Nothing Special   »   [go: up one dir, main page]

WO2020003932A1 - 運転支援装置 - Google Patents

運転支援装置 Download PDF

Info

Publication number
WO2020003932A1
WO2020003932A1 PCT/JP2019/022270 JP2019022270W WO2020003932A1 WO 2020003932 A1 WO2020003932 A1 WO 2020003932A1 JP 2019022270 W JP2019022270 W JP 2019022270W WO 2020003932 A1 WO2020003932 A1 WO 2020003932A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
obstacle
collision
driving support
support device
Prior art date
Application number
PCT/JP2019/022270
Other languages
English (en)
French (fr)
Inventor
敬亮 竹内
広治 高橋
智 大久保
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020527333A priority Critical patent/JP6975856B2/ja
Publication of WO2020003932A1 publication Critical patent/WO2020003932A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a driving support device.
  • the parking assist device calculates a route from the current position to the target parking position, performs steering and acceleration / deceleration on behalf of the driver, and automatically travels and parks on the route.
  • the parking assist device detects obstacles around the vehicle and automatically stops or decelerates the vehicle if it determines that the vehicle may collide with the obstacle during parking. Has functions.
  • Patent Document 1 discloses an example of a driving assistance device that assists in avoiding a collision with a side surface of a vehicle when the vehicle is turning.
  • the driving support apparatus synthesizes an overhead image from images captured by cameras installed at a plurality of positions of the vehicle, and further calculates a locus of a vehicle corner corresponding to a steering angle. Is superimposed on the overhead video.
  • a driving assistance device is a driving assistance device that assists a driver in taking out a vehicle from a vehicle, based on input information from an external sensor that detects an obstacle in the exterior of the vehicle.
  • An external world recognition unit that recognizes the obstacle that is present; a route calculation unit that calculates a travel route based on a current steering angle of the vehicle; and an external world that travels along the travel route calculated by the route calculation unit.
  • a determining unit that determines whether or not the vehicle collides with the obstacle recognized by the recognizing unit.
  • FIG. 1 is a system configuration diagram of a driving support device according to a first embodiment.
  • FIG. 4 is a diagram in which a search area is provided on the inner wheel side of the vehicle.
  • FIG. 4 is a diagram in which a search area is provided on the outer wheel side of the vehicle.
  • 5 is a flowchart illustrating a collision determination operation in a collision determination unit. It is a system configuration diagram of a driving support device in a second embodiment. It is a system configuration diagram of a driving support device in a third embodiment.
  • FIG. 1 is a system configuration diagram of the driving support device 1 according to the first embodiment of the present invention.
  • the driving support device 1 includes a driving support control unit 100, an external sensor 200, a vehicle sensor 300, in-vehicle networks 400 and 401, a human-machine interface (hereinafter referred to as HMI) 500, a power steering 601, a transmission 602, an engine 603, and a brake. 604.
  • HMI human-machine interface
  • the driving support control unit 100 includes an external recognition unit 110, a route calculation unit 120, a collision determination unit 130, and a vehicle position estimation unit 140.
  • the outside world recognition unit 110 recognizes a space where the vehicle can be parked and obstacles around the vehicle using information input from an outside world sensor 200 described later. Further, the external world recognition unit 110 accumulates information input from the external world sensor 200 in the obstacle map 111 which is a memory in the external world recognition unit 110.
  • the route calculation unit 120 calculates a circular orbit having a turning radius corresponding to the current steering angle value input from the steering angle sensor 302 of the vehicle sensor 300. Using the information on the obstacles around the vehicle input from the external recognition unit 110 and the information on the circular trajectory input from the route calculation unit 120, the collision determination unit 130 assumes that the vehicle has traveled on the circular trajectory. In this case, it is determined whether or not the vehicle collides with an obstacle.
  • the own vehicle position estimating unit 140 uses the wheel speed input from the wheel speed sensor 301 of the vehicle sensor 300 and the steering angle input from the steering angle sensor 302 to calculate the own vehicle position coordinates and yaw angle. Calculate location information.
  • the external sensor 200 detects an external space, an obstacle, and a road surface sign of the vehicle, and outputs the detected information to the external recognition unit 110. Specifically, it is composed of a camera, a sonar, a radar, or the like, or a combination thereof, but in the present embodiment, the type is not limited.
  • the vehicle sensor 300 is a general term for various sensors that detect the state of the vehicle. In the configuration of the present embodiment, at least a wheel speed sensor 301 that detects the wheel speed of the vehicle, and a steering angle sensor that detects the steering angle of the vehicle 302.
  • the vehicle-mounted network 400 is a network that connects the driving support control unit 100, the vehicle sensor 300, and the external sensor 200.
  • the vehicle-mounted network 401 is a network that connects the driving support control unit 100 and a control unit (not shown) that controls the power steering 601, the transmission 602, the engine 603, the brake 604, and the like.
  • the components connected to the on-vehicle networks 400 and 401 can communicate with each other.
  • the in-vehicle networks 400 and 401 conform to the CAN (Controller Area Network) standard, but need not necessarily conform to the same standard.
  • the HMI 500 includes an operation unit 501, a display unit 502, and a speaker 503, and a driver or a passenger performs settings related to driving support and instructions to start and end driving support via the operation unit 501. Further, it receives notification information to the driver from other components, displays the content on the display unit 502 with characters or pictograms, and notifies the speaker 503 of an alarm sound or voice guidance.
  • the operation unit 501 may use a physical switch arranged near the driver's seat, or operate by touching a touch panel superimposed on the display unit 502 with a finger, and the like. The form is not limited.
  • FIG. 2 is a diagram in which a search area is provided on the inner wheel side of the vehicle 700.
  • the vehicle 700 is located at the current position 701 immediately before starting to leave the warehouse. Then, assuming that the vehicle 700 turns to the left while traveling forward along the traveling route 702 generated from the current steering angle, the vehicle 700 is predicted to be located at the future position 703.
  • a search area 704 is set on the inner wheel side of the vehicle 700 'at the future position 703.
  • the search area 704 is a rectangular area defined by the distance d from the traveling route 702 and the vehicle length p.
  • the vehicle 700 ' when there is an obstacle 705 near the outer wheel side of the vehicle 700 ', it is not determined that the vehicle 700' collides with the obstacle 705.
  • the obstacle 706 when the obstacle 706 is within the search area 704, it is determined that the vehicle 700 'collides with the obstacle 706. That is, when the obstacle 706 is within the predetermined distance d from the traveling route 702 calculated by the route calculating unit 120, it is determined that the obstacle 706 collides with the obstacle 706.
  • FIG. 2 illustrates the case where search region 704 is set on the inner wheel side of vehicle 700 ′.
  • search region 704 is set on the outer wheel side of vehicle 700 ′.
  • This case will be described with reference to FIG.
  • the vehicle 700 is located at the current position 701 immediately before starting to leave the warehouse. Then, assuming that the vehicle 700 has turned while moving backward along the traveling route 702 generated from the current steering angle, the vehicle 700 is predicted to be located at the future position 703.
  • a search area 704 is set on the outer wheel side of the vehicle 700 'at the future position 703.
  • the search area 704 is a rectangular area defined by the distance d from the traveling route 702 and the vehicle length p.
  • the vehicle 700 ' when there is an obstacle 707 near the inner wheel side of the vehicle 700 ', it is not determined that the vehicle 700' collides with the obstacle 707.
  • the obstacle 708 when the obstacle 708 is within the search area 704, it is determined that the vehicle 700 'collides with the obstacle 708. That is, when the obstacle 708 is within the predetermined distance d from the traveling route 702 calculated by the route calculation unit 120, it is determined that the obstacle 708 collides with the obstacle 708.
  • the external recognition unit 110 operates the external sensor 200 to search for obstacles around the vehicle.
  • the external sensor 200 outputs the coordinate value of the obstacle to the external recognition unit 110.
  • the coordinate value is a value in a relative coordinate system based on the own vehicle position.
  • the external world recognition unit 110 acquires the current vehicle position from the vehicle position estimation unit 140, and converts the coordinate value of the obstacle into a value in an absolute coordinate system based on the vehicle position when the engine is started, for example. Registered in the obstacle map 111. Such an operation of the external world recognition unit 110 is periodically executed.
  • the route calculation unit 120 acquires the current steering angle value output by the steering angle sensor 302 via the on-vehicle network 400, and calculates the turning radius of the vehicle from the steering angle value. calculate. Next, the route calculation unit 120 calculates a circular orbit having the calculated turning radius as route information, and outputs the route information to the collision determination unit 130. When the steering angle is 0, the route calculation unit 120 outputs the straight trajectory to the collision determination unit 130 as route information. Such an operation of the route calculation unit 120 is periodically executed.
  • FIG. 4 is a flowchart illustrating a collision determination operation in the collision determination unit 130.
  • the program shown in this flowchart can be executed by a computer including a CPU, a memory, and the like. All or part of the processing may be realized by a hard logic circuit. Further, this program can be provided by being stored in a storage medium of the driving support device 1 in advance. Alternatively, the program may be stored and provided in an independent storage medium, or the program may be recorded and stored in the storage medium of the driving support device 1 via a network line.
  • Various forms of computer readable computer program products, such as data signals (carrier waves), may be provided.
  • the collision determination unit 130 determines whether the input from the route calculation unit 120 is a circular trajectory or a straight trajectory. If it is determined that the orbit is a circular orbit, the process proceeds to processing 801. In a process 801, a variable N described later is set to an initial value of 1. Here, the variable N is an integer from 1 to a predetermined upper limit. Thereafter, the process proceeds to processing 802.
  • a travel distance calculated at N ⁇ sample intervals is obtained.
  • the sample interval is an interval for calculating the traveling distance.
  • the process proceeds to processing 803.
  • the collision determination unit 130 uses the information on the circular orbit to calculate a position where the vehicle is predicted to reach in the future (hereinafter, referred to as a future position). Is calculated.
  • the future position is a position when the vehicle travels along a circular orbit at a traveling distance calculated at N ⁇ sample intervals. Thereafter, the process proceeds to step 804.
  • the collision determination unit 130 sets the search area 704 to the side of the host vehicle at the future position. If the current traveling direction acquired by the collision determination unit 130 from the transmission 602 via the in-vehicle network 401 is forward, the search area 704 is set to the side on the inner wheel side as shown in FIG. On the other hand, if the current traveling direction is reverse, as shown in FIG. 3, it is set to the side on the outer ring side. This is because the side of the vehicle body on the inner wheel side protrudes from the circular orbit when turning while moving forward, and the side of the vehicle body on the outer wheel side protrudes from the circular track when turning while retreating.
  • the size of the search area 704 be increased as the steering angle increases. This is because, when the steering angle is large, it is necessary to detect an obstacle on the side of the distant host vehicle, but as the distance increases, the measurement error of the external sensor 200 increases. This is because the possibility of erroneously determining that a collision should be determined when a collision should be determined when the user is located farther away is determined.
  • the distance d is a value obtained by multiplying the movement distance of the front end on the inner wheel side when turning forward and multiplying by a coefficient determined from the error characteristics of the external sensor 200.
  • a method for calculating the distance d will be described.
  • the moving distance D of the front end on the inner wheel side of the vehicle is obtained by the following equation (3).
  • D sqrt [ ⁇ (R-Wv / 2) cos ⁇ - (Lf + Lw) sin ⁇ - (R-Wv / 2) ⁇ ⁇ 2 + ⁇ (R-Wv / 2) sin ⁇ + (Lf + Lw) cos ⁇ - ( Lf + Lw) ⁇ ⁇ 2] (3)
  • step 805 it is determined whether an obstacle exists in the search area 704. If an obstacle exists, the side of the host vehicle may collide with the obstacle at a future position. The position where the vehicle collides at the future position is referred to as a collision position. If there is no obstacle in the search area 704, the process proceeds to step 807.
  • step 807 1 is added to the variable N. Then, in the next process 808, it is determined whether or not the variable N has reached a predetermined upper limit. If the variable N is not the upper limit, the process returns to the process 802. As described above, the collision determination unit 130 repeatedly executes the operations from the processing 802 to the processing 805 until the collision position is obtained or the variable N reaches the upper limit value while adding 1 to the variable N.
  • step 806 If it is determined in step 806 that an obstacle exists in the search area 704, the process proceeds to step 809. In the process 809, it is determined whether or not the own vehicle is running based on the wheel speed input from the wheel speed sensor 301. If the vehicle is running, the process proceeds to step 810. In the process 810, the collision determination unit 130 obtains the time required to reach the collision position when traveling at the current vehicle speed input from the wheel speed sensor 301 as the collision determination result, and outputs this to the HMI 500.
  • step 809 If it is determined in step 809 that the vehicle is not running, that is, the vehicle is stopped, the process proceeds to step 811.
  • the collision determination unit 130 obtains a distance from the current position to the collision position as a collision determination result, and outputs this to the HMI 500.
  • the collision determination unit 130 executes the collision determination operation shown in FIG. 4 every time the route information is input from the route calculation unit 120. However, the operation of outputting the collision determination result to the HMI 500 may be omitted if the collision determination result is the same as the value previously output to the HMI 500.
  • the HMI 500 determines which of these values corresponds to a predefined notification level, A notification corresponding to the corresponding notification level is issued to the driver. For example, when words and pictograms are displayed on the display unit 502, a method is conceivable in which the higher the notification level, the more intense the color or brightness the driver is stimulated. When the notification sound is emitted from the speaker 503, it is conceivable that the higher the notification level, the higher the volume or the shorter the sounding interval. Further, when the received travel distance and time values are sufficiently large, the notification to the driver by HMI 500 may be stopped.
  • the collision determination unit 130 determines that the vehicle collides with the obstacle, the remaining distance and the time until the collision are calculated, and the HMI 500 calculates the remaining distance and the time until the collision. At least one of the presence or absence of notification and the notification level is changed.
  • the HMI 500 changes the notification level when receiving a collision determination result corresponding to a different notification level during notification. In addition, when the HMI 500 receives the identification information indicating that there is no possibility of collision during the notification, the HMI 500 stops the notification.
  • the driving assistance device when there is a possibility that the driver may collide with an obstacle on the side of the host vehicle during the turn-out operation by the driver himself / herself, the driving assistance device may be driven by the driver. , It is easy for the driver to intuitively understand the possibility of a collision, and a quick avoidance operation is possible.
  • the driving assistance device when the driver operates the steering wheel while the vehicle is stopped, the driving assistance device performs a collision determination according to the steering angle, and activates and stops the notification according to the result. It becomes easy to grasp how far the steering wheel can be turned to start without colliding with an object.
  • FIG. 5 is a system configuration diagram of the driving support device 1 according to the second embodiment of the present invention.
  • the same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference from the first embodiment is that a collision avoidance determination unit 150 is added to the driving support control unit 100.
  • the collision determination unit 130 outputs the distance from the current position to the collision position to the collision avoidance determination unit 150 regardless of whether the host vehicle is traveling or stopped.
  • the collision avoidance determination unit 150 stops at a predetermined deceleration from the current vehicle speed using the current vehicle speed acquired from the wheel speed sensor 301 through the vehicle-mounted network 400. Calculate the remaining distance until you do.
  • the collision avoidance determination unit 150 determines that the collision with the obstacle can be avoided only by stopping with the brake, and performs the notification at a low notification level. To instruct.
  • the collision avoidance determination unit 150 determines that it is impossible to avoid the collision only by stopping the vehicle with the brake, and it is necessary to return the steering wheel to neutral to avoid the collision. Therefore, the HMI 500 is instructed to perform notification at a high notification level.
  • the criterion for changing the notification level is whether or not the remaining distance is a distance at which the vehicle can only be stopped and a collision can be avoided without returning the steering angle.
  • the notification level is set according to the operation necessary for avoidance. Since the notification is changed, the driver can surely take an appropriate avoidance operation.
  • FIG. 6 is a system configuration diagram of the driving support device 1 according to the third embodiment of the present invention.
  • the same parts as those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference from the first embodiment is that a steering control unit 160 is added to the driving support control unit 100.
  • the steering control unit 160 determines whether or not the steering angle is the current value or larger in the future. It is determined that an obstacle collides with the side, and the steering force of the steering wheel is controlled so as to prevent the steering wheel from turning further. At this time, the steering control unit 160 outputs a predetermined instruction to the power steering 601 to control the steering force of the steering wheel.
  • the power steering 601 that has received the instruction from the steering control unit 160 detects the torque in that direction when the driver tries to turn the steering wheel further, and applies a torque in the opposite direction to the steering wheel. As a result, even if the driver tries to turn the steering wheel further, the driver must turn the steering wheel unless a large force is applied.
  • the collision determination unit 130 determines whether or not to collide with the obstacle again, and it is determined that the collision does not occur. In this case, the HMI 500 stops the notification.
  • the steering wheel does not turn in the turning direction if there is a possibility of colliding with an obstacle near the own vehicle due to the turning at the time of the leaving operation by the driver himself / herself. Can easily recognize the possibility of collision, and can prevent an operation of turning the steering wheel in a direction to approach the obstacle by mistake.
  • a driving assistance device 1 that assists a driver in taking out a vehicle from a vehicle, based on input information from an external sensor that detects an obstacle in the exterior of the vehicle.
  • An external world recognition unit 110 that recognizes an existing obstacle, a route calculation unit 120 that calculates a travel route based on the current steering angle of the vehicle, and an external world recognition unit that runs on the travel route calculated by the route calculation unit 120.
  • a collision determination unit 130 that determines whether or not to collide with the obstacle recognized at 110; As a result, it is possible to accurately perform driving assistance when the vehicle is taken out of the vehicle.
  • the present invention is not limited to the above embodiments, and other forms that can be considered within the scope of the technical idea of the present invention are also included in the scope of the present invention unless the characteristics of the present invention are impaired. .
  • Driving Support Device 100 Driving Support Control Unit 110 External Recognition Unit 120 Route Calculation Unit 130 Collision Determination Unit 140 Own Vehicle Position Estimation Unit 150 Collision Avoidance Determination Unit 160 Steering Control Unit 200 External Sensor 300 Vehicle Sensor 301 Wheel Speed Sensor 302 Steering Angle Sensor 400, 401 In-vehicle network 500 HMI Reference numeral 501 Operation unit 502 Display unit 503 Speaker 601 Power steering 602 Transmission 603 Engine 604 Brake

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

車両の出庫の際に車両が障害物に衝突するか否かの判定は行っておらず、運転支援が不十分であった。 現在の舵角から生成した走行経路702に沿って、車両700を前進しながら左側に旋回したと仮定すると、車両700は、将来位置703に位置すると予測される。この将来位置703における車両700'の内輪側の側方に探索領域704を設定する。探索領域704は、走行経路702からの距離dと車長pで規定される矩形の領域である。本実施形態では、車両700'の外輪側の近傍に障害物705があった場合、車両700'はこの障害物705と衝突すると判定されない。一方、障害物706が探索領域704内にあった場合は、車両700'はこの障害物706と衝突すると判定される。

Description

運転支援装置
 本発明は、運転支援装置に関する。
 近年、運転者の操作の軽減や事故防止を目的として、車両の駐車を自動化した駐車支援装置が実用化されつつある。具体的には、駐車支援装置が現在位置から目標駐車位置までの経路を算出し、運転者に代わり操舵および加減速を行って、経路上を自動走行して駐車する。これに加えて、駐車支援装置は、車両周辺の障害物を検出し、駐車中に車両が障害物に衝突する可能性があると判断した場合に、自動的に車両を停止もしくは減速させる衝突回避機能を備える。
 一方、駐車場などからの出庫においては、他の駐車車両や建物の構造物などの障害物が自車両の側方に接近した状態で、運転者自身の操舵により旋回しながら出庫する場合に、舵角や操舵開始位置が適切でないと、車両の内輪差や外輪差により、自車両の車体側面が障害物に接触もしくは衝突する可能性がある。車両の旋回走行における車両側面への衝突の回避を支援する運転支援装置の一例が特許文献1に開示されている。
 特許文献1によれば、運転支援装置は、車両の複数の位置に設置されたカメラで撮影した映像から俯瞰映像を合成し、さらに操舵角に応じた車両隅部の軌跡を算出して、これを俯瞰映像に重畳表示する。
特開2012-66616号公報
 特許文献1に記載の装置では、車両の出庫の際に車両が障害物に衝突するか否かの判定は行っておらず、運転支援が不十分であった。
 本発明による運転支援装置は、運転者による車両の出庫操作を支援する運転支援装置であって、前記車両の外界の障害物を検知する外界センサからの入力情報に基づいて、前記車両の周囲に存在する前記障害物を認識する外界認識部と、前記車両の現在の舵角に基づき走行経路を算出する経路算出部と、前記経路算出部で算出した前記走行経路を走行した場合に、前記外界認識部で認識された前記障害物に衝突するか否かを判定する判定部とを備える。
 本発明によれば、車両の出庫の際の運転支援を適確に行うことができる。
第1の実施形態における運転支援装置のシステム構成図である。 車両の内輪側に探索領域を設けた図である。 車両の外輪側に探索領域を設けた図である。 衝突判定部における衝突判定動作を示すフローチャートである。 第2の実施形態における運転支援装置のシステム構成図である。 第3の実施形態における運転支援装置のシステム構成図である。
[第1の実施形態]
 図1は本発明の第1の実施形態における運転支援装置1のシステム構成図である。
 運転支援装置1は、運転支援制御部100、外界センサ200、車両センサ300、車載ネットワーク400、401、ヒューマンマシンインタフェース(以下、HMIと表記)500、パワーステアリング601、変速機602、エンジン603、ブレーキ604を備える。
 運転支援制御部100は、外界認識部110、経路算出部120、衝突判定部130、自車位置推定部140を備える。
 外界認識部110は、後述する外界センサ200から入力される情報を用いて、車両が駐車可能な空間や、車両周囲の障害物を認識する。また外界認識部110は、外界センサ200から入力される情報を、外界認識部110内のメモリである障害物マップ111に蓄積する。
 経路算出部120は、車両センサ300の操舵角センサ302から入力される現在の舵角値に対応する旋回半径を有する円軌道を算出する。
 衝突判定部130は、外界認識部110から入力される車両周囲の障害物の情報と、経路算出部120から入力される円軌道の情報を用いて、車両が円軌道上を走行したと仮定した場合に障害物と衝突するか否かを判定する。
 自車位置推定部140は、車両センサ300の車輪速センサ301から入力される車輪速、および操舵角センサ302から入力される操舵角を用いて、自車の位置座標とヨー角からなる自車位置情報を算出する。
 外界センサ200は、車両の外界の空間や障害物、路面の標示を検知し、検知した情報を外界認識部110へ出力する。具体的にはカメラ、ソナー、レーダなど、もしくはこれらの組合せより成るが、本実施形態ではその種類を限定しない。
 外界センサ200と外界認識部110とは、外界センサ200の種類によって、後述の車載ネットワーク400を介して接続される場合や、専用のインタフェースを経由して直接接続される場合があるが、本実施形態ではその接続形態を限定しない。
 車両センサ300は、車両の状態を検知する各種センサの総称であり、本実施形態の構成においては、少なくとも、車両の車輪速を検知する車輪速センサ301、車両の操舵角を検知する操舵角センサ302を含む。
 車載ネットワーク400は、運転支援制御部100と、車両センサ300、外界センサ200とを接続するネットワークである。車載ネットワーク401は、運転支援制御部100と、パワーステアリング601、変速機602、エンジン603、ブレーキ604などを制御する図示省略した制御部とを接続するネットワークである。各車載ネットワーク400、401に接続される各構成要素の間では、相互に通信が可能である。車載ネットワーク400および401はCAN(Controller Area Network)規格に準拠するが、必ずしも同規格に準拠するものでなくても良い。
 HMI500は、操作部501、表示部502、スピーカ503を具備し、運転者もしくは同乗者が、操作部501を介して、運転支援に関する設定や、運転支援の開始および終了の指示を行う。また、他の構成要素から運転者への通知情報を受信し、その内容を表示部502に文字もしくは絵記号などで表示したり、スピーカ503から警報音や音声案内などの報知を行う。
 操作部501は、運転席付近に配置される物理的なスイッチを用いる形態や、表示部502に重畳されるタッチパネルを指で触れることで操作を行う形態などが考えられるが、本実施形態ではその形態を限定しない。
 図2は、車両700の内輪側に探索領域を設けた図である。運転支援装置1の出庫支援動作の説明に先立って、本実施形態における出庫支援の概要を説明する。
 図2に示すように、車両700は、出庫を開始する直前に現在位置701に位置している。そして、現在の舵角から生成した走行経路702に沿って、車両700を前進しながら左側に旋回したと仮定すると、車両700は、将来位置703に位置すると予測される。この将来位置703における車両700’の内輪側の側方に探索領域704を設定する。探索領域704は、走行経路702からの距離dと車長pで規定される矩形の領域である。本実施形態では、車両700’の外輪側の近傍に障害物705があった場合、車両700’はこの障害物705と衝突すると判定されない。一方、障害物706が探索領域704内にあった場合は、車両700’はこの障害物706と衝突すると判定される。すなわち、障害物706が経路算出部120で算出した走行経路702から所定距離d以内にある場合に障害物706に衝突すると判定される。
 図2では、車両700’の内輪側の側方に探索領域704を設定する場合について説明したが、車両700の後退時には、車両700’の外輪側の側方に探索領域704を設定する。この場合について、図3を参照して説明する。
 図3に示すように、車両700は、出庫を開始する直前に現在位置701に位置している。そして、現在の舵角から生成した走行経路702に沿って、車両700を後退しながら旋回したと仮定すると、車両700は、将来位置703に位置すると予測される。この将来位置703における車両700’の外輪側の側方に探索領域704を設定する。探索領域704は、走行経路702からの距離dと車長pで規定される矩形の領域である。本実施形態では、車両700’の内輪側の近傍に障害物707があった場合、車両700’はこの障害物707と衝突すると判定されない。一方、障害物708が探索領域704内にあった場合は、車両700’はこの障害物708と衝突すると判定される。すなわち、障害物708が経路算出部120で算出した走行経路702から所定距離d以内にある場合に障害物708に衝突すると判定される。
 次に、第1の実施形態における運転支援装置1の出庫支援動作について説明する。
 運転者がHMI500を用いて、出庫支援の開始を指示すると、外界認識部110は、外界センサ200を動作させ、車両周囲の障害物を探索する。外界センサ200は、障害物を検知すると、障害物の座標値を外界認識部110に出力する。ここで、座標値は、自車位置を基準とする相対座標系における値である。
 外界認識部110は、自車位置推定部140から現在の自車位置を取得して、障害物の座標値を、例えばエンジン始動時の自車位置を基準とする絶対座標系における値に変換し、障害物マップ111に登録する。このような外界認識部110の動作は、周期的に実行される。
 外界認識部110の動作と並行して、経路算出部120は、操舵角センサ302が出力する現在の操舵角値を、車載ネットワーク400を介して取得し、その操舵角値から車両の旋回半径を算出する。次いで、経路算出部120は、算出された旋回半径を有する円軌道を経路情報として算出し、衝突判定部130に出力する。なお、操舵角が0の場合は、経路算出部120は、直進軌道を経路情報として衝突判定部130に出力する。このような経路算出部120の動作は、周期的に実行される。
 衝突判定部130は、経路算出部120からの経路情報の入力が発生すると、その都度、衝突判定動作を行う。図4は、衝突判定部130における衝突判定動作を示すフローチャートである。なお、このフローチャートで示したプログラムを、CPU、メモリなどを備えたコンピュータにより実行することができる。全部の処理、または一部の処理をハードロジック回路により実現してもよい。更に、このプログラムは、予め運転支援装置1の記憶媒体に格納して提供することができる。あるいは、独立した記憶媒体にプログラムを格納して提供したり、ネットワーク回線によりプログラムを運転支援装置1の記憶媒体に記録して格納することもできる。データ信号(搬送波)などの種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給してもよい。
 以下、図4に示すフローチャートを参照して、衝突判定部130の動作を説明する。
 図4の処理800において、衝突判定部130は、経路算出部120からの入力が円軌道であるか直進軌道であるかを判定する。円軌道であると判定された場合は、処理801へ進む。
 処理801では、後述する変数Nを初期値の1に設定する。ここで変数Nは1から所定の上限値までの整数である。その後、処理802へ進む。
 処理802では、N×サンプル間隔で算出される走行距離を求める。サンプル間隔は、走行距離を算出する間隔である。その後、処理803へ進む。
 処理803では、衝突判定部130は、経路算出部120から入力された経路が円軌道である場合、円軌道の情報を用いて、自車両が将来到達すると予測される位置(以下、将来位置とする)を算出する。将来位置は、円軌道に沿って、N×サンプル間隔で算出される走行距離を走行したときの位置である。その後、処理804へ進む。
 処理804で、衝突判定部130は、将来位置において自車両の側方に探索領域704を設定する。探索領域704は、衝突判定部130が変速機602から車載ネットワーク401を介して取得した現在の進行方向が前進であれば、図2に示したように、内輪側の側方に設定される。一方、現在の進行方向が後退であれば、図3に示したように、外輪側の側方に設定される。これは、前進しながら旋回した場合には内輪側の車体側面が円軌道からはみ出し、後退しながら旋回した場合には外輪側の車体側面が円軌道からはみ出すためである。
 また、探索領域704の大きさは、舵角が大きいほど大きくすることが望ましい。これは、舵角が大きいと、より遠方にある自車両の側方の障害物を検知する必要があるが、距離が遠いほど、外界センサ200の測定誤差が大きくなり、例えば、障害物が実際より遠方にあると認識して、衝突すると判定すべきところを衝突しないと誤判定する可能性が高くなるためである。
 探索領域の一例として、車両が前進して左方向へ旋回するとき、図2に示すように、車両の内輪側の側面の距離d以内の探索領域704を考える。距離dは、前進して旋回したときの内輪側前端の移動距離に対し、外界センサ200の誤差特性から定める係数を乗じた値とする。以下、距離dの算出方法について述べる。
 車両のホイールベースをLwとすると、実舵角ψで旋回したときに、後輪車軸中心の軌跡となる円軌道の半径Rは、次式(1)で近似される。
 R=Lw/tanψ   (1)
 また、半径Rの円軌道に沿って距離Lだけ旋回走行したときの旋回角θは、次式(2)で求められる。
 θ=L/R      (2)
 さらに、車両のフロントオーバハングをLf、全幅をWvとすると、車両の内輪側の前端の移動距離Dは、次式(3)で求められる。
 D=sqrt[{(R-Wv/2)cosθ-(Lf+Lw)sinθ-(R-Wv/2)}^2+{(R-Wv/2)sinθ+(Lf+Lw)cosθ-(Lf+Lw)}^2]     (3)  
 外界センサ200の誤差特性から定める係数をrとすると、距離dは次式(4)で求められる。
  d=r*D      (4)
 次に、処理805へ進む。処理805では、衝突判定部130は、障害物マップ111を参照して、探索領域704内に存在する障害物を探索する。次に、処理806へ進む。
 処理806では、探索領域704内に障害物が存在するか否かを判定する。障害物が存在する場合は、将来位置において自車両の側面が障害物に衝突する可能性がある。このように将来位置で衝突する位置を衝突位置とする。探索領域704内に障害物が存在しない場合は、処理807へ進む。
 処理807では、変数Nに1を加算する。そして、次の処理808で、変数Nが所定の上限値になったかを判定し、変数Nが上限値でなければ、処理802へ戻る。このように、衝突判定部130は、処理802から処理805までの動作を、変数Nに1ずつ加算しながら、衝突位置が求まるか、変数Nが上限値となるまで、繰り返し実行する。
 処理806で、探索領域704内に障害物が存在すると判定された場合は、処理809へ進む。処理809では、自車両が走行中であるか否かを車輪速センサ301から入力される車輪速に基づいて判定する。走行中であれば処理810へ進む。
 処理810では、衝突判定部130は、衝突判定結果として、車輪速センサ301から入力される現在の車速のまま走行したときに衝突位置に到達するまでの時間を求め、これをHMI500へ出力する。
 処理809の判定で、走行中でなければ、すなわち停車中であれば処理811へ進む。
処理811では、衝突判定部130は、衝突判定結果として、現在位置から衝突位置までの距離を求め、これをHMI500へ出力する。
 また、処理800で、直進軌道と判定された場合や、処理808で、変数Nが上限値を超えたと判定された場合は、衝突位置が存在しない場合であり、衝突する可能性がないことを示す識別情報を、HMI500へ出力する。
 衝突判定部130は、経路算出部120からの経路情報の入力の発生の都度、図4に示す衝突判定動作を実行する。ただし、衝突判定結果をHMI500に出力する動作については、衝突判定結果が前回にHMI500に出力した値と同じであれば、今回の動作を省略しても良い。
 HMI500は、衝突判定部130から、衝突位置までの走行距離、もしくは衝突位置に到達するまでの時間を受信すると、それらの値が、予め定義された報知レベルのどれに該当するかを判定し、該当する報知レベルに応じた報知を運転者に対して行う。例えば、表示部502に文言や絵記号を表示する場合は、報知レベルが高くなるほど、運転者への刺激が強い色や明るさで表示する方法が考えられる。また、スピーカ503から報知音を発する場合は、報知レベルが高くなるほど、音量を大きくしたり、鳴動間隔を短くしたりすることが考えられる。さらに、受信した走行距離や時間の値が十分に大きい場合には、HMI500による運転者への報知を停止してもよい。このように、衝突判定部130により、障害物に衝突すると判定された場合に、衝突するまでの残距離や時間を算出し、HMI500は、衝突するまでの残距離や時間の長さに応じて、報知の有無および報知レベルの少なくとも一方を変える。
 HMI500は、報知を行っているときに、異なる報知レベルに該当する衝突判定結果を受信すると、報知レベルを変更する。また、HMI500は、報知を行っているときに、衝突する可能性がないことを示す識別情報を受信すると、その報知を停止する。
 以上述べた第1の実施形態によれば、運転者自身による出庫操作の際に、旋回に伴って自車両の側方の障害物に衝突する可能性がある場合は、運転支援装置が運転者に報知するため、運転者にとっては衝突の可能性の有無が直感的にわかりやすくなり、迅速な回避動作が可能になる。また、運転者が停車中にハンドルを操作した場合、運転支援装置は操舵角に応じて衝突判定を行い、その結果に応じて報知の発動、停止を行うため、運転者にとっては、側方障害物に衝突することなく発進するためにどこまでハンドルを切って良いかを把握しやすくなる。
[第2の実施形態]
 図5は本発明の第2の実施形態における運転支援装置1のシステム構成図である。図1で示した第1の実施形態と同一の個所には同一の符号を付してその説明を省略する。運転支援制御部100の中に衝突回避判定部150が追加されている点が第1の実施形態と異なる。
 本実施形態では、衝突判定部130は、自車両が走行中である場合と停車中である場合のいずれにおいても、現在位置から衝突位置までの距離を衝突回避判定部150へ出力する。衝突回避判定部150は、衝突判定部130から衝突位置までの走行距離が入力されると、車輪速センサ301から車載ネットワーク400を通じて取得した現在車速を用いて、現在車速から所定の減速度で停車するまでの残距離を計算する。
 そして、衝突回避判定部150は、衝突位置までの走行距離が残距離より長ければ、ブレーキによる停車のみで障害物との衝突の回避が可能と判定し、低い報知レベルで報知を行うよう、HMI500に指示する。
 一方、衝突位置までの走行距離が残距離より短ければ、衝突回避判定部150は、ブレーキによる停車のみでは衝突の回避は不可能と判定し、回避のためにはハンドルを中立に戻す操作が必要であるので、高い報知レベルで報知を行うよう、HMI500に指示する。報知レベルを変える基準は、残距離が停車のみで舵角を戻さずに衝突回避可能な距離か否かとする。
 第2の実施形態によれば、運転者自身による出庫操作の際に、旋回に伴って自車両付近の障害物に衝突する可能性がある場合は、回避に必要な操作に応じて報知レベルを変えて報知を行うため、運転者が適切な回避動作を確実にとることができる。
[第3の実施形態]
 図6は本発明の第3の実施形態における運転支援装置1のシステム構成図である。図1で示した第1の実施形態と同一の個所には同一の符号を付してその説明を省略する。運転支援制御部100の中に操舵制御部160が追加されている点が第1の実施形態と異なる。
 操舵制御部160は、衝突判定部130から、衝突位置までの走行距離、もしくは衝突位置に到達するまでの時間が入力されると、舵角が現在の値もしくはそれ以上の大きさでは将来自車側方に障害物が衝突すると判定し、ハンドルの切り増しを抑止するようにハンドルの操舵力を制御する。このとき操舵制御部160は、パワーステアリング601に所定の指示を出力することで、ハンドルの操舵力に対する制御を行う。
 操舵制御部160からの指示を受信したパワーステアリング601は、運転者がハンドルを切り増そうとすると、その方向のトルクを検知し、それと反対方向のトルクをハンドルに加える。これにより、運転者がハンドルを切り増そうとしても、大きな力を加えなければ回らない状態になり、ハンドルの切り増しが抑止される。
 衝突判定部130は、HMI500が運転者に障害物への衝突を報知した後に、運転者が舵角を戻したとき、再度障害物に衝突するか否かを判定し、衝突しないと判定された場合、HMI500は報知を停止する。
 第3の実施形態によれば、運転者自身による出庫操作の際に、旋回に伴って自車両付近の障害物に衝突する可能性がある場合は、旋回方向にハンドルが回らなくなるため、運転者が衝突の可能性に気付きやすくなり、また誤って障害物により近づく方向にハンドルを切る操作を防止することができる。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)運転者による車両の出庫操作を支援する運転支援装置1であって、運転支援装置1は、車両の外界の障害物を検知する外界センサからの入力情報に基づいて、車両の周囲に存在する障害物を認識する外界認識部110と、車両の現在の舵角に基づき走行経路を算出する経路算出部120と、経路算出部120で算出した走行経路を走行した場合に、外界認識部110で認識された障害物に衝突するか否かを判定する衝突判定部130とを備える。これにより、車両の出庫の際の運転支援を適確に行うことができる。
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
1 運転支援装置
100 運転支援制御部
110 外界認識部
120 経路算出部
130 衝突判定部
140 自車位置推定部
150 衝突回避判定部
160 操舵制御部
200 外界センサ
300 車両センサ
301 車輪速センサ
302 操舵角センサ
400、401 車載ネットワーク
500 HMI
501 操作部
502 表示部
503 スピーカ
601 パワーステアリング
602 変速機
603 エンジン
604 ブレーキ

Claims (15)

  1.  運転者による車両の出庫操作を支援する運転支援装置であって、
     前記車両の外界の障害物を検知する外界センサからの入力情報に基づいて、前記車両の周囲に存在する前記障害物を認識する外界認識部と、
     前記車両の現在の舵角に基づき走行経路を算出する経路算出部と、
     前記経路算出部で算出した前記走行経路を走行した場合に、前記外界認識部で認識された前記障害物に衝突するか否かを判定する判定部とを備える運転支援装置。
  2.  請求項1に記載の運転支援装置において、
     前記判定部で前記障害物に衝突すると判定された場合、前記運転者に報知する報知部を備える運転支援装置。
  3.  請求項1または請求項2に記載の運転支援装置において、
     前記判定部は、前記障害物が前記経路算出部で算出した前記走行経路から所定距離以内にある場合に前記障害物に衝突すると判定する運転支援装置。
  4.  請求項1から請求項3までのいずれか一項に記載の運転支援装置において、
     前記判定部は、前記車両の進行方向に応じて、前記車両の内輪側または外輪側のいずれか一方の前記障害物に対して衝突を判定する運転支援装置。
  5.  請求項3に記載の運転支援装置において、
     前記所定距離は、前記車両の舵角の大きさに伴い大きくする運転支援装置。
  6.  請求項1から請求項5までのいずれか一項に記載の運転支援装置において、
     前記走行経路は、現在の舵角から計算される旋回半径を有する円軌道である運転支援装置。
  7.  請求項4に記載の運転支援装置において、
     前記判定部は、前進時に内輪側の前記障害物に対して衝突を判定し、後退時に外輪側の前記障害物に対して衝突を判定する運転支援装置。
  8.  請求項2に記載の運転支援装置において、
     前記判定部は、前記障害物に衝突すると判定した場合に、衝突するまでの残距離を算出し、前記報知部は、前記残距離の長さに応じて、報知の有無および報知レベルの少なくとも一方を変える運転支援装置。
  9.  請求項8に記載の運転支援装置において、
     前記報知部は、前記報知レベルを変える基準を、前記残距離が停車のみで舵角を戻さずに衝突回避可能な距離か否かとする運転支援装置。
  10.  請求項2に記載の運転支援装置において、
     前記判定部は、前記障害物に衝突すると判定した場合に、衝突するまでの時間を算出し、前記報知部は、前記衝突するまでの時間に応じて、報知の有無および報知レベルの少なくとも一方を変える運転支援装置。
  11.  請求項2に記載の運転支援装置において、
     前記判定部は、前記報知部が前記運転者に前記障害物への衝突を報知した後に、前記運転者が舵角を戻したとき、再度前記障害物に衝突するか否かを判定し、衝突しないと判定された場合、前記報知部は前記報知を停止する運転支援装置。
  12.  請求項1から請求項11までのいずれか一項に記載の運転支援装置において、
     ハンドルの操舵力を制御する操舵力制御部を備え、
     前記操舵力制御部は、前記判定部が前記障害物に衝突すると判定した場合に、前記ハンドルの切り増しを抑止するように前記操舵力を制御する運転支援装置。
  13.  請求項8から請求項10までのいずれか一項に記載の運転支援装置において、
     前記報知部は、前記報知レベルに応じて表示色もしくは警告音を変える運転支援装置。
  14.  請求項1または請求項2に記載の運転支援装置において、
     前記判定部は、前記車両が前進方向にある場合は、前記車両の内輪側の側方に探索領域を設定し、前記探索領域に前記障害物が存在する場合に衝突と判定する運転支援装置。
  15.  請求項1または請求項2に記載の運転支援装置において、
     前記判定部は、前記車両が後退方向にある場合は、前記車両の外輪側の側方に探索領域を設定し、前記探索領域に前記障害物が存在する場合に衝突と判定する運転支援装置。
PCT/JP2019/022270 2018-06-29 2019-06-05 運転支援装置 WO2020003932A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527333A JP6975856B2 (ja) 2018-06-29 2019-06-05 運転支援装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-125505 2018-06-29
JP2018125505 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020003932A1 true WO2020003932A1 (ja) 2020-01-02

Family

ID=68986428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022270 WO2020003932A1 (ja) 2018-06-29 2019-06-05 運転支援装置

Country Status (2)

Country Link
JP (1) JP6975856B2 (ja)
WO (1) WO2020003932A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485784A (zh) * 2020-11-03 2021-03-12 浙江吉利控股集团有限公司 内轮差区域内目标的危险系数确定方法、装置、电子设备及存储介质
CN113276840A (zh) * 2021-06-09 2021-08-20 中国第一汽车股份有限公司 一种方向盘反向控制方法、自动泊车系统和车辆

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1139598A (ja) * 1997-07-17 1999-02-12 Fuji Heavy Ind Ltd 車両の衝突防止装置
JP2002316633A (ja) * 2001-04-20 2002-10-29 Fuji Heavy Ind Ltd 車両運動制御装置
JP2007039016A (ja) * 2005-06-28 2007-02-15 Honda Motor Co Ltd 車両操作支援装置
JP2007050737A (ja) * 2005-08-17 2007-03-01 Toyota Motor Corp 車両用警報装置
JP2009157490A (ja) * 2007-12-25 2009-07-16 Honda Motor Co Ltd 車両の運転支援装置
JP2009298385A (ja) * 2008-06-17 2009-12-24 Honda Motor Co Ltd 駐車を支援するための装置
JP2010155496A (ja) * 2008-12-26 2010-07-15 Honda Motor Co Ltd 車両用警報装置
JP2012008933A (ja) * 2010-06-28 2012-01-12 Honda Motor Co Ltd 車両の制御システム
JP2014218139A (ja) * 2013-05-07 2014-11-20 株式会社デンソー 運転支援装置
WO2017068695A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 駐車支援方法及び駐車支援装置
JP2018069758A (ja) * 2016-10-24 2018-05-10 日産自動車株式会社 駐車支援方法及び駐車支援装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1139598A (ja) * 1997-07-17 1999-02-12 Fuji Heavy Ind Ltd 車両の衝突防止装置
JP2002316633A (ja) * 2001-04-20 2002-10-29 Fuji Heavy Ind Ltd 車両運動制御装置
JP2007039016A (ja) * 2005-06-28 2007-02-15 Honda Motor Co Ltd 車両操作支援装置
JP2007050737A (ja) * 2005-08-17 2007-03-01 Toyota Motor Corp 車両用警報装置
JP2009157490A (ja) * 2007-12-25 2009-07-16 Honda Motor Co Ltd 車両の運転支援装置
JP2009298385A (ja) * 2008-06-17 2009-12-24 Honda Motor Co Ltd 駐車を支援するための装置
JP2010155496A (ja) * 2008-12-26 2010-07-15 Honda Motor Co Ltd 車両用警報装置
JP2012008933A (ja) * 2010-06-28 2012-01-12 Honda Motor Co Ltd 車両の制御システム
JP2014218139A (ja) * 2013-05-07 2014-11-20 株式会社デンソー 運転支援装置
WO2017068695A1 (ja) * 2015-10-22 2017-04-27 日産自動車株式会社 駐車支援方法及び駐車支援装置
JP2018069758A (ja) * 2016-10-24 2018-05-10 日産自動車株式会社 駐車支援方法及び駐車支援装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485784A (zh) * 2020-11-03 2021-03-12 浙江吉利控股集团有限公司 内轮差区域内目标的危险系数确定方法、装置、电子设备及存储介质
CN113276840A (zh) * 2021-06-09 2021-08-20 中国第一汽车股份有限公司 一种方向盘反向控制方法、自动泊车系统和车辆
CN113276840B (zh) * 2021-06-09 2022-04-29 中国第一汽车股份有限公司 一种方向盘反向控制方法、自动泊车系统和车辆

Also Published As

Publication number Publication date
JP6975856B2 (ja) 2021-12-01
JPWO2020003932A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
US11543816B2 (en) Signaling information on a detected parking space to the operator of a remote control for a parking assistance system which can be controlled by remote control for automatically parking a motor vehicle
CN108622083B (zh) 泊车辅助装置
US9914463B2 (en) Autonomous driving device
US9902399B2 (en) Vehicle travelling control device for controlling a vehicle in traffic
US9688272B2 (en) Surroundings monitoring apparatus and drive assistance apparatus
JP6318864B2 (ja) 運転支援装置
US9731717B2 (en) Driver assistance apparatus and method for operating the same
US20080189040A1 (en) Collision Avoidance System
US20190071071A1 (en) Vehicle control device, vehicle control method, and storage medium
US20180244267A1 (en) Method for operating a vehicle and driver assistance system
CN110799403B (zh) 车辆控制装置
JP2018030479A (ja) 車両の走行制御装置
JP2017526064A (ja) 自動車を少なくとも半自律的に操縦する方法、運転者支援システムおよび自動車
WO2018047223A1 (ja) 障害物判定方法、駐車支援方法、出庫支援方法、及び障害物判定装置
JP2017033060A (ja) 車両の運転支援制御装置
CN112399939A (zh) 车辆控制装置
JP2018169269A (ja) 経路生成装置、経路生成方法、及び経路生成プログラム
WO2020003932A1 (ja) 運転支援装置
CN111661042A (zh) 车辆控制装置
JP2005145282A (ja) 車両走行支援装置
JP4442520B2 (ja) 車両用進路推定装置
JP2017073059A (ja) 車線変更支援装置
JP2019209910A (ja) 車両制御システム
CN112829748A (zh) 车道变更辅助装置、包括该装置的车辆系统及其方法
JP7020113B2 (ja) 駐車制御方法及び駐車制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824784

Country of ref document: EP

Kind code of ref document: A1