave portion is provided in a portion that is easily demagnetized, the magnetic flux density distribution is close to a sine wave shape, and the magnetic flux density on the d-axis is increased, and the rotation of the magnet portion is preferably stopped. Can be.
- the means 2 is the same as the means 1,
- the field element includes an end plate that fixes the magnet holding unit in the axial direction, In the magnet holding portion, a hole is provided along the axial direction, and a fastener projecting in the axial direction from the end plate is inserted into the hole of the magnet holding portion, The hole is provided at a position overlapping the protrusion in the circumferential direction.
- the magnet holding portion By inserting the fastening portion from the end plate into the hole provided in the magnet holding portion, even if the magnet holding portion and the end plate are configured separately, the magnet holding portion is not rotated when the rotor rotates. Can be restricted from rotating in the circumferential direction. And the hole part of the magnet holding part was provided in the position overlapped with the convex part in the circumferential direction. Thereby, even when the hole is provided in the magnet holding portion, the thickness in the radial direction is suppressed from being reduced as compared with the place where the hole is not provided, and the magnet holding portion is provided. A decrease in strength can be suppressed. For this reason, it is possible to suitably perform the rotation stop.
- the magnet holding portion is made of a soft magnetic material and functions as a back yoke of the magnet portion, a hole is provided, and when the thickness of the magnet holding portion in the radial direction is reduced, the portion is magnetically saturated and magnet leakage occurs. Can occur. Therefore, by providing the hole at a position overlapping the protrusion in the circumferential direction, it is possible to suppress the thickness of the magnet holding portion in the radial direction from becoming thinner, and to suppress magnetic flux leakage.
- the means (3) is such that in the means (2), at least a part of the hole is provided at a position overlapping the convex part in the radial direction.
- a dimension of the projection in the radial direction is larger than a dimension of the hole.
- the thickness in the radial direction in the portion where the hole is provided in the circumferential direction can be made equal to or greater than the thickness in the portion where the hole is not provided, and Strength can be maintained.
- the magnet holding portion is made of a soft magnetic material and functions as a back yoke of the magnet portion
- a hole is provided to reduce the thickness (thickness excluding the hole) of the magnet holding portion in the radial direction. Then, there is a possibility that magnetic saturation occurs in the portion and magnet leakage occurs. Therefore, by making the size of the protrusion larger than the size of the hole, the radial thickness (thickness excluding the hole) of the magnet holding portion can be maintained, and magnetic flux leakage can be prevented.
- Means 5 is any one of means 1 to 4, wherein the field element is a cylindrical portion fixed in a state where the magnet holding portions are stacked in a radial direction on the side opposite to the armature side of the magnet holding portions.
- the magnet holding portion has an engaging portion that is engaged in a circumferential direction with an engaged portion provided on the cylindrical portion, The engaging portion is provided at a different position in the circumferential direction with respect to the convex portion.
- the engaging portion is provided at a different position in the circumferential direction with respect to the convex portion of the magnet holding portion, the stress from the magnet portion and the stress from the cylindrical portion are concentrated at the same position in the circumferential direction. It can be prevented from being added. That is, the stress from the magnet part and the stress from the cylindrical part can be dispersed. For this reason, it is possible to suppress deformation or the like of the magnet holding portion.
- Means 6 is any one of means 1 to 5, wherein a plurality of the magnets are provided and are arranged side by side in a circumferential direction.
- the magnet holding portion radially connects an inner wall portion arranged inside the magnet portion, an outer wall portion arranged outside the magnet portion, and the inner wall portion and the outer wall portion.
- a side wall provided along the radial direction so as to partition between the magnets adjacent in the circumferential direction,
- the side wall portion is provided at a position overlapping the convex portion in the circumferential direction, and the width of the side wall portion in the circumferential direction is smaller than the width of the convex portion in the circumferential direction.
- the rotation can be stopped by the convex portion, the rotation can be suitably stopped even if the strength is weakened by making the side wall portion thin. Further, by reducing the thickness of the side wall portion, the gap between the magnets can be reduced to obtain a magnetic flux density distribution close to a sine wave shape, and the magnetic flux density on the d-axis can be improved. In addition, since the inside and outside are surrounded by the inner wall and the outer wall of the magnet holding portion in the radial direction, it is possible to prevent the magnet from dropping in the radial direction.
- the means (7) according to any one of the means (1) to (6), wherein the magnet part has a specific coercive force of 400 [kA / m] or more and a residual magnetic flux density of 1.0 [T] or more.
- FIG. 1 is a vertical sectional perspective view of a rotating electric machine
- FIG. 2 is a longitudinal sectional view of the rotating electric machine
- FIG. 3 is a sectional view taken along line III-III of FIG.
- FIG. 4 is an enlarged sectional view showing a part of FIG.
- FIG. 5 is an exploded view of the rotating electric machine
- FIG. 6 is an exploded view of the inverter unit
- FIG. 7 is a torque diagram showing the relationship between the ampere turn of the stator winding and the torque density.
- FIG. 8 is a cross-sectional view of the rotor and the stator
- FIG. 1 is a vertical sectional perspective view of a rotating electric machine
- FIG. 2 is a longitudinal sectional view of the rotating electric machine
- FIG. 3 is a sectional view taken along line III-III of FIG.
- FIG. 4 is an enlarged sectional view showing a part of FIG.
- FIG. 5 is an exploded view of the rotating electric machine
- FIG. 6 is an
- FIG. 9 is an enlarged view of a part of FIG.
- FIG. 10 is a cross-sectional view of the stator
- FIG. 11 is a longitudinal sectional view of the stator
- FIG. 12 is a perspective view of a stator winding
- FIG. 13 is a perspective view showing a configuration of a conductor
- FIG. 14 is a schematic diagram showing a configuration of a strand
- FIG. 15 is a diagram showing the form of each lead in the n-th layer
- FIG. 16 is a side view showing the respective conductors of the n-th layer and the (n + 1) -th layer.
- FIG. 17 is a diagram illustrating a relationship between an electric angle and a magnetic flux density for the magnet of the embodiment
- FIG. 18 is a diagram showing the relationship between the electrical angle and the magnetic flux density for the magnet of the comparative example
- FIG. 19 is an electric circuit diagram of the control system of the rotating electric machine
- FIG. 20 is a functional block diagram illustrating a current feedback control process performed by the control device.
- FIG. 21 is a functional block diagram illustrating a torque feedback control process performed by the control device.
- FIG. 22 is a cross-sectional view of the rotor and the stator according to the second embodiment
- FIG. 23 is a diagram showing a part of FIG. 22 in an enlarged manner.
- FIG. 24 is a cross-sectional view of the rotor and the stator according to the third embodiment
- FIG. 25 is an enlarged view of a part of FIG. FIG.
- FIG. 26 is a diagram specifically showing the flow of magnetic flux in the magnet unit
- FIG. 27 is a cross-sectional view of the stator according to the first modification.
- FIG. 28 is a cross-sectional view of the stator according to the first modification.
- FIG. 29 is a cross-sectional view of a stator according to Modification Example 2
- FIG. 30 is a cross-sectional view of a stator according to a third modification;
- FIG. 31 is a cross-sectional view of a stator according to Modification Example 4
- FIG. 32 is a cross-sectional view of the rotor and the stator in Modification Example 7
- FIG. 33 is a functional block diagram illustrating a part of the processing of the operation signal generation unit in Modification Example 8.
- FIG. 28 is a cross-sectional view of the stator according to the first modification.
- FIG. 29 is a cross-sectional view of a stator according to Modification Example 2
- FIG. 30 is a cross-sectional view
- FIG. 34 is a flowchart illustrating a procedure of a carrier frequency change process.
- FIG. 35 is a diagram showing a connection form of each of the conductors forming the conductor group in Modification Example 9.
- FIG. 36 is a diagram illustrating a configuration in which four pairs of conductive wires are stacked and arranged in Modification Example 9.
- FIG. 37 is a cross-sectional view of an inner rotor type rotor and a stator in Modification Example 10
- FIG. 38 is a diagram showing a part of FIG. 37 in an enlarged manner.
- FIG. 39 is a longitudinal sectional view of an inner rotor type rotating electric machine
- FIG. 40 is a longitudinal sectional view illustrating a schematic configuration of an inner rotor type rotating electric machine
- FIG. 41 is a diagram showing a configuration of a rotating electric machine having an inner rotor structure in Modification Example 11.
- FIG. 42 is a diagram illustrating a configuration of a rotating electric machine having an inner rotor structure in Modification Example 11.
- FIG. 43 is a diagram illustrating a configuration of a rotary armature type rotary electric machine according to Modification Example 12.
- FIG. 44 is a cross-sectional view illustrating a configuration of a conductor according to Modification Example 14.
- FIG. 45 is a diagram showing a relationship between reluctance torque, magnet torque and DM
- FIG. 46 is a view showing teeth.
- FIG. 47 is a longitudinal sectional view of a rotor in another example, FIG.
- FIG. 48 is a cross-sectional view of a rotor and a stator in another example
- FIG. 49 is an enlarged cross-sectional view of a rotor and a stator in another example
- FIG. 50 is a cross-sectional view of a rotor in another example
- FIG. 51 is an enlarged cross-sectional view of a rotor and a stator in another example
- FIG. 52 is an enlarged cross-sectional view of a rotor and a stator in another example
- FIG. 53 is an enlarged cross-sectional view of a rotor and a stator in another example
- FIG. 54 is an enlarged cross-sectional view of a rotor and a stator in another example.
- the rotating electric machine according to the present embodiment is used, for example, as a vehicle power source.
- rotating electric machines can be widely used for industrial use, vehicles, home appliances, OA equipment, gaming machines, and the like.
- parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the parts with the same reference numerals is used.
- the rotating electric machine 10 is a synchronous polyphase AC motor and has an outer rotor structure (eternal rotation structure).
- the outline of the rotating electric machine 10 is shown in FIGS. 1 is a vertical cross-sectional perspective view of the rotary electric machine 10,
- FIG. 2 is a vertical cross-sectional view of the rotary electric machine 10 in a direction along a rotation axis 11, and
- FIG. 3 is a cross-sectional view of the rotary electric machine 10 (a cross-sectional view taken along line III-III in FIG. 2).
- FIG. 4 is a cross-sectional view illustrating a part of FIG. 3 in an enlarged manner. It is.
- FIG. 1 is a vertical cross-sectional perspective view of the rotary electric machine 10
- FIG. 2 is a vertical cross-sectional view of the rotary electric machine 10 in a direction along a rotation axis 11
- FIG. 3 is a cross-sectional view of the rotary electric machine 10 (a cross-sectional view taken along line III-III
- hatching indicating a cut surface is omitted except for the rotation shaft 11 for convenience of illustration.
- the direction in which the rotating shaft 11 extends is defined as the axial direction
- the direction radially extending from the center of the rotating shaft 11 is defined as the radial direction
- the direction extending circumferentially around the rotating shaft 11 is defined as the circumferential direction.
- the rotating electric machine 10 roughly includes a bearing unit 20, a housing 30, a rotor 40, a stator 50, and an inverter unit 60. Each of these members is arranged coaxially with the rotating shaft 11 and assembled in a predetermined order in the axial direction to form the rotating electric machine 10.
- the rotating electric machine 10 of the present embodiment has a configuration having a rotor 40 as a “field element” and a stator 50 as an “armature”, and is embodied as a rotating field type rotating electric machine. It has become something.
- the bearing unit 20 has two bearings 21 and 22 that are arranged apart from each other in the axial direction, and a holding member 23 that holds the bearings 21 and 22.
- the bearings 21 and 22 are, for example, radial ball bearings, each of which has an outer ring 25, an inner ring 26, and a plurality of balls 27 arranged between the outer ring 25 and the inner ring 26.
- the holding member 23 has a cylindrical shape, and bearings 21 and 22 are attached to the inside in the radial direction.
- the rotating shaft 11 and the rotor 40 are rotatably supported inside the bearings 21 and 22 in the radial direction.
- the bearings 21 and 22 constitute a set of bearings that rotatably support the rotating shaft 11.
- the ball 27 is held by a retainer (not shown), and the pitch between the balls is maintained in this state.
- the bearings 21 and 22 have sealing members at upper and lower portions in the axial direction of the retainer, and are filled with non-conductive grease (for example, non-conductive urea grease). Further, the position of the inner ring 26 is mechanically held by a spacer, and a constant-pressure preload that is vertically convex from the inside is applied.
- the housing 30 has a cylindrical peripheral wall 31.
- the peripheral wall 31 has a first end and a second end that face each other in the axial direction.
- the peripheral wall 31 has an end face 32 at a first end and an opening 33 at a second end.
- the opening 33 is open at the entire second end.
- a circular hole 34 is formed in the center of the end face 32, and the bearing unit 20 is fixed to the end face 32 by a fixing tool such as a screw or a rivet while being inserted through the hole 34.
- a hollow cylindrical rotor 40 and a hollow cylindrical stator 50 are accommodated in the housing 30, that is, in an internal space defined by the peripheral wall 31 and the end surface 32.
- the rotating electric machine 10 is of an outer rotor type, and a stator 50 is disposed inside a housing 30 in a radial direction of a cylindrical rotor 40.
- the rotor 40 is cantilevered by the rotating shaft 11 on the end face 32 side in the axial direction.
- the rotor 40 has a magnet holder 41 formed in a hollow cylindrical shape, and an annular magnet unit 42 provided radially inside the magnet holder 41.
- the magnet holder 41 has a substantially cup shape and has a function as a magnet holding member.
- the magnet holder 41 includes a cylindrical portion 43 having a cylindrical shape, a fixed portion (attachment) 44 also having a cylindrical shape and a smaller diameter than the cylindrical portion 43, and an intermediate portion serving as a portion connecting the cylindrical portion 43 and the fixed portion 44. 45.
- the magnet unit 42 is mounted on the inner peripheral surface of the cylindrical portion 43.
- the magnet holder 41 is made of a cold-rolled steel plate (SPCC) having sufficient mechanical strength, forging steel, carbon fiber reinforced plastic (CFRP), or the like.
- SPCC cold-rolled steel plate
- CFRP carbon fiber reinforced plastic
- the rotating shaft 11 is inserted into the through hole 44a of the fixing portion 44.
- the fixed part 44 is fixed to the rotating shaft 11 arranged in the through hole 44a. That is, the magnet holder 41 is fixed to the rotating shaft 11 by the fixing unit 44.
- the fixing portion 44 may be fixed to the rotating shaft 11 by spline connection or key connection using irregularities, welding, caulking, or the like. Thereby, the rotor 40 rotates integrally with the rotating shaft 11.
- Bearings 21 and 22 of the bearing unit 20 are mounted radially outward of the fixing portion 44. Since the bearing unit 20 is fixed to the end face 32 of the housing 30 as described above, the rotating shaft 11 and the rotor 40 are rotatably supported by the housing 30. Thereby, the rotor 40 is rotatable in the housing 30.
- the rotor 40 is provided with a fixing portion 44 at only one of two axially opposed ends thereof, whereby the rotor 40 is cantilevered on the rotating shaft 11.
- the fixed portion 44 of the rotor 40 is rotatably supported at two different positions in the axial direction by the bearings 21 and 22 of the bearing unit 20. That is, the rotor 40 is rotatably supported at one of two axially opposed ends of the magnet holder 41 by the two bearings 21 and 22 spaced apart in the axial direction. Therefore, even when the rotor 40 has a structure in which the rotor 40 is cantilevered by the rotating shaft 11, stable rotation of the rotor 40 is realized. In this case, the rotor 40 is supported by the bearings 21 and 22 at a position shifted to one side with respect to the axial center position of the rotor 40.
- a clearance 22 between the outer ring 25 and the inner ring 26 and the ball 27 is provided between the bearing 22 near the center of the rotor 40 (lower side in the figure) and the bearing 21 on the opposite side (upper side in the figure).
- the dimensions are different, for example, the bearing 22 near the center of the rotor 40 has a larger gap size than the bearing 21 on the opposite side. In this case, on the side near the center of the rotor 40, even if vibration of the rotor 40 or vibration due to imbalance due to component tolerance acts on the bearing unit 20, the influence of the vibration or vibration is favorably absorbed. You.
- the play size is increased by the preload in the bearing 22 near the center of the rotor 40 (the lower side in the figure), so that the vibration generated in the cantilever structure is absorbed by the play portion.
- the preload may be either a fixed position preload or a constant pressure preload.
- the outer races 25 of the bearing 21 and the bearing 22 are both joined to the holding member 23 by a method such as press fitting or bonding.
- the inner races 26 of the bearing 21 and the bearing 22 are both joined to the rotating shaft 11 by a method such as press fitting or bonding.
- Preload can be generated by arranging the outer ring 25 of the bearing 21 at a different position in the axial direction with respect to the inner ring 26 of the bearing 21, a preload can be generated. Preload can also be generated by arranging the outer ring 25 of the bearing 22 at a different position in the axial direction with respect to the inner ring 26 of the bearing 22.
- a preload spring for example, a wave washer 24, is provided in the axial direction so that a preload is generated from a region between the bearing 22 and the bearing 21 toward the outer ring 25 of the bearing 22. 22 and the bearing 21 in the same area.
- the inner rings 26 of the bearing 21 and the bearing 22 are both joined to the rotating shaft 11 by a method such as press fitting or bonding.
- the outer ring 25 of the bearing 21 or the bearing 22 is disposed with a predetermined clearance with respect to the holding member 23. With such a configuration, the spring force of the preload spring acts on the outer ring 25 of the bearing 22 in a direction away from the bearing 21.
- a spring force may be applied to the outer ring 25 of the bearing 22 as shown in FIG.
- a spring force may be applied to the outer ring 25 of the bearing 21.
- one of the inner rings 26 of the bearings 21 and 22 is arranged with a predetermined clearance with respect to the rotating shaft 11, and the outer ring 25 of the bearings 21 and 22 is pressed into the holding member 23 or a method such as adhesion is used. By joining together, preload may be applied to the two bearings.
- the intermediate portion 45 has an annular inner shoulder 49a and an annular outer shoulder 49b.
- the outer shoulder portion 49b is located outside the inner shoulder portion 49a in the radial direction of the intermediate portion 45.
- the inner shoulder portion 49a and the outer shoulder portion 49b are separated from each other in the axial direction of the intermediate portion 45.
- the cylindrical portion 43 and the fixed portion 44 partially overlap in the radial direction of the intermediate portion 45.
- the cylindrical portion 43 protrudes outward in the axial direction from the base end of the fixing portion 44 (the lower end on the lower side in the figure).
- the rotor 40 can be supported on the rotating shaft 11 at a position near the center of gravity of the rotor 40 as compared with the case where the intermediate portion 45 is provided in a flat shape without a step. Forty stable operations can be realized.
- the rotor housing 40 has a bearing housing recess 46 that partially surrounds the bearing unit 20 at a position that surrounds the fixed portion 44 in the radial direction and is inward of the intermediate portion 45.
- the coil accommodation concave portion accommodates a coil end 54 of a stator winding 51 of a stator 50 described later. 47 are formed.
- These accommodation recesses 46 and 47 are arranged so as to be adjacent to each other inside and outside in the radial direction. That is, a part of the bearing unit 20 and the coil end 54 of the stator winding 51 are arranged so as to overlap inward and outward in the radial direction.
- the axial length of the rotating electric machine 10 can be reduced.
- the intermediate portion 45 is provided so as to project radially outward from the rotation shaft 11 side.
- a contact avoiding portion that extends in the axial direction and that avoids contact of the stator winding 51 of the stator 50 with the coil end 54 is provided in the intermediate portion 45.
- the intermediate portion 45 corresponds to the overhang portion.
- the bending direction of the coil end 54 may be a direction in which the coil end 54 and the rotor 40 are assembled. Assuming that the stator 50 is assembled radially inward of the rotor 40, the coil end 54 may be bent radially inward on the insertion tip side with respect to the rotor 40.
- the bending direction of the coil end on the side opposite to the coil end 54 may be arbitrary, but a shape bent outward with sufficient space is preferable in terms of manufacturing.
- the magnet unit 42 as a magnet portion is constituted by a plurality of permanent magnets arranged inside the cylindrical portion 43 in the radial direction so that the polarity alternates along the circumferential direction. Thereby, the magnet unit 42 has a plurality of magnetic poles in the circumferential direction. However, details of the magnet unit 42 will be described later.
- the stator 50 is provided radially inside the rotor 40.
- the stator 50 has a stator winding 51 wound in a substantially cylindrical (annular) shape, and a stator core 52 as a base member disposed radially inward of the stator winding 51.
- the line 51 is disposed so as to face the annular magnet unit 42 with a predetermined air gap interposed therebetween.
- the stator winding 51 includes a plurality of phase windings. Each of the phase windings is configured by connecting a plurality of conductors arranged in a circumferential direction at a predetermined pitch.
- the stator winding 51 is configured as a six-phase winding.
- the stator core 52 is formed in an annular shape by a laminated steel sheet in which electromagnetic steel sheets as soft magnetic materials are laminated, and is assembled radially inside the stator winding 51.
- the electromagnetic steel sheet is, for example, a silicon steel sheet obtained by adding about several percent (for example, 3%) of silicon to iron.
- the stator winding 51 corresponds to an armature winding
- the stator core 52 corresponds to an armature core.
- the stator winding 51 is a portion that overlaps the stator core 52 in the radial direction, and is a coil side portion 53 that is radially outside the stator core 52, and one end of the stator core 52 in the axial direction and the other. It has coil ends 54 and 55 projecting to the end sides, respectively.
- the coil side portions 53 face the stator core 52 and the magnet unit 42 of the rotor 40 in the radial direction, respectively.
- the inverter unit 60 has a unit base 61 fixed to the housing 30 by fasteners such as bolts, and a plurality of electric components 62 assembled to the unit base 61.
- the unit base 61 is made of, for example, carbon fiber reinforced plastic (CFRP).
- CFRP carbon fiber reinforced plastic
- the unit base 61 has an end plate 63 fixed to the edge of the opening 33 of the housing 30 and a casing 64 provided integrally with the end plate 63 and extending in the axial direction.
- the end plate 63 has a circular opening 65 at the center thereof, and a casing 64 is formed so as to rise from the peripheral edge of the opening 65.
- the stator 50 is mounted on the outer peripheral surface of the casing 64. That is, the outer diameter of the casing 64 is the same as the inner diameter of the stator core 52 or slightly smaller than the inner diameter of the stator core 52.
- the stator 50 and the unit base 61 are integrated by attaching the stator core 52 to the outside of the casing 64. When the unit base 61 is fixed to the housing 30, the stator 50 is integrated with the housing 30 in a state where the stator core 52 is attached to the casing 64.
- the stator core 52 may be assembled to the unit base 61 by bonding, shrink fitting, press fitting, or the like. Thereby, the displacement of the stator core 52 with respect to the unit base 61 in the circumferential direction or the axial direction is suppressed.
- a radially inner side of the casing 64 is a housing space for housing the electric component 62, and the electric component 62 is arranged in the housing space so as to surround the rotating shaft 11.
- the casing 64 has a role as an accommodation space forming part.
- the electric component 62 includes a semiconductor module 66 constituting an inverter circuit, a control board 67, and a capacitor module 68.
- the unit base 61 is provided radially inside the stator 50 and corresponds to a stator holder (armature holder) that holds the stator 50.
- the housing 30 and the unit base 61 constitute a motor housing of the rotary electric machine 10.
- the holding member 23 is fixed to the housing 30 on one side in the axial direction with the rotor 40 interposed therebetween, and the housing 30 and the unit base 61 are connected to each other on the other side.
- the rotating electric machine 10 is mounted on a vehicle or the like by attaching a motor housing to the vehicle or the like.
- FIG. 6 is an exploded view of the inverter unit 60 in addition to FIGS.
- the casing 64 has a tubular portion 71 and an end face 72 provided at one of the opposite ends in the axial direction (the end on the bearing unit 20 side).
- the opposite side of the end face 72 among both ends in the axial direction of the cylindrical portion 71 is entirely opened through the opening 65 of the end plate 63.
- a circular hole 73 is formed at the center of the end face 72, and the rotary shaft 11 can be inserted into the hole 73.
- the hole 73 is provided with a sealing material 171 that seals a gap between the hole 73 and the outer peripheral surface of the rotating shaft 11.
- the sealant 171 may be a sliding seal made of, for example, a resin material.
- the tubular portion 71 of the casing 64 serves as a partitioning portion between the rotor 40 and the stator 50 disposed radially outside the electrical component 62 disposed radially inward thereof.
- the rotor 40 and the stator 50 and the electric component 62 are arranged inward and outward in the radial direction with the shape portion 71 interposed therebetween.
- the electric component 62 is an electric component forming an inverter circuit, and has a powering function of rotating the rotor 40 by applying a current to each phase winding of the stator winding 51 in a predetermined order; And a power generation function of inputting a three-phase AC current flowing through the stator winding 51 with the rotation of the motor and outputting the generated power to the outside.
- the electric component 62 may have only one of the powering function and the power generation function.
- the power generation function is, for example, a regenerative function that outputs to the outside as regenerative power when the rotating electric machine 10 is used as a vehicle power source.
- a hollow cylindrical capacitor module 68 is provided around the rotation shaft 11, and a plurality of capacitor modules 68 are provided on the outer peripheral surface of the capacitor module 68.
- semiconductor modules 66 are arranged side by side in the circumferential direction.
- the capacitor module 68 includes a plurality of smoothing capacitors 68a connected in parallel with each other.
- the capacitor 68a is a laminated film capacitor in which a plurality of film capacitors are laminated, and has a trapezoidal cross section.
- the capacitor module 68 is configured by arranging twelve capacitors 68a in a ring.
- the capacitor 68a for example, a long film having a predetermined width formed by laminating a plurality of films is used, the film width direction is set to a trapezoidal height direction, and the upper and lower bases of the trapezoid alternate.
- the long film is cut into an equal-leg trapezoidal shape so that the capacitor element is formed. Then, by attaching electrodes and the like to the capacitor element, the capacitor 68a is manufactured.
- the semiconductor module 66 has a semiconductor switching element such as a MOSFET or an IGBT, and is formed in a substantially plate shape.
- a semiconductor switching element such as a MOSFET or an IGBT
- an inverter circuit is provided for each of the three-phase windings, a total of twelve semiconductor modules 66 are arranged in a ring.
- the assembled semiconductor module group 66A is provided in the electric component 62.
- the semiconductor module 66 is disposed between the cylindrical portion 71 of the casing 64 and the capacitor module 68.
- the outer peripheral surface of the semiconductor module group 66A is in contact with the inner peripheral surface of the cylindrical portion 71, and the inner peripheral surface of the semiconductor module group 66A is in contact with the outer peripheral surface of the capacitor module 68.
- the heat generated in the semiconductor module 66 is transmitted to the end plate 63 via the casing 64 and is released from the end plate 63.
- the semiconductor module group 66A preferably has a spacer 69 between the semiconductor module 66 and the cylindrical portion 71 in the outer peripheral surface side, that is, in the radial direction.
- the cross-sectional shape of the cross section orthogonal to the axial direction is a regular dodecagon
- the cross-sectional shape of the inner peripheral surface of the cylindrical portion 71 is circular.
- Has a flat surface and the outer peripheral surface is a curved surface.
- the spacer 69 may be provided integrally so as to be annularly continuous outside the semiconductor module group 66A in the radial direction.
- the spacer 69 is a good heat conductor, for example, a metal such as aluminum, or a heat dissipation gel sheet.
- the cross-sectional shape of the inner peripheral surface of the cylindrical portion 71 can be the same dodecagon as that of the capacitor module 68.
- both the inner peripheral surface and the outer peripheral surface of the spacer 69 are preferably flat surfaces.
- a cooling water passage 74 for flowing cooling water is formed in the cylindrical portion 71 of the casing 64, and heat generated in the semiconductor module 66 is supplied to the cooling water flowing through the cooling water passage 74. Is also released. That is, the casing 64 has a water cooling mechanism. As shown in FIGS. 3 and 4, the cooling water passage 74 is formed in an annular shape so as to surround the electric component 62 (the semiconductor module 66 and the capacitor module 68). The semiconductor module 66 is arranged along the inner peripheral surface of the cylindrical portion 71, and a cooling water passage 74 is provided at a position overlapping the semiconductor module 66 inward and outward in the radial direction.
- stator 50 Since the stator 50 is disposed outside the tubular portion 71 and the electric component 62 is disposed inside, the heat of the stator 50 is transmitted to the tubular portion 71 from the outside, The heat of the electric component 62 (for example, the heat of the semiconductor module 66) is transmitted from the inside. In this case, the stator 50 and the semiconductor module 66 can be cooled at the same time, and the heat of the heat generating member in the rotating electric machine 10 can be efficiently released.
- the semiconductor module 66 that constitutes a part or all of the inverter circuit that operates the rotating electric machine by energizing the stator winding 51 is disposed outside the cylindrical portion 71 of the casing 64 in the radial direction.
- the entirety of one semiconductor module 66 is arranged in a region surrounded by stator core 52.
- the entirety of all the semiconductor modules 66 is arranged in a region surrounded by the stator core 52.
- At least a part of the semiconductor module 66 is arranged in a region surrounded by the cooling water passage 74. Desirably, the entirety of all the semiconductor modules 66 is arranged in a region surrounded by the yoke 141.
- the electric component 62 includes an insulating sheet 75 provided on one end face of the capacitor module 68 and a wiring module 76 provided on the other end face in the axial direction.
- the capacitor module 68 has two end faces facing each other in the axial direction, that is, a first end face and a second end face.
- the first end face of the capacitor module 68 near the bearing unit 20 is opposed to the end face 72 of the casing 64, and is superposed on the end face 72 with the insulating sheet 75 interposed therebetween.
- a wiring module 76 is mounted on a second end face of the capacitor module 68 near the opening 65.
- the wiring module 76 has a main body portion 76a made of a synthetic resin and having a circular plate shape, and a plurality of busbars 76b and 76c embedded therein.
- the busbars 76b and 76c allow the semiconductor module 66 and the capacitor to be mounted.
- An electrical connection is made with the module 68.
- the semiconductor module 66 has a connection pin 66a extending from the axial end face, and the connection pin 66a is connected to the bus bar 76b on the radial outside of the main body portion 76a.
- the bus bar 76c extends on the outer side of the main body 76a in the radial direction on the side opposite to the capacitor module 68, and is connected to the wiring member 79 at its tip (see FIG. 2).
- the heat radiation path of the capacitor module 68 A path is formed from the first end face and the second end face of the capacitor module 68 to the end face 72 and the cylindrical portion 71. That is, a path from the first end face to the end face 72 and a path from the second end face to the cylindrical portion 71 are formed. Thereby, heat can be radiated from the end face of the capacitor module 68 other than the outer peripheral face where the semiconductor module 66 is provided. That is, not only the heat radiation in the radial direction but also the heat radiation in the axial direction are possible.
- the capacitor module 68 has a hollow cylindrical shape and the rotating shaft 11 is disposed on the inner peripheral portion thereof with a predetermined gap interposed therebetween, the heat of the capacitor module 68 can be released from the hollow portion. ing. In this case, the flow of air is generated by the rotation of the rotating shaft 11, so that the cooling effect is enhanced.
- a disc-shaped control board 67 is attached to the wiring module 76.
- the control board 67 has a printed circuit board (PCB) on which a predetermined wiring pattern is formed.
- PCB printed circuit board
- a control device 77 corresponding to a control unit including various ICs and a microcomputer is mounted. I have.
- the control board 67 is fixed to the wiring module 76 by a fixture such as a screw.
- the control board 67 has an insertion hole 67a at the center thereof, through which the rotating shaft 11 is inserted.
- the wiring module 76 has a first surface and a second surface that face each other in the axial direction, that is, that face each other in the thickness direction.
- the first surface faces the capacitor module 68.
- the wiring module 76 has a control board 67 on the second surface.
- the bus bar 76c of the wiring module 76 extends from one side of the both sides of the control board 67 to the other side.
- the control board 67 may be provided with a notch for avoiding interference with the bus bar 76c. For example, a part of the outer edge of the circular control board 67 may be cut away.
- the electric component 62 is generated in the inverter circuit.
- Electromagnetic noise is suitably shielded. That is, in the inverter circuit, switching control in each semiconductor module 66 is performed using PWM control based on a predetermined carrier frequency, and electromagnetic noise may be generated by the switching control. It can be shielded suitably by the housing 30, the rotor 40, the stator 50, and the like outside in the radial direction of 62.
- the semiconductor module 66 by arranging at least a part of the semiconductor module 66 in a region surrounded by the stator core 52 arranged radially outside the cylindrical portion 71 of the casing 64, the semiconductor module 66 and the stator winding As compared with a configuration in which the magnetic flux 51 is disposed without passing through the stator core 52, even if a magnetic flux is generated from the semiconductor module 66, the magnetic flux is less likely to affect the stator winding 51. Further, even if a magnetic flux is generated from the stator winding 51, the magnetic flux hardly affects the semiconductor module 66. It is more effective if the entire semiconductor module 66 is arranged in a region surrounded by the stator core 52 arranged radially outside the cylindrical portion 71 of the casing 64. Further, when at least a part of the semiconductor module 66 is surrounded by the cooling water passage 74, it is possible to obtain an effect that heat from the stator winding 51 and the magnet unit 42 does not easily reach the semiconductor module 66.
- a through-hole 78 is formed near the end plate 63 in the cylindrical portion 71, through which a wiring member 79 (see FIG. 2) for electrically connecting the stator 50 on the outside and the electric component 62 on the inside is inserted.
- the wiring member 79 is connected to the end of the stator winding 51 and the bus bar 76c of the wiring module 76 by crimping, welding, or the like.
- the wiring member 79 is, for example, a bus bar, and its joint surface is desirably flattened.
- the through holes 78 may be provided at one or a plurality of positions. In the present embodiment, the through holes 78 are provided at two positions. In the configuration in which the through holes 78 are provided at two locations, the winding terminals extending from the two sets of three-phase windings can be easily connected by the wiring members 79, respectively, which is suitable for performing multiphase connection. It has become.
- the rotor 40 and the stator 50 are provided in this order from the outside in the radial direction as shown in FIG. 4, and the inverter unit 60 is provided inside the stator 50 in the radial direction.
- the radius of the inner peripheral surface of the housing 30 is d
- the rotor 40 and the stator 50 are disposed radially outside the distance of d ⁇ 0.705 from the rotation center of the rotor 40. I have.
- a region radially inward from the inner peripheral surface of the stator 50 on the radial inner side (that is, the inner peripheral surface of the stator core 52) is defined as a first region X1
- the cross-sectional area of the first region X1 is larger than the cross-sectional area of the second region X2.
- the volume of the first region X1 is larger than the volume of the second region X2.
- a first region X1 radially inward from the inner peripheral surface of the magnetic circuit component assembly in the housing 30 is formed in the magnetic circuit component assembly in the radial direction.
- a configuration of a stator in a rotating electric machine there is known a configuration in which a plurality of slots are provided in a circumferential direction on a stator core made of laminated steel sheets and forming an annular shape, and a stator winding is wound in the slots.
- the stator core has a plurality of teeth extending in a radial direction at predetermined intervals from the yoke, and a slot is formed between adjacent teeth in the circumferential direction.
- a plurality of layers of conductors are accommodated in the slot, for example, in the radial direction, and the conductors constitute a stator winding.
- stator winding when the stator winding is energized, magnetic saturation occurs in the teeth of the stator core as the magnetomotive force of the stator winding increases, and as a result, the rotating electric machine It is possible that the torque density is limited. That is, in the stator core, it is considered that the magnetic flux is generated by energizing the stator windings and concentrates on the teeth, thereby causing magnetic saturation.
- FIG. 7 is a torque diagram showing the relationship between the ampere turn [AT] indicating the magnetomotive force of the stator winding and the torque density [Nm / L].
- the dashed line indicates the characteristic in a general IPM rotor type rotating electric machine.
- FIG. 7 in a general rotating electric machine, by increasing the magnetomotive force in the stator, magnetic saturation occurs at two places, ie, the teeth portion between the slots and the q-axis core portion. The increase in torque is limited.
- the ampere-turn design value is limited by A1.
- the following configuration is provided to the rotating electric machine 10 in order to eliminate the limitation caused by the magnetic saturation. That is, as a first contrivance, a slotless structure is employed in the stator 50 in order to eliminate magnetic saturation caused by teeth of the stator core in the stator, and in order to eliminate magnetic saturation occurring in the q-axis core portion of the IPM rotor. , SPM (Surface @ Permanent @ Magnet) rotor. According to the first device, the above two portions where magnetic saturation occurs can be eliminated, but it is conceivable that the torque in the low current region decreases (see the dashed line in FIG. 7).
- a pole anisotropic structure is adopted in which the magnet magnetic path is lengthened and the magnetic force is increased in the magnet unit 42 of the rotor 40 in order to recover the torque reduction by increasing the magnetic flux of the SPM rotor. ing.
- the coil side portion 53 of the stator winding 51 employs a flat conductor structure in which the radial thickness of the conductor in the stator 50 is reduced, thereby reducing torque reduction.
- a larger eddy current is generated in the stator winding 51 facing the magnet unit 42 due to the above-described pole anisotropic structure in which the magnetic force is increased.
- the generation of radial eddy currents in the stator windings 51 can be suppressed because the flat conductive wire structure is thin in the radial direction.
- the magnet having a high magnetic force is used. Concerns about possible large eddy current generation can also be improved.
- a magnet unit having a magnetic flux density distribution close to a sine wave using a pole anisotropic structure is adopted. According to this, the torque can be increased by increasing the sine wave matching ratio by pulse control or the like described later, and eddy current loss (copper loss due to eddy current: eddy current loss) due to a gradual change in magnetic flux compared to the radial magnet. ) Can also be further suppressed.
- the sine wave matching ratio can be determined by comparing a measured waveform of the surface magnetic flux density distribution measured by tracing the surface of the magnet with a magnetic flux probe and a sine wave having the same period and peak value.
- the ratio of the amplitude of the primary waveform, which is the fundamental wave of the rotating electrical machine, to the amplitude of the actually measured waveform, that is, the amplitude of the fundamental wave plus other harmonic components, corresponds to the sine wave matching ratio.
- the sine wave matching ratio increases, the waveform of the surface magnetic flux density distribution approaches a sine wave shape.
- the surface magnetic flux density distribution may be estimated by a method other than the actual measurement, for example, an electromagnetic field analysis using Maxwell's equation.
- the stator winding 51 has a wire conductor structure in which a plurality of wires are gathered and bundled. According to this, since the wires are connected in parallel, a large current can flow, and the generation of the eddy current generated in the conductors extending in the circumferential direction of the stator 50 in the flat conductor structure is reduced by the cross-sectional area of each of the wires. Can be more effectively suppressed than by reducing the thickness in the radial direction by the third device. And, by using a configuration in which a plurality of strands are twisted, the eddy current with respect to the magnetic flux generated by the right-handed screw rule in the direction of current flow can be offset with respect to the magnetomotive force from the conductor.
- the torque is increased while the eddy current loss caused by the high magnetic force is suppressed while employing the magnet having the high magnetic force as the second device. Can be planned.
- FIG. 8 is a cross-sectional view of the rotor 40 and the stator 50
- FIG. 9 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG.
- FIG. 10 is a cross-sectional view showing a cross section of the stator 50 along the line XX in FIG. 11, and
- FIG. 11 is a cross-sectional view showing a vertical cross section of the stator 50.
- FIG. 12 is a perspective view of the stator winding 51. 8 and 9, the magnetization directions of the magnets in the magnet unit 42 are indicated by arrows.
- the stator core 52 is formed by laminating a plurality of electromagnetic steel sheets in the axial direction, and has a cylindrical shape having a predetermined thickness in the radial direction, and is located on the rotor 40 side.
- the stator winding 51 is mounted radially outward.
- the outer peripheral surface on the rotor 40 side is a conductive wire installation portion (conductor area).
- the outer peripheral surface of the stator core 52 has a curved surface without irregularities, and a plurality of conductive wire groups 81 are arranged on the outer peripheral surface at predetermined intervals in the circumferential direction.
- the stator core 52 functions as a back yoke which is a part of a magnetic circuit for rotating the rotor 40.
- the teeth that is, the iron core
- the teeth made of the soft magnetic material are not provided between the two conductive wire groups 81 that are adjacent in the circumferential direction (that is, the slotless structure).
- a structure is such that the resin material of the sealing member 57 enters the gaps 56 between the conductive wire groups 81. That is, in the stator 50, the inter-conductor member provided between the respective conductor groups 81 in the circumferential direction is configured as the sealing member 57 which is a non-magnetic material.
- each conductor group 81 is composed of two conductors 82 as described later, and only the non-magnetic material occupies between each two conductor groups 81 adjacent in the circumferential direction of the stator 50.
- the non-magnetic material includes a non-magnetic gas such as air, a non-magnetic liquid, and the like in addition to the sealing member 57.
- the sealing member 57 is also referred to as a conductor-to-conductor member.
- the configuration in which the teeth are provided between the conductor groups 81 arranged in the circumferential direction means that the teeth have a predetermined thickness in the radial direction and a predetermined width in the circumferential direction. It can be said that this is a configuration in which a part of the magnetic circuit, that is, a magnet magnetic path is formed between the magnetic circuits 81. In this regard, a configuration in which the teeth are not provided between the conductive wire groups 81 can be said to be a configuration in which the above-described magnetic circuit is not formed.
- the stator winding (that is, the armature winding) 51 has a predetermined thickness T2 (hereinafter, also referred to as a first dimension) and a width W2 (hereinafter, also referred to as a second dimension). Is formed.
- the thickness T2 is the shortest distance between the outer surface and the inner surface facing each other in the radial direction of the stator winding 51.
- the width W2 is a fixed phase functioning as one of the polyphases of the stator winding 51 (three phases in the embodiment: three phases of U phase, V phase and W phase or three phases of X phase, Y phase and Z phase). This is the circumferential length of a part of the stator winding 51 of the slave winding 51.
- the thickness T2 is smaller than the total width dimension of the two conductive wire groups 81 existing in the width W2.
- the cross-sectional shape of the stator winding 51 (more specifically, the conductive wire 82) is a perfect circle, an ellipse, or a polygon, among the cross-sections of the conductive wire 82 along the radial direction of the stator 50, In the section, the maximum length in the radial direction of the stator 50 may be W12, and in the section, the maximum length in the circumferential direction of the stator 50 may be W11.
- the stator winding 51 is sealed with a sealing member 57 made of a synthetic resin material as a sealing material (mold material). That is, the stator winding 51 is molded by the molding material together with the stator core 52.
- the sealing member 57 is provided between the conductive wire groups 81, that is, the gap 56 is filled with a synthetic resin material. And an insulating member interposed therebetween. That is, the sealing member 57 functions as an insulating member in the gap 56.
- the sealing member 57 extends radially outside the stator core 52 in a range that includes all of the conductor groups 81, that is, in a range in which the radial thickness dimension is larger than the radial thickness dimension of each conductor group 81. Is provided.
- the sealing member 57 is provided in a range including the turn portion 84 of the stator winding 51.
- a sealing member 57 is provided in a range including at least a part of the end face of the stator core 52 facing the axial direction.
- the stator windings 51 are resin-sealed substantially at the ends of the phase windings of the respective phases, that is, substantially entirely except for connection terminals with the inverter circuit.
- the sealing member 57 In the configuration in which the sealing member 57 is provided in a range including the end face of the stator core 52, the sealing member 57 can press the laminated steel sheet of the stator core 52 inward in the axial direction. Thereby, the laminated state of each steel plate can be maintained using the sealing member 57.
- the inner peripheral surface of the stator core 52 is not resin-sealed in the present embodiment, the entire stator core 52 including the inner peripheral surface of the stator core 52 is resin-sealed instead. It may be a configuration.
- the sealing member 57 is made of a highly heat-resistant fluororesin, epoxy resin, PPS resin, PEEK resin, LCP resin, silicon resin, PAI resin, PI resin, or the like. Preferably, it is configured. Further, considering the coefficient of linear expansion from the viewpoint of suppressing cracking due to the difference in expansion, it is preferable that the material is the same as the outer coating of the conductor of the stator winding 51. That is, a silicone resin whose linear expansion coefficient is generally twice or more that of another resin is desirably excluded.
- a PPO resin, a phenol resin, and an FRP resin having a heat resistance of about 180 ° C. are also candidates. This is not the case in a field where the ambient temperature of the rotating electric machine can be regarded as being lower than 100 ° C.
- the torque of the rotating electric machine 10 is proportional to the magnitude of the magnetic flux.
- the maximum magnetic flux amount at the stator is limited depending on the saturation magnetic flux density at the teeth, but the stator core does not have teeth. In such a case, the maximum magnetic flux amount at the stator is not limited. Therefore, the configuration is advantageous in increasing the current flowing through the stator winding 51 to increase the torque of the rotating electric machine 10.
- the use of a structure (slotless structure) without teeth in the stator 50 reduces the inductance of the stator 50.
- the inductance of the stator of a general rotary electric machine in which a conductor is accommodated in each slot partitioned by a plurality of teeth is, for example, about 1 mH
- the inductance of the stator 50 of the present embodiment is about 1 mH. It is reduced to about 5 to 60 ⁇ H.
- the mechanical time constant Tm can be reduced by reducing the inductance of the stator 50 while using the rotating electric machine 10 having the outer rotor structure. That is, the mechanical time constant Tm can be reduced while increasing the torque.
- the mechanical time constant Tm (J ⁇ L) / (Kt ⁇ Ke) In this case, it can be confirmed that the mechanical time constant Tm is reduced by reducing the inductance L.
- Each conductor group 81 radially outside the stator core 52 is configured by arranging a plurality of conductors 82 having a flat rectangular cross section in a radial direction of the stator core 52.
- Each conductive wire 82 is arranged in a direction that satisfies “radial dimension ⁇ circumferential dimension” in a cross section.
- the thickness of each conductive wire group 81 in the radial direction is reduced.
- the thickness of the conductor region is reduced in the radial direction, and the conductor region extends flat to the region where the teeth are conventionally formed, so that the conductor region has a flat conductor region structure.
- each of the conductive wire group 81 and each of the conductive wires 82 are also referred to as a conductive member.
- the conductor area occupied by the stator winding 51 in one circumferential direction is designed to be larger than the conductor non-occupied area where the stator winding 51 does not exist. be able to.
- the conductor region / conductor non-occupied region in one circumferential direction of the stator winding is 1 or less.
- each conductor group 81 is provided such that the conductor region is equal to the conductor non-occupied region or the conductor region is larger than the conductor non-occupied region.
- the radial thickness of the conductor group 81 is smaller than the circumferential width of one phase in one magnetic pole. That is, in a configuration in which the conductor group 81 is formed of two layers of conductors 82 in the radial direction and two conductor groups 81 are provided in the circumferential direction for one phase in one magnetic pole, the radial thickness of each conductor 82 is reduced. Tc, when the width of the conductor 82 in the circumferential direction is Wc, the configuration is such that “Tc ⁇ 2 ⁇ Wc ⁇ 2”.
- the conductor group 81 is formed of two layers of conductors 82 and one conductor group 81 is provided in one magnetic pole in the circumferential direction for one phase. It is good to be constituted so that it may become.
- the conductor portions (conductor group 81) arranged at predetermined intervals in the circumferential direction in the stator winding 51 have a radial thickness that is larger than a circumferential width of one phase in one magnetic pole. It is small.
- each conductor 82 has a thickness Tc in the radial direction smaller than a width Wc in the circumferential direction. Furthermore, the thickness (2Tc) in the radial direction of the wire group 81 composed of two layers of wires 82 in the radial direction, that is, the radial thickness (2Tc) of the wire group 81 is larger than the width Wc in the circumferential direction. Good to be small.
- the torque of the rotating electric machine 10 is substantially inversely proportional to the radial thickness of the stator core 52 of the conductor group 81.
- the configuration is advantageous in increasing the torque of the rotating electric machine 10.
- the distance from the magnet unit 42 of the rotor 40 to the stator core 52 that is, the distance of the portion without iron
- the flux linkage of the stator core 52 by the permanent magnet can be increased, and the torque can be increased.
- the thickness of the conductor group 81 is reduced, even if the magnetic flux leaks from the conductor group 81, it is easily collected by the stator core 52, and the magnetic flux leaks to the outside without being effectively used for improving the torque. Can be suppressed. That is, it is possible to suppress a decrease in magnetic force due to magnetic flux leakage, to increase the linkage magnetic flux of the stator core 52 by the permanent magnet, and to increase the torque.
- the conductor 82 (conductor) is made of a covered conductor in which the surface of a conductor (conductor body) 82a is covered with an insulating coating 82b, and between the conductors 82 that overlap each other in the radial direction, and between the conductor 82 and the stator core 52. In each case, insulation is ensured.
- the insulating coating 82b is formed of an insulating member that is laminated separately from the coating of the element wire 86 described later if the element wire 86 is a self-fused coated wire or the coating of the element wire 86.
- each of the phase windings constituted by the conductive wires 82 has an insulating property by the insulating coating 82b except for an exposed portion for connection.
- the exposed portion is, for example, an input / output terminal portion or a neutral point portion in the case of a star connection.
- the conductive wires 82 adjacent to each other in the radial direction are fixed to each other by using a resin fixing or a self-sealing coated wire. This suppresses dielectric breakdown, vibration, and sound due to the rubbing of the conductive wires 82.
- the conductor 82a is configured as an aggregate of a plurality of wires 86. Specifically, as shown in FIG. 13, the conductor 82a is formed in a twisted yarn shape by twisting a plurality of strands 86. Further, as shown in FIG. 14, the strand 86 is configured as a composite in which thin fibrous conductive materials 87 are bundled.
- the strand 86 is a composite of CNT (carbon nanotube) fibers, and as the CNT fibers, fibers including boron-containing fine fibers in which at least a part of carbon is replaced by boron are used.
- a vapor grown carbon fiber (VGCF) or the like can be used in addition to the CNT fiber, but it is preferable to use the CNT fiber.
- the surface of the wire 86 is covered with a polymer insulating layer such as enamel.
- the surface of the wire 86 is preferably covered with a so-called enamel coating made of a polyimide coating or an amide imide coating.
- the conductor 82 forms an n-phase winding in the stator winding 51.
- the strands 86 of the conductor 82 (that is, the conductor 82a) are adjacent to each other in a contact state.
- the conducting wire 82 has, at one or more locations in the phase, a portion where the winding conductor is formed by twisting the plurality of strands 86, and the resistance between the twisted strands 86 is the strand 86 itself.
- the wire aggregate is larger than the resistance value.
- each two adjacent wires 86 have a first electrical resistivity in the adjacent direction, and if each of the wires 86 has a second electrical resistivity in its length direction, the first electrical resistivity
- the ratio has a value larger than the second electric resistivity.
- the conductor 82 may be formed by a plurality of strands 86, and may be a strand aggregate that covers the plurality of strands 86 with an insulating member having an extremely high first electrical resistivity.
- the conductor 82a of the conductor 82 is constituted by a plurality of twisted strands 86.
- the method of insulating the wires 86 is not limited to the above-described polymer insulating film, but may be a method of making the current less likely to flow between the twisted wires 86 using contact resistance. That is, if the resistance value between the twisted strands 86 is larger than the resistance value of the strand 86 itself, the above effect can be obtained by the potential difference generated due to the difference in the resistance value. .
- the manufacturing facility for producing the strand 86 and the production facility for producing the stator 50 (armature) of the rotary electric machine 10 as separate non-continuous facilities, the travel time, the working interval, and the like make it possible to use the strand. 86 is oxidized and the contact resistance can be increased, which is preferable.
- the conducting wire 82 has a flat rectangular shape in cross section, and is arranged in a plurality in the radial direction.
- the conducting wire 82 is covered with a self-sealing covered wire including a fusion layer and an insulating layer.
- a self-sealing covered wire including a fusion layer and an insulating layer.
- the thickness of the insulating film 82b on the conductor 82 is, for example, 80 ⁇ m to 100 ⁇ m, and is thicker than the thickness of a commonly used conductor (5 to 40 ⁇ m), the insulation between the conductor 82 and the stator core 52 is formed. Even without paper or the like, the insulation between the two can be ensured.
- the insulating coating 82b has a higher insulating performance than the insulating layer of the strand 86, and is configured to be able to insulate between the phases.
- the thickness of the polymer insulating layer of the strand 86 is, for example, about 5 ⁇ m
- the thickness of the insulating coating 82b of the conducting wire 82 is about 80 to 100 ⁇ m so that the interphase insulation can be suitably performed. Is desirable.
- the conductor 82 may have a configuration in which a plurality of strands 86 are bundled without being twisted.
- the conductor 82 has a configuration in which a plurality of strands 86 are twisted in the entire length, a configuration in which a plurality of strands 86 are twisted in a part of the entire length, and a plurality of strands 86 in the entire length.
- any one of the bundled configurations may be used.
- each of the conductors 82 constituting the conductor portion includes a plurality of strands 86 bundled together, and a wire aggregate in which the resistance value between the bundled strands is larger than the resistance value of the strand 86 itself. Has become.
- Each conductive wire 82 is bent and formed so as to be arranged in a predetermined arrangement pattern in the circumferential direction of the stator winding 51, whereby a phase winding for each phase is formed as the stator winding 51. .
- a coil side portion 53 is formed by a straight portion 83 extending linearly in the axial direction of each of the conductors 82, and is located on both outer sides of the coil side portion 53 in the axial direction.
- the coil ends 54 and 55 are formed by the projecting turn portions 84.
- Each conductor 82 is configured as a series of corrugated conductors by alternately repeating a straight portion 83 and a turn portion 84.
- the linear portions 83 are disposed at positions radially opposed to the magnet unit 42, and the linear portions 83 of the same phase, which are arranged at predetermined intervals at a position outside the magnet unit 42 in the axial direction, They are connected to each other by a turn part 84. Note that the straight portion 83 corresponds to a “magnet facing portion”.
- the stator winding 51 is formed in an annular shape by distributed winding.
- linear portions 83 are arranged in the circumferential direction at intervals corresponding to one pole pair of the magnet unit 42 for each phase, and in the coil ends 54 and 55, the linear portions 83 for each phase are arranged.
- a turn portion 84 formed in a substantially V shape.
- the straight portions 83 forming a pair corresponding to one pole pair have current directions opposite to each other.
- the combination of the pair of linear portions 83 connected by the turn portion 84 is different between the one coil end 54 and the other coil end 55, and the connection at the coil ends 54, 55 is made in the circumferential direction.
- the stator winding 51 is formed in a substantially cylindrical shape.
- the stator winding 51 constitutes a winding for each phase using two pairs of conducting wires 82 for each phase, and one of the three windings (U Phase, V phase, W phase) and the other three-phase winding (X phase, Y phase, Z phase) are provided in two layers inside and outside in the radial direction.
- the linear portions 83 are arranged so as to overlap in two layers adjacent in the radial direction, and at the coil ends 54 and 55, the linear portions 83 which overlap in the radial direction are arranged.
- the turn portion 84 is configured to extend in the circumferential direction in directions opposite to each other in the circumferential direction. In other words, in each of the radially adjacent conductors 82, the directions of the turn portions 84 are opposite to each other except for the end of the stator winding 51.
- FIGS. 15A and 15B are diagrams showing the form of each conductor 82 in the n-th layer.
- FIG. 15A shows the shape of each conductor 82 viewed from the side of the stator winding 51.
- FIG. 15B shows the shape of the conductive wire 82 as viewed from one axial side of the stator winding 51.
- D1, D2, D3, the positions where the conductor groups 81 are arranged are indicated as D1, D2, D3,.
- only three conductive wires 82 are shown, which are a first conductive wire 82_A, a second conductive wire 82_B, and a third conductive wire 82_C.
- the straight portions 83 are arranged at the position of the nth layer, that is, at the same position in the radial direction, and the straight portions 83 separated from each other by six positions (3 ⁇ m pairs) in the circumferential direction. They are connected to each other by a turn part 84.
- the straight portions 83 are connected to each other by one turn 84.
- a pair of straight portions 83 are arranged at D ⁇ b> 1 and D ⁇ b> 7, respectively, and the pair of straight portions 83 are connected by an inverted V-shaped turn portion 84.
- the other conductors 82_B and 82_C are arranged in the same n-th layer with their circumferential positions shifted one by one.
- the turn portions 84 may interfere with each other. For this reason, in the present embodiment, an interference avoiding portion in which a part thereof is radially offset is formed in the turn portion 84 of each of the conductive wires 82_A to 82_C.
- the turn portion 84 of each of the conductors 82_A to 82_C is formed by a single inclined portion 84a which is a portion extending in the circumferential direction on the same circle (first circle), and the same circle from the inclined portion 84a. Also shifts radially inward (upward in FIG. 15 (b)) to reach another circle (second circle), the top portion 84b, the inclined portion 84c extending in the circumferential direction on the second circle, and the first circle. And a return portion 84d that returns to the second circle.
- the top portion 84b, the inclined portion 84c, and the return portion 84d correspond to an interference avoiding portion.
- the inclined portion 84c may be configured to shift radially outward with respect to the inclined portion 84a.
- the turn portion 84 of each of the conductors 82_A to 82_C has a slope portion 84a on one side and a slope portion 84c on the other side on both sides of the top portion 84b, which is a central position in the circumferential direction.
- the radial positions of the inclined portions 84a and 84c are different from each other.
- the turn portion 84 of the first conductive wire 82 ⁇ / b> _A extends in the circumferential direction from the position D ⁇ b> 1 of the n-layer as a starting point, and bends in the radial direction (for example, radially inward) at the top portion 84 b which is the central position in the circumferential direction.
- the radial direction for example, radially inward
- the return portion 84d By turning again in the circumferential direction, it extends again in the circumferential direction, and further turns again in the radial direction (for example, radially outward) at the return portion 84d, thereby reaching the D7 position of the n-layer, which is the end point position. I have.
- one of the inclined portions 84a is vertically arranged in order from the top in the order of the first conductor 82_A ⁇ the second conductor 82_B ⁇ the third conductor 82_C, and each of the conductors 82_A ⁇ 82_C is turned upside down, and the other inclined portions 84c are arranged vertically from the top in the order of the third conductor 82_C ⁇ the second conductor 82_B ⁇ the first conductor 82_A. Therefore, the conductors 82_A to 82_C can be arranged in the circumferential direction without interfering with each other.
- a turn portion 84 connected to the radially inner straight portion 83 of the plurality of linear portions 83 and a radially outer straight portion 83 are formed. It is preferable that the turn portions 84 connected to the straight portions 83 are arranged further apart from each other in the radial direction than the straight portions 83. Further, when a plurality of layers of the conductive wires 82 are bent to the same side in the radial direction near the end of the turn portion 84, that is, near the boundary with the linear portion 83, the insulation between the conductive wires 82 of the adjacent layers is caused by the interference. Should not be impaired.
- the conductive wires 82 overlapping in the radial direction are each bent in the radial direction at the return portion 84d of the turn portion 84.
- the radius of curvature of the bent portion may be different between the conductor 82 of the n-th layer and the conductor 82 of the (n + 1) -th layer.
- the radius of curvature R1 of the conductive wire 82 on the radially inner side (nth layer) is made smaller than the radius of curvature R2 of the conductive wire 82 on the radially outer side (n + 1th layer).
- the amount of shift in the radial direction be different between the n-th conductive wire 82 and the (n + 1) -th conductive wire 82.
- the shift amount S1 of the radially inner (n-th layer) conductive wire 82 is made larger than the shift amount S2 of the radially outer (n + 1-th layer) conductive wire 82.
- the permanent magnet used in this embodiment is a sintered magnet obtained by sintering and solidifying a granular magnetic material, and has a specific coercive force Hcj on the JH curve of 400 [kA / m] or more.
- the residual magnetic flux density Br is 1.0 [T] or more.
- the magnet unit 42 has a saturation magnetic flux density Js of 1.2 [T] or more, a crystal grain size of 10 [ ⁇ m] or less, and Js ⁇ ⁇ is 1 when the orientation ratio is ⁇ . 0.0 [T] or more.
- the magnet unit 42 is supplemented below.
- the magnet unit 42 (magnet) is characterized in that 2.15 [T] ⁇ Js ⁇ 1.2 [T].
- examples of the magnet used for the magnet unit 42 include NdFe11TiN, Nd2Fe14B, Sm2Fe17N3, and a FeNi magnet having an L10 type crystal.
- configurations such as SmCo5, FePt, Dy2Fe14B, and CoPt, which are generally called samakoba, cannot be used.
- Dy2Fe14B and Nd2Fe14B generally use heavy rare earth dysprosium like Dy2Fe14B and Dy2Fe14B.
- a rotating electric machine operated at a temperature outside the range of human activity for example, 60 ° C. or more, which is higher than the temperature in the desert
- a motor application for a vehicle in which the temperature in a vehicle is close to 80 ° C. in summer it is desirable to include components of FeNi and Sm2Fe17N3 having a small temperature dependence coefficient. This is due to the temperature-dependent coefficient in the motor operation from the temperature range near ⁇ 40 ° C. in Northern Europe, which is within the range of human activity, to 60 ° C. or more, which exceeds the desert temperature described above, or to the heat-resistant temperature of the coil enamel coating of about 180 to 240 ° C.
- the magnet unit 42 is characterized in that the particle size in the fine powder state before orientation is 10 ⁇ m or less and the single domain particle size or more using the above-described magnet composition.
- the coercive force is increased by reducing the size of powder particles to the order of several hundreds of nm.
- powders that have been made as fine as possible have been used in recent years.
- the particle size is too small, the BH product of the magnet decreases due to oxidation or the like.
- the size of the particle diameter described here is the size of the particle diameter in a fine powder state in the orientation step in the magnet manufacturing process.
- each of the first magnet 91 and the second magnet 92 of the magnet unit 42 is a sintered magnet formed by so-called sintering of magnetic powder baked at a high temperature.
- the saturation magnetization Js of the magnet unit 42 is 1.2 T or more
- the crystal grain sizes of the first magnet 91 and the second magnet 92 are 10 ⁇ m or less
- the orientation ratio is ⁇
- Js ⁇ ⁇ is It is performed so as to satisfy the condition of 1.0 T (tesla) or more.
- Each of the first magnet 91 and the second magnet 92 is sintered so as to satisfy the following conditions.
- the orientation is performed in the orientation process in the manufacturing process, so that the orientation is different from the definition of the magnetic force direction in the isotropic magnet magnetization process.
- the saturation magnetization Js of the magnet unit 42 of the present embodiment is 1.2 T or more
- the orientation ratio ⁇ of the first magnet 91 and the second magnet 92 is so high that Jr ⁇ Js ⁇ ⁇ ⁇ 1.0 [T].
- the orientation ratio is set. Note that the orientation ratio ⁇ here refers to, for example, in each of the first magnet 91 or the second magnet 92, there are six easy axes, and five of them have the same direction, that is, the direction A10.
- the first magnet 91 and the second magnet 92 are formed by sintering, but if the above conditions are satisfied, the first magnet 91 and the second magnet 92 may be formed by another method. .
- a method of forming an MQ3 magnet or the like can be adopted.
- the permanent magnet whose easy axis of magnetization is controlled by the orientation is used. Therefore, the magnetic circuit length inside the magnet is set to be equal to the magnetic circuit length of a linearly oriented magnet that conventionally outputs 1.0 [T] or more. In comparison, it can be longer. In other words, a magnetic circuit length per pole pair can be achieved with a small amount of magnets, and the reversible demagnetization range is maintained even when exposed to severe high-temperature conditions, compared to a design using conventional linearly-oriented magnets. Can be. In addition, the present inventor has found a configuration in which characteristics similar to those of a polar anisotropic magnet can be obtained even when a conventional magnet is used.
- the axis of easy magnetization refers to a crystal orientation that is easily magnetized in a magnet.
- the direction of the axis of easy magnetization in the magnet is a direction in which the degree of orientation indicating the degree of alignment of the direction of the axis of easy magnetization is 50% or more, or a direction in which the orientation of the magnet is average.
- the magnet unit 42 has an annular shape and is provided inside the magnet holder 41 (specifically, inside the cylindrical portion 43 in the radial direction).
- the magnet unit 42 is a polar anisotropic magnet and has a first magnet 91 and a second magnet 92 having different polarities.
- the first magnets 91 and the second magnets 92 are alternately arranged in the circumferential direction.
- the first magnet 91 is a magnet forming an N pole in a portion near the stator winding 51
- the second magnet 92 is a magnet forming an S pole in a portion near the stator winding 51.
- the first magnet 91 and the second magnet 92 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
- each of the magnets 91 and 92 has a d-axis (direct-axis), which is the center of the magnetic pole, and a magnetic pole boundary between the N pole and the S pole in a known dq coordinate system (in other words, the magnetic flux density). Is 0 Tesla) and the magnetization direction extends in an arc shape with respect to the q-axis (quadrature-axis).
- the magnetization direction is the radial direction of the annular magnet unit 42 on the d-axis side
- the magnetization direction of the annular magnet unit 42 is the circumferential direction on the q-axis side.
- each of the magnets 91 and 92 has a first portion 250 and two second portions 260 located on both sides of the first portion 250 in the circumferential direction of the magnet unit 42.
- the first portion 250 is closer to the d-axis than the second portion 260
- the second portion 260 is closer to the q-axis than the first portion 250.
- the magnet unit 42 is configured such that the direction of the easy axis 300 of the first portion 250 is more parallel to the d axis than the direction of the easy axis 310 of the second portion 260.
- the magnet unit 42 is configured such that the angle ⁇ 11 between the easy axis 300 of the first portion 250 and the d axis is smaller than the angle ⁇ 12 between the easy axis 310 of the second portion 260 and the q axis. I have.
- the angle ⁇ 11 is an angle formed between the d axis and the easy axis 300 when the direction from the stator 50 (armature) toward the magnet unit 42 is positive on the d axis.
- the angle ⁇ 12 is an angle formed between the q axis and the easy axis 310 when the direction from the stator 50 (armature) toward the magnet unit 42 is positive on the q axis. Note that both the angle ⁇ 11 and the angle ⁇ 12 are 90 ° or less in the present embodiment.
- each of the easy axes 300 and 310 has the following definition.
- the cosine of the angle ⁇ between the direction A11 and the direction B11 is obtained.
- ) is defined as the easy axis 300 or the easy axis 310.
- each of the magnets 91 and 92 has a different direction of the axis of easy magnetization on the d-axis side (portion closer to the d-axis) and on the q-axis side (portion closer to the q-axis).
- the direction of the easy axis is close to the direction parallel to the d-axis
- the direction of the easy axis of magnetization is close to the direction orthogonal to the q-axis on the q-axis side.
- An arc-shaped magnet magnetic path is formed in accordance with the direction of the axis of easy magnetization.
- the easy axis may be oriented parallel to the d axis on the d-axis side, and the easy axis may be orthogonal to the q axis on the q-axis side.
- the stator-side outer surface of the magnets 91 and 92 on the stator 50 side (the lower side in FIG. 9) and the end surface on the q-axis side in the circumferential direction form a magnetic flux.
- It is a magnetic flux acting surface which is an inflow / outflow surface, and a magnet magnetic path is formed so as to connect those magnetic flux acting surfaces (an outer surface on the stator side and an end surface on the q-axis side).
- the magnetic flux flows in an arc between the adjacent N and S poles by the magnets 91 and 92, so that the magnet magnetic path is longer than, for example, a radial anisotropic magnet. Therefore, as shown in FIG. 17, the magnetic flux density distribution becomes close to a sine wave. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown as a comparative example in FIG. 18, the magnetic flux can be concentrated on the center side of the magnetic pole, and the torque of the rotating electric machine 10 can be increased. Further, in the magnet unit 42 of the present embodiment, it can be confirmed that there is a difference in the magnetic flux density distribution as compared with the conventional Halbach array magnet.
- the horizontal axis represents the electrical angle
- the vertical axis represents the magnetic flux density.
- 17 and 18, 90 ° on the horizontal axis indicates the d-axis (that is, the center of the magnetic pole), and 0 ° and 180 ° on the horizontal axis indicate the q-axis.
- the magnet magnetic flux on the d-axis is strengthened, and the change in magnetic flux near the q-axis is suppressed.
- the magnets 91 and 92 in which the surface magnetic flux changes gradually from the q axis to the d axis in each magnetic pole.
- the sine wave matching ratio of the magnetic flux density distribution may be, for example, 40% or more. In this way, the amount of magnetic flux in the center portion of the waveform can be reliably improved as compared with the case of using a radially oriented magnet or a parallelly oriented magnet having a sine wave matching ratio of about 30%. Further, when the sine wave matching ratio is 60% or more, the amount of magnetic flux at the center portion of the waveform can be reliably improved as compared with a magnetic flux concentration array such as a Halbach array.
- the magnetic flux density changes sharply near the q-axis.
- the change in the magnetic flux density becomes steeper, the eddy current generated in the stator winding 51 increases. Further, the magnetic flux change on the stator winding 51 side also becomes steep.
- the magnetic flux density distribution has a magnetic flux waveform close to a sine wave. For this reason, near the q-axis, the change in the magnetic flux density is smaller than the change in the magnetic flux density of the radial anisotropic magnet. Thereby, generation of eddy current can be suppressed.
- a magnetic flux is generated in a direction orthogonal to the magnetic flux acting surface 280 on the stator 50 near the d-axis of each of the magnets 91 and 92 (that is, the center of the magnetic pole).
- the shape of the arc increases as the distance from the d-axis increases. Further, the more the magnetic flux is perpendicular to the magnetic flux acting surface, the stronger the magnetic flux becomes.
- the stator 50 can receive a strong magnet magnetic flux from the rotor 40.
- the stator 50 is provided with a cylindrical stator core 52 radially inside the stator winding 51, that is, on the opposite side of the rotor 40 with the stator winding 51 interposed therebetween. Therefore, the magnetic flux extending from the magnetic flux acting surfaces of the magnets 91 and 92 is attracted to the stator core 52 and orbits while using the stator core 52 as a part of the magnetic path. In this case, the direction and path of the magnet magnetic flux can be optimized.
- the inverter unit 60 has a unit base 61 and an electric component 62 as shown in FIG. 6, and each operation process including a process of assembling the unit base 61 and the electric component 62 will be described.
- an assembly including the stator 50 and the inverter unit 60 is referred to as a first unit
- an assembly including the bearing unit 20, the housing 30, and the rotor 40 is referred to as a second unit.
- This manufacturing process A first step of mounting the electrical component 62 inside the unit base 61 in the radial direction; A second step of mounting the unit base 61 on the radially inner side of the stator 50 to produce a first unit; A third step of manufacturing the second unit by inserting the fixing portion 44 of the rotor 40 into the bearing unit 20 assembled in the housing 30; A fourth step of mounting the first unit radially inside the second unit; A fifth step of fastening and fixing the housing 30 and the unit base 61; have.
- the order of execution of these steps is first step ⁇ second step ⁇ third step ⁇ fourth step ⁇ fifth step.
- the assemblies are assembled. Easy handling and complete inspection of each unit can be realized, and a reasonable assembly line can be constructed. Therefore, it is possible to easily cope with multi-product production.
- a good heat conductor having good heat conduction is adhered to at least one of the radially inner side of the unit base 61 and the radially outer side of the electric component 62 by coating, bonding, or the like. It is preferable to mount the electric component 62 on the unit base 61. Thus, heat generated by the semiconductor module 66 can be effectively transmitted to the unit base 61.
- the rotor 40 may be inserted while the coaxial relationship between the housing 30 and the rotor 40 is maintained. Specifically, for example, the position of the outer peripheral surface of the rotor 40 (the outer peripheral surface of the magnet holder 41) or the inner peripheral surface of the rotor 40 (the inner peripheral surface of the magnet unit 42) is determined with reference to the inner peripheral surface of the housing 30. Using the jig, the housing 30 and the rotor 40 are assembled while sliding either the housing 30 or the rotor 40 along the jig. This makes it possible to mount a heavy component without applying an unbalanced load to the bearing unit 20, and the reliability of the bearing unit 20 is improved.
- the fourth step it is preferable to carry out the assembly of the first unit and the second unit while maintaining the coaxiality of the two units.
- a jig that determines the position of the inner peripheral surface of the unit base 61 with reference to the inner peripheral surface of the fixing portion 44 of the rotor 40 is used, and the first unit and the second unit are moved along the jig. Assemble these units while sliding any of them. As a result, it is possible to assemble the rotor 40 and the stator 50 while preventing mutual interference between the extremely small gaps. Defective products can be eliminated.
- the order of the above steps may be the second step ⁇ the third step ⁇ the fourth step ⁇ the fifth step ⁇ the first step.
- the delicate electric component 62 is assembled last, and the stress on the electric component 62 in the assembling process can be minimized.
- FIG. 19 is an electric circuit diagram of a control system of the rotating electric machine 10
- FIG. 20 is a functional block diagram illustrating a control process performed by the control device 110.
- the stator winding 51 includes a U-phase winding, a V-phase winding, and a W-phase winding.
- the phase winding 51b includes an X-phase winding, a Y-phase winding, and a Z-phase winding.
- a first inverter 101 and a second inverter 102 each corresponding to a power converter are provided for each of the three-phase windings 51a and 51b.
- the inverters 101 and 102 are configured by full-bridge circuits having the same number of upper and lower arms as the number of phases of the phase windings, and the switches (semiconductor switching elements) provided on each arm are turned on and off to turn the stator windings 51 on and off. The conduction current is adjusted in each phase winding.
- a DC power supply 103 and a smoothing capacitor 104 are connected in parallel to each of the inverters 101 and 102.
- the DC power supply 103 is configured by, for example, an assembled battery in which a plurality of cells are connected in series.
- Each switch of the inverters 101 and 102 corresponds to the semiconductor module 66 shown in FIG. 1 and the like, and the capacitor 104 corresponds to the capacitor module 68 shown in FIG. 1 and the like.
- the control device 110 includes a microcomputer including a CPU and various memories. Based on various detection information in the rotating electric machine 10 and requests for powering drive and power generation, the control of the power supply is performed by turning on and off the switches in the inverters 101 and 102. carry out. Control device 110 corresponds to control device 77 shown in FIG.
- the detection information of the rotating electric machine 10 includes, for example, a rotation angle (electrical angle information) of the rotor 40 detected by an angle detector such as a resolver, a power supply voltage (inverter input voltage) detected by a voltage sensor, and a current sensor. , The energized current of each phase detected by Control device 110 generates and outputs an operation signal for operating each switch of inverters 101 and 102.
- the power generation request is, for example, a request for regenerative driving when the rotating electric machine 10 is used as a vehicle power source.
- the first inverter 101 includes a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases including a U phase, a V phase, and a W phase.
- the high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103.
- One end of each of a U-phase winding, a V-phase winding, and a W-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase.
- These phase windings are star-connected (Y connection), and the other ends of the phase windings are connected to each other at a neutral point.
- the second inverter 102 has a configuration similar to that of the first inverter 101, and includes a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases including an X phase, a Y phase, and a Z phase. ing.
- the high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103.
- One end of each of an X-phase winding, a Y-phase winding, and a Z-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase.
- These phase windings are star-connected (Y connection), and the other ends of the phase windings are connected to each other at a neutral point.
- FIG. 20 shows a current feedback control process for controlling the U, V, and W phase currents, and a current feedback control process for controlling the X, Y, and Z phase currents.
- the control process on the U, V, and W phases will be described first.
- a current command value setting unit 111 uses a torque-dq map and based on a powering torque command value or a power generation torque command value for the rotating electric machine 10 and an electric angular velocity ⁇ obtained by time-differentiating the electric angle ⁇ . , A d-axis current command value and a q-axis current command value are set.
- the current command value setting unit 111 is provided in common on the U, V, and W phase sides and the X, Y, and Z phase sides.
- the power generation torque command value is, for example, a regenerative torque command value when the rotating electric machine 10 is used as a vehicle power source.
- the dq conversion unit 112 converts a current detection value (three phase currents) obtained by a current sensor provided for each phase into a quadrature 2 with a field direction (direction of an axis of a magnetic field, or field direction) as a d-axis. It is converted into a d-axis current and a q-axis current which are components of the three-dimensional rotation coordinate system.
- the d-axis current feedback control unit 113 calculates a d-axis command voltage as an operation amount for feedback-controlling the d-axis current to a d-axis current command value. Further, the q-axis current feedback control unit 114 calculates a q-axis command voltage as an operation amount for feedback-controlling the q-axis current to a q-axis current command value. In each of these feedback control units 113 and 114, the command voltage is calculated using the PI feedback method based on the deviation of the d-axis current and the q-axis current from the current command value.
- the three-phase converter 115 converts d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages.
- Each of the units 111 to 115 is a feedback control unit that performs feedback control of the fundamental wave current based on the dq conversion theory, and the U-phase, V-phase, and W-phase command voltages are feedback control values.
- the operation signal generation unit 116 generates an operation signal for the first inverter 101 based on the three-phase command voltage using a known triangular wave carrier comparison method. Specifically, the operation signal generation unit 116 performs a PWM control based on a magnitude comparison between a signal obtained by standardizing a three-phase command voltage with a power supply voltage and a carrier signal such as a triangular wave signal, and thereby switches the upper and lower arms in each phase. An operation signal (duty signal) is generated.
- the same configuration is also provided on the X, Y, and Z phase sides.
- the dq conversion unit 122 outputs a current detection value (three phase currents) obtained by a current sensor provided for each phase to the field direction. It is converted into a d-axis current and a q-axis current, which are components of an orthogonal two-dimensional rotating coordinate system with the d axis.
- the d-axis current feedback control unit 123 calculates a d-axis command voltage
- the q-axis current feedback control unit 124 calculates a q-axis command voltage.
- the three-phase converter 125 converts d-axis and q-axis command voltages into X-phase, Y-phase, and Z-phase command voltages.
- the operation signal generation unit 126 generates an operation signal for the second inverter 102 based on the three-phase command voltage.
- the operation signal generation unit 126 performs a PWM control based on a magnitude comparison between a signal obtained by standardizing a three-phase command voltage with a power supply voltage and a carrier signal such as a triangular wave signal, and thereby switches the upper and lower arms in each phase.
- An operation signal (duty signal) is generated.
- the driver 117 turns on and off the three-phase switches Sp and Sn of the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 116 and 126.
- This process is used mainly for the purpose of increasing the output of the rotating electric machine 10 and reducing the loss under operating conditions in which the output voltage of each of the inverters 101 and 102 becomes large, such as in a high rotation region and a high output region.
- the control device 110 selects and executes one of the torque feedback control process and the current feedback control process based on the operating conditions of the rotating electric machine 10.
- FIG. 21 shows a torque feedback control process corresponding to the U, V, and W phases and a torque feedback control process corresponding to the X, Y, and Z phases.
- the same components as those in FIG. 20 are denoted by the same reference numerals, and description thereof will be omitted.
- the control process on the U, V, and W phases will be described first.
- the voltage amplitude calculation unit 127 is a command value for the magnitude of the voltage vector based on the powering torque command value or the power generation torque command value for the rotary electric machine 10 and the electrical angular velocity ⁇ obtained by time-differentiating the electrical angle ⁇ . Calculate the voltage amplitude command.
- the torque estimation unit 128a calculates a torque estimation value corresponding to the U, V, and W phases based on the d-axis current and the q-axis current converted by the dq conversion unit 112. Note that the torque estimating unit 128a may calculate the voltage amplitude command based on the map information in which the d-axis current, the q-axis current, and the voltage amplitude command are related.
- the torque feedback control unit 129a calculates a voltage phase command, which is a command value of a voltage vector phase, as an operation amount for performing feedback control of a torque estimation value to a powering torque command value or a power generation torque command value.
- the torque feedback control unit 129a calculates a voltage phase command using a PI feedback method based on the deviation of the estimated torque value from the powering torque command value or the generated torque command value.
- the operation signal generation unit 130a generates an operation signal for the first inverter 101 based on the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ . Specifically, the operation signal generation unit 130a calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ , and standardizes the calculated three-phase command voltage with the power supply voltage. And PWM control based on a magnitude comparison between the signal and a carrier signal such as a triangular wave signal to generate switch operation signals for the upper and lower arms in each phase.
- a carrier signal such as a triangular wave signal
- the operation signal generation unit 130a is based on a pulse pattern information, a voltage amplitude command, a voltage phase command, and an electrical angle ⁇ , which are map information in which the voltage amplitude command, the voltage phase command, the electric angle ⁇ and the switch operation signal are related.
- a switch operation signal may be generated.
- the X-, Y-, and Z-phase sides also have the same configuration, and the torque estimating unit 128b determines the X, Y, and Z-axis currents based on the d-axis current and the q-axis current converted by the dq An estimated torque value corresponding to the Z phase is calculated.
- the torque feedback control unit 129b calculates a voltage phase command as an operation amount for feedback-controlling the torque estimation value to the powering torque command value or the power generation torque command value.
- the torque feedback control unit 129b calculates the voltage phase command using the PI feedback method based on the deviation of the estimated torque value from the powering torque command value or the generated torque command value.
- the operation signal generator 130b generates an operation signal for the second inverter 102 based on the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ . Specifically, the operation signal generation unit 130b calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ , and standardizes the calculated three-phase command voltage with the power supply voltage. And PWM control based on a magnitude comparison between the signal and a carrier signal such as a triangular wave signal to generate switch operation signals for the upper and lower arms in each phase. The driver 117 turns on and off the three-phase switches Sp and Sn in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 130a and 130b.
- the operation signal generation unit 130b is based on the voltage amplitude command, the voltage phase command, the pulse pattern information that is the map information associated with the electrical angle ⁇ and the switch operation signal, the voltage amplitude command, the voltage phase command, and the electrical angle ⁇ .
- a switch operation signal may be generated.
- the following three measures are taken as measures against electrolytic corrosion.
- the first countermeasure against electric erosion is a countermeasure against electric erosion by reducing the inductance with the coreless stator 50 and making the magnet magnetic flux of the magnet unit 42 gentle.
- the second countermeasure against electric corrosion is a countermeasure against electric corrosion by using a cantilever structure of the rotating shaft with the bearings 21 and 22.
- the third countermeasure against electrolytic corrosion is a countermeasure against electrolytic corrosion caused by molding the annular stator winding 51 together with the stator core 52 using a molding material. The details of each of these measures will be described individually below.
- the stator 50 is made of teethless between the conductor groups 81 in the circumferential direction, and sealed between each conductor group 81 by a nonmagnetic material instead of the teeth (iron core).
- the member 57 is provided (see FIG. 10).
- the inductance of the stator 50 can be reduced.
- the d-axis inductance is equal to or less than the q-axis inductance.
- the magnets 91 and 92 are configured such that the orientation of the easy axis of magnetization is parallel to the d-axis on the d-axis side as compared to the q-axis side (see FIG. 9).
- the magnetic flux on the d-axis is strengthened, and the change in the surface magnetic flux (increase / decrease in magnetic flux) from the q-axis to the d-axis becomes gentle at each magnetic pole. Therefore, a rapid voltage change due to the switching imbalance is suppressed, and the configuration can contribute to suppressing electrolytic corrosion.
- the bearings 21 and 22 are arranged so as to be biased to one side in the axial direction with respect to the axial center of the rotor 40 (see FIG. 2).
- the influence of electrolytic corrosion can be reduced as compared with a configuration in which a plurality of bearings are provided on both sides of the rotor in the axial direction.
- a closed circuit that passes through the rotor, the stator, and each bearing is generated as high-frequency magnetic flux is generated.
- the rotating electric machine 10 has the following configuration in association with the configuration for one-side arrangement of the bearings 21 and 22.
- a contact avoiding portion that extends in the axial direction and avoids contact with the stator 50 is provided at an intermediate portion 45 that projects in the radial direction of the rotor 40 (see FIG. 2).
- the length of the closed circuit can be increased to increase the circuit resistance. Thereby, it is possible to suppress the electrolytic corrosion of the bearings 21 and 22.
- the holding member 23 of the bearing unit 20 is fixed to the housing 30 on one side in the axial direction with the rotor 40 interposed therebetween, and the housing 30 and the unit base 61 (stator holder) are connected to each other on the other side. (See FIG. 2).
- the unit base 61 since the unit base 61 is connected to the rotating shaft 11 via the housing 30, the unit base 61 can be arranged at a position electrically separated from the rotating shaft 11. If an insulating member such as a resin is interposed between the unit base 61 and the housing 30, the unit base 61 and the rotating shaft 11 are further electrically separated. Thereby, the electrolytic corrosion of the bearings 21 and 22 can be appropriately suppressed.
- the shaft voltage acting on the bearings 21 and 22 is reduced by arranging the bearings 21 and 22 on one side or the like. Further, the potential difference between the rotor 40 and the stator 50 is reduced. Therefore, the potential difference acting on the bearings 21 and 22 can be reduced without using conductive grease in the bearings 21 and 22. Since the conductive grease generally contains fine particles such as carbon, it is considered that sound is generated. In this regard, in this embodiment, the bearings 21 and 22 are configured to use non-conductive grease. For this reason, it is possible to suppress the inconvenience of generating noise in the bearings 21 and 22. For example, when it is applied to an electric vehicle such as an electric vehicle, it is considered that a countermeasure against the noise of the rotating electric machine 10 is required. However, the countermeasure against the noise can be suitably implemented.
- the stator winding 51 is molded together with the stator core 52 with a molding material to suppress the displacement of the stator winding 51 in the stator 50 (see FIG. 11). ).
- the stator winding 51 is molded together with the stator core 52 so that the displacement of the conductor wire of the stator winding 51 is suppressed. Therefore, it is possible to suppress the distortion of the magnetic flux due to the displacement of the stator winding 51 and the occurrence of electrolytic corrosion of the bearings 21 and 22 due to the distortion.
- the unit base 61 as a housing member for fixing the stator core 52 is made of carbon fiber reinforced plastic (CFRP), discharge to the unit base 61 is suppressed as compared with a case where the unit base 61 is made of, for example, aluminum. As a result, a suitable countermeasure against electric corrosion is possible.
- CFRP carbon fiber reinforced plastic
- the magnet unit 42 of the first embodiment has a plurality of magnets 2001 arranged side by side in the circumferential direction.
- Each of these magnets 2001 is oriented such that the direction of the axis of easy magnetization is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared to the q-axis side, which is the boundary of the magnetic poles.
- a magnet magnetic path is formed along.
- the magnetization directions (magnetization directions) of the adjacent magnets 2001 in the circumferential direction are reversed (reverse) so that the polarities of the adjacent d-axes in the circumferential direction are different.
- the magnetization directions of the magnet 2001 are made different so that the d-axis, in which the magnetic flux is concentrated and the polarity is N-pole, and the d-axis, in which the magnetic flux is diffused and the polarity is the S-pole, alternate in the circumferential direction. ing.
- a plurality of arc-shaped magnet magnetic paths are formed around a center point set on the q axis.
- This magnet magnetic path includes a magnetic path on the oriented circular arc OA centering on the center point and passing through a first intersection point P1 between the d-axis and the stator-side outer surface (armature-side peripheral surface) of the magnet 2001. It is desirable that the oriented arc OA be set such that the tangent at the first intersection P1 on the oriented arc approaches parallel to the d-axis.
- the magnet 2001 is provided symmetrically with respect to the q axis, and is provided between d axes adjacent in the circumferential direction. That is, the magnet 2001 is provided in an arc shape along the circumferential direction between the adjacent d-axes in the circumferential direction. More specifically, the oriented arc OA is provided between the d-axes adjacent in the circumferential direction, and the magnet 2001 is arranged so that a magnetic path is formed at least over the entire area of the oriented arc OA. It is provided between adjacent d-axes in the direction.
- the magnet magnetic path along the oriented arc OA is the longest, and the farther from the oriented arc OA, the shorter the magnet magnetic path is.
- a magnet magnetic path (indicated by a broken line) passing through a portion closer to the stator than an opposite stator is more likely to be shorter.
- a magnet magnetic path (shown by a broken line) passing through a portion on the side opposite to the stator than the portion on the stator is more likely to be shorter.
- the shape of the magnet magnetic path (that is, the oriented arc OA) may be an arc that is a part of a perfect circle or an arc that is a part of an ellipse.
- the center of the arc is on the q-axis, but need not be on the q-axis.
- the magnet unit 42 is provided in an annular shape by arranging the arc-shaped magnets 2001 each having a magnet magnetic path as described above in the circumferential direction.
- the magnet unit 42 preferably has a surface magnetic flux density distribution close to a sinusoidal shape, and the magnetic flux density on the d-axis is preferably as high as possible. Therefore, when the magnets 2001 are arranged side by side in the circumferential direction, it is desirable to reduce the gap between the adjacent magnets 2001 as much as possible and to reduce the number thereof.
- the magnetic flux density changes sharply near the q-axis as shown in FIG. For this reason, when a radially oriented magnet or a parallelly oriented magnet is employed, they are usually arranged at predetermined intervals.
- the magnets 2001 are arranged without gaps, there is no space for arranging an engaging portion (such as a side wall) that engages with the circumferential end surface of the magnet 2001. Even if a gap is provided, it is better to make the width dimension of the gap in the circumferential direction as short as possible (thin) in order to obtain a surface magnetic flux density distribution close to a sine wave shape and to increase the magnetic flux density in the d-axis. . In that case, it is difficult to dispose the engaging portion having such a strength (that is, the width dimension) that it can be prevented from rotating due to the clearance. Therefore, in the second embodiment, the magnet 2001 and the cylindrical portion 43 of the magnet unit 42 are configured as follows. In the second embodiment, the magnet holder 41 corresponds to a magnet holding unit.
- a concave portion 2002 is provided on the anti-stator-side peripheral surface (anti-armature-side peripheral surface) of the magnet unit 42 along the axial direction.
- the concave portion 2002 opens on the side opposite to the stator (the cylindrical portion side).
- the concave portion 2002 is provided on the d-axis side rather than the q-axis side.
- the concave portion 2002 is configured to open around the d-axis. More specifically, in each magnet 2001, a slope that is oblique to the radial direction (for example, an angle of 45 degrees) is provided so as to cut the corner on the side opposite to the stator.
- the magnet unit 42 is provided with a concave portion 2002 that opens on the side opposite to the stator around the d-axis. Further, the concave portion 2002 is provided so as to avoid the alignment arc OA.
- a magnet magnetic path (indicated by a broken line) that passes through a portion on the anti-stator side rather than the stator side is shorter. It is easy to become.
- the magnet magnetic path is short, it can be said that the magnetic field is easily demagnetized due to the influence of the external magnetic field (for example, the magnetic field from the stator winding 51). For this reason, even if the concave portion 2002 is provided in the portion of the magnet 2001 closer to the d-axis on the side opposite to the stator, the magnetic flux density on the d-axis is hardly affected (the magnetic flux density does not decrease).
- the cylindrical portion 43 is provided with a convex portion 2003 that engages with the concave portion 2002 of the magnet 2001 in the circumferential direction. More specifically, as shown in FIG. 23, a convex portion 2003 is provided on the inner peripheral surface of the cylindrical portion 43 so as to project toward the magnet portion (that is, the stator side) along the radial direction. These convex portions 2003 are formed so that the width in the circumferential direction becomes shorter as approaching the stator side in the radial direction so that the cross section becomes triangular according to the shape of the concave portion 2002.
- a slope is provided from the inner peripheral surface of the cylindrical portion 43 to the vertex of the convex portion 2003, and the slope is formed at an angle corresponding to the angle of the slope of the concave portion 2002 (that is, at an angle of 45 degrees with respect to the radial direction). ) Is formed. Further, the dimension (height dimension) of the convex portion 2003 in the radial direction is the same as the dimension (depth dimension) of the concave portion 2002. This makes it possible to suitably engage the convex portion 2003 and the concave portion 2002.
- the protrusions 2003 and the recesses 2002 may be formed at any positions within the range of the magnet unit 42 in the axial direction.
- the convex portion 2003 and the concave portion 2002 may be provided over the entire range of the magnet unit 42 along the axial direction.
- the projections 2003 and the recesses 2002 do not need to be provided on all d-axes, and may be smaller than the number of d-axes.
- the convex portion 2003 and the concave portion 2002 may be provided at every 90-degree angle interval. If the number of the concave portions 2002 is larger than that of the convex portions 2003, the numbers of the convex portions 2003 and the concave portions 2002 may be arbitrarily changed.
- a groove 2004 is provided along the axial direction on the stator-side outer surface (armature-side peripheral surface) of the magnet unit 42 of the second embodiment.
- the groove 2004 is open on the stator side.
- the groove 2004 is provided on the q-axis side more than the d-axis side.
- the groove 2004 is formed so as to open around the q-axis.
- the groove 2004 is provided so as to avoid the orientation arc OA.
- the stator 50 (the stator winding 51 and the like) is arranged inside the magnet unit 42 from the radially inner diameter.
- the magnet unit 42 is provided with a flow path surrounded by the groove 2004 and the stator 50.
- the flow path functions as a passage penetrating in the axial direction, and is configured to allow a fluid such as air to pass therethrough. That is, the cross-sectional area of the groove 2004 is large enough to allow a fluid such as air to pass through.
- a magnet magnetic path (shown by a broken line) passing through a portion closer to the stator than an opposite stator is shorter. It is easy to become.
- the magnet magnetic path is short, it can be said that the magnetic field is easily demagnetized due to the influence of the external magnetic field (for example, the magnetic field from the stator winding 51). For this reason, even if the groove 2004 is provided in the portion of the magnet 2001 closer to the stator than the side opposite to the stator in the q-axis, the magnetic flux density on the d-axis is hardly affected (the magnetic flux density is reduced). Does not drop).
- the magnet unit 42 is configured by the plurality of magnets 2001, but the magnet unit 42 may be configured by one annular magnet 2001.
- the direction of the easy axis is oriented so as to be parallel to the d-axis as compared with the q-axis side that is the magnetic pole boundary, and a magnet magnetic path is formed along the easy axis.
- the plurality of magnets 2001 are used for the magnet unit 42.
- the engagement portion disposed in the gap becomes thin, and it becomes impossible to suitably perform the rotation stop.
- the portion on the side opposite to the stator is a portion in which the magnet magnetic path is likely to be short and demagnetized easily. That is, even if this portion is deleted, the influence on the magnetic flux density generated from the d-axis is small. That is, the magnetic flux density generated from the d-axis does not decrease, and the torque does not decrease.
- a concave portion 2002 that opens on the anti-stator side that is, on the cylindrical portion side
- the cylindrical portion 43 is provided with a convex portion 2003 that engages with the concave portion 2002. Accordingly, the rotation of the magnet unit 42 can be stopped while providing a magnetic flux density distribution close to a sine wave shape and increasing the magnetic flux density on the d-axis.
- the widths of the concave portion 2002 and the convex portion 2003 in the circumferential direction are set so as to secure the strength that can appropriately perform the rotation stop. You have set. For this reason, it is possible to suitably perform the detent. Even when the width is set as described above, since the portion is easily demagnetized, the magnetic flux in the d-axis can be reduced even when the concave portion 2002 is provided as compared with the case where the concave portion 2002 is not provided. A decrease in density can be suppressed. Further, the magnet amount of the magnet unit 42 can be reduced.
- the portion on the stator side is a portion where the magnet magnetic path is likely to be short and demagnetized easily. That is, even if this portion is deleted, the influence on the magnetic flux density generated from the d-axis is small.
- a groove portion 2004 was provided in a portion closer to the stator in a portion closer to the q axis. Since these grooves 2004 and are provided along the axial direction, the magnet 2001 is fixed to the inner peripheral surface of the cylindrical portion 43, and the rotor 40 is arranged to face the stator 50 so as to penetrate in the axial direction. A flow path will be provided. When the rotor 40 rotates, a fluid such as air passes through these flow paths, so that the magnet unit 42 is cooled. That is, the cooling performance of the magnet unit 42 can be improved.
- the groove 2004 is provided in a portion where demagnetization is likely to occur, the magnetic flux density is hardly affected. That is, the cooling performance of the magnet unit 42 can be improved while suppressing a decrease in torque. Further, the amount of magnets of the magnet unit 42 can be suitably reduced while suppressing a decrease in torque.
- the magnet unit 42 is configured using a magnet array called a Halbach array. That is, the magnet unit 42 includes the first magnet 131 having the magnetization direction (the direction of the magnetization vector) in the radial direction and the second magnet 132 having the magnetization direction (the direction of the magnetization vector) in the circumferential direction.
- the first magnets 131 are arranged at predetermined intervals in the circumferential direction, and the second magnets 132 are arranged at positions between the adjacent first magnets 131 in the circumferential direction.
- the first magnet 131 and the second magnet 132 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
- the first magnets 131 are circumferentially separated from each other such that the poles on the side facing the stator 50 (inside in the radial direction) alternately become N poles and S poles.
- the second magnets 132 are arranged adjacent to the first magnets 131 so that the polarities alternate in the circumferential direction.
- the cylindrical portion 43 provided to surround each of the magnets 131 and 132 is preferably a soft magnetic core made of a soft magnetic material, and functions as a back core.
- the magnet unit 42 of the second embodiment also has the same relationship of the easy axis to the d-axis and the q-axis in the dq coordinate system as in the first embodiment.
- a magnetic body 133 made of a soft magnetic material is disposed radially outside the first magnet 131, that is, on the side of the cylindrical portion 43 of the magnet holder 41.
- the magnetic body 133 may be made of an electromagnetic steel sheet, soft iron, or a powdered iron core material.
- the circumferential length of the magnetic body 133 is the same as the circumferential length of the first magnet 131 (in particular, the circumferential length of the outer peripheral portion of the first magnet 131).
- the radial thickness of the integrated body in a state where the first magnet 131 and the magnetic body 133 are integrated is the same as the radial thickness of the second magnet 132.
- the thickness of the first magnet 131 in the radial direction is smaller than that of the second magnet 132 by the amount of the magnetic body 133.
- the magnets 131 and 132 and the magnetic body 133 are fixed to each other by, for example, an adhesive.
- the radial outside of the first magnet 131 is on the opposite side to the stator 50, and the magnetic body 133 is located on the opposite side (anti- On the stator side).
- a key 134 is formed on the outer periphery of the magnetic body 133 as a protrusion protruding radially outward, that is, toward the cylindrical portion 43 of the magnet holder 41. Further, a key groove 135 is formed on the inner peripheral surface of the cylindrical portion 43 as a concave portion for accommodating the key 134 of the magnetic body 133.
- the protruding shape of the key 134 and the groove shape of the key groove 135 are the same, and the same number of key grooves 135 as the keys 134 are formed corresponding to the keys 134 formed on each magnetic body 133.
- the key 134 and the key groove 135 may be provided in any of the cylindrical portion 43 of the magnet holder 41 and the magnetic member 133, and conversely, on the outer peripheral portion of the magnetic member 133.
- the magnetic flux density in the first magnet 131 can be increased by alternately arranging the first magnets 131 and the second magnets 132. Therefore, in the magnet unit 42, the magnetic flux is concentrated on one side, and the magnetic flux on the side closer to the stator 50 can be enhanced.
- the magnet unit 42 of the present embodiment has a configuration in which a portion of the first magnet 131 where demagnetization is likely to occur is replaced with a magnetic body 133.
- FIG. 26A and 26B are diagrams specifically showing the flow of magnetic flux in the magnet unit 42.
- FIG. 26A shows a conventional configuration in which the magnet unit 42 does not have the magnetic body 133.
- FIG. 26B shows a case where the configuration of the present embodiment in which the magnet unit 42 has the magnetic body 133 is used.
- 26 (a) and 26 (b) the cylindrical portion 43 and the magnet unit 42 of the magnet holder 41 are linearly developed and shown. Side.
- the magnetic flux acting surface of the first magnet 131 and the side surface of the second magnet 132 are in contact with the inner peripheral surface of the cylindrical portion 43, respectively.
- the magnetic flux acting surface of the second magnet 132 is in contact with the side surface of the first magnet 131.
- the magnetic flux F1 entering the contact surface with the first magnet 131 through the outer path of the second magnet 132 and the magnetic flux F2 of the second magnet 132 substantially parallel to the cylindrical portion 43 pass through the cylindrical portion 43.
- a combined magnetic flux with the attracting magnetic flux is generated. Therefore, there is a concern that magnetic saturation may partially occur near the contact surface between the first magnet 131 and the second magnet 132 in the cylindrical portion 43.
- the magnetic body 133 is provided between the magnetic flux acting surface of the first magnet 131 and the inner peripheral surface of the cylindrical portion 43 on the opposite side of the stator 50 of the first magnet 131. Since it is provided, the magnetic body 133 allows the passage of magnetic flux. Therefore, magnetic saturation in the cylindrical portion 43 can be suppressed, and the proof strength against demagnetization is improved.
- the magnet magnetic path passing inside the magnet is longer. Therefore, the magnet permeance increases, the magnetic force can be increased, and the torque can be increased. Further, since the magnetic flux is concentrated at the center of the d-axis, the sine wave matching ratio can be increased. In particular, when the current waveform is changed to a sine wave or a trapezoidal wave by the PWM control, or a switching IC with 120-degree conduction is used, the torque can be more effectively increased.
- the radial thickness of the stator core 52 may be 1 / or larger than ⁇ of the radial thickness of the magnet unit 42.
- the radial thickness of the stator core 52 is preferably equal to or more than ⁇ of the radial thickness of the first magnet 131 provided at the center of the magnetic pole in the magnet unit 42.
- the radial thickness of the stator core 52 may be smaller than the radial thickness of the magnet unit 42.
- the magnetic flux of the magnet is about 1 [T]
- the saturation magnetic flux density of the stator core 52 is 2 [T]
- the magnetic flux can be increased in proportion to the thickness of the magnet that handles the magnetic flux in the circumferential direction.
- the magnetic flux flowing through the stator core 52 does not exceed the magnetic flux in the circumferential direction. That is, when an iron-based metal having a saturation magnetic flux density of 2 [T] with respect to the magnetic flux of 1 [T] of the magnet is used, if the thickness of the stator core 52 is set to half or more of the thickness of the magnet, magnetic saturation does not occur.
- a small and lightweight rotating electric machine can be provided.
- the demagnetizing field from the stator 50 acts on the magnet magnetic flux, the magnet magnetic flux is generally 0.9 [T] or less. Therefore, if the stator core has half the thickness of the magnet, its magnetic permeability can be kept suitably high.
- the outer peripheral surface of the stator core 52 is formed into a curved surface without irregularities, and the plurality of conductive wire groups 81 are arranged at predetermined intervals on the outer peripheral surface.
- the stator core 52 includes an annular yoke 141 provided on the opposite side (lower side in the figure) to the rotor 40 on both radial sides of the stator winding 51, A projection 142 extends from the yoke 141 so as to project between the linear portions 83 adjacent in the circumferential direction.
- the protrusions 142 are provided at predetermined intervals on the radially outer side of the yoke 141, that is, on the rotor 40 side.
- Each conductor group 81 of the stator winding 51 is engaged with the protrusion 142 in the circumferential direction, and is arranged side by side in the circumferential direction while using the protrusion 142 as a positioning portion of the conductor group 81.
- the protrusion 142 corresponds to a “member between conductive wires”.
- the projection 142 has a thickness in the radial direction from the yoke 141, in other words, as shown in FIG. 27, the projection 142 extends from the inner side surface 320 adjacent to the yoke 141 of the linear portion 83 in the radial direction of the yoke 141.
- the distance W to the apex is smaller than 1/2 (H1 in the figure) of the radial thickness of the linear portion 83 radially adjacent to the yoke 141 among the linear portions 83 in the radially inner and outer layers. It has a configuration.
- the dimension (thickness) T1 of the conductive wire group 81 (conductive member) in the radial direction of the stator winding 51 (stator core 52) (twice the thickness of the conductive wire 82, in other words, the stator core of the conductive wire group 81)
- the non-magnetic member (sealing member 57) may occupy three-quarters of the range (the shortest distance between the surface 320 in contact with 52 and the surface 330 of the conductor group 81 facing the rotor 40).
- the protrusions 142 do not function as teeth between the conductive wire groups 81 (that is, the linear portions 83) that are adjacent in the circumferential direction, and no magnetic path is formed by the teeth. .
- the protrusions 142 may not be provided entirely between the conductor groups 81 arranged in the circumferential direction, but may be provided between at least one set of conductor groups 81 adjacent in the circumferential direction.
- the protrusions 142 may be provided at regular intervals in a predetermined number between the conductive wire groups 81 in the circumferential direction.
- the shape of the protrusion 142 may be an arbitrary shape such as a rectangular shape or an arc shape.
- a single linear portion 83 may be provided on the outer peripheral surface of the stator core 52. Therefore, in a broad sense, the thickness of the projection 142 in the radial direction from the yoke 141 may be smaller than half the thickness of the straight portion 83 in the radial direction.
- the protrusion 142 is positioned within the range of the virtual circle. It is preferable to have a shape that protrudes from the yoke 141, in other words, a shape that does not protrude radially outward (ie, toward the rotor 40) from the virtual circle.
- the thickness of the protrusion 142 in the radial direction is limited and does not function as a tooth between the linear portions 83 adjacent in the circumferential direction. Is provided, adjacent linear portions 83 can be brought closer to each other. Thereby, the cross-sectional area of the conductor 82a can be increased, and the heat generated due to the energization of the stator winding 51 can be reduced. In such a configuration, magnetic saturation can be eliminated by the absence of teeth, and the current flowing through the stator winding 51 can be increased. In this case, it is possible to suitably cope with an increase in the amount of heat generated with an increase in the supplied current.
- the turn portion 84 is shifted in the radial direction and has an interference avoiding portion that avoids interference with another turn portion 84, the different turn portions 84 are separated from each other in the radial direction. Can be arranged. Thereby, the heat radiation of the turn portion 84 can be improved. As described above, it is possible to optimize the heat radiation performance of the stator 50.
- the radial thickness of the protrusion 142 will be as shown in FIG. H1. Specifically, if the yoke 141 and the magnet unit 42 are separated from each other by 2 mm or more, the radial thickness of the protrusion 142 may be H1 or more in FIG.
- the straight portion 83 in the radial direction exceeds 2 mm and the conductor group 81 is formed of two layers of conductors 82 inside and outside the radial direction, the straight portion 83 not adjacent to the yoke 141, That is, the protrusion 142 may be provided in a range from the yoke 141 to a half position of the second-layer conductive wire 82.
- the radial thickness of the protrusion 142 is up to “H1 ⁇ 3/2”, the effect can be obtained to a considerable extent by increasing the conductor cross-sectional area in the conductor group 81.
- stator core 52 may have a configuration shown in FIG. Although the sealing member 57 is omitted in FIG. 28, the sealing member 57 may be provided. In FIG. 28, for convenience, the magnet unit 42 and the stator core 52 are shown as being linearly developed.
- the stator 50 has a protrusion 142 as a member between conductive wires between the conductive wires 82 (that is, the linear portions 83) adjacent in the circumferential direction.
- the stator winding 51 When the stator winding 51 is energized, the stator 50 functions magnetically together with one of the magnetic poles (N-pole or S-pole) of the magnet unit 42 and forms a part 350 extending in the circumferential direction of the stator 50.
- the length of the portion 350 in the circumferential direction of the stator 50 is Wn
- the total width of the protrusions 142 existing in this length range Wn is defined as Wn.
- the saturation magnetic flux density of the projection 142 is Bs
- the circumferential width of one pole of the magnet unit 42 is Wm
- the residual magnetic flux density of the magnet unit 42 is Br.
- the range Wn is set so as to include a plurality of conductor groups 81 that are adjacent in the circumferential direction and include a plurality of conductor groups 81 whose excitation timings overlap. At this time, it is preferable to set the center of the gap 56 of the conductive wire group 81 as a reference (boundary) when setting the range Wn. For example, in the case of the configuration illustrated in FIG. 28, the fourth conductor group 81 up to the fourth from the shortest distance from the magnetic pole center of the N pole in the circumferential direction corresponds to the plurality of conductor groups 81. Then, the range Wn is set to include the four conductive wire groups 81. At this time, the end (start point and end point) of the range Wn is the center of the gap 56.
- the three-phase winding of the stator winding 51 is a distributed winding, and in the stator winding 51, the number of the protrusions 142, The number of the gaps 56 between the conductor groups 81 is “the number of phases ⁇ Q”.
- Q is the number of one-phase conductive wires 82 that comes into contact with stator core 52.
- the protrusions 142 are formed as a magnetic material satisfying the above-described relationship (1).
- the total width dimension Wt is also a circumferential dimension of a portion where relative magnetic permeability can be larger than 1 in one pole. Further, in consideration of a margin, the total width dimension Wt may be set to the circumferential width dimension of the projection 142 at one magnetic pole.
- distributed winding refers to a period of one pole pair of magnetic poles (N pole and S pole) and one pole pair of the stator winding 51.
- the one pole pair of the stator winding 51 here includes two straight portions 83 and a turn portion 84 in which currents flow in opposite directions and are electrically connected by a turn portion 84. If the above conditions are satisfied, even a short-pitch winding (Short Pitch Winding) is regarded as an equivalent of a distributed winding of a full-pitch winding.
- concentrated winding means that the width of one pole pair of magnetic poles is different from the width of one pole pair of the stator winding 51.
- concentrated winding three conductor groups 81 for one magnetic pole pair, three conductor groups 81 for two magnetic pole pairs, nine conductor groups 81 for four magnetic pole pairs, and 5 There is one in which the conductor group 81 has nine relations to one magnetic pole pair.
- the stator windings 51 are concentrated windings, when the three-phase windings of the stator windings 51 are energized in a predetermined order, the stator windings 51 for two phases are excited. As a result, the projections 142 for two phases are excited. Therefore, in the range of one pole of the magnet unit 42, the circumferential width Wt of the protrusion 142 that is excited when the stator winding 51 is energized is “A ⁇ 2”. After the width Wt is defined in this manner, the protrusion 142 is formed of a magnetic material satisfying the relationship (1).
- A is the sum of the widths of the protrusions 142 in the circumferential direction of the stator 50 in the region surrounded by the conductor group 81 of the same phase.
- Wm in the concentrated winding is equivalent to “the entire circumference of the surface of the magnet unit 42 facing the air gap” ⁇ “the number of phases” ⁇ “the number of dispersions of the conductive wire group 81”.
- the protrusion 142 in the stator core 52 may be a magnetic material that satisfies the relationship of Wt ⁇ 1 / ⁇ Wm.
- the conductor 82 may be arranged in the circumferential direction of the stator core 52 so that the outer coating 182 between the conductors 82 contacts.
- Wt can be regarded as 0 or the thickness of the outer layer coating 182 of the two conducting wires 82 in contact with each other.
- the inter-conductor member protrusion 142 which is unreasonably small with respect to the magnet magnetic flux on the rotor 40 side is provided.
- the rotor 40 is a flat surface magnet type rotor having low inductance and does not have saliency in terms of magnetoresistance.
- the inductance of the stator 50 can be reduced, and the occurrence of magnetic flux distortion due to the shift of the switching timing of the stator winding 51 is suppressed, and thus the electrolytic corrosion of the bearings 21 and 22 is suppressed. .
- a tooth-shaped portion 143 is provided on the outer peripheral surface side (the upper surface side in the figure) of the stator core 52 as a member between conductive wires.
- the teeth 143 are provided at predetermined intervals in the circumferential direction so as to protrude from the yoke 141, and have the same thickness dimension as the conductor group 81 in the radial direction.
- the side surface of the toothed portion 143 is in contact with each conductor 82 of the conductor group 81.
- a gap may be provided between the tooth-shaped portion 143 and each conductive wire 82.
- the tooth-shaped portion 143 has a limitation on the width in the circumferential direction, and has pole teeth (stator teeth) that are unreasonably thin with respect to the amount of magnets. With such a configuration, the tooth-shaped portion 143 is surely saturated by the magnetic flux at 1.8 T or more, and the inductance can be reduced due to a decrease in permeance.
- the magnetic flux on the magnet unit side is, for example, “Sm ⁇ Br”.
- the surface area of each tooth 143 on the rotor side is St
- the number of conductors 82 per phase is m
- the tooth windings 143 for two phases are excited within one pole by the current flowing through the stator winding 51.
- the magnetic flux on the stator side is, for example, “St ⁇ m ⁇ 2 ⁇ Bs”. in this case, St ⁇ m ⁇ 2 ⁇ Bs ⁇ Sm ⁇ Br (2)
- the inductance is reduced by limiting the size of the tooth-shaped portion 143 so that the relationship of
- the circumferential width of one pole of the magnet unit 42 is Wm
- the circumferential width of the toothed part 143 is Wst.
- the above equation (2) is replaced by an equation (3).
- the inductance is reduced by setting the width Wst of the toothed portion 143 to be smaller than 1 / of the width Wm of one pole of the magnet unit 42. If the number m is 1, the width Wst of the toothed portion 143 may be smaller than 1 / of the width Wm of one pole of the magnet unit 42.
- the configuration is such that the inter-wire member (tooth-shaped portion 143) is unreasonably small with respect to the magnet magnetic flux on the rotor 40 side.
- the inductance of the stator 50 can be reduced, and the occurrence of magnetic flux distortion due to the shift of the switching timing of the stator winding 51 is suppressed, and thus the electrolytic corrosion of the bearings 21 and 22 is suppressed. .
- the sealing member 57 that covers the stator windings 51 is provided in a range that includes all of the conductor groups 81 outside the stator core 52 in the radial direction, that is, the thickness in the radial direction is equal to the diameter of each conductor group 81.
- the thickness is set to be larger than the thickness in the direction, the thickness may be changed.
- the sealing member 57 is provided so that a part of the conductive wire 82 protrudes.
- the sealing member 57 is configured to be provided in a state in which a part of the conductive wire 82 that is the radially outermost in the conductive wire group 81 is exposed to the radially outer side, that is, to the stator 50 side.
- the thickness of the sealing member 57 in the radial direction is preferably equal to or smaller than the thickness of the conductor group 81 in the radial direction.
- the configuration may be such that each conductive wire group 81 is not sealed by the sealing member 57. That is, the configuration is such that the sealing member 57 that covers the stator winding 51 is not used. In this case, there is no gap between the conductors between the conductor groups 81 arranged in the circumferential direction, and there is a gap. In short, the configuration is such that no inter-conductor member is provided between the conductor groups 81 arranged in the circumferential direction.
- the inter-wire member of the stator 50 is made of a non-magnetic material
- a material other than resin can be used as the non-magnetic material.
- a metallic nonmagnetic material such as SUS304, which is an austenitic stainless steel, may be used.
- the stator 50 may not have the stator core 52.
- the stator 50 is constituted by the stator winding 51 shown in FIG.
- the stator winding 51 may be sealed with a sealing material.
- the stator 50 may include an annular winding holding portion made of a nonmagnetic material such as a synthetic resin, instead of the stator core 52 made of a soft magnetic material.
- the plurality of magnets 91 and 92 arranged in the circumferential direction are used as the magnet unit 42 of the rotor 40.
- the magnet unit 42 is an annular permanent magnet.
- a configuration using a magnet may be used.
- an annular magnet 95 is fixed radially inside the cylindrical portion 43 of the magnet holder 41.
- the annular magnet 95 is provided with a plurality of magnetic poles having alternating polarities in the circumferential direction, and the magnet is integrally formed on both the d-axis and the q-axis.
- the annular magnet 95 is formed with an arc-shaped magnet magnetic path in which the direction of orientation is radial in the d-axis of each magnetic pole and circumferential in the q-axis between the magnetic poles.
- the easy axis of magnetization is oriented parallel to or nearly parallel to the d axis in a portion near the d axis, and the easy axis of magnetization is orthogonal to the q axis or in the q axis in a portion near the q axis. It is sufficient that the orientation is made so as to form an arc-shaped magnet magnetic path that is nearly orthogonal.
- Modification 8 In this modification, a part of the control method of the control device 110 is changed. In the present modification, mainly, differences from the configuration described in the first embodiment will be described.
- the operation signal generator 116 includes a carrier generator 116a and U, V, and W phase comparators 116bU, 116bV, and 116bW.
- the carrier generator 116a generates and outputs a triangular wave signal as the carrier signal SigC.
- the U, V, and W phase comparators 116bU, 116bV, and 116bW receive the carrier signal SigC generated by the carrier generation unit 116a and the U, V, and W phase command voltages calculated by the three-phase conversion unit 115. You.
- the U-, V-, and W-phase command voltages are, for example, sinusoidal waveforms, and are out of phase by 120 ° in electrical angle.
- the U, V, W phase comparators 116bU, 116bV, 116bW control the U, V, W phase command voltage and the carrier signal SigC by PWM (pulse width modulation) based on a magnitude comparison between the U, V, W phase voltage and the carrier signal SigC. , V, and W-phase operation signals for the switches Sp and Sn of the upper arm and the lower arm.
- the operation signal generation unit 116 performs each of the U, V, and W phases by PWM control based on a magnitude comparison between a signal obtained by standardizing the U, V, and W phase command voltages by the power supply voltage and a carrier signal.
- An operation signal for the switches Sp and Sn is generated.
- the driver 117 turns on and off the U, V, and W phase switches Sp and Sn in the first inverter 101 based on the operation signal generated by the operation signal generation unit 116.
- the control device 110 performs a process of changing the carrier frequency fc of the carrier signal SigC, that is, the switching frequency of each of the switches Sp and Sn.
- the carrier frequency fc is set high in a low torque region or a high rotation region of the rotating electric machine 10, and set low in a high torque region of the rotating electric machine 10. This setting is made in order to suppress a decrease in the controllability of the current flowing through each phase winding.
- control device 110 changes carrier frequency fc.
- a process of changing the carrier frequency fc will be described with reference to FIG. This process is repeatedly executed by the control device 110, for example, at a predetermined control cycle, as the process of the operation signal generation unit 116.
- Step S10 it is determined whether or not the current flowing through each phase winding 51a is included in the low current region.
- This process is a process for determining that the current torque of the rotating electric machine 10 is in the low torque region.
- the following first and second methods can be used as a method for determining whether or not the pixel is included in the low current region.
- an estimated torque value of the rotating electric machine 10 is calculated.
- the torque threshold may be set to, for example, 1 / of the starting torque (also referred to as a constraint torque) of the rotating electric machine 10.
- the speed threshold may be set to, for example, the rotation speed when the maximum torque of the rotating electric machine 10 is the torque threshold.
- step S10 If a negative determination is made in step S10, it is determined that the current is in the high current region, and the process proceeds to step S11.
- step S11 the carrier frequency fc is set to the first frequency fL.
- step S10 If an affirmative determination is made in step S10, the process proceeds to step S12, and the carrier frequency fc is set to the second frequency fH higher than the first frequency fL.
- the carrier frequency fc is set higher when the current flowing through each phase winding is included in the low current region than in the high current region. Therefore, in the low current region, the switching frequency of the switches Sp and Sn can be increased, and an increase in current ripple can be suppressed. Thereby, a decrease in current controllability can be suppressed.
- the carrier frequency fc when the current flowing through each phase winding is included in the high current region, the carrier frequency fc is set lower than when the current is included in the low current region.
- the amplitude of the current flowing through the winding is larger than in the low current region, so that the increase in the current ripple due to the lower inductance has little effect on the current controllability. Therefore, the carrier frequency fc can be set lower in the high current region than in the low current region, and the switching loss of each of the inverters 101 and 102 can be reduced.
- the carrier frequency fc is set to the first frequency fL
- the carrier frequency fc is gradually changed from the first frequency fL to the second frequency fH. Is also good.
- the carrier frequency fc When the carrier frequency fc is set to the second frequency fH and a negative determination is made in step S10, the carrier frequency fc may be gradually changed from the second frequency fH to the first frequency fL. .
- a switch operation signal may be generated by space vector modulation (SVM) control instead of ⁇ PWM control. Even in this case, the change of the switching frequency described above can be applied.
- SVM space vector modulation
- FIG. 35A is a diagram illustrating electrical connection between first and second conductive wires 88a and 88b, which are two pairs of conductive wires.
- first and second conductive wires 88a and 88b may be connected in series as shown in FIG. 35B.
- FIG. 36 shows a configuration in which first to fourth conductive wires 88a to 88d, which are four pairs of conductive wires, are stacked.
- the first to fourth conductive wires 88a to 88d are arranged in the radial direction in the order of the first, second, third, and fourth conductive wires 88a, 88b, 88c, and 88d from the side closer to the stator core 52. .
- the third and fourth conductors 88c and 88d are connected in parallel, a first conductor 88a is connected to one end of the parallel connection body, and a second conductor is connected to the other end. 88b may be connected.
- the connection is made in parallel, the current density of the conductive wires connected in parallel can be reduced, and the heat generation during energization can be suppressed. Therefore, in a configuration in which the cylindrical stator winding is assembled to the housing (unit base 61) in which the cooling water passage 74 is formed, the first and second conductive wires 88a and 88b that are not connected in parallel abut on the unit base 61.
- the third and fourth conductive wires 88c and 88d arranged on the stator core 52 side and connected in parallel are arranged on the side opposite to the stator core side. Thereby, the cooling performance of each of the conductors 88a to 88d in the multilayer conductor structure can be equalized.
- the thickness of the conductor group 81 including the first to fourth conductors 88a to 88d in the radial direction may be smaller than the circumferential width of one phase in one magnetic pole.
- the rotating electric machine 10 may have an inner rotor structure (adduction structure).
- the stator 50 may be provided radially outside the housing 30 and the rotor 40 may be provided radially inside the housing 30.
- the inverter unit 60 may be provided on one or both of the axial ends of the stator 50 and the rotor 40.
- FIG. 37 is a cross-sectional view of the rotor 40 and the stator 50
- FIG. 38 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG.
- the configuration shown in FIGS. 37 and 38 based on the inner rotor structure is different from the configuration shown in FIGS. 8 and 9 based on the outer rotor structure in that the rotor 40 and the stator 50 are reversed inside and outside the radial direction. Except for, the configuration is the same.
- the stator 50 has a stator winding 51 having a flat conductive wire structure and a stator core 52 having no teeth.
- the stator winding 51 is mounted radially inside the stator core 52.
- the stator core 52 has any one of the following configurations, similarly to the case of the outer rotor structure.
- an inter-conductor member is provided between the respective conductor portions in the circumferential direction, and as the inter-conductor member, the circumferential width of the inter-conductor member at one magnetic pole is Wt, and the saturation of the inter-conductor member is achieved.
- the magnetic flux density is Bs
- the circumferential width of the magnet unit at one magnetic pole is Wm
- the residual magnetic flux density of the magnet unit is Br
- a magnetic material that satisfies Wt ⁇ Bs ⁇ Wm ⁇ Br is used.
- an inter-conductor member is provided between the conductor portions in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
- the stator 50 has a configuration in which no inter-conductor member is provided between the respective conductor portions in the circumferential direction.
- the magnet units 42 and 91 are oriented such that the direction of the easy axis of magnetization is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, compared to the q-axis side, which is the boundary of the magnetic poles. It is configured using Details such as the magnetization direction of each of the magnets 91 and 92 are as described above. It is also possible to use an annular magnet 95 (see FIG. 32) in the magnet unit 42.
- FIG. 39 is a longitudinal sectional view of the rotating electric machine 10 in the case of the inner rotor type, which corresponds to FIG. 2 described above. The differences from the configuration of FIG. 2 will be briefly described.
- an annular stator 50 is fixed inside a housing 30, and a rotor 40 is rotatably provided inside the stator 50 with a predetermined air gap interposed therebetween.
- each of the bearings 21 and 22 is disposed so as to be biased toward one of the axial directions with respect to the axial center of the rotor 40, whereby the rotor 40 is cantilevered.
- the inverter unit 60 is provided inside the magnet holder 41 of the rotor 40.
- FIG. 40 shows another configuration of the rotating electric machine 10 having the inner rotor structure.
- a rotating shaft 11 is rotatably supported by bearings 21 and 22 in a housing 30, and a rotor 40 is fixed to the rotating shaft 11.
- each of the bearings 21 and 22 is arranged so as to be biased toward one of the axial directions with respect to the axial center of the rotor 40.
- the rotor 40 has a magnet holder 41 and a magnet unit 42.
- the rotating electric machine 10 of FIG. 40 is different from the rotating electric machine 10 of FIG. 39 in that the inverter unit 60 is not provided inside the rotor 40 in the radial direction.
- the magnet holder 41 is connected to the rotating shaft 11 at a position radially inside the magnet unit 42.
- the stator 50 has a stator winding 51 and a stator core 52 and is attached to the housing 30.
- FIG. 41 is an exploded perspective view of the rotating electric machine 200
- FIG. 42 is a side sectional view of the rotating electric machine 200. In this case, the vertical direction is shown based on the states of FIGS. 41 and 42.
- the rotating electric machine 200 is rotatably disposed inside the stator core 201 having an annular stator core 201 and a multi-phase stator winding 202, and a stator 203. And a rotator 204.
- the stator 203 corresponds to an armature
- the rotor 204 corresponds to a field element.
- the stator core 201 is formed by laminating a number of silicon steel plates, and a stator winding 202 is attached to the stator core 201.
- the rotor 204 has a rotor core and a plurality of permanent magnets as magnet units.
- a plurality of magnet insertion holes are provided in the rotor core at equal intervals in the circumferential direction.
- a permanent magnet that is magnetized so that the magnetization direction changes alternately for each adjacent magnetic pole is mounted.
- the permanent magnet of the magnet unit may have a Halbach array as described with reference to FIG. 25 or a configuration similar thereto.
- the permanent magnet of the magnet unit has a pole whose orientation direction (magnetization direction) extends in an arc shape between the d axis, which is the center of the magnetic pole, and the q axis, which is the boundary of the magnetic pole, as described in FIGS. It is preferable to have anisotropic characteristics.
- the stator 203 may have any of the following configurations.
- an inter-conductor member is provided between the respective conductor portions in the circumferential direction, and as the inter-conductor member, the circumferential width of the inter-conductor member at one magnetic pole is Wt, and the saturation of the inter-conductor member is achieved.
- the magnetic flux density is Bs
- the circumferential width of the magnet unit at one magnetic pole is Wm
- the residual magnetic flux density of the magnet unit is Br
- a magnetic material that satisfies Wt ⁇ Bs ⁇ Wm ⁇ Br is used.
- stator 203 In the stator 203, an inter-conductor member is provided between the conductor portions in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
- the stator 203 has a configuration in which no inter-conductor member is provided between the respective conductor portions in the circumferential direction.
- the magnet unit was oriented such that the direction of the easy axis of magnetization was parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, compared to the q-axis side, which is the boundary of the magnetic poles. It is configured using a plurality of magnets.
- a ring-shaped inverter case 211 is provided at one axial end of the rotary electric machine 200. Inverter case 211 is arranged such that the lower surface of the case is in contact with the upper surface of stator core 201.
- a plurality of power modules 212 constituting an inverter circuit, a smoothing capacitor 213 for suppressing pulsation (ripple) of voltage and current generated by a switching operation of a semiconductor switching element, and a control board 214 having a control unit , A current sensor 215 for detecting a phase current, and a resolver stator 216 that is a rotation speed sensor of the rotor 204.
- the power module 212 has an IGBT or a diode that is a semiconductor switching element.
- a power connector 217 connected to a DC circuit of a battery mounted on the vehicle, and a signal connector 218 used for transferring various signals between the rotating electric machine 200 and the vehicle-side control device are provided on the periphery of the inverter case 211. Is provided.
- the inverter case 211 is covered with a top cover 219. DC power from the vehicle-mounted battery is input via the power connector 217, converted into AC by switching of the power module 212, and sent to the stator winding 202 of each phase.
- a bearing unit 221 for rotatably holding the rotating shaft of the rotor 204 and an annular rear case 222 for accommodating the bearing unit 221 are provided on the opposite sides of the stator core 201 in the axial direction opposite to the inverter case 211. Is provided.
- the bearing unit 221 has, for example, a pair of bearings, and is arranged so as to be deviated to one side in the axial direction with respect to the axial center of the rotor 204.
- a configuration in which a plurality of bearings of the bearing unit 221 are provided separately on both sides in the axial direction of the stator core 201 and the rotating shaft is supported at both ends by the respective bearings may be adopted.
- the rotating electrical machine 200 is mounted on the vehicle side by fixing the rear case 222 to the mounting portion such as a gear case or a transmission of the vehicle by bolting.
- a cooling channel 211a for flowing a coolant is formed in the inverter case 211.
- the cooling channel 211 a is formed by closing a space recessed annularly from the lower surface of the inverter case 211 with the upper surface of the stator core 201.
- the cooling passage 211a is formed so as to surround the coil end of the stator winding 202.
- the module case 212a of the power module 212 is inserted into the cooling channel 211a.
- a cooling channel 222 a is also formed in the rear case 222 so as to surround the coil end of the stator winding 202.
- the cooling channel 222 a is formed by closing a space recessed annularly from the upper surface of the rear case 222 with the lower surface of the stator core 201.
- FIG. 43 shows a configuration of a rotary armature type rotary electric machine 230.
- bearings 232 are fixed to the housings 231a and 231b, respectively, and the rotating shaft 233 is rotatably supported by the bearings 232.
- the bearing 232 is, for example, an oil-impregnated bearing made of a porous metal containing oil.
- a rotor 234 as an armature is fixed to the rotation shaft 233.
- the rotor 234 has a rotor core 235 and a multi-phase rotor winding 236 fixed to an outer peripheral portion thereof.
- the rotor core 235 has a slotless structure
- the rotor winding 236 has a flat conductor structure. That is, the rotor winding 236 has a flat structure in which the region for each phase is longer in the circumferential direction than in the radial direction.
- a stator 237 as a field element is provided radially outside the rotor 234.
- the stator 237 has a stator core 238 fixed to the housing 231a, and a magnet unit 239 fixed to the inner peripheral side of the stator core 238.
- the magnet unit 239 includes a plurality of magnetic poles having polarities alternated in the circumferential direction.
- the magnet unit 239 has a magnetic pole boundary q on the d-axis side that is the center of the magnetic pole. The orientation is made such that the direction of the easy axis of magnetization is parallel to the d-axis as compared to the axis side.
- the magnet unit 239 has an oriented sintered neodymium magnet, and its intrinsic coercive force is 400 [kA / m] or more and the residual magnetic flux density is 1.0 [T] or more.
- the rotating electric machine 230 of this example is a brushless coreless motor having two poles and three coils, the rotor winding 236 is divided into three, and the magnet unit 239 has two poles.
- the number of poles and the number of coils of the brushed motor varies depending on the application, such as 2: 3, 4:10, and 4:21.
- a commutator 241 is fixed to the rotating shaft 233, and a plurality of brushes 242 are arranged radially outside.
- the commutator 241 is electrically connected to the rotor winding 236 via a conductor 243 embedded in the rotating shaft 233.
- the direct current flows into and out of the rotor winding 236 through the commutator 241, the brush 242, and the conducting wire 243.
- the commutator 241 is appropriately divided in the circumferential direction according to the number of phases of the rotor winding 236.
- the brush 242 may be directly connected to a DC power supply such as a storage battery via electrical wiring, or may be connected to a DC power supply via a terminal block or the like.
- a resin washer 244 as a sealing material is provided between the bearing 232 and the commutator 241 on the rotating shaft 233.
- the resin washer 244 suppresses oil that has oozed from the bearing 232 that is an oil-impregnated bearing from flowing out to the commutator 241 side.
- each of the conductors 82 may be configured to have a plurality of insulating coatings inside and outside.
- a plurality of conductive wires (element wires) with an insulating coating may be bundled into one and covered with an outer coating to form the conductive wire 82.
- the insulating coating of the element wire forms the inner insulating coating
- the outer coating forms the outer insulating coating.
- the insulating ability of the outer insulating coat among the plurality of insulating coats in the conductive wire 82 be higher than the insulating ability of the inner insulating coat.
- the thickness of the outer insulating coating is made larger than the thickness of the inner insulating coating.
- the thickness of the outer insulating coating is 100 ⁇ m, and the thickness of the inner insulating coating is 40 ⁇ m.
- a material having a lower dielectric constant than the inner insulating film may be used as the outer insulating film. At least one of these may be applied.
- the strands may be configured as an aggregate of a plurality of conductive materials.
- the outer insulating coating and the inner insulating coating may have a configuration in which at least one of the coefficient of linear expansion (linear expansion coefficient) and the adhesive strength is different.
- FIG. 44 shows the configuration of the conductor 82 in this modification.
- a conductor 82 includes a plurality of (four in the figure) strands 181, a resin outer layer coating 182 (outer insulating coating) surrounding the plurality of strands 181, and each element in the outer layer coating 182. And an intermediate layer 183 (intermediate insulating film) filled around the line 181.
- the strand 181 has a conductive portion 181a made of a copper material and a conductor film 181b (an inner insulating film) made of an insulating material. When viewed as a stator winding, the outer layers 182 insulate the phases.
- the strand 181 may be configured as an aggregate of a plurality of conductive materials.
- the intermediate layer 183 has a higher linear expansion coefficient than the conductor coating 181b of the strand 181 and a lower linear expansion coefficient than the outer coating 182. That is, in the conductor 82, the coefficient of linear expansion is higher toward the outside.
- the outer layer coating 182 has a higher linear expansion coefficient than the conductor coating 181b, but by providing an intermediate layer 183 having an intermediate linear expansion coefficient between them, the intermediate layer 183 functions as a cushion material. In addition, simultaneous cracking on the outer layer side and the inner layer side can be prevented.
- the conductive portion 181a and the conductive film 181b are bonded to the wire 181 and the conductive film 181b and the intermediate layer 183, and the intermediate layer 183 and the outer layer film 182 are bonded to each other.
- the bonding strength is weaker toward the outside of the conducting wire 82. That is, the adhesive strength between the conductive portion 181a and the conductive coating 181b is lower than the adhesive strength between the conductive coating 181b and the intermediate layer 183, and the adhesive strength between the intermediate layer 183 and the outer coating 182.
- the latter (outer side) is preferably weaker or equivalent. It should be noted that the magnitude of the adhesive strength between the coatings can be grasped, for example, from the tensile strength and the like required when the two coatings are peeled off.
- the bonding strength of the conductive wire 82 as described above, it is possible to suppress the occurrence of cracks (co-cracking) on both the inner layer side and the outer layer side even if an internal / external temperature difference occurs due to heat generation or cooling. .
- heat generation and temperature change of the rotating electric machine mainly occur as copper loss generated from the conductive portion 181a of the wire 181 and iron loss generated from within the iron core.
- the conductive layer 181a is transmitted from the outside of the conductive portion 181a or the conductive wire 82, and the intermediate layer 183 does not necessarily have a heat source.
- the intermediate layer 183 since the intermediate layer 183 has an adhesive force that can serve as a cushion for both, simultaneous cracking can be prevented. Therefore, suitable use is possible even when used in a field having a high withstand voltage or a large temperature change such as a vehicle application.
- the strand 181 may be, for example, an enameled wire, and in such a case, has a resin coating layer (conductor coating 181b) of PA, PI, PAI or the like. Further, it is desirable that the outer layer coating 182 outside the wire 181 be made of the same PA, PI, PAI or the like, and be thick. Thereby, the destruction of the coating film due to the difference in linear expansion coefficient is suppressed.
- the outer layer coating 182 has a dielectric constant such as PPS, PEEK, fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, or LCP, which is different from the corresponding material such as PA, PI, PAI by thickening the corresponding material.
- the adhesive strength between the two types of coatings (intermediate insulating coating and outer insulating coating) on the outside of the wire 181 and the enamel coating on the wire 181 is determined by the adhesive strength between the copper wire and the enamel coating on the wire 181. It is desirable that it be weaker. This suppresses a phenomenon in which the enamel coating and the two types of coatings are destroyed at a time.
- the thermal stress or impact stress is applied first to the outer layer coating 182.
- the thermal stress and the impact stress can be reduced by providing a portion where the coatings are not bonded. That is, the insulating structure is formed by providing a gap between the element wire (enameled wire) and the void, and arranging fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, and LCP.
- the outermost layer fixed as a final step around the stator winding, which is responsible for mechanical strength, fixing, and the like, for the conductor 82 having the above-described configuration, is formed of epoxy, PPS, PEEK, LCP, or the like. It is preferable to use a resin having properties such as a dielectric constant and a linear expansion coefficient close to those of an enamel coating.
- resin potting with urethane or silicon is generally performed, but the resin has a coefficient of linear expansion that is nearly twice as large as that of other resins, and generates thermal stress that can shear the resin. Therefore, it is not suitable for use at 60 V or higher where strict insulation regulations are used internationally.
- the final insulation process that is easily made by injection molding or the like using epoxy, PPS, PEEK, LCP, or the like, the above-described requirements can be achieved.
- the radial distance DM between the armature side surface of the magnet unit 42 in the radial direction and the axis of the rotor may be 50 mm or more. Specifically, for example, in the radial direction between the radially inner surface of the magnet unit 42 (specifically, the first and second magnets 91 and 92) shown in FIG. The distance DM may be set to 50 mm or more.
- a rotary electric machine having a slotless structure As a rotary electric machine having a slotless structure, a small-sized electric machine whose output is used for a model whose output is several tens of watts to several hundreds of watts is known.
- the applicant of the present application has not grasped an example in which a slotless structure is generally employed in a large-scale rotating electric machine for industrial use exceeding 10 kW. The present applicant has examined the reason.
- the rotating electric machines are a brush motor, a cage induction motor, a permanent magnet synchronous motor, and a reluctance motor.
- a magnetic field generated by a stator winding on a primary side is received by an iron core of a rotor on a secondary side, and an induced current is intensively applied to a cage-type conductor to form a reaction magnetic field.
- This is the principle of generating torque. For this reason, from the viewpoint of miniaturization and high efficiency of the device, it is not always advisable to eliminate the iron core on both the stator side and the rotor side.
- the reluctance motor is a motor that utilizes the reluctance change of the iron core, and it is not desirable to eliminate the iron core in principle.
- IPMs i.e., embedded magnet type rotors
- IPMs embedded magnet type rotors
- the IPM has a characteristic of having both a magnet torque and a reluctance torque, and is operated while the ratio of those torques is appropriately adjusted by inverter control. Therefore, the IPM is a small-sized motor having excellent controllability.
- the torque on the rotor surface that generates the magnet torque and the reluctance torque is calculated by calculating the distance DM in the radial direction between the surface of the magnet unit on the armature side in the radial direction and the axis of the rotor, that is, FIG. 45 shows the radius of the stator core of a general inner rotor taken on the horizontal axis.
- the potential of the magnet torque is determined by the strength of the magnetic field generated by the permanent magnet, whereas the reluctance torque is expressed by inductance, particularly q, as shown in the following equation (eq2).
- the magnitude of the shaft inductance determines its potential.
- Magnet torque k ⁇ ⁇ ⁇ Iq (eq1)
- Reluctance torque k ⁇ (Lq ⁇ Ld) ⁇ Iq ⁇ Id (eq2)
- the magnetic field intensity generated by the permanent magnet that is, the amount of magnetic flux ⁇ is proportional to the total area of the permanent magnet on the surface facing the stator. In the case of a cylindrical rotor, it is the surface area of the cylinder. Strictly speaking, since there are an N pole and an S pole, it is proportional to the area occupied by half of the cylindrical surface.
- the surface area of a cylinder is proportional to the radius of the cylinder and the length of the cylinder. That is, if the length of the cylinder is constant, it is proportional to the radius of the cylinder.
- the inductance Lq of the winding depends on the shape of the iron core but has low sensitivity, and is rather proportional to the square of the number of turns of the stator winding.
- ⁇ is the magnetic permeability of the magnetic circuit
- N is the number of turns
- S is the cross-sectional area of the magnetic circuit
- ⁇ is the effective length of the magnetic circuit
- the inductance L ⁇ ⁇ N ⁇ 2 ⁇ S / ⁇ . Since the number of windings depends on the size of the winding space, in the case of a cylindrical motor, it depends on the winding space of the stator, that is, the slot area. As shown in FIG. 46, the slot area is proportional to the product a ⁇ b of the circumferential length a and the radial length b since the shape of the slot is substantially rectangular.
- the circumferential length of the slot increases in proportion to the diameter of the cylinder, because the larger the diameter of the cylinder, the larger it becomes.
- the radial length dimension of the slot is directly proportional to the diameter of the cylinder. That is, the slot area is proportional to the square of the diameter of the cylinder.
- the reluctance torque is proportional to the square of the stator current
- the performance of the rotating electric machine is determined by how large a current can flow, and the performance depends on the slot area of the stator.
- Dependent From the above, if the length of the cylinder is constant, the reluctance torque is proportional to the square of the diameter of the cylinder. Based on this, FIG. 45 is a diagram plotting the relationship between DM and magnet torque and reluctance torque.
- the magnet torque increases linearly with DM, and the reluctance torque increases quadratically with DM.
- the DM is relatively small, the magnet torque is dominant, and the reluctance torque is dominant as the stator core radius increases.
- the radial distance DM between the surface of the magnet unit on the armature side in the radial direction and the axis of the rotor is 50 mm or more. May be.
- the straight line portion 83 of the conducting wire 82 may be provided in a single layer in the radial direction.
- the number of the layers may be arbitrary, and three, four, five, six, or the like may be provided.
- the rotating shaft 11 is provided so as to protrude at both the one end side and the other end side of the rotary electric machine 10 in the axial direction. Is also good.
- the rotating shaft 11 may be provided so as to extend outward in the axial direction with a portion supported by the bearing unit 20 in a cantilevered manner as an end.
- the internal space of the inverter unit 60 since the rotation shaft 11 does not protrude into the inverter unit 60, the internal space of the inverter unit 60, more specifically, the internal space of the tubular portion 71 can be used more widely.
- the bearings 21 and 22 are configured to use the non-conductive grease.
- the configuration may be changed and the bearings 21 and 22 may be configured to use the conductive grease.
- a configuration is used in which conductive grease containing metal particles, carbon particles, or the like is included.
- a configuration for rotatably supporting the rotating shaft 11 a configuration may be adopted in which bearings are provided at two locations on one end side and the other end side of the rotor 40 in the axial direction.
- bearings are provided at two locations, one end side and the other end side, with the inverter unit 60 interposed therebetween.
- the intermediate portion 45 of the magnet holder 41 in the rotor 40 has the inner shoulder 49a and the outer shoulder 49b of emotion.
- these shoulders 49a and 49b are eliminated and the rotor 40 is flat. It may be configured to have various surfaces.
- the conductor 82 a in the conductor 82 of the stator winding 51 is configured as an aggregate of the plurality of wires 86, but this is changed, and a rectangular conductor having a rectangular cross section is used as the conductor 82. It may be configured. Further, a configuration may be used in which a round conductor having a circular cross section or an elliptical cross section is used as the conductor 82.
- the inverter unit 60 is provided radially inside the stator 50.
- the inverter unit 60 may not be provided radially inside the stator 50. .
- the configuration may be such that the housing 30 is not provided.
- the rotor 40, the stator 50, and the like may be held in a part of a wheel or another vehicle part.
- the periphery of the magnets 91, 92, 131, 132, 2001 may be covered with a resin coating.
- a resin coating it is desirable that the peripheral surface and the circumferential end surface of the magnet opposite to the stator are covered with the resin coating so that the magnet unit 42 is exposed on the stator side.
- the axial end surface of the magnet unit 42 may or may not be covered with the resin film.
- the whole or a part of the magnet unit 42 may be molded with resin.
- the gap between the magnets in the circumferential direction may be filled with a resin wall having a predetermined width in the circumferential direction.
- the magnet unit 42 is formed such that a resin wall having a predetermined thickness dimension is arranged in the radial direction between the inner peripheral surface of the cylindrical portion 43 and the magnet unit 42. It may be molded.
- the resin wall between the cylindrical portion 43 and the magnet unit 42 functions as a cushioning member during rotation, so that the cylindrical portion 43 and the magnet unit 42 can be prevented from contacting each other.
- the groove 2004 may be filled with resin to restrict the movement of the magnet 2001 in the radial direction.
- the resin arranged in the groove 2004 It is possible to appropriately prevent falling off. This can prevent the magnet 2001 from moving in the radial direction and falling off during rotation.
- the magnets 91 and 92 are divided for each q-axis, but the magnets 91 and 92 may be divided for the d-axis. Further, the magnets 91 and 92 may be divided on the q axis and the d axis. In the magnet unit 42 of the second embodiment, the magnet 2001 may be divided on the q axis. That is, the magnet of the magnet unit 42 may be divided at an arbitrary position in the circumferential direction.
- the groove 2004 may not be provided.
- the magnet unit 42 is directly fixed to the inner peripheral surface of the cylindrical portion 43.
- a magnet holding portion that holds the magnet unit 42 is provided separately from the magnet holder 41, and the magnet unit 42 is connected via the magnet holding portion.
- the magnet unit 42 may be fixed to the cylindrical portion 43 (that is, the magnet holder 41).
- the rotating electric machine shown in FIGS. 47 to 49 has the magnet holding unit 3001 that holds the magnet unit 42 having the plurality of magnets 2001 described in the second embodiment.
- the magnet holding portion 3001 is formed in a cylindrical shape, the outer peripheral surface is formed along the inner peripheral surface of the cylindrical portion 43, and the inner peripheral surface is formed along the outer peripheral surface of the magnet unit 42. Is formed.
- the magnet unit 42 is fixed and held on the inner peripheral surface of the magnet holder 3001, and the magnet holder 3001 is fixed on the inner peripheral surface of the cylindrical portion 43.
- the magnet unit 42 has a concave portion 2002 that opens on the side opposite to the stator (that is, the magnet holding portion side).
- a convex portion 3002 that engages with the concave portion 2002 of the magnet unit 42 in the circumferential direction is provided. More specifically, as shown in FIGS. 48 and 49, a convex portion 3002 is provided on the inner peripheral surface of the magnet holding portion 3001 so as to project toward the magnet unit (ie, the stator side) along the radial direction.
- These convex portions 3002 are formed so that the width in the circumferential direction becomes shorter as approaching the stator side in the radial direction so that the cross section becomes triangular according to the shape of the concave portion 2002. That is, a slope is provided from the magnet holding portion 3001 to the vertex of the convex portion 3002, and the slope is formed at an angle corresponding to the angle of the slope of the concave portion 2002 (ie, an angle of 45 degrees with respect to the radial direction). Have been.
- the dimension (height dimension) of the projection 3002 in the radial direction is the same as the dimension (depth dimension) of the recess 2002. This makes it possible to suitably engage the convex portion 3002 and the concave portion 2002.
- An engagement concave portion 3003 as an engaged portion that opens to the stator side is provided on the inner peripheral surface of the cylindrical portion 43, and an engagement concave portion as an engaging portion is provided on the outer peripheral surface of the magnet holding portion 3001.
- a mating projection 3004 is provided.
- the engagement concave portion 3003 is provided so as to engage with the engagement convex portion 3004 in the circumferential direction.
- the engagement concave portion 3003 is formed so that the cross section becomes triangular. That is, it is formed so that the width in the circumferential direction becomes gradually smaller toward the outer side in the radial direction.
- the engagement projection 3004 is formed so as to have a triangular cross section according to the shape of the engagement recess 3003.
- the position of the engaging protrusion 3004 (and the engaging recess 3003) in the circumferential direction is provided at a position different from the position of the protrusion 2003.
- the engagement projection 3004 is provided on the q axis. Accordingly, it is possible to disperse the force applied from the cylindrical portion 43 to the magnet holding portion 3001 and the force applied from the magnet unit 42 to the magnet holding portion 3001 in the circumferential direction. Accordingly, the magnet holding unit 3001 can prevent a force from being applied from the inside and outside in the radial direction at the same position in the circumferential direction, and can suppress the deformation and the like of the magnet holding unit 3001.
- the concave portion 2002, the convex portion 2003, the engaging concave portion 3003, and the engaging convex portion 3004 the rotation between the magnet holding portion 3001 and the magnet unit 42 is prevented, and the magnet holding portion 3001 and the cylindrical It is possible to suitably perform a rotation stop with the part 43, and it is possible to rotate them integrally.
- the cylindrical portion 43 and the magnet holding portion 3001 separately, the materials of the cylindrical portion 43 and the magnet holding portion 3001 can be made different.
- the magnet holder 3001 can be made of a magnetic material and function as a back yoke.
- the engaging concave portion 3003 may be provided on the magnet holding portion 3001 and the engaging convex portion 3004 may be provided on the cylindrical portion 43.
- the cylindrical portion 43 and the intermediate portion 45 may be formed separately.
- the cylindrical portion 43 may be fixed to the outer edge of the intermediate portion 45.
- a hole 4001 is provided in the cylindrical portion 43 and the (outer edge) of the intermediate portion 45 along the axial direction, and the hole 4001 is formed in a rod shape along the axial direction.
- the fastener is, for example, a screw or a rivet.
- a rivet 4002 is illustrated as a fastener.
- the intermediate portion 45 functions as an end plate that fixes the cylindrical portion 43 as a magnet holding portion in the axial direction.
- the hole 4001 when the hole 4001 is provided in the cylindrical portion 43 in the second embodiment, it is desirable to provide the hole 4001 at a position overlapping the convex portion 2003 in the circumferential direction in consideration of the strength of the cylindrical portion 43. .
- the cylindrical portion 43 and the intermediate portion 45 may be formed separately, and then the above-described magnet holding portion 3001 may be provided.
- an engaging projection 3004 as an engaged portion is provided on the inner peripheral surface of the cylindrical portion 43
- an engaging concave portion 3003 as the engaging portion is provided on the outer peripheral surface of the magnet holding portion 3001. Is desirably provided.
- the hole portion 4001 is provided in the cylindrical portion 43, the hole portion 4001 is positioned so that the center position of the hole portion 4001 and the center position (tip) of the engagement protrusion 3004 coincide with each other, that is, on the q axis. Is desirably provided.
- a gap 1001 is provided between the magnets 91 and 92, and a side wall 1002 that protrudes radially from the inner peripheral surface of the cylindrical portion 43 is provided.
- the side wall 1002 may be circumferentially engaged with the end surface of the 92. In this case, it is desirable that the gap 1001 and the side wall 1002 are provided along the q-axis.
- the magnetic flux density distribution approximates a sine wave shape, and the rotation of the magnets 91 and 92 can be stopped.
- the magnet holding unit 5001 configured to surround each magnet may be provided. That is, the rotor 40 may be of the IPM type.
- the magnet holding portion 5001 includes, in the radial direction, an inner wall portion 5002 arranged inside the magnet unit 42, an outer wall portion 5003 arranged outside the magnet unit 42, A side wall portion 5004 is provided along the radial direction so as to connect between the portion 5002 and the outer wall portion 5003 and to partition between the magnets 2001 adjacent in the circumferential direction.
- Each of the inner wall portion 5002 and the outer wall portion 5003 is formed in an annular shape along the circumferential direction.
- the side wall portion 5004 is provided along the d-axis, and is provided so as to partition the magnets 2001 one by one. That is, the side wall portion 5004 is provided at a position overlapping the convex portion 2003 in the circumferential direction.
- the convex portion 2003 and the side wall portion 5004 are integrally formed, and the tip of the convex portion 2003 is formed.
- a side wall portion 5004 is provided so as to extend along the radial direction from.
- the width of the side wall 5004 is smaller than the width of the protrusion 2003 in the circumferential direction (more specifically, the width of the base end of the protrusion 2003).
- the magnet holding portion 5001 is fixed to the inner peripheral surface of the cylindrical portion 43. In addition, it may be fixed to the outer edge of the intermediate portion 45 by screwing or the like. Further, the magnet holding portion 5001 may be provided by changing the configuration of the cylindrical portion 43. Further, in this alternative example, the magnets 2001 are partitioned one by one; however, a plurality (for example, two) of the magnets 2001 may be partitioned.
- the rotation can be stopped by the convex portion 2003. Therefore, even if the side wall portion 5004 is thinned and the strength is weakened, the rotation can be suitably stopped.
- the gap between the magnets 2001 can be reduced to obtain a magnetic flux density distribution close to a sinusoidal shape, and the magnetic flux density on the d-axis can be improved.
- the inside and outside are surrounded by the inner wall portion 5002 and the outer wall portion 5003 of the magnet holding portion 5001 in the radial direction, it is possible to prevent the magnet holder 5001 from falling off in the radial direction.
- the shapes of the convex portion 2003 and the concave portion 2002 may be arbitrarily changed.
- the cross section may be configured in a step shape. In addition, it may be configured to have a curved surface.
- the shapes of the engagement protrusion 3004 and the engagement recess 3003 may be arbitrarily changed.
- the disclosure in this specification is not limited to the illustrated embodiment.
- the disclosure includes the illustrated embodiments and variations based thereon based on those skilled in the art.
- the disclosure is not limited to the combination of parts and / or elements shown in the embodiments.
- the disclosure can be implemented in various combinations.
- the disclosure may have additional parts that can be added to the embodiments.
- the disclosure includes embodiments in which parts and / or elements are omitted.
- the disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another.
- the disclosed technical scope is not limited to the description of the embodiments. Some of the disclosed technical ranges are indicated by the description of the claims, and should be construed to include all modifications within the scope and meaning equivalent to the description of the claims.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
This rotating electric machine (10) is provided with: a field element (40) having a magnet portion (42) and a cylindrical magnet holding portion (41); and an armature (50) having multi-phase armature windings (51). The magnet portion has a magnet (2001) oriented so that a magnetization easy axis direction becomes more parallel with the d-axis on the side of the d-axis, which is the magnetic pole center, as compared with on the side of the q-axis, which is a magnetic pole boundary, and having a magnetic path formed along the magnetization easy axis. The magnet holding portion is disposed on the anti-armature side of the magnet portion in the radial direction and has a protrusion portion (2003) projecting toward the magnet portion side in the radial direction. A part of the magnet portion on the anti-armature-side in the radial direction is provided with a recess portion (2002) opening toward the anti-armature-side and engaging with the protrusion portion in the circumferential direction, wherein said recess portion is provided on the d-axis side more closely than the q-axis side in the circumferential direction.
Description
本出願は、2018年7月26日に出願された日本出願番号2018-140740号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Patent Application No. 2018-140740 filed on July 26, 2018, the content of which is incorporated herein by reference.
この明細書における開示は、回転電機に関する。
開 示 The disclosure in this specification relates to a rotating electric machine.
従来から、例えば特許文献1に記載されているように、家電用、産機用、遊技機用、農建機用、自動車用に適用される回転電機が知られている。一般的には、ティースで区画された巻線収容部であるいわゆるスロットが固定子コア(つまり、鉄心)に形成され、銅線やアルミ線等の導線がスロットに収容されることにより固定子巻線が構成されている。一方で、固定子のティースを廃止したスロットレスモータも提案されている(例えば、特許文献1)。また、特許文献1では、固定子の径方向外側に、磁石を有する回転子が配置されるアウタロータ構造のモータが提案されている。
Conventionally, as described in Patent Document 1, for example, a rotating electric machine applied to household appliances, industrial machines, amusement machines, agricultural construction machines, and automobiles has been known. Generally, a so-called slot, which is a winding accommodating portion partitioned by teeth, is formed in a stator core (that is, an iron core), and a conductor such as a copper wire or an aluminum wire is accommodated in the slot, thereby forming a stator winding. Lines are configured. On the other hand, a slotless motor in which the teeth of the stator are eliminated has been proposed (for example, Patent Document 1). Further, Patent Document 1 proposes a motor having an outer rotor structure in which a rotor having a magnet is arranged radially outside a stator.
ところで、上記回転電機では、回転子の回転時に、磁石が周方向にずれないように、まわり止めを適切に行う必要がある。
By the way, in the rotating electric machine, it is necessary to appropriately stop the rotation so that the magnet does not shift in the circumferential direction when the rotor rotates.
本開示は、上記事情に鑑みてなされたものであり、その主たる目的は、好適に磁石のまわり止めを行うことができる回転電機を提供することにある。
The present disclosure has been made in view of the above circumstances, and a main object of the present disclosure is to provide a rotating electric machine capable of suitably stopping rotation of a magnet.
この明細書における開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。この明細書に開示される目的、特徴、および効果は、後続の詳細な説明、および添付の図面を参照することによってより明確になる。
複数 The embodiments disclosed in this specification employ technical means different from each other in order to achieve the respective objects. The objects, features, and advantages disclosed in this specification will become more apparent with reference to the following detailed description and the accompanying drawings.
手段1は、
周方向に極性が交互となる複数の磁極を含む磁石部と、径方向において前記磁石部が積層された状態で固定される筒状の磁石保持部と、を有する界磁子と、多相の電機子巻線を有する電機子と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機において、
前記磁石部は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている磁石を有し、
前記磁石保持部は、径方向において前記磁石部よりも反電機子側に配置されているとともに、径方向において前記磁石部側に突出する凸部を有し、
径方向において前記磁石部の反電機子側の部分には、反電機子側に開口し、前記凸部に対して周方向に係合する凹部が設けられており、
前記凹部は、周方向において、q軸の側よりも、d軸の側に設けられている。 Means 1
A field element having a magnet portion including a plurality of magnetic poles having alternating polarities in a circumferential direction, and a cylindrical magnet holding portion fixed in a state where the magnet portions are stacked in a radial direction, and a multiphase magnetic field element. An armature having an armature winding, comprising: a rotating electric machine having one of the field element and the armature as a rotor,
The magnet unit is oriented such that the direction of the easy axis of magnetization is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, compared to the q-axis side, which is the boundary of the magnetic pole, and the magnets are aligned along the easy axis of magnetization. Having a magnet in which a magnetic path is formed,
The magnet holding portion is disposed closer to the armature side than the magnet portion in the radial direction, and has a protrusion protruding toward the magnet portion in the radial direction,
In the radial direction, a portion of the magnet portion on the side opposite to the armature is provided with a concave portion that opens on the opposite side of the armature and engages with the convex portion in the circumferential direction.
The concave portion is provided on the d-axis side rather than the q-axis side in the circumferential direction.
周方向に極性が交互となる複数の磁極を含む磁石部と、径方向において前記磁石部が積層された状態で固定される筒状の磁石保持部と、を有する界磁子と、多相の電機子巻線を有する電機子と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機において、
前記磁石部は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている磁石を有し、
前記磁石保持部は、径方向において前記磁石部よりも反電機子側に配置されているとともに、径方向において前記磁石部側に突出する凸部を有し、
径方向において前記磁石部の反電機子側の部分には、反電機子側に開口し、前記凸部に対して周方向に係合する凹部が設けられており、
前記凹部は、周方向において、q軸の側よりも、d軸の側に設けられている。 Means 1
A field element having a magnet portion including a plurality of magnetic poles having alternating polarities in a circumferential direction, and a cylindrical magnet holding portion fixed in a state where the magnet portions are stacked in a radial direction, and a multiphase magnetic field element. An armature having an armature winding, comprising: a rotating electric machine having one of the field element and the armature as a rotor,
The magnet unit is oriented such that the direction of the easy axis of magnetization is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, compared to the q-axis side, which is the boundary of the magnetic pole, and the magnets are aligned along the easy axis of magnetization. Having a magnet in which a magnetic path is formed,
The magnet holding portion is disposed closer to the armature side than the magnet portion in the radial direction, and has a protrusion protruding toward the magnet portion in the radial direction,
In the radial direction, a portion of the magnet portion on the side opposite to the armature is provided with a concave portion that opens on the opposite side of the armature and engages with the convex portion in the circumferential direction.
The concave portion is provided on the d-axis side rather than the q-axis side in the circumferential direction.
磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている磁石を磁石部に利用している。この磁石が複数から構成されている場合、正弦波形状に近い磁束密度分布とし、かつ、d軸における磁束密度を大きくするためには、周方向に隣り合う磁石間の隙間をなるべく小さくするが望ましい。しかしながら、隣り合う磁石間の隙間を小さくすると、隙間に配置される係合部が薄くなり、まわり止めを好適に行うことができなくなる。
On the d-axis side which is the center of the magnetic pole, the direction of the easy axis is oriented so as to be parallel to the d-axis as compared with the q-axis side which is the magnetic pole boundary, and a magnet magnetic path is formed along the easy axis. The magnet is used for the magnet part. When this magnet is composed of a plurality of magnets, in order to obtain a magnetic flux density distribution close to a sine wave shape and to increase the magnetic flux density in the d-axis, it is desirable to minimize the gap between magnets adjacent in the circumferential direction. . However, if the gap between the adjacent magnets is made small, the engagement portion arranged in the gap becomes thin, and it becomes impossible to suitably perform the rotation stop.
また、前記磁石が円環状に形成された1つの磁石である場合には、正弦波形状に近い磁束密度分布とし、かつ、d軸における磁束密度を大きくすることができるが、まわり止めを好適に行うことができなくなる。
When the magnet is one magnet formed in an annular shape, the magnetic flux density distribution is close to a sine wave shape, and the magnetic flux density on the d-axis can be increased. You will not be able to do it.
ところで、上記磁石のd軸寄りの部分において、反電機子側の部分は、磁石磁路が短くなりやすくなり、減磁しやすい部分となっている。すなわち、この部分を削除しても、d軸から発生する磁束密度への影響は少ない。
By the way, in the portion near the d-axis of the magnet, the portion on the side opposite to the armature is a portion where the magnet magnetic path is easily shortened and demagnetized easily. That is, even if this portion is deleted, the influence on the magnetic flux density generated from the d-axis is small.
そこで、磁石部の反電機子側の部分であって、q軸よりもd軸の側の部分には、反電機子側、すなわち、磁石保持部側に開口する凹部を設け、磁石保持部には、当該凹部に対して周方向に係合する凸部を設けた。凹部が設けられる部分は、前述したように、減磁しやすい部分であるため、凹部を設けても磁束密度への影響が少なく、まわり止めを好適に行うことができる程度の厚さ寸法を有するように凹部の周方向における寸法を確保することが可能となる。これにより、周方向におけるまわり止めを好適に行うことができる。また、前述したように、減磁しやすい部分に凹部を設けるため、正弦波形状に近い磁束密度分布とし、かつ、d軸における磁束密度を大きくしつつ、磁石部のまわり止めを好適に行うことができる。
Therefore, in the portion of the magnet portion on the side opposite to the armature and on the side of the d-axis relative to the q-axis, a concave portion is provided on the side opposite to the armature, that is, on the side of the magnet holding portion. Provided a convex portion which engages with the concave portion in the circumferential direction. As described above, since the portion where the concave portion is provided is a portion that is easily demagnetized, even if the concave portion is provided, there is little effect on the magnetic flux density, and the thickness is such that the rotation can be suitably stopped. As described above, it is possible to secure the size of the concave portion in the circumferential direction. Thereby, it is possible to suitably perform the rotation stop in the circumferential direction. In addition, as described above, since the concave portion is provided in a portion that is easily demagnetized, the magnetic flux density distribution is close to a sine wave shape, and the magnetic flux density on the d-axis is increased, and the rotation of the magnet portion is preferably stopped. Can be.
手段2は、手段1において、
前記界磁子は、前記磁石保持部を軸方向において固定する端板を備え、
前記磁石保持部には、孔部が軸方向に沿って設けられており、前記磁石保持部の当該孔部には、前記端板から軸方向に突出する留め具が挿入されており、
前記孔部は、周方向において前記凸部に重複する位置に設けられている。 The means 2 is the same as themeans 1,
The field element includes an end plate that fixes the magnet holding unit in the axial direction,
In the magnet holding portion, a hole is provided along the axial direction, and a fastener projecting in the axial direction from the end plate is inserted into the hole of the magnet holding portion,
The hole is provided at a position overlapping the protrusion in the circumferential direction.
前記界磁子は、前記磁石保持部を軸方向において固定する端板を備え、
前記磁石保持部には、孔部が軸方向に沿って設けられており、前記磁石保持部の当該孔部には、前記端板から軸方向に突出する留め具が挿入されており、
前記孔部は、周方向において前記凸部に重複する位置に設けられている。 The means 2 is the same as the
The field element includes an end plate that fixes the magnet holding unit in the axial direction,
In the magnet holding portion, a hole is provided along the axial direction, and a fastener projecting in the axial direction from the end plate is inserted into the hole of the magnet holding portion,
The hole is provided at a position overlapping the protrusion in the circumferential direction.
磁石保持部に設けた孔部に、端板からの留め部を挿入することにより、磁石保持部と端板を別体で構成しても、回転子の回転時において、磁石保持部が端板に対して周方向に回転することを規制することが可能となる。そして、周方向において凸部に重複する位置に磁石保持部の孔部を設けた。これにより、磁石保持部に孔部が設けられた場合であっても、孔部が設けられていない場所と比較して、径方向の厚さ寸法が薄くなることを抑制し、磁石保持部の強度が低下することを抑制できる。このため、好適にまわり止めを行うことができる。
By inserting the fastening portion from the end plate into the hole provided in the magnet holding portion, even if the magnet holding portion and the end plate are configured separately, the magnet holding portion is not rotated when the rotor rotates. Can be restricted from rotating in the circumferential direction. And the hole part of the magnet holding part was provided in the position overlapped with the convex part in the circumferential direction. Thereby, even when the hole is provided in the magnet holding portion, the thickness in the radial direction is suppressed from being reduced as compared with the place where the hole is not provided, and the magnet holding portion is provided. A decrease in strength can be suppressed. For this reason, it is possible to suitably perform the rotation stop.
また、磁石保持部を軟磁性体とし、磁石部のバックヨークとして機能させる場合、孔部を設けて、磁石保持部の径方向における厚さが薄くなると、当該部分において磁気飽和し、磁石漏れが発生する可能性がある。そこで、孔部を、周方向において凸部に重複する位置に設けることにより、磁石保持部の径方向の厚さ寸法が薄くなることを抑制し、磁束漏れを抑制できる。
When the magnet holding portion is made of a soft magnetic material and functions as a back yoke of the magnet portion, a hole is provided, and when the thickness of the magnet holding portion in the radial direction is reduced, the portion is magnetically saturated and magnet leakage occurs. Can occur. Therefore, by providing the hole at a position overlapping the protrusion in the circumferential direction, it is possible to suppress the thickness of the magnet holding portion in the radial direction from becoming thinner, and to suppress magnetic flux leakage.
手段3は、手段2において、前記孔部の少なくとも一部は、径方向において前記凸部に重複する位置に設けられている。
(4) The means (3) is such that in the means (2), at least a part of the hole is provided at a position overlapping the convex part in the radial direction.
これにより、磁石保持部の径方向における厚さ寸法を薄くすることが可能となる。
This makes it possible to reduce the thickness of the magnet holding portion in the radial direction.
手段4は、手段2又は3において、径方向における前記凸部の寸法は、前記孔部の寸法よりも大きい。
(4) In the means (4), in the means (2) or (3), a dimension of the projection in the radial direction is larger than a dimension of the hole.
これにより、周方向において孔部が設けられた部分における径方向の厚さ寸法を、孔部が設けられていない部分の厚さ寸法と比較して、同等以上とすることができ、磁石保持部の強度を維持することができる。
Thereby, the thickness in the radial direction in the portion where the hole is provided in the circumferential direction can be made equal to or greater than the thickness in the portion where the hole is not provided, and Strength can be maintained.
また、磁石保持部を軟磁性体とし、磁石部のバックヨークとして機能させる場合、孔部を設けて、磁石保持部の径方向における厚さ寸法(孔部を除いた厚さ寸法)が薄くなると、当該部分において磁気飽和し、磁石漏れが発生する可能性がある。そこで、凸部の寸法を、孔部の寸法よりも大きくすることにより、磁石保持部の径方向の厚さ寸法(孔部を除いた厚さ寸法)を維持して、磁束漏れを防止できる。
In the case where the magnet holding portion is made of a soft magnetic material and functions as a back yoke of the magnet portion, a hole is provided to reduce the thickness (thickness excluding the hole) of the magnet holding portion in the radial direction. Then, there is a possibility that magnetic saturation occurs in the portion and magnet leakage occurs. Therefore, by making the size of the protrusion larger than the size of the hole, the radial thickness (thickness excluding the hole) of the magnet holding portion can be maintained, and magnetic flux leakage can be prevented.
手段5は、手段1~4のうちいずれかにおいて、前記界磁子は、径方向において前記磁石保持部の反電機子側にて、前記磁石保持部が積層された状態で固定される円筒部を有し、
前記磁石保持部は、前記円筒部に設けられた被係合部に対して周方向において係合する係合部を有し、
前記係合部は、前記凸部に対して、周方向において異なる位置に設けられている。 Means 5 is any one ofmeans 1 to 4, wherein the field element is a cylindrical portion fixed in a state where the magnet holding portions are stacked in a radial direction on the side opposite to the armature side of the magnet holding portions. Has,
The magnet holding portion has an engaging portion that is engaged in a circumferential direction with an engaged portion provided on the cylindrical portion,
The engaging portion is provided at a different position in the circumferential direction with respect to the convex portion.
前記磁石保持部は、前記円筒部に設けられた被係合部に対して周方向において係合する係合部を有し、
前記係合部は、前記凸部に対して、周方向において異なる位置に設けられている。 Means 5 is any one of
The magnet holding portion has an engaging portion that is engaged in a circumferential direction with an engaged portion provided on the cylindrical portion,
The engaging portion is provided at a different position in the circumferential direction with respect to the convex portion.
係合部は、磁石保持部の凸部に対して、周方向において異なる位置に設けられているため、磁石部からの応力と、円筒部からの応力が、周方向において同じ位置に集中して加えられることを防止することができる。すなわち、磁石部からの応力と、円筒部からの応力とを分散させることができる。このため、磁石保持部が変形等することを抑制できる。
Since the engaging portion is provided at a different position in the circumferential direction with respect to the convex portion of the magnet holding portion, the stress from the magnet portion and the stress from the cylindrical portion are concentrated at the same position in the circumferential direction. It can be prevented from being added. That is, the stress from the magnet part and the stress from the cylindrical part can be dispersed. For this reason, it is possible to suppress deformation or the like of the magnet holding portion.
手段6は、手段1~5のうちいずれかにおいて、前記磁石は、複数設けられ、周方向に沿って並べて配置されており、
前記磁石保持部は、径方向において、前記磁石部よりも内側に配置される内壁部と、前記磁石部よりも外側に配置される外壁部と、前記内壁部と前記外壁部との間を繋ぎ、かつ、周方向に隣り合う前記磁石の間を仕切るように径方向に沿って設けられた側壁部と、を備え、
前記側壁部は、周方向において前記凸部に対して重複する位置に設けられており、前記側壁部の周方向における幅寸法は、前記凸部の周方向における幅寸法と比較して、小さく形成されている。 Means 6 is any one ofmeans 1 to 5, wherein a plurality of the magnets are provided and are arranged side by side in a circumferential direction.
The magnet holding portion radially connects an inner wall portion arranged inside the magnet portion, an outer wall portion arranged outside the magnet portion, and the inner wall portion and the outer wall portion. And a side wall provided along the radial direction so as to partition between the magnets adjacent in the circumferential direction,
The side wall portion is provided at a position overlapping the convex portion in the circumferential direction, and the width of the side wall portion in the circumferential direction is smaller than the width of the convex portion in the circumferential direction. Have been.
前記磁石保持部は、径方向において、前記磁石部よりも内側に配置される内壁部と、前記磁石部よりも外側に配置される外壁部と、前記内壁部と前記外壁部との間を繋ぎ、かつ、周方向に隣り合う前記磁石の間を仕切るように径方向に沿って設けられた側壁部と、を備え、
前記側壁部は、周方向において前記凸部に対して重複する位置に設けられており、前記側壁部の周方向における幅寸法は、前記凸部の周方向における幅寸法と比較して、小さく形成されている。 Means 6 is any one of
The magnet holding portion radially connects an inner wall portion arranged inside the magnet portion, an outer wall portion arranged outside the magnet portion, and the inner wall portion and the outer wall portion. And a side wall provided along the radial direction so as to partition between the magnets adjacent in the circumferential direction,
The side wall portion is provided at a position overlapping the convex portion in the circumferential direction, and the width of the side wall portion in the circumferential direction is smaller than the width of the convex portion in the circumferential direction. Have been.
凸部によりまわり止めを行うことができるため、側壁部を薄くして強度が弱くなったとしても、好適に回り止めを行うことができる。また、側壁部を薄くすることにより、磁石間の隙間を小さくして、正弦波形状に近い磁束密度分布とし、かつ、d軸における磁束密度を向上させることができる。また、径方向において内外が磁石保持部の内壁部及び外壁部により囲まれているため、径方向に脱落することを抑制できる。
(4) Since the rotation can be stopped by the convex portion, the rotation can be suitably stopped even if the strength is weakened by making the side wall portion thin. Further, by reducing the thickness of the side wall portion, the gap between the magnets can be reduced to obtain a magnetic flux density distribution close to a sine wave shape, and the magnetic flux density on the d-axis can be improved. In addition, since the inside and outside are surrounded by the inner wall and the outer wall of the magnet holding portion in the radial direction, it is possible to prevent the magnet from dropping in the radial direction.
手段7は、手段1~6のうちいずれかにおいて、前記磁石部は、固有保磁力が400[kA/m]以上であり、かつ、残留磁束密度が1.0[T]以上である。
(7) The means (7) according to any one of the means (1) to (6), wherein the magnet part has a specific coercive force of 400 [kA / m] or more and a residual magnetic flux density of 1.0 [T] or more.
これにより、トルクを向上させることができる。
ト ル ク Thus, the torque can be improved.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、回転電機の縦断面斜視図であり、
図2は、回転電機の縦断面図であり、
図3は、図2のIII-III線断面図であり、
図4は、図3の一部を拡大して示す断面図であり、
図5は、回転電機の分解図であり、
図6は、インバータユニットの分解図であり、
図7は、固定子巻線のアンペアターンとトルク密度との関係を示すトルク線図であり、
図8は、回転子及び固定子の横断面図であり、
図9は、図8の一部を拡大して示す図であり、
図10は、固定子の横断面図であり、
図11は、固定子の縦断面図であり、
図12は、固定子巻線の斜視図であり、
図13は、導線の構成を示す斜視図であり、
図14は、素線の構成を示す模式図であり、
図15は、n層目における各導線の形態を示す図であり、
図16は、n層目とn+1層目の各導線を示す側面図であり、
図17は、実施形態の磁石について電気角と磁束密度との関係を示す図であり、
図18は、比較例の磁石について電気角と磁束密度との関係を示す図であり、
図19は、回転電機の制御システムの電気回路図であり、
図20は、制御装置による電流フィードバック制御処理を示す機能ブロック図であり、
図21は、制御装置によるトルクフィードバック制御処理を示す機能ブロック図であり、
図22は、第2実施形態における回転子及び固定子の横断面図であり、
図23は、図22の一部を拡大して示す図であり、
図24は、第3実施形態における回転子及び固定子の横断面図であり、
図25は、図24の一部を拡大して示す図であり、
図26は、磁石ユニットにおける磁束の流れを具体的に示す図であり、
図27は、変形例1における固定子の断面図であり、
図28は、変形例1における固定子の断面図であり、
図29は、変形例2における固定子の断面図であり、
図30は、変形例3における固定子の断面図であり、
図31は、変形例4における固定子の断面図であり、
図32は、変形例7における回転子及び固定子の横断面図であり、
図33は、変形例8において操作信号生成部の処理の一部を示す機能ブロック図であり、
図34は、キャリア周波数変更処理の手順を示すフローチャートであり、
図35は、変形例9において導線群を構成する各導線の接続形態を示す図であり、
図36は、変形例9において4対の導線が積層配置されている構成を示す図であり、
図37は、変形例10においてインナロータ型の回転子及び固定子の横断面図であり、
図38は、図37の一部を拡大して示す図であり、
図39は、インナロータ型の回転電機の縦断面図であり、
図40は、インナロータ型の回転電機の概略構成を示す縦断面図であり、
図41は、変形例11においてインナロータ構造の回転電機の構成を示す図であり、
図42は、変形例11においてインナロータ構造の回転電機の構成を示す図であり、
図43は、変形例12において回転電機子形の回転電機の構成を示す図であり、
図44は、変形例14における導線の構成を示す断面図であり、
図45は、リラクタンストルク、磁石トルク及びDMの関係を示す図であり、
図46は、ティースを示す図であり、
図47は、別例における回転子の縦断面図であり、
図48は、別例における回転子及び固定子の横断面図であり、
図49は、別例における回転子及び固定子を拡大した横断面図であり、
図50は、別例における回転子の横断面図であり、
図51は、別例における回転子及び固定子を拡大した横断面図であり、
図52は、別例における回転子及び固定子を拡大した横断面図であり、
図53は、別例における回転子及び固定子を拡大した横断面図であり、
図54は、別例における回転子及び固定子を拡大した横断面図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a vertical sectional perspective view of a rotating electric machine, FIG. 2 is a longitudinal sectional view of the rotating electric machine, FIG. 3 is a sectional view taken along line III-III of FIG. FIG. 4 is an enlarged sectional view showing a part of FIG. FIG. 5 is an exploded view of the rotating electric machine, FIG. 6 is an exploded view of the inverter unit, FIG. 7 is a torque diagram showing the relationship between the ampere turn of the stator winding and the torque density. FIG. 8 is a cross-sectional view of the rotor and the stator, FIG. 9 is an enlarged view of a part of FIG. FIG. 10 is a cross-sectional view of the stator, FIG. 11 is a longitudinal sectional view of the stator, FIG. 12 is a perspective view of a stator winding, FIG. 13 is a perspective view showing a configuration of a conductor, FIG. 14 is a schematic diagram showing a configuration of a strand, FIG. 15 is a diagram showing the form of each lead in the n-th layer, FIG. 16 is a side view showing the respective conductors of the n-th layer and the (n + 1) -th layer. FIG. 17 is a diagram illustrating a relationship between an electric angle and a magnetic flux density for the magnet of the embodiment; FIG. 18 is a diagram showing the relationship between the electrical angle and the magnetic flux density for the magnet of the comparative example, FIG. 19 is an electric circuit diagram of the control system of the rotating electric machine, FIG. 20 is a functional block diagram illustrating a current feedback control process performed by the control device. FIG. 21 is a functional block diagram illustrating a torque feedback control process performed by the control device. FIG. 22 is a cross-sectional view of the rotor and the stator according to the second embodiment, FIG. 23 is a diagram showing a part of FIG. 22 in an enlarged manner. FIG. 24 is a cross-sectional view of the rotor and the stator according to the third embodiment, FIG. 25 is an enlarged view of a part of FIG. FIG. 26 is a diagram specifically showing the flow of magnetic flux in the magnet unit, FIG. 27 is a cross-sectional view of the stator according to the first modification. FIG. 28 is a cross-sectional view of the stator according to the first modification. FIG. 29 is a cross-sectional view of a stator according to Modification Example 2, FIG. 30 is a cross-sectional view of a stator according to a third modification; FIG. 31 is a cross-sectional view of a stator according to Modification Example 4, FIG. 32 is a cross-sectional view of the rotor and the stator in Modification Example 7, FIG. 33 is a functional block diagram illustrating a part of the processing of the operation signal generation unit in Modification Example 8. FIG. 34 is a flowchart illustrating a procedure of a carrier frequency change process. FIG. 35 is a diagram showing a connection form of each of the conductors forming the conductor group in Modification Example 9. FIG. 36 is a diagram illustrating a configuration in which four pairs of conductive wires are stacked and arranged in Modification Example 9. FIG. 37 is a cross-sectional view of an inner rotor type rotor and a stator in Modification Example 10, FIG. 38 is a diagram showing a part of FIG. 37 in an enlarged manner. FIG. 39 is a longitudinal sectional view of an inner rotor type rotating electric machine, FIG. 40 is a longitudinal sectional view illustrating a schematic configuration of an inner rotor type rotating electric machine, FIG. 41 is a diagram showing a configuration of a rotating electric machine having an inner rotor structure in Modification Example 11. FIG. 42 is a diagram illustrating a configuration of a rotating electric machine having an inner rotor structure in Modification Example 11. FIG. 43 is a diagram illustrating a configuration of a rotary armature type rotary electric machine according to Modification Example 12. FIG. 44 is a cross-sectional view illustrating a configuration of a conductor according to Modification Example 14. FIG. 45 is a diagram showing a relationship between reluctance torque, magnet torque and DM, FIG. 46 is a view showing teeth. FIG. 47 is a longitudinal sectional view of a rotor in another example, FIG. 48 is a cross-sectional view of a rotor and a stator in another example, FIG. 49 is an enlarged cross-sectional view of a rotor and a stator in another example, FIG. 50 is a cross-sectional view of a rotor in another example, FIG. 51 is an enlarged cross-sectional view of a rotor and a stator in another example, FIG. 52 is an enlarged cross-sectional view of a rotor and a stator in another example, FIG. 53 is an enlarged cross-sectional view of a rotor and a stator in another example, FIG. 54 is an enlarged cross-sectional view of a rotor and a stator in another example.
図面を参照しながら、複数の実施形態を説明する。複数の実施形態において、機能的におよび/または構造的に対応する部分および/または関連付けられる部分には同一の参照符号、または百以上の位が異なる参照符号が付される場合がある。対応する部分および/又は関連付けられる部分については、他の実施形態の説明を参照することができる。
複数 A plurality of embodiments will be described with reference to the drawings. In embodiments, functionally and / or structurally corresponding parts and / or associated parts may be provided with the same reference signs or reference signs that differ by more than a hundred places. For corresponding parts and / or associated parts, the description of the other embodiments can be referred to.
本実施形態における回転電機は、例えば車両動力源として用いられるものとなっている。ただし、回転電機は、産業用、車両用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
The rotating electric machine according to the present embodiment is used, for example, as a vehicle power source. However, rotating electric machines can be widely used for industrial use, vehicles, home appliances, OA equipment, gaming machines, and the like. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the parts with the same reference numerals is used.
(第1実施形態)
本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を図1乃至図5に示す。図1は、回転電機10の縦断面斜視図であり、図2は、回転電機10の回転軸11に沿う方向での縦断面図であり、図3は、回転軸11に直交する方向での回転電機10の横断面図(図2のIII-III線断面図)であり、図4は、図3の一部を拡大して示す断面図であり、図5は、回転電機10の分解図である。なお、図3では、図示の都合上、回転軸11を除き、切断面を示すハッチングを省略している。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。 (1st Embodiment)
The rotatingelectric machine 10 according to the present embodiment is a synchronous polyphase AC motor and has an outer rotor structure (eternal rotation structure). The outline of the rotating electric machine 10 is shown in FIGS. 1 is a vertical cross-sectional perspective view of the rotary electric machine 10, FIG. 2 is a vertical cross-sectional view of the rotary electric machine 10 in a direction along a rotation axis 11, and FIG. 3 is a cross-sectional view of the rotary electric machine 10 (a cross-sectional view taken along line III-III in FIG. 2). FIG. 4 is a cross-sectional view illustrating a part of FIG. 3 in an enlarged manner. It is. In FIG. 3, hatching indicating a cut surface is omitted except for the rotation shaft 11 for convenience of illustration. In the following description, the direction in which the rotating shaft 11 extends is defined as the axial direction, the direction radially extending from the center of the rotating shaft 11 is defined as the radial direction, and the direction extending circumferentially around the rotating shaft 11 is defined as the circumferential direction.
本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を図1乃至図5に示す。図1は、回転電機10の縦断面斜視図であり、図2は、回転電機10の回転軸11に沿う方向での縦断面図であり、図3は、回転軸11に直交する方向での回転電機10の横断面図(図2のIII-III線断面図)であり、図4は、図3の一部を拡大して示す断面図であり、図5は、回転電機10の分解図である。なお、図3では、図示の都合上、回転軸11を除き、切断面を示すハッチングを省略している。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。 (1st Embodiment)
The rotating
回転電機10は、大別して、軸受ユニット20と、ハウジング30と、回転子40と、固定子50と、インバータユニット60とを備えている。これら各部材は、いずれも回転軸11と共に同軸上に配置され、所定順序で軸方向に組み付けられることで回転電機10が構成されている。本実施形態の回転電機10は、「界磁子」としての回転子40と、「電機子」としての固定子50とを有する構成となっており、回転界磁形の回転電機として具体化されるものとなっている。
The rotating electric machine 10 roughly includes a bearing unit 20, a housing 30, a rotor 40, a stator 50, and an inverter unit 60. Each of these members is arranged coaxially with the rotating shaft 11 and assembled in a predetermined order in the axial direction to form the rotating electric machine 10. The rotating electric machine 10 of the present embodiment has a configuration having a rotor 40 as a “field element” and a stator 50 as an “armature”, and is embodied as a rotating field type rotating electric machine. It has become something.
軸受ユニット20は、軸方向に互いに離間して配置される2つの軸受21,22と、その軸受21,22を保持する保持部材23とを有している。軸受21,22は、例えばラジアル玉軸受であり、それぞれ外輪25と、内輪26と、それら外輪25及び内輪26の間に配置された複数の玉27とを有している。保持部材23は円筒状をなしており、その径方向内側に軸受21,22が組み付けられている。そして、軸受21,22の径方向内側に、回転軸11及び回転子40が回転自在に支持されている。軸受21,22により、回転軸11を回転可能に支持する一組の軸受が構成されている。
The bearing unit 20 has two bearings 21 and 22 that are arranged apart from each other in the axial direction, and a holding member 23 that holds the bearings 21 and 22. The bearings 21 and 22 are, for example, radial ball bearings, each of which has an outer ring 25, an inner ring 26, and a plurality of balls 27 arranged between the outer ring 25 and the inner ring 26. The holding member 23 has a cylindrical shape, and bearings 21 and 22 are attached to the inside in the radial direction. The rotating shaft 11 and the rotor 40 are rotatably supported inside the bearings 21 and 22 in the radial direction. The bearings 21 and 22 constitute a set of bearings that rotatably support the rotating shaft 11.
各軸受21,22では、不図示のリテーナにより玉27が保持され、その状態で各玉同士のピッチが保たれている。軸受21,22は、リテーナの軸方向上下部に封止部材を有し、その内部に非導電性グリース(例えば非導電性のウレア系グリース)が充填されている。また、内輪26の位置がスペーサにより機械的に保持され、内側から上下方向に凸となる定圧予圧が施されている。
で は In each of the bearings 21 and 22, the ball 27 is held by a retainer (not shown), and the pitch between the balls is maintained in this state. The bearings 21 and 22 have sealing members at upper and lower portions in the axial direction of the retainer, and are filled with non-conductive grease (for example, non-conductive urea grease). Further, the position of the inner ring 26 is mechanically held by a spacer, and a constant-pressure preload that is vertically convex from the inside is applied.
ハウジング30は、円筒状をなす周壁31を有する。周壁31は、その軸方向に対向する第1端と第2端を有する。周壁31は、第1端に端面32を有するとともに、第2端に開口33を有する。開口33は、第2端の全体において開放されている。端面32には、その中央に円形の孔34が形成されており、その孔34に挿通させた状態で、ネジやリベット等の固定具により軸受ユニット20が固定されている。また、ハウジング30内、すなわち周壁31及び端面32により区画された内部スペースには、中空円筒状の回転子40と中空円筒状の固定子50とが収容されている。本実施形態では回転電機10がアウタロータ式であり、ハウジング30内には、筒状をなす回転子40の径方向内側に固定子50が配置されている。回転子40は、軸方向において端面32の側で回転軸11に片持ち支持されている。
The housing 30 has a cylindrical peripheral wall 31. The peripheral wall 31 has a first end and a second end that face each other in the axial direction. The peripheral wall 31 has an end face 32 at a first end and an opening 33 at a second end. The opening 33 is open at the entire second end. A circular hole 34 is formed in the center of the end face 32, and the bearing unit 20 is fixed to the end face 32 by a fixing tool such as a screw or a rivet while being inserted through the hole 34. A hollow cylindrical rotor 40 and a hollow cylindrical stator 50 are accommodated in the housing 30, that is, in an internal space defined by the peripheral wall 31 and the end surface 32. In the present embodiment, the rotating electric machine 10 is of an outer rotor type, and a stator 50 is disposed inside a housing 30 in a radial direction of a cylindrical rotor 40. The rotor 40 is cantilevered by the rotating shaft 11 on the end face 32 side in the axial direction.
回転子40は、中空筒状に形成された磁石ホルダ41と、その磁石ホルダ41の径方向内側に設けられた環状の磁石ユニット42とを有している。磁石ホルダ41は、略カップ状をなし、磁石保持部材としての機能を有する。磁石ホルダ41は、円筒状をなす円筒部43と、同じく円筒状をなしかつ円筒部43よりも小径の固定部(attachment)44と、それら円筒部43及び固定部44を繋ぐ部位となる中間部45とを有している。円筒部43の内周面に磁石ユニット42が取り付けられている。
The rotor 40 has a magnet holder 41 formed in a hollow cylindrical shape, and an annular magnet unit 42 provided radially inside the magnet holder 41. The magnet holder 41 has a substantially cup shape and has a function as a magnet holding member. The magnet holder 41 includes a cylindrical portion 43 having a cylindrical shape, a fixed portion (attachment) 44 also having a cylindrical shape and a smaller diameter than the cylindrical portion 43, and an intermediate portion serving as a portion connecting the cylindrical portion 43 and the fixed portion 44. 45. The magnet unit 42 is mounted on the inner peripheral surface of the cylindrical portion 43.
なお、磁石ホルダ41は、機械強度が充分な冷間圧延鋼板(SPCC)や、鍛造用鋼、炭素繊維強化プラスチック(CFRP)等により構成されている。
The magnet holder 41 is made of a cold-rolled steel plate (SPCC) having sufficient mechanical strength, forging steel, carbon fiber reinforced plastic (CFRP), or the like.
固定部44の貫通孔44aには回転軸11が挿通される。貫通孔44a内に配置された回転軸11に対して固定部44が固定されている。つまり、固定部44により、回転軸11に対して磁石ホルダ41が固定されている。なお、固定部44は、凹凸を利用したスプライン結合やキー結合、溶接、又はかしめ等により回転軸11に対して固定されているとよい。これにより、回転子40が回転軸11と一体に回転する。
回 転 The rotating shaft 11 is inserted into the through hole 44a of the fixing portion 44. The fixed part 44 is fixed to the rotating shaft 11 arranged in the through hole 44a. That is, the magnet holder 41 is fixed to the rotating shaft 11 by the fixing unit 44. The fixing portion 44 may be fixed to the rotating shaft 11 by spline connection or key connection using irregularities, welding, caulking, or the like. Thereby, the rotor 40 rotates integrally with the rotating shaft 11.
また、固定部44の径方向外側には、軸受ユニット20の軸受21,22が組み付けられている。上述のとおり軸受ユニット20はハウジング30の端面32に固定されているため、回転軸11及び回転子40は、ハウジング30に回転可能に支持されるものとなっている。これにより、ハウジング30内において回転子40が回転自在となっている。
軸 受 Bearings 21 and 22 of the bearing unit 20 are mounted radially outward of the fixing portion 44. Since the bearing unit 20 is fixed to the end face 32 of the housing 30 as described above, the rotating shaft 11 and the rotor 40 are rotatably supported by the housing 30. Thereby, the rotor 40 is rotatable in the housing 30.
回転子40には、その軸方向に対向する二つの端部の一方にのみ固定部44が設けられており、これにより、回転子40が回転軸11に片持ち支持されている。ここで、回転子40の固定部44は、軸受ユニット20の軸受21,22により、軸方向に異なる2位置で回転可能に支持されている。すなわち、回転子40は、磁石ホルダ41の、その軸方向に対向する二つの端部の一方において、その軸方向に離間する二つの軸受21,22により回転可能に支持されている。そのため、回転子40が回転軸11に片持ち支持される構造であっても、回転子40の安定回転が実現されるようになっている。この場合、回転子40の軸方向中心位置に対して片側にずれた位置で、回転子40が軸受21,22により支持されている。
固定 The rotor 40 is provided with a fixing portion 44 at only one of two axially opposed ends thereof, whereby the rotor 40 is cantilevered on the rotating shaft 11. Here, the fixed portion 44 of the rotor 40 is rotatably supported at two different positions in the axial direction by the bearings 21 and 22 of the bearing unit 20. That is, the rotor 40 is rotatably supported at one of two axially opposed ends of the magnet holder 41 by the two bearings 21 and 22 spaced apart in the axial direction. Therefore, even when the rotor 40 has a structure in which the rotor 40 is cantilevered by the rotating shaft 11, stable rotation of the rotor 40 is realized. In this case, the rotor 40 is supported by the bearings 21 and 22 at a position shifted to one side with respect to the axial center position of the rotor 40.
また、軸受ユニット20において回転子40の中心寄り(図の下側)の軸受22と、その逆側(図の上側)の軸受21とは、外輪25及び内輪26と玉27との間の隙間寸法が相違しており、例えば回転子40の中心寄りの軸受22の方が、その逆側の軸受21よりも隙間寸法が大きいものとなっている。この場合、回転子40の中心寄りの側において、回転子40の振れや、部品公差に起因するインバランスによる振動が軸受ユニット20に作用しても、その振れや振動の影響が良好に吸収される。具体的には、回転子40の中心寄り(図の下側)の軸受22において予圧により遊び寸法(隙間寸法)を大きくしていることで、片持ち構造において生じる振動がその遊び部分により吸収される。前記予圧は、定位置予圧、又は定圧予圧のいずれであっても良い。定位置予圧の場合、軸受21と軸受22の外輪25はいずれも保持部材23に対して、圧入、又は接着等の方法を用いて接合されている。また、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。ここで軸受21の外輪25を軸受21の内輪26に対して軸方向に異なる位置に配置する事で予圧を発生させることができる。軸受22の外輪25を軸受22の内輪26に対して軸方向に異なる位置に配置する事でも予圧を発生させることができる。
Further, in the bearing unit 20, a clearance 22 between the outer ring 25 and the inner ring 26 and the ball 27 is provided between the bearing 22 near the center of the rotor 40 (lower side in the figure) and the bearing 21 on the opposite side (upper side in the figure). The dimensions are different, for example, the bearing 22 near the center of the rotor 40 has a larger gap size than the bearing 21 on the opposite side. In this case, on the side near the center of the rotor 40, even if vibration of the rotor 40 or vibration due to imbalance due to component tolerance acts on the bearing unit 20, the influence of the vibration or vibration is favorably absorbed. You. Specifically, the play size (gap size) is increased by the preload in the bearing 22 near the center of the rotor 40 (the lower side in the figure), so that the vibration generated in the cantilever structure is absorbed by the play portion. You. The preload may be either a fixed position preload or a constant pressure preload. In the case of the fixed position preload, the outer races 25 of the bearing 21 and the bearing 22 are both joined to the holding member 23 by a method such as press fitting or bonding. The inner races 26 of the bearing 21 and the bearing 22 are both joined to the rotating shaft 11 by a method such as press fitting or bonding. Here, by arranging the outer ring 25 of the bearing 21 at a different position in the axial direction with respect to the inner ring 26 of the bearing 21, a preload can be generated. Preload can also be generated by arranging the outer ring 25 of the bearing 22 at a different position in the axial direction with respect to the inner ring 26 of the bearing 22.
また定圧予圧を採用する場合には、軸方向において、軸受22と軸受21に挟まれた領域から軸受22の外輪25に向けて予圧が発生する様に予圧用バネ、例えばウェーブワッシャ24等を軸受22と軸受21に挟まれた同領域に配置する。この場合も、軸受21と軸受22の内輪26はいずれも回転軸11に対して、圧入、又は接着等の方法を用いて接合されている。軸受21、又は軸受22の外輪25は、保持部材23に対して所定のクリアランスを介して配置される。このような構成とすることで、軸受22の外輪25には軸受21から離れる方向に予圧用バネのバネ力が作用する。そして、この力が回転軸11を伝わることで、軸受21の内輪26を軸受22の方向に押し付ける力が作用する。これにより、軸受21,22ともに、外輪25と内輪26の軸方向の位置がずれ、前述した定位置予圧と同様に2つのベアリングに予圧を掛けることができる。
When a constant-pressure preload is employed, a preload spring, for example, a wave washer 24, is provided in the axial direction so that a preload is generated from a region between the bearing 22 and the bearing 21 toward the outer ring 25 of the bearing 22. 22 and the bearing 21 in the same area. Also in this case, the inner rings 26 of the bearing 21 and the bearing 22 are both joined to the rotating shaft 11 by a method such as press fitting or bonding. The outer ring 25 of the bearing 21 or the bearing 22 is disposed with a predetermined clearance with respect to the holding member 23. With such a configuration, the spring force of the preload spring acts on the outer ring 25 of the bearing 22 in a direction away from the bearing 21. Then, when this force is transmitted through the rotating shaft 11, a force acts on the inner ring 26 of the bearing 21 in the direction of the bearing 22. As a result, the positions of the outer race 25 and the inner race 26 in the bearings 21 and 22 are shifted in the axial direction, so that preload can be applied to the two bearings in the same manner as the above-described fixed position preload.
なお、定圧予圧を発生させる際には、必ずしも図2に示す様に軸受22の外輪25にバネ力を印加する必要は無い。例えば、軸受21の外輪25にバネ力を印加しても良い。また軸受21,22のいずれかの内輪26を回転軸11に対して所定のクリアランスを介して配置し、軸受21,22の外輪25を保持部材23に対して圧入、又は接着等の方法を用いて接合することで、2つのベアリングに予圧を掛けても良い。
When generating the constant-pressure preload, it is not always necessary to apply a spring force to the outer ring 25 of the bearing 22 as shown in FIG. For example, a spring force may be applied to the outer ring 25 of the bearing 21. In addition, one of the inner rings 26 of the bearings 21 and 22 is arranged with a predetermined clearance with respect to the rotating shaft 11, and the outer ring 25 of the bearings 21 and 22 is pressed into the holding member 23 or a method such as adhesion is used. By joining together, preload may be applied to the two bearings.
更には、軸受21の内輪26が軸受22に対して離れるように力を作用させる場合には、軸受22の内輪26も軸受21に対して離れるように力を作用させる方が良い。逆に、軸受21の内輪26が軸受22に対して近づくように力を作用させる場合には、軸受22の内輪26も軸受21に対して近づくように力を作用させる方が良い。
Furthermore, when a force is applied so that the inner ring 26 of the bearing 21 separates from the bearing 22, it is better to apply a force so that the inner ring 26 of the bearing 22 also separates from the bearing 21. Conversely, when a force is applied so that the inner ring 26 of the bearing 21 approaches the bearing 22, it is better to apply the force such that the inner ring 26 of the bearing 22 also approaches the bearing 21.
なお、本回転電機10を車両動力源等の目的で車両に適用する場合には、予圧を発生させる機構に対して予圧の発生方向の成分を持つ振動が加わる可能性や、予圧を印加する対象物に掛る重力の方向が変動してしまう可能性がある。その為、本回転電機10を車両に適用する場合には、定位置予圧を採用することが望ましい。
When the rotary electric machine 10 is applied to a vehicle for the purpose of a vehicle power source or the like, there is a possibility that vibration having a component in a direction of generation of the preload may be applied to a mechanism that generates the preload, or a target to which the preload is applied. The direction of gravity applied to an object may change. Therefore, when the present rotating electric machine 10 is applied to a vehicle, it is desirable to employ a fixed position preload.
また、中間部45は、環状の内側肩部49aと環状の外側肩部49bを有する。外側肩部49bは、中間部45の径方向において内側肩部49aの外側に位置している。内側肩部49aと外側肩部49bは、中間部45の軸方向において互いに離間している。これにより、中間部45の径方向において、円筒部43と固定部44とは部分的に重複している。つまり、固定部44の基端部(図の下側の奥側端部)よりも軸方向外側に、円筒部43が突出するものとなっている。本構成では、中間部45が段差無しで平板状に設けられる場合に比べて、回転子40の重心近くの位置で、回転軸11に対して回転子40を支持させることが可能となり、回転子40の安定動作が実現できるものとなっている。
中間 The intermediate portion 45 has an annular inner shoulder 49a and an annular outer shoulder 49b. The outer shoulder portion 49b is located outside the inner shoulder portion 49a in the radial direction of the intermediate portion 45. The inner shoulder portion 49a and the outer shoulder portion 49b are separated from each other in the axial direction of the intermediate portion 45. Thus, the cylindrical portion 43 and the fixed portion 44 partially overlap in the radial direction of the intermediate portion 45. In other words, the cylindrical portion 43 protrudes outward in the axial direction from the base end of the fixing portion 44 (the lower end on the lower side in the figure). In this configuration, the rotor 40 can be supported on the rotating shaft 11 at a position near the center of gravity of the rotor 40 as compared with the case where the intermediate portion 45 is provided in a flat shape without a step. Forty stable operations can be realized.
上述した中間部45の構成によれば、回転子40には、径方向において固定部44を囲みかつ中間部45の内寄りとなる位置に、軸受ユニット20の一部を収容する軸受収容凹部46が環状に形成されるとともに、径方向において軸受収容凹部46を囲みかつ中間部45の外寄りとなる位置に、後述する固定子50の固定子巻線51のコイルエンド54を収容するコイル収容凹部47が形成されている。そして、これら各収容凹部46,47が、径方向の内外で隣り合うように配置されるようになっている。つまり、軸受ユニット20の一部と、固定子巻線51のコイルエンド54とが径方向内外に重複するように配置されている。これにより、回転電機10において軸方向の長さ寸法の短縮が可能となっている。
According to the configuration of the intermediate portion 45 described above, the rotor housing 40 has a bearing housing recess 46 that partially surrounds the bearing unit 20 at a position that surrounds the fixed portion 44 in the radial direction and is inward of the intermediate portion 45. Is formed in a ring shape, and encloses the bearing accommodation concave portion 46 in the radial direction and is located outside of the intermediate portion 45. The coil accommodation concave portion accommodates a coil end 54 of a stator winding 51 of a stator 50 described later. 47 are formed. These accommodation recesses 46 and 47 are arranged so as to be adjacent to each other inside and outside in the radial direction. That is, a part of the bearing unit 20 and the coil end 54 of the stator winding 51 are arranged so as to overlap inward and outward in the radial direction. Thus, the axial length of the rotating electric machine 10 can be reduced.
中間部45は、回転軸11側から径方向外側に張り出すように設けられている。そして、その中間部45に、軸方向に延び、固定子50の固定子巻線51のコイルエンド54に対する接触を回避する接触回避部が設けられている。中間部45が張出部に相当する。
The intermediate portion 45 is provided so as to project radially outward from the rotation shaft 11 side. A contact avoiding portion that extends in the axial direction and that avoids contact of the stator winding 51 of the stator 50 with the coil end 54 is provided in the intermediate portion 45. The intermediate portion 45 corresponds to the overhang portion.
コイルエンド54は、径方向の内側又は外側に曲げられることで、そのコイルエンド54の軸方向寸法を小さくすることができ、固定子50の軸長を短縮することが可能である。コイルエンド54の曲げ方向は、回転子40との組み付けを考慮したものであるとよい。回転子40の径方向内側に固定子50を組み付けることを想定すると、その回転子40に対する挿入先端側では、コイルエンド54が径方向内側に曲げられるとよい。コイルエンド54の反対側のコイルエンドの曲げ方向は任意でよいが、空間的に余裕のある外側に曲げた形状が製造上好ましい。
By bending the coil end 54 inward or outward in the radial direction, the axial dimension of the coil end 54 can be reduced, and the axial length of the stator 50 can be shortened. The bending direction of the coil end 54 may be a direction in which the coil end 54 and the rotor 40 are assembled. Assuming that the stator 50 is assembled radially inward of the rotor 40, the coil end 54 may be bent radially inward on the insertion tip side with respect to the rotor 40. The bending direction of the coil end on the side opposite to the coil end 54 may be arbitrary, but a shape bent outward with sufficient space is preferable in terms of manufacturing.
また、磁石部としての磁石ユニット42は、円筒部43の径方向内側において、周方向に沿って極性が交互に変わるように配置された複数の永久磁石により構成されている。これにより、磁石ユニット42は、周方向に複数の磁極を有する。ただし、磁石ユニット42の詳細については後述する。
磁石 The magnet unit 42 as a magnet portion is constituted by a plurality of permanent magnets arranged inside the cylindrical portion 43 in the radial direction so that the polarity alternates along the circumferential direction. Thereby, the magnet unit 42 has a plurality of magnetic poles in the circumferential direction. However, details of the magnet unit 42 will be described later.
固定子50は、回転子40の径方向内側に設けられている。固定子50は、略筒状(環状)に巻回形成された固定子巻線51と、その径方向内側に配置されたベース部材としての固定子コア52とを有しており、固定子巻線51が、所定のエアギャップを挟んで円環状の磁石ユニット42に対向するように配置されている。固定子巻線51は複数の相巻線よりなる。それら各相巻線は、周方向に配列された複数の導線が所定ピッチで互いに接続されることで構成されている。本実施形態では、U相、V相及びW相の3相巻線と、X相、Y相及びZ相の3相巻線とを用い、それら3相の巻線を2つ用いることで、固定子巻線51が6相の相巻線として構成されている。
The stator 50 is provided radially inside the rotor 40. The stator 50 has a stator winding 51 wound in a substantially cylindrical (annular) shape, and a stator core 52 as a base member disposed radially inward of the stator winding 51. The line 51 is disposed so as to face the annular magnet unit 42 with a predetermined air gap interposed therebetween. The stator winding 51 includes a plurality of phase windings. Each of the phase windings is configured by connecting a plurality of conductors arranged in a circumferential direction at a predetermined pitch. In this embodiment, three-phase windings of U-phase, V-phase, and W-phase and three-phase windings of X-phase, Y-phase, and Z-phase are used, and by using two of these three-phase windings, The stator winding 51 is configured as a six-phase winding.
固定子コア52は、軟磁性材である電磁鋼板が積層された積層鋼板により円環状に形成されており、固定子巻線51の径方向内側に組み付けられている。電磁鋼板は、例えば鉄に数%程度(例えば3%)の珪素を添加した珪素鋼板である。固定子巻線51が電機子巻線に相当し、固定子コア52が電機子コアに相当する。
The stator core 52 is formed in an annular shape by a laminated steel sheet in which electromagnetic steel sheets as soft magnetic materials are laminated, and is assembled radially inside the stator winding 51. The electromagnetic steel sheet is, for example, a silicon steel sheet obtained by adding about several percent (for example, 3%) of silicon to iron. The stator winding 51 corresponds to an armature winding, and the stator core 52 corresponds to an armature core.
固定子巻線51は、径方向において固定子コア52に重複する部分であり、かつ固定子コア52の径方向外側となるコイルサイド部53と、軸方向において固定子コア52の一端側及び他端側にそれぞれ張り出すコイルエンド54,55とを有している。コイルサイド部53は、径方向において固定子コア52と回転子40の磁石ユニット42にそれぞれ対向している。回転子40の内側に固定子50が配置された状態では、軸方向両側のコイルエンド54,55のうち軸受ユニット20の側(図の上側)となるコイルエンド54が、回転子40の磁石ホルダ41により形成されたコイル収容凹部47に収容されている。ただし、固定子50の詳細については後述する。
The stator winding 51 is a portion that overlaps the stator core 52 in the radial direction, and is a coil side portion 53 that is radially outside the stator core 52, and one end of the stator core 52 in the axial direction and the other. It has coil ends 54 and 55 projecting to the end sides, respectively. The coil side portions 53 face the stator core 52 and the magnet unit 42 of the rotor 40 in the radial direction, respectively. When the stator 50 is disposed inside the rotor 40, the coil end 54 on the bearing unit 20 side (upper side in the drawing) of the coil ends 54 and 55 on both axial sides is a magnet holder of the rotor 40. It is housed in a coil housing recess 47 formed by 41. However, details of the stator 50 will be described later.
インバータユニット60は、ハウジング30に対してボルト等の締結具により固定されるユニットベース61と、そのユニットベース61に組み付けられる複数の電気コンポーネント62とを有している。ユニットベース61は、例えば炭素繊維強化プラスチック(CFRP)により構成されている。ユニットベース61は、ハウジング30の開口33の縁に対して固定されるエンドプレート63と、そのエンドプレート63に一体に設けられ、軸方向に延びるケーシング64とを有している。エンドプレート63は、その中心部に円形の開口65を有しており、開口65の周縁部から起立するようにしてケーシング64が形成されている。
The inverter unit 60 has a unit base 61 fixed to the housing 30 by fasteners such as bolts, and a plurality of electric components 62 assembled to the unit base 61. The unit base 61 is made of, for example, carbon fiber reinforced plastic (CFRP). The unit base 61 has an end plate 63 fixed to the edge of the opening 33 of the housing 30 and a casing 64 provided integrally with the end plate 63 and extending in the axial direction. The end plate 63 has a circular opening 65 at the center thereof, and a casing 64 is formed so as to rise from the peripheral edge of the opening 65.
ケーシング64の外周面には固定子50が組み付けられている。つまり、ケーシング64の外径寸法は、固定子コア52の内径寸法と同じか、又は固定子コア52の内径寸法よりも僅かに小さい寸法になっている。ケーシング64の外側に固定子コア52が組み付けられることで、固定子50とユニットベース61とが一体化されている。また、ユニットベース61がハウジング30に固定されることからすると、ケーシング64に固定子コア52が組み付けられた状態では、固定子50がハウジング30に対して一体化された状態となっている。
固定 The stator 50 is mounted on the outer peripheral surface of the casing 64. That is, the outer diameter of the casing 64 is the same as the inner diameter of the stator core 52 or slightly smaller than the inner diameter of the stator core 52. The stator 50 and the unit base 61 are integrated by attaching the stator core 52 to the outside of the casing 64. When the unit base 61 is fixed to the housing 30, the stator 50 is integrated with the housing 30 in a state where the stator core 52 is attached to the casing 64.
なお、固定子コア52は、ユニットベース61に対して接着、焼きばめ、圧入等により組み付けられているとよい。これにより、ユニットベース61側に対する固定子コア52の周方向又は軸方向の位置ずれが抑制される。
The stator core 52 may be assembled to the unit base 61 by bonding, shrink fitting, press fitting, or the like. Thereby, the displacement of the stator core 52 with respect to the unit base 61 in the circumferential direction or the axial direction is suppressed.
また、ケーシング64の径方向内側は、電気コンポーネント62を収容する収容空間となっており、その収容空間には、回転軸11を囲むようにして電気コンポーネント62が配置されている。ケーシング64は、収容空間形成部としての役目を有している。電気コンポーネント62は、インバータ回路を構成する半導体モジュール66や、制御基板67、コンデンサモジュール68を具備する構成となっている。
A radially inner side of the casing 64 is a housing space for housing the electric component 62, and the electric component 62 is arranged in the housing space so as to surround the rotating shaft 11. The casing 64 has a role as an accommodation space forming part. The electric component 62 includes a semiconductor module 66 constituting an inverter circuit, a control board 67, and a capacitor module 68.
なお、ユニットベース61が、固定子50の径方向内側に設けられ、固定子50を保持する固定子ホルダ(電機子ホルダ)に相当する。ハウジング30及びユニットベース61により、回転電機10のモータハウジングが構成されている。このモータハウジングでは、回転子40を挟んで軸方向の一方側においてハウジング30に対して保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61が互いに結合されている。例えば電気自動車である電動車両等においては、その車両等の側にモータハウジングが取り付けられることで、回転電機10が車両等に装着される。
The unit base 61 is provided radially inside the stator 50 and corresponds to a stator holder (armature holder) that holds the stator 50. The housing 30 and the unit base 61 constitute a motor housing of the rotary electric machine 10. In this motor housing, the holding member 23 is fixed to the housing 30 on one side in the axial direction with the rotor 40 interposed therebetween, and the housing 30 and the unit base 61 are connected to each other on the other side. For example, in an electric vehicle such as an electric vehicle, the rotating electric machine 10 is mounted on a vehicle or the like by attaching a motor housing to the vehicle or the like.
ここで、上記図1~図5に加え、インバータユニット60の分解図である図6を用いて、インバータユニット60の構成をさらに説明する。
Here, the configuration of the inverter unit 60 will be further described with reference to FIG. 6 which is an exploded view of the inverter unit 60 in addition to FIGS.
ユニットベース61において、ケーシング64は、筒状部71と、その軸方向において対向する両端の一方(軸受ユニット20側の端部)に設けられた端面72とを有している。筒状部71の軸方向両端部のうち端面72の反対側は、エンドプレート63の開口65を通じて全面的に開放されている。端面72には、その中央に円形の孔73が形成されており、その孔73に回転軸11が挿通可能となっている。孔73には、回転軸11の外周面との間の空隙を封鎖するシール材171が設けられている。シール材171は、例えば樹脂材料よりなる摺動シールであるとよい。
In the unit base 61, the casing 64 has a tubular portion 71 and an end face 72 provided at one of the opposite ends in the axial direction (the end on the bearing unit 20 side). The opposite side of the end face 72 among both ends in the axial direction of the cylindrical portion 71 is entirely opened through the opening 65 of the end plate 63. A circular hole 73 is formed at the center of the end face 72, and the rotary shaft 11 can be inserted into the hole 73. The hole 73 is provided with a sealing material 171 that seals a gap between the hole 73 and the outer peripheral surface of the rotating shaft 11. The sealant 171 may be a sliding seal made of, for example, a resin material.
ケーシング64の筒状部71は、その径方向外側に配置される回転子40及び固定子50と、その径方向内側に配置される電気コンポーネント62との間を仕切る仕切り部となっており、筒状部71を挟んで径方向内外に、回転子40及び固定子50と電気コンポーネント62とが並ぶようにそれぞれ配置されている。
The tubular portion 71 of the casing 64 serves as a partitioning portion between the rotor 40 and the stator 50 disposed radially outside the electrical component 62 disposed radially inward thereof. The rotor 40 and the stator 50 and the electric component 62 are arranged inward and outward in the radial direction with the shape portion 71 interposed therebetween.
また、電気コンポーネント62は、インバータ回路を構成する電気部品であり、固定子巻線51の各相巻線に対して所定順序で電流を流して回転子40を回転させる力行機能と、回転軸11の回転に伴い固定子巻線51に流れる3相交流電流を入力し、発電電力として外部に出力する発電機能とを有している。なお、電気コンポーネント62は、力行機能と発電機能とのうちいずれか一方のみを有するものであってもよい。発電機能は、例えば回転電機10が車両用動力源として用いられる場合、回生電力として外部に出力する回生機能である。
The electric component 62 is an electric component forming an inverter circuit, and has a powering function of rotating the rotor 40 by applying a current to each phase winding of the stator winding 51 in a predetermined order; And a power generation function of inputting a three-phase AC current flowing through the stator winding 51 with the rotation of the motor and outputting the generated power to the outside. The electric component 62 may have only one of the powering function and the power generation function. The power generation function is, for example, a regenerative function that outputs to the outside as regenerative power when the rotating electric machine 10 is used as a vehicle power source.
電気コンポーネント62の具体的な構成として、図4に示すように、回転軸11の周りには、中空円筒状をなすコンデンサモジュール68が設けられており、そのコンデンサモジュール68の外周面上に、複数の半導体モジュール66が周方向に並べて配置されている。コンデンサモジュール68は、互いに並列接続された平滑用のコンデンサ68aを複数備えている。具体的には、コンデンサ68aは、複数枚のフィルムコンデンサが積層されてなる積層型フィルムコンデンサであり、横断面が台形状をなしている。コンデンサモジュール68は、12個のコンデンサ68aが環状に並べて配置されることで構成されている。
As a specific configuration of the electrical component 62, as shown in FIG. 4, a hollow cylindrical capacitor module 68 is provided around the rotation shaft 11, and a plurality of capacitor modules 68 are provided on the outer peripheral surface of the capacitor module 68. Of semiconductor modules 66 are arranged side by side in the circumferential direction. The capacitor module 68 includes a plurality of smoothing capacitors 68a connected in parallel with each other. Specifically, the capacitor 68a is a laminated film capacitor in which a plurality of film capacitors are laminated, and has a trapezoidal cross section. The capacitor module 68 is configured by arranging twelve capacitors 68a in a ring.
なお、コンデンサ68aの製造過程においては、例えば、複数のフィルムが積層されてなる所定幅の長尺フィルムを用い、フィルム幅方向を台形高さ方向とし、かつ台形の上底と下底とが交互になるように長尺フィルムが等脚台形状に切断されることにより、コンデンサ素子が作られる。そして、そのコンデンサ素子に電極等を取り付けることでコンデンサ68aが作製される。
In the manufacturing process of the capacitor 68a, for example, a long film having a predetermined width formed by laminating a plurality of films is used, the film width direction is set to a trapezoidal height direction, and the upper and lower bases of the trapezoid alternate. The long film is cut into an equal-leg trapezoidal shape so that the capacitor element is formed. Then, by attaching electrodes and the like to the capacitor element, the capacitor 68a is manufactured.
半導体モジュール66は、例えばMOSFETやIGBT等の半導体スイッチング素子を有し、略板状に形成されている。本実施形態では、回転電機10が2組の3相巻線を備えており、その3相巻線ごとにインバータ回路が設けられていることから、計12個の半導体モジュール66を環状に並べて形成された半導体モジュール群66Aが電気コンポーネント62に設けられている。
The semiconductor module 66 has a semiconductor switching element such as a MOSFET or an IGBT, and is formed in a substantially plate shape. In the present embodiment, since the rotating electric machine 10 includes two sets of three-phase windings and an inverter circuit is provided for each of the three-phase windings, a total of twelve semiconductor modules 66 are arranged in a ring. The assembled semiconductor module group 66A is provided in the electric component 62.
半導体モジュール66は、ケーシング64の筒状部71とコンデンサモジュール68との間に挟まれた状態で配置されている。半導体モジュール群66Aの外周面は筒状部71の内周面に当接し、半導体モジュール群66Aの内周面はコンデンサモジュール68の外周面に当接している。この場合、半導体モジュール66で生じた熱は、ケーシング64を介してエンドプレート63に伝わり、エンドプレート63から放出される。
The semiconductor module 66 is disposed between the cylindrical portion 71 of the casing 64 and the capacitor module 68. The outer peripheral surface of the semiconductor module group 66A is in contact with the inner peripheral surface of the cylindrical portion 71, and the inner peripheral surface of the semiconductor module group 66A is in contact with the outer peripheral surface of the capacitor module 68. In this case, the heat generated in the semiconductor module 66 is transmitted to the end plate 63 via the casing 64 and is released from the end plate 63.
半導体モジュール群66Aは、外周面側、すなわち径方向において半導体モジュール66と筒状部71との間にスペーサ69を有しているとよい。この場合、コンデンサモジュール68では軸方向に直交する横断面の断面形状が正12角形である一方、筒状部71の内周面の横断面形状が円形であるため、スペーサ69は、内周面が平坦面、外周面が曲面となっている。スペーサ69は、半導体モジュール群66Aの径方向外側において円環状に連なるように一体に設けられていてもよい。スペーサ69は、良熱伝導体であり、例えばアルミニウム等の金属、又は放熱ゲルシート等であるとよい。なお、筒状部71の内周面の横断面形状をコンデンサモジュール68と同じ12角形にすることも可能である。この場合、スペーサ69の内周面及び外周面がいずれも平坦面であるとよい。
The semiconductor module group 66A preferably has a spacer 69 between the semiconductor module 66 and the cylindrical portion 71 in the outer peripheral surface side, that is, in the radial direction. In this case, in the capacitor module 68, the cross-sectional shape of the cross section orthogonal to the axial direction is a regular dodecagon, while the cross-sectional shape of the inner peripheral surface of the cylindrical portion 71 is circular. Has a flat surface and the outer peripheral surface is a curved surface. The spacer 69 may be provided integrally so as to be annularly continuous outside the semiconductor module group 66A in the radial direction. The spacer 69 is a good heat conductor, for example, a metal such as aluminum, or a heat dissipation gel sheet. Note that the cross-sectional shape of the inner peripheral surface of the cylindrical portion 71 can be the same dodecagon as that of the capacitor module 68. In this case, both the inner peripheral surface and the outer peripheral surface of the spacer 69 are preferably flat surfaces.
また、本実施形態では、ケーシング64の筒状部71に、冷却水を流通させる冷却水通路74が形成されており、半導体モジュール66で生じた熱は、冷却水通路74を流れる冷却水に対しても放出される。つまり、ケーシング64は水冷機構を備えている。図3や図4に示すように、冷却水通路74は、電気コンポーネント62(半導体モジュール66及びコンデンサモジュール68)を囲むように環状に形成されている。半導体モジュール66は筒状部71の内周面に沿って配置されており、その半導体モジュール66に対して径方向内外に重なる位置に冷却水通路74が設けられている。
Further, in the present embodiment, a cooling water passage 74 for flowing cooling water is formed in the cylindrical portion 71 of the casing 64, and heat generated in the semiconductor module 66 is supplied to the cooling water flowing through the cooling water passage 74. Is also released. That is, the casing 64 has a water cooling mechanism. As shown in FIGS. 3 and 4, the cooling water passage 74 is formed in an annular shape so as to surround the electric component 62 (the semiconductor module 66 and the capacitor module 68). The semiconductor module 66 is arranged along the inner peripheral surface of the cylindrical portion 71, and a cooling water passage 74 is provided at a position overlapping the semiconductor module 66 inward and outward in the radial direction.
筒状部71の外側には固定子50が配置され、内側には電気コンポーネント62が配置されていることから、筒状部71に対しては、その外側から固定子50の熱が伝わるとともに、内側から電気コンポーネント62の熱(例えば半導体モジュール66の熱)が伝わることになる。この場合、固定子50と半導体モジュール66とを同時に冷やすことが可能となっており、回転電機10における発熱部材の熱を効率良く放出することができる。
Since the stator 50 is disposed outside the tubular portion 71 and the electric component 62 is disposed inside, the heat of the stator 50 is transmitted to the tubular portion 71 from the outside, The heat of the electric component 62 (for example, the heat of the semiconductor module 66) is transmitted from the inside. In this case, the stator 50 and the semiconductor module 66 can be cooled at the same time, and the heat of the heat generating member in the rotating electric machine 10 can be efficiently released.
更に、固定子巻線51への通電を行うことで回転電機を動作させるインバータ回路の一部、又は全部を構成する半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されている。望ましくは、1つの半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。更に、望ましくは、全ての半導体モジュール66の全体が固定子コア52に囲まれた領域内に配置されている。
Furthermore, at least a part of the semiconductor module 66 that constitutes a part or all of the inverter circuit that operates the rotating electric machine by energizing the stator winding 51 is disposed outside the cylindrical portion 71 of the casing 64 in the radial direction. Are arranged in a region surrounded by the stator core 52 arranged in the above. Desirably, the entirety of one semiconductor module 66 is arranged in a region surrounded by stator core 52. Further, desirably, the entirety of all the semiconductor modules 66 is arranged in a region surrounded by the stator core 52.
また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれた領域内に配置されている。望ましくは、全ての半導体モジュール66の全体がヨーク141に囲まれた領域内に配置されている。
少 な く と も At least a part of the semiconductor module 66 is arranged in a region surrounded by the cooling water passage 74. Desirably, the entirety of all the semiconductor modules 66 is arranged in a region surrounded by the yoke 141.
また、電気コンポーネント62は、軸方向において、コンデンサモジュール68の一方の端面に設けられた絶縁シート75と、他方の端面に設けられた配線モジュール76とを備えている。この場合、コンデンサモジュール68は、その軸方向に対向した二つの端面、すなわち第1端面と第2端面を有している。コンデンサモジュール68の軸受ユニット20に近い第1端面は、ケーシング64の端面72に対向しており、絶縁シート75を挟んだ状態で端面72に重ね合わされている。また、コンデンサモジュール68の開口65に近い第2端面には、配線モジュール76が組み付けられている。
{Circle around (2)} The electric component 62 includes an insulating sheet 75 provided on one end face of the capacitor module 68 and a wiring module 76 provided on the other end face in the axial direction. In this case, the capacitor module 68 has two end faces facing each other in the axial direction, that is, a first end face and a second end face. The first end face of the capacitor module 68 near the bearing unit 20 is opposed to the end face 72 of the casing 64, and is superposed on the end face 72 with the insulating sheet 75 interposed therebetween. A wiring module 76 is mounted on a second end face of the capacitor module 68 near the opening 65.
配線モジュール76は、合成樹脂材よりなり円形板状をなす本体部76aと、その内部に埋設された複数のバスバー76b,76cを有しており、そのバスバー76b,76cにより、半導体モジュール66やコンデンサモジュール68と電気的接続がなされている。具体的には、半導体モジュール66は、その軸方向端面から延びる接続ピン66aを有しており、その接続ピン66aが、本体部76aの径方向外側においてバスバー76bに接続されている。また、バスバー76cは、本体部76aの径方向外側においてコンデンサモジュール68とは反対側に延びており、その先端部にて配線部材79に接続されるようになっている(図2参照)。
The wiring module 76 has a main body portion 76a made of a synthetic resin and having a circular plate shape, and a plurality of busbars 76b and 76c embedded therein. The busbars 76b and 76c allow the semiconductor module 66 and the capacitor to be mounted. An electrical connection is made with the module 68. Specifically, the semiconductor module 66 has a connection pin 66a extending from the axial end face, and the connection pin 66a is connected to the bus bar 76b on the radial outside of the main body portion 76a. The bus bar 76c extends on the outer side of the main body 76a in the radial direction on the side opposite to the capacitor module 68, and is connected to the wiring member 79 at its tip (see FIG. 2).
上記のとおりコンデンサモジュール68の軸方向に対向する第1端面に絶縁シート75が設けられ、かつコンデンサモジュール68の第2端面に配線モジュール76が設けられた構成によれば、コンデンサモジュール68の放熱経路として、コンデンサモジュール68の第1端面および第2端面から端面72及び筒状部71に至る経路が形成される。すなわち、第1端面から端面72への経路と、第2端面から筒状部71へ至る経路が形成される。これにより、コンデンサモジュール68において半導体モジュール66が設けられた外周面以外の端面部からの放熱が可能になっている。つまり、径方向への放熱だけでなく、軸方向への放熱も可能となっている。
As described above, according to the configuration in which the insulating sheet 75 is provided on the first end face of the capacitor module 68 facing in the axial direction and the wiring module 76 is provided on the second end face of the capacitor module 68, the heat radiation path of the capacitor module 68 A path is formed from the first end face and the second end face of the capacitor module 68 to the end face 72 and the cylindrical portion 71. That is, a path from the first end face to the end face 72 and a path from the second end face to the cylindrical portion 71 are formed. Thereby, heat can be radiated from the end face of the capacitor module 68 other than the outer peripheral face where the semiconductor module 66 is provided. That is, not only the heat radiation in the radial direction but also the heat radiation in the axial direction are possible.
また、コンデンサモジュール68は中空円筒状をなし、その内周部には所定の隙間を介在させて回転軸11が配置されることから、コンデンサモジュール68の熱はその中空部からも放出可能となっている。この場合、回転軸11の回転により空気の流れが生じることにより、その冷却効果が高められるようになっている。
Further, since the capacitor module 68 has a hollow cylindrical shape and the rotating shaft 11 is disposed on the inner peripheral portion thereof with a predetermined gap interposed therebetween, the heat of the capacitor module 68 can be released from the hollow portion. ing. In this case, the flow of air is generated by the rotation of the rotating shaft 11, so that the cooling effect is enhanced.
配線モジュール76には、円板状の制御基板67が取り付けられている。制御基板67は、所定の配線パターンが形成されたプリントサーキットボード(PCB)を有しており、そのボード上には各種ICや、マイコン等からなる制御部に相当する制御装置77が実装されている。制御基板67は、ネジ等の固定具により配線モジュール76に固定されている。制御基板67は、その中央部に、回転軸11を挿通させる挿通孔67aを有している。
円 A disc-shaped control board 67 is attached to the wiring module 76. The control board 67 has a printed circuit board (PCB) on which a predetermined wiring pattern is formed. On the board, a control device 77 corresponding to a control unit including various ICs and a microcomputer is mounted. I have. The control board 67 is fixed to the wiring module 76 by a fixture such as a screw. The control board 67 has an insertion hole 67a at the center thereof, through which the rotating shaft 11 is inserted.
なお、配線モジュール76は、軸方向に互いに対向する、すなわち、その厚み方向において互いに対向する第1面と第2面を有する。第1面は、コンデンサモジュール68に面する。配線モジュール76は、その第2面に、制御基板67を設けている。制御基板67の両面の一方側から他方側に配線モジュール76のバスバー76cが延びる構成となっている。かかる構成において、制御基板67には、バスバー76cとの干渉を回避する切欠が設けられているとよい。例えば、円形状をなす制御基板67の外縁部の一部が切り欠かれているとよい。
The wiring module 76 has a first surface and a second surface that face each other in the axial direction, that is, that face each other in the thickness direction. The first surface faces the capacitor module 68. The wiring module 76 has a control board 67 on the second surface. The bus bar 76c of the wiring module 76 extends from one side of the both sides of the control board 67 to the other side. In such a configuration, the control board 67 may be provided with a notch for avoiding interference with the bus bar 76c. For example, a part of the outer edge of the circular control board 67 may be cut away.
上述のとおり、ケーシング64に囲まれた空間内に電気コンポーネント62が収容され、その外側に、ハウジング30、回転子40及び固定子50が層状に設けられている構成によれば、インバータ回路で生じる電磁ノイズが好適にシールドされるようになっている。すなわち、インバータ回路では、所定のキャリア周波数によるPWM制御を利用して各半導体モジュール66でのスイッチング制御が行われ、そのスイッチング制御により電磁ノイズが生じることが考えられるが、その電磁ノイズを、電気コンポーネント62の径方向外側のハウジング30、回転子40、固定子50等により好適にシールドできる。
As described above, according to the configuration in which the electric component 62 is accommodated in the space surrounded by the casing 64 and the housing 30, the rotor 40, and the stator 50 are provided in layers outside the space, the electric component 62 is generated in the inverter circuit. Electromagnetic noise is suitably shielded. That is, in the inverter circuit, switching control in each semiconductor module 66 is performed using PWM control based on a predetermined carrier frequency, and electromagnetic noise may be generated by the switching control. It can be shielded suitably by the housing 30, the rotor 40, the stator 50, and the like outside in the radial direction of 62.
更に、半導体モジュール66の少なくとも一部が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置することで、半導体モジュール66と固定子巻線51とが固定子コア52を介さずに配置されている構成に比べて、半導体モジュール66から磁束が発生したとしても、固定子巻線51に影響を与えにくい。また、固定子巻線51から磁束が発生したとしても、半導体モジュール66に影響を与えにくい。なお、半導体モジュール66の全体が、ケーシング64の筒状部71の径方向外側に配置された固定子コア52に囲まれた領域内に配置されると更に効果的である。また、半導体モジュール66の少なくとも一部が、冷却水通路74により囲まれている場合、固定子巻線51や磁石ユニット42からの発熱が半導体モジュール66に届きにくいという効果を得ることができる。
Furthermore, by arranging at least a part of the semiconductor module 66 in a region surrounded by the stator core 52 arranged radially outside the cylindrical portion 71 of the casing 64, the semiconductor module 66 and the stator winding As compared with a configuration in which the magnetic flux 51 is disposed without passing through the stator core 52, even if a magnetic flux is generated from the semiconductor module 66, the magnetic flux is less likely to affect the stator winding 51. Further, even if a magnetic flux is generated from the stator winding 51, the magnetic flux hardly affects the semiconductor module 66. It is more effective if the entire semiconductor module 66 is arranged in a region surrounded by the stator core 52 arranged radially outside the cylindrical portion 71 of the casing 64. Further, when at least a part of the semiconductor module 66 is surrounded by the cooling water passage 74, it is possible to obtain an effect that heat from the stator winding 51 and the magnet unit 42 does not easily reach the semiconductor module 66.
筒状部71においてエンドプレート63の付近には、その外側の固定子50と内側の電気コンポーネント62とを電気的に接続する配線部材79(図2参照)を挿通させる貫通孔78が形成されている。図2に示すように、配線部材79は、圧着、溶接などにより、固定子巻線51の端部と配線モジュール76のバスバー76cとにそれぞれ接続されている。配線部材79は、例えばバスバーであり、その接合面は平たく潰されていることが望ましい。貫通孔78は、1カ所又は複数箇所に設けられているとよく、本実施形態では2カ所に貫通孔78が設けられている。2カ所に貫通孔78が設けられる構成では、2組の3相巻線から延びる巻線端子を、それぞれ配線部材79により容易に結線することが可能となり、多相結線を行う上で好適なものとなっている。
A through-hole 78 is formed near the end plate 63 in the cylindrical portion 71, through which a wiring member 79 (see FIG. 2) for electrically connecting the stator 50 on the outside and the electric component 62 on the inside is inserted. I have. As shown in FIG. 2, the wiring member 79 is connected to the end of the stator winding 51 and the bus bar 76c of the wiring module 76 by crimping, welding, or the like. The wiring member 79 is, for example, a bus bar, and its joint surface is desirably flattened. The through holes 78 may be provided at one or a plurality of positions. In the present embodiment, the through holes 78 are provided at two positions. In the configuration in which the through holes 78 are provided at two locations, the winding terminals extending from the two sets of three-phase windings can be easily connected by the wiring members 79, respectively, which is suitable for performing multiphase connection. It has become.
上述のとおりハウジング30内には、図4に示すように径方向外側から順に回転子40、固定子50が設けられ、固定子50の径方向内側にインバータユニット60が設けられている。ここで、ハウジング30の内周面の半径をdとした場合に、回転子40の回転中心からd×0.705の距離よりも径方向外側に回転子40と固定子50とが配置されている。この場合、回転子40及び固定子50のうち径方向内側の固定子50の内周面(すなわち固定子コア52の内周面)から径方向内側となる領域を第1領域X1、径方向において固定子50の内周面からハウジング30までの間の領域を第2領域X2とすると、第1領域X1の横断面の面積は、第2領域X2の横断面の面積よりも大きい構成となっている。また、径方向において回転子40の磁石ユニット42及び固定子巻線51が重複する範囲で見て、第1領域X1の容積が第2領域X2の容積よりも大きい構成となっている。
As described above, in the housing 30, the rotor 40 and the stator 50 are provided in this order from the outside in the radial direction as shown in FIG. 4, and the inverter unit 60 is provided inside the stator 50 in the radial direction. Here, assuming that the radius of the inner peripheral surface of the housing 30 is d, the rotor 40 and the stator 50 are disposed radially outside the distance of d × 0.705 from the rotation center of the rotor 40. I have. In this case, of the rotor 40 and the stator 50, a region radially inward from the inner peripheral surface of the stator 50 on the radial inner side (that is, the inner peripheral surface of the stator core 52) is defined as a first region X1, Assuming that a region between the inner peripheral surface of the stator 50 and the housing 30 is the second region X2, the cross-sectional area of the first region X1 is larger than the cross-sectional area of the second region X2. I have. Further, when viewed in a range where the magnet unit 42 of the rotor 40 and the stator winding 51 overlap in the radial direction, the volume of the first region X1 is larger than the volume of the second region X2.
なお、回転子40及び固定子50を磁気回路コンポーネントアッセンブリとすると、ハウジング30内において、その磁気回路コンポーネントアッセンブリの内周面から径方向内側となる第1領域X1が、径方向において磁気回路コンポーネントアッセンブリの内周面からハウジング30までの間の第2領域X2よりも容積が大きい構成となっている。
Assuming that the rotor 40 and the stator 50 are magnetic circuit component assemblies, a first region X1 radially inward from the inner peripheral surface of the magnetic circuit component assembly in the housing 30 is formed in the magnetic circuit component assembly in the radial direction. Has a larger volume than the second region X2 between the inner peripheral surface and the housing 30.
次いで、回転子40及び固定子50の構成をより詳しく説明する。
Next, the configurations of the rotor 40 and the stator 50 will be described in more detail.
一般に、回転電機における固定子の構成として、積層鋼板よりなりかつ円環状をなす固定子コアに周方向に複数のスロットを設け、そのスロット内に固定子巻線を巻装するものが知られている。具体的には、固定子コアは、ヨークから所定間隔で径方向に延びる複数のティースを有しており、周方向に隣り合うティース間にスロットが形成されている。そして、スロット内に、例えば径方向に複数層の導線が収容され、その導線により固定子巻線が構成されている。
Generally, as a configuration of a stator in a rotating electric machine, there is known a configuration in which a plurality of slots are provided in a circumferential direction on a stator core made of laminated steel sheets and forming an annular shape, and a stator winding is wound in the slots. I have. Specifically, the stator core has a plurality of teeth extending in a radial direction at predetermined intervals from the yoke, and a slot is formed between adjacent teeth in the circumferential direction. A plurality of layers of conductors are accommodated in the slot, for example, in the radial direction, and the conductors constitute a stator winding.
ただし、上述した固定子構造では、固定子巻線の通電時において、固定子巻線の起磁力が増加するのに伴い固定子コアのティース部分で磁気飽和が生じ、それに起因して回転電機のトルク密度が制限されることが考えられる。つまり、固定子コアにおいて、固定子巻線の通電により生じた回転磁束がティースに集中することで、磁気飽和が生じると考えられる。
However, in the above-described stator structure, when the stator winding is energized, magnetic saturation occurs in the teeth of the stator core as the magnetomotive force of the stator winding increases, and as a result, the rotating electric machine It is possible that the torque density is limited. That is, in the stator core, it is considered that the magnetic flux is generated by energizing the stator windings and concentrates on the teeth, thereby causing magnetic saturation.
また、一般的に、回転電機におけるIPM(Interior Permanent Magnet)ロータの構成として、永久磁石がd-q座標系におけるd軸に配置され、q軸にロータコアが配置されたものが知られている。このような場合、d軸近傍の固定子巻線が励磁されることで、フレミングの法則により固定子から回転子のq軸に励磁磁束が流入される。そしてこれにより、回転子のq軸コア部分に、広範囲の磁気飽和が生じると考えられる。
In general, as a configuration of an IPM (Interior @ Permanent @ Magnet) rotor in a rotating electric machine, a configuration in which a permanent magnet is arranged on a d-axis in a dq coordinate system and a rotor core is arranged on a q-axis is known. In such a case, when the stator winding near the d-axis is excited, the excitation magnetic flux flows from the stator to the q-axis of the rotor according to Fleming's law. It is considered that this causes a wide range of magnetic saturation in the q-axis core portion of the rotor.
図7は、固定子巻線の起磁力を示すアンペアターン[AT]とトルク密度[Nm/L]との関係を示すトルク線図である。破線が一般的なIPMロータ型の回転電機における特性を示す。図7に示すように、一般的な回転電機では、固定子において起磁力を増加させていくことにより、スロット間のティース部分及びq軸コア部分の2カ所で磁気飽和が生じ、それが原因でトルクの増加が制限されてしまう。このように、当該一般的な回転電機では、アンペアターン設計値がA1で制限されることになる。
FIG. 7 is a torque diagram showing the relationship between the ampere turn [AT] indicating the magnetomotive force of the stator winding and the torque density [Nm / L]. The dashed line indicates the characteristic in a general IPM rotor type rotating electric machine. As shown in FIG. 7, in a general rotating electric machine, by increasing the magnetomotive force in the stator, magnetic saturation occurs at two places, ie, the teeth portion between the slots and the q-axis core portion. The increase in torque is limited. As described above, in the general rotating electric machine, the ampere-turn design value is limited by A1.
そこで本実施形態では、磁気飽和に起因する制限を解消すべく、回転電機10において、以下に示す構成を付与するものとしている。すなわち、第1の工夫として、固定子において固定子コアのティースで生じる磁気飽和をなくすべく、固定子50においてスロットレス構造を採用し、かつIPMロータのq軸コア部分で生じる磁気飽和をなくすべく、SPM(Surface Permanent Magnet)ロータを採用している。第1の工夫によれば、磁気飽和が生じる上記2カ所の部分をなくすことができるが、低電流域でのトルクが減少することが考えられる(図7の一点鎖線参照)。そのため、第2の工夫として、SPMロータの磁束増強を図ることでトルク減少を挽回すべく、回転子40の磁石ユニット42において磁石磁路を長くして磁力を高めた極異方構造を採用している。
Therefore, in the present embodiment, the following configuration is provided to the rotating electric machine 10 in order to eliminate the limitation caused by the magnetic saturation. That is, as a first contrivance, a slotless structure is employed in the stator 50 in order to eliminate magnetic saturation caused by teeth of the stator core in the stator, and in order to eliminate magnetic saturation occurring in the q-axis core portion of the IPM rotor. , SPM (Surface @ Permanent @ Magnet) rotor. According to the first device, the above two portions where magnetic saturation occurs can be eliminated, but it is conceivable that the torque in the low current region decreases (see the dashed line in FIG. 7). Therefore, as a second contrivance, a pole anisotropic structure is adopted in which the magnet magnetic path is lengthened and the magnetic force is increased in the magnet unit 42 of the rotor 40 in order to recover the torque reduction by increasing the magnetic flux of the SPM rotor. ing.
また、第3の工夫として、固定子巻線51のコイルサイド部53において導線の固定子50における径方向厚さを小さくした扁平導線構造を採用してトルク減少の挽回を図っている。ここで、上述の磁力を高めた極異方構造によって、磁石ユニット42に対向する固定子巻線51には、より大きな渦電流が発生することが考えられる。しかしながら、第3の工夫によれば、径方向に薄い扁平導線構造のため、固定子巻線51における径方向の渦電流の発生を抑制することができる。このように、これら第1~第3の各構成によれば、図7に実線で示すように、磁力の高い磁石を採用してトルク特性の大幅な改善を見込みつつも、磁力の高い磁石ゆえに生じ得る大きい渦電流発生の懸念も改善できるものとなっている。
As a third device, the coil side portion 53 of the stator winding 51 employs a flat conductor structure in which the radial thickness of the conductor in the stator 50 is reduced, thereby reducing torque reduction. Here, it is conceivable that a larger eddy current is generated in the stator winding 51 facing the magnet unit 42 due to the above-described pole anisotropic structure in which the magnetic force is increased. However, according to the third device, the generation of radial eddy currents in the stator windings 51 can be suppressed because the flat conductive wire structure is thin in the radial direction. As described above, according to each of the first to third configurations, as shown by the solid line in FIG. 7, while a magnet having a high magnetic force is employed to greatly improve the torque characteristics, the magnet having a high magnetic force is used. Concerns about possible large eddy current generation can also be improved.
さらに、第4の工夫として、極異方構造を利用し正弦波に近い磁束密度分布を有する磁石ユニットを採用している。これによれば、後述するパルス制御等によって正弦波整合率を高めてトルク増強を図ることができるとともに、ラジアル磁石と比べ緩やかな磁束変化のため渦電流損(渦電流による銅損:eddy current loss)もまた更に抑制することができるのである。
Furthermore, as a fourth device, a magnet unit having a magnetic flux density distribution close to a sine wave using a pole anisotropic structure is adopted. According to this, the torque can be increased by increasing the sine wave matching ratio by pulse control or the like described later, and eddy current loss (copper loss due to eddy current: eddy current loss) due to a gradual change in magnetic flux compared to the radial magnet. ) Can also be further suppressed.
以下、正弦波整合率について説明する。正弦波整合率は、磁石の表面を磁束プローブでなぞる等して計測した表面磁束密度分布の実測波形と周期及びピーク値が同じ正弦波との比較から求める事ができる。そして、回転電機の基本波である1次波形の振幅が、実測波形の振幅、即ち基本波に他の高調波成分を加えた振幅に対して、占める割合が正弦波整合率に相当する。正弦波整合率が高くなると、表面磁束密度分布の波形が正弦波形状に近づいていく。そして、正弦波整合率を向上させた磁石を備えた回転電機に対して、インバータから1次の正弦波の電流を供給すると、磁石の表面磁束密度分布の波形が正弦波形状に近い事と相まって、大きなトルクを発生させることができる。なお、表面磁束密度分布は実測以外の方法、例えばマクスウェルの方程式を用いた電磁界解析によって推定しても良い。
正弦 Hereinafter, the sine wave matching ratio will be described. The sine wave matching ratio can be determined by comparing a measured waveform of the surface magnetic flux density distribution measured by tracing the surface of the magnet with a magnetic flux probe and a sine wave having the same period and peak value. The ratio of the amplitude of the primary waveform, which is the fundamental wave of the rotating electrical machine, to the amplitude of the actually measured waveform, that is, the amplitude of the fundamental wave plus other harmonic components, corresponds to the sine wave matching ratio. As the sine wave matching ratio increases, the waveform of the surface magnetic flux density distribution approaches a sine wave shape. When a primary sine-wave current is supplied from a inverter to a rotating electric machine having a magnet with an improved sine-wave matching ratio, the waveform of the surface magnetic flux density distribution of the magnet is close to a sine-wave shape. , A large torque can be generated. The surface magnetic flux density distribution may be estimated by a method other than the actual measurement, for example, an electromagnetic field analysis using Maxwell's equation.
また、第5の工夫として、固定子巻線51を複数の素線を寄せ集めて束ねた素線導体構造としている。これによれば、素線が並列結線されているため、大電流が流せるとともに、扁平導線構造で固定子50の周方向に広がった導線で発生する渦電流の発生を、素線それぞれの断面積が小さくなるため、第3の工夫による径方向に薄くする以上に効果的に抑制することができる。そして、複数の素線を撚り合わせた構成にすることで、導体からの起磁力に対しては、電流通電方向に対して右ネジの法則で発生する磁束に対する渦電流を相殺することができる。
(5) As a fifth measure, the stator winding 51 has a wire conductor structure in which a plurality of wires are gathered and bundled. According to this, since the wires are connected in parallel, a large current can flow, and the generation of the eddy current generated in the conductors extending in the circumferential direction of the stator 50 in the flat conductor structure is reduced by the cross-sectional area of each of the wires. Can be more effectively suppressed than by reducing the thickness in the radial direction by the third device. And, by using a configuration in which a plurality of strands are twisted, the eddy current with respect to the magnetic flux generated by the right-handed screw rule in the direction of current flow can be offset with respect to the magnetomotive force from the conductor.
このように、第4の工夫、第5の工夫をさらに加えると、第2の工夫である磁力の高い磁石を採用しながら、さらにその高い磁力に起因する渦電流損を抑制しながらトルク増強を図ることができる。
As described above, when the fourth device and the fifth device are further added, the torque is increased while the eddy current loss caused by the high magnetic force is suppressed while employing the magnet having the high magnetic force as the second device. Can be planned.
以下に、上述した固定子50のスロットレス構造、固定子巻線51の扁平導線構造、及び磁石ユニット42の極異方構造について個別に説明を加える。ここではまずは、固定子50におけるスロットレス構造と固定子巻線51の扁平導線構造とを説明する。図8は、回転子40及び固定子50の横断面図であり、図9は、図8に示す回転子40及び固定子50の一部を拡大して示す図である。図10は、図11のX‐X線に沿った固定子50の横断面を示す断面図であり、図11は、固定子50の縦断面を示す断面図である。また、図12は、固定子巻線51の斜視図である。なお、図8及び図9には、磁石ユニット42における磁石の磁化方向を矢印にて示している。
ス ロ ッ ト Hereinafter, the slotless structure of the stator 50, the flat conductor structure of the stator winding 51, and the pole anisotropic structure of the magnet unit 42 will be individually described. First, the slotless structure of the stator 50 and the flat conductor structure of the stator winding 51 will be described. FIG. 8 is a cross-sectional view of the rotor 40 and the stator 50, and FIG. 9 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG. FIG. 10 is a cross-sectional view showing a cross section of the stator 50 along the line XX in FIG. 11, and FIG. 11 is a cross-sectional view showing a vertical cross section of the stator 50. FIG. 12 is a perspective view of the stator winding 51. 8 and 9, the magnetization directions of the magnets in the magnet unit 42 are indicated by arrows.
図8乃至図11に示すように、固定子コア52は、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、回転子40側となる径方向外側に固定子巻線51が組み付けられるものとなっている。固定子コア52において、回転子40側の外周面が導線設置部(導体エリア)となっている。固定子コア52の外周面は凹凸のない曲面状をなしており、その外周面において周方向に所定間隔で複数の導線群81が配置されている。固定子コア52は、回転子40を回転させるための磁気回路の一部となるバックヨークとして機能する。この場合、周方向に隣り合う各2つの導線群81の間には軟磁性材からなるティース(つまり、鉄心)が設けられていない構成(つまり、スロットレス構造)となっている。本実施形態において、それら各導線群81の間隙56には、封止部材57の樹脂材料が入り込む構造となっている。つまり、固定子50において、周方向における各導線群81の間に設けられる導線間部材が、非磁性材料である封止部材57として構成されている。封止部材57の封止前の状態で言えば、固定子コア52の径方向外側には、それぞれ導線間領域である間隙56を隔てて周方向に所定間隔で導線群81が配置されており、これによりスロットレス構造の固定子50が構築されている。言い換えれば、各導線群81は、後述するように二つの導線(conductor)82からなり、固定子50の周方向に隣り合う各二つの導線群81の間は、非磁性材のみが占有している。この非磁性材とは、封止部材57以外に空気などの非磁性気体や非磁性液体などをも含む。なお、以下において、封止部材57は導線間部材(conductor-to-conductor member)ともいう。
As shown in FIGS. 8 to 11, the stator core 52 is formed by laminating a plurality of electromagnetic steel sheets in the axial direction, and has a cylindrical shape having a predetermined thickness in the radial direction, and is located on the rotor 40 side. The stator winding 51 is mounted radially outward. In the stator core 52, the outer peripheral surface on the rotor 40 side is a conductive wire installation portion (conductor area). The outer peripheral surface of the stator core 52 has a curved surface without irregularities, and a plurality of conductive wire groups 81 are arranged on the outer peripheral surface at predetermined intervals in the circumferential direction. The stator core 52 functions as a back yoke which is a part of a magnetic circuit for rotating the rotor 40. In this case, the teeth (that is, the iron core) made of the soft magnetic material are not provided between the two conductive wire groups 81 that are adjacent in the circumferential direction (that is, the slotless structure). In the present embodiment, a structure is such that the resin material of the sealing member 57 enters the gaps 56 between the conductive wire groups 81. That is, in the stator 50, the inter-conductor member provided between the respective conductor groups 81 in the circumferential direction is configured as the sealing member 57 which is a non-magnetic material. Speaking of the state before the sealing of the sealing member 57, on the radially outer side of the stator core 52, the conductor groups 81 are arranged at predetermined intervals in the circumferential direction with a gap 56 being a region between the conductors. Thus, a stator 50 having a slotless structure is constructed. In other words, each conductor group 81 is composed of two conductors 82 as described later, and only the non-magnetic material occupies between each two conductor groups 81 adjacent in the circumferential direction of the stator 50. I have. The non-magnetic material includes a non-magnetic gas such as air, a non-magnetic liquid, and the like in addition to the sealing member 57. In the following, the sealing member 57 is also referred to as a conductor-to-conductor member.
なお、周方向に並ぶ各導線群81の間においてティースが設けられている構成とは、ティースが、径方向に所定厚さを有し、かつ周方向に所定幅を有することで、各導線群81の間に磁気回路の一部、すなわち磁石磁路を形成する構成であると言える。この点において、各導線群81の間にティースが設けられていない構成とは、上記の磁気回路の形成がなされていない構成であると言える。
Note that the configuration in which the teeth are provided between the conductor groups 81 arranged in the circumferential direction means that the teeth have a predetermined thickness in the radial direction and a predetermined width in the circumferential direction. It can be said that this is a configuration in which a part of the magnetic circuit, that is, a magnet magnetic path is formed between the magnetic circuits 81. In this regard, a configuration in which the teeth are not provided between the conductive wire groups 81 can be said to be a configuration in which the above-described magnetic circuit is not formed.
図10に示すように、固定子巻線(すなわち電機子巻線)51は、所定の厚みT2(以下、第1寸法とも言う)と幅W2(以下、第2寸法とも言う)を有するように形成されている。厚みT2は、固定子巻線51の径方向において互いに対向する外側面と内側面との間の最短距離である。幅W2は、固定子巻線51の多相(実施例では3相:U相、V相及びW相の3相あるいはX相、Y相及びZ相の3相)の一つとして機能する固定子巻線51の一部分の固定子巻線51の周方向の長さである。具体的には、図10において、周方向に隣り合う2つの導線群81が3相の内の一つである例えばU相として機能する場合、周方向において当該2つの導線群81の端から端までの幅W2である。そして、厚みT2は幅W2より小さくなっている。
As shown in FIG. 10, the stator winding (that is, the armature winding) 51 has a predetermined thickness T2 (hereinafter, also referred to as a first dimension) and a width W2 (hereinafter, also referred to as a second dimension). Is formed. The thickness T2 is the shortest distance between the outer surface and the inner surface facing each other in the radial direction of the stator winding 51. The width W2 is a fixed phase functioning as one of the polyphases of the stator winding 51 (three phases in the embodiment: three phases of U phase, V phase and W phase or three phases of X phase, Y phase and Z phase). This is the circumferential length of a part of the stator winding 51 of the slave winding 51. Specifically, in FIG. 10, when two conductor groups 81 adjacent to each other in the circumferential direction function as one of three phases, for example, a U-phase, the two conductor groups 81 in the circumferential direction end to end. Up to W2. The thickness T2 is smaller than the width W2.
なお、厚みT2は、幅W2内に存在する2つの導線群81の合計幅寸法より小さいことが好ましい。また、仮に固定子巻線51(より詳しくは導線82)の断面形状が真円形状や楕円形状、又は多角形形状である場合、固定子50の径方向に沿った導線82の断面のうち、その断面において固定子50の径方向の最大の長さをW12、同断面のうち固定子50の周方向の最大の長さをW11としても良い。
厚 み In addition, it is preferable that the thickness T2 is smaller than the total width dimension of the two conductive wire groups 81 existing in the width W2. If the cross-sectional shape of the stator winding 51 (more specifically, the conductive wire 82) is a perfect circle, an ellipse, or a polygon, among the cross-sections of the conductive wire 82 along the radial direction of the stator 50, In the section, the maximum length in the radial direction of the stator 50 may be W12, and in the section, the maximum length in the circumferential direction of the stator 50 may be W11.
図10及び図11に示すように、固定子巻線51は、封止材(モールド材)としての合成樹脂材からなる封止部材57により封止されている。つまり、固定子巻線51は、固定子コア52と共にモールド材によりモールドされている。なお樹脂は、非磁性体、又は非磁性体の均等物としてBs=0と看做すことができる。
As shown in FIGS. 10 and 11, the stator winding 51 is sealed with a sealing member 57 made of a synthetic resin material as a sealing material (mold material). That is, the stator winding 51 is molded by the molding material together with the stator core 52. The resin can be regarded as Bs = 0 as a non-magnetic material or an equivalent of the non-magnetic material.
図10の横断面で見れば、封止部材57は、各導線群81の間、すなわち間隙56に合成樹脂材が充填されて設けられており、封止部材57により、各導線群81の間に絶縁部材が介在する構成となっている。つまり、間隙56において封止部材57が絶縁部材として機能する。封止部材57は、固定子コア52の径方向外側において、各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設けられている。
10, the sealing member 57 is provided between the conductive wire groups 81, that is, the gap 56 is filled with a synthetic resin material. And an insulating member interposed therebetween. That is, the sealing member 57 functions as an insulating member in the gap 56. The sealing member 57 extends radially outside the stator core 52 in a range that includes all of the conductor groups 81, that is, in a range in which the radial thickness dimension is larger than the radial thickness dimension of each conductor group 81. Is provided.
また、図11の縦断面で見れば、封止部材57は、固定子巻線51のターン部84を含む範囲で設けられている。固定子巻線51の径方向内側では、固定子コア52の軸方向に対向する端面の少なくとも一部を含む範囲で封止部材57が設けられている。この場合、固定子巻線51は、各相の相巻線の端部、すなわちインバータ回路との接続端子を除く略全体で樹脂封止されている。
In addition, as viewed in the vertical cross section of FIG. 11, the sealing member 57 is provided in a range including the turn portion 84 of the stator winding 51. On the radially inner side of the stator winding 51, a sealing member 57 is provided in a range including at least a part of the end face of the stator core 52 facing the axial direction. In this case, the stator windings 51 are resin-sealed substantially at the ends of the phase windings of the respective phases, that is, substantially entirely except for connection terminals with the inverter circuit.
封止部材57が固定子コア52の端面を含む範囲で設けられた構成では、封止部材57により、固定子コア52の積層鋼板を軸方向内側に押さえ付けることができる。これにより、封止部材57を用いて、各鋼板の積層状態を保持することができる。なお、本実施形態では、固定子コア52の内周面を樹脂封止していないが、これに代えて、固定子コア52の内周面を含む固定子コア52の全体を樹脂封止する構成であってもよい。
In the configuration in which the sealing member 57 is provided in a range including the end face of the stator core 52, the sealing member 57 can press the laminated steel sheet of the stator core 52 inward in the axial direction. Thereby, the laminated state of each steel plate can be maintained using the sealing member 57. Although the inner peripheral surface of the stator core 52 is not resin-sealed in the present embodiment, the entire stator core 52 including the inner peripheral surface of the stator core 52 is resin-sealed instead. It may be a configuration.
回転電機10が車両動力源として使用される場合には、封止部材57が、高耐熱のフッ素樹脂や、エポキシ樹脂、PPS樹脂、PEEK樹脂、LCP樹脂、シリコン樹脂、PAI樹脂、PI樹脂等により構成されていることが好ましい。また、膨張差による割れ抑制の観点から線膨張係数を考えると、固定子巻線51の導線の外被膜と同じ材質であることが望ましい。すなわち、線膨張係数が、一般的に他樹脂の倍以上であるシリコン樹脂は望ましくは除外される。なお、電気車両の如く、燃焼を利用した機関を持たない電気製品においては、180℃程度の耐熱性を持つPPO樹脂やフェノール樹脂、FRP樹脂も候補となる。回転電機の周囲温度が100℃未満と見做せる分野においては、この限りではない。
When the rotating electric machine 10 is used as a vehicle power source, the sealing member 57 is made of a highly heat-resistant fluororesin, epoxy resin, PPS resin, PEEK resin, LCP resin, silicon resin, PAI resin, PI resin, or the like. Preferably, it is configured. Further, considering the coefficient of linear expansion from the viewpoint of suppressing cracking due to the difference in expansion, it is preferable that the material is the same as the outer coating of the conductor of the stator winding 51. That is, a silicone resin whose linear expansion coefficient is generally twice or more that of another resin is desirably excluded. In addition, in an electric product such as an electric vehicle that does not have an engine using combustion, a PPO resin, a phenol resin, and an FRP resin having a heat resistance of about 180 ° C. are also candidates. This is not the case in a field where the ambient temperature of the rotating electric machine can be regarded as being lower than 100 ° C.
回転電機10のトルクは磁束の大きさに比例する。ここで、固定子コアがティースを有している場合には、固定子での最大磁束量がティースでの飽和磁束密度に依存して制限されるが、固定子コアがティースを有していない場合には、固定子での最大磁束量が制限されない。そのため、固定子巻線51に対する通電電流を増加して回転電機10のトルク増加を図る上で、有利な構成となっている。
ト ル ク The torque of the rotating electric machine 10 is proportional to the magnitude of the magnetic flux. Here, when the stator core has teeth, the maximum magnetic flux amount at the stator is limited depending on the saturation magnetic flux density at the teeth, but the stator core does not have teeth. In such a case, the maximum magnetic flux amount at the stator is not limited. Therefore, the configuration is advantageous in increasing the current flowing through the stator winding 51 to increase the torque of the rotating electric machine 10.
本実施形態では、固定子50においてティースを無くした構造(スロットレス構造)を用いたことにより、固定子50のインダクタンスが低減される。具体的には、複数のティースにより仕切られた各スロットに導線が収容される一般的な回転電機の固定子ではインダクタンスが例えば1mH前後であるのに対し、本実施形態の固定子50ではインダクタンスが5~60μH程度に低減される。本実施形態では、アウタロータ構造の回転電機10としつつも、固定子50のインダクタンス低減により機械的時定数Tmを下げることが可能となっている。つまり、高トルク化を図りつつ、機械的時定数Tmの低減が可能となっている。なお、イナーシャをJ、インダクタンスをL、トルク定数をKt、逆起電力定数をKeとすると、機械的時定数Tmは、次式により算出される。
Tm=(J×L)/(Kt×Ke)
この場合、インダクタンスLの低減により機械的時定数Tmが低減されることが確認できる。 In the present embodiment, the use of a structure (slotless structure) without teeth in thestator 50 reduces the inductance of the stator 50. Specifically, the inductance of the stator of a general rotary electric machine in which a conductor is accommodated in each slot partitioned by a plurality of teeth is, for example, about 1 mH, whereas the inductance of the stator 50 of the present embodiment is about 1 mH. It is reduced to about 5 to 60 μH. In the present embodiment, the mechanical time constant Tm can be reduced by reducing the inductance of the stator 50 while using the rotating electric machine 10 having the outer rotor structure. That is, the mechanical time constant Tm can be reduced while increasing the torque. When the inertia is J, the inductance is L, the torque constant is Kt, and the back electromotive force constant is Ke, the mechanical time constant Tm is calculated by the following equation.
Tm = (J × L) / (Kt × Ke)
In this case, it can be confirmed that the mechanical time constant Tm is reduced by reducing the inductance L.
Tm=(J×L)/(Kt×Ke)
この場合、インダクタンスLの低減により機械的時定数Tmが低減されることが確認できる。 In the present embodiment, the use of a structure (slotless structure) without teeth in the
Tm = (J × L) / (Kt × Ke)
In this case, it can be confirmed that the mechanical time constant Tm is reduced by reducing the inductance L.
固定子コア52の径方向外側における各導線群81は、断面が扁平矩形状をなす複数の導線82が固定子コア52の径方向に並べて配置されて構成されている。各導線82は、横断面において「径方向寸法<周方向寸法」となる向きで配置されている。これにより、各導線群81において径方向の薄肉化が図られている。また、径方向の薄肉化を図るとともに、導体領域が、ティースが従来あった領域まで平らに延び、扁平導線領域構造となっている。これにより、薄肉化により断面積が小さくなることで懸念される導線の発熱量の増加を、周方向に扁平化して導体の断面積を稼ぐことで抑えている。なお、複数の導線を周方向に並べ、かつそれらを並列結線とする構成であっても、導体被膜分の導体断面積低下は起こるものの、同じ理屈に依る効果が得られる。なお、以下において、導線群81のそれぞれ、および導線82のそれぞれを、伝導部材(conductive member)とも言う。
各 Each conductor group 81 radially outside the stator core 52 is configured by arranging a plurality of conductors 82 having a flat rectangular cross section in a radial direction of the stator core 52. Each conductive wire 82 is arranged in a direction that satisfies “radial dimension <circumferential dimension” in a cross section. Thus, the thickness of each conductive wire group 81 in the radial direction is reduced. In addition, the thickness of the conductor region is reduced in the radial direction, and the conductor region extends flat to the region where the teeth are conventionally formed, so that the conductor region has a flat conductor region structure. As a result, an increase in the calorific value of the conductor, which may be caused by a reduction in the cross-sectional area due to the reduction in thickness, is suppressed by flattening in the circumferential direction to increase the cross-sectional area of the conductor. Note that, even in a configuration in which a plurality of conductors are arranged in the circumferential direction and are connected in parallel, an effect based on the same theory can be obtained, although the conductor cross-sectional area is reduced by the conductor coating. In the following, each of the conductive wire group 81 and each of the conductive wires 82 are also referred to as a conductive member.
スロットがないことから、本実施形態における固定子巻線51では、その周方向の一周における固定子巻線51が占める導体領域を、固定子巻線51が存在しない導体非占有領域より大きく設計することができる。なお、従来の車両用回転電機は、固定子巻線の周方向の一周における導体領域/導体非占有領域は1以下であるのが当然であった。一方、本実施形態では、導体領域が導体非占有領域と同等又は導体領域が導体非占有領域よりも大きくなるようにして、各導線群81が設けられている。ここで、図10に示すように、周方向において導線82(つまり、後述する直線部83)が配置された導線領域をWA、隣り合う導線82の間となる導線間領域をWBとすると、導線領域WAは、導線間領域WBより周方向において大きいものとなっている。
Since there is no slot, in the stator winding 51 of the present embodiment, the conductor area occupied by the stator winding 51 in one circumferential direction is designed to be larger than the conductor non-occupied area where the stator winding 51 does not exist. be able to. In the conventional rotating electrical machine for a vehicle, it is natural that the conductor region / conductor non-occupied region in one circumferential direction of the stator winding is 1 or less. On the other hand, in the present embodiment, each conductor group 81 is provided such that the conductor region is equal to the conductor non-occupied region or the conductor region is larger than the conductor non-occupied region. Here, as shown in FIG. 10, assuming that a conductor region in which the conductor 82 (that is, a straight line portion 83 described later) is disposed in the circumferential direction is WA and a region between conductors between adjacent conductors 82 is WB, The area WA is larger in the circumferential direction than the inter-wire area WB.
固定子巻線51における導線群81の構成として、その導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。すなわち、導線群81が径方向に2層の導線82よりなり、かつ1磁極内に1相につき周方向に2つの導線群81が設けられる構成では、各導線82の径方向の厚さ寸法をTc、各導線82の周方向の幅寸法をWcとした場合に、「Tc×2<Wc×2」となるように構成されている。なお、他の構成として、導線群81が2層の導線82よりなり、かつ1磁極内に1相につき周方向に1つの導線群81が設けられる構成では、「Tc×2<Wc」の関係となるように構成されるとよい。要するに、固定子巻線51において周方向に所定間隔で配置される導線部(導線群81)は、その径方向の厚さ寸法が、1磁極内における1相分の周方向の幅寸法よりも小さいものとなっている。
構成 As the configuration of the conductor group 81 in the stator winding 51, the radial thickness of the conductor group 81 is smaller than the circumferential width of one phase in one magnetic pole. That is, in a configuration in which the conductor group 81 is formed of two layers of conductors 82 in the radial direction and two conductor groups 81 are provided in the circumferential direction for one phase in one magnetic pole, the radial thickness of each conductor 82 is reduced. Tc, when the width of the conductor 82 in the circumferential direction is Wc, the configuration is such that “Tc × 2 <Wc × 2”. As another configuration, in a configuration in which the conductor group 81 is formed of two layers of conductors 82 and one conductor group 81 is provided in one magnetic pole in the circumferential direction for one phase, the relation of “Tc × 2 <Wc” is satisfied. It is good to be constituted so that it may become. In short, the conductor portions (conductor group 81) arranged at predetermined intervals in the circumferential direction in the stator winding 51 have a radial thickness that is larger than a circumferential width of one phase in one magnetic pole. It is small.
言い換えると、1本1本の各導線82は、径方向の厚さ寸法Tcが周方向の幅寸法Wcよりも小さいとよい。またさらに、径方向に2層の導線82よりなる導線群81の径方向の厚さ寸法(2Tc)、すなわち導線群81の径方向の厚さ寸法(2Tc)が周方向の幅寸法Wcよりも小さいとよい。
In other words, it is preferable that each conductor 82 has a thickness Tc in the radial direction smaller than a width Wc in the circumferential direction. Furthermore, the thickness (2Tc) in the radial direction of the wire group 81 composed of two layers of wires 82 in the radial direction, that is, the radial thickness (2Tc) of the wire group 81 is larger than the width Wc in the circumferential direction. Good to be small.
回転電機10のトルクは、導線群81の固定子コア52の径方向の厚さに略反比例する。この点、固定子コア52の径方向外側において導線群81の厚さを薄くしたことにより、回転電機10のトルク増加を図る上で有利な構成となっている。その理由としては、回転子40の磁石ユニット42から固定子コア52までの距離(つまり鉄の無い部分の距離)を小さくして磁気抵抗を下げることができるためである。これによれば、永久磁石による固定子コア52の鎖交磁束を大きくすることができ、トルクを増強することができる。
ト ル ク The torque of the rotating electric machine 10 is substantially inversely proportional to the radial thickness of the stator core 52 of the conductor group 81. In this regard, by reducing the thickness of the conductive wire group 81 on the radially outer side of the stator core 52, the configuration is advantageous in increasing the torque of the rotating electric machine 10. The reason is that the distance from the magnet unit 42 of the rotor 40 to the stator core 52 (that is, the distance of the portion without iron) can be reduced to reduce the magnetic resistance. According to this, the flux linkage of the stator core 52 by the permanent magnet can be increased, and the torque can be increased.
また、導線群81の厚さを薄くしたことにより、導線群81から磁束が漏れても固定子コア52に回収されやすくなり、磁束がトルク向上のために有効に利用されずに外部に漏れることを抑制することができる。つまり、磁束漏れにより磁力が低下することを抑制でき、永久磁石による固定子コア52の鎖交磁束を大きくして、トルクを増強することができる。
In addition, since the thickness of the conductor group 81 is reduced, even if the magnetic flux leaks from the conductor group 81, it is easily collected by the stator core 52, and the magnetic flux leaks to the outside without being effectively used for improving the torque. Can be suppressed. That is, it is possible to suppress a decrease in magnetic force due to magnetic flux leakage, to increase the linkage magnetic flux of the stator core 52 by the permanent magnet, and to increase the torque.
導線82(conductor)は、導体(conductor body)82aの表面が絶縁被膜82bにより被覆された被覆導線よりなり、径方向に互いに重なる導線82同士の間、及び導線82と固定子コア52との間においてそれぞれ絶縁性が確保されている。この絶縁被膜82bは、後述する素線86が自己融着被覆線であるならその被膜、又は、素線86の被膜とは別に重ねられた絶縁部材で構成されている。なお、導線82により構成される各相巻線は、接続のための露出部分を除き、絶縁被膜82bによる絶縁性が保持されるものとなっている。露出部分としては、例えば、入出力端子部や、星形結線とする場合の中性点部分である。導線群81では、樹脂固着や自己融着被覆線を用いて、径方向に隣り合う各導線82が相互に固着されている。これにより、導線82同士が擦れ合うことによる絶縁破壊や、振動、音が抑制される。
The conductor 82 (conductor) is made of a covered conductor in which the surface of a conductor (conductor body) 82a is covered with an insulating coating 82b, and between the conductors 82 that overlap each other in the radial direction, and between the conductor 82 and the stator core 52. In each case, insulation is ensured. The insulating coating 82b is formed of an insulating member that is laminated separately from the coating of the element wire 86 described later if the element wire 86 is a self-fused coated wire or the coating of the element wire 86. In addition, each of the phase windings constituted by the conductive wires 82 has an insulating property by the insulating coating 82b except for an exposed portion for connection. The exposed portion is, for example, an input / output terminal portion or a neutral point portion in the case of a star connection. In the conductive wire group 81, the conductive wires 82 adjacent to each other in the radial direction are fixed to each other by using a resin fixing or a self-sealing coated wire. This suppresses dielectric breakdown, vibration, and sound due to the rubbing of the conductive wires 82.
本実施形態では、導体82aが複数の素線(wire)86の集合体として構成されている。具体的には、図13に示すように、導体82aは、複数の素線86を撚ることで撚糸状に形成されている。また、図14に示すように、素線86は、細い繊維状の導電材87を束ねた複合体として構成されている。例えば、素線86はCNT(カーボンナノチューブ)繊維の複合体であり、CNT繊維として、炭素の少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維が用いられている。炭素系微細繊維としては、CNT繊維以外に、気相成長法炭素繊維(VGCF)等を用いることができるが、CNT繊維を用いることが好ましい。なお、素線86の表面は、エナメルなどの高分子絶縁層で覆われている。また、素線86の表面は、ポリイミドの被膜やアミドイミドの被膜からなる、いわゆるエナメル被膜で覆われていることが好ましい。
In the present embodiment, the conductor 82a is configured as an aggregate of a plurality of wires 86. Specifically, as shown in FIG. 13, the conductor 82a is formed in a twisted yarn shape by twisting a plurality of strands 86. Further, as shown in FIG. 14, the strand 86 is configured as a composite in which thin fibrous conductive materials 87 are bundled. For example, the strand 86 is a composite of CNT (carbon nanotube) fibers, and as the CNT fibers, fibers including boron-containing fine fibers in which at least a part of carbon is replaced by boron are used. As the carbon-based fine fiber, a vapor grown carbon fiber (VGCF) or the like can be used in addition to the CNT fiber, but it is preferable to use the CNT fiber. The surface of the wire 86 is covered with a polymer insulating layer such as enamel. The surface of the wire 86 is preferably covered with a so-called enamel coating made of a polyimide coating or an amide imide coating.
導線82は、固定子巻線51においてn相の巻線を構成する。そして導線82(すなわち、導体82a)の各々の素線86は、互いに接触状態で隣接している。導線82は、巻線導体が、複数の素線86が撚られて形成される部位を、相内の1か所以上に持つとともに、撚られた素線86間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。言い換えると、隣接する各2つの素線86はその隣接する方向において第1電気抵抗率を有し、素線86の各々はその長さ方向において第2電気抵抗率を有する場合、第1電気抵抗率は第2電気抵抗率より大きい値になっている。なお、導線82が複数の素線86により形成されるとともに、第1電気抵抗率が極めて高い絶縁部材により複数の素線86を覆う素線集合体となっていても良い。また、導線82の導体82aは、撚り合わされた複数の素線86により構成されている。
The conductor 82 forms an n-phase winding in the stator winding 51. The strands 86 of the conductor 82 (that is, the conductor 82a) are adjacent to each other in a contact state. The conducting wire 82 has, at one or more locations in the phase, a portion where the winding conductor is formed by twisting the plurality of strands 86, and the resistance between the twisted strands 86 is the strand 86 itself. The wire aggregate is larger than the resistance value. In other words, each two adjacent wires 86 have a first electrical resistivity in the adjacent direction, and if each of the wires 86 has a second electrical resistivity in its length direction, the first electrical resistivity The ratio has a value larger than the second electric resistivity. In addition, the conductor 82 may be formed by a plurality of strands 86, and may be a strand aggregate that covers the plurality of strands 86 with an insulating member having an extremely high first electrical resistivity. The conductor 82a of the conductor 82 is constituted by a plurality of twisted strands 86.
上記の導体82aでは、複数の素線86が撚り合わされて構成されているため、各素線86での渦電流の発生が抑えられ、導体82aにおける渦電流の低減を図ることができる。また、各素線86が捻られていることで、1本の素線86において磁界の印加方向が互いに逆になる部位が生じて逆起電圧が相殺される。そのため、やはり渦電流の低減を図ることができる。特に、素線86を繊維状の導電材87により構成することで、細線化することと捻り回数を格段に増やすこととが可能になり、渦電流をより好適に低減することができる。
た め Since the plurality of strands 86 are twisted in the conductor 82a, generation of eddy current in each strand 86 is suppressed, and eddy current in the conductor 82a can be reduced. Further, since the strands 86 are twisted, portions where directions of applying the magnetic field are opposite to each other are generated in one strand 86, and the back electromotive voltage is canceled. Therefore, the eddy current can be reduced. In particular, by forming the wire 86 from the fibrous conductive material 87, it is possible to make the wire thinner and to remarkably increase the number of twists, so that the eddy current can be more suitably reduced.
なお、ここでいう素線86同士の絶縁方法は、前述の高分子絶縁膜に限定されず、接触抵抗を利用し撚られた素線86間で電流を流れにくくする方法であってもよい。すなわち撚られた素線86間の抵抗値が、素線86そのものの抵抗値よりも大きい関係になっていれば、抵抗値の差に起因して発生する電位差により、上記効果を得ることができる。たとえば、素線86を作成する製造設備と、回転電機10の固定子50(電機子)を作成する製造設備とを別の非連続の設備として用いることで、移動時間や作業間隔などから素線86が酸化し、接触抵抗を増やすことができ、好適である。
The method of insulating the wires 86 is not limited to the above-described polymer insulating film, but may be a method of making the current less likely to flow between the twisted wires 86 using contact resistance. That is, if the resistance value between the twisted strands 86 is larger than the resistance value of the strand 86 itself, the above effect can be obtained by the potential difference generated due to the difference in the resistance value. . For example, by using the manufacturing facility for producing the strand 86 and the production facility for producing the stator 50 (armature) of the rotary electric machine 10 as separate non-continuous facilities, the travel time, the working interval, and the like make it possible to use the strand. 86 is oxidized and the contact resistance can be increased, which is preferable.
上述のとおり導線82は、断面が扁平矩形状をなし、径方向に複数並べて配置されるものとなっており、例えば融着層と絶縁層とを備えた自己融着被覆線で被覆された複数の素線86を撚った状態で集合させ、その融着層同士を融着させることで形状を維持している。なお、融着層を備えない素線や自己融着被覆線の素線を撚った状態で合成樹脂等により所望の形状に固めて成形してもよい。導線82における絶縁被膜82bの厚さを例えば80μm~100μmとし、一般に使用される導線の被膜厚さ(5~40μm)よりも厚肉とした場合、導線82と固定子コア52との間に絶縁紙等を介在させることをしなくても、これら両者の間の絶縁性が確保することができる。
As described above, the conducting wire 82 has a flat rectangular shape in cross section, and is arranged in a plurality in the radial direction. For example, the conducting wire 82 is covered with a self-sealing covered wire including a fusion layer and an insulating layer. Are assembled in a twisted state, and the fusion layers are fused together to maintain the shape. In addition, you may shape | mold in the state which twisted the strand which does not have a fusion | melting layer, or the strand of a self-fusion | bonding coating wire with a synthetic resin etc. to a desired shape. If the thickness of the insulating film 82b on the conductor 82 is, for example, 80 μm to 100 μm, and is thicker than the thickness of a commonly used conductor (5 to 40 μm), the insulation between the conductor 82 and the stator core 52 is formed. Even without paper or the like, the insulation between the two can be ensured.
また、絶縁被膜82bは、素線86の絶縁層よりも高い絶縁性能を有し、相間を絶縁することができるように構成されていることが望ましい。例えば、素線86の高分子絶縁層の厚さを例えば5μm程度にした場合、導線82の絶縁被膜82bの厚さを80μm~100μm程度にして、相間の絶縁を好適に実施できるようにすることが望ましい。
絶 縁 Further, it is desirable that the insulating coating 82b has a higher insulating performance than the insulating layer of the strand 86, and is configured to be able to insulate between the phases. For example, when the thickness of the polymer insulating layer of the strand 86 is, for example, about 5 μm, the thickness of the insulating coating 82b of the conducting wire 82 is about 80 to 100 μm so that the interphase insulation can be suitably performed. Is desirable.
また、導線82は、複数の素線86が撚られることなく束ねられている構成であってもよい。つまり、導線82は、その全長において複数の素線86が撚られている構成、全長のうち一部で複数の素線86が撚られている構成、全長において複数の素線86が撚られることなく束ねられている構成のいずれかであればよい。まとめると、導線部を構成する各導線82は、複数の素線86が束ねられているとともに、束ねられた素線間の抵抗値が素線86そのものの抵抗値よりも大きい素線集合体となっている。
The conductor 82 may have a configuration in which a plurality of strands 86 are bundled without being twisted. In other words, the conductor 82 has a configuration in which a plurality of strands 86 are twisted in the entire length, a configuration in which a plurality of strands 86 are twisted in a part of the entire length, and a plurality of strands 86 in the entire length. Instead, any one of the bundled configurations may be used. In summary, each of the conductors 82 constituting the conductor portion includes a plurality of strands 86 bundled together, and a wire aggregate in which the resistance value between the bundled strands is larger than the resistance value of the strand 86 itself. Has become.
各導線82は、固定子巻線51の周方向に所定の配置パターンで配置されるように折り曲げ形成されており、これにより、固定子巻線51として相ごとの相巻線が形成されている。図12に示すように、固定子巻線51では、各導線82のうち軸方向に直線状に延びる直線部83によりコイルサイド部53が形成され、軸方向においてコイルサイド部53よりも両外側に突出するターン部84によりコイルエンド54,55が形成されている。各導線82は、直線部83とターン部84とが交互に繰り返されることにより、波巻状の一連の導線として構成されている。直線部83は、磁石ユニット42に対して径方向に対向する位置に配置されており、磁石ユニット42の軸方向外側となる位置において所定間隔を隔てて配置される同相の直線部83同士が、ターン部84により互いに接続されている。なお、直線部83が「磁石対向部」に相当する。
Each conductive wire 82 is bent and formed so as to be arranged in a predetermined arrangement pattern in the circumferential direction of the stator winding 51, whereby a phase winding for each phase is formed as the stator winding 51. . As shown in FIG. 12, in the stator winding 51, a coil side portion 53 is formed by a straight portion 83 extending linearly in the axial direction of each of the conductors 82, and is located on both outer sides of the coil side portion 53 in the axial direction. The coil ends 54 and 55 are formed by the projecting turn portions 84. Each conductor 82 is configured as a series of corrugated conductors by alternately repeating a straight portion 83 and a turn portion 84. The linear portions 83 are disposed at positions radially opposed to the magnet unit 42, and the linear portions 83 of the same phase, which are arranged at predetermined intervals at a position outside the magnet unit 42 in the axial direction, They are connected to each other by a turn part 84. Note that the straight portion 83 corresponds to a “magnet facing portion”.
本実施形態では、固定子巻線51が分布巻きにより円環状に巻回形成されている。この場合、コイルサイド部53では、相ごとに、磁石ユニット42の1極対に対応する間隔で周方向に直線部83が配置され、コイルエンド54,55では、相ごとの各直線部83が、略V字状に形成されたターン部84により互いに接続されている。1極対に対応して対となる各直線部83は、それぞれ電流の向きが互いに逆になるものとなっている。また、一方のコイルエンド54と他方のコイルエンド55とでは、ターン部84により接続される一対の直線部83の組み合わせがそれぞれ相違しており、そのコイルエンド54,55での接続が周方向に繰り返されることにより、固定子巻線51が略円筒状に形成されている。
In the present embodiment, the stator winding 51 is formed in an annular shape by distributed winding. In this case, in the coil side portion 53, linear portions 83 are arranged in the circumferential direction at intervals corresponding to one pole pair of the magnet unit 42 for each phase, and in the coil ends 54 and 55, the linear portions 83 for each phase are arranged. , Are connected to each other by a turn portion 84 formed in a substantially V shape. The straight portions 83 forming a pair corresponding to one pole pair have current directions opposite to each other. Also, the combination of the pair of linear portions 83 connected by the turn portion 84 is different between the one coil end 54 and the other coil end 55, and the connection at the coil ends 54, 55 is made in the circumferential direction. By repeating, the stator winding 51 is formed in a substantially cylindrical shape.
より具体的には、固定子巻線51は、各相2対ずつの導線82を用いて相ごとの巻線を構成しており、固定子巻線51のうち一方の3相巻線(U相、V相、W相)と他方の3相巻線(X相、Y相、Z相)とが径方向内外の2層に設けられるものとなっている。この場合、固定子巻線51の相数をS(実施例の場合は6)、導線82の一相あたりの数をmとすれば、極対ごとに2×S×m=2Sm個の導線82が形成されることになる。本実施形態では、相数Sが6、数mが4であり、8極対(16極)の回転電機であることから、6×4×8=192の導線82が固定子コア52の周方向に配置されている。
More specifically, the stator winding 51 constitutes a winding for each phase using two pairs of conducting wires 82 for each phase, and one of the three windings (U Phase, V phase, W phase) and the other three-phase winding (X phase, Y phase, Z phase) are provided in two layers inside and outside in the radial direction. In this case, if the number of phases of the stator winding 51 is S (six in the embodiment) and the number of conductors 82 per phase is m, 2 × S × m = 2Sm conductors for each pole pair 82 will be formed. In the present embodiment, since the number of phases S is 6, the number m is 4, and the rotating electric machine has 8 pole pairs (16 poles), 6 × 4 × 8 = 192 conductors 82 are formed around the stator core 52. It is arranged in the direction.
図12に示す固定子巻線51では、コイルサイド部53において、径方向に隣接する2層で直線部83が重ねて配置されるとともに、コイルエンド54,55において、径方向に重なる各直線部83から、互いに周方向逆となる向きでターン部84が周方向に延びる構成となっている。つまり、径方向に隣り合う各導線82では、固定子巻線51の端部を除き、ターン部84の向きが互いに逆となっている。
In the stator winding 51 shown in FIG. 12, in the coil side portion 53, the linear portions 83 are arranged so as to overlap in two layers adjacent in the radial direction, and at the coil ends 54 and 55, the linear portions 83 which overlap in the radial direction are arranged. From 83, the turn portion 84 is configured to extend in the circumferential direction in directions opposite to each other in the circumferential direction. In other words, in each of the radially adjacent conductors 82, the directions of the turn portions 84 are opposite to each other except for the end of the stator winding 51.
ここで、固定子巻線51における導線82の巻回構造を具体的に説明する。本実施形態では、波巻にて形成された複数の導線82を、径方向に隣接する複数層(例えば2層)に重ねて設ける構成としている。図15(a)、図15(b)は、n層目における各導線82の形態を示す図であり、図15(a)には、固定子巻線51の側方から見た導線82の形状を示し、図15(b)には、固定子巻線51の軸方向一側から見た導線82の形状を示している。なお、図15(a)、図15(b)では、導線群81が配置される位置をそれぞれD1,D2,D3,…と示している。また、説明の便宜上、3本の導線82のみを示しており、それを第1導線82_A、第2導線82_B、第3導線82_Cとしている。
Here, the winding structure of the conductor wire 82 in the stator winding 51 will be specifically described. In the present embodiment, a plurality of conducting wires 82 formed by a wave winding are provided so as to overlap with a plurality of layers (for example, two layers) adjacent in the radial direction. FIGS. 15A and 15B are diagrams showing the form of each conductor 82 in the n-th layer. FIG. 15A shows the shape of each conductor 82 viewed from the side of the stator winding 51. FIG. 15B shows the shape of the conductive wire 82 as viewed from one axial side of the stator winding 51. 15 (a) and FIG. 15 (b), the positions where the conductor groups 81 are arranged are indicated as D1, D2, D3,. Also, for convenience of explanation, only three conductive wires 82 are shown, which are a first conductive wire 82_A, a second conductive wire 82_B, and a third conductive wire 82_C.
各導線82_A~82_Cでは、直線部83が、いずれもn層目の位置、すなわち径方向において同じ位置に配置され、周方向に6位置(3×m対分)ずつ離れた直線部83同士がターン部84により互いに接続されている。換言すると、各導線82_A~82_Cでは、いずれも回転子40の軸心を中心とする同一の円上において、固定子巻線51の周方向に隣接して並ぶ7個の直線部83の両端の二つが一つのターン部84により互いに接続されている。例えば第1導線82_Aでは、一対の直線部83がD1,D7にそれぞれ配置され、その一対の直線部83同士が、逆V字状のターン部84により接続されている。また、他の導線82_B,82_Cは、同じn層目において周方向の位置を1つずつずらしてそれぞれ配置されている。この場合、各導線82_A~82_Cは、いずれも同じ層に配置されるため、ターン部84が互いに干渉することが考えられる。そのため本実施形態では、各導線82_A~82_Cのターン部84に、その一部を径方向にオフセットした干渉回避部を形成することとしている。
In each of the conductors 82_A to 82_C, the straight portions 83 are arranged at the position of the nth layer, that is, at the same position in the radial direction, and the straight portions 83 separated from each other by six positions (3 × m pairs) in the circumferential direction. They are connected to each other by a turn part 84. In other words, in each of the conductors 82_A to 82_C, on both ends of the seven linear portions 83 adjacent to each other in the circumferential direction of the stator winding 51 on the same circle centered on the axis of the rotor 40. The two are connected to each other by one turn 84. For example, in the first conductive wire 82 </ b> _A, a pair of straight portions 83 are arranged at D <b> 1 and D <b> 7, respectively, and the pair of straight portions 83 are connected by an inverted V-shaped turn portion 84. The other conductors 82_B and 82_C are arranged in the same n-th layer with their circumferential positions shifted one by one. In this case, since each of the conductive wires 82_A to 82_C is disposed in the same layer, the turn portions 84 may interfere with each other. For this reason, in the present embodiment, an interference avoiding portion in which a part thereof is radially offset is formed in the turn portion 84 of each of the conductive wires 82_A to 82_C.
具体的には、各導線82_A~82_Cのターン部84は、同一の円(第1の円)上で周方向に延びる部分である1つの傾斜部84aと、傾斜部84aからその同一の円よりも径方向内側(図15(b)において上側)にシフトし、別の円(第2の円)に達する頂部84b、第2の円上で周方向に延びる傾斜部84c及び第1の円から第2の円に戻る戻り部84dとを有している。頂部84b、傾斜部84c及び戻り部84dが干渉回避部に相当する。なお、傾斜部84cは、傾斜部84aに対して径方向外側にシフトする構成であってもよい。
Specifically, the turn portion 84 of each of the conductors 82_A to 82_C is formed by a single inclined portion 84a which is a portion extending in the circumferential direction on the same circle (first circle), and the same circle from the inclined portion 84a. Also shifts radially inward (upward in FIG. 15 (b)) to reach another circle (second circle), the top portion 84b, the inclined portion 84c extending in the circumferential direction on the second circle, and the first circle. And a return portion 84d that returns to the second circle. The top portion 84b, the inclined portion 84c, and the return portion 84d correspond to an interference avoiding portion. Note that the inclined portion 84c may be configured to shift radially outward with respect to the inclined portion 84a.
つまり、各導線82_A~82_Cのターン部84は、周方向の中央位置である頂部84bを挟んでその両側に、一方側の傾斜部84aと他方側の傾斜部84cとを有しており、それら各傾斜部84a,84cの径方向の位置(図15(a)では紙面前後方向の位置、図15(b)では上下方向の位置)が互いに相違するものとなっている。例えば第1導線82_Aのターン部84は、n層のD1位置を始点位置として周方向に沿って延び、周方向の中央位置である頂部84bで径方向(例えば径方向内側)に曲がった後、周方向に再度曲がることで、再び周方向に沿って延び、さらに戻り部84dで再び径方向(例えば径方向外側)に曲がることで、終点位置であるn層のD7位置に達する構成となっている。
That is, the turn portion 84 of each of the conductors 82_A to 82_C has a slope portion 84a on one side and a slope portion 84c on the other side on both sides of the top portion 84b, which is a central position in the circumferential direction. The radial positions of the inclined portions 84a and 84c (positions in the front-rear direction in FIG. 15A, positions in the up-down direction in FIG. 15B) are different from each other. For example, the turn portion 84 of the first conductive wire 82 </ b> _A extends in the circumferential direction from the position D <b> 1 of the n-layer as a starting point, and bends in the radial direction (for example, radially inward) at the top portion 84 b which is the central position in the circumferential direction. By turning again in the circumferential direction, it extends again in the circumferential direction, and further turns again in the radial direction (for example, radially outward) at the return portion 84d, thereby reaching the D7 position of the n-layer, which is the end point position. I have.
上記構成によれば、導線82_A~82_Cでは、一方の各傾斜部84aが、上から第1導線82_A→第2導線82_B→第3導線82_Cの順に上下に並ぶとともに、頂部84bで各導線82_A~82_Cの上下が入れ替わり、他方の各傾斜部84cが、上から第3導線82_C→第2導線82_B→第1導線82_Aの順に上下に並ぶ構成となっている。そのため、各導線82_A~82_Cが互いに干渉することなく周方向に配置できるようになっている。
According to the above configuration, in each of the conductors 82_A to 82_C, one of the inclined portions 84a is vertically arranged in order from the top in the order of the first conductor 82_A → the second conductor 82_B → the third conductor 82_C, and each of the conductors 82_A ~ 82_C is turned upside down, and the other inclined portions 84c are arranged vertically from the top in the order of the third conductor 82_C → the second conductor 82_B → the first conductor 82_A. Therefore, the conductors 82_A to 82_C can be arranged in the circumferential direction without interfering with each other.
ここで、複数の導線82を径方向に重ねて導線群81とする構成において、複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とが、それら各直線部83同士よりも径方向に離して配置されているとよい。また、ターン部84の端部、すなわち直線部83との境界部付近で、複数層の導線82が径方向の同じ側に曲げられる場合に、その隣り合う層の導線82同士の干渉により絶縁性が損なわれることが生じないようにするとよい。
Here, in a configuration in which a plurality of conductive wires 82 are superposed in the radial direction to form a conductive wire group 81, a turn portion 84 connected to the radially inner straight portion 83 of the plurality of linear portions 83 and a radially outer straight portion 83 are formed. It is preferable that the turn portions 84 connected to the straight portions 83 are arranged further apart from each other in the radial direction than the straight portions 83. Further, when a plurality of layers of the conductive wires 82 are bent to the same side in the radial direction near the end of the turn portion 84, that is, near the boundary with the linear portion 83, the insulation between the conductive wires 82 of the adjacent layers is caused by the interference. Should not be impaired.
例えば図15(a)、図15(b)のD7~D9では、径方向に重なる各導線82が、ターン部84の戻り部84dでそれぞれ径方向に曲げられる。この場合、図16に示すように、n層目の導線82とn+1層目の導線82とで、曲がり部の曲率半径を相違させるとよい。具体的には、径方向内側(n層目)の導線82の曲率半径R1を、径方向外側(n+1層目)の導線82の曲率半径R2よりも小さくする。
For example, in D7 to D9 of FIGS. 15A and 15B, the conductive wires 82 overlapping in the radial direction are each bent in the radial direction at the return portion 84d of the turn portion 84. In this case, as shown in FIG. 16, the radius of curvature of the bent portion may be different between the conductor 82 of the n-th layer and the conductor 82 of the (n + 1) -th layer. Specifically, the radius of curvature R1 of the conductive wire 82 on the radially inner side (nth layer) is made smaller than the radius of curvature R2 of the conductive wire 82 on the radially outer side (n + 1th layer).
また、n層目の導線82とn+1層目の導線82とで、径方向のシフト量を相違させるとよい。具体的には、径方向内側(n層目)の導線82のシフト量S1を、径方向外側(n+1層目)の導線82のシフト量S2よりも大きくする。
シ フ ト Further, it is preferable that the amount of shift in the radial direction be different between the n-th conductive wire 82 and the (n + 1) -th conductive wire 82. Specifically, the shift amount S1 of the radially inner (n-th layer) conductive wire 82 is made larger than the shift amount S2 of the radially outer (n + 1-th layer) conductive wire 82.
上記構成により、径方向に重なる各導線82が同じ向きに曲げられる場合であっても、各導線82の相互干渉を好適に回避することができる。これにより、良好な絶縁性が得られることとなる。
According to the above configuration, even when the conductive wires 82 overlapping in the radial direction are bent in the same direction, mutual interference between the conductive wires 82 can be preferably avoided. Thereby, good insulating properties are obtained.
次に、回転子40における磁石ユニット42の構造について説明する。本実施形態では、磁石ユニット42が永久磁石からなり、残留磁束密度Br=1.0[T]、固有保磁力Hcj=400[kA/m]以上のものを想定している。要は、本実施形態で用いる永久磁石は、粒状の磁性材料を焼結して成型固化した焼結磁石であり、J-H曲線上の固有保磁力Hcjは400[kA/m]以上であり、かつ残留磁束密度Brは1.0[T]以上である。5000~10000[AT]が相間励磁により掛かる場合、1極対、すなわちN極とS極の磁気的長さ、言い換えれば、N極とS極間の磁束が流れる経路のうち、磁石内を通る長さが25[mm]の永久磁石を使えば、Hcj=10000[A]となり、減磁をしないことが伺える。
Next, the structure of the magnet unit 42 in the rotor 40 will be described. In the present embodiment, it is assumed that the magnet unit 42 is made of a permanent magnet and has a residual magnetic flux density Br = 1.0 [T] and a specific coercive force Hcj = 400 [kA / m] or more. In short, the permanent magnet used in this embodiment is a sintered magnet obtained by sintering and solidifying a granular magnetic material, and has a specific coercive force Hcj on the JH curve of 400 [kA / m] or more. And the residual magnetic flux density Br is 1.0 [T] or more. When 5,000 to 10,000 [AT] is applied by the inter-phase excitation, the magnetic length of one pole pair, that is, the north pole and the south pole, in other words, the magnetic flux between the north pole and the south pole flows through the magnet. If a permanent magnet having a length of 25 [mm] is used, Hcj = 10000 [A], which indicates that demagnetization does not occur.
また換言すれば、磁石ユニット42は、飽和磁束密度Jsが1.2[T]以上で、かつ結晶粒径が10[μm]以下であり、配向率をαとした場合にJs×αが1.0[T]以上であるものとなっている。
In other words, the magnet unit 42 has a saturation magnetic flux density Js of 1.2 [T] or more, a crystal grain size of 10 [μm] or less, and Js × α is 1 when the orientation ratio is α. 0.0 [T] or more.
以下に磁石ユニット42について補足する。磁石ユニット42(磁石)は、2.15[T]≧Js≧1.2[T]であることが特徴である。言い換えれば、磁石ユニット42に用いられる磁石として、NdFe11TiN、Nd2Fe14B、Sm2Fe17N3、L10型結晶を有するFeNi磁石などが挙げられる。なお、通例サマコバと言われるSmCo5や、FePt、Dy2Fe14B、CoPtなどの構成は使うことができない。注意としては、同型の化合物、例えばDy2Fe14BとNd2Fe14Bのように、一般的に、重希土類であるディスプロシウムを利用して、ネオジウムの高いJs特性を少しだけ失いながらも、Dyの持つ高い保磁力を持たせた磁石でも2.15[T]≧Js≧1.2[T]を満たす場合があり、この場合も採用可能である。このような場合は、例えば([Nd1-xDyx]2Fe14B)と呼ぶこととする。更に、異なる組成の2種類以上の磁石、例えば、FeNiプラスSm2Fe17N3というように2種類以上の材料からなる磁石でも、達成が可能であるし、例えば、Js=1.6[T]と、Jsに余裕のあるNd2Fe14Bの磁石に、Js<1[T]の、例えばDy2Fe14Bを少量混ぜ、保磁力を増加させた混合磁石などでも達成が可能である。
(4) The magnet unit 42 is supplemented below. The magnet unit 42 (magnet) is characterized in that 2.15 [T] ≧ Js ≧ 1.2 [T]. In other words, examples of the magnet used for the magnet unit 42 include NdFe11TiN, Nd2Fe14B, Sm2Fe17N3, and a FeNi magnet having an L10 type crystal. It should be noted that configurations such as SmCo5, FePt, Dy2Fe14B, and CoPt, which are generally called samakoba, cannot be used. It should be noted that Dy2Fe14B and Nd2Fe14B generally use heavy rare earth dysprosium like Dy2Fe14B and Dy2Fe14B. May satisfy 2.15 [T] ≧ Js ≧ 1.2 [T], and this case is also applicable. In such a case, it is referred to as ([Nd1-xDyx] 2Fe14B), for example. Furthermore, two or more magnets having different compositions, for example, magnets made of two or more materials such as FeNi plus Sm2Fe17N3 can be achieved. For example, Js = 1.6 [T] and Js This can be achieved even by a mixed magnet having a coercive force increased by mixing a small amount of Js <1 [T], for example, Dy2Fe14B, with a marginal Nd2Fe14B magnet.
また、人間の活動範囲外の温度、例えば砂漠の温度を超える60℃以上で動作されるような回転電機、例えば、夏においておけば車中温度が80℃近くなる車両用モータ用途などにおいては、特に温度依存係数の小さい、FeNi、Sm2Fe17N3の成分を含むことが望ましい。これは、人間の活動範囲内である北欧の-40℃近い温度状態から、先述の砂漠温度を超える60℃以上、又はコイルエナメル被膜の耐熱温度180~240℃程度までのモータ動作において温度依存係数によって大きくモータ特性を異ならせるため、同一のモータドライバでの最適制御などが困難となるためである。前記L10型結晶を有するFeNi、又はSm2Fe17N3などを用いれば、Nd2Fe14Bと比べ、半分以下の温度依存係数を所持しているその特性から、モータドライバの負担を好適に減らすことができる。
In addition, in a rotating electric machine operated at a temperature outside the range of human activity, for example, 60 ° C. or more, which is higher than the temperature in the desert, for example, in a motor application for a vehicle in which the temperature in a vehicle is close to 80 ° C. in summer, In particular, it is desirable to include components of FeNi and Sm2Fe17N3 having a small temperature dependence coefficient. This is due to the temperature-dependent coefficient in the motor operation from the temperature range near −40 ° C. in Northern Europe, which is within the range of human activity, to 60 ° C. or more, which exceeds the desert temperature described above, or to the heat-resistant temperature of the coil enamel coating of about 180 to 240 ° C. This is because the motor characteristics are greatly different from each other, which makes it difficult to perform optimal control and the like with the same motor driver. If FeNi or Sm2Fe17N3 having the L10 type crystal is used, the load on the motor driver can be reduced appropriately because of its characteristic that it has a temperature dependence coefficient of half or less as compared with Nd2Fe14B.
加えて、磁石ユニット42は、前記磁石配合を用いて、配向以前の微粉体状態の粒子径の大きさが10μm以下、単磁区粒子径以上としていることを特徴としている。磁石では、粉体の粒子を数百nmオーダまで微細化することにより保磁力が大きくなるため、近年では、できるだけ微細化された粉体が使用されている。ただし、細かくしすぎると、酸化などにより磁石のBH積が落ちてしまうため、単磁区粒子径以上が好ましい。単磁区粒子径までの粒子径であれば、微細化により保磁力が上昇することが知られている。なお、ここで述べてきた粒子径の大きさは、磁石の製造工程でいうところの配向工程の際の微粉体状態の粒子径の大きさである。
(4) In addition, the magnet unit 42 is characterized in that the particle size in the fine powder state before orientation is 10 μm or less and the single domain particle size or more using the above-described magnet composition. In magnets, the coercive force is increased by reducing the size of powder particles to the order of several hundreds of nm. In recent years, powders that have been made as fine as possible have been used in recent years. However, if the particle size is too small, the BH product of the magnet decreases due to oxidation or the like. It is known that when the particle diameter is up to a single magnetic domain particle diameter, the coercive force increases due to miniaturization. The size of the particle diameter described here is the size of the particle diameter in a fine powder state in the orientation step in the magnet manufacturing process.
更に、磁石ユニット42の第1磁石91と第2磁石92の各々は、磁性粉末を高温で焼き固めた、いわゆる焼結により形成された焼結磁石である。この焼結は、磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91および第2磁石92の結晶粒径が10μm以下であり、配向率をαとした場合、Js×αが1.0T(テスラ)以上の条件を満足するよう行われる。また、第1磁石91と第2磁石92の各々は、以下の条件を満足するように焼結されている。そして、その製造過程において配向工程にて配向が行われることにより、等方性磁石の着磁工程による磁力方向の定義とは異なり、配向率(orientation ratio)を持つ。本実施形態の磁石ユニット42の飽和磁化Jsが1.2T以上で、第1磁石91と第2磁石92の配向率αが、Jr≧Js×α≧1.0[T]となるように高い配向率を設定されている。なお、ここで言う配向率αとは、第1磁石91又は第2磁石92の各々において、例えば、磁化容易軸が6つあり、そのうちの5つが同じ方向である方向A10を向き、残りの一つが方向A10に対して90度傾いた方向B10を向いている場合、α=5/6であり、残りの一つが方向A10に対して45度傾いた方向B10を向いている場合には、残りの一つの方向A10を向く成分はcos45°=0.707であるため、α=(5+0.707)/6となる。本実施例では焼結により第1磁石91と第2磁石92を形成しているが、上記条件が満足されれば、第1磁石91と第2磁石92は他の方法により成形してもよい。例えば、MQ3磁石などを形成する方法を採用することができる。
{Circle around (1)} Further, each of the first magnet 91 and the second magnet 92 of the magnet unit 42 is a sintered magnet formed by so-called sintering of magnetic powder baked at a high temperature. In this sintering, when the saturation magnetization Js of the magnet unit 42 is 1.2 T or more, the crystal grain sizes of the first magnet 91 and the second magnet 92 are 10 μm or less, and the orientation ratio is α, Js × α is It is performed so as to satisfy the condition of 1.0 T (tesla) or more. Each of the first magnet 91 and the second magnet 92 is sintered so as to satisfy the following conditions. The orientation is performed in the orientation process in the manufacturing process, so that the orientation is different from the definition of the magnetic force direction in the isotropic magnet magnetization process. When the saturation magnetization Js of the magnet unit 42 of the present embodiment is 1.2 T or more, the orientation ratio α of the first magnet 91 and the second magnet 92 is so high that Jr ≧ Js × α ≧ 1.0 [T]. The orientation ratio is set. Note that the orientation ratio α here refers to, for example, in each of the first magnet 91 or the second magnet 92, there are six easy axes, and five of them have the same direction, that is, the direction A10. Α = 5/6 when one of them faces the direction B10 inclined at 90 degrees to the direction A10, and when one of the other faces the direction B10 inclined at 45 degrees to the direction A10, Since the component facing one direction A10 is cos45 ° = 0.707, α = (5 + 0.707) / 6. In the present embodiment, the first magnet 91 and the second magnet 92 are formed by sintering, but if the above conditions are satisfied, the first magnet 91 and the second magnet 92 may be formed by another method. . For example, a method of forming an MQ3 magnet or the like can be adopted.
本実施形態においては、配向により磁化容易軸をコントロールした永久磁石を利用しているから、その磁石内部の磁気回路長を、従来1.0[T]以上を出す直線配向磁石の磁気回路長と比べて、長くすることができる。すなわち、1極対あたりの磁気回路長を、少ない磁石量で達成できる他、従来の直線配向磁石を利用した設計と比べ、過酷な高熱条件に曝されても、その可逆減磁範囲を保つことができる。また、本願開示者は、従来技術の磁石を用いても、極異方性磁石と近しい特性を得られる構成を見いだした。
In this embodiment, the permanent magnet whose easy axis of magnetization is controlled by the orientation is used. Therefore, the magnetic circuit length inside the magnet is set to be equal to the magnetic circuit length of a linearly oriented magnet that conventionally outputs 1.0 [T] or more. In comparison, it can be longer. In other words, a magnetic circuit length per pole pair can be achieved with a small amount of magnets, and the reversible demagnetization range is maintained even when exposed to severe high-temperature conditions, compared to a design using conventional linearly-oriented magnets. Can be. In addition, the present inventor has found a configuration in which characteristics similar to those of a polar anisotropic magnet can be obtained even when a conventional magnet is used.
なお、磁化容易軸は、磁石において磁化されやすい結晶方位のことをいう。磁石における磁化容易軸の向きとは、磁化容易軸の方向が揃っている程度を示す配向率が50%以上となる方向、又は、その磁石の配向の平均となる方向である。
容易 The axis of easy magnetization refers to a crystal orientation that is easily magnetized in a magnet. The direction of the axis of easy magnetization in the magnet is a direction in which the degree of orientation indicating the degree of alignment of the direction of the axis of easy magnetization is 50% or more, or a direction in which the orientation of the magnet is average.
図8及び図9に示すように、磁石ユニット42は、円環状をなしており、磁石ホルダ41の内側(詳しくは円筒部43の径方向内側)に設けられている。磁石ユニット42は、それぞれ極異方性磁石でありかつ極性が互いに異なる第1磁石91及び第2磁石92を有している。第1磁石91及び第2磁石92は周方向に交互に配置されている。第1磁石91は、固定子巻線51に近い部分においてN極を形成する磁石であり、第2磁石92は、固定子巻線51に近い部分においてS極を形成する磁石である。第1磁石91及び第2磁石92は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。
As shown in FIGS. 8 and 9, the magnet unit 42 has an annular shape and is provided inside the magnet holder 41 (specifically, inside the cylindrical portion 43 in the radial direction). The magnet unit 42 is a polar anisotropic magnet and has a first magnet 91 and a second magnet 92 having different polarities. The first magnets 91 and the second magnets 92 are alternately arranged in the circumferential direction. The first magnet 91 is a magnet forming an N pole in a portion near the stator winding 51, and the second magnet 92 is a magnet forming an S pole in a portion near the stator winding 51. The first magnet 91 and the second magnet 92 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
各磁石91,92では、図9に示すように、公知のd-q座標系において磁極中心であるd軸(direct-axis)とN極とS極の磁極境界である(言い換えれば、磁束密度が0テスラである)q軸(quadrature-axis)との間において磁化方向が円弧状に延びている。各磁石91,92それぞれにおいて、d軸側では磁化方向が円環状の磁石ユニット42の径方向とされ、q軸側では円環状の磁石ユニット42の磁化方向が周方向とされている。以下、更に詳細に説明する。磁石91,92のそれぞれは、図9に示すように、第1部分250と、磁石ユニット42の周方向において第1部分250の両側に位置する二つの第2部分260とを有する。言い換えれば、第1部分250は、第2部分260よりd軸に近く、第2部分260は、第1部分250よりq軸に近い。そして、第1部分250の磁化容易軸300の方向は、第2部分260の磁化容易軸310の方向よりもd軸に対してより平行となるように磁石ユニット42が構成されている。言い換えれば、第1部分250の磁化容易軸300がd軸となす角度θ11が、第2部分260の磁化容易軸310がq軸となす角度θ12よりも小さくなるように磁石ユニット42が構成されている。
As shown in FIG. 9, each of the magnets 91 and 92 has a d-axis (direct-axis), which is the center of the magnetic pole, and a magnetic pole boundary between the N pole and the S pole in a known dq coordinate system (in other words, the magnetic flux density). Is 0 Tesla) and the magnetization direction extends in an arc shape with respect to the q-axis (quadrature-axis). In each of the magnets 91 and 92, the magnetization direction is the radial direction of the annular magnet unit 42 on the d-axis side, and the magnetization direction of the annular magnet unit 42 is the circumferential direction on the q-axis side. Hereinafter, this will be described in more detail. As shown in FIG. 9, each of the magnets 91 and 92 has a first portion 250 and two second portions 260 located on both sides of the first portion 250 in the circumferential direction of the magnet unit 42. In other words, the first portion 250 is closer to the d-axis than the second portion 260, and the second portion 260 is closer to the q-axis than the first portion 250. The magnet unit 42 is configured such that the direction of the easy axis 300 of the first portion 250 is more parallel to the d axis than the direction of the easy axis 310 of the second portion 260. In other words, the magnet unit 42 is configured such that the angle θ11 between the easy axis 300 of the first portion 250 and the d axis is smaller than the angle θ12 between the easy axis 310 of the second portion 260 and the q axis. I have.
より詳細には、角度θ11は、d軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、d軸と磁化容易軸300とがなす角度である。角度θ12は、q軸において固定子50(電機子)から磁石ユニット42に向かう方向を正とした時に、q軸と磁化容易軸310とがなす角度である。なお角度θ11及び角度θ12共に、本実施形態では90°以下である。ここでいう、磁化容易軸300,310のそれぞれは、以下の定義による。磁石91,92のそれぞれの部分において、一つの磁化容易軸が方向A11を向き、もう一つの磁化容易軸が方向B11を向いているとした場合、方向A11と方向B11の成す角度θのコサインの絶対値(|cosθ|)を磁化容易軸300或いは磁化容易軸310とする。
More specifically, the angle θ11 is an angle formed between the d axis and the easy axis 300 when the direction from the stator 50 (armature) toward the magnet unit 42 is positive on the d axis. The angle θ12 is an angle formed between the q axis and the easy axis 310 when the direction from the stator 50 (armature) toward the magnet unit 42 is positive on the q axis. Note that both the angle θ11 and the angle θ12 are 90 ° or less in the present embodiment. Here, each of the easy axes 300 and 310 has the following definition. In each part of the magnets 91 and 92, when one easy axis of magnetization is oriented in the direction A11 and the other easy axis is oriented in the direction B11, the cosine of the angle θ between the direction A11 and the direction B11 is obtained. The absolute value (| cos θ |) is defined as the easy axis 300 or the easy axis 310.
すなわち、各磁石91,92のそれぞれは、d軸側(d軸寄りの部分)とq軸側(q軸寄りの部分)とで磁化容易軸の向きが相違しており、d軸側では磁化容易軸の向きがd軸に平行な方向に近い向きとなり、q軸側では磁化容易軸の向きがq軸に直交する方向に近い向きとなっている。そして、この磁化容易軸の向きに応じて円弧状の磁石磁路が形成されている。なお、各磁石91,92において、d軸側では磁化容易軸をd軸に平行な向きとし、q軸側では磁化容易軸をq軸に直交する向きとしてもよい。
That is, each of the magnets 91 and 92 has a different direction of the axis of easy magnetization on the d-axis side (portion closer to the d-axis) and on the q-axis side (portion closer to the q-axis). The direction of the easy axis is close to the direction parallel to the d-axis, and the direction of the easy axis of magnetization is close to the direction orthogonal to the q-axis on the q-axis side. An arc-shaped magnet magnetic path is formed in accordance with the direction of the axis of easy magnetization. In each of the magnets 91 and 92, the easy axis may be oriented parallel to the d axis on the d-axis side, and the easy axis may be orthogonal to the q axis on the q-axis side.
また、磁石91,92では、各磁石91,92の周面のうち固定子50側(図9の下側)となる固定子側外面と、周方向においてq軸側の端面とが、磁束の流入流出面である磁束作用面となっており、それらの磁束作用面(固定子側外面及びq軸側の端面)を繋ぐように磁石磁路が形成されている。
In the magnets 91 and 92, the stator-side outer surface of the magnets 91 and 92 on the stator 50 side (the lower side in FIG. 9) and the end surface on the q-axis side in the circumferential direction form a magnetic flux. It is a magnetic flux acting surface which is an inflow / outflow surface, and a magnet magnetic path is formed so as to connect those magnetic flux acting surfaces (an outer surface on the stator side and an end surface on the q-axis side).
磁石ユニット42では、各磁石91,92により、隣接するN,S極間を円弧状に磁束が流れるため、例えばラジアル異方性磁石に比べて磁石磁路が長くなっている。このため、図17に示すように、磁束密度分布が正弦波に近いものとなる。その結果、図18に比較例として示すラジアル異方性磁石の磁束密度分布とは異なり、磁極の中心側に磁束を集中させることができ、回転電機10のトルクを高めることができる。また、本実施形態の磁石ユニット42では、従来のハルバッハ配列の磁石と比べても、磁束密度分布の差異があることが確認できる。なお、図17及び図18において、横軸は電気角を示し、縦軸は磁束密度を示す。また、図17及び図18において、横軸の90°はd軸(すなわち磁極中心)を示し、横軸の0°,180°はq軸を示す。
(4) In the magnet unit 42, the magnetic flux flows in an arc between the adjacent N and S poles by the magnets 91 and 92, so that the magnet magnetic path is longer than, for example, a radial anisotropic magnet. Therefore, as shown in FIG. 17, the magnetic flux density distribution becomes close to a sine wave. As a result, unlike the magnetic flux density distribution of the radial anisotropic magnet shown as a comparative example in FIG. 18, the magnetic flux can be concentrated on the center side of the magnetic pole, and the torque of the rotating electric machine 10 can be increased. Further, in the magnet unit 42 of the present embodiment, it can be confirmed that there is a difference in the magnetic flux density distribution as compared with the conventional Halbach array magnet. 17 and 18, the horizontal axis represents the electrical angle, and the vertical axis represents the magnetic flux density. 17 and 18, 90 ° on the horizontal axis indicates the d-axis (that is, the center of the magnetic pole), and 0 ° and 180 ° on the horizontal axis indicate the q-axis.
つまり、上記構成の各磁石91,92によれば、d軸での磁石磁束が強化され、かつq軸付近での磁束変化が抑えられる。これにより、各磁極においてq軸からd軸にかけての表面磁束変化がなだらかになる磁石91,92を好適に実現することができる。
That is, according to the magnets 91 and 92 having the above-described configuration, the magnet magnetic flux on the d-axis is strengthened, and the change in magnetic flux near the q-axis is suppressed. Thereby, it is possible to suitably realize the magnets 91 and 92 in which the surface magnetic flux changes gradually from the q axis to the d axis in each magnetic pole.
磁束密度分布の正弦波整合率は、例えば40%以上の値とされていればよい。このようにすれば、正弦波整合率が30%程度であるラジアル配向磁石、パラレル配向磁石を用いる場合に比べ、確実に波形中央部分の磁束量を向上させることができる。また、正弦波整合率を60%以上とすれば、ハルバッハ配列のような磁束集中配列と比べ、確実に波形中央部分の磁束量を向上させることができる。
正弦 The sine wave matching ratio of the magnetic flux density distribution may be, for example, 40% or more. In this way, the amount of magnetic flux in the center portion of the waveform can be reliably improved as compared with the case of using a radially oriented magnet or a parallelly oriented magnet having a sine wave matching ratio of about 30%. Further, when the sine wave matching ratio is 60% or more, the amount of magnetic flux at the center portion of the waveform can be reliably improved as compared with a magnetic flux concentration array such as a Halbach array.
図18に示すラジアル異方性磁石では、q軸付近において磁束密度が急峻に変化する。磁束密度の変化が急峻なほど、固定子巻線51に発生する渦電流が増加してしまう。また、固定子巻線51側での磁束変化も急峻となる。これに対し、本実施形態では、磁束密度分布が正弦波に近い磁束波形となる。このため、q軸付近において、磁束密度の変化が、ラジアル異方性磁石の磁束密度の変化よりも小さい。これにより、渦電流の発生を抑制することができる。
で は In the radial anisotropic magnet shown in FIG. 18, the magnetic flux density changes sharply near the q-axis. As the change in the magnetic flux density becomes steeper, the eddy current generated in the stator winding 51 increases. Further, the magnetic flux change on the stator winding 51 side also becomes steep. On the other hand, in the present embodiment, the magnetic flux density distribution has a magnetic flux waveform close to a sine wave. For this reason, near the q-axis, the change in the magnetic flux density is smaller than the change in the magnetic flux density of the radial anisotropic magnet. Thereby, generation of eddy current can be suppressed.
磁石ユニット42では、各磁石91,92のd軸付近(すなわち磁極中心)において、固定子50側の磁束作用面280に直交する向きで磁束が生じ、その磁束は、固定子50側の磁束作用面280から離れるほど、d軸から離れるような円弧状をなす。また、磁束作用面に直交する磁束であるほど、強い磁束となる。この点において、本実施形態の回転電機10では、上述のとおり各導線群81を径方向に薄くしたため、導線群81の径方向の中心位置が磁石ユニット42の磁束作用面に近づくことになり、固定子50において回転子40から強い磁石磁束を受けることができる。
In the magnet unit 42, a magnetic flux is generated in a direction orthogonal to the magnetic flux acting surface 280 on the stator 50 near the d-axis of each of the magnets 91 and 92 (that is, the center of the magnetic pole). As the distance from the surface 280 increases, the shape of the arc increases as the distance from the d-axis increases. Further, the more the magnetic flux is perpendicular to the magnetic flux acting surface, the stronger the magnetic flux becomes. In this regard, in the rotating electric machine 10 of the present embodiment, since the conductor groups 81 are thinned in the radial direction as described above, the radial center position of the conductor groups 81 approaches the magnetic flux acting surface of the magnet unit 42, The stator 50 can receive a strong magnet magnetic flux from the rotor 40.
また、固定子50には、固定子巻線51の径方向内側、すなわち固定子巻線51を挟んで回転子40の逆側に円筒状の固定子コア52が設けられている。そのため、各磁石91,92の磁束作用面から延びる磁束は、固定子コア52に引きつけられ、固定子コア52を磁路の一部として用いつつ周回する。この場合、磁石磁束の向き及び経路を適正化することができる。
固定 Further, the stator 50 is provided with a cylindrical stator core 52 radially inside the stator winding 51, that is, on the opposite side of the rotor 40 with the stator winding 51 interposed therebetween. Therefore, the magnetic flux extending from the magnetic flux acting surfaces of the magnets 91 and 92 is attracted to the stator core 52 and orbits while using the stator core 52 as a part of the magnetic path. In this case, the direction and path of the magnet magnetic flux can be optimized.
以下に、回転電機10の製造方法として、図5に示す軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60についての組み付け手順について説明する。なお、インバータユニット60は、図6に示すようにユニットベース61と電気コンポーネント62とを有しており、それらユニットベース61及び電気コンポーネント62の組み付け工程を含む各作業工程を説明する。以下の説明では、固定子50及びインバータユニット60よりなる組立品を第1ユニット、軸受ユニット20、ハウジング30及び回転子40よりなる組立品を第2ユニットとしている。
Hereinafter, as a method of manufacturing the rotary electric machine 10, a procedure for assembling the bearing unit 20, the housing 30, the rotor 40, the stator 50, and the inverter unit 60 shown in FIG. 5 will be described. The inverter unit 60 has a unit base 61 and an electric component 62 as shown in FIG. 6, and each operation process including a process of assembling the unit base 61 and the electric component 62 will be described. In the following description, an assembly including the stator 50 and the inverter unit 60 is referred to as a first unit, and an assembly including the bearing unit 20, the housing 30, and the rotor 40 is referred to as a second unit.
本製造工程は、
・ユニットベース61の径方向内側に電気コンポーネント62を装着する第1工程と、
・固定子50の径方向内側にユニットベース61を装着して第1ユニットを製作する第2工程と、
・ハウジング30に組み付けられた軸受ユニット20に、回転子40の固定部44を挿入して第2ユニットを製作する第3工程と、
・第2ユニットの径方向内側に第1ユニットを装着する第4工程と、
・ハウジング30とユニットベース61とを締結固定する第5工程と、
を有している。これら各工程の実施順序は、第1工程→第2工程→第3工程→第4工程→第5工程である。 This manufacturing process
A first step of mounting theelectrical component 62 inside the unit base 61 in the radial direction;
A second step of mounting theunit base 61 on the radially inner side of the stator 50 to produce a first unit;
A third step of manufacturing the second unit by inserting the fixingportion 44 of the rotor 40 into the bearing unit 20 assembled in the housing 30;
A fourth step of mounting the first unit radially inside the second unit;
A fifth step of fastening and fixing thehousing 30 and the unit base 61;
have. The order of execution of these steps is first step → second step → third step → fourth step → fifth step.
・ユニットベース61の径方向内側に電気コンポーネント62を装着する第1工程と、
・固定子50の径方向内側にユニットベース61を装着して第1ユニットを製作する第2工程と、
・ハウジング30に組み付けられた軸受ユニット20に、回転子40の固定部44を挿入して第2ユニットを製作する第3工程と、
・第2ユニットの径方向内側に第1ユニットを装着する第4工程と、
・ハウジング30とユニットベース61とを締結固定する第5工程と、
を有している。これら各工程の実施順序は、第1工程→第2工程→第3工程→第4工程→第5工程である。 This manufacturing process
A first step of mounting the
A second step of mounting the
A third step of manufacturing the second unit by inserting the fixing
A fourth step of mounting the first unit radially inside the second unit;
A fifth step of fastening and fixing the
have. The order of execution of these steps is first step → second step → third step → fourth step → fifth step.
上記の製造方法によれば、軸受ユニット20、ハウジング30、回転子40、固定子50及びインバータユニット60を複数の組立品(サブアセンブリ)として組み立てた後に、それら組立品同士を組み付けるようにしたため、ハンドリングのし易さやユニット毎の検査完結などを実現でき、合理的な組み立てラインの構築が可能となる。したがって、多品種生産にも容易に対応が可能となる。
According to the manufacturing method described above, after assembling the bearing unit 20, the housing 30, the rotor 40, the stator 50, and the inverter unit 60 as a plurality of assemblies (subassemblies), the assemblies are assembled. Easy handling and complete inspection of each unit can be realized, and a reasonable assembly line can be constructed. Therefore, it is possible to easily cope with multi-product production.
第1工程では、ユニットベース61の径方向内側及び電気コンポーネント62の径方向外部の少なくともいずれかに、熱伝導が良好な良熱伝導体を塗布や接着等により付着させておき、その状態で、ユニットベース61に対して電気コンポーネント62を装着するとよい。これにより、半導体モジュール66の発熱をユニットベース61に対して効果的に伝達させることが可能となる。
In the first step, a good heat conductor having good heat conduction is adhered to at least one of the radially inner side of the unit base 61 and the radially outer side of the electric component 62 by coating, bonding, or the like. It is preferable to mount the electric component 62 on the unit base 61. Thus, heat generated by the semiconductor module 66 can be effectively transmitted to the unit base 61.
第3工程では、ハウジング30と回転子40との同軸を維持しながら、回転子40の挿入作業を実施するとよい。具体的には、例えばハウジング30の内周面を基準として回転子40の外周面(磁石ホルダ41の外周面)又は回転子40の内周面(磁石ユニット42の内周面)の位置を定める治具を用い、その治具に沿ってハウジング30及び回転子40のいずれかをスライドさせながら、ハウジング30と回転子40との組み付けを実施する。これにより、軸受ユニット20に偏荷重を掛けることなく重量部品を組み付けることが可能となり、軸受ユニット20の信頼性が向上する。
で は In the third step, the rotor 40 may be inserted while the coaxial relationship between the housing 30 and the rotor 40 is maintained. Specifically, for example, the position of the outer peripheral surface of the rotor 40 (the outer peripheral surface of the magnet holder 41) or the inner peripheral surface of the rotor 40 (the inner peripheral surface of the magnet unit 42) is determined with reference to the inner peripheral surface of the housing 30. Using the jig, the housing 30 and the rotor 40 are assembled while sliding either the housing 30 or the rotor 40 along the jig. This makes it possible to mount a heavy component without applying an unbalanced load to the bearing unit 20, and the reliability of the bearing unit 20 is improved.
第4工程では、第1ユニットと第2ユニットとの同軸を維持しながら、それら両ユニットの組み付けを実施するとよい。具体的には、例えば回転子40の固定部44の内周面を基準としてユニットベース61の内周面の位置を定める治具を用い、その治具に沿って第1ユニット及び第2ユニットのいずれかをスライドさせながら、これら各ユニットの組み付けを実施する。これにより、回転子40と固定子50との極少隙間間での互いの干渉を防止しながら組み付けることが可能となるため、固定子巻線51へのダメージや永久磁石の欠け等、組み付け起因の不良品の撲滅が可能となる。
4 In the fourth step, it is preferable to carry out the assembly of the first unit and the second unit while maintaining the coaxiality of the two units. Specifically, for example, a jig that determines the position of the inner peripheral surface of the unit base 61 with reference to the inner peripheral surface of the fixing portion 44 of the rotor 40 is used, and the first unit and the second unit are moved along the jig. Assemble these units while sliding any of them. As a result, it is possible to assemble the rotor 40 and the stator 50 while preventing mutual interference between the extremely small gaps. Defective products can be eliminated.
上記各工程の順序を、第2工程→第3工程→第4工程→第5工程→第1工程とすることも可能である。この場合、デリケートな電気コンポーネント62を最後に組み付けることになり、組み付け工程内での電気コンポーネント62へのストレスを最小限にとどめることができる。
順序 The order of the above steps may be the second step → the third step → the fourth step → the fifth step → the first step. In this case, the delicate electric component 62 is assembled last, and the stress on the electric component 62 in the assembling process can be minimized.
次に、回転電機10を制御する制御システムの構成について説明する。図19は、回転電機10の制御システムの電気回路図であり、図20は、制御装置110による制御処理を示す機能ブロック図である。
Next, the configuration of a control system that controls the rotating electric machine 10 will be described. FIG. 19 is an electric circuit diagram of a control system of the rotating electric machine 10, and FIG. 20 is a functional block diagram illustrating a control process performed by the control device 110.
図19では、固定子巻線51として2組の3相巻線51a,51bが示されており、3相巻線51aはU相巻線、V相巻線及びW相巻線よりなり、3相巻線51bはX相巻線、Y相巻線及びZ相巻線よりなる。3相巻線51a,51bごとに、電力変換器に相当する第1インバータ101と第2インバータ102とがそれぞれ設けられている。インバータ101,102は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、固定子巻線51の各相巻線において通電電流が調整される。
In FIG. 19, two sets of three- phase windings 51a and 51b are shown as the stator winding 51. The three-phase winding 51a includes a U-phase winding, a V-phase winding, and a W-phase winding. The phase winding 51b includes an X-phase winding, a Y-phase winding, and a Z-phase winding. A first inverter 101 and a second inverter 102 each corresponding to a power converter are provided for each of the three- phase windings 51a and 51b. The inverters 101 and 102 are configured by full-bridge circuits having the same number of upper and lower arms as the number of phases of the phase windings, and the switches (semiconductor switching elements) provided on each arm are turned on and off to turn the stator windings 51 on and off. The conduction current is adjusted in each phase winding.
各インバータ101,102には、直流電源103と平滑用のコンデンサ104とが並列に接続されている。直流電源103は、例えば複数の単電池が直列接続された組電池により構成されている。なお、インバータ101,102の各スイッチが、図1等に示す半導体モジュール66に相当し、コンデンサ104が、図1等に示すコンデンサモジュール68に相当する。
直流 A DC power supply 103 and a smoothing capacitor 104 are connected in parallel to each of the inverters 101 and 102. The DC power supply 103 is configured by, for example, an assembled battery in which a plurality of cells are connected in series. Each switch of the inverters 101 and 102 corresponds to the semiconductor module 66 shown in FIG. 1 and the like, and the capacitor 104 corresponds to the capacitor module 68 shown in FIG. 1 and the like.
制御装置110は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ101,102における各スイッチのオンオフにより通電制御を実施する。制御装置110が、図6に示す制御装置77に相当する。回転電機10の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子40の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御装置110は、インバータ101,102の各スイッチを操作する操作信号を生成して出力する。なお、発電の要求は、例えば回転電機10が車両用動力源として用いられる場合、回生駆動の要求である。
The control device 110 includes a microcomputer including a CPU and various memories. Based on various detection information in the rotating electric machine 10 and requests for powering drive and power generation, the control of the power supply is performed by turning on and off the switches in the inverters 101 and 102. carry out. Control device 110 corresponds to control device 77 shown in FIG. The detection information of the rotating electric machine 10 includes, for example, a rotation angle (electrical angle information) of the rotor 40 detected by an angle detector such as a resolver, a power supply voltage (inverter input voltage) detected by a voltage sensor, and a current sensor. , The energized current of each phase detected by Control device 110 generates and outputs an operation signal for operating each switch of inverters 101 and 102. The power generation request is, for example, a request for regenerative driving when the rotating electric machine 10 is used as a vehicle power source.
第1インバータ101は、U相、V相及びW相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれU相巻線、V相巻線、W相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点にて互いに接続されている。
The first inverter 101 includes a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases including a U phase, a V phase, and a W phase. The high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103. . One end of each of a U-phase winding, a V-phase winding, and a W-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase. These phase windings are star-connected (Y connection), and the other ends of the phase windings are connected to each other at a neutral point.
第2インバータ102は、第1インバータ101と同様の構成を有しており、X相、Y相及びZ相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれX相巻線、Y相巻線、Z相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点で互いに接続されている。
The second inverter 102 has a configuration similar to that of the first inverter 101, and includes a series connection of an upper arm switch Sp and a lower arm switch Sn in three phases including an X phase, a Y phase, and a Z phase. ing. The high potential side terminal of the upper arm switch Sp of each phase is connected to the positive terminal of the DC power supply 103, and the low potential side terminal of the lower arm switch Sn of each phase is connected to the negative terminal (ground) of the DC power supply 103. . One end of each of an X-phase winding, a Y-phase winding, and a Z-phase winding is connected to an intermediate connection point between the upper arm switch Sp and the lower arm switch Sn of each phase. These phase windings are star-connected (Y connection), and the other ends of the phase windings are connected to each other at a neutral point.
図20には、U,V,W相の各相電流を制御する電流フィードバック制御処理と、X,Y,Z相の各相電流を制御する電流フィードバック制御処理とが示されている。ここではまず、U,V,W相側の制御処理について説明する。
FIG. 20 shows a current feedback control process for controlling the U, V, and W phase currents, and a current feedback control process for controlling the X, Y, and Z phase currents. Here, the control process on the U, V, and W phases will be described first.
図20において、電流指令値設定部111は、トルク-dqマップを用い、回転電機10に対する力行トルク指令値又は発電トルク指令値や、電気角θを時間微分して得られる電気角速度ωに基づいて、d軸の電流指令値とq軸の電流指令値とを設定する。なお、電流指令値設定部111は、U,V,W相側及びX,Y,Z相側において共通に設けられている。なお、発電トルク指令値は、例えば回転電機10が車両用動力源として用いられる場合、回生トルク指令値である。
20, a current command value setting unit 111 uses a torque-dq map and based on a powering torque command value or a power generation torque command value for the rotating electric machine 10 and an electric angular velocity ω obtained by time-differentiating the electric angle θ. , A d-axis current command value and a q-axis current command value are set. The current command value setting unit 111 is provided in common on the U, V, and W phase sides and the X, Y, and Z phase sides. The power generation torque command value is, for example, a regenerative torque command value when the rotating electric machine 10 is used as a vehicle power source.
dq変換部112は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向(direction of an axis of a magnetic field,or field direction)をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。
The dq conversion unit 112 converts a current detection value (three phase currents) obtained by a current sensor provided for each phase into a quadrature 2 with a field direction (direction of an axis of a magnetic field, or field direction) as a d-axis. It is converted into a d-axis current and a q-axis current which are components of the three-dimensional rotation coordinate system.
d軸電流フィードバック制御部113は、d軸電流をd軸の電流指令値にフィードバック制御するための操作量としてd軸の指令電圧を算出する。また、q軸電流フィードバック制御部114は、q軸電流をq軸の電流指令値にフィードバック制御するための操作量としてq軸の指令電圧を算出する。これら各フィードバック制御部113,114では、d軸電流及びq軸電流の電流指令値に対する偏差に基づき、PIフィードバック手法を用いて指令電圧が算出される。
The d-axis current feedback control unit 113 calculates a d-axis command voltage as an operation amount for feedback-controlling the d-axis current to a d-axis current command value. Further, the q-axis current feedback control unit 114 calculates a q-axis command voltage as an operation amount for feedback-controlling the q-axis current to a q-axis current command value. In each of these feedback control units 113 and 114, the command voltage is calculated using the PI feedback method based on the deviation of the d-axis current and the q-axis current from the current command value.
3相変換部115は、d軸及びq軸の指令電圧を、U相、V相及びW相の指令電圧に変換する。なお、上記の各部111~115が、dq変換理論による基本波電流のフィードバック制御を実施するフィードバック制御部であり、U相、V相及びW相の指令電圧がフィードバック制御値である。
The three-phase converter 115 converts d-axis and q-axis command voltages into U-phase, V-phase, and W-phase command voltages. Each of the units 111 to 115 is a feedback control unit that performs feedback control of the fundamental wave current based on the dq conversion theory, and the U-phase, V-phase, and W-phase command voltages are feedback control values.
そして、操作信号生成部116は、周知の三角波キャリア比較方式を用い、3相の指令電圧に基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部116は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。
Then, the operation signal generation unit 116 generates an operation signal for the first inverter 101 based on the three-phase command voltage using a known triangular wave carrier comparison method. Specifically, the operation signal generation unit 116 performs a PWM control based on a magnitude comparison between a signal obtained by standardizing a three-phase command voltage with a power supply voltage and a carrier signal such as a triangular wave signal, and thereby switches the upper and lower arms in each phase. An operation signal (duty signal) is generated.
また、X,Y,Z相側においても同様の構成を有しており、dq変換部122は、相ごとに設けられた電流センサによる電流検出値(3つの相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。
The same configuration is also provided on the X, Y, and Z phase sides. The dq conversion unit 122 outputs a current detection value (three phase currents) obtained by a current sensor provided for each phase to the field direction. It is converted into a d-axis current and a q-axis current, which are components of an orthogonal two-dimensional rotating coordinate system with the d axis.
d軸電流フィードバック制御部123はd軸の指令電圧を算出し、q軸電流フィードバック制御部124はq軸の指令電圧を算出する。3相変換部125は、d軸及びq軸の指令電圧を、X相、Y相及びZ相の指令電圧に変換する。そして、操作信号生成部126は、3相の指令電圧に基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部126は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。
The d-axis current feedback control unit 123 calculates a d-axis command voltage, and the q-axis current feedback control unit 124 calculates a q-axis command voltage. The three-phase converter 125 converts d-axis and q-axis command voltages into X-phase, Y-phase, and Z-phase command voltages. Then, the operation signal generation unit 126 generates an operation signal for the second inverter 102 based on the three-phase command voltage. Specifically, the operation signal generation unit 126 performs a PWM control based on a magnitude comparison between a signal obtained by standardizing a three-phase command voltage with a power supply voltage and a carrier signal such as a triangular wave signal, and thereby switches the upper and lower arms in each phase. An operation signal (duty signal) is generated.
ドライバ117は、操作信号生成部116,126にて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。
The driver 117 turns on and off the three-phase switches Sp and Sn of the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 116 and 126.
続いて、トルクフィードバック制御処理について説明する。この処理は、例えば高回転領域及び高出力領域等、各インバータ101,102の出力電圧が大きくなる運転条件において、主に回転電機10の高出力化や損失低減の目的で用いられる。制御装置110は、回転電機10の運転条件に基づいて、トルクフィードバック制御処理及び電流フィードバック制御処理のいずれか一方の処理を選択して実行する。
Next, the torque feedback control process will be described. This process is used mainly for the purpose of increasing the output of the rotating electric machine 10 and reducing the loss under operating conditions in which the output voltage of each of the inverters 101 and 102 becomes large, such as in a high rotation region and a high output region. The control device 110 selects and executes one of the torque feedback control process and the current feedback control process based on the operating conditions of the rotating electric machine 10.
図21には、U,V,W相に対応するトルクフィードバック制御処理と、X,Y,Z相に対応するトルクフィードバック制御処理とが示されている。なお、図21において、図20と同じ構成については、同じ符号を付して説明を省略する。ここではまず、U,V,W相側の制御処理について説明する。
FIG. 21 shows a torque feedback control process corresponding to the U, V, and W phases and a torque feedback control process corresponding to the X, Y, and Z phases. In FIG. 21, the same components as those in FIG. 20 are denoted by the same reference numerals, and description thereof will be omitted. Here, the control process on the U, V, and W phases will be described first.
電圧振幅算出部127は、回転電機10に対する力行トルク指令値又は発電トルク指令値と、電気角θを時間微分して得られる電気角速度ωとに基づいて、電圧ベクトルの大きさの指令値である電圧振幅指令を算出する。
The voltage amplitude calculation unit 127 is a command value for the magnitude of the voltage vector based on the powering torque command value or the power generation torque command value for the rotary electric machine 10 and the electrical angular velocity ω obtained by time-differentiating the electrical angle θ. Calculate the voltage amplitude command.
トルク推定部128aは、dq変換部112により変換されたd軸電流とq軸電流とに基づいて、U,V,W相に対応するトルク推定値を算出する。なお、トルク推定部128aは、d軸電流、q軸電流及び電圧振幅指令が関係付けられたマップ情報に基づいて、電圧振幅指令を算出すればよい。
The torque estimation unit 128a calculates a torque estimation value corresponding to the U, V, and W phases based on the d-axis current and the q-axis current converted by the dq conversion unit 112. Note that the torque estimating unit 128a may calculate the voltage amplitude command based on the map information in which the d-axis current, the q-axis current, and the voltage amplitude command are related.
トルクフィードバック制御部129aは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧ベクトルの位相の指令値である電圧位相指令を算出する。トルクフィードバック制御部129aでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。
The torque feedback control unit 129a calculates a voltage phase command, which is a command value of a voltage vector phase, as an operation amount for performing feedback control of a torque estimation value to a powering torque command value or a power generation torque command value. The torque feedback control unit 129a calculates a voltage phase command using a PI feedback method based on the deviation of the estimated torque value from the powering torque command value or the generated torque command value.
操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。
The operation signal generation unit 130a generates an operation signal for the first inverter 101 based on the voltage amplitude command, the voltage phase command, and the electrical angle θ. Specifically, the operation signal generation unit 130a calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle θ, and standardizes the calculated three-phase command voltage with the power supply voltage. And PWM control based on a magnitude comparison between the signal and a carrier signal such as a triangular wave signal to generate switch operation signals for the upper and lower arms in each phase.
ちなみに、操作信号生成部130aは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。
Incidentally, the operation signal generation unit 130a is based on a pulse pattern information, a voltage amplitude command, a voltage phase command, and an electrical angle θ, which are map information in which the voltage amplitude command, the voltage phase command, the electric angle θ and the switch operation signal are related. Thus, a switch operation signal may be generated.
また、X,Y,Z相側においても同様の構成を有しており、トルク推定部128bは、dq変換部122により変換されたd軸電流とq軸電流とに基づいて、X,Y,Z相に対応するトルク推定値を算出する。
The X-, Y-, and Z-phase sides also have the same configuration, and the torque estimating unit 128b determines the X, Y, and Z-axis currents based on the d-axis current and the q-axis current converted by the dq An estimated torque value corresponding to the Z phase is calculated.
トルクフィードバック制御部129bは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧位相指令を算出する。トルクフィードバック制御部129bでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。
The torque feedback control unit 129b calculates a voltage phase command as an operation amount for feedback-controlling the torque estimation value to the powering torque command value or the power generation torque command value. The torque feedback control unit 129b calculates the voltage phase command using the PI feedback method based on the deviation of the estimated torque value from the powering torque command value or the generated torque command value.
操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。ドライバ117は、操作信号生成部130a,130bにて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。
The operation signal generator 130b generates an operation signal for the second inverter 102 based on the voltage amplitude command, the voltage phase command, and the electrical angle θ. Specifically, the operation signal generation unit 130b calculates a three-phase command voltage based on the voltage amplitude command, the voltage phase command, and the electrical angle θ, and standardizes the calculated three-phase command voltage with the power supply voltage. And PWM control based on a magnitude comparison between the signal and a carrier signal such as a triangular wave signal to generate switch operation signals for the upper and lower arms in each phase. The driver 117 turns on and off the three-phase switches Sp and Sn in the inverters 101 and 102 based on the switch operation signals generated by the operation signal generation units 130a and 130b.
ちなみに、操作信号生成部130bは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。
Incidentally, the operation signal generation unit 130b is based on the voltage amplitude command, the voltage phase command, the pulse pattern information that is the map information associated with the electrical angle θ and the switch operation signal, the voltage amplitude command, the voltage phase command, and the electrical angle θ. Thus, a switch operation signal may be generated.
ところで、回転電機10においては、軸電流の発生に伴い軸受21,22の電食が生じることが懸念されている。例えば固定子巻線51の通電がスイッチングにより切り替えられる際に、スイッチングタイミングの微小なずれ(スイッチングの不均衡)により磁束の歪みが生じ、それに起因して、回転軸11を支持する軸受21,22において電食が生じることが懸念される。磁束の歪みは固定子50のインダクタンスに応じて生じ、その磁束の歪みにより生じる軸方向の起電圧によって、軸受21,22内での絶縁破壊が起こり電食が進行する。
By the way, in the rotating electric machine 10, there is a concern that the corrosion of the bearings 21 and 22 may occur with the generation of the shaft current. For example, when the energization of the stator winding 51 is switched by switching, a slight shift in switching timing (switching imbalance) causes distortion of magnetic flux, and as a result, bearings 21 and 22 supporting the rotating shaft 11 are caused. It is feared that electrolytic corrosion will occur in the case. The distortion of the magnetic flux is generated in accordance with the inductance of the stator 50, and the axial electromotive voltage generated by the distortion of the magnetic flux causes dielectric breakdown in the bearings 21 and 22, and the electrolytic corrosion proceeds.
この点本実施形態では、電食対策として、以下に示す3つの対策を講じている。第1の電食対策は、固定子50のコアレス化に伴いインダクタンスを低減したこと、及び磁石ユニット42の磁石磁束をなだらかにしたことによる電食抑制対策である。第2の電食対策は、回転軸を軸受21,22による片持ち構造としたことによる電食抑制対策である。第3の電食対策は、円環状の固定子巻線51を固定子コア52と共にモールド材によりモールドしたことによる電食抑制対策である。以下には、これら各対策の詳細を個々に説明する。
In this regard, in the present embodiment, the following three measures are taken as measures against electrolytic corrosion. The first countermeasure against electric erosion is a countermeasure against electric erosion by reducing the inductance with the coreless stator 50 and making the magnet magnetic flux of the magnet unit 42 gentle. The second countermeasure against electric corrosion is a countermeasure against electric corrosion by using a cantilever structure of the rotating shaft with the bearings 21 and 22. The third countermeasure against electrolytic corrosion is a countermeasure against electrolytic corrosion caused by molding the annular stator winding 51 together with the stator core 52 using a molding material. The details of each of these measures will be described individually below.
まず第1の電食対策では、固定子50において、周方向における各導線群81の間をティースレスとし、各導線群81の間に、ティース(鉄心)の代わりに非磁性材料よりなる封止部材57を設ける構成としている(図10参照)。これにより、固定子50のインダクタンス低減が可能となっている。固定子50におけるインダクタンス低減を図ることで、仮に固定子巻線51の通電時にスイッチングタイミングのずれが生じても、そのスイッチングタイミングのずれに起因する磁束歪みの発生を抑制し、ひいては軸受21,22の電食抑制が可能になっている。なお、d軸のインダクタンスがq軸のインダクタンス以下になっているとよい。
First, in the first countermeasures against electrolytic corrosion, the stator 50 is made of teethless between the conductor groups 81 in the circumferential direction, and sealed between each conductor group 81 by a nonmagnetic material instead of the teeth (iron core). The member 57 is provided (see FIG. 10). Thereby, the inductance of the stator 50 can be reduced. By reducing the inductance in the stator 50, even if a switching timing shift occurs when the stator windings 51 are energized, the occurrence of magnetic flux distortion due to the switching timing shift is suppressed, and the bearings 21 and 22 are further reduced. It is possible to suppress the electric erosion. It is preferable that the d-axis inductance is equal to or less than the q-axis inductance.
また、磁石91,92において、d軸側においてq軸側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた構成とした(図9参照)。これにより、d軸での磁石磁束が強化され、各磁極においてq軸からd軸にかけての表面磁束変化(磁束の増減)がなだらかになる。そのため、スイッチング不均衡に起因する急激な電圧変化が抑制され、ひいては電食抑制に寄与できる構成となっている。
Also, the magnets 91 and 92 are configured such that the orientation of the easy axis of magnetization is parallel to the d-axis on the d-axis side as compared to the q-axis side (see FIG. 9). As a result, the magnetic flux on the d-axis is strengthened, and the change in the surface magnetic flux (increase / decrease in magnetic flux) from the q-axis to the d-axis becomes gentle at each magnetic pole. Therefore, a rapid voltage change due to the switching imbalance is suppressed, and the configuration can contribute to suppressing electrolytic corrosion.
第2の電食対策では、回転電機10において、各軸受21,22を、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置している(図2参照)。これにより、複数の軸受が軸方向において回転子を挟んで両側にそれぞれ設けられる構成と比べて、電食の影響を軽減できる。つまり、回転子を複数の軸受により両持ち支持する構成では、高周波磁束の発生に伴い回転子、固定子及び各軸受(すなわち、回転子を挟んで軸方向両側の各軸受)を通る閉回路が形成され、軸電流により軸受の電食が懸念される。これに対し、回転子40を複数の軸受21,22により片持ち支持する構成では上記閉回路が形成されず、軸受の電食が抑制される。
In the second countermeasure against electrolytic corrosion, in the rotating electric machine 10, the bearings 21 and 22 are arranged so as to be biased to one side in the axial direction with respect to the axial center of the rotor 40 (see FIG. 2). Thereby, the influence of electrolytic corrosion can be reduced as compared with a configuration in which a plurality of bearings are provided on both sides of the rotor in the axial direction. In other words, in a configuration in which the rotor is supported at both ends by a plurality of bearings, a closed circuit that passes through the rotor, the stator, and each bearing (that is, each bearing on both sides in the axial direction with the rotor interposed therebetween) is generated as high-frequency magnetic flux is generated. It is formed, and there is a concern that the shaft current causes electrolytic corrosion of the bearing. On the other hand, in a configuration in which the rotor 40 is cantilevered by the plurality of bearings 21 and 22, the closed circuit is not formed, and the electrolytic corrosion of the bearing is suppressed.
また、回転電機10は、軸受21,22の片側配置のための構成に絡み、以下の構成を有する。磁石ホルダ41において、回転子40の径方向に張り出す中間部45に、軸方向に延びて固定子50に対する接触を回避する接触回避部が設けられている(図2参照)。この場合、磁石ホルダ41を経由して軸電流の閉回路が形成される場合にあっては、閉回路長を長くしてその回路抵抗を大きくすることが可能となる。これにより、軸受21,22の電食の抑制を図ることができる。
回 転 In addition, the rotating electric machine 10 has the following configuration in association with the configuration for one-side arrangement of the bearings 21 and 22. In the magnet holder 41, a contact avoiding portion that extends in the axial direction and avoids contact with the stator 50 is provided at an intermediate portion 45 that projects in the radial direction of the rotor 40 (see FIG. 2). In this case, when a closed circuit of the shaft current is formed via the magnet holder 41, the length of the closed circuit can be increased to increase the circuit resistance. Thereby, it is possible to suppress the electrolytic corrosion of the bearings 21 and 22.
回転子40を挟んで軸方向の一方側においてハウジング30に対して軸受ユニット20の保持部材23が固定されるとともに、他方側においてハウジング30及びユニットベース61(固定子ホルダ)が互いに結合されている(図2参照)。本構成によれば、回転軸11の軸方向においてその軸方向の片側に各軸受21,22を偏って配置する構成を好適に実現することができる。また本構成では、ユニットベース61がハウジング30を介して回転軸11に繋がる構成となるため、ユニットベース61を、回転軸11から電気的に離れた位置に配置することができる。なお、ユニットベース61とハウジング30との間に樹脂等の絶縁部材を介在させれば、ユニットベース61と回転軸11とが電気的に一層離れた構成となる。これにより、軸受21,22の電食を適正に抑制することができる。
The holding member 23 of the bearing unit 20 is fixed to the housing 30 on one side in the axial direction with the rotor 40 interposed therebetween, and the housing 30 and the unit base 61 (stator holder) are connected to each other on the other side. (See FIG. 2). According to the present configuration, it is possible to suitably realize a configuration in which the bearings 21 and 22 are biased on one side in the axial direction of the rotating shaft 11. Further, in this configuration, since the unit base 61 is connected to the rotating shaft 11 via the housing 30, the unit base 61 can be arranged at a position electrically separated from the rotating shaft 11. If an insulating member such as a resin is interposed between the unit base 61 and the housing 30, the unit base 61 and the rotating shaft 11 are further electrically separated. Thereby, the electrolytic corrosion of the bearings 21 and 22 can be appropriately suppressed.
本実施形態の回転電機10では、各軸受21,22の片側配置等により、軸受21,22に作用する軸電圧が低減されている。また、回転子40と固定子50との間の電位差が低減されている。そのため、軸受21,22において導電性グリースを用いなくても、軸受21,22に作用する電位差の低減が可能になっている。導電性グリースは、一般的にカーボンなどの細かい粒子を含むため音鳴りが生じることが考えられる。この点、本実施形態では、軸受21,22において非導電性グリースを用いる構成としている。そのため、軸受21,22において音鳴りが生じる不都合を抑制できる。例えば電気自動車などの電動車両への適用時には回転電機10の音鳴り対策が必要になると考えられるが、その音鳴り対策を好適に実施することが可能となる。
回 転 In the rotating electric machine 10 of the present embodiment, the shaft voltage acting on the bearings 21 and 22 is reduced by arranging the bearings 21 and 22 on one side or the like. Further, the potential difference between the rotor 40 and the stator 50 is reduced. Therefore, the potential difference acting on the bearings 21 and 22 can be reduced without using conductive grease in the bearings 21 and 22. Since the conductive grease generally contains fine particles such as carbon, it is considered that sound is generated. In this regard, in this embodiment, the bearings 21 and 22 are configured to use non-conductive grease. For this reason, it is possible to suppress the inconvenience of generating noise in the bearings 21 and 22. For example, when it is applied to an electric vehicle such as an electric vehicle, it is considered that a countermeasure against the noise of the rotating electric machine 10 is required. However, the countermeasure against the noise can be suitably implemented.
第3の電食対策では、固定子巻線51を固定子コア52と共にモールド材によりモールドすることで、固定子50での固定子巻線51の位置ずれを抑制する構成としている(図11参照)。特に本実施形態の回転電機10では、固定子巻線51における周方向の各導線群81の間に導線間部材(ティース)を有していないため、固定子巻線51における位置ずれ生じる懸念が考えられるが、固定子巻線51を固定子コア52と共にモールドすることにより、固定子巻線51の導線位置にずれが抑制される。したがって、固定子巻線51の位置ずれによる磁束の歪みや、それに起因する軸受21,22の電食の発生を抑制することができる。
In the third countermeasure against electrolytic corrosion, the stator winding 51 is molded together with the stator core 52 with a molding material to suppress the displacement of the stator winding 51 in the stator 50 (see FIG. 11). ). In particular, in the rotating electric machine 10 of the present embodiment, since there is no inter-conductor member (teeth) between the respective conductor groups 81 in the circumferential direction of the stator winding 51, there is a concern that a displacement may occur in the stator winding 51. It is conceivable that the stator winding 51 is molded together with the stator core 52 so that the displacement of the conductor wire of the stator winding 51 is suppressed. Therefore, it is possible to suppress the distortion of the magnetic flux due to the displacement of the stator winding 51 and the occurrence of electrolytic corrosion of the bearings 21 and 22 due to the distortion.
なお、固定子コア52を固定するハウジング部材としてのユニットベース61を、炭素繊維強化プラスチック(CFRP)により構成したため、例えばアルミ等により構成する場合に比べて、ユニットベース61への放電が抑制され、ひいては好適な電食対策が可能となっている。
In addition, since the unit base 61 as a housing member for fixing the stator core 52 is made of carbon fiber reinforced plastic (CFRP), discharge to the unit base 61 is suppressed as compared with a case where the unit base 61 is made of, for example, aluminum. As a result, a suitable countermeasure against electric corrosion is possible.
その他、軸受21,22の電食対策として、外輪25及び内輪26の少なくともいずれかをセラミックス材により構成する、又は、外輪25の外側に絶縁スリーブを設ける等の構成を用いることも可能である。
In addition, as a countermeasure against electrolytic corrosion of the bearings 21 and 22, it is also possible to use a configuration in which at least one of the outer ring 25 and the inner ring 26 is made of a ceramic material, or an insulating sleeve is provided outside the outer ring 25.
以下に、他の実施形態を第1実施形態との相違点を中心に説明する。
Hereinafter, another embodiment will be described focusing on differences from the first embodiment.
(第2実施形態)
第2実施形態では、第1実施形態の磁石ユニット42の構成を変更している。以下、磁石ユニット42の構成を中心に詳しく説明する。図22,23に示すように、磁石ユニット42は、周方向に並べて配置されている複数の磁石2001を有している。これらの磁石2001は、それぞれ、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている。 (2nd Embodiment)
In the second embodiment, the configuration of themagnet unit 42 of the first embodiment is changed. Hereinafter, the configuration of the magnet unit 42 will be described in detail mainly. As shown in FIGS. 22 and 23, the magnet unit 42 has a plurality of magnets 2001 arranged side by side in the circumferential direction. Each of these magnets 2001 is oriented such that the direction of the axis of easy magnetization is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, as compared to the q-axis side, which is the boundary of the magnetic poles. A magnet magnetic path is formed along.
第2実施形態では、第1実施形態の磁石ユニット42の構成を変更している。以下、磁石ユニット42の構成を中心に詳しく説明する。図22,23に示すように、磁石ユニット42は、周方向に並べて配置されている複数の磁石2001を有している。これらの磁石2001は、それぞれ、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている。 (2nd Embodiment)
In the second embodiment, the configuration of the
なお、磁石ユニット42は、周方向において隣り合うd軸の極性を異ならせるように、周方向において隣り合う磁石2001の磁化方向(着磁方向)を反対(逆)にしている。つまり、磁束が集中し、極性がN極となるd軸と、磁束が拡散し、極性がS極となるd軸とが周方向に交互となるように、磁石2001の着磁方向を異ならせている。
In the magnet unit 42, the magnetization directions (magnetization directions) of the adjacent magnets 2001 in the circumferential direction are reversed (reverse) so that the polarities of the adjacent d-axes in the circumferential direction are different. In other words, the magnetization directions of the magnet 2001 are made different so that the d-axis, in which the magnetic flux is concentrated and the polarity is N-pole, and the d-axis, in which the magnetic flux is diffused and the polarity is the S-pole, alternate in the circumferential direction. ing.
より詳しく説明すると、図23に示すようにq軸上に設定される中心点を中心として、円弧状の磁石磁路が複数形成されている。この磁石磁路は、中心点を中心とし、かつd軸と、磁石2001の固定子側外面(電機子側周面)との第1交点P1を通過する配向円弧OA上の磁路を含む。なお、配向円弧OAは、配向円弧上の第1交点P1における接線が、d軸に対して平行に近づくように設定されることが望ましい。
More specifically, as shown in FIG. 23, a plurality of arc-shaped magnet magnetic paths are formed around a center point set on the q axis. This magnet magnetic path includes a magnetic path on the oriented circular arc OA centering on the center point and passing through a first intersection point P1 between the d-axis and the stator-side outer surface (armature-side peripheral surface) of the magnet 2001. It is desirable that the oriented arc OA be set such that the tangent at the first intersection P1 on the oriented arc approaches parallel to the d-axis.
また、磁石2001は、q軸を中心として対称に設けられているとともに、周方向に隣接するd軸の間に亘って設けられている。すなわち、周方向において隣り合うd軸間に亘って、磁石2001が周方向に沿って円弧状に設けられている。より詳しく説明すると、配向円弧OAは、周方向に隣り合うd軸の間に亘って設けられており、磁石2001は、少なくとも配向円弧OAの全域に亘って磁路が形成されるように、周方向に隣り合うd軸の間において設けられている。
The magnet 2001 is provided symmetrically with respect to the q axis, and is provided between d axes adjacent in the circumferential direction. That is, the magnet 2001 is provided in an arc shape along the circumferential direction between the adjacent d-axes in the circumferential direction. More specifically, the oriented arc OA is provided between the d-axes adjacent in the circumferential direction, and the magnet 2001 is arranged so that a magnetic path is formed at least over the entire area of the oriented arc OA. It is provided between adjacent d-axes in the direction.
したがって、磁石2001の磁石磁路のうち、配向円弧OAに沿った磁石磁路が最長となっており、配向円弧OAから離れるほど、磁石磁路が短くなりやすくなっている。例えば、磁石2001の磁石磁路のうち、q軸寄りの部分では、反固定子側よりも固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。また、例えば、磁石2001の磁石磁路のうち、d軸寄りの部分では、固定子側よりも反固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。なお、磁石磁路(つまり、配向円弧OA)の形状は、真円の一部である円弧状であっても、楕円の一部である円弧状であってもよい。また、円弧の中心は、q軸上としたが、q軸上でなくてもよい。
Therefore, of the magnet magnetic paths of the magnet 2001, the magnet magnetic path along the oriented arc OA is the longest, and the farther from the oriented arc OA, the shorter the magnet magnetic path is. For example, in a portion of the magnet magnetic path of the magnet 2001 closer to the q-axis, a magnet magnetic path (indicated by a broken line) passing through a portion closer to the stator than an opposite stator is more likely to be shorter. . Further, for example, in a portion of the magnet magnetic path of the magnet 2001 closer to the d-axis, a magnet magnetic path (shown by a broken line) passing through a portion on the side opposite to the stator than the portion on the stator is more likely to be shorter. ing. The shape of the magnet magnetic path (that is, the oriented arc OA) may be an arc that is a part of a perfect circle or an arc that is a part of an ellipse. The center of the arc is on the q-axis, but need not be on the q-axis.
そして、磁石ユニット42は、このようにそれぞれ磁石磁路が形成された円弧状の磁石2001を周方向に並べて配置することにより、円環状に設けられている。
The magnet unit 42 is provided in an annular shape by arranging the arc-shaped magnets 2001 each having a magnet magnetic path as described above in the circumferential direction.
ところで、磁石ユニット42は、前述したように、正弦波形状に近い表面磁束密度分布となるようにすることが望ましく、また、d軸における磁束密度は、なるべく高いことが望ましい。このため、周方向に磁石2001を並べて配置する場合に、隣り合う磁石2001の隙間をなるべく小さくし、かつ、その数を少なくすることが望ましい。ちなみに、ラジアル配向磁石や、パラレル配向磁石を周方向に隙間なく並べた場合、図18に示すように、q軸付近において磁束密度が急峻に変化することとなる。このため、ラジアル配向磁石や、パラレル配向磁石を採用する場合、通常、所定間隔を空けて配置される。
As described above, the magnet unit 42 preferably has a surface magnetic flux density distribution close to a sinusoidal shape, and the magnetic flux density on the d-axis is preferably as high as possible. Therefore, when the magnets 2001 are arranged side by side in the circumferential direction, it is desirable to reduce the gap between the adjacent magnets 2001 as much as possible and to reduce the number thereof. Incidentally, when radially oriented magnets and parallel oriented magnets are arranged in the circumferential direction without gaps, the magnetic flux density changes sharply near the q-axis as shown in FIG. For this reason, when a radially oriented magnet or a parallelly oriented magnet is employed, they are usually arranged at predetermined intervals.
しかしながら、隙間なく磁石2001を並べた場合、磁石2001の周方向端面に対して係合する係合部(側壁など)を配置するスペースがなくなってしまう。また、隙間を設けるとしても、正弦波形状に近い表面磁束密度分布とし、かつ、d軸における磁束密度を高くするためには、周方向における隙間の幅寸法を極力短く(薄く)した方が良い。その場合、隙間の都合上、まわり止め可能な程度の強度(すなわち、幅寸法)を有する係合部を配置することが難しい。そこで、第2実施形態では、磁石ユニット42の磁石2001及び円筒部43を以下のように構成している。なお、第2実施形態では、磁石ホルダ41が磁石保持部に相当する。
However, if the magnets 2001 are arranged without gaps, there is no space for arranging an engaging portion (such as a side wall) that engages with the circumferential end surface of the magnet 2001. Even if a gap is provided, it is better to make the width dimension of the gap in the circumferential direction as short as possible (thin) in order to obtain a surface magnetic flux density distribution close to a sine wave shape and to increase the magnetic flux density in the d-axis. . In that case, it is difficult to dispose the engaging portion having such a strength (that is, the width dimension) that it can be prevented from rotating due to the clearance. Therefore, in the second embodiment, the magnet 2001 and the cylindrical portion 43 of the magnet unit 42 are configured as follows. In the second embodiment, the magnet holder 41 corresponds to a magnet holding unit.
磁石ユニット42の反固定子側周面(反電機子側周面)に、軸方向に沿って凹部2002を設けている。この凹部2002は、反固定子側(円筒部側)に開口している。凹部2002は、q軸の側よりもd軸の側に設けられている。図23では、d軸を中心に開口するように凹部2002が構成されている。より詳しくは、各磁石2001において、反固定子側の角を削るように、径方向に対して斜め(例えば、45度の角度)となる斜面を設けている。これにより、磁石2001を周方向に並べて配置された状態において、磁石ユニット42にd軸を中心に、反固定子側に開口する凹部2002が設けられる。また、凹部2002は、配向円弧OAを避けるように、設けられている。
(4) A concave portion 2002 is provided on the anti-stator-side peripheral surface (anti-armature-side peripheral surface) of the magnet unit 42 along the axial direction. The concave portion 2002 opens on the side opposite to the stator (the cylindrical portion side). The concave portion 2002 is provided on the d-axis side rather than the q-axis side. In FIG. 23, the concave portion 2002 is configured to open around the d-axis. More specifically, in each magnet 2001, a slope that is oblique to the radial direction (for example, an angle of 45 degrees) is provided so as to cut the corner on the side opposite to the stator. Accordingly, in a state where the magnets 2001 are arranged side by side in the circumferential direction, the magnet unit 42 is provided with a concave portion 2002 that opens on the side opposite to the stator around the d-axis. Further, the concave portion 2002 is provided so as to avoid the alignment arc OA.
なお、前述したように、磁石2001の磁石磁路のうち、d軸寄りの部分では、固定子側よりも反固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。そして、磁石磁路が短い場合、外部磁界(例えば、固定子巻線51からの磁界)の影響により、減磁しやすい部分といえる。このため、磁石2001のd軸寄りの部分のうち、反固定子側の部分に凹部2002を設けても、d軸における磁束密度には、ほとんど影響が生じない(磁束密度が低下しない)。
As described above, in a portion of the magnet magnetic path of the magnet 2001 closer to the d-axis, a magnet magnetic path (indicated by a broken line) that passes through a portion on the anti-stator side rather than the stator side is shorter. It is easy to become. When the magnet magnetic path is short, it can be said that the magnetic field is easily demagnetized due to the influence of the external magnetic field (for example, the magnetic field from the stator winding 51). For this reason, even if the concave portion 2002 is provided in the portion of the magnet 2001 closer to the d-axis on the side opposite to the stator, the magnetic flux density on the d-axis is hardly affected (the magnetic flux density does not decrease).
一方、円筒部43には、磁石2001の凹部2002に対して周方向に係合する凸部2003が設けられている。詳しく説明すると、図23に示すように、円筒部43の内周面に、径方向に沿って磁石部側(つまり、固定子側)に突出する凸部2003が設けられている。これらの凸部2003は、凹部2002の形状に合わせて横断面が三角形状となるように、周方向の幅寸法が、径方向において固定子側に近づくにつれて短くなるように形成されている。つまり、円筒部43の内周面から凸部2003の頂点に向かう斜面が設けられており、当該斜面は、凹部2002の斜面の角度に応じた角度(すなわち、径方向に対して45度の角度)に形成されている。また、径方向における凸部2003の寸法(高さ寸法)を、凹部2002の寸法(深さ寸法)と同じとしている。これにより、凸部2003と凹部2002とを好適に係合させることが可能となる。
On the other hand, the cylindrical portion 43 is provided with a convex portion 2003 that engages with the concave portion 2002 of the magnet 2001 in the circumferential direction. More specifically, as shown in FIG. 23, a convex portion 2003 is provided on the inner peripheral surface of the cylindrical portion 43 so as to project toward the magnet portion (that is, the stator side) along the radial direction. These convex portions 2003 are formed so that the width in the circumferential direction becomes shorter as approaching the stator side in the radial direction so that the cross section becomes triangular according to the shape of the concave portion 2002. That is, a slope is provided from the inner peripheral surface of the cylindrical portion 43 to the vertex of the convex portion 2003, and the slope is formed at an angle corresponding to the angle of the slope of the concave portion 2002 (that is, at an angle of 45 degrees with respect to the radial direction). ) Is formed. Further, the dimension (height dimension) of the convex portion 2003 in the radial direction is the same as the dimension (depth dimension) of the concave portion 2002. This makes it possible to suitably engage the convex portion 2003 and the concave portion 2002.
なお、この凸部2003及び凹部2002は、軸方向において磁石ユニット42の範囲内のいずれかの箇所に形成されていればよい。例えば、軸方向に沿って磁石ユニット42の全範囲に亘って凸部2003及び凹部2002が設けられていてもよい。また、凸部2003及び凹部2002は、すべてのd軸において設ける必要はなく、d軸の数よりも少なくてもよい。例えば、90度角度間隔ごとに、凸部2003及び凹部2002を設けるようにしてもよい。また、凸部2003に比較して凹部2002の方が多いのであれば、凸部2003及び凹部2002の数はそれぞれ任意に変更してもよい。
The protrusions 2003 and the recesses 2002 may be formed at any positions within the range of the magnet unit 42 in the axial direction. For example, the convex portion 2003 and the concave portion 2002 may be provided over the entire range of the magnet unit 42 along the axial direction. Further, the projections 2003 and the recesses 2002 do not need to be provided on all d-axes, and may be smaller than the number of d-axes. For example, the convex portion 2003 and the concave portion 2002 may be provided at every 90-degree angle interval. If the number of the concave portions 2002 is larger than that of the convex portions 2003, the numbers of the convex portions 2003 and the concave portions 2002 may be arbitrarily changed.
また、第2実施形態の磁石ユニット42の固定子側外面(電機子側周面)には、軸方向に沿って溝部2004を設けている。この溝部2004は、固定子側に開口している。溝部2004は、d軸の側よりもq軸の側に設けられている。図23では、q軸を中心に開口するように溝部2004が構成されている。この場合、溝部2004は、配向円弧OAを避けるように、設けられている。
溝 Furthermore, a groove 2004 is provided along the axial direction on the stator-side outer surface (armature-side peripheral surface) of the magnet unit 42 of the second embodiment. The groove 2004 is open on the stator side. The groove 2004 is provided on the q-axis side more than the d-axis side. In FIG. 23, the groove 2004 is formed so as to open around the q-axis. In this case, the groove 2004 is provided so as to avoid the orientation arc OA.
そして、回転子40が固定子50に対向して配置された場合、磁石ユニット42よりも径方向内径よりも内側に固定子50(固定子巻線51等)が配置される。このため、溝部2004を設けることにより、溝部2004と、固定子50により囲まれた流路が磁石ユニット42に設けられることとなる。この流路は、軸方向に貫通する通路として機能し、空気などの流体が通過可能に構成されている。つまり、溝部2004の断面積は、空気などの流体が通過する程度の大きさとなっている。
When the rotor 40 is arranged to face the stator 50, the stator 50 (the stator winding 51 and the like) is arranged inside the magnet unit 42 from the radially inner diameter. For this reason, by providing the groove 2004, the magnet unit 42 is provided with a flow path surrounded by the groove 2004 and the stator 50. The flow path functions as a passage penetrating in the axial direction, and is configured to allow a fluid such as air to pass therethrough. That is, the cross-sectional area of the groove 2004 is large enough to allow a fluid such as air to pass through.
なお、前述したように、磁石2001の磁石磁路のうち、q軸寄りの部分では、反固定子側よりも固定子側の部分を通過する磁石磁路(破線で示す)の方が、短くなりやすくなっている。そして、磁石磁路が短い場合、外部磁界(例えば、固定子巻線51からの磁界)の影響により、減磁しやすい部分といえる。このため、磁石2001のq軸寄りの部分のうち、反固定子側よりも固定子側の部分に溝部2004を設けても、d軸における磁束密度には、ほとんど影響が生じない(磁束密度が低下しない)。
As described above, in a portion of the magnet magnetic path of the magnet 2001 closer to the q-axis, a magnet magnetic path (shown by a broken line) passing through a portion closer to the stator than an opposite stator is shorter. It is easy to become. When the magnet magnetic path is short, it can be said that the magnetic field is easily demagnetized due to the influence of the external magnetic field (for example, the magnetic field from the stator winding 51). For this reason, even if the groove 2004 is provided in the portion of the magnet 2001 closer to the stator than the side opposite to the stator in the q-axis, the magnetic flux density on the d-axis is hardly affected (the magnetic flux density is reduced). Does not drop).
なお、第2実施形態において、複数の磁石2001により磁石ユニット42を構成したが、1つの円環状の磁石2001により磁石ユニット42を構成してもよい。
In the second embodiment, the magnet unit 42 is configured by the plurality of magnets 2001, but the magnet unit 42 may be configured by one annular magnet 2001.
第2実施形態によれば、以下の優れた効果を有する。
According to the second embodiment, the following excellent effects are obtained.
磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている複数の磁石2001を磁石ユニット42に利用している。この場合、正弦波形状に近い磁束密度分布とし、かつ、d軸における磁束密度を大きくするためには、周方向に隣り合う磁石2001間の隙間をなるべく小さくするが望ましい。しかしながら、隣り合う磁石2001間の隙間を小さくすると、隙間に配置される係合部が薄くなり、まわり止めを好適に行うことができなくなる。
On the d-axis side that is the center of the magnetic pole, the direction of the easy axis is oriented so as to be parallel to the d-axis as compared with the q-axis side that is the magnetic pole boundary, and a magnet magnetic path is formed along the easy axis. The plurality of magnets 2001 are used for the magnet unit 42. In this case, in order to obtain a magnetic flux density distribution close to a sine wave shape and to increase the magnetic flux density on the d-axis, it is desirable to reduce the gap between the magnets 2001 adjacent in the circumferential direction as much as possible. However, when the gap between the adjacent magnets 2001 is reduced, the engagement portion disposed in the gap becomes thin, and it becomes impossible to suitably perform the rotation stop.
ところで、磁石2001のd軸寄りの部分において、反固定子側の部分は、磁石磁路が短くなりやすくなり、減磁しやすい部分となっている。すなわち、この部分を削除しても、d軸から発生する磁束密度への影響は少ない。つまり、d軸から発生する磁束密度が低下せず、トルクも低下しない。
By the way, in the portion near the d-axis of the magnet 2001, the portion on the side opposite to the stator is a portion in which the magnet magnetic path is likely to be short and demagnetized easily. That is, even if this portion is deleted, the influence on the magnetic flux density generated from the d-axis is small. That is, the magnetic flux density generated from the d-axis does not decrease, and the torque does not decrease.
そこで、磁石ユニット42の反固定子側(円筒部側)の部分であって、q軸よりもd軸の側の部分に、反固定子側、すなわち、円筒部側に開口する凹部2002を設け、円筒部43には、当該凹部2002に係合する凸部2003を設けた。これにより、正弦波形状に近い磁束密度分布とし、かつ、d軸における磁束密度を大きくしつつ、磁石ユニット42のまわり止めを行うことができる。
Therefore, a concave portion 2002 that opens on the anti-stator side, that is, on the cylindrical portion side, is provided in the portion of the magnet unit 42 on the anti-stator side (cylindrical portion side) and on the d-axis side of the q-axis. The cylindrical portion 43 is provided with a convex portion 2003 that engages with the concave portion 2002. Accordingly, the rotation of the magnet unit 42 can be stopped while providing a magnetic flux density distribution close to a sine wave shape and increasing the magnetic flux density on the d-axis.
また、まわり止めを好適に行うことができる強度を確保するように、凹部2002及び凸部2003の周方向における幅寸法(凹部2002の開口部の幅寸法及び凸部2003の基部の幅寸法)を設定している。このため、好適に回り止めを行うことができる。なお、このように幅寸法に設定した場合であっても、当該部分は減磁しやすい部分であるため、凹部2002を設けていない場合と比較して、凹部2002を設けてもd軸における磁束密度の低下を抑制することができる。また、磁石ユニット42の磁石量を減らすことができる。
Also, the widths of the concave portion 2002 and the convex portion 2003 in the circumferential direction (the width of the opening of the concave portion 2002 and the width of the base of the convex portion 2003) are set so as to secure the strength that can appropriately perform the rotation stop. You have set. For this reason, it is possible to suitably perform the detent. Even when the width is set as described above, since the portion is easily demagnetized, the magnetic flux in the d-axis can be reduced even when the concave portion 2002 is provided as compared with the case where the concave portion 2002 is not provided. A decrease in density can be suppressed. Further, the magnet amount of the magnet unit 42 can be reduced.
また、磁石2001において、q軸寄りの部分において、固定子側の部分は、磁石磁路が短くなりやすくなり、減磁しやすい部分となっている。すなわち、この部分を削除しても、d軸から発生する磁束密度への影響は少ない。
に お い て In the magnet 2001, in the portion near the q-axis, the portion on the stator side is a portion where the magnet magnetic path is likely to be short and demagnetized easily. That is, even if this portion is deleted, the influence on the magnetic flux density generated from the d-axis is small.
そこで、q軸寄りの部分において、固定子側の部分に、溝部2004を設けた。これらの溝部2004及びは軸方向に沿って設けられているため、磁石2001を円筒部43の内周面に固定し、回転子40を固定子50に対向配置することにより、軸方向に貫通する流路が設けられることとなる。そして、回転子40の回転時において、これらの流路を空気などの流体が通過するため、磁石ユニット42が冷却されることとなる。すなわち、磁石ユニット42の冷却性能を向上させることができる。
Therefore, a groove portion 2004 was provided in a portion closer to the stator in a portion closer to the q axis. Since these grooves 2004 and are provided along the axial direction, the magnet 2001 is fixed to the inner peripheral surface of the cylindrical portion 43, and the rotor 40 is arranged to face the stator 50 so as to penetrate in the axial direction. A flow path will be provided. When the rotor 40 rotates, a fluid such as air passes through these flow paths, so that the magnet unit 42 is cooled. That is, the cooling performance of the magnet unit 42 can be improved.
また、前述したように、減磁しやすい部分に溝部2004を設けているため、磁束密度に影響を与えることはほとんどない。つまり、トルク低下を抑制しつつ、磁石ユニット42の冷却性能を向上させることができる。また、トルク低下を抑制しつつ、磁石ユニット42の磁石量を好適に減らすことができる。
As described above, since the groove 2004 is provided in a portion where demagnetization is likely to occur, the magnetic flux density is hardly affected. That is, the cooling performance of the magnet unit 42 can be improved while suppressing a decrease in torque. Further, the amount of magnets of the magnet unit 42 can be suitably reduced while suppressing a decrease in torque.
(第3実施形態)
本実施形態では、回転子40における磁石ユニット42の極異方構造を変更しており、以下に詳しく説明する。 (Third embodiment)
In the present embodiment, the pole anisotropic structure of themagnet unit 42 in the rotor 40 is changed, and will be described in detail below.
本実施形態では、回転子40における磁石ユニット42の極異方構造を変更しており、以下に詳しく説明する。 (Third embodiment)
In the present embodiment, the pole anisotropic structure of the
図24及び図25に示すように、磁石ユニット42は、ハルバッハ配列と称される磁石配列を用いて構成されている。すなわち、磁石ユニット42は、磁化方向(磁化ベクトルの向き)を径方向とする第1磁石131と、磁化方向(磁化ベクトルの向き)を周方向とする第2磁石132とを有しており、周方向に所定間隔で第1磁石131が配置されるとともに、周方向において隣り合う第1磁石131の間となる位置に第2磁石132が配置されている。第1磁石131及び第2磁石132は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。
As shown in FIGS. 24 and 25, the magnet unit 42 is configured using a magnet array called a Halbach array. That is, the magnet unit 42 includes the first magnet 131 having the magnetization direction (the direction of the magnetization vector) in the radial direction and the second magnet 132 having the magnetization direction (the direction of the magnetization vector) in the circumferential direction. The first magnets 131 are arranged at predetermined intervals in the circumferential direction, and the second magnets 132 are arranged at positions between the adjacent first magnets 131 in the circumferential direction. The first magnet 131 and the second magnet 132 are permanent magnets made of a rare earth magnet such as a neodymium magnet.
第1磁石131は、固定子50に対向する側(径方向内側)の極が交互にN極、S極となるように周方向に互いに離間して配置されている。また、第2磁石132は、各第1磁石131の隣において周方向に極性が交互となるように配置されている。これら各磁石131,132を囲うように設けられる円筒部43は、軟磁性材料よりなる軟磁性体コアであるとよく、バックコアとして機能する。なお、この第2実施形態の磁石ユニット42も、d-q座標系において、d軸やq軸に対する磁化容易軸の関係は上記第1実施形態と同じである。
The first magnets 131 are circumferentially separated from each other such that the poles on the side facing the stator 50 (inside in the radial direction) alternately become N poles and S poles. The second magnets 132 are arranged adjacent to the first magnets 131 so that the polarities alternate in the circumferential direction. The cylindrical portion 43 provided to surround each of the magnets 131 and 132 is preferably a soft magnetic core made of a soft magnetic material, and functions as a back core. The magnet unit 42 of the second embodiment also has the same relationship of the easy axis to the d-axis and the q-axis in the dq coordinate system as in the first embodiment.
また、第1磁石131の径方向外側、すなわち磁石ホルダ41の円筒部43の側には、軟磁性材料よりなる磁性体133が配置されている。例えば磁性体133は、電磁鋼板や軟鉄、圧粉鉄心材料により構成されているとよい。この場合、磁性体133の周方向の長さは第1磁石131の周方向の長さ(特に第1磁石131の外周部の周方向の長さ)と同じである。また、第1磁石131と磁性体133とを一体化した状態でのその一体物の径方向の厚さは、第2磁石132の径方向の厚さと同じである。換言すれば、第1磁石131は第2磁石132よりも磁性体133の分だけ径方向の厚さが薄くなっている。各磁石131,132と磁性体133とは、例えば接着剤により相互に固着されている。磁石ユニット42において第1磁石131の径方向外側は、固定子50とは反対側であり、磁性体133は、径方向における第1磁石131の両側のうち、固定子50とは反対側(反固定子側)に設けられている。
磁性 A magnetic body 133 made of a soft magnetic material is disposed radially outside the first magnet 131, that is, on the side of the cylindrical portion 43 of the magnet holder 41. For example, the magnetic body 133 may be made of an electromagnetic steel sheet, soft iron, or a powdered iron core material. In this case, the circumferential length of the magnetic body 133 is the same as the circumferential length of the first magnet 131 (in particular, the circumferential length of the outer peripheral portion of the first magnet 131). Further, the radial thickness of the integrated body in a state where the first magnet 131 and the magnetic body 133 are integrated is the same as the radial thickness of the second magnet 132. In other words, the thickness of the first magnet 131 in the radial direction is smaller than that of the second magnet 132 by the amount of the magnetic body 133. The magnets 131 and 132 and the magnetic body 133 are fixed to each other by, for example, an adhesive. In the magnet unit 42, the radial outside of the first magnet 131 is on the opposite side to the stator 50, and the magnetic body 133 is located on the opposite side (anti- On the stator side).
磁性体133の外周部には、径方向外側、すなわち磁石ホルダ41の円筒部43の側に突出する凸部としてのキー134が形成されている。また、円筒部43の内周面には、磁性体133のキー134を収容する凹部としてのキー溝135が形成されている。キー134の突出形状とキー溝135の溝形状とは同じであり、各磁性体133に形成されたキー134に対応して、キー134と同数のキー溝135が形成されている。キー134及びキー溝135の係合により、第1磁石131及び第2磁石132と磁石ホルダ41との周方向(回転方向)の位置ずれが抑制されている。なお、キー134及びキー溝135(凸部及び凹部)を、磁石ホルダ41の円筒部43及び磁性体133のいずれに設けるかは任意でよく、上記とは逆に、磁性体133の外周部にキー溝135を設けるとともに、磁石ホルダ41の円筒部43の内周部にキー134を設けることも可能である。
キ ー A key 134 is formed on the outer periphery of the magnetic body 133 as a protrusion protruding radially outward, that is, toward the cylindrical portion 43 of the magnet holder 41. Further, a key groove 135 is formed on the inner peripheral surface of the cylindrical portion 43 as a concave portion for accommodating the key 134 of the magnetic body 133. The protruding shape of the key 134 and the groove shape of the key groove 135 are the same, and the same number of key grooves 135 as the keys 134 are formed corresponding to the keys 134 formed on each magnetic body 133. By the engagement of the key 134 and the key groove 135, the positional displacement of the first magnet 131 and the second magnet 132 and the magnet holder 41 in the circumferential direction (rotation direction) is suppressed. The key 134 and the key groove 135 (convex portion and concave portion) may be provided in any of the cylindrical portion 43 of the magnet holder 41 and the magnetic member 133, and conversely, on the outer peripheral portion of the magnetic member 133. In addition to providing the key groove 135, it is also possible to provide the key 134 on the inner peripheral portion of the cylindrical portion 43 of the magnet holder 41.
ここで、磁石ユニット42では、第1磁石131と第2磁石132とを交互に配列することにより、第1磁石131での磁束密度を大きくすることが可能となっている。そのため、磁石ユニット42において、磁束の片面集中を生じさせ、固定子50寄りの側での磁束強化を図ることができる。
Here, in the magnet unit 42, the magnetic flux density in the first magnet 131 can be increased by alternately arranging the first magnets 131 and the second magnets 132. Therefore, in the magnet unit 42, the magnetic flux is concentrated on one side, and the magnetic flux on the side closer to the stator 50 can be enhanced.
また、第1磁石131の径方向外側、すなわち反固定子側に磁性体133を配置したことにより、第1磁石131の径方向外側での部分的な磁気飽和を抑制でき、ひいては磁気飽和に起因して生じる第1磁石131の減磁を抑制できる。これにより、結果的に磁石ユニット42の磁力を増加させることが可能となっている。本実施形態の磁石ユニット42は、言うなれば、第1磁石131において減磁が生じ易い部分を磁性体133に置き換えた構成となっている。
Further, by arranging the magnetic body 133 radially outside the first magnet 131, that is, on the side opposite to the stator, it is possible to suppress partial magnetic saturation outside the first magnet 131 in the radial direction, and as a result, magnetic saturation occurs. The demagnetization of the first magnet 131 generated as a result can be suppressed. As a result, the magnetic force of the magnet unit 42 can be increased. In other words, the magnet unit 42 of the present embodiment has a configuration in which a portion of the first magnet 131 where demagnetization is likely to occur is replaced with a magnetic body 133.
図26(a)、図26(b)は、磁石ユニット42における磁束の流れを具体的に示す図であり、図26(a)は、磁石ユニット42において磁性体133を有していない従来構成を用いた場合を示し、図26(b)は、磁石ユニット42において磁性体133を有している本実施形態の構成を用いた場合を示している。なお、図26(a)、図26(b)では、磁石ホルダ41の円筒部43及び磁石ユニット42を直線状に展開して示しており、図の下側が固定子側、上側が反固定子側となっている。
26A and 26B are diagrams specifically showing the flow of magnetic flux in the magnet unit 42. FIG. 26A shows a conventional configuration in which the magnet unit 42 does not have the magnetic body 133. FIG. 26B shows a case where the configuration of the present embodiment in which the magnet unit 42 has the magnetic body 133 is used. 26 (a) and 26 (b), the cylindrical portion 43 and the magnet unit 42 of the magnet holder 41 are linearly developed and shown. Side.
図26(a)の構成では、第1磁石131の磁束作用面と第2磁石132の側面とが、それぞれ円筒部43の内周面に接触している。また、第2磁石132の磁束作用面が第1磁石131の側面に接触している。この場合、円筒部43には、第2磁石132の外側経路を通って第1磁石131との接触面に入る磁束F1と、円筒部43と略平行で、かつ第2磁石132の磁束F2を引きつける磁束との合成磁束が生じる。そのため、円筒部43において第1磁石131と第2磁石132との接触面付近において、部分的に磁気飽和が生じることが懸念される。
In the configuration of FIG. 26A, the magnetic flux acting surface of the first magnet 131 and the side surface of the second magnet 132 are in contact with the inner peripheral surface of the cylindrical portion 43, respectively. The magnetic flux acting surface of the second magnet 132 is in contact with the side surface of the first magnet 131. In this case, the magnetic flux F1 entering the contact surface with the first magnet 131 through the outer path of the second magnet 132 and the magnetic flux F2 of the second magnet 132 substantially parallel to the cylindrical portion 43 pass through the cylindrical portion 43. A combined magnetic flux with the attracting magnetic flux is generated. Therefore, there is a concern that magnetic saturation may partially occur near the contact surface between the first magnet 131 and the second magnet 132 in the cylindrical portion 43.
これに対し、図26(b)の構成では、第1磁石131の固定子50とは反対側において第1磁石131の磁束作用面と円筒部43の内周面との間に磁性体133が設けられているため、その磁性体133で磁束の通過が許容される。したがって、円筒部43での磁気飽和を抑制でき、減磁に対する耐力が向上する。
On the other hand, in the configuration of FIG. 26B, the magnetic body 133 is provided between the magnetic flux acting surface of the first magnet 131 and the inner peripheral surface of the cylindrical portion 43 on the opposite side of the stator 50 of the first magnet 131. Since it is provided, the magnetic body 133 allows the passage of magnetic flux. Therefore, magnetic saturation in the cylindrical portion 43 can be suppressed, and the proof strength against demagnetization is improved.
また、図26(b)の構成では、図26(a)とは異なり、磁気飽和を促すF2を消すことができる。これにより、磁気回路全体のパーミアンスを効果的に向上させることができる。このように構成することで、その磁気回路特性を、過酷な高熱条件下でも保つことができる。
26 (b), unlike the configuration of FIG. 26 (a), F2 which promotes magnetic saturation can be eliminated. Thereby, the permeance of the entire magnetic circuit can be effectively improved. With this configuration, the magnetic circuit characteristics can be maintained even under severe high-temperature conditions.
また、従来のSPMロータにおけるラジアル磁石と比べて、磁石内部を通る磁石磁路が長くなる。そのため、磁石パーミアンスが上昇し、磁力を上げ、トルクを増強することができる。さらに、磁束がd軸の中央に集まることにより、正弦波整合率を高くすることができる。特に、PWM制御により、電流波形を正弦波や台形波とする、又は120度通電のスイッチングICを利用すると、より効果的にトルクを増強することができる。
磁石 In addition, compared to the radial magnet in the conventional SPM rotor, the magnet magnetic path passing inside the magnet is longer. Therefore, the magnet permeance increases, the magnetic force can be increased, and the torque can be increased. Further, since the magnetic flux is concentrated at the center of the d-axis, the sine wave matching ratio can be increased. In particular, when the current waveform is changed to a sine wave or a trapezoidal wave by the PWM control, or a switching IC with 120-degree conduction is used, the torque can be more effectively increased.
なお、固定子コア52が電磁鋼板により構成される場合において、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さの1/2、又は1/2よりも大きいとよい。例えば、固定子コア52の径方向厚さは、磁石ユニット42において磁極中心に設けられる第1磁石131の径方向厚さの1/2以上であるとよい。また、固定子コア52の径方向厚さは、磁石ユニット42の径方向厚さより小さいとよい。この場合、磁石磁束は約1[T]であり、固定子コア52の飽和磁束密度は2[T]であるため、固定子コア52の径方向厚さを、磁石ユニット42の径方向厚さの1/2以上にすることで、固定子コア52の内周側への磁束漏洩を防ぐことができる。
In the case where the stator core 52 is made of an electromagnetic steel plate, the radial thickness of the stator core 52 may be 1 / or larger than 径 of the radial thickness of the magnet unit 42. For example, the radial thickness of the stator core 52 is preferably equal to or more than の of the radial thickness of the first magnet 131 provided at the center of the magnetic pole in the magnet unit 42. Further, the radial thickness of the stator core 52 may be smaller than the radial thickness of the magnet unit 42. In this case, the magnetic flux of the magnet is about 1 [T], and the saturation magnetic flux density of the stator core 52 is 2 [T], so that the radial thickness of the stator core 52 is reduced by the radial thickness of the magnet unit 42. By not less than の of the above, it is possible to prevent magnetic flux leakage to the inner peripheral side of the stator core 52.
ハルバッハ構造や極異方構造の磁石では、磁路が擬似円弧状になっているため、周方向の磁束を扱う磁石厚みに比例して、その磁束を上昇させることができる。こういった構成においては、固定子コア52に流れる磁束は、周方向の磁束を超えることはないと考えられる。すなわち、磁石の磁束1[T]に対して飽和磁束密度2[T]の鉄系金属を利用した場合、固定子コア52の厚みを磁石厚みの半分以上とすれば、磁気飽和せず好適に小型かつ軽量の回転電機を提供することができる。ここで、磁石磁束に対して固定子50からの反磁界が作用するため、磁石磁束は一般的に0.9[T]以下となる。そのため、固定子コアは磁石の半分の厚みを持てば、その透磁率を好適に高く保つことができる。
(4) In a magnet having a Halbach structure or a very anisotropic structure, since the magnetic path has a pseudo-arc shape, the magnetic flux can be increased in proportion to the thickness of the magnet that handles the magnetic flux in the circumferential direction. In such a configuration, it is considered that the magnetic flux flowing through the stator core 52 does not exceed the magnetic flux in the circumferential direction. That is, when an iron-based metal having a saturation magnetic flux density of 2 [T] with respect to the magnetic flux of 1 [T] of the magnet is used, if the thickness of the stator core 52 is set to half or more of the thickness of the magnet, magnetic saturation does not occur. A small and lightweight rotating electric machine can be provided. Here, since the demagnetizing field from the stator 50 acts on the magnet magnetic flux, the magnet magnetic flux is generally 0.9 [T] or less. Therefore, if the stator core has half the thickness of the magnet, its magnetic permeability can be kept suitably high.
以下に、上述した構成の一部を変更した変形例について説明する。
Hereinafter, a modified example in which a part of the above-described configuration is changed will be described.
(変形例1)
上記実施形態では、固定子コア52の外周面を凹凸のない曲面状とし、その外周面に所定間隔で複数の導線群81を並べて配置する構成としたが、これを変更してもよい。例えば、図27に示すように、固定子コア52は、固定子巻線51の径方向両側のうち回転子40とは反対側(図の下側)に設けられた円環状のヨーク141と、そのヨーク141から、周方向に隣り合う直線部83の間に向かって突出するように延びる突起部142とを有している。突起部142は、ヨーク141の径方向外側、すなわち回転子40側に所定間隔で設けられている。固定子巻線51の各導線群81は、突起部142と周方向において係合しており、突起部142を導線群81の位置決め部として用いつつ周方向に並べて配置されている。なお、突起部142が「導線間部材」に相当する。 (Modification 1)
In the above-described embodiment, the outer peripheral surface of thestator core 52 is formed into a curved surface without irregularities, and the plurality of conductive wire groups 81 are arranged at predetermined intervals on the outer peripheral surface. However, this may be changed. For example, as shown in FIG. 27, the stator core 52 includes an annular yoke 141 provided on the opposite side (lower side in the figure) to the rotor 40 on both radial sides of the stator winding 51, A projection 142 extends from the yoke 141 so as to project between the linear portions 83 adjacent in the circumferential direction. The protrusions 142 are provided at predetermined intervals on the radially outer side of the yoke 141, that is, on the rotor 40 side. Each conductor group 81 of the stator winding 51 is engaged with the protrusion 142 in the circumferential direction, and is arranged side by side in the circumferential direction while using the protrusion 142 as a positioning portion of the conductor group 81. Note that the protrusion 142 corresponds to a “member between conductive wires”.
上記実施形態では、固定子コア52の外周面を凹凸のない曲面状とし、その外周面に所定間隔で複数の導線群81を並べて配置する構成としたが、これを変更してもよい。例えば、図27に示すように、固定子コア52は、固定子巻線51の径方向両側のうち回転子40とは反対側(図の下側)に設けられた円環状のヨーク141と、そのヨーク141から、周方向に隣り合う直線部83の間に向かって突出するように延びる突起部142とを有している。突起部142は、ヨーク141の径方向外側、すなわち回転子40側に所定間隔で設けられている。固定子巻線51の各導線群81は、突起部142と周方向において係合しており、突起部142を導線群81の位置決め部として用いつつ周方向に並べて配置されている。なお、突起部142が「導線間部材」に相当する。 (Modification 1)
In the above-described embodiment, the outer peripheral surface of the
突起部142は、ヨーク141からの径方向の厚さ寸法、言い換えれば、図27に示すように、ヨーク141の径方向において、直線部83のヨーク141に隣接する内側面320から突起部142の頂点までの距離Wが、径方向内外の複数層の直線部83のうち、ヨーク141に径方向に隣接する直線部83の径方向の厚さ寸法の1/2(図のH1)よりも小さい構成となっている。言い換えれば、固定子巻線51(固定子コア52)の径方向における導線群81(伝導部材)の寸法(厚み)T1(導線82の厚みの2倍、言い換えれば、導線群81の固定子コア52に接する面320と、導線群81の回転子40に向いた面330との最短距離)の4分の3の範囲は非磁性部材(封止部材57)が占有していればよい。こうした突起部142の厚さ制限により、周方向に隣り合う導線群81(すなわち直線部83)の間において突起部142がティースとして機能せず、ティースによる磁路形成がなされないようになっている。突起部142は、周方向に並ぶ各導線群81の間ごとに全て設けられていなくてもよく、周方向に隣り合う少なくとも1組の導線群81の間に設けられていればよい。例えば、突起部142は、周方向において各導線群81の間の所定数ごとに等間隔で設けられているとよい。突起部142の形状は、矩形状、円弧状など任意の形状でよい。
The projection 142 has a thickness in the radial direction from the yoke 141, in other words, as shown in FIG. 27, the projection 142 extends from the inner side surface 320 adjacent to the yoke 141 of the linear portion 83 in the radial direction of the yoke 141. The distance W to the apex is smaller than 1/2 (H1 in the figure) of the radial thickness of the linear portion 83 radially adjacent to the yoke 141 among the linear portions 83 in the radially inner and outer layers. It has a configuration. In other words, the dimension (thickness) T1 of the conductive wire group 81 (conductive member) in the radial direction of the stator winding 51 (stator core 52) (twice the thickness of the conductive wire 82, in other words, the stator core of the conductive wire group 81) The non-magnetic member (sealing member 57) may occupy three-quarters of the range (the shortest distance between the surface 320 in contact with 52 and the surface 330 of the conductor group 81 facing the rotor 40). Due to the thickness limitation of the protrusions 142, the protrusions 142 do not function as teeth between the conductive wire groups 81 (that is, the linear portions 83) that are adjacent in the circumferential direction, and no magnetic path is formed by the teeth. . The protrusions 142 may not be provided entirely between the conductor groups 81 arranged in the circumferential direction, but may be provided between at least one set of conductor groups 81 adjacent in the circumferential direction. For example, the protrusions 142 may be provided at regular intervals in a predetermined number between the conductive wire groups 81 in the circumferential direction. The shape of the protrusion 142 may be an arbitrary shape such as a rectangular shape or an arc shape.
また、固定子コア52の外周面では、直線部83が一層で設けられていてもよい。したがって、広義には、突起部142におけるヨーク141からの径方向の厚さ寸法は、直線部83における径方向の厚さ寸法の1/2よりも小さいものであればよい。
直線 Further, on the outer peripheral surface of the stator core 52, a single linear portion 83 may be provided. Therefore, in a broad sense, the thickness of the projection 142 in the radial direction from the yoke 141 may be smaller than half the thickness of the straight portion 83 in the radial direction.
なお、回転軸11の軸心を中心とし、かつヨーク141に径方向に隣接する直線部83の径方向の中心位置を通る仮想円を想定すると、突起部142は、その仮想円の範囲内においてヨーク141から突出する形状、換言すれば仮想円よりも径方向外側(すなわち回転子40側)に突出しない形状をなしているとよい。
In addition, assuming a virtual circle centered on the axis of the rotating shaft 11 and passing through the radial center position of the linear portion 83 radially adjacent to the yoke 141, the protrusion 142 is positioned within the range of the virtual circle. It is preferable to have a shape that protrudes from the yoke 141, in other words, a shape that does not protrude radially outward (ie, toward the rotor 40) from the virtual circle.
上記構成によれば、突起部142は、径方向の厚さ寸法が制限されており、周方向に隣り合う直線部83の間においてティースとして機能するものでないため、各直線部83の間にティースが設けられている場合に比べて、隣り合う各直線部83を近づけることができる。これにより、導体82aの断面積を大きくすることができ、固定子巻線51の通電に伴い生じる発熱を低減することができる。かかる構成では、ティースがないことで磁気飽和の解消が可能となり、固定子巻線51への通電電流を増大させることが可能となる。この場合において、その通電電流の増大に伴い発熱量が増えることに好適に対処することができる。また、固定子巻線51では、ターン部84が、径方向にシフトされ、他のターン部84との干渉を回避する干渉回避部を有することから、異なるターン部84同士を径方向に離して配置することができる。これにより、ターン部84においても放熱性の向上を図ることができる。以上により、固定子50での放熱性能を適正化することが可能になっている。
According to the above configuration, the thickness of the protrusion 142 in the radial direction is limited and does not function as a tooth between the linear portions 83 adjacent in the circumferential direction. Is provided, adjacent linear portions 83 can be brought closer to each other. Thereby, the cross-sectional area of the conductor 82a can be increased, and the heat generated due to the energization of the stator winding 51 can be reduced. In such a configuration, magnetic saturation can be eliminated by the absence of teeth, and the current flowing through the stator winding 51 can be increased. In this case, it is possible to suitably cope with an increase in the amount of heat generated with an increase in the supplied current. Further, in the stator winding 51, since the turn portion 84 is shifted in the radial direction and has an interference avoiding portion that avoids interference with another turn portion 84, the different turn portions 84 are separated from each other in the radial direction. Can be arranged. Thereby, the heat radiation of the turn portion 84 can be improved. As described above, it is possible to optimize the heat radiation performance of the stator 50.
また、固定子コア52のヨーク141と、回転子40の磁石ユニット42(すなわち各磁石91,92)とが所定距離以上離れていれば、突起部142の径方向の厚さ寸法は、図27のH1に縛られるものではない。具体的には、ヨーク141と磁石ユニット42とが2mm以上離れていれば、突起部142の径方向の厚さ寸法は、図27のH1以上であってもよい。例えば、直線部83の径方向厚み寸法が2mmを越えており、かつ導線群81が径方向内外の2層の導線82により構成されている場合に、ヨーク141に隣接していない直線部83、すなわちヨーク141から数えて2層目の導線82の半分位置までの範囲で、突起部142が設けられていてもよい。この場合、突起部142の径方向厚さ寸法が「H1×3/2」までになっていれば、導線群81における導体断面積を大きくすることで、前記効果を少なからず得ることはできる。
If the yoke 141 of the stator core 52 and the magnet unit 42 of the rotor 40 (that is, each of the magnets 91 and 92) are separated by a predetermined distance or more, the radial thickness of the protrusion 142 will be as shown in FIG. H1. Specifically, if the yoke 141 and the magnet unit 42 are separated from each other by 2 mm or more, the radial thickness of the protrusion 142 may be H1 or more in FIG. For example, when the thickness of the straight portion 83 in the radial direction exceeds 2 mm and the conductor group 81 is formed of two layers of conductors 82 inside and outside the radial direction, the straight portion 83 not adjacent to the yoke 141, That is, the protrusion 142 may be provided in a range from the yoke 141 to a half position of the second-layer conductive wire 82. In this case, if the radial thickness of the protrusion 142 is up to “H1 × 3/2”, the effect can be obtained to a considerable extent by increasing the conductor cross-sectional area in the conductor group 81.
また、固定子コア52は、図28に示す構成であってもよい。なお、図28では、封止部材57を省略しているが、封止部材57が設けられていてもよい。図28では、便宜上、磁石ユニット42及び固定子コア52を直線状に展開して示している。
Further, the stator core 52 may have a configuration shown in FIG. Although the sealing member 57 is omitted in FIG. 28, the sealing member 57 may be provided. In FIG. 28, for convenience, the magnet unit 42 and the stator core 52 are shown as being linearly developed.
図28の構成では、固定子50は、周方向に隣接する導線82(すなわち直線部83)の間に、導線間部材としての突起部142を有している。固定子50は、固定子巻線51が通電されると、磁石ユニット42の磁極の一つ(N極、またはS極)とともに磁気的に機能し、固定子50の周方向に延びる一部分350を有する。この部分350の固定子50の周方向への長さをWnとすると、この長さ範囲Wnに存在する突起部142の合計の幅(すなわち、固定子50の周方向への合計の寸法)をWtとし、突起部142の飽和磁束密度をBs、磁石ユニット42の1極分の周方向の幅寸法をWm、磁石ユニット42の残留磁束密度をBrとする場合、突起部142は、
Wt×Bs≦Wm×Br …(1)
となる磁性材料により構成されている。 In the configuration of FIG. 28, thestator 50 has a protrusion 142 as a member between conductive wires between the conductive wires 82 (that is, the linear portions 83) adjacent in the circumferential direction. When the stator winding 51 is energized, the stator 50 functions magnetically together with one of the magnetic poles (N-pole or S-pole) of the magnet unit 42 and forms a part 350 extending in the circumferential direction of the stator 50. Have. Assuming that the length of the portion 350 in the circumferential direction of the stator 50 is Wn, the total width of the protrusions 142 existing in this length range Wn (that is, the total dimension of the stator 50 in the circumferential direction) is defined as Wn. Wt, the saturation magnetic flux density of the projection 142 is Bs, the circumferential width of one pole of the magnet unit 42 is Wm, and the residual magnetic flux density of the magnet unit 42 is Br.
Wt × Bs ≦ Wm × Br (1)
And a magnetic material.
Wt×Bs≦Wm×Br …(1)
となる磁性材料により構成されている。 In the configuration of FIG. 28, the
Wt × Bs ≦ Wm × Br (1)
And a magnetic material.
なお、範囲Wnは、周方向に隣接する複数の導線群81であって、励磁時期が重複する複数の導線群81を含むように設定される。その際、範囲Wnを設定する際の基準(境界)として、導線群81の間隙56の中心を設定することが好ましい。例えば、図28に例示する構成の場合、周方向においてN極の磁極中心からの距離が最も短いものから順番に、4番目までの導線群81が、当該複数の導線群81に相当する。そして、当該4つの導線群81を含むように範囲Wnが設定される。その際、範囲Wnの端(起点と終点)が間隙56の中心とされている。
The range Wn is set so as to include a plurality of conductor groups 81 that are adjacent in the circumferential direction and include a plurality of conductor groups 81 whose excitation timings overlap. At this time, it is preferable to set the center of the gap 56 of the conductive wire group 81 as a reference (boundary) when setting the range Wn. For example, in the case of the configuration illustrated in FIG. 28, the fourth conductor group 81 up to the fourth from the shortest distance from the magnetic pole center of the N pole in the circumferential direction corresponds to the plurality of conductor groups 81. Then, the range Wn is set to include the four conductive wire groups 81. At this time, the end (start point and end point) of the range Wn is the center of the gap 56.
図28において、範囲Wnの両端には、それぞれ突起部142が半分ずつ含まれていることから、範囲Wnには、合計4つ分の突起部142が含まれている。したがって、突起部142の幅(すなわち、固定子50の周方向における突起部142の寸法、言い換えれば、隣接する導線群81の間隔)をAとすると、範囲Wnに含まれる突起部142の合計の幅は、Wt=1/2A+A+A+A+1/2A=4Aとなる。
に お い て In FIG. 28, since the projections 142 are each half included at both ends of the range Wn, the range Wn includes a total of four projections 142. Therefore, if the width of the protrusion 142 (that is, the dimension of the protrusion 142 in the circumferential direction of the stator 50, in other words, the interval between the adjacent conductor groups 81) is A, the total of the protrusions 142 included in the range Wn is assumed. The width is Wt = 1 / 2A + A + A + A + 1 / 2A = 4A.
詳しくは、本実施形態では、固定子巻線51の3相巻線が分布巻であり、その固定子巻線51では、磁石ユニット42の1極に対して、突起部142の数、すなわち各導線群81の間となる間隙56の数が「相数×Q」個となっている。ここでQとは、1相の導線82のうち固定子コア52と接する数である。なお、導線82が回転子40の径方向に積層された導線群81である場合には、1相の導線群81の内周側の導線82の数であるともいえる。この場合、固定子巻線51の3相巻線が各相所定順序で通電されると、1極内において2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の合計幅寸法Wtは、突起部142(つまり、間隙56)の周方向の幅寸法をAとすると、「励磁される相数×Q×A=2×2×A」となる。
Specifically, in the present embodiment, the three-phase winding of the stator winding 51 is a distributed winding, and in the stator winding 51, the number of the protrusions 142, The number of the gaps 56 between the conductor groups 81 is “the number of phases × Q”. Here, Q is the number of one-phase conductive wires 82 that comes into contact with stator core 52. When the conductors 82 are the conductor groups 81 stacked in the radial direction of the rotor 40, the number of conductors 82 on the inner peripheral side of the one-phase conductor group 81 can be said. In this case, when the three-phase winding of the stator winding 51 is energized in a predetermined order for each phase, the projections 142 for two phases are excited within one pole. Therefore, the total circumferential width Wt of the protrusions 142 that is excited by energization of the stator winding 51 in the range of one pole of the magnet unit 42 is equal to the circumferential width of the protrusions 142 (that is, the gap 56). Assuming that the dimension is A, “the number of excited phases × Q × A = 2 × 2 × A” is obtained.
そして、こうして合計幅寸法Wtが規定された上で、固定子コア52において、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、合計幅寸法Wtは、1極内において比透磁率が1よりも大きくなりえる部分の周方向寸法でもある。また、余裕を考えて、合計幅寸法Wtを、1磁極における突起部142の周方向の幅寸法としてもよい。具体的には、磁石ユニット42の1極に対する突起部142の数が「相数×Q」であることから、1磁極における突起部142の周方向の幅寸法(合計幅寸法Wt)を、「相数×Q×A=3×2×A=6A」としてもよい。
Then, after the total width dimension Wt is defined in this way, in the stator core 52, the protrusions 142 are formed as a magnetic material satisfying the above-described relationship (1). Note that the total width dimension Wt is also a circumferential dimension of a portion where relative magnetic permeability can be larger than 1 in one pole. Further, in consideration of a margin, the total width dimension Wt may be set to the circumferential width dimension of the projection 142 at one magnetic pole. Specifically, since the number of the projections 142 for one pole of the magnet unit 42 is “the number of phases × Q”, the circumferential width dimension (total width dimension Wt) of the projections 142 for one magnetic pole is set to “ The number of phases × Q × A = 3 × 2 × A = 6A ”.
なお、ここでいう分布巻とは、磁極の1極対周期(N極とS極)で、固定子巻線51の一極対があるものである。ここでいう固定子巻線51の一極対は、電流が互いに逆方向に流れ、ターン部84で電気的に接続された2つの直線部83とターン部84からなる。上記条件みたすものであれば、短節巻(Short Pitch Winding)であっても、全節巻(Full Pitch Winding)の分布巻の均等物とみなす。
分布 Note that the term “distributed winding” used herein refers to a period of one pole pair of magnetic poles (N pole and S pole) and one pole pair of the stator winding 51. The one pole pair of the stator winding 51 here includes two straight portions 83 and a turn portion 84 in which currents flow in opposite directions and are electrically connected by a turn portion 84. If the above conditions are satisfied, even a short-pitch winding (Short Pitch Winding) is regarded as an equivalent of a distributed winding of a full-pitch winding.
次に、集中巻の場合の例を示す。ここでいう集中巻とは、磁極の1極対の幅と、固定子巻線51の一極対の幅とが異なるものである。集中巻の一例としては、1つの磁極対に対して導線群81が3つ、2つの磁極対に対して導線群81が3つ、4つの磁極対に対して導線群81が9つ、5つの磁極対に対して導線群81が9つのような関係であるものが挙げられる。
Next, an example of concentrated winding is shown. The term “concentrated winding” as used herein means that the width of one pole pair of magnetic poles is different from the width of one pole pair of the stator winding 51. As an example of concentrated winding, three conductor groups 81 for one magnetic pole pair, three conductor groups 81 for two magnetic pole pairs, nine conductor groups 81 for four magnetic pole pairs, and 5 There is one in which the conductor group 81 has nine relations to one magnetic pole pair.
ここで、固定子巻線51を集中巻とする場合には、固定子巻線51の3相巻線が所定順序で通電されると、2相分の固定子巻線51が励磁される。その結果、2相分の突起部142が励磁される。したがって、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法Wtは、「A×2」となる。そして、こうして幅寸法Wtが規定された上で、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、上記で示した集中巻の場合は、同一相の導線群81に囲まれた領域において、固定子50の周方向にある突起部142の幅の総和をAとする。また、集中巻におけるWmは「磁石ユニット42のエアギャップに対向する面の全周」×「相数」÷「導線群81の分散数」に相当する。
Here, when the stator windings 51 are concentrated windings, when the three-phase windings of the stator windings 51 are energized in a predetermined order, the stator windings 51 for two phases are excited. As a result, the projections 142 for two phases are excited. Therefore, in the range of one pole of the magnet unit 42, the circumferential width Wt of the protrusion 142 that is excited when the stator winding 51 is energized is “A × 2”. After the width Wt is defined in this manner, the protrusion 142 is formed of a magnetic material satisfying the relationship (1). In the case of the concentrated winding described above, A is the sum of the widths of the protrusions 142 in the circumferential direction of the stator 50 in the region surrounded by the conductor group 81 of the same phase. Wm in the concentrated winding is equivalent to “the entire circumference of the surface of the magnet unit 42 facing the air gap” × “the number of phases” ÷ “the number of dispersions of the conductive wire group 81”.
ちなみに、ネオジム磁石やサマリウムコバルト磁石、フェライト磁石といったBH積が20[MGOe(kJ/m^3)]以上の磁石ではBd=1.0強[T]、鉄ではBr=2.0強[T]である。そのため、高出力モータとしては、固定子コア52において、突起部142が、Wt<1/2×Wmの関係を満たす磁性材料であればよい。
Incidentally, magnets having a BH product of 20 [MGOe (kJ / m ^ 3)] or more, such as neodymium magnets, samarium cobalt magnets, and ferrite magnets, have Bd = 1.0 or more [T], and iron has Br = 2.0 or more [T]. ]. Therefore, as the high-output motor, the protrusion 142 in the stator core 52 may be a magnetic material that satisfies the relationship of Wt <1 / × Wm.
また、後述するように導線82が外層被膜182を備える場合には、導線82同士の外層被膜182が接触するように、導線82を固定子コア52の周方向に配置しても良い。この場合は、Wtは、0又は接触する両導線82の外層被膜182の厚さ、と看做すことができる。
In the case where the conductor 82 includes the outer coating 182 as described later, the conductor 82 may be arranged in the circumferential direction of the stator core 52 so that the outer coating 182 between the conductors 82 contacts. In this case, Wt can be regarded as 0 or the thickness of the outer layer coating 182 of the two conducting wires 82 in contact with each other.
図27や図28の構成では、回転子40側の磁石磁束に対して不相応に小さい導線間部材(突起部142)を有する構成となっている。なお、回転子40は、インダクタンスが低くかつ平坦な表面磁石型ロータであり、磁気抵抗的に突極性を有していないものとなっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。
や In the configuration of FIGS. 27 and 28, the inter-conductor member (protrusion 142) which is unreasonably small with respect to the magnet magnetic flux on the rotor 40 side is provided. The rotor 40 is a flat surface magnet type rotor having low inductance and does not have saliency in terms of magnetoresistance. In such a configuration, the inductance of the stator 50 can be reduced, and the occurrence of magnetic flux distortion due to the shift of the switching timing of the stator winding 51 is suppressed, and thus the electrolytic corrosion of the bearings 21 and 22 is suppressed. .
(変形例2)
上記式(1)の関係を満たす導線間部材を用いる固定子50として、以下の構成を採用することも可能である。図29では、固定子コア52の外周面側(図の上面側)に、導線間部材として歯状部143が設けられている。歯状部143は、ヨーク141から突出するようにして周方向に所定間隔で設けられており、径方向に導線群81と同じ厚み寸法を有している。歯状部143の側面は導線群81の各導線82に接している。ただし、歯状部143と各導線82との間に隙間があってもよい。 (Modification 2)
The following configuration can be adopted as thestator 50 using the inter-conductor member satisfying the relationship of the above equation (1). In FIG. 29, a tooth-shaped portion 143 is provided on the outer peripheral surface side (the upper surface side in the figure) of the stator core 52 as a member between conductive wires. The teeth 143 are provided at predetermined intervals in the circumferential direction so as to protrude from the yoke 141, and have the same thickness dimension as the conductor group 81 in the radial direction. The side surface of the toothed portion 143 is in contact with each conductor 82 of the conductor group 81. However, a gap may be provided between the tooth-shaped portion 143 and each conductive wire 82.
上記式(1)の関係を満たす導線間部材を用いる固定子50として、以下の構成を採用することも可能である。図29では、固定子コア52の外周面側(図の上面側)に、導線間部材として歯状部143が設けられている。歯状部143は、ヨーク141から突出するようにして周方向に所定間隔で設けられており、径方向に導線群81と同じ厚み寸法を有している。歯状部143の側面は導線群81の各導線82に接している。ただし、歯状部143と各導線82との間に隙間があってもよい。 (Modification 2)
The following configuration can be adopted as the
歯状部143は、周方向における幅寸法に制限が付与されており、磁石量に対して不相応に細い極歯(ステータティース)を備えるものとなっている。かかる構成により、歯状部143は、1.8T以上で磁石磁束により確実に飽和し、パーミアンスの低下によりインダクタンスを下げることができる。
The tooth-shaped portion 143 has a limitation on the width in the circumferential direction, and has pole teeth (stator teeth) that are unreasonably thin with respect to the amount of magnets. With such a configuration, the tooth-shaped portion 143 is surely saturated by the magnetic flux at 1.8 T or more, and the inductance can be reduced due to a decrease in permeance.
ここで、磁石ユニット42において、固定子側における磁束作用面の1極あたりの表面積をSm、磁石ユニット42の残留磁束密度をBrとすると、磁石ユニット側の磁束は、例えば「Sm×Br」となる。また、各歯状部143における回転子側の表面積をSt、導線82の一相あたりの数をmとし、固定子巻線51の通電により1極内において2相分の歯状部143が励磁されるとすると、固定子側の磁束は、例えば「St×m×2×Bs」となる。この場合、
St×m×2×Bs<Sm×Br …(2)
の関係が成立するように歯状部143の寸法を制限することで、インダクタンスの低減が図られている。 Here, in themagnet unit 42, assuming that the surface area per pole of the magnetic flux acting surface on the stator side per pole is Sm and the residual magnetic flux density of the magnet unit 42 is Br, the magnetic flux on the magnet unit side is, for example, “Sm × Br”. Become. Also, the surface area of each tooth 143 on the rotor side is St, the number of conductors 82 per phase is m, and the tooth windings 143 for two phases are excited within one pole by the current flowing through the stator winding 51. Then, the magnetic flux on the stator side is, for example, “St × m × 2 × Bs”. in this case,
St × m × 2 × Bs <Sm × Br (2)
The inductance is reduced by limiting the size of the tooth-shapedportion 143 so that the relationship of
St×m×2×Bs<Sm×Br …(2)
の関係が成立するように歯状部143の寸法を制限することで、インダクタンスの低減が図られている。 Here, in the
St × m × 2 × Bs <Sm × Br (2)
The inductance is reduced by limiting the size of the tooth-shaped
なお、磁石ユニット42と歯状部143とで軸方向の寸法が同一である場合、磁石ユニット42の1極分の周方向の幅寸法をWm、歯状部143の周方向の幅寸法をWstとすると、上記式(2)は、式(3)のように置き換えられる。
Wst×m×2×Bs<Wm×Br …(3)
より具体的には、例えばBs=2T、Br=1Tであり、m=2であると想定すると、上記式(3)は、「Wst<Wm/8」の関係となる。この場合、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/8よりも小さくすることで、インダクタンスの低減が図られている。なお、数mが1であれば、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/4よりも小さくするとよい。 When themagnet unit 42 and the toothed part 143 have the same axial dimension, the circumferential width of one pole of the magnet unit 42 is Wm, and the circumferential width of the toothed part 143 is Wst. Then, the above equation (2) is replaced by an equation (3).
Wst × m × 2 × Bs <Wm × Br (3)
More specifically, assuming that Bs = 2T, Br = 1T, and m = 2, the above equation (3) has a relationship of “Wst <Wm / 8”. In this case, the inductance is reduced by setting the width Wst of thetoothed portion 143 to be smaller than 1 / of the width Wm of one pole of the magnet unit 42. If the number m is 1, the width Wst of the toothed portion 143 may be smaller than 1 / of the width Wm of one pole of the magnet unit 42.
Wst×m×2×Bs<Wm×Br …(3)
より具体的には、例えばBs=2T、Br=1Tであり、m=2であると想定すると、上記式(3)は、「Wst<Wm/8」の関係となる。この場合、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/8よりも小さくすることで、インダクタンスの低減が図られている。なお、数mが1であれば、歯状部143の幅寸法Wstを、磁石ユニット42の1極分の幅寸法Wmの1/4よりも小さくするとよい。 When the
Wst × m × 2 × Bs <Wm × Br (3)
More specifically, assuming that Bs = 2T, Br = 1T, and m = 2, the above equation (3) has a relationship of “Wst <Wm / 8”. In this case, the inductance is reduced by setting the width Wst of the
なお、上記式(3)において、「Wst×m×2」は、磁石ユニット42の1極分の範囲において固定子巻線51の通電により励磁される歯状部143の周方向の幅寸法に相当する。
In the above equation (3), “Wst × m × 2” is the width in the circumferential direction of the tooth-shaped portion 143 that is excited when the stator winding 51 is energized in the range of one pole of the magnet unit 42. Equivalent to.
図29の構成では、上述した図27,図28の構成と同様に、回転子40側の磁石磁束に対して不相応に小さい導線間部材(歯状部143)を有する構成となっている。かかる構成では、固定子50のインダクタンス低減が可能となっており、固定子巻線51のスイッチングタイミングのずれに起因する磁束歪みの発生が抑制され、ひいては軸受21,22の電食が抑制される。
In the configuration of FIG. 29, similarly to the configurations of FIGS. 27 and 28 described above, the configuration is such that the inter-wire member (tooth-shaped portion 143) is unreasonably small with respect to the magnet magnetic flux on the rotor 40 side. In such a configuration, the inductance of the stator 50 can be reduced, and the occurrence of magnetic flux distortion due to the shift of the switching timing of the stator winding 51 is suppressed, and thus the electrolytic corrosion of the bearings 21 and 22 is suppressed. .
(変形例3)
上記実施形態では、固定子巻線51を覆う封止部材57を、固定子コア52の径方向外側において各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設ける構成としたが、これを変更してもよい。例えば、図30に示すように、封止部材57を、導線82の一部がはみ出すように設ける構成とする。より具体的には、封止部材57を、導線群81において最も径方向外側となる導線82の一部を径方向外側、すなわち固定子50側に露出させた状態で設ける構成とする。この場合、封止部材57の径方向の厚さ寸法は、各導線群81の径方向の厚さ寸法と同じ、又はその厚さ寸法よりも小さいとよい。 (Modification 3)
In the above-described embodiment, the sealingmember 57 that covers the stator windings 51 is provided in a range that includes all of the conductor groups 81 outside the stator core 52 in the radial direction, that is, the thickness in the radial direction is equal to the diameter of each conductor group 81. Although the thickness is set to be larger than the thickness in the direction, the thickness may be changed. For example, as shown in FIG. 30, the sealing member 57 is provided so that a part of the conductive wire 82 protrudes. More specifically, the sealing member 57 is configured to be provided in a state in which a part of the conductive wire 82 that is the radially outermost in the conductive wire group 81 is exposed to the radially outer side, that is, to the stator 50 side. In this case, the thickness of the sealing member 57 in the radial direction is preferably equal to or smaller than the thickness of the conductor group 81 in the radial direction.
上記実施形態では、固定子巻線51を覆う封止部材57を、固定子コア52の径方向外側において各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設ける構成としたが、これを変更してもよい。例えば、図30に示すように、封止部材57を、導線82の一部がはみ出すように設ける構成とする。より具体的には、封止部材57を、導線群81において最も径方向外側となる導線82の一部を径方向外側、すなわち固定子50側に露出させた状態で設ける構成とする。この場合、封止部材57の径方向の厚さ寸法は、各導線群81の径方向の厚さ寸法と同じ、又はその厚さ寸法よりも小さいとよい。 (Modification 3)
In the above-described embodiment, the sealing
(変形例4)
図31に示すように、固定子50において、各導線群81が封止部材57により封止されていない構成としてもよい。つまり、固定子巻線51を覆う封止部材57を用いない構成とする。この場合、周方向に並ぶ各導線群81の間に導線間部材が設けられず空隙となっている。要するに、周方向に並ぶ各導線群81の間に導線間部材が設けられていない構成となっている。なお、空気を非磁性体、又は非磁性体の均等物としてBs=0と看做し、この空隙に空気を配置しても良い。 (Modification 4)
As shown in FIG. 31, in thestator 50, the configuration may be such that each conductive wire group 81 is not sealed by the sealing member 57. That is, the configuration is such that the sealing member 57 that covers the stator winding 51 is not used. In this case, there is no gap between the conductors between the conductor groups 81 arranged in the circumferential direction, and there is a gap. In short, the configuration is such that no inter-conductor member is provided between the conductor groups 81 arranged in the circumferential direction. Note that Bs = 0 may be regarded as air as a non-magnetic material or an equivalent of the non-magnetic material, and air may be arranged in this gap.
図31に示すように、固定子50において、各導線群81が封止部材57により封止されていない構成としてもよい。つまり、固定子巻線51を覆う封止部材57を用いない構成とする。この場合、周方向に並ぶ各導線群81の間に導線間部材が設けられず空隙となっている。要するに、周方向に並ぶ各導線群81の間に導線間部材が設けられていない構成となっている。なお、空気を非磁性体、又は非磁性体の均等物としてBs=0と看做し、この空隙に空気を配置しても良い。 (Modification 4)
As shown in FIG. 31, in the
(変形例5)
固定子50おける導線間部材を非磁性材料により構成する場合に、その非磁性材料として、樹脂以外の材料を用いることも可能である。例えば、オーステナイト系のステンレス鋼であるSUS304を用いる等、金属系の非磁性材料を用いてもよい。 (Modification 5)
When the inter-wire member of thestator 50 is made of a non-magnetic material, a material other than resin can be used as the non-magnetic material. For example, a metallic nonmagnetic material such as SUS304, which is an austenitic stainless steel, may be used.
固定子50おける導線間部材を非磁性材料により構成する場合に、その非磁性材料として、樹脂以外の材料を用いることも可能である。例えば、オーステナイト系のステンレス鋼であるSUS304を用いる等、金属系の非磁性材料を用いてもよい。 (Modification 5)
When the inter-wire member of the
(変形例6)
固定子50が固定子コア52を具備していない構成としてもよい。この場合、固定子50は、図12に示す固定子巻線51により構成されることになる。なお、固定子コア52を具備していない固定子50において、固定子巻線51を封止材により封止する構成としてもよい。又は、固定子50が、軟磁性材からなる固定子コア52に代えて、合成樹脂等の非磁性材からなる円環状の巻線保持部を備える構成であってもよい。 (Modification 6)
Thestator 50 may not have the stator core 52. In this case, the stator 50 is constituted by the stator winding 51 shown in FIG. In the stator 50 having no stator core 52, the stator winding 51 may be sealed with a sealing material. Alternatively, the stator 50 may include an annular winding holding portion made of a nonmagnetic material such as a synthetic resin, instead of the stator core 52 made of a soft magnetic material.
固定子50が固定子コア52を具備していない構成としてもよい。この場合、固定子50は、図12に示す固定子巻線51により構成されることになる。なお、固定子コア52を具備していない固定子50において、固定子巻線51を封止材により封止する構成としてもよい。又は、固定子50が、軟磁性材からなる固定子コア52に代えて、合成樹脂等の非磁性材からなる円環状の巻線保持部を備える構成であってもよい。 (Modification 6)
The
(変形例7)
上記第1実施形態では、回転子40の磁石ユニット42として周方向に並べた複数の磁石91,92を用いる構成としたが、これを変更し、磁石ユニット42として円環状の永久磁石である環状磁石を用いる構成としてもよい。具体的には、図32に示すように、磁石ホルダ41の円筒部43の径方向内側に、環状磁石95が固定されている。環状磁石95には、周方向に極性が交互となる複数の磁極が設けられており、d軸及びq軸のいずれにおいても一体的に磁石が形成されている。環状磁石95には、各磁極のd軸において配向の向きが径方向となり、各磁極間のq軸において配向の向きが周方向となるような円弧状の磁石磁路が形成されている。 (Modification 7)
In the first embodiment, the plurality of magnets 91 and 92 arranged in the circumferential direction are used as the magnet unit 42 of the rotor 40. However, this is changed, and the magnet unit 42 is an annular permanent magnet. A configuration using a magnet may be used. Specifically, as shown in FIG. 32, an annular magnet 95 is fixed radially inside the cylindrical portion 43 of the magnet holder 41. The annular magnet 95 is provided with a plurality of magnetic poles having alternating polarities in the circumferential direction, and the magnet is integrally formed on both the d-axis and the q-axis. The annular magnet 95 is formed with an arc-shaped magnet magnetic path in which the direction of orientation is radial in the d-axis of each magnetic pole and circumferential in the q-axis between the magnetic poles.
上記第1実施形態では、回転子40の磁石ユニット42として周方向に並べた複数の磁石91,92を用いる構成としたが、これを変更し、磁石ユニット42として円環状の永久磁石である環状磁石を用いる構成としてもよい。具体的には、図32に示すように、磁石ホルダ41の円筒部43の径方向内側に、環状磁石95が固定されている。環状磁石95には、周方向に極性が交互となる複数の磁極が設けられており、d軸及びq軸のいずれにおいても一体的に磁石が形成されている。環状磁石95には、各磁極のd軸において配向の向きが径方向となり、各磁極間のq軸において配向の向きが周方向となるような円弧状の磁石磁路が形成されている。 (Modification 7)
In the first embodiment, the plurality of
なお、環状磁石95では、d軸寄りの部分において磁化容易軸がd軸に平行又はd軸に平行に近い向きとなり、かつq軸寄りの部分において磁化容易軸がq軸に直交又はq軸に直交に近い向きとなる円弧状の磁石磁路が形成されるように配向がなされていればよい。
In the ring magnet 95, the easy axis of magnetization is oriented parallel to or nearly parallel to the d axis in a portion near the d axis, and the easy axis of magnetization is orthogonal to the q axis or in the q axis in a portion near the q axis. It is sufficient that the orientation is made so as to form an arc-shaped magnet magnetic path that is nearly orthogonal.
(変形例8)
本変形例では、制御装置110の制御手法の一部を変更している。本変形例では、主に、第1実施形態で説明した構成に対する相違部分について説明する。 (Modification 8)
In this modification, a part of the control method of thecontrol device 110 is changed. In the present modification, mainly, differences from the configuration described in the first embodiment will be described.
本変形例では、制御装置110の制御手法の一部を変更している。本変形例では、主に、第1実施形態で説明した構成に対する相違部分について説明する。 (Modification 8)
In this modification, a part of the control method of the
まず、図33を用いて、図20に示した操作信号生成部116,126及び図21に示した操作信号生成部130a,130b内の処理について説明する。なお、各操作信号生成部116,126,130a,130bにおける処理は基本的には同様である。このため、以下では、操作信号生成部116の処理を例にして説明する。
First, the processing in the operation signal generators 116 and 126 shown in FIG. 20 and the processing in the operation signal generators 130a and 130b shown in FIG. 21 will be described with reference to FIG. The processing in each of the operation signal generators 116, 126, 130a, and 130b is basically the same. Therefore, hereinafter, the processing of the operation signal generation unit 116 will be described as an example.
操作信号生成部116は、キャリア生成部116aと、U,V,W相比較器116bU,116bV,116bWとを備えている。本実施形態において、キャリア生成部116aは、キャリア信号SigCとして三角波信号を生成して出力する。
The operation signal generator 116 includes a carrier generator 116a and U, V, and W phase comparators 116bU, 116bV, and 116bW. In the present embodiment, the carrier generator 116a generates and outputs a triangular wave signal as the carrier signal SigC.
U,V,W相比較器116bU,116bV,116bWには、キャリア生成部116aより生成されたキャリア信号SigCと、3相変換部115により算出されたU,V,W相指令電圧とが入力される。U,V,W相指令電圧は、例えば正弦波状の波形であり、電気角で位相が120°ずつずれている。
The U, V, and W phase comparators 116bU, 116bV, and 116bW receive the carrier signal SigC generated by the carrier generation unit 116a and the U, V, and W phase command voltages calculated by the three-phase conversion unit 115. You. The U-, V-, and W-phase command voltages are, for example, sinusoidal waveforms, and are out of phase by 120 ° in electrical angle.
U,V,W相比較器116bU,116bV,116bWは、U,V,W相指令電圧とキャリア信号SigCとの大小比較に基づくPWM(PWM:pulse width modulation)制御により、第1インバータ101におけるU,V,W相の上アーム及び下アームの各スイッチSp,Snの操作信号を生成する。具体的には、操作信号生成部116は、U,V,W相指令電圧を電源電圧で規格化した信号と、キャリア信号との大小比較に基づくPWM制御により、U,V,W相の各スイッチSp,Snの操作信号を生成する。ドライバ117は、操作信号生成部116により生成された操作信号に基づいて、第1インバータ101におけるU,V,W相の各スイッチSp,Snをオンオフさせる。
The U, V, W phase comparators 116bU, 116bV, 116bW control the U, V, W phase command voltage and the carrier signal SigC by PWM (pulse width modulation) based on a magnitude comparison between the U, V, W phase voltage and the carrier signal SigC. , V, and W-phase operation signals for the switches Sp and Sn of the upper arm and the lower arm. Specifically, the operation signal generation unit 116 performs each of the U, V, and W phases by PWM control based on a magnitude comparison between a signal obtained by standardizing the U, V, and W phase command voltages by the power supply voltage and a carrier signal. An operation signal for the switches Sp and Sn is generated. The driver 117 turns on and off the U, V, and W phase switches Sp and Sn in the first inverter 101 based on the operation signal generated by the operation signal generation unit 116.
制御装置110は、キャリア信号SigCのキャリア周波数fc、すなわち各スイッチSp,Snのスイッチング周波数を変更する処理を行う。キャリア周波数fcは、回転電機10の低トルク領域又は高回転領域において高く設定され、回転電機10の高トルク領域において低く設定される。この設定は、各相巻線に流れる電流の制御性の低下を抑制するためになされる。
The control device 110 performs a process of changing the carrier frequency fc of the carrier signal SigC, that is, the switching frequency of each of the switches Sp and Sn. The carrier frequency fc is set high in a low torque region or a high rotation region of the rotating electric machine 10, and set low in a high torque region of the rotating electric machine 10. This setting is made in order to suppress a decrease in the controllability of the current flowing through each phase winding.
つまり、固定子50のコアレス化に伴い、固定子50におけるインダクタンスの低減を図ることができる。ここで、インダクタンスが低くなると、回転電機10の電気的時定数が小さくなる。その結果、各相巻線に流れる電流のリップルが増加して巻線に流れる電流の制御性が低下し、電流制御が発散する懸念がある。この制御性低下の影響は、巻線に流れる電流(例えば、電流の実効値)が高電流領域に含まれる場合よりも低電流領域に含まれる場合に顕著となり得る。この問題に対処すべく、本変形例において、制御装置110はキャリア周波数fcを変更する。
In other words, with the coreless stator 50, the inductance of the stator 50 can be reduced. Here, when the inductance decreases, the electrical time constant of the rotating electric machine 10 decreases. As a result, there is a concern that the ripple of the current flowing through each phase winding increases, the controllability of the current flowing through the winding decreases, and current control diverges. The effect of the decrease in controllability may be more remarkable when the current flowing through the winding (for example, the effective value of the current) is included in the low current region than in the high current region. In order to address this problem, in the present modification, control device 110 changes carrier frequency fc.
図34を用いて、キャリア周波数fcを変更する処理について説明する。この処理は、操作信号生成部116の処理として、制御装置110により、例えば所定の制御周期で繰り返し実行される。
A process of changing the carrier frequency fc will be described with reference to FIG. This process is repeatedly executed by the control device 110, for example, at a predetermined control cycle, as the process of the operation signal generation unit 116.
ステップS10では、各相の巻線51aに流れる電流が低電流領域に含まれているか否かを判定する。この処理は、回転電機10の現在のトルクが低トルク領域であることを判定するための処理である。低電流領域に含まれているか否かの判定手法としては、例えば、以下の第1,第2の方法が挙げられる。
In Step S10, it is determined whether or not the current flowing through each phase winding 51a is included in the low current region. This process is a process for determining that the current torque of the rotating electric machine 10 is in the low torque region. For example, the following first and second methods can be used as a method for determining whether or not the pixel is included in the low current region.
<第1の方法>
dq変換部112により変換されたd軸電流とq軸電流とに基づいて、回転電機10のトルク推定値を算出する。そして、算出したトルク推定値がトルク閾値未満であると判定した場合、巻線51aに流れる電流が低電流領域に含まれていると判定し、トルク推定値がトルク閾値以上であると判定した場合、高電流領域に含まれていると判定する。ここで、トルク閾値は、例えば、回転電機10の起動トルク(拘束トルクともいう)の1/2に設定されていればよい。 <First method>
Based on the d-axis current and the q-axis current converted by the dq conversion unit 112, an estimated torque value of the rotatingelectric machine 10 is calculated. When it is determined that the calculated torque estimated value is less than the torque threshold, it is determined that the current flowing through the winding 51a is included in the low current region, and when it is determined that the torque estimated value is equal to or larger than the torque threshold. , Is included in the high current region. Here, the torque threshold may be set to, for example, 1 / of the starting torque (also referred to as a constraint torque) of the rotating electric machine 10.
dq変換部112により変換されたd軸電流とq軸電流とに基づいて、回転電機10のトルク推定値を算出する。そして、算出したトルク推定値がトルク閾値未満であると判定した場合、巻線51aに流れる電流が低電流領域に含まれていると判定し、トルク推定値がトルク閾値以上であると判定した場合、高電流領域に含まれていると判定する。ここで、トルク閾値は、例えば、回転電機10の起動トルク(拘束トルクともいう)の1/2に設定されていればよい。 <First method>
Based on the d-axis current and the q-axis current converted by the dq conversion unit 112, an estimated torque value of the rotating
<第2の方法>
角度検出器により検出された回転子40の回転角度が速度閾値以上であると判定した場合、巻線51aに流れる電流が低電流領域に含まれている、すなわち高回転領域であると判定する。ここで、速度閾値は、例えば、回転電機10の最大トルクがトルク閾値となる場合の回転速度に設定されていればよい。 <Second method>
When it is determined that the rotation angle of therotor 40 detected by the angle detector is equal to or greater than the speed threshold, it is determined that the current flowing through the winding 51a is included in the low current region, that is, the high rotation region. Here, the speed threshold may be set to, for example, the rotation speed when the maximum torque of the rotating electric machine 10 is the torque threshold.
角度検出器により検出された回転子40の回転角度が速度閾値以上であると判定した場合、巻線51aに流れる電流が低電流領域に含まれている、すなわち高回転領域であると判定する。ここで、速度閾値は、例えば、回転電機10の最大トルクがトルク閾値となる場合の回転速度に設定されていればよい。 <Second method>
When it is determined that the rotation angle of the
ステップS10において否定判定した場合には、高電流領域であると判定し、ステップS11に進む。ステップS11では、キャリア周波数fcを第1周波数fLに設定する。
場合 If a negative determination is made in step S10, it is determined that the current is in the high current region, and the process proceeds to step S11. In step S11, the carrier frequency fc is set to the first frequency fL.
ステップS10において肯定判定した場合には、ステップS12に進み、キャリア周波数fcを、第1周波数fLよりも高い第2周波数fHに設定する。
(4) If an affirmative determination is made in step S10, the process proceeds to step S12, and the carrier frequency fc is set to the second frequency fH higher than the first frequency fL.
以上説明した本変形例によれば、各相巻線に流れる電流が高電流領域に含まれる場合よりも低電流領域に含まれる場合においてキャリア周波数fcが高く設定される。このため、低電流領域において、スイッチSp,Snのスイッチング周波数を高くすることができ、電流リップルの増加を抑制することができる。これにより、電流制御性の低下を抑制することができる。
According to the present modification described above, the carrier frequency fc is set higher when the current flowing through each phase winding is included in the low current region than in the high current region. Therefore, in the low current region, the switching frequency of the switches Sp and Sn can be increased, and an increase in current ripple can be suppressed. Thereby, a decrease in current controllability can be suppressed.
一方、各相巻線に流れる電流が高電流領域に含まれる場合、低電流領域に含まれる場合よりもキャリア周波数fcが低く設定される。高電流領域においては、低電流領域よりも巻線に流れる電流の振幅が大きいため、インダクタンスが低くなったことに起因する電流リップルの増加が、電流制御性に及ぼす影響が小さい。このため、高電流領域においては、低電流領域よりもキャリア周波数fcを低く設定することができ、各インバータ101,102のスイッチング損失を低減することができる。
On the other hand, when the current flowing through each phase winding is included in the high current region, the carrier frequency fc is set lower than when the current is included in the low current region. In the high current region, the amplitude of the current flowing through the winding is larger than in the low current region, so that the increase in the current ripple due to the lower inductance has little effect on the current controllability. Therefore, the carrier frequency fc can be set lower in the high current region than in the low current region, and the switching loss of each of the inverters 101 and 102 can be reduced.
本変形例においては、以下に示す形態の実施が可能である。
変 形 In this modification, the following embodiment is possible.
・キャリア周波数fcが第1周波数fLに設定されている場合において、図34のステップS10において肯定判定されたとき、キャリア周波数fcを、第1周波数fLから第2周波数fHに向かって徐変させてもよい。
In the case where the carrier frequency fc is set to the first frequency fL, when the affirmative determination is made in step S10 of FIG. 34, the carrier frequency fc is gradually changed from the first frequency fL to the second frequency fH. Is also good.
また、キャリア周波数fcが第2周波数fHに設定されている場合において、ステップS10において否定判定されたとき、キャリア周波数fcを、第2周波数fHから第1周波数fLに向かって徐変させてもよい。
When the carrier frequency fc is set to the second frequency fH and a negative determination is made in step S10, the carrier frequency fc may be gradually changed from the second frequency fH to the first frequency fL. .
・PWM制御に代えて、空間ベクトル変調(SVM:space vector modulation)制御によりスイッチの操作信号が生成されてもよい。この場合であっても、上述したスイッチング周波数の変更を適用することができる。
A switch operation signal may be generated by space vector modulation (SVM) control instead of · PWM control. Even in this case, the change of the switching frequency described above can be applied.
(変形例9)
上記各実施形態では、導線群81を構成する各相2対ずつの導線が、図35(a)に示すように並列接続されていた。図35(a)は、2対の導線である第1,第2導線88a,88bの電気的接続を示す図である。ここで、図35(a)に示す構成に代えて、図35(b)に示すように、第1,第2導線88a,88bが直列接続されていてもよい。 (Modification 9)
In each of the above embodiments, two pairs of conductors of each phase constituting theconductor group 81 are connected in parallel as shown in FIG. FIG. 35A is a diagram illustrating electrical connection between first and second conductive wires 88a and 88b, which are two pairs of conductive wires. Here, instead of the configuration shown in FIG. 35A, the first and second conductive wires 88a and 88b may be connected in series as shown in FIG. 35B.
上記各実施形態では、導線群81を構成する各相2対ずつの導線が、図35(a)に示すように並列接続されていた。図35(a)は、2対の導線である第1,第2導線88a,88bの電気的接続を示す図である。ここで、図35(a)に示す構成に代えて、図35(b)に示すように、第1,第2導線88a,88bが直列接続されていてもよい。 (Modification 9)
In each of the above embodiments, two pairs of conductors of each phase constituting the
また、3対以上の多層導線が径方向に積層配置されていてもよい。図36に、4対の導線である第1~第4導線88a~88dが積層配置されている構成を示す。第1~第4導線88a~88dは、固定子コア52に近い方から、第1,第2,第3,第4導線88a,88b,88c,88dの順に径方向に並んで配置されている。
Furthermore, three or more pairs of multilayer conductors may be stacked in the radial direction. FIG. 36 shows a configuration in which first to fourth conductive wires 88a to 88d, which are four pairs of conductive wires, are stacked. The first to fourth conductive wires 88a to 88d are arranged in the radial direction in the order of the first, second, third, and fourth conductive wires 88a, 88b, 88c, and 88d from the side closer to the stator core 52. .
ここで、図35(c)に示すように、第3,第4導線88c,88dが並列接続されるとともに、この並列接続体の一端に第1導線88aが接続され、他端に第2導線88bが接続されていてもよい。並列接続にすると、その並列接続された導線の電流密度を低下させることができ、通電時の発熱を抑制できる。そのため、冷却水通路74が形成されたハウジング(ユニットベース61)に筒状の固定子巻線を組み付ける構成において、並列接続されていない第1,第2導線88a,88bがユニットベース61に当接する固定子コア52側に配置され、並列接続された第3,第4導線88c,88dが反固定子コア側に配置されている構成とする。これにより、多層導線構造における各導線88a~88dの冷却性能を均等化することができる。
Here, as shown in FIG. 35 (c), the third and fourth conductors 88c and 88d are connected in parallel, a first conductor 88a is connected to one end of the parallel connection body, and a second conductor is connected to the other end. 88b may be connected. When the connection is made in parallel, the current density of the conductive wires connected in parallel can be reduced, and the heat generation during energization can be suppressed. Therefore, in a configuration in which the cylindrical stator winding is assembled to the housing (unit base 61) in which the cooling water passage 74 is formed, the first and second conductive wires 88a and 88b that are not connected in parallel abut on the unit base 61. The third and fourth conductive wires 88c and 88d arranged on the stator core 52 side and connected in parallel are arranged on the side opposite to the stator core side. Thereby, the cooling performance of each of the conductors 88a to 88d in the multilayer conductor structure can be equalized.
なお、第1~第4導線88a~88dからなる導線群81の径方向の厚さ寸法は、1磁極内における1相分の周方向の幅寸法よりも小さいものとされていればよい。
The thickness of the conductor group 81 including the first to fourth conductors 88a to 88d in the radial direction may be smaller than the circumferential width of one phase in one magnetic pole.
(変形例10)
回転電機10をインナロータ構造(内転構造)としてもよい。この場合、例えばハウジング30内において、径方向外側に固定子50が設けられ、その径方向内側に回転子40が設けられるとよい。また、固定子50及び回転子40の軸方向両端のうちその一方の側又はその両方の側にインバータユニット60が設けられているとよい。図37は、回転子40及び固定子50の横断面図であり、図38は、図37に示す回転子40及び固定子50の一部を拡大して示す図である。 (Modification 10)
The rotatingelectric machine 10 may have an inner rotor structure (adduction structure). In this case, for example, the stator 50 may be provided radially outside the housing 30 and the rotor 40 may be provided radially inside the housing 30. Further, the inverter unit 60 may be provided on one or both of the axial ends of the stator 50 and the rotor 40. FIG. 37 is a cross-sectional view of the rotor 40 and the stator 50, and FIG. 38 is an enlarged view of a part of the rotor 40 and the stator 50 shown in FIG.
回転電機10をインナロータ構造(内転構造)としてもよい。この場合、例えばハウジング30内において、径方向外側に固定子50が設けられ、その径方向内側に回転子40が設けられるとよい。また、固定子50及び回転子40の軸方向両端のうちその一方の側又はその両方の側にインバータユニット60が設けられているとよい。図37は、回転子40及び固定子50の横断面図であり、図38は、図37に示す回転子40及び固定子50の一部を拡大して示す図である。 (Modification 10)
The rotating
インナロータ構造を前提とする図37及び図38の構成は、アウタロータ構造を前提とする図8及び図9の構成に対して、回転子40及び固定子50が径方向内外で逆になっていることを除いて、同様の構成となっている。簡単に説明すると、固定子50は、扁平導線構造の固定子巻線51と、ティースを持たない固定子コア52とを有している。固定子巻線51は、固定子コア52の径方向内側に組み付けられている。固定子コア52は、アウタロータ構造の場合と同様に、以下のいずれかの構成を有する。
(A)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子50において、周方向における各導線部の間に導線間部材を設けていない構成となっている。 The configuration shown in FIGS. 37 and 38 based on the inner rotor structure is different from the configuration shown in FIGS. 8 and 9 based on the outer rotor structure in that therotor 40 and the stator 50 are reversed inside and outside the radial direction. Except for, the configuration is the same. In brief, the stator 50 has a stator winding 51 having a flat conductive wire structure and a stator core 52 having no teeth. The stator winding 51 is mounted radially inside the stator core 52. The stator core 52 has any one of the following configurations, similarly to the case of the outer rotor structure.
(A) In thestator 50, an inter-conductor member is provided between the respective conductor portions in the circumferential direction, and as the inter-conductor member, the circumferential width of the inter-conductor member at one magnetic pole is Wt, and the saturation of the inter-conductor member is achieved. When the magnetic flux density is Bs, the circumferential width of the magnet unit at one magnetic pole is Wm, and the residual magnetic flux density of the magnet unit is Br, a magnetic material that satisfies Wt × Bs ≦ Wm × Br is used.
(B) In thestator 50, an inter-conductor member is provided between the conductor portions in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
(C) Thestator 50 has a configuration in which no inter-conductor member is provided between the respective conductor portions in the circumferential direction.
(A)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子50において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子50において、周方向における各導線部の間に導線間部材を設けていない構成となっている。 The configuration shown in FIGS. 37 and 38 based on the inner rotor structure is different from the configuration shown in FIGS. 8 and 9 based on the outer rotor structure in that the
(A) In the
(B) In the
(C) The
また、磁石ユニット42の各磁石91,92についても同様である。つまり、磁石ユニット42は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた磁石91,92を用いて構成されている。各磁石91,92における磁化方向等の詳細は既述のとおりである。磁石ユニット42において環状磁石95(図32参照)を用いることも可能である。
The same applies to the magnets 91 and 92 of the magnet unit 42. That is, the magnet units 42 and 91 are oriented such that the direction of the easy axis of magnetization is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, compared to the q-axis side, which is the boundary of the magnetic poles. It is configured using Details such as the magnetization direction of each of the magnets 91 and 92 are as described above. It is also possible to use an annular magnet 95 (see FIG. 32) in the magnet unit 42.
図39は、インナロータ型とした場合における回転電機10の縦断面図であり、これは既述の図2に対応する図面である。図2の構成との相違点を簡単に説明する。図39において、ハウジング30の内側には、環状の固定子50が固定され、その固定子50の内側には、所定のエアギャップを挟んで回転子40が回転可能に設けられている。図2と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されており、これにより、回転子40が片持ち支持されている。また、回転子40の磁石ホルダ41の内側に、インバータユニット60が設けられている。
FIG. 39 is a longitudinal sectional view of the rotating electric machine 10 in the case of the inner rotor type, which corresponds to FIG. 2 described above. The differences from the configuration of FIG. 2 will be briefly described. In FIG. 39, an annular stator 50 is fixed inside a housing 30, and a rotor 40 is rotatably provided inside the stator 50 with a predetermined air gap interposed therebetween. As in FIG. 2, each of the bearings 21 and 22 is disposed so as to be biased toward one of the axial directions with respect to the axial center of the rotor 40, whereby the rotor 40 is cantilevered. I have. The inverter unit 60 is provided inside the magnet holder 41 of the rotor 40.
図40には、インナロータ構造の回転電機10として別の構成を示す。図40において、ハウジング30には、軸受21,22により回転軸11が回転可能に支持されており、その回転軸11に対して回転子40が固定されている。図2等に示す構成と同様に、各軸受21,22は、回転子40の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。回転子40は、磁石ホルダ41と磁石ユニット42とを有している。
FIG. 40 shows another configuration of the rotating electric machine 10 having the inner rotor structure. In FIG. 40, a rotating shaft 11 is rotatably supported by bearings 21 and 22 in a housing 30, and a rotor 40 is fixed to the rotating shaft 11. As in the configuration shown in FIG. 2 and the like, each of the bearings 21 and 22 is arranged so as to be biased toward one of the axial directions with respect to the axial center of the rotor 40. The rotor 40 has a magnet holder 41 and a magnet unit 42.
図40の回転電機10では、図39の回転電機10との相違点として、回転子40の径方向内側にインバータユニット60が設けられていない構成となっている。磁石ホルダ41は、磁石ユニット42の径方向内側となる位置で回転軸11に連結されている。また、固定子50は、固定子巻線51と固定子コア52とを有しており、ハウジング30に対して取り付けられている。
回 転 The rotating electric machine 10 of FIG. 40 is different from the rotating electric machine 10 of FIG. 39 in that the inverter unit 60 is not provided inside the rotor 40 in the radial direction. The magnet holder 41 is connected to the rotating shaft 11 at a position radially inside the magnet unit 42. Further, the stator 50 has a stator winding 51 and a stator core 52 and is attached to the housing 30.
(変形例11)
インナロータ構造の回転電機として別の構成を以下に説明する。図41は、回転電機200の分解斜視図であり、図42は、回転電機200の側面断面図である。なおここでは、図41及び図42の状態を基準に上下方向を示すこととしている。 (Modification 11)
Another configuration as a rotating electric machine having an inner rotor structure will be described below. FIG. 41 is an exploded perspective view of the rotatingelectric machine 200, and FIG. 42 is a side sectional view of the rotating electric machine 200. In this case, the vertical direction is shown based on the states of FIGS. 41 and 42.
インナロータ構造の回転電機として別の構成を以下に説明する。図41は、回転電機200の分解斜視図であり、図42は、回転電機200の側面断面図である。なおここでは、図41及び図42の状態を基準に上下方向を示すこととしている。 (Modification 11)
Another configuration as a rotating electric machine having an inner rotor structure will be described below. FIG. 41 is an exploded perspective view of the rotating
図41及び図42に示すように、回転電機200は、環状の固定子コア201及び多相の固定子巻線202を有する固定子203と、固定子コア201の内側に回転自在に配設される回転子204とを備えている。固定子203が電機子に相当し、回転子204が界磁子に相当する。固定子コア201は、多数の珪素鋼板が積層されて構成されており、その固定子コア201に対して固定子巻線202が取り付けられている。図示は省略するが、回転子204は、回転子コアと、磁石ユニットとして複数の永久磁石とを有している。回転子コアには、円周方向に等間隔で複数の磁石挿入孔が設けられている。磁石挿入孔のそれぞれには、隣接する磁極毎に交互に磁化方向が変わるように磁化された永久磁石が装着されている。なお、磁石ユニットの永久磁石は、図25で説明したようなハルバッハ配列又はそれに類する構成を有するものであるとよい。又は、磁石ユニットの永久磁石は、図9や図32で説明したような磁極中心であるd軸と磁極境界であるq軸との間において配向方向(磁化方向)が円弧状に延びている極異方性の特性を備えるものであるとよい。
As shown in FIG. 41 and FIG. 42, the rotating electric machine 200 is rotatably disposed inside the stator core 201 having an annular stator core 201 and a multi-phase stator winding 202, and a stator 203. And a rotator 204. The stator 203 corresponds to an armature, and the rotor 204 corresponds to a field element. The stator core 201 is formed by laminating a number of silicon steel plates, and a stator winding 202 is attached to the stator core 201. Although not shown, the rotor 204 has a rotor core and a plurality of permanent magnets as magnet units. A plurality of magnet insertion holes are provided in the rotor core at equal intervals in the circumferential direction. In each of the magnet insertion holes, a permanent magnet that is magnetized so that the magnetization direction changes alternately for each adjacent magnetic pole is mounted. The permanent magnet of the magnet unit may have a Halbach array as described with reference to FIG. 25 or a configuration similar thereto. Alternatively, the permanent magnet of the magnet unit has a pole whose orientation direction (magnetization direction) extends in an arc shape between the d axis, which is the center of the magnetic pole, and the q axis, which is the boundary of the magnetic pole, as described in FIGS. It is preferable to have anisotropic characteristics.
ここで、固定子203は、以下のいずれかの構成であるとよい。
(A)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子203において、周方向における各導線部の間に導線間部材を設けていない構成となっている。 Here, thestator 203 may have any of the following configurations.
(A) In thestator 203, an inter-conductor member is provided between the respective conductor portions in the circumferential direction, and as the inter-conductor member, the circumferential width of the inter-conductor member at one magnetic pole is Wt, and the saturation of the inter-conductor member is achieved. When the magnetic flux density is Bs, the circumferential width of the magnet unit at one magnetic pole is Wm, and the residual magnetic flux density of the magnet unit is Br, a magnetic material that satisfies Wt × Bs ≦ Wm × Br is used.
(B) In thestator 203, an inter-conductor member is provided between the conductor portions in the circumferential direction, and a non-magnetic material is used as the inter-conductor member.
(C) Thestator 203 has a configuration in which no inter-conductor member is provided between the respective conductor portions in the circumferential direction.
(A)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、1磁極における導線間部材の周方向の幅寸法をWt、導線間部材の飽和磁束密度をBs、1磁極における磁石ユニットの周方向の幅寸法をWm、磁石ユニットの残留磁束密度をBrとした場合に、Wt×Bs≦Wm×Brの関係となる磁性材料を用いている。
(B)固定子203において、周方向における各導線部の間に導線間部材を設け、かつその導線間部材として、非磁性材料を用いている。
(C)固定子203において、周方向における各導線部の間に導線間部材を設けていない構成となっている。 Here, the
(A) In the
(B) In the
(C) The
また、回転子204において、磁石ユニットは、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされた複数の磁石を用いて構成されている。
In the rotor 204, the magnet unit was oriented such that the direction of the easy axis of magnetization was parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, compared to the q-axis side, which is the boundary of the magnetic poles. It is configured using a plurality of magnets.
回転電機200の軸方向の一端側には、環状のインバータケース211が設けられている。インバータケース211は、ケース下面が固定子コア201の上面に接するように配置されている。インバータケース211内には、インバータ回路を構成する複数のパワーモジュール212と、半導体スイッチング素子のスイッチング動作により生じる電圧・電流の脈動(リップル)を抑制する平滑コンデンサ213と、制御部を有する制御基板214と、相電流を検出する電流センサ215と、回転子204の回転数センサであるレゾルバステータ216とが設けられている。パワーモジュール212は、半導体スイッチング素子であるIGBTやダイオードを有している。
環状 A ring-shaped inverter case 211 is provided at one axial end of the rotary electric machine 200. Inverter case 211 is arranged such that the lower surface of the case is in contact with the upper surface of stator core 201. In an inverter case 211, a plurality of power modules 212 constituting an inverter circuit, a smoothing capacitor 213 for suppressing pulsation (ripple) of voltage and current generated by a switching operation of a semiconductor switching element, and a control board 214 having a control unit , A current sensor 215 for detecting a phase current, and a resolver stator 216 that is a rotation speed sensor of the rotor 204. The power module 212 has an IGBT or a diode that is a semiconductor switching element.
インバータケース211の周縁には、車両に搭載されるバッテリの直流回路と接続されるパワーコネクタ217と、回転電機200側と車両側制御装置との間で各種信号の受け渡しに用いられる信号コネクタ218とが設けられている。インバータケース211はトップカバー219で覆われている。車載バッテリからの直流電力は、パワーコネクタ217を介して入力され、パワーモジュール212のスイッチングにより交流に変換されて各相の固定子巻線202に送られる。
A power connector 217 connected to a DC circuit of a battery mounted on the vehicle, and a signal connector 218 used for transferring various signals between the rotating electric machine 200 and the vehicle-side control device are provided on the periphery of the inverter case 211. Is provided. The inverter case 211 is covered with a top cover 219. DC power from the vehicle-mounted battery is input via the power connector 217, converted into AC by switching of the power module 212, and sent to the stator winding 202 of each phase.
固定子コア201の軸方向両側のうちインバータケース211の反対側には、回転子204の回転軸を回転可能に保持する軸受ユニット221と、その軸受ユニット221を収容する環状のリアケース222とが設けられている。軸受ユニット221は、例えば2つ一組の軸受を有しており、回転子204の軸方向中央に対して軸方向のいずれか一方側に偏って配置されている。ただし、軸受ユニット221における複数の軸受を固定子コア201の軸方向両側に分散させて設け、それら各軸受により回転軸を両持ち支持する構成であってもよい。リアケース222が車両のギアケースや変速機などの取付部にボルト締結して固定されることで、回転電機200が車両側に取り付けられるようになっている。
A bearing unit 221 for rotatably holding the rotating shaft of the rotor 204 and an annular rear case 222 for accommodating the bearing unit 221 are provided on the opposite sides of the stator core 201 in the axial direction opposite to the inverter case 211. Is provided. The bearing unit 221 has, for example, a pair of bearings, and is arranged so as to be deviated to one side in the axial direction with respect to the axial center of the rotor 204. However, a configuration in which a plurality of bearings of the bearing unit 221 are provided separately on both sides in the axial direction of the stator core 201 and the rotating shaft is supported at both ends by the respective bearings may be adopted. The rotating electrical machine 200 is mounted on the vehicle side by fixing the rear case 222 to the mounting portion such as a gear case or a transmission of the vehicle by bolting.
インバータケース211内には、冷媒を流すための冷却流路211aが形成されている。冷却流路211aは、インバータケース211の下面から環状に凹設された空間を固定子コア201の上面で閉塞して形成されている。冷却流路211aは、固定子巻線202のコイルエンドを囲むように形成されている。冷却流路211a内には、パワーモジュール212のモジュールケース212aが挿入されている。リアケース222にも、固定子巻線202のコイルエンドを囲むように冷却流路222aが形成されている。冷却流路222aは、リアケース222の上面から環状に凹設された空間を固定子コア201の下面で閉塞して形成されている。
冷却 A cooling channel 211a for flowing a coolant is formed in the inverter case 211. The cooling channel 211 a is formed by closing a space recessed annularly from the lower surface of the inverter case 211 with the upper surface of the stator core 201. The cooling passage 211a is formed so as to surround the coil end of the stator winding 202. The module case 212a of the power module 212 is inserted into the cooling channel 211a. A cooling channel 222 a is also formed in the rear case 222 so as to surround the coil end of the stator winding 202. The cooling channel 222 a is formed by closing a space recessed annularly from the upper surface of the rear case 222 with the lower surface of the stator core 201.
(変形例12)
これまでは、回転界磁形の回転電機にて具体化した構成を説明したが、これを変更し、回転電機子形の回転電機にて具体化することも可能である。図43に、回転電機子形の回転電機230の構成を示す。 (Modification 12)
The configuration embodied in the rotating field type rotary electric machine has been described above, but it is also possible to change the configuration and embodied in a rotary armature type rotary electric machine. FIG. 43 shows a configuration of a rotary armature type rotaryelectric machine 230.
これまでは、回転界磁形の回転電機にて具体化した構成を説明したが、これを変更し、回転電機子形の回転電機にて具体化することも可能である。図43に、回転電機子形の回転電機230の構成を示す。 (Modification 12)
The configuration embodied in the rotating field type rotary electric machine has been described above, but it is also possible to change the configuration and embodied in a rotary armature type rotary electric machine. FIG. 43 shows a configuration of a rotary armature type rotary
図43の回転電機230において、ハウジング231a,231bにはそれぞれ軸受232が固定され、その軸受232により回転軸233が回転自在に支持されている。軸受232は、例えば多孔質金属に油を含ませてなる含油軸受である。回転軸233には、電機子としての回転子234が固定されている。回転子234は、回転子コア235とその外周部に固定された多相の回転子巻線236とを有している。回転子234において、回転子コア235はスロットレス構造を有し、回転子巻線236は扁平導線構造を有している。つまり、回転子巻線236は、1相ごとの領域が径方向よりも周方向に長い扁平構造となっている。
In the rotating electric machine 230 shown in FIG. 43, bearings 232 are fixed to the housings 231a and 231b, respectively, and the rotating shaft 233 is rotatably supported by the bearings 232. The bearing 232 is, for example, an oil-impregnated bearing made of a porous metal containing oil. A rotor 234 as an armature is fixed to the rotation shaft 233. The rotor 234 has a rotor core 235 and a multi-phase rotor winding 236 fixed to an outer peripheral portion thereof. In the rotor 234, the rotor core 235 has a slotless structure, and the rotor winding 236 has a flat conductor structure. That is, the rotor winding 236 has a flat structure in which the region for each phase is longer in the circumferential direction than in the radial direction.
また、回転子234の径方向外側には、界磁子としての固定子237が設けられている。固定子237は、ハウジング231aに固定された固定子コア238と、その固定子コア238の内周側に固定された磁石ユニット239とを有している。磁石ユニット239は、周方向に極性が交互となる複数の磁極を含む構成となっており、既述した磁石ユニット42等と同様に、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向がなされて構成されている。磁石ユニット239は、配向が行われた焼結ネオジム磁石を有しており、その固有保磁力は400[kA/m]以上、かつ残留磁束密度は1.0[T]以上となっている。
固定 Further, a stator 237 as a field element is provided radially outside the rotor 234. The stator 237 has a stator core 238 fixed to the housing 231a, and a magnet unit 239 fixed to the inner peripheral side of the stator core 238. The magnet unit 239 includes a plurality of magnetic poles having polarities alternated in the circumferential direction. Like the magnet unit 42 described above, the magnet unit 239 has a magnetic pole boundary q on the d-axis side that is the center of the magnetic pole. The orientation is made such that the direction of the easy axis of magnetization is parallel to the d-axis as compared to the axis side. The magnet unit 239 has an oriented sintered neodymium magnet, and its intrinsic coercive force is 400 [kA / m] or more and the residual magnetic flux density is 1.0 [T] or more.
本例の回転電機230は、2極3コイルのブラシ付コアレスモータであり、回転子巻線236は3つに分割され、磁石ユニット239は2極である。ブラシ付きモータの極数とコイル数は、2:3、4:10、4:21などその用途に応じて様々である。
The rotating electric machine 230 of this example is a brushless coreless motor having two poles and three coils, the rotor winding 236 is divided into three, and the magnet unit 239 has two poles. The number of poles and the number of coils of the brushed motor varies depending on the application, such as 2: 3, 4:10, and 4:21.
回転軸233にはコミュテータ241が固定されており、その径方向外側には複数のブラシ242が配置されている。コミュテータ241は、回転軸233に埋め込まれた導線243を介して回転子巻線236に電気接続されている。これらコミュテータ241、ブラシ242、導線243を通じて、回転子巻線236に対する直流電流の流入及び流出が行われる。コミュテータ241は、回転子巻線236の相数に応じて周方向に適宜分割されて構成されている。なお、ブラシ242は、そのまま電気配線を介して蓄電池などの直流電源に接続されていてもよいし、端子台などを介して直流電源に接続されていてもよい。
コ A commutator 241 is fixed to the rotating shaft 233, and a plurality of brushes 242 are arranged radially outside. The commutator 241 is electrically connected to the rotor winding 236 via a conductor 243 embedded in the rotating shaft 233. The direct current flows into and out of the rotor winding 236 through the commutator 241, the brush 242, and the conducting wire 243. The commutator 241 is appropriately divided in the circumferential direction according to the number of phases of the rotor winding 236. The brush 242 may be directly connected to a DC power supply such as a storage battery via electrical wiring, or may be connected to a DC power supply via a terminal block or the like.
回転軸233には、軸受232とコミュテータ241との間に、シール材としての樹脂ワッシャ244が設けられている。樹脂ワッシャ244により、含油軸受である軸受232からしみ出た油がコミュテータ241側に流れ出ることが抑制される。
樹脂 A resin washer 244 as a sealing material is provided between the bearing 232 and the commutator 241 on the rotating shaft 233. The resin washer 244 suppresses oil that has oozed from the bearing 232 that is an oil-impregnated bearing from flowing out to the commutator 241 side.
(変形例13)
回転電機10の固定子巻線51において、各導線82を、内外に複数の絶縁被膜を有する構成としてもよい。例えば、絶縁被膜付きの複数の導線(素線)を1本に束ね、それを外層被膜により覆って導線82を構成するとよい。この場合、素線の絶縁被膜が内側の絶縁被膜を構成し、外層被膜が外側の絶縁被膜を構成する。また特に、導線82における複数の絶縁被膜のうち外側の絶縁被膜の絶縁能力を、内側の絶縁被膜の絶縁能力よりも高めておくとよい。具体的には、外側の絶縁被膜の厚さを、内側の絶縁被膜の厚さよりも厚くする。例えば、外側の絶縁被膜の厚さを100μm、内側の絶縁被膜の厚さを40μmとする。又は、外側の絶縁被膜として、内側の絶縁被膜よりも誘電率の低い材料を用いるとよい。これらは少なくともいずれかが適用されればよい。なお、素線が、複数の導電材の集合体として構成されているとよい。 (Modification 13)
In the stator winding 51 of the rotatingelectric machine 10, each of the conductors 82 may be configured to have a plurality of insulating coatings inside and outside. For example, a plurality of conductive wires (element wires) with an insulating coating may be bundled into one and covered with an outer coating to form the conductive wire 82. In this case, the insulating coating of the element wire forms the inner insulating coating, and the outer coating forms the outer insulating coating. In particular, it is preferable that the insulating ability of the outer insulating coat among the plurality of insulating coats in the conductive wire 82 be higher than the insulating ability of the inner insulating coat. Specifically, the thickness of the outer insulating coating is made larger than the thickness of the inner insulating coating. For example, the thickness of the outer insulating coating is 100 μm, and the thickness of the inner insulating coating is 40 μm. Alternatively, a material having a lower dielectric constant than the inner insulating film may be used as the outer insulating film. At least one of these may be applied. Note that the strands may be configured as an aggregate of a plurality of conductive materials.
回転電機10の固定子巻線51において、各導線82を、内外に複数の絶縁被膜を有する構成としてもよい。例えば、絶縁被膜付きの複数の導線(素線)を1本に束ね、それを外層被膜により覆って導線82を構成するとよい。この場合、素線の絶縁被膜が内側の絶縁被膜を構成し、外層被膜が外側の絶縁被膜を構成する。また特に、導線82における複数の絶縁被膜のうち外側の絶縁被膜の絶縁能力を、内側の絶縁被膜の絶縁能力よりも高めておくとよい。具体的には、外側の絶縁被膜の厚さを、内側の絶縁被膜の厚さよりも厚くする。例えば、外側の絶縁被膜の厚さを100μm、内側の絶縁被膜の厚さを40μmとする。又は、外側の絶縁被膜として、内側の絶縁被膜よりも誘電率の低い材料を用いるとよい。これらは少なくともいずれかが適用されればよい。なお、素線が、複数の導電材の集合体として構成されているとよい。 (Modification 13)
In the stator winding 51 of the rotating
上記のとおり導線82における最外層の絶縁を強くすることにより、高電圧の車両用システムに用いる場合に好適なものとなる。また、気圧の低い高地などでも、回転電機10の適正な駆動が可能となる。
(4) By strengthening the insulation of the outermost layer of the conductive wire 82 as described above, it becomes suitable for use in a high-voltage vehicle system. In addition, it is possible to appropriately drive the rotating electric machine 10 even at a high altitude where the atmospheric pressure is low.
(変形例14)
内外に複数の絶縁被膜を有する導線82において、外側の絶縁被膜と内側の絶縁被膜とで、線膨張率(線膨張係数)及び接着強さの少なくともいずれかが異なる構成としてもよい。本変形例における導線82の構成を図44に示す。 (Modification 14)
In theconductive wire 82 having a plurality of inner and outer insulating coatings, the outer insulating coating and the inner insulating coating may have a configuration in which at least one of the coefficient of linear expansion (linear expansion coefficient) and the adhesive strength is different. FIG. 44 shows the configuration of the conductor 82 in this modification.
内外に複数の絶縁被膜を有する導線82において、外側の絶縁被膜と内側の絶縁被膜とで、線膨張率(線膨張係数)及び接着強さの少なくともいずれかが異なる構成としてもよい。本変形例における導線82の構成を図44に示す。 (Modification 14)
In the
図44において、導線82は、複数(図では4本)の素線181と、その複数の素線181を囲む例えば樹脂製の外層被膜182(外側絶縁被膜)と、外層被膜182内において各素線181の周りに充填された中間層183(中間絶縁被膜)とを有している。素線181は、銅材よりなる導電部181aと、絶縁材料よりなる導体被膜181b(内側絶縁被膜)とを有している。固定子巻線として見れば、外層被膜182により相間が絶縁される。なお、素線181が、複数の導電材の集合体として構成されているとよい。
In FIG. 44, a conductor 82 includes a plurality of (four in the figure) strands 181, a resin outer layer coating 182 (outer insulating coating) surrounding the plurality of strands 181, and each element in the outer layer coating 182. And an intermediate layer 183 (intermediate insulating film) filled around the line 181. The strand 181 has a conductive portion 181a made of a copper material and a conductor film 181b (an inner insulating film) made of an insulating material. When viewed as a stator winding, the outer layers 182 insulate the phases. Note that the strand 181 may be configured as an aggregate of a plurality of conductive materials.
中間層183は、素線181の導体被膜181bよりも高い線膨張率を有し、かつ外層被膜182よりも低い線膨張率を有している。つまり、導線82では、外側ほど線膨張率が高くなっている。一般的に、外層被膜182では導体被膜181bよりも線膨張係数が高いが、それらの間にその中間の線膨張率を有する中間層183を設けることにより、その中間層183がクッション材として機能し、外層側及び内層側での同時割れを防ぐことができる。
The intermediate layer 183 has a higher linear expansion coefficient than the conductor coating 181b of the strand 181 and a lower linear expansion coefficient than the outer coating 182. That is, in the conductor 82, the coefficient of linear expansion is higher toward the outside. Generally, the outer layer coating 182 has a higher linear expansion coefficient than the conductor coating 181b, but by providing an intermediate layer 183 having an intermediate linear expansion coefficient between them, the intermediate layer 183 functions as a cushion material. In addition, simultaneous cracking on the outer layer side and the inner layer side can be prevented.
また、導線82では、素線181において導電部181aと導体被膜181bとが接着されるとともに、導体被膜181bと中間層183、中間層183と外層被膜182がそれぞれ接着されており、それら各接着部分では、導線82の外側ほど、接着強さが弱くなっている。つまり、導電部181a及び導体被膜181bの接着強さは、導体被膜181b及び中間層183の接着強さ、中間層183及び外層被膜182の接着強さよりも弱くなっている。また、導体被膜181b及び中間層183の接着強さと、中間層183及び外層被膜182の接着強さとを比較すると、後者の方(外側の方)が弱いか、又は同等であるとよい。なお、各被膜同士の接着強さの大きさは、例えば2層の被膜を引き剥がす際に要する引っ張り強さ等により把握可能である。上記のごとく導線82の接着強さが設定されていることで、発熱又は冷却による内外温度差が生じても、内層側及び外層側で共に割れが生じること(共割れ)を抑制することができる。
In the conductive wire 82, the conductive portion 181a and the conductive film 181b are bonded to the wire 181 and the conductive film 181b and the intermediate layer 183, and the intermediate layer 183 and the outer layer film 182 are bonded to each other. In the figure, the bonding strength is weaker toward the outside of the conducting wire 82. That is, the adhesive strength between the conductive portion 181a and the conductive coating 181b is lower than the adhesive strength between the conductive coating 181b and the intermediate layer 183, and the adhesive strength between the intermediate layer 183 and the outer coating 182. Further, comparing the adhesive strength between the conductor coating 181b and the intermediate layer 183 and the adhesive strength between the intermediate layer 183 and the outer coating 182, the latter (outer side) is preferably weaker or equivalent. It should be noted that the magnitude of the adhesive strength between the coatings can be grasped, for example, from the tensile strength and the like required when the two coatings are peeled off. By setting the bonding strength of the conductive wire 82 as described above, it is possible to suppress the occurrence of cracks (co-cracking) on both the inner layer side and the outer layer side even if an internal / external temperature difference occurs due to heat generation or cooling. .
ここで、回転電機の発熱、温度変化は、主に素線181の導電部181aから発熱される銅損と、鉄心内から発せられる鉄損として生じるが、それら2種類の損失は、導線82内の導電部181a、又は導線82の外部より伝わるものであり、中間層183に発熱源があるわけではない。この場合、中間層183が両方に対してクッションとなり得る接着力を持つことで、その同時割れを防ぐことができる。したがって、車両用途など、高耐圧又は温度変化の大きい分野での使用に際しても、好適なる使用が可能となる。
Here, heat generation and temperature change of the rotating electric machine mainly occur as copper loss generated from the conductive portion 181a of the wire 181 and iron loss generated from within the iron core. The conductive layer 181a is transmitted from the outside of the conductive portion 181a or the conductive wire 82, and the intermediate layer 183 does not necessarily have a heat source. In this case, since the intermediate layer 183 has an adhesive force that can serve as a cushion for both, simultaneous cracking can be prevented. Therefore, suitable use is possible even when used in a field having a high withstand voltage or a large temperature change such as a vehicle application.
以下に補足する。素線181は、例えばエナメル線であってもよく、かかる場合にはPA、PI、PAI等の樹脂被膜層(導体被膜181b)を有する。また、素線181より外側の外層被膜182は、同様のPA、PI、PAI等よりなり、かつ厚みが厚いものであることが望ましい。これにより、線膨張率差による被膜の破壊が抑えられる。なお、外層被膜182としては、PA、PI、PAI等の前記材料を厚くして対応するものとは別に、PPS、PEEK、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPといった、誘電率がPI、PAIよりも小さいものを使うことも回転機の導体密度を高めるためには望ましい。これらの樹脂であれば、導体被膜181b同等のPI,PAI被膜よりも薄いか、導体被膜181bと同等の厚みであっても、その絶縁能力を高くすることができ、これにより導電部の占有率を高めることが可能となる。一般的には、上記樹脂は、誘電率がエナメル線の絶縁被膜より良好な絶縁を有している。当然、成形状態や、混ぜ物によって、その誘電率を悪くする例も存在する。中でも、PPS、PEEKは、その線膨張係数がエナメル被膜より一般的には大きいが、他樹脂よりも小さいため、第2層の外層被膜として適するのである。
補足 Supplement to the following. The strand 181 may be, for example, an enameled wire, and in such a case, has a resin coating layer (conductor coating 181b) of PA, PI, PAI or the like. Further, it is desirable that the outer layer coating 182 outside the wire 181 be made of the same PA, PI, PAI or the like, and be thick. Thereby, the destruction of the coating film due to the difference in linear expansion coefficient is suppressed. The outer layer coating 182 has a dielectric constant such as PPS, PEEK, fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, or LCP, which is different from the corresponding material such as PA, PI, PAI by thickening the corresponding material. It is also desirable to use a material smaller than PI and PAI in order to increase the conductor density of the rotating machine. With these resins, even if they are thinner than the PI and PAI coatings equivalent to the conductor coating 181b or have the same thickness as the conductor coating 181b, their insulating ability can be increased, thereby increasing the occupancy of the conductive portion. Can be increased. Generally, the resin has better insulation than the insulating coating of the enameled wire. Naturally, there is an example in which the dielectric constant is deteriorated depending on the molding state or the mixture. Above all, PPS and PEEK generally have a higher coefficient of linear expansion than the enamel coating, but are smaller than other resins, and thus are suitable as the outer coating of the second layer.
また、素線181の外側における2種類の被膜(中間絶縁被膜、外側絶縁被膜)と素線181のエナメル被膜との接着強さは、素線181における銅線とエナメル被膜との間の接着強さよりも弱いことが望ましい。これにより、エナメル被膜と前記2種類の被膜とが一度に破壊される現象が抑制される。
The adhesive strength between the two types of coatings (intermediate insulating coating and outer insulating coating) on the outside of the wire 181 and the enamel coating on the wire 181 is determined by the adhesive strength between the copper wire and the enamel coating on the wire 181. It is desirable that it be weaker. This suppresses a phenomenon in which the enamel coating and the two types of coatings are destroyed at a time.
固定子に水冷構造、液冷構造、空冷構造が付加されている場合には、基本的に、外層被膜182から先に熱応力や衝撃応力が掛かると考えられる。しかし、素線181の絶縁層と、前記2種類の被膜とが違う樹脂の場合でも、その被膜を接着しない部位を設けることにより、前記熱応力や衝撃応力を低減することができる。すなわち、素線(エナメル線)と空隙を設け、フッ素、ポリカーボネート、シリコン、エポキシ、ポリエチレンナフタレート、LCPを配置することで前記絶縁構造がなされる。この場合、エポキシなどからなる低誘電率で、かつ低線膨張係数からなる接着材を用いて、外層被膜と内層被膜とを接着することが望ましい。こうすることで、機械的強度だけでなく、導電部の振動による揺れなどによる摩擦による被膜破壊、または線膨張係数差による外層被膜の破壊を抑えることができる。
(4) When a water-cooled structure, a liquid-cooled structure, or an air-cooled structure is added to the stator, it is basically considered that thermal stress or impact stress is applied first to the outer layer coating 182. However, even when the insulating layer of the strand 181 and the two types of coatings are made of different resins, the thermal stress and the impact stress can be reduced by providing a portion where the coatings are not bonded. That is, the insulating structure is formed by providing a gap between the element wire (enameled wire) and the void, and arranging fluorine, polycarbonate, silicon, epoxy, polyethylene naphthalate, and LCP. In this case, it is desirable to bond the outer layer coating and the inner layer coating using an adhesive made of epoxy or the like having a low dielectric constant and a low linear expansion coefficient. By doing so, it is possible to suppress not only the mechanical strength but also the destruction of the coating due to friction caused by the vibration of the conductive portion due to vibration or the destruction of the outer coating due to the difference in linear expansion coefficient.
上記構成の導線82に対しての、機械的強度、固定等を担う、一般的には固定子巻線周りの最終工程となる最外層固定としては、エポキシ、PPS、PEEK、LCPなどの成形性が良く、誘電率、線膨張係数といった性質がエナメル被膜と近い性質をもった樹脂が好ましい。
The outermost layer fixed as a final step around the stator winding, which is responsible for mechanical strength, fixing, and the like, for the conductor 82 having the above-described configuration, is formed of epoxy, PPS, PEEK, LCP, or the like. It is preferable to use a resin having properties such as a dielectric constant and a linear expansion coefficient close to those of an enamel coating.
一般的には、ウレタン、シリコンによる樹脂ポッティングが通例なされるが、前記樹脂においてはその線膨張係数がその他の樹脂と比べて倍近い差があり、樹脂をせん断し得る熱応力を発生する。そのため、厳しい絶縁規定が国際的に用いられる60V以上の用途には不適である。この点、エポキシ、PPS、PEEK、LCPなどにより射出成型等により容易に作られる最終絶縁工程によれば、上述の各要件を達成することが可能である。
樹脂 Generally, resin potting with urethane or silicon is generally performed, but the resin has a coefficient of linear expansion that is nearly twice as large as that of other resins, and generates thermal stress that can shear the resin. Therefore, it is not suitable for use at 60 V or higher where strict insulation regulations are used internationally. In this regard, according to the final insulation process that is easily made by injection molding or the like using epoxy, PPS, PEEK, LCP, or the like, the above-described requirements can be achieved.
上記以外の変形例を以下に列記する。
変 形 Modifications other than the above are listed below.
・磁石ユニット42のうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。具体的には、例えば、図4に示す磁石ユニット42(具体的には、第1,第2磁石91,92)のうち径方向内側の面と、回転子40の軸心との径方向における距離DMが50mm以上とされていてもよい。
(4) The radial distance DM between the armature side surface of the magnet unit 42 in the radial direction and the axis of the rotor may be 50 mm or more. Specifically, for example, in the radial direction between the radially inner surface of the magnet unit 42 (specifically, the first and second magnets 91 and 92) shown in FIG. The distance DM may be set to 50 mm or more.
スロットレス構造の回転電機としては、その出力が数十Wから数百W級の模型用などに使用される小規模なものが知られている。そして、一般的には10kWを超すような工業用の大型の回転電機でスロットレス構造が採用された事例を本願開示者は把握していない。その理由について本願開示者は検討した。
As a rotary electric machine having a slotless structure, a small-sized electric machine whose output is used for a model whose output is several tens of watts to several hundreds of watts is known. In addition, the applicant of the present application has not grasped an example in which a slotless structure is generally employed in a large-scale rotating electric machine for industrial use exceeding 10 kW. The present applicant has examined the reason.
近年主流の回転電機は、次の4種類に大別される。それら回転電機とは、ブラシ付きモータ、カゴ型誘導モータ、永久磁石式同期モータ及びリラクタンスモータである。
In recent years, the mainstream rotating electric machines are roughly classified into the following four types. The rotating electric machines are a brush motor, a cage induction motor, a permanent magnet synchronous motor, and a reluctance motor.
ブラシ付きモータには、ブラシを介して励磁電流が供給される。このため、大型機のブラシ付きモータの場合、ブラシが大型化したり、メンテナンスが煩雑になったりしたりする。これにより、半導体技術の目覚ましい発達に伴い、誘導モータ等のブラシレスモータに置換されてきた経緯がある。一方、小型モータの世界では、低い慣性及び経済性の利点から、コアレスモータも多数世の中に供給されている。
励 Excitation current is supplied to the motor with brush via the brush. For this reason, in the case of a motor with a brush of a large machine, the brush becomes large or the maintenance becomes complicated. As a result, with the remarkable development of semiconductor technology, there has been a history of replacement with brushless motors such as induction motors. On the other hand, in the world of small motors, coreless motors are also supplied to many people due to the advantages of low inertia and economy.
カゴ型誘導モータでは、1次側の固定子巻線で発生させる磁界を2次側の回転子の鉄心で受けてカゴ型導体に集中的に誘導電流を流して反作用磁界を形成することにより、トルクを発生させる原理である。このため、機器の小型高効率の観点からすれば、固定子側及び回転子側ともに鉄心をなくすことは必ずしも得策であるとは言えない。
In a cage-type induction motor, a magnetic field generated by a stator winding on a primary side is received by an iron core of a rotor on a secondary side, and an induced current is intensively applied to a cage-type conductor to form a reaction magnetic field. This is the principle of generating torque. For this reason, from the viewpoint of miniaturization and high efficiency of the device, it is not always advisable to eliminate the iron core on both the stator side and the rotor side.
リラクタンスモータは、当に鉄心のリラクタンス変化を活用するモータであり、原理的に鉄心をなくすことは望ましくない。
(4) The reluctance motor is a motor that utilizes the reluctance change of the iron core, and it is not desirable to eliminate the iron core in principle.
永久磁石式同期モータでは、近年IPM(つまり埋め込み磁石型回転子)が主流であり、特に大型機においては、特殊事情がない限りIPMである場合が多い。
In recent years, IPMs (i.e., embedded magnet type rotors) have become the mainstream among permanent magnet type synchronous motors, and especially in large machines, IPMs are often used unless there are special circumstances.
IPMは、磁石トルク及びリラクタンストルクを併せ持つ特性を有しており、インバータ制御により、それらトルクの割合が適時調整されながら運転される。このため、IPMは小型で制御性に優れるモータである。
The IPM has a characteristic of having both a magnet torque and a reluctance torque, and is operated while the ratio of those torques is appropriately adjusted by inverter control. Therefore, the IPM is a small-sized motor having excellent controllability.
本願開示者の分析により、磁石トルク及びリラクタンストルクを発生する回転子表面のトルクを、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DM、すなわち、一般的なインナロータの固定子鉄心の半径を横軸にとって描くと図45に示すものとなる。
According to the analysis of the present applicant, the torque on the rotor surface that generates the magnet torque and the reluctance torque is calculated by calculating the distance DM in the radial direction between the surface of the magnet unit on the armature side in the radial direction and the axis of the rotor, that is, FIG. 45 shows the radius of the stator core of a general inner rotor taken on the horizontal axis.
磁石トルクは、下式(eq1)に示すように、永久磁石の発生する磁界強度によりそのポテンシャルが決定されるのに対し、リラクタンストルクは、下式(eq2)に示すように、インダクタンス、特にq軸インダクタンスの大きさがそのポテンシャルを決定する。
As shown in the following equation (eq1), the potential of the magnet torque is determined by the strength of the magnetic field generated by the permanent magnet, whereas the reluctance torque is expressed by inductance, particularly q, as shown in the following equation (eq2). The magnitude of the shaft inductance determines its potential.
磁石トルク=k・Ψ・Iq ・・・(eq1)
リラクタンストルク=k・(Lq-Ld)・Iq・Id・・・(eq2)
ここで、永久磁石の磁界強度と巻線のインダクタンスの大きさとをDMで比較してみた。永久磁石の発する磁界強度、すなわち磁束量Ψは、固定子と対向する面の永久磁石の総面積に比例する。円筒型の回転子であれば円筒の表面積になる。厳密には、N極とS極とが存在するので、円筒表面の半分の専有面積に比例する。円筒の表面積は、円筒の半径と、円筒長さとに比例する。つまり、円筒長さが一定であれば、円筒の半径に比例する。 Magnet torque = k · Ψ · Iq (eq1)
Reluctance torque = k · (Lq−Ld) · Iq · Id (eq2)
Here, the magnetic field strength of the permanent magnet and the magnitude of the inductance of the winding were compared by DM. The magnetic field intensity generated by the permanent magnet, that is, the amount of magnetic flux Ψ is proportional to the total area of the permanent magnet on the surface facing the stator. In the case of a cylindrical rotor, it is the surface area of the cylinder. Strictly speaking, since there are an N pole and an S pole, it is proportional to the area occupied by half of the cylindrical surface. The surface area of a cylinder is proportional to the radius of the cylinder and the length of the cylinder. That is, if the length of the cylinder is constant, it is proportional to the radius of the cylinder.
リラクタンストルク=k・(Lq-Ld)・Iq・Id・・・(eq2)
ここで、永久磁石の磁界強度と巻線のインダクタンスの大きさとをDMで比較してみた。永久磁石の発する磁界強度、すなわち磁束量Ψは、固定子と対向する面の永久磁石の総面積に比例する。円筒型の回転子であれば円筒の表面積になる。厳密には、N極とS極とが存在するので、円筒表面の半分の専有面積に比例する。円筒の表面積は、円筒の半径と、円筒長さとに比例する。つまり、円筒長さが一定であれば、円筒の半径に比例する。 Magnet torque = k · Ψ · Iq (eq1)
Reluctance torque = k · (Lq−Ld) · Iq · Id (eq2)
Here, the magnetic field strength of the permanent magnet and the magnitude of the inductance of the winding were compared by DM. The magnetic field intensity generated by the permanent magnet, that is, the amount of magnetic flux Ψ is proportional to the total area of the permanent magnet on the surface facing the stator. In the case of a cylindrical rotor, it is the surface area of the cylinder. Strictly speaking, since there are an N pole and an S pole, it is proportional to the area occupied by half of the cylindrical surface. The surface area of a cylinder is proportional to the radius of the cylinder and the length of the cylinder. That is, if the length of the cylinder is constant, it is proportional to the radius of the cylinder.
一方、巻線のインダクタンスLqは、鉄心形状に依存はするものの感度は低く、むしろ固定子巻線の巻数の2乗に比例するため、巻数の依存性が高い。なお、μを磁気回路の透磁率、Nを巻数、Sを磁気回路の断面積、δを磁気回路の有効長さとする場合、インダクタンスL=μ・N^2×S/δである。巻線の巻数は、巻線スペースの大きさに依存するため、円筒型モータであれば、固定子の巻線スペース、すなわちスロット面積に依存することになる。図46に示すように、スロット面積は、スロットの形状が略四角形であるため、周方向の長さ寸法a及び径方向の長さ寸法bとの積a×bに比例する。
On the other hand, the inductance Lq of the winding depends on the shape of the iron core but has low sensitivity, and is rather proportional to the square of the number of turns of the stator winding. When μ is the magnetic permeability of the magnetic circuit, N is the number of turns, S is the cross-sectional area of the magnetic circuit, and δ is the effective length of the magnetic circuit, the inductance L = μ · N ^ 2 × S / δ. Since the number of windings depends on the size of the winding space, in the case of a cylindrical motor, it depends on the winding space of the stator, that is, the slot area. As shown in FIG. 46, the slot area is proportional to the product a × b of the circumferential length a and the radial length b since the shape of the slot is substantially rectangular.
スロットの周方向の長さ寸法は、円筒の直径が大きいほど大きくなるため、円筒の直径に比例する。スロットの径方向の長さ寸法は、当に円筒の直径に比例する。つまり、スロット面積は、円筒の直径の2乗に比例する。また、上式(eq2)からも分かる通り、リラクタンストルクは、固定子電流の2乗に比例するため、いかに大電流を流せるかで回転電機の性能が決まり、その性能は固定子のスロット面積に依存する。以上より、円筒の長さが一定なら、リラクタンストルクは円筒の直径の2乗に比例する。このことを踏まえ、磁石トルク及びリラクタンストルクとDMとの関係性をプロットした図が図45である。
周 The circumferential length of the slot increases in proportion to the diameter of the cylinder, because the larger the diameter of the cylinder, the larger it becomes. The radial length dimension of the slot is directly proportional to the diameter of the cylinder. That is, the slot area is proportional to the square of the diameter of the cylinder. Also, as can be seen from the above equation (eq2), since the reluctance torque is proportional to the square of the stator current, the performance of the rotating electric machine is determined by how large a current can flow, and the performance depends on the slot area of the stator. Dependent. From the above, if the length of the cylinder is constant, the reluctance torque is proportional to the square of the diameter of the cylinder. Based on this, FIG. 45 is a diagram plotting the relationship between DM and magnet torque and reluctance torque.
図45に示すように、磁石トルクはDMに対して直線的に増加し、リラクタンストルクはDMに対して2次関数的に増加する。DMが比較的小さい場合は磁石トルクが支配的であり、固定子鉄心半径が大きくなるに連れてリラクタンストルクが支配的であることがわかる。本願開示者は、図45における磁石トルク及びリラクタンストルクの交点が、所定の条件下において、おおよそ固定子鉄心半径=50mmの近傍であるとの結論に至った。つまり、固定子鉄心半径が50mmを十分に超えるような10kW級のモータでは、リラクタンストルクを活用することが現在の主流であるため鉄心を無くすことは困難であり、このことが大型機の分野においてスロットレス構造が採用されない理由の1つであると推定される。
磁石 As shown in FIG. 45, the magnet torque increases linearly with DM, and the reluctance torque increases quadratically with DM. When the DM is relatively small, the magnet torque is dominant, and the reluctance torque is dominant as the stator core radius increases. The inventor of the present application has concluded that the intersection of the magnet torque and the reluctance torque in FIG. 45 is approximately in the vicinity of the stator core radius = 50 mm under the predetermined condition. In other words, in a 10 kW class motor in which the stator core radius is well over 50 mm, it is difficult to eliminate the core because the current mainstream is to utilize the reluctance torque. This is presumed to be one of the reasons that the slotless structure is not adopted.
固定子に鉄心が使用される回転電機の場合、鉄心の磁気飽和が常に課題となる。特にラジアルギャップ型の回転電機では、回転軸の縦断面形状は1磁極当たり扇型となり、機器内周側程磁路幅が狭くなりスロットを形成するティース部分の内周側寸法が回転電機の性能限界を決める。いかに高性能な永久磁石を使おうとも、この部分で磁気飽和が発生すると、永久磁石の性能を十分にひきだすことができない。この部分で磁気飽和を発生させないためには、内周径を大きく設計することになり結果的に機器の大型化に至ってしまうのである。
回 転 In the case of a rotating electric machine using an iron core for the stator, magnetic saturation of the iron core is always an issue. In particular, in the radial gap type rotating electric machine, the longitudinal section of the rotating shaft is fan-shaped per magnetic pole, and the magnetic path width becomes narrower toward the inner peripheral side of the device, and the inner peripheral side dimensions of the teeth forming the slots are the performance of the rotating electric machine. Set limits. No matter how high-performance a permanent magnet is used, if magnetic saturation occurs in this part, the performance of the permanent magnet cannot be fully exploited. In order to prevent magnetic saturation from occurring in this portion, the inner diameter must be designed to be large, resulting in an increase in the size of the device.
例えば、分布巻の回転電機では、3相巻線であれば、1磁極あたり3つ乃至6つのティースで分担して磁束を流すのだが、周方向前方のティースに磁束が集中しがちであるため、3つ乃至6つのティースに均等に磁束が流れるわけではない。この場合、一部(例えば1つ又は2つ)のティースに集中的に磁束が流れながら、回転子の回転に伴って磁気飽和するティースも周方向に移動してゆく。これがスロットリップルを生む要因にもなる。
For example, in the case of a distributed winding rotary electric machine, in the case of a three-phase winding, three to six teeth per magnetic pole share the magnetic flux, but the magnetic flux tends to concentrate on the teeth in the circumferential front. The magnetic flux does not flow evenly in three to six teeth. In this case, magnetic flux intensively flows through some (for example, one or two) teeth, and the teeth that are magnetically saturated with the rotation of the rotor also move in the circumferential direction. This is also a factor that causes slot ripple.
以上から、DMが50mm以上となるスロットレス構造の回転電機において、磁気飽和を解消するために、ティースを廃止したい。しかし、ティースが廃止されると、回転子及び固定子における磁気回路の磁気抵抗が増加し、回転電機のトルクが低下してしまう。磁気抵抗増加の理由としては、例えば、回転子と固定子との間のエアギャップが大きくなることがある。このため、上述したDMが50mm以上となるスロットレス構造の回転電機において、トルクを増強することについて改善の余地がある。したがって、上述したDMが50mm以上となるスロットレス構造の回転電機に、上述したトルクを増強できる構成を適用するメリットが大きい。
From the above, in the rotating electric machine of the slotless structure in which the DM becomes 50 mm or more, it is desired to eliminate the teeth in order to eliminate the magnetic saturation. However, when the teeth are abolished, the magnetic resistance of the magnetic circuit in the rotor and the stator increases, and the torque of the rotating electric machine decreases. As a reason for the increase in magnetic resistance, for example, an air gap between the rotor and the stator may be large. For this reason, there is room for improvement in increasing the torque in the above-mentioned slotless rotating electric machine in which the DM is 50 mm or more. Therefore, there is a great merit in applying the above-described configuration capable of increasing the torque to the rotating electric machine having the slotless structure in which the DM is 50 mm or more.
なお、アウタロータ構造の回転電機に限らず、インナロータ構造の回転電機についても、磁石ユニットのうち径方向において電機子側の面と、回転子の軸心との径方向における距離DMが50mm以上とされていてもよい。
Not only for the rotating electric machine having the outer rotor structure but also for the rotating electric machine having the inner rotor structure, the radial distance DM between the surface of the magnet unit on the armature side in the radial direction and the axis of the rotor is 50 mm or more. May be.
・回転電機10の固定子巻線51において、導線82の直線部83を径方向に単層で設ける構成としてもよい。また、径方向内外に複数層で直線部83を配置する場合に、その層数は任意でよく、3層、4層、5層、6層等で設けてもよい。
In the stator winding 51 of the rotating electric machine 10, the straight line portion 83 of the conducting wire 82 may be provided in a single layer in the radial direction. When the linear portion 83 is arranged in a plurality of layers inside and outside in the radial direction, the number of the layers may be arbitrary, and three, four, five, six, or the like may be provided.
・例えば図2の構成では、回転軸11を、軸方向で回転電機10の一端側及び他端側の両方に突出するように設けたが、これを変更し、一端側にのみ突出する構成としてもよい。この場合、回転軸11は、軸受ユニット20により片持ち支持される部分を端部とし、その軸方向外側に延びるように設けられるとよい。本構成では、インバータユニット60の内部に回転軸11が突出しない構成となるため、インバータユニット60の内部空間、詳しくは筒状部71の内部空間をより広く用いることができることとなる。
For example, in the configuration of FIG. 2, the rotating shaft 11 is provided so as to protrude at both the one end side and the other end side of the rotary electric machine 10 in the axial direction. Is also good. In this case, the rotating shaft 11 may be provided so as to extend outward in the axial direction with a portion supported by the bearing unit 20 in a cantilevered manner as an end. In this configuration, since the rotation shaft 11 does not protrude into the inverter unit 60, the internal space of the inverter unit 60, more specifically, the internal space of the tubular portion 71 can be used more widely.
・上記構成の回転電機10では、軸受21,22において非導電性グリースを用いる構成としたが、これを変更し、軸受21,22において導電性グリースを用いる構成としてもよい。例えば、金属粒子やカーボン粒子等が含まれた導電性グリースを用いる構成とする。
In the rotating electric machine 10 having the above-described configuration, the bearings 21 and 22 are configured to use the non-conductive grease. However, the configuration may be changed and the bearings 21 and 22 may be configured to use the conductive grease. For example, a configuration is used in which conductive grease containing metal particles, carbon particles, or the like is included.
・回転軸11を回転自在に支持する構成として、回転子40の軸方向一端側及び他端側の2カ所に軸受を設ける構成としてもよい。この場合、図1の構成で言えば、インバータユニット60を挟んで一端側及び他端側の2カ所に軸受が設けられるとよい。
(4) As a configuration for rotatably supporting the rotating shaft 11, a configuration may be adopted in which bearings are provided at two locations on one end side and the other end side of the rotor 40 in the axial direction. In this case, in the configuration of FIG. 1, it is preferable that bearings are provided at two locations, one end side and the other end side, with the inverter unit 60 interposed therebetween.
・上記構成の回転電機10では、回転子40において磁石ホルダ41の中間部45が内側肩部49aと感情の外側肩部49bを有する構成としたが、これらの肩部49a,49bを無くし、平坦な面を有する構成としてもよい。
In the rotating electric machine 10 having the above-described configuration, the intermediate portion 45 of the magnet holder 41 in the rotor 40 has the inner shoulder 49a and the outer shoulder 49b of emotion. However, these shoulders 49a and 49b are eliminated and the rotor 40 is flat. It may be configured to have various surfaces.
・上記構成の回転電機10では、固定子巻線51の導線82において導体82aを複数の素線86の集合体として構成したが、これを変更し、導線82として断面矩形状の角形導線を用いる構成としてもよい。また、導線82として断面円形状又は断面楕円状の丸形導線を用いる構成としてもよい。
In the rotating electric machine 10 having the above-described configuration, the conductor 82 a in the conductor 82 of the stator winding 51 is configured as an aggregate of the plurality of wires 86, but this is changed, and a rectangular conductor having a rectangular cross section is used as the conductor 82. It may be configured. Further, a configuration may be used in which a round conductor having a circular cross section or an elliptical cross section is used as the conductor 82.
・上記構成の回転電機10では、固定子50の径方向内側にインバータユニット60を設ける構成としたが、これに代えて、固定子50の径方向内側にインバータユニット60を設けない構成としてもよい。この場合、固定子50の径方向内側となる内部領域を空間としておくことが可能である。また、その内部領域に、インバータユニット60とは異なる部品を配することが可能である。
In the rotating electric machine 10 having the above configuration, the inverter unit 60 is provided radially inside the stator 50. Alternatively, the inverter unit 60 may not be provided radially inside the stator 50. . In this case, it is possible to leave an internal region radially inside the stator 50 as a space. Further, it is possible to arrange components different from the inverter unit 60 in the internal area.
・上記構成の回転電機10において、ハウジング30を具備しない構成としてもよい。この場合、例えばホイールや他の車両部品の一部において、回転子40、固定子50等が保持される構成であってもよい。
In the rotating electric machine 10 having the above-described configuration, the configuration may be such that the housing 30 is not provided. In this case, for example, the rotor 40, the stator 50, and the like may be held in a part of a wheel or another vehicle part.
・上記構成において、磁石91,92,131,132,2001の周りを樹脂被膜により覆ってもよい。このようにすることにより、隣り合う磁石の間で、渦電流が流れることを防止し、渦電流損を低減することが可能となる。また、円筒部43と磁石の間で、渦電流が流れることを防止し、渦電流損を低減することが可能となる。つまり、磁石ユニット42の発熱を抑えることができる。なお、樹脂被膜を設ける場合、磁石ユニット42が固定子側に露出するように、磁石の反固定子側周面及び周方向端面を樹脂被膜により覆うことが望ましい。磁石の固定子側外面を露出することにより、樹脂被膜による磁束密度の低下を抑制することができ、また、磁石ユニット42と固定子50との間のエアギャップを小さくすることができる。なお、磁石ユニット42の軸方向端面は、樹脂被膜により覆っても覆わなくてもどちらでもよい。
In the above configuration, the periphery of the magnets 91, 92, 131, 132, 2001 may be covered with a resin coating. By doing so, it is possible to prevent an eddy current from flowing between adjacent magnets, and to reduce eddy current loss. Further, eddy current is prevented from flowing between the cylindrical portion 43 and the magnet, and eddy current loss can be reduced. That is, heat generation of the magnet unit 42 can be suppressed. In the case where a resin coating is provided, it is desirable that the peripheral surface and the circumferential end surface of the magnet opposite to the stator are covered with the resin coating so that the magnet unit 42 is exposed on the stator side. By exposing the stator-side outer surface of the magnet, a decrease in magnetic flux density due to the resin coating can be suppressed, and an air gap between the magnet unit 42 and the stator 50 can be reduced. The axial end surface of the magnet unit 42 may or may not be covered with the resin film.
・上記構成において、磁石ユニット42の全体又は一部を樹脂でモールドしてもよい。磁石ユニット42を樹脂でモールドする場合、周方向における磁石間の隙間を周方向において所定の幅寸法を有する樹脂壁で埋めてもよい。これにより、周方向における磁石のまわり止め又はまわり止めの補助を、隙間に配置された樹脂壁により行うことが可能となる。また、磁石ユニット42を樹脂でモールドする場合、円筒部43の内周面と磁石ユニット42との間において径方向に所定の厚さ寸法を有する樹脂壁が配置されるように、磁石ユニット42をモールドしてもよい。このようにした場合、回転時に円筒部43と磁石ユニット42との間における樹脂壁が緩衝材として機能し、円筒部43と磁石ユニット42が接触することを防止できる。
In the above configuration, the whole or a part of the magnet unit 42 may be molded with resin. When molding the magnet unit 42 with a resin, the gap between the magnets in the circumferential direction may be filled with a resin wall having a predetermined width in the circumferential direction. Thereby, it becomes possible to stop or stop the rotation of the magnet in the circumferential direction by the resin wall disposed in the gap. Further, when the magnet unit 42 is molded with resin, the magnet unit 42 is formed such that a resin wall having a predetermined thickness dimension is arranged in the radial direction between the inner peripheral surface of the cylindrical portion 43 and the magnet unit 42. It may be molded. In this case, the resin wall between the cylindrical portion 43 and the magnet unit 42 functions as a cushioning member during rotation, so that the cylindrical portion 43 and the magnet unit 42 can be prevented from contacting each other.
・第2実施形態において、磁石ユニット42を樹脂でモールドする場合、溝部2004を樹脂で埋めて、径方向における磁石2001の移動を規制してもよい。溝部2004に樹脂を埋めることにより、磁石ユニット42と固定子50との間における樹脂層の厚さ寸法を薄くしても(若しくは樹脂層をなくしても)、溝部2004に配置された樹脂により、適切に脱落防止を行うことが可能となる。これにより、回転時に、磁石2001が径方向に移動して脱落することを抑制できる。
In the second embodiment, when the magnet unit 42 is molded with resin, the groove 2004 may be filled with resin to restrict the movement of the magnet 2001 in the radial direction. By filling the groove 2004 with resin, even if the thickness of the resin layer between the magnet unit 42 and the stator 50 is reduced (or the resin layer is eliminated), the resin arranged in the groove 2004 It is possible to appropriately prevent falling off. This can prevent the magnet 2001 from moving in the radial direction and falling off during rotation.
・上記第1実施形態の磁石ユニット42において、q軸毎に磁石91,92が分割されていたが、d軸において磁石91,92が分割されていてもよい。また、q軸とd軸において磁石91,92が分割されていてもよい。また、第2実施形態の磁石ユニット42において、磁石2001がq軸において分割されていてもよい。すなわち、磁石ユニット42の磁石は、周方向において任意の箇所で分割されていてもよい。
In the magnet unit 42 of the first embodiment, the magnets 91 and 92 are divided for each q-axis, but the magnets 91 and 92 may be divided for the d-axis. Further, the magnets 91 and 92 may be divided on the q axis and the d axis. In the magnet unit 42 of the second embodiment, the magnet 2001 may be divided on the q axis. That is, the magnet of the magnet unit 42 may be divided at an arbitrary position in the circumferential direction.
・上記第2実施形態において、溝部2004を設けなくてもよい。
In the second embodiment, the groove 2004 may not be provided.
・上記構成において、円筒部43の内周面に、磁石ユニット42が直接固定されていたが、磁石ユニット42を保持する磁石保持部を磁石ホルダ41とは別に設けて、当該磁石保持部を介して、磁石ユニット42が円筒部43(つまり磁石ホルダ41)に固定されていてもよい。
In the above-described configuration, the magnet unit 42 is directly fixed to the inner peripheral surface of the cylindrical portion 43. However, a magnet holding portion that holds the magnet unit 42 is provided separately from the magnet holder 41, and the magnet unit 42 is connected via the magnet holding portion. Thus, the magnet unit 42 may be fixed to the cylindrical portion 43 (that is, the magnet holder 41).
例えば、図47~49に示す回転電機では、第2実施形態において説明した磁石2001を複数有する磁石ユニット42を保持する磁石保持部3001を有している。この磁石保持部3001は、円筒形状に形成されており、その外周面は、円筒部43の内周面に沿って形成されており、その内周面は、磁石ユニット42の外周面に沿って形成されている。磁石ユニット42は、磁石保持部3001の内周面に固定され、保持されており、磁石保持部3001は、円筒部43の内周面に固定されている。
For example, the rotating electric machine shown in FIGS. 47 to 49 has the magnet holding unit 3001 that holds the magnet unit 42 having the plurality of magnets 2001 described in the second embodiment. The magnet holding portion 3001 is formed in a cylindrical shape, the outer peripheral surface is formed along the inner peripheral surface of the cylindrical portion 43, and the inner peripheral surface is formed along the outer peripheral surface of the magnet unit 42. Is formed. The magnet unit 42 is fixed and held on the inner peripheral surface of the magnet holder 3001, and the magnet holder 3001 is fixed on the inner peripheral surface of the cylindrical portion 43.
また、図48,49に示すように、第2実施形態と同様、磁石ユニット42は、反固定子側(すなわち、磁石保持部側)に開口する凹部2002を有する。一方、磁石保持部3001の内周面には、磁石ユニット42の凹部2002に対して周方向に係合する凸部3002が設けられている。詳しく説明すると、図48,49に示すように、磁石保持部3001の内周面に、径方向に沿って磁石ユニット側(つまり、固定子側)に突出する凸部3002が設けられている。これらの凸部3002は、凹部2002の形状に合わせて横断面が三角形状となるように、周方向の幅寸法が、径方向において固定子側に近づくにつれて短くなるように形成されている。つまり、磁石保持部3001から凸部3002の頂点に向かう斜面が設けられており、当該斜面は、凹部2002の斜面の角度に応じた角度(すなわち、径方向に対して45度の角度)に形成されている。また、径方向における凸部3002の寸法(高さ寸法)を、凹部2002の寸法(深さ寸法)と同じとしている。これにより、凸部3002と凹部2002とを好適に係合させることが可能となる。
Also, as shown in FIGS. 48 and 49, similarly to the second embodiment, the magnet unit 42 has a concave portion 2002 that opens on the side opposite to the stator (that is, the magnet holding portion side). On the other hand, on the inner peripheral surface of the magnet holding portion 3001, a convex portion 3002 that engages with the concave portion 2002 of the magnet unit 42 in the circumferential direction is provided. More specifically, as shown in FIGS. 48 and 49, a convex portion 3002 is provided on the inner peripheral surface of the magnet holding portion 3001 so as to project toward the magnet unit (ie, the stator side) along the radial direction. These convex portions 3002 are formed so that the width in the circumferential direction becomes shorter as approaching the stator side in the radial direction so that the cross section becomes triangular according to the shape of the concave portion 2002. That is, a slope is provided from the magnet holding portion 3001 to the vertex of the convex portion 3002, and the slope is formed at an angle corresponding to the angle of the slope of the concave portion 2002 (ie, an angle of 45 degrees with respect to the radial direction). Have been. In addition, the dimension (height dimension) of the projection 3002 in the radial direction is the same as the dimension (depth dimension) of the recess 2002. This makes it possible to suitably engage the convex portion 3002 and the concave portion 2002.
また、円筒部43の内周面には、固定子側に開口する被係合部としての係合凹部3003が設けられており、磁石保持部3001の外周面には、係合部としての係合凸部3004が設けられている。係合凹部3003は、係合凸部3004に対して周方向に係合するように設けられている。具体的には、係合凹部3003は、断面が三角形状となるように形成されている。すなわち、径方向外側ほど周方向の幅寸法が徐々に小さくなるように形成されている。係合凸部3004は、係合凹部3003の形状に合わせて、断面が三角形状となるように形成されている。
An engagement concave portion 3003 as an engaged portion that opens to the stator side is provided on the inner peripheral surface of the cylindrical portion 43, and an engagement concave portion as an engaging portion is provided on the outer peripheral surface of the magnet holding portion 3001. A mating projection 3004 is provided. The engagement concave portion 3003 is provided so as to engage with the engagement convex portion 3004 in the circumferential direction. Specifically, the engagement concave portion 3003 is formed so that the cross section becomes triangular. That is, it is formed so that the width in the circumferential direction becomes gradually smaller toward the outer side in the radial direction. The engagement projection 3004 is formed so as to have a triangular cross section according to the shape of the engagement recess 3003.
また、周方向における係合凸部3004(及び係合凹部3003)の位置は、凸部2003の位置とは異なる位置に設けられている。具体的には、係合凸部3004は、q軸上に設けられている。これにより、円筒部43から磁石保持部3001に加えられる力と、磁石ユニット42から磁石保持部3001に加えられる力を周方向において分散させることが可能となる。これにより、磁石保持部3001は、周方向において同じ位置において、径方向内外から力が加えられることを防止し、磁石保持部3001が変形等することを抑制できる。
The position of the engaging protrusion 3004 (and the engaging recess 3003) in the circumferential direction is provided at a position different from the position of the protrusion 2003. Specifically, the engagement projection 3004 is provided on the q axis. Accordingly, it is possible to disperse the force applied from the cylindrical portion 43 to the magnet holding portion 3001 and the force applied from the magnet unit 42 to the magnet holding portion 3001 in the circumferential direction. Accordingly, the magnet holding unit 3001 can prevent a force from being applied from the inside and outside in the radial direction at the same position in the circumferential direction, and can suppress the deformation and the like of the magnet holding unit 3001.
以上のように、凹部2002、凸部2003、係合凹部3003、及び係合凸部3004を設けることにより、磁石保持部3001と磁石ユニット42との間のまわり止め、及び磁石保持部3001と円筒部43との間のまわり止めを好適に行うことができ、これらを一体的に回転させることが可能となる。また、円筒部43と、磁石保持部3001を別体に設けることにより、円筒部43と、磁石保持部3001の材質を異ならせることができる。例えば、磁石保持部3001を磁性体で構成し、バックヨークとして機能させることができる。なお、上記別例において、係合凹部3003を磁石保持部3001に設け、係合凸部3004を円筒部43に設けてもよい。
As described above, by providing the concave portion 2002, the convex portion 2003, the engaging concave portion 3003, and the engaging convex portion 3004, the rotation between the magnet holding portion 3001 and the magnet unit 42 is prevented, and the magnet holding portion 3001 and the cylindrical It is possible to suitably perform a rotation stop with the part 43, and it is possible to rotate them integrally. Further, by providing the cylindrical portion 43 and the magnet holding portion 3001 separately, the materials of the cylindrical portion 43 and the magnet holding portion 3001 can be made different. For example, the magnet holder 3001 can be made of a magnetic material and function as a back yoke. Note that, in the above alternative example, the engaging concave portion 3003 may be provided on the magnet holding portion 3001 and the engaging convex portion 3004 may be provided on the cylindrical portion 43.
・上記構成において、円筒部43と、中間部45は、別体で構成されていてもよい。例えば、図50に示すように、中間部45の外縁に、円筒部43を固定させればよい。この場合、図50,51に示すように、円筒部43及び中間部45(の外縁)に、それぞれ軸方向に沿って孔部4001を設け、当該孔部4001に、軸方向に沿って棒状に形成された留め具を挿入して、留め具により中間部45に円筒部43を固定すればよい。留め具は、例えば、ネジやリベットである。図50,51に示す別例では、留め具としてリベット4002を例示する。この場合、中間部45は、磁石保持部としての円筒部43を軸方向において固定する端板として機能する。
In the above configuration, the cylindrical portion 43 and the intermediate portion 45 may be formed separately. For example, as shown in FIG. 50, the cylindrical portion 43 may be fixed to the outer edge of the intermediate portion 45. In this case, as shown in FIGS. 50 and 51, a hole 4001 is provided in the cylindrical portion 43 and the (outer edge) of the intermediate portion 45 along the axial direction, and the hole 4001 is formed in a rod shape along the axial direction. What is necessary is just to insert the formed fastener, and to fix the cylindrical part 43 to the intermediate part 45 with a fastener. The fastener is, for example, a screw or a rivet. In another example shown in FIGS. 50 and 51, a rivet 4002 is illustrated as a fastener. In this case, the intermediate portion 45 functions as an end plate that fixes the cylindrical portion 43 as a magnet holding portion in the axial direction.
また、第2実施形態における円筒部43に、孔部4001を設ける場合、円筒部43の強度を考慮して、周方向において凸部2003に対して重複する位置に孔部4001を設けることが望ましい。例えば、図51に示すように、孔部4001の中心位置と、凸部2003の中心位置(先端)が一致する位置、すなわち、d軸上となるように、孔部4001を設けることが望ましい。
Further, when the hole 4001 is provided in the cylindrical portion 43 in the second embodiment, it is desirable to provide the hole 4001 at a position overlapping the convex portion 2003 in the circumferential direction in consideration of the strength of the cylindrical portion 43. . For example, as shown in FIG. 51, it is desirable to provide the hole 4001 so that the center position of the hole 4001 and the center position (tip) of the protrusion 2003 coincide, that is, on the d-axis.
なお、円筒部43と中間部45とを、別体に構成したうえで、前述した磁石保持部3001を設けてもよい。この場合、図52に示すように、円筒部43の内周面に、被係合部としての係合凸部3004を設け、磁石保持部3001の外周面に係合部としての係合凹部3003を設けることが望ましい。そして、円筒部43に孔部4001を設ける場合、孔部4001の中心位置と、係合凸部3004の中心位置(先端)が一致する位置、すなわち、q軸上となるように、孔部4001を設けることが望ましい。
Note that the cylindrical portion 43 and the intermediate portion 45 may be formed separately, and then the above-described magnet holding portion 3001 may be provided. In this case, as shown in FIG. 52, an engaging projection 3004 as an engaged portion is provided on the inner peripheral surface of the cylindrical portion 43, and an engaging concave portion 3003 as the engaging portion is provided on the outer peripheral surface of the magnet holding portion 3001. Is desirably provided. When the hole portion 4001 is provided in the cylindrical portion 43, the hole portion 4001 is positioned so that the center position of the hole portion 4001 and the center position (tip) of the engagement protrusion 3004 coincide with each other, that is, on the q axis. Is desirably provided.
・上記第1実施形態において、図53に示すように、磁石91,92の間に隙間1001を設けるとともに、円筒部43の内周面から径方向に突出する側壁1002を設けて、磁石91,92の端面に、側壁1002を周方向に係合させてもよい。この場合、隙間1001及び側壁1002は、q軸に沿って設けられていること望ましい。これにより、正弦波形状に近い磁束密度分布とするとともに、磁石91,92のまわり止めを行うことができる。
In the first embodiment, as shown in FIG. 53, a gap 1001 is provided between the magnets 91 and 92, and a side wall 1002 that protrudes radially from the inner peripheral surface of the cylindrical portion 43 is provided. The side wall 1002 may be circumferentially engaged with the end surface of the 92. In this case, it is desirable that the gap 1001 and the side wall 1002 are provided along the q-axis. Thus, the magnetic flux density distribution approximates a sine wave shape, and the rotation of the magnets 91 and 92 can be stopped.
・上記第2実施形態において、各磁石を囲むように構成された磁石保持部5001を備えてもよい。つまり、IPM型の回転子40としてもよい。例えば、図54に示すように、磁石保持部5001は、径方向において、磁石ユニット42よりも内側に配置される内壁部5002と、磁石ユニット42よりも外側に配置される外壁部5003と、内壁部5002と外壁部5003との間を繋ぎ、かつ、周方向に隣り合う磁石2001の間を仕切るように径方向に沿って設けられた側壁部5004と、を備える。内壁部5002及び外壁部5003は、それぞれ周方向に沿って円環状に構成されている。側壁部5004は、d軸に沿って設けられており、磁石2001を1個ずつ仕切るように設けられている。すなわち、側壁部5004は、周方向において凸部2003に重複する位置に設けられており、この別例では、凸部2003と側壁部5004とが一体的に形成されており、凸部2003の先端から径方向に沿って延びるように側壁部5004が設けられている。また、側壁部5004の幅寸法は、凸部2003の周方向における幅寸法(より詳しくは、凸部2003の基端部の幅寸法)に比較して小さく形成されている。
In the second embodiment, the magnet holding unit 5001 configured to surround each magnet may be provided. That is, the rotor 40 may be of the IPM type. For example, as shown in FIG. 54, the magnet holding portion 5001 includes, in the radial direction, an inner wall portion 5002 arranged inside the magnet unit 42, an outer wall portion 5003 arranged outside the magnet unit 42, A side wall portion 5004 is provided along the radial direction so as to connect between the portion 5002 and the outer wall portion 5003 and to partition between the magnets 2001 adjacent in the circumferential direction. Each of the inner wall portion 5002 and the outer wall portion 5003 is formed in an annular shape along the circumferential direction. The side wall portion 5004 is provided along the d-axis, and is provided so as to partition the magnets 2001 one by one. That is, the side wall portion 5004 is provided at a position overlapping the convex portion 2003 in the circumferential direction. In this alternative example, the convex portion 2003 and the side wall portion 5004 are integrally formed, and the tip of the convex portion 2003 is formed. A side wall portion 5004 is provided so as to extend along the radial direction from. The width of the side wall 5004 is smaller than the width of the protrusion 2003 in the circumferential direction (more specifically, the width of the base end of the protrusion 2003).
この別例において、磁石保持部5001は、円筒部43の内周面に固定されている。なお、中間部45の外縁にねじ止めなどにより固定されてもよい。また、円筒部43の構成を変更することにより、磁石保持部5001を設けてもよい。また、この別例では、磁石2001を1個ずつ仕切ったが、複数個(例えば、2個)ずつ磁石2001を仕切るようにしてもよい。
別 In this alternative example, the magnet holding portion 5001 is fixed to the inner peripheral surface of the cylindrical portion 43. In addition, it may be fixed to the outer edge of the intermediate portion 45 by screwing or the like. Further, the magnet holding portion 5001 may be provided by changing the configuration of the cylindrical portion 43. Further, in this alternative example, the magnets 2001 are partitioned one by one; however, a plurality (for example, two) of the magnets 2001 may be partitioned.
上記磁石保持部5001によれば、凸部2003によりまわり止めを行うことができるため、側壁部5004を薄くして強度が弱くなったとしても、好適に回り止めを行うことができる。また、側壁部5004を薄くすることにより、磁石2001間の隙間を小さくして、正弦波形状に近い磁束密度分布とし、かつ、d軸における磁束密度を向上させることができる。また、径方向において内外が磁石保持部5001の内壁部5002及び外壁部5003により囲まれているため、径方向に脱落することを抑制できる。
According to the magnet holding portion 5001, the rotation can be stopped by the convex portion 2003. Therefore, even if the side wall portion 5004 is thinned and the strength is weakened, the rotation can be suitably stopped. In addition, by reducing the thickness of the side wall portion 5004, the gap between the magnets 2001 can be reduced to obtain a magnetic flux density distribution close to a sinusoidal shape, and the magnetic flux density on the d-axis can be improved. Further, since the inside and outside are surrounded by the inner wall portion 5002 and the outer wall portion 5003 of the magnet holding portion 5001 in the radial direction, it is possible to prevent the magnet holder 5001 from falling off in the radial direction.
・上記構成において、凸部2003及び凹部2002の形状を任意に変更してもよい。断面が階段状に構成されていてもよい。また、曲面を有するように構成されていてもよい。同様に、係合凸部3004及び係合凹部3003の形状を任意に変更してもよい。
In the above configuration, the shapes of the convex portion 2003 and the concave portion 2002 may be arbitrarily changed. The cross section may be configured in a step shape. In addition, it may be configured to have a curved surface. Similarly, the shapes of the engagement protrusion 3004 and the engagement recess 3003 may be arbitrarily changed.
この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
開 示 The disclosure in this specification is not limited to the illustrated embodiment. The disclosure includes the illustrated embodiments and variations based thereon based on those skilled in the art. For example, the disclosure is not limited to the combination of parts and / or elements shown in the embodiments. The disclosure can be implemented in various combinations. The disclosure may have additional parts that can be added to the embodiments. The disclosure includes embodiments in which parts and / or elements are omitted. The disclosure encompasses the replacement or combination of parts and / or elements between one embodiment and another. The disclosed technical scope is not limited to the description of the embodiments. Some of the disclosed technical ranges are indicated by the description of the claims, and should be construed to include all modifications within the scope and meaning equivalent to the description of the claims.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also encompasses various modifications and variations within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and concept of the present disclosure.
Claims (7)
- 周方向に極性が交互となる複数の磁極を含む磁石部(42)と、径方向において前記磁石部が積層された状態で固定される筒状の磁石保持部(41,3001,5001)と、を有する界磁子(40)と、多相の電機子巻線(51)を有する電機子(50)と、を備え、前記界磁子及び前記電機子のうちいずれかを回転子とする回転電機(10)において、
前記磁石部は、磁極中心であるd軸の側において、磁極境界であるq軸の側に比べて磁化容易軸の向きがd軸に平行となるように配向され、磁化容易軸に沿って磁石磁路が形成されている磁石(2001)を有し、
前記磁石保持部は、径方向において前記磁石部よりも反電機子側に配置されているとともに、径方向において前記磁石部側に突出する凸部(2003,3002)を有し、
径方向において前記磁石部の反電機子側の部分には、反電機子側に開口し、前記凸部に対して周方向に係合する凹部(2002)が設けられており、
前記凹部は、周方向において、q軸の側よりも、d軸の側に設けられている回転電機。 A magnet portion (42) including a plurality of magnetic poles having alternating polarities in a circumferential direction, and a cylindrical magnet holding portion (41, 3001, 5001) fixed in a state where the magnet portions are stacked in the radial direction. , And an armature (50) having a multi-phase armature winding (51), wherein one of the field element and the armature is used as a rotor. In the electric machine (10),
The magnet unit is oriented such that the direction of the easy axis of magnetization is parallel to the d-axis on the d-axis side, which is the center of the magnetic pole, compared to the q-axis side, which is the boundary of the magnetic pole, and the magnets are aligned along the easy axis of magnetization. A magnet (2001) having a magnetic path formed therein,
The magnet holding portion is disposed closer to the armature side than the magnet portion in the radial direction, and has a convex portion (2003, 3002) projecting toward the magnet portion in the radial direction.
A concave portion (2002) that opens in the anti-armature side and engages with the convex portion in the circumferential direction is provided in a portion of the magnet portion on the anti-armature side in the radial direction,
The rotating electric machine, wherein the concave portion is provided on a d-axis side rather than a q-axis side in a circumferential direction. - 前記界磁子は、前記磁石保持部を軸方向において固定する端板(45)を備え、
前記磁石保持部には、孔部(4001)が軸方向に沿って設けられており、前記磁石保持部の当該孔部には、前記端板から軸方向に突出する留め具(4002)が挿入されており、
前記孔部は、周方向において前記凸部に重複する位置に設けられている請求項1に記載の回転電機。 The field element includes an end plate (45) for fixing the magnet holding unit in the axial direction,
A hole (4001) is provided in the magnet holding portion along the axial direction, and a fastener (4002) that projects from the end plate in the axial direction is inserted into the hole of the magnet holding portion. Has been
The rotating electric machine according to claim 1, wherein the hole is provided at a position overlapping the protrusion in a circumferential direction. - 前記孔部の少なくとも一部は、径方向において前記凸部に重複する位置に設けられている請求項2に記載の回転電機。 The rotating electrical machine according to claim 2, wherein at least a part of the hole is provided at a position overlapping the protrusion in the radial direction.
- 径方向における前記凸部の寸法は、前記孔部の寸法よりも大きい請求項2又は3に記載の回転電機。 4. The rotating electric machine according to claim 2, wherein a size of the protrusion in the radial direction is larger than a size of the hole.
- 前記界磁子は、径方向において前記磁石保持部の反電機子側にて、前記磁石保持部が積層された状態で固定される円筒部(43)を有し、
前記磁石保持部は、前記円筒部に設けられた被係合部(3003)に対して周方向において係合する係合部(3004)を有し、
前記係合部は、前記凸部に対して、周方向において異なる位置に設けられている請求項1~4のうちいずれか1項に記載の回転電機。 The field element has a cylindrical portion (43) that is fixed in a state where the magnet holding portions are stacked on a side opposite to the armature in the radial direction of the magnet holding portion,
The magnet holding portion has an engaging portion (3004) that engages with the engaged portion (3003) provided on the cylindrical portion in a circumferential direction,
The rotating electric machine according to any one of claims 1 to 4, wherein the engaging portion is provided at a position different from the convex portion in a circumferential direction. - 前記磁石は、複数設けられ、周方向に沿って並べて配置されており、
前記磁石保持部は、径方向において、前記磁石部よりも内側に配置される内壁部(5002)と、前記磁石部よりも外側に配置される外壁部(5003)と、前記内壁部と前記外壁部との間を繋ぎ、かつ、周方向に隣り合う前記磁石の間を仕切るように径方向に沿って設けられた側壁部(5004)と、を備え、
前記側壁部は、周方向において前記凸部に対して重複する位置に設けられており、前記側壁部の周方向における幅寸法は、前記凸部の周方向における幅寸法と比較して、小さく形成されている請求項1~5のうちいずれか1項に記載の回転電機。 A plurality of the magnets are provided and are arranged side by side along the circumferential direction,
The magnet holding portion includes, in a radial direction, an inner wall portion (5002) arranged inside the magnet portion, an outer wall portion (5003) arranged outside the magnet portion, and the inner wall portion and the outer wall. A side wall portion (5004) provided along the radial direction so as to connect between the magnets and partition the circumferentially adjacent magnets,
The side wall portion is provided at a position overlapping the convex portion in the circumferential direction, and the width of the side wall portion in the circumferential direction is smaller than the width of the convex portion in the circumferential direction. The rotating electric machine according to any one of claims 1 to 5, wherein - 前記磁石部は、固有保磁力が400[kA/m]以上であり、かつ、残留磁束密度が1.0[T]以上である請求項1~6のうちいずれか1項に記載の回転電機。 The rotating electric machine according to any one of claims 1 to 6, wherein the magnet portion has a specific coercive force of 400 [kA / m] or more and a residual magnetic flux density of 1.0 [T] or more. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980049556.0A CN112514205A (en) | 2018-07-26 | 2019-07-04 | Rotating electrical machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-140740 | 2018-07-26 | ||
JP2018140740A JP7147327B2 (en) | 2018-07-26 | 2018-07-26 | Rotating electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020022017A1 true WO2020022017A1 (en) | 2020-01-30 |
Family
ID=69181462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/026569 WO2020022017A1 (en) | 2018-07-26 | 2019-07-04 | Rotating electric machine |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7147327B2 (en) |
CN (1) | CN112514205A (en) |
WO (1) | WO2020022017A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022070857A1 (en) * | 2020-09-30 | 2022-04-07 | 株式会社Ihi | Motor rotor and method for manufacturing motor rotor |
EP4372967A1 (en) * | 2022-11-17 | 2024-05-22 | Hamilton Sundstrand Corporation | Electric machine having notched magnets |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022168708A1 (en) * | 2021-02-03 | 2022-08-11 | 株式会社デンソー | Field magneton |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007244175A (en) * | 2006-03-13 | 2007-09-20 | Daikin Ind Ltd | Outer rotor type motor and compressor |
JP2010022176A (en) * | 2008-07-14 | 2010-01-28 | Toshiba Corp | Permanent magnet motor and washing machine |
JP2012005232A (en) * | 2010-06-16 | 2012-01-05 | Asmo Co Ltd | Polar anisotropic ring magnet and brushless motor having the same |
JP2015089224A (en) * | 2013-10-30 | 2015-05-07 | 株式会社東芝 | Motor and washing machine |
JP2015228762A (en) * | 2014-06-02 | 2015-12-17 | 日東電工株式会社 | Permanent magnet, method for manufacturing permanent magnet, rotary electric machine, and method for manufacturing rotary electric machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3376373B2 (en) * | 1995-06-07 | 2003-02-10 | ミネベア株式会社 | Motor structure |
-
2018
- 2018-07-26 JP JP2018140740A patent/JP7147327B2/en active Active
-
2019
- 2019-07-04 WO PCT/JP2019/026569 patent/WO2020022017A1/en active Application Filing
- 2019-07-04 CN CN201980049556.0A patent/CN112514205A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007244175A (en) * | 2006-03-13 | 2007-09-20 | Daikin Ind Ltd | Outer rotor type motor and compressor |
JP2010022176A (en) * | 2008-07-14 | 2010-01-28 | Toshiba Corp | Permanent magnet motor and washing machine |
JP2012005232A (en) * | 2010-06-16 | 2012-01-05 | Asmo Co Ltd | Polar anisotropic ring magnet and brushless motor having the same |
JP2015089224A (en) * | 2013-10-30 | 2015-05-07 | 株式会社東芝 | Motor and washing machine |
JP2015228762A (en) * | 2014-06-02 | 2015-12-17 | 日東電工株式会社 | Permanent magnet, method for manufacturing permanent magnet, rotary electric machine, and method for manufacturing rotary electric machine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022070857A1 (en) * | 2020-09-30 | 2022-04-07 | 株式会社Ihi | Motor rotor and method for manufacturing motor rotor |
JPWO2022070857A1 (en) * | 2020-09-30 | 2022-04-07 | ||
JP7425981B2 (en) | 2020-09-30 | 2024-02-01 | 株式会社Ihi | Motor rotor and motor rotor manufacturing method |
EP4372967A1 (en) * | 2022-11-17 | 2024-05-22 | Hamilton Sundstrand Corporation | Electric machine having notched magnets |
Also Published As
Publication number | Publication date |
---|---|
JP7147327B2 (en) | 2022-10-05 |
JP2020018130A (en) | 2020-01-30 |
CN112514205A (en) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6658814B2 (en) | Rotating electric machine | |
JP2020025439A (en) | Dynamo-electric machine | |
JP2019122245A (en) | Rotary electric machine | |
WO2019017496A1 (en) | Rotating electrical machine | |
WO2020022017A1 (en) | Rotating electric machine | |
JP2019122244A (en) | Rotary electric machine | |
JP2019122231A (en) | Rotary electric machine | |
JP2019122227A (en) | Rotary electric machine | |
JP2019122237A (en) | Rotary electric machine | |
WO2020050046A1 (en) | Rotary electric machine | |
WO2020021986A1 (en) | Rotating electric machine | |
WO2020021985A1 (en) | Dynamo-electric machine | |
WO2020022280A1 (en) | Dynamo-electric machine | |
WO2019131909A1 (en) | Rotary electric machine | |
JP2019122228A (en) | Rotating electrical machine | |
JP2020018129A (en) | Dynamo-electric machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19840629 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19840629 Country of ref document: EP Kind code of ref document: A1 |