Nothing Special   »   [go: up one dir, main page]

WO2020003882A1 - Combine, yield calculation method, yield calculation system, yield calculation program, recording medium having yield calculation program recorded thereon, grain discharge yield calculation method, grain discharge yield calculation system, grain discharge yield calculation program, recording medium having grain discharge yield calculation program recorded thereon, irregular inflow detection system, irregular inflow detection program, recording medium having irregular inflow detection program recorded thereon, irregular inflow detection method, and storage level detection system - Google Patents

Combine, yield calculation method, yield calculation system, yield calculation program, recording medium having yield calculation program recorded thereon, grain discharge yield calculation method, grain discharge yield calculation system, grain discharge yield calculation program, recording medium having grain discharge yield calculation program recorded thereon, irregular inflow detection system, irregular inflow detection program, recording medium having irregular inflow detection program recorded thereon, irregular inflow detection method, and storage level detection system Download PDF

Info

Publication number
WO2020003882A1
WO2020003882A1 PCT/JP2019/021536 JP2019021536W WO2020003882A1 WO 2020003882 A1 WO2020003882 A1 WO 2020003882A1 JP 2019021536 W JP2019021536 W JP 2019021536W WO 2020003882 A1 WO2020003882 A1 WO 2020003882A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
flow rate
kernel
yield
tank
Prior art date
Application number
PCT/JP2019/021536
Other languages
French (fr)
Japanese (ja)
Inventor
関光宏
堀高範
林壮太郎
齊藤直
中林隆志
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018119983A external-priority patent/JP7059121B2/en
Priority claimed from JP2018120283A external-priority patent/JP7059124B2/en
Priority claimed from JP2018120284A external-priority patent/JP7059125B2/en
Priority claimed from JP2018123154A external-priority patent/JP6952652B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN201980028011.1A priority Critical patent/CN112533475A/en
Priority to KR1020207029762A priority patent/KR20210023805A/en
Publication of WO2020003882A1 publication Critical patent/WO2020003882A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1271Control or measuring arrangements specially adapted for combines for measuring crop flow
    • A01D41/1272Control or measuring arrangements specially adapted for combines for measuring crop flow for measuring grain flow
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1275Control or measuring arrangements specially adapted for combines for the level of grain in grain tanks
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01FPROCESSING OF HARVESTED PRODUCE; HAY OR STRAW PRESSES; DEVICES FOR STORING AGRICULTURAL OR HORTICULTURAL PRODUCE
    • A01F12/00Parts or details of threshing apparatus
    • A01F12/60Grain tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/222Harvesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors

Definitions

  • the present invention relates to a combine provided with a grain tank for storing threshed grains, and a technique for calculating the yield of the grains stored in the grain tank.
  • the present invention also relates to a combine provided with a grain tank for storing threshed grains, and a technique for calculating the discharge yield of the grains stored in the grain tank.
  • the present invention also provides a grain transport device for transporting grains obtained by a threshing apparatus for threshing a harvested grain culm and feeding the grains into a grain tank, and measuring a flow rate of grains fed to the grain tank.
  • a grain transport device for transporting grains obtained by a threshing apparatus for threshing a harvested grain culm and feeding the grains into a grain tank, and measuring a flow rate of grains fed to the grain tank.
  • a combine having a flow rate measuring means and a combine vessel having a measuring vessel that receives and stores a part of the grain to be supplied to a grain tank from a receiving port, an illegal inflow of the grain flowing into the measuring vessel is detected.
  • a combine having a flow rate measuring means and a combine vessel having a measuring vessel that receives and stores a part of the grain to be supplied to a grain tank from a receiving port.
  • the present invention provides a traveling machine, a threshing device for threshing a harvested culm, a grain tank for storing grains obtained by the threshing device, and a grain for transporting grains obtained by the threshing device.
  • the present invention relates to a combine provided with a grain transport device to be charged into the tank of a grain tank, and a technique for detecting the storage level of the grain tank of such a combine.
  • Some combiners include a grain tank for storing threshed grains and a grain discharging device for discharging the grains stored in the grain tank to the outside.
  • the grains stored in the grain tank are generally discharged from the grain discharging device when the grain tank is full. Therefore, the combine disclosed in Patent Literature 2 includes a full sensor that detects that the grains in the grain tank are full.
  • a temporary storage unit that temporarily stores the grains sent to the grain tank is formed, and the internal quality of the stored grains is optically controlled. It is configured to measure by a quality measuring device.
  • the shutter configured to be openable and closable as the bottom of the temporary storage unit is opened, and the grains are discharged into the internal space of the grain tank.
  • a discharge securing space is provided which is separated from the internal space of the grain tank so that the shutter can be opened even if the storage amount in the internal space of the grain tank is large. Is formed.
  • Patent Literature 4 two temporary storage units as shown in Patent Literature 3 are provided in the grain tank, and the unit traveling yield is determined based on the storage state of the grains in one temporary storage unit. It is configured such that the taste value per unit mileage is calculated from the measured value related to the taste of the grain that has been calculated and stored in the other temporary storage unit.
  • Patent Document 5 discloses a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a grain tank for transporting grains obtained by the threshing device. And a grain transfer device ("Grain transfer mechanism” in the literature) for charging the inside of the tank.
  • An inlet (the “grain discharge port” in the literature) through which the grains are injected into the grain tank is formed in the end area of the grain transport device in the transport direction, and passes through the grain transport device near the inlet.
  • a flow sensor (“load detector” in the literature) that measures the flow rate of the grain to be processed is provided. Pressure based on the amount of grain is measured by a flow sensor.
  • JP-A-2017-18014 JP 2004-187505 A JP 2016-67226A International Publication No. WO 2016/147521 JP 2018-38272 A
  • the problems corresponding to the background art [1] are as follows.
  • the measurement of the yield is also performed while the combine is harvesting while traveling.
  • One of the causes of the error is that the storage state of the grains in the grain tank varies depending on the flow rate of the grains supplied to the grain tank, and an error may occur in the yield depending on the storage state.
  • An object of the present invention is to accurately determine the yield of a grain.
  • the problems corresponding to the background art [2] are as follows.
  • the full sensor disclosed in Patent Literature 2 is provided in an upper side area in a grain tank, and detects that the grain is full by detecting the grain by the full sensor. Therefore, depending on the state of storage of the grains in the grain tank, the grains stored in the grain tank are biased even though the grains are not full, and the full sensor may erroneously detect the full state. there were. Conversely, in some cases, the full sensor does not detect the kernel even though the kernel is stored more than the assumed full.
  • An object of the present invention is to accurately calculate the yield in a state where it is necessary to discharge grains from a grain tank, regardless of the storage state of grains.
  • the grains are not always stored uniformly over the entire area, and in a situation where the grains are concentrated and stored in the area where the temporary storage unit is provided, the When the storage amount is almost full, there is a possibility that the storage may flow into the temporary storage unit from the grain receiving port located at the upper end of the cylindrical measurement container forming the temporary storage unit. If there is such an improper inflow, the measurement of the grain stored in the temporary storage unit becomes inaccurate, and in the worst case, the measurement becomes impossible.
  • an object of the present invention is to provide a combine that can protect a flow sensor before an unexpected load acts on the flow sensor.
  • the means for solving the problem [1] is as follows.
  • the combine according to one embodiment includes: A combine having a grain tank in which threshed grains are supplied and stored, A flow sensor that is provided in the grain tank and measures a flow rate of the supplied grain, A yield sensor that is provided below the grain tank and outputs an output value based on the weight of the grain tank, A control unit for calculating a current yield of the kernel stored in the kernel tank based on the flow rate and the output value.
  • the actual yield (current yield) of the grains stored in the grain tank is accurately obtained in consideration of the influence of the storage state of the grains that changes according to the flow rate of the supplied grains. be able to.
  • control unit includes: A first map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; A second map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow rate value larger than the flow rate value.
  • the current yield is calculated from the output value using
  • control unit may determine the yield in the first map with respect to the output value and the yield in the second map with respect to the output value based on the first flow rate value, the second flow rate value, and the flow rate.
  • the current yield is calculated by dividing the current yield.
  • the first flow value is a lowest flow value assumed to be detected by the flow sensor
  • the second flow value is a highest flow value assumed to be detected by the flow sensor. Is preferred.
  • the measured flow rate becomes a value between the minimum flow rate and the maximum flow rate, the reliability of the map is improved, and the current yield can be obtained more accurately.
  • the first map and the second map may be determined according to the type of crop to be threshed.
  • the flow sensor is A temporary storage box for storing a part of the supplied kernel, A measuring unit that measures the time when a certain amount of the grains are stored in the temporary storage box, A shutter unit that discharges the kernel when a certain amount of the kernel is stored in the temporary storage box, and calculates the flow rate from the time and storage amount in which a certain amount of the kernel is stored. Is also good.
  • a component sensor for measuring a component of the grain stored in the temporary storage box is provided.
  • the measurement of the flow rate and the measurement of the components can be efficiently performed by one apparatus, and the weight or volume can be appropriately selected and used as the yield.
  • a communication unit that communicates with the outside and acquires the requested amount from the outside
  • An operation management unit that compares the current yield with the required amount and determines the end timing of the harvesting operation may be provided.
  • the yield requested from the outside can be used as the emission yield, and the emission yield can be managed with high versatility.
  • the yield calculation method In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, the combiner is stored in the grain tank by the output value.
  • a yield calculation method for calculating the current yield of the grain A step of previously obtaining a first map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; , A second graph showing the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value larger than the first flow value.
  • the grain stored in the grain tank is considered in consideration of the influence of the storage state of the grain accompanying the flow rate at which the grain is supplied. Can be accurately obtained.
  • a yield calculation system that calculates a current yield of the grain in a grain tank of a combine in which threshed grains are supplied and stored, A flow sensor that measures the flow rate of the grain supplied to the grain tank, A yield sensor that outputs an output value based on the weight of the grain tank, A control unit for calculating a current yield of the kernel stored in the kernel tank based on the flow rate and the output value.
  • the yield calculation program In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, the combiner is stored in the grain tank by the output value.
  • a yield calculation program for calculating the current yield of the grain A function for previously obtaining a first map indicating a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; , A second graph showing the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value larger than the first flow value.
  • a function to obtain a map in advance A function of measuring the flow rate of the kernel supplied to the kernel tank, A function of acquiring the output value output from the yield sensor, According to the ratio of the flow rate to the first flow rate value and the second flow rate value, the yield in the first map for the output value and the yield in the second map for the output value are divided into the current A function to calculate the yield, On a computer.
  • the recording medium on which the yield calculation program according to one embodiment is recorded In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, the combiner is stored in the grain tank by the output value.
  • a recording medium recording a yield calculation program for calculating the current yield of the grain, A function for previously obtaining a first map indicating a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; , A second graph showing the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value larger than the first flow value.
  • a function to obtain a map in advance A function of measuring the flow rate of the kernel supplied to the kernel tank, A function of acquiring the output value output from the yield sensor, According to the ratio of the flow rate to the first flow rate value and the second flow rate value, the yield in the first map for the output value and the yield in the second map for the output value are divided into the current A function to calculate the yield, Is recorded on the computer.
  • the means for solving the problem [2] is as follows.
  • the combine according to one embodiment includes: A combine having a grain tank in which threshed grains are supplied and stored, A flow sensor that is provided in the grain tank and measures a flow rate of the supplied grain, A control unit configured to calculate, based on the flow rate, a discharge yield of the kernel stored in the kernel tank in a discharge state in which the kernel needs to be discharged from the kernel tank.
  • a full level sensor is provided in the grain tank and detects the grain when the grain tank is full.
  • the discharge state may be a state in which the full level sensor has detected the kernel.
  • a plurality of level sensors for detecting that the grain is stored to a predetermined height of the grain tank
  • a communication unit that communicates with the outside and acquires the requested amount from the outside
  • the discharge state may be a state in which a level sensor corresponding to the required amount among the plurality of level sensors detects the kernel.
  • a yield sensor is provided below the grain tank and outputs an output value based on the weight of the grain tank, Preferably, the control unit calculates a current yield based on the flow rate and the output value.
  • control unit is a second flow rate indicating the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value. Relationship between the output value and the yield of the kernel stored in the kernel tank when the kernel is stored in the kernel tank at a specific second flow rate value larger than the first map and the first flow rate value Using the second map indicating the above, the current yield is calculated from the output value, The current yield is calculated by calculating the yield in the first map for the output value and the yield in the second map for the output value based on the first flow rate value, the second flow rate value, and the flow rate. It is preferable to prorate.
  • the map showing the relationship between the output value of the yield sensor and the yield in accordance with the flow rate allows the current yield to be calculated more accurately.
  • the discharge of kernels can be accurately and systematically performed, and the stored kernels can be discharged at a more appropriate timing up to the discharge yield.
  • control unit calculates a time from the current yield to the discharge yield based on the flow rate.
  • the flow sensor is A primary storage box for storing a part of the supplied kernels, A measuring unit that measures the time when a certain amount of the grains are stored in the primary storage box, A shutter unit that discharges the kernel when a certain amount of the kernel is stored in the primary storage box, and calculates the flow rate from a time and a storage amount in which a certain amount of the kernel is stored. Is preferred.
  • the flow rate can be accurately measured continuously during the supply of the grain, and the current yield can be obtained with high accuracy. Can be discharged.
  • a component sensor for measuring a component of the grain stored in the primary storage box is provided.
  • the measurement of the flow rate and the measurement of the components can be efficiently performed by one apparatus, and the weight or volume can be appropriately selected and used as the yield.
  • Grain emission yield calculation method In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, discharging the grains from the grain tank may be performed.
  • the first yield and the second yield are proportioned according to a ratio of the flow rate to the first flow rate value and the second flow rate value.
  • a grain emission yield calculation system A flow sensor that measures the flow rate of the grain supplied to the grain tank, A control unit configured to calculate, based on the flow rate, a discharge yield of the kernel stored in the kernel tank in a discharge state in which the kernel needs to be discharged from the kernel tank.
  • the kernel emission yield calculation program In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, discharging the grains from the grain tank may be performed.
  • the recording medium on which the kernel discharge yield calculation program according to one embodiment is recorded In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, discharging the grains from the grain tank may be performed.
  • a recording medium recording a kernel discharge yield calculation program for calculating a discharge yield of the kernel stored in the kernel tank in a required discharge state, A function of measuring the flow rate of the kernel supplied to the kernel tank, A function of calculating the emission yield based on the flow rate, And a computer program for calculating a grain discharge yield to make the computer realize the above.
  • a combine according to the present invention is provided with a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state extending over the threshing device and an upper portion of the grain tank.
  • a grain transporting device that transports the grains obtained by the threshing apparatus and throws the grains into the inside of the grain tank; and a grain that is provided inside the grain tank and is thrown into the grain tank.
  • Flow rate measuring means for measuring the flow rate of the particles.
  • the flow rate measuring means has a measurement container for receiving and storing a part of the grain to be supplied to the grain tank from a receiving port, and a certain amount of the grain is stored in the measurement container. It is configured to measure the flow rate based on time and return the kernel to the kernel tank after measuring the flow rate, based on the amount of change in the flow rate over time, outside the measurement container in the kernel tank. And an unauthorized inflow detecting unit for detecting an unauthorized inflow of the grains stored in the measuring container from the receiving port.
  • Illegal inflow of grains handled here means that the grains stored in the grain tank overflow and flow into the measuring container from outside the measuring container through the receiving port.
  • the amount of grains stored outside the measuring vessel in the grain tank increases and a part of the grains gets over the measuring vessel and flows illegally into the measuring vessel from the receiving port, such illegal inflow is caused by the flow rate measuring means.
  • the flow measurement by the flow measuring means becomes inaccurate. Therefore, in one preferred embodiment of the present invention, when the unauthorized inflow detection unit detects the unauthorized inflow, the flow measurement is performed. The measurement by the means is stopped. As described above, since the flow measurement is stopped when the illegal inflow is detected, the inconvenience based on the incorrect flow measurement is avoided.
  • the component values (moisture and protein) of the grains that are sequentially stored in a predetermined amount in a measurement container are measured along with the harvest traveling.
  • the advantage is obtained that the distribution of the grain component in the field can be created.
  • a component value sensor for measuring the component value of the grain stored in the measurement container is provided.
  • the unauthorized inflow detection unit sets the fact that the flow rate is larger than a predetermined value as an unauthorized inflow detection condition. At that time, specifically, it is preferable to use a storage time until a fixed amount of grains defined by a sensor or the like is stored. By dividing a certain amount by the storage time, a flow rate per unit time is calculated.
  • the storage time is a short time (a predetermined criterion as a criterion) in which it is impossible to obtain a certain amount of storage by using only the grains directly supplied from the grain transport device to the measurement container in a normal harvesting operation. Value), it can be determined that unauthorized inflow has occurred. It should be noted that the storage time is used as the determination criterion and the flow rate per unit time is used as the determination criterion.
  • Combines are generally equipped with a weighing device that measures the weight of the grain tank (including the stored grain). Subtracting the weight of the grain tank alone from the measured weight gives the weight of the stored grain, ie the yield. Therefore, based on the measured weight, the storage state of the grains in the grain tank can be estimated. Unauthorized inflow of grain does not occur when the state of storage of grain is lower than the receiving port of the measuring container. Taking advantage of this, in one of the preferred embodiments of the present invention, when a weighing device for measuring the weight of the grain tank is provided, the unauthorized inflow detection unit includes The fact that the weight is larger than a predetermined value is set as one of the illegal inflow detection conditions. Thereby, erroneous detection of unauthorized inflow is reduced.
  • the unauthorized inflow detection system includes: A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided.
  • a grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port,
  • a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, wherein the unauthorized inflow detection system detects an unauthorized inflow flowing into the measurement container.
  • Flow rate measuring means for measuring the flow rate of the grains to be charged into the grain tank based on the time during which a certain amount of grains are stored in the measurement container, Based on the amount of change over time in the flow rate, an unauthorized inflow detection unit that detects an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container, Is provided.
  • the unauthorized inflow detection program includes: A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided.
  • a grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port,
  • a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, wherein the unauthorized inflow detection program detects an unauthorized inflow flowing into the measurement container.
  • the recording medium on which the unauthorized inflow detection program according to one embodiment is recorded A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided.
  • a grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port,
  • a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, an unauthorized inflow detection program that detects an unauthorized inflow flowing into the measurement container is recorded.
  • An unauthorized inflow detection method includes: A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided.
  • a grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port,
  • a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, wherein the unauthorized inflow detection method detects an unauthorized inflow flowing into the measurement container.
  • a combine according to the present invention is provided with a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state extending over the threshing device and an upper portion of the grain tank.
  • a grain transport device for transporting the grains obtained by the threshing device and introducing the grains into the inside of the grain tank; and And a level sensor that is provided at a position lower than the lower end of the flow sensor and detects that kernels are stored in the kernel tank up to the flow sensor. It is characterized.
  • the level sensor is provided below the flow rate sensor, and the fact that the kernel is stored up to the flow rate sensor is detected by the level sensor. For this reason, the level sensor can detect the state immediately before the deposited kernel presses the flow rate sensor.
  • a configuration is possible in which the introduction of grains is stopped before the grains continue to be poured into the inside of the grain tank and the deposited grains press the flow rate sensor more strongly, and an excessive load acts on the flow rate sensor. As a result, the possibility that the flow sensor will fail can be avoided. This realizes a combine that can protect the flow sensor before an unexpected load acts on the flow sensor.
  • a notifying unit that notifies that the grain is stored to the flow rate sensor based on the detection of the level sensor is provided.
  • a notifying unit that notifies a decrease in the measurement accuracy of the flow rate sensor based on the detection of the level sensor is provided.
  • the flow rate sensor may not be able to measure the flow rate of the grain with high accuracy.
  • the occupant can recognize the decrease in the measurement accuracy of the flow rate sensor, so that the occupant can easily determine that the combine harvesting operation should be stopped.
  • a traveling device is provided, and after the detection of the level sensor, if the introduction of the grain is detected by the flow rate sensor, the traveling device is stopped.
  • the flow rate sensor becomes excessively large. There is a possibility that a load acts and the flow sensor breaks down. According to this configuration, when the traveling device stops, the harvesting traveling of the combine cannot be continued. That is, before the excessive load is applied to the flow rate sensor, the feeding of the grain is not continued, so that the possibility that the flow rate sensor is broken can be avoided. Further, it is possible to prevent low-precision measurement data from being mixed with the flow sensor data.
  • a full level sensor is provided inside the tank and detects that kernels are stored to a full height in the kernel tank, and the level sensor is at a position lower than the full level sensor. Preferably, it is provided.
  • the full level sensor is usually installed at a relatively high position inside the tank, but the kernels do not accumulate horizontally inside the tank, and depending on the input flow rate of the kernels, the kernels accumulate inside the tank. May be biased. With this configuration, even when a kernel is detected by the full level sensor, more kernels can be stored if the level sensor at a position lower than the full level sensor does not detect the kernel. It becomes. In other words, as many grains as possible are stored in the tank while preventing the flow sensor from being damaged.
  • a plurality of other level sensors for detecting that grains are stored in the grain tank up to a specific height are provided, and the level sensor is Preferably, of the plurality of other level sensors, the sensor is provided at a position higher than another level sensor located at the next higher position than the full level sensor.
  • the level sensor is provided at a position lower than the full level sensor, the level sensor is provided higher than other level sensors located next to the full level sensor. Thereby, more grains are stored inside the tank.
  • a grain transport device that transports the obtained grains and throws the grains into the inside of the grain tank, and a combine having a storage level detection system that detects a storage level of the grain tank.
  • a flow sensor that is provided in the input unit of the grain transport device and measures a flow rate of the input kernel,
  • a level sensor that is provided at a position lower than the lower end of the flow rate sensor and detects that grains are stored in the grain tank up to the flow rate sensor.
  • FIG. 2 is a right side view of the fuselage showing the entire combine. It is an overall top view of a combine. It is a top view which shows the tank inside of a grain tank.
  • FIG. 19 is a sectional view taken along line XIX-XIX of FIG. 18 showing the inside of the grain tank.
  • FIG. 19 is a sectional view taken along the line XX-XX of FIG. 18 showing the inside of the grain tank.
  • FIG. 2 is a right side view of the machine body showing the flow rate sensor. It is a block diagram showing a control configuration based on a flow sensor. It is a flowchart figure which shows the control structure based on a flow sensor. It is a rear view showing another embodiment about composition of a grain conveying device, a flow sensor, and a level sensor.
  • a combine according to the present invention includes a traveling machine body 2 that is self-propelled by a pair of left and right crawler traveling devices 1 and 1, and a harvesting unit 3 that harvests planted grain culms at the front of the traveling machine body 2. Is provided.
  • An operating unit 5 whose periphery is covered by a cabin 4 is provided on the front right side of the traveling body 2. Behind the operation unit 5, a threshing device 6 for threshing grain culms harvested by the harvesting unit 3 and a grain tank 7 for storing grains obtained by threshing are arranged side by side. Deployed in state.
  • the grain tank 7 is located on the right side of the fuselage, and the threshing device 6 is located on the left side of the fuselage. That is, the operating unit 5 is located in front of the grain tank 7.
  • An engine is provided below the driver's seat 8 in the driver 5.
  • a grain discharging device 9 for discharging the grains stored in the grain tank 7 out of the machine.
  • the threshed grains are transported from the threshing device 6 to the interior of the grain tank 7 by the grain transport mechanism 16.
  • a load cell 10 is provided below the grain tank 7 as an example of a yield sensor for measuring the yield of grains stored in the grain tank 7.
  • the load cell 10 detects the pressure received according to the weight (yield) of the grain as a voltage or the like by a strain sensor.
  • the weight (yield) of the stored grains is calculated from the output voltage.
  • the grain transport mechanism 16 includes a first thing collection screw 16A, a lifting conveyor 16B, and a horizontal conveyor 16C provided at the bottom of the threshing device 6.
  • a grain discharging device 13 for diffusing and discharging the grains inside the grain tank 7 is provided in the terminal region of the traverse conveyor 16C.
  • the grain discharge device 13 includes a discharge rotating body 32 and a discharge case 31 that covers the periphery of the discharge rotating body 32.
  • the discharge rotating body 32 is a rotating blade composed of a rotating shaft 32b and a blade plate 32a provided on the rotating shaft 32b.
  • the blade 32a is fixed to the rotating shaft 32b so as to protrude radially outward from the rotating shaft 32b.
  • the slat 32a has a substantially flat pushing surface for pushing the grains in the direction of rotation.
  • the discharge case 31 is a cylindrical shape having an inner diameter slightly larger than the rotation locus of the blade plate 32a.
  • a part of the peripheral surface of the discharge case 31 is notched.
  • the cutout forms a grain discharge port 30 that releases the grain to the rear side inside the grain tank 7 by the rotation of the blade plate 32a.
  • a plurality of openings 33 are formed on the lower surface side of the discharge case 31 of the grain discharge device 13. Grains for measurement described later (part of the grains stored in the tank) leak through the opening 33 and are supplied to a temporary storage section 51 described later.
  • a quality measuring device 50 that measures the quality of the grain is provided.
  • the quality measuring device 50 measures the components (quality) of the grain such as the water content and the protein amount of the grain.
  • the quality measuring device 50 controls a temporary storage unit 51 as a first storage unit for temporarily storing a kernel to be measured and a kernel stored in the temporary storage unit 51.
  • a measuring unit 52 is provided as a quality measuring unit that measures quality by performing a measuring operation.
  • the temporary storage unit 51 is located inside the grain tank 7, and the measurement unit 52 is located outside the grain tank 7.
  • the measuring unit 52 is housed inside a storage case 53 formed in a sealed shape.
  • the temporary storage unit 51 is formed in a substantially rectangular tube shape integrally connected to the inner side surface of the storage case 53, and can store grains therein.
  • the temporary storage section 51 has an up-down passage 55 penetrating in the up-down direction inside thereof, a discharge port 56 formed in the middle of the up-down path 55, and a closed position for closing the discharge port 56 (see the figure).
  • a shutter 57 whose position can be changed to an open position (not shown) for opening the discharge port 56, and an operation unit (not shown) for changing the attitude of the shutter 57 by the driving force of an electric motor (not shown). .
  • the temporary storage unit 51 receives and stores a part of the kernel transported into the kernel tank 7 by the kernel transport mechanism 16 and released from the kernel release device 13 as a kernel for measurement.
  • the upper end of the vertical passage 55 is opened, and a grain intake 62 is formed.
  • the grains released from the grain discharging device 13 are taken in from the intake port 62, the grains are received in a state where the shutter 57 is switched to the closed state, and a storage space formed above the shutter 57 for storage. 63 can store the grains.
  • the shutter 57 is switched to the open state, the stored grains are dropped and discharged downward and returned to the inside of the grain tank 7.
  • the temporary storage unit 51 includes a primary storage sensor 65 in the space 63.
  • the primary storage sensor 65 is a contact sensor, and can detect that a certain amount of grains has been stored in the space 63.
  • the measuring unit 52 measures the quality of the grains in a state where the grains are stored in a certain amount. After the primary storage sensor 65 detects that a certain amount of grain has been stored in the space 63, and the measuring unit 52 measures the component (quality), the operating unit (not shown) opens the shutter 57. The position is changed, and the kernel is discharged to the measured kernel storage space S described later.
  • the measuring unit 52 irradiates light toward the grains stored in the storage space 63 and measures the internal quality of the grains based on the light obtained from the grains by a spectroscopic analysis technique that is a known technique. I do.
  • a window 64 through which light can pass is formed on the side surface on the measurement unit 52 side of the side surface forming the storage space 63, and the measurement unit 52 irradiates the kernel with light through the window 64, Receives light from the grain.
  • the measured grain storage space S is an area surrounded by a wall 66, communicates with the storage space 63 in the temporary storage unit 51 through the discharge port 56, and has a side portion.
  • the storage space Q (inner space) of the grain tank 7 is defined, and the lower part thereof communicates with the storage space Q of the grain tank 7.
  • the measured grain storage space S is formed to be wider in the front-rear direction and the left-right direction with respect to the temporary storage part 51 in plan view, and the lower part is wider in the front-rear direction and the left-right direction than the upper part. It extends to the lower part of the tank 7. Since the measured grain storage space S is partitioned from the storage space Q, no grain flows from the storage space Q during storage of the grain.
  • the flow rate can be reliably measured a number of times corresponding to the size of the measured grain storage space S.
  • the quality measuring device 50 can measure the flow rate of the grains supplied into the grain tank 7. That is, since the volume of the stored grains is constant, by measuring the time from when the shutter 57 is closed to when the primary storage sensor 65 detects the grains and a certain amount of grains is stored.
  • the flow rate which is the volume of grain supplied per unit time, can be measured. The flow rate can be determined by dividing this volume by the measured time. Further, when the moisture content of the grain is measured as the quality, the volume can be converted to the weight. Therefore, the weight of the grain supplied per unit time can be obtained as the flow rate.
  • the grain discharging device 13 is disposed in front of the traveling machine body 2 (see FIG. 1; the same applies hereinafter), and the grains are ejected toward the rear side of the traveling machine body 2. Grain release is affected by the flow rate of the supplied grain. When the flow rate is large, the kernel is discharged far away toward the rear side of the traveling vehicle 2 as indicated by the arrow I. When the flow rate is small, the kernel is compared with the case where the flow rate is large, as indicated by the arrow II. It is released only to the nearest position. Therefore, when the flow rate is large, the grains start to accumulate from the rear side of the grain tank 7, and when the flow rate is small, the grains start to accumulate from the front side of the grain tank 7.
  • the grain storage state 20 is such that the number of grains is large at the rear side of the grain tank 7 and the number of kernels is small at the front side. There is a tendency that the grain is small on the rear side of the tank 7 and the grain is large on the front side. Due to such a storage state, detection errors occur in various sensors provided in the combine. Hereinafter, the error of the sensor will be described using the error of the fir sensor and the error of the load cell as examples.
  • the grain tank 7 is provided with one or a plurality of fir sensors 11 which are level sensors for detecting the amount of stored grains.
  • the fir sensor 11 is, for example, a contact sensor, and detects that the stored grain has reached the fir sensor 11.
  • a fir sensor 11a provided near the upper end of the grain tank 7 detects that the grains in the grain tank 7 are full and have been stored to a state requiring discharge. For example, when the fir sensor 11a detects a grain, the worker is notified of the fact, and the worker shifts to an action for discharging the grain.
  • the fir sensor 11 is arranged at a position shifted from the center of the traveling machine body 2 in the front-rear direction, for example, from the front side of the traveling machine body 2 in the grain tank 7. Further, as described above, the storage state of the grains is biased according to the flow rate. Therefore, the actual yield of the grains in the grain tank 7 when the fir sensor 11a detects that the grains are stored up to the full state varies depending on the flow rate. As shown in FIG. 4, the yield when the grain reaches the fir sensor 11a is higher when the flow rate is high than when the flow rate is low. As a result, the storage state of the grains when the fir sensor 11a detects the grains also differs depending on the flow rate.
  • the yield of the grain stored in the grain tank 7 is different from the yield assumed to be full, the yield of the discharged grain may be excessive or insufficient, and then the drying operation may be performed. And the like may not be performed efficiently.
  • the yield of the kernel stored in the kernel tank 7 is larger than the yield assumed as a full state (for example, the state of the storage state 20)
  • the kernel overflows from the kernel tank 7, Inspection doors (not shown) provided in the grain tank 7 may be opened due to the pressure of the grains.
  • the weight (yield) of the stored grains is calculated from the output value of the load cell 10 (see FIG. 1; the same applies hereinafter). Specifically, when the kernels are stored in the kernel tank 7 on the load cell 10 in advance, the relationship between the weight of the stored kernels and the output value of the load cell 10 with respect to this weight is checked, and a map is obtained.
  • the weight of the grain in this map is determined in consideration of the weight of the grain tank 7.
  • the weight (yield) of the stored grains is calculated from the output value of the load cell 10 and the map. The weight calculated as the yield can be converted into a volume based on the amount of water contained in the grain.
  • the yield obtained from the load cell 10 also has an error due to the flow rate. That is, the load cell 10 is unevenly distributed with respect to the center of the grain tank 7 in the front-back direction. Generally, the load cell 10 is disposed forward of the center in the front-rear direction of the grain tank 7. Further, as described above, the grains in the grain tank 7 are stored unevenly in accordance with the flow rate. Therefore, when the center of gravity of the stored grains is not located directly above the load cell 10, an error occurs in the yield obtained from the load cell 10.
  • an accurate yield (hereinafter, also referred to as a current yield) in consideration of the storage state accompanying the flow rate is obtained.
  • discharge state a state in which the grain needs to be discharged
  • an accurate yield (hereinafter, also referred to as a discharge yield) when the fir sensor 11 detects the grain is obtained.
  • a configuration for calculating the yield (current yield) from the output value of the load cell 10 will be described with reference to FIGS.
  • a configuration for calculating the current yield will be described as the yield calculation device 12.
  • the calculation of the yield is not limited to the case of using the yield calculating device 12, but may be realized by dispersing each component, or may be combined with a device configuration in which arbitrary components are appropriately collected.
  • the present yield may be calculated by various methods such as executing a program, regardless of the device configuration. When a program is used, the program is stored in a storage device 23 described below and executed by a control device 22 described later.
  • the yield calculation device 12 includes a control device (corresponding to a control unit) 22 and a storage device 23.
  • the control device 22 is connected to the quality measurement device 50, the load cell 10, and the storage device 23 so that data communication is possible.
  • the storage device 23 stores a first map 24 and a second map 25.
  • the first map 24 indicates an output value (such as a voltage value) output by the load cell 10 when the kernel is stored in the kernel tank 7 at a specific flow rate (first flow rate value). This is information indicating the relationship between the voltage and the yield corresponding to this voltage value.
  • the second map 25 shows the voltage value output by the load cell 10 and the voltage value when the kernel is stored in the kernel tank 7 at a specific flow rate (second flow rate value) different from the first flow rate value.
  • the quality measuring device 50 measures the flow rate of the grain flowing from the grain discharging device 13 and transmits the measured flow rate to the control device 22.
  • the load cell 10 measures a voltage value and outputs the voltage value to the control device 22 as an output value.
  • the control device 22 receives the flow rate transmitted from the quality measurement device 50 and the voltage value transmitted from the load cell 10.
  • the control device 22 calculates the yield corresponding to the received voltage value from the first map 24 and the second map 25 as the current yield of the grains stored in the grain tank 7 using the flow rate.
  • the yield in the first map for the voltage value output by the load cell 10 and the yield in the second map for this voltage value are determined based on the measured flow rate, the first flow rate value, and the second flow rate value.
  • the current yield is calculated by pro-rata.
  • the control device 22 can be, for example, a computer such as a CPU or an ECU.
  • the maps such as the first map and the second map are information indicating the relationship between the voltage value output by the load cell 10 and the yield assumed based on the voltage value, as described above, and the flow rate of the kernel Depends on This yield increases as the voltage value output by the load cell 10 increases, indicating a certain relationship.
  • the yield of the grains actually stored in the grain tank 7 is determined by the storage state of the grains, and the storage state of the grains is determined by the flow rate of the supplied grains. Therefore, the relationship of the map shows a different relationship for each flow rate, and shows a constant relationship between the voltage value and the yield for each flow rate. As a result, the map takes into account the state of storage of the grains (see FIG. 7).
  • a first map 24 and a second map 25 are obtained.
  • the first map 24 is a map corresponding to the flow rate (lowest flow rate) when the kernel is supplied at the latest, which is assumed by the kernel tank 7, the kernel transport mechanism 16, and the kernel discharge device 13.
  • the second map 25 is a map corresponding to the flow rate (the highest flow rate) when the grain is supplied earliest (step # 1 in FIG. 6).
  • the obtained first map 24 and second map 25 are stored in the storage device 23.
  • the flow rate of the supplied grain is calculated by the quality measuring device 50.
  • the calculation of the flow rate is performed every time a certain amount of grains is stored in the quality measuring device 50 during storage of the grains.
  • the flow rate is measured from the time during which this fixed amount of grain is stored and the amount (weight or volume) of the stored grain. If the flow rate has been measured a plurality of times since the storage of the grains in the grain tank 7 has been started, an average value of the flow rates measured so far is determined as the flow rate at that time (step # 2 in FIG. 6). .
  • the quality measuring device 50 transmits the obtained flow rate to the control device 22.
  • Step # 3 in FIG. 6 the voltage output from the load cell 10 is obtained (Step # 3 in FIG. 6).
  • the load cell 10 transmits the detected voltage to the control device 22.
  • the current yield is calculated using the first map 24 and the second map 25 based on the flow rate and the voltage (step # 4 in FIG. 6).
  • the current yield is calculated using the first map 24 and the second map 25 based on the flow rate and the voltage (step # 4 in FIG. 6).
  • the first map 24 is a map when the flow rate is A [m 3 / sec]
  • the second map 25 is a map when the flow rate is B [m 3 / sec].
  • the flow rate measured by the quality measuring device 50 is X [m 3 / sec]
  • the voltage output from the load cell 10 is V [v].
  • the present yield WX [m 3 ] is obtained by, as shown in Expression (1), the yield WA [m 3 ] in the first map 24 corresponding to the voltage V [v] and the second map corresponding to the voltage V.
  • the yield WB [m 3 ] at 25 is obtained by prorating the ratio of the flow rate A of the first map 24 and the flow rate B of the second map 25 to the measured flow rate X.
  • WX (WA ⁇ WB) ⁇ (X ⁇ B) / (AB) + WB (Formula 1) Thereafter, the steps # 2 to # 4 are repeated until the measurement of the yield becomes unnecessary, for example, when the grain tank 7 becomes full.
  • the current yield can be obtained based on the flow rate from the output voltage using a plurality of maps corresponding to the flow rate. Therefore, the yield of the grains stored in the grain tank can be accurately determined in consideration of the storage state of the grains.
  • the relationship between the yield (discharge yield) and the flow rate in the case of a discharge state such as a full state is determined experimentally in advance. Specifically, the emission yields at two different flow rates are experimentally determined. The two flow rates are preferably the highest flow rate and the lowest flow rate assumed as described above. Then, the relationship between the flow rate and the discharge yield is linearly determined from the discharge yields at the two flow rates. Specifically, a linear function indicating the relationship between the flow rate and the yield is obtained from the flow rate and the yield at two points (step # 11 in FIG. 8). The obtained linear function is stored in the storage device 23 as the discharge function 27.
  • the flow rate of the supplied grain is calculated by the quality measuring device 50.
  • the calculation of the flow rate is performed every time a certain amount of grains is stored in the quality measuring device 50 during storage of the grains. As described above, the flow rate is calculated based on the time during which the fixed amount of grains is stored and the amount (weight or volume) of the stored grains. If the measurement of the flow rate has been performed a plurality of times since the storage of the grains in the grain tank 7 has been started, an average value of the flow rates measured so far is obtained as the flow rate at that time (step # in FIG. 12). The quality measuring device 50 transmits the obtained flow rate to the control device 22.
  • the emission yield 26 at the calculated flow rate is obtained from the emission function 27. Specifically, the yield obtained by introducing the calculated flow rate into the emission function 27 is set as the emission yield 26 (step # 13 in FIG. 8).
  • the control device 22 calculates the emission yield 26 and stores it in the storage device 23.
  • the current yield is calculated from the calculated yield by the method described with reference to FIG. 6 and the like (step # 14 in FIG. 8).
  • the discharge yield 26 it is possible to grasp the yield in consideration of the flow rate when the fir sensor 11 or the like detects a grain. Therefore, when the grains are stored unevenly and the grains are detected by the fir sensor 11, it can be predicted that the grains are stored more than expected. 7 can be avoided.
  • step # 15 in FIG. 8 it is determined whether or not the calculated yield matches the emission yield 26 (step # 15 in FIG. 8). Specifically, the control device 22 compares the calculated current yield with the emission yield 26 stored in the storage device 23.
  • the control device 22 causes a notification device 29 such as a lamp provided in the operation unit 5 (see FIG. 1) to notify that the grain tank 7 has been discharged such as being full. By confirming this notification, the worker recognizes that the grain needs to be discharged, and can stop harvesting the crop and shift to a grain discharging operation or the like.
  • the process can be returned to the step of calculating the flow rate (step # 12 in FIG. 8), but the yield required before the discharge state is calculated as the empty yield. (Step # 17 in FIG. 8). Specifically, the control device 22 calculates the difference between the discharge yield 26 stored in the storage device 23 and the current yield as an empty yield.
  • the process returns to the step of calculating the flow rate (step # 12 in FIG. 8) while displaying the empty yield (step # 18 in FIG. 8).
  • the control device 22 causes the display device 28 such as a liquid crystal panel provided in the driving section 5 (see FIG. 1) to display a display indicating the calculated empty yield. With this display, the operator can work while measuring the timing at which the discharge is required.
  • the emission yield corresponding to the state requiring the discharge of the kernel is obtained, and the current yield is calculated according to the average flow rate. Since the emission yield is obtained based on the average flow rate, the emission yield is a value corresponding to the state of storage of the grain.
  • the current yield is also an accurate value of the grains stored in the grain tank 7 determined from the average flow rate. Therefore, even in the case where the grains are unevenly stored in the grain tank 7 due to the influence of the flow rate of the supplied grains, and the storage state is not properly confirmed by the fir sensor 11 or the like (see FIG. 4). ), It is possible to accurately detect a state in which kernel discharge is required based on an accurate current yield, and discharge stored kernels at an appropriate timing.
  • the empty yield is calculated and only the empty yield is displayed.
  • the time until the discharge state also referred to as the kernel discharge time
  • the travel distance until the discharge state the kernel discharge May be obtained and displayed.
  • the control device 22 calculates the average storage speed since the storage of the kernels by dividing the current yield by the elapsed time. Further, the control device 22 calculates the kernel discharge time until the discharge yield by dividing the empty yield by the average storage speed.
  • the process may return to the step of calculating the flow rate (step # 12 in FIG. 8) after displaying the grain discharge time (step # 20 in FIG. 8). ).
  • the control device 22 causes the display device 28 such as a liquid crystal panel provided in the operation unit 5 (see FIG. 1) to display the calculated grain discharge time.
  • the display device 28 may be the same as the one displaying the empty yield, or may be a different one, as long as it can distinguish between the empty yield and the kernel discharge time, and these may be displayed simultaneously.
  • the travel distance until the emission yield is reached is calculated as the kernel emission distance (step # 21 in FIG. 8). Specifically, the traveling distance from the start of storing the grains is continuously measured, and the control device 22 calculates the average traveling speed from the traveling distance and the elapsed time. Then, the control device 22 multiplies the average traveling speed by the kernel discharge time to determine the kernel discharge distance.
  • the process returns to the step of displaying the grain discharge distance and calculating the flow rate (step # 12 in FIG. 8) (step # 22 in FIG. 8).
  • the control device 22 causes the display device 28 such as a liquid crystal panel provided in the driving unit 5 (see FIG. 1) to display the calculated grain discharge distance.
  • the display device 28 may be the same as the one that displays the empty yield or the grain discharge time, or may be different, and can distinguish between the empty yield, the grain discharge time, and the grain discharge distance. And these may be displayed simultaneously.
  • the operator can accurately confirm that the discharge state is attained. can do.
  • the fir sensor 11 detects that a grain is full or the like, the storage state of the grain is biased with the flow rate, and the fir sensor 11 may detect an accurate yield (full state). Can not.
  • the operator uses the accurate current yield and / or the empty yield, the grain discharge time, and / or the grain discharge distance to determine the timing of the discharge state. You can check. Further, the work plan until the discharge is performed can be easily set and the work can be efficiently performed based on the empty yield, the grain discharge time, and the grain discharge distance.
  • the flow rate is measured using the quality measuring device 50. Therefore, the measurement of the flow rate and the measurement of the component (quality) can be performed using one device, and the measurement of the flow rate and the measurement of the component can be performed efficiently.
  • the dedicated flow rate measuring device and the dedicated quality measuring device 50 may be individually provided in the grain tank 7 or the like. At least, a dedicated flow measurement device may be provided.
  • the flow rate and the yield can be converted from the water content to a value relating to the volume and used. Since the yield can be processed using the volume, the yield of the grains in the grain tank 7 can be more accurately determined. Conversely, when the flow rate measuring device is provided independently, a configuration without the quality measuring device 50 may be adopted. In this case, the flow rate and the yield are treated as weight.
  • the yield was measured using the load cell 10, but the yield can be measured using another yield sensor.
  • the yield is measured using parameters other than the voltage, and the map indicates the relationship between the yield and the parameter.
  • the full state is described as an example of the state in which the kernel needs to be discharged, but the state in which the kernel needs to be discharged may be a predetermined yield or a yield input from the outside.
  • a communication unit that communicates with the outside may be further provided, and the communication unit may communicate with an external device such as an external dryer or a management server, and may receive the yield from which the kernel needs to be discharged from the external device. .
  • Driers are efficient when grains are dried at a certain yield. For this reason, the dryer transmits the required grain yield to the combine as a discharge yield, and the combine discharges the grain when the yield is stored in the grain tank 7 and brings the grain to the dryer.
  • the detection of the discharge yield can be performed by detecting a grain by the fir sensor 11 corresponding to the discharge yield among the fir sensors 11.
  • the discharge yield can be detected using at least one of the empty yield, the grain discharge time, and the grain discharge distance with respect to the discharge yield.
  • the grain yield that can be efficiently processed by an external device such as a dryer is transmitted to the combine as a discharge yield, and the combine accurately determines the discharge yield.
  • the worker discharges the grains when the stored grains reach this discharge yield, so that external devices such as a dryer can be operated efficiently.
  • the management server may manage these dryers.
  • the management server links the amount of water and the yield suitable for drying the grain with the amount of water to the combine server and transmits the resultant to the combine.
  • the combiner or the worker receives this information and determines that the yield (discharge yield) associated with the water content of the grain stored therein is stored.
  • the combine can run automatically, and in this case, the transition from the harvesting state to the grain discharging state can also be performed by automatic control.
  • the combine stops the harvesting operation by detecting that the discharge yield has been reached, and stops the harvesting around the field 71.
  • the vehicle moves to a position near a transport vehicle 72 (fir wheel) that is stopped and the like, and discharges the stored grains to the transport vehicle 72.
  • the grain discharge distance is L
  • the grain is stored until the discharge yield
  • the combine moves by the distance L and the combine reaches the point PB.
  • the combine when the combine stops harvesting at the point PB and tries to move to the transport vehicle 72, it is necessary to retreat from the point PB. At this time, if the combine goes directly from the point PA to the transport vehicle 72 (traveling locus D) without performing a new harvesting operation, the combine can efficiently perform the grain discharging operation. In the above embodiment, by calculating the grain discharge distance, the combine can travel on the traveling trajectory D that can efficiently perform the grain discharge work in automatic traveling.
  • the combine 70 and the yield calculation method have been described.
  • Each functional unit in the above embodiment can be configured as a yield calculation system.
  • the yield calculation system is a yield calculation system that calculates a current yield of the grain in a combine grain tank in which the threshed grain is supplied and stored, and is supplied to the grain tank.
  • a flow rate sensor that measures the flow rate of the grain
  • a yield sensor that outputs an output value based on the weight of the grain tank, and the grain stored in the grain tank based on the flow rate and the output value.
  • a control unit for calculating the current yield of the above is a control unit for calculating the current yield of the above.
  • the yield calculation program is a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, wherein the output value is The output value and the kernel tank when the kernel is stored in the kernel tank at a specific first flow rate value, configured as a program for calculating the current yield of the kernel stored in the kernel tank.
  • the computer may be configured to realize the function of calculating the current yield by dividing the yield in the second map with respect to the yield and the output value.
  • Such a yield calculation program can be configured to be recorded on a recording medium.
  • the system can be configured as a kernel emission yield calculation system.
  • the kernel discharge yield calculation system is stored in the kernel tank in a discharge state in which it is necessary to discharge the kernel from a kernel tank of a combine in which the threshed kernel is supplied and stored.
  • a grain discharge yield calculation system for calculating the yield of the grain wherein the flow rate sensor measures a flow rate of the grain supplied to the grain tank, and the grain tank based on the flow rate
  • a control unit that calculates a discharge yield of the kernel stored in the kernel tank in a discharge state in which the kernel needs to be discharged from the tank.
  • the grain discharge yield calculation program is a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank.
  • the function of measuring the flow rate of the grain and the function of calculating the discharge yield based on the flow rate can be configured to be realized by a computer.
  • kernel discharge yield calculation program can be configured to be recorded on a recording medium.
  • the longitudinal direction of the fuselage is defined along the fuselage advancing direction in the working state, and the direction indicated by the symbol (F) in FIG. 10 is the front side of the aircraft, and the direction indicated by the symbol (B) is the rear side of the aircraft. It is.
  • the definition of the left-right direction of the body is defined as left and right as viewed from the forward direction of the body.
  • a cutting unit 203 that cuts planted grain culms is disposed in front of a traveling machine body 202 that is self-propelled by a pair of left and right crawler traveling devices 201.
  • a driving unit 204 whose periphery is covered by a cabin is disposed on the front right side of the traveling body 202.
  • a threshing device 205 for threshing the grain stalks cut by the cutting unit 203 is disposed behind the operation unit 204.
  • a grain tank 207 is arranged laterally of the threshing device 205, and a grain transport device 208 for transporting grains from the threshing device 205 to the grain tank 207 is arranged between the threshing device 205 and the grain tank 207.
  • the grain tank 207 is located on the right side of the fuselage, and the threshing device 205 is located on the left side of the fuselage.
  • An engine 200E is provided below the operation unit 204.
  • a grain discharging device 209 that discharges the grains stored in the grain tank 207 from the rear of the traveling machine body 202 to the outside of the machine is provided upright.
  • a flow rate measuring unit 200 GV for measuring the flow rate of the grains to be supplied to the grain tank 207 is provided at an upper part (upper part of the front wall) inside the grain tank 207.
  • the flow measuring means 200GV has a cylindrical measuring container 240.
  • the measurement container 240 is located below the discharge portion 280 of the grain transport device 208 that has entered the inside of the grain tank 207.
  • the grains scraped out by the rotary delivery blades 282 arranged in the discharge section 280 are discharged to the grain tank 207 through an inlet 283 formed in the discharge section 280.
  • an opening 281 covered with a porous material such as punching metal is formed in a lower surface region of the cylindrical body that forms the discharge unit 280.
  • the upper edge of the measurement container 240 functions as a receiving port 241 for receiving the grains falling from the opening 281.
  • the grains transported to the discharge unit 280 by the screw conveyor of the grain transport device 208 are thrown into the grain tank 207 through the inlet 283 by scraping out the delivery blades 282 that rotate in conjunction with the screw conveyor, A part thereof is put into the receiving port 241 of the measuring container 240 through the opening 281.
  • the measurement container 240 functions as a temporary storage unit that receives a part of the grain fed from the grain transport device 208 to the grain tank 207 and temporarily stores the grain.
  • the grains temporarily stored in the measurement container 240 for measurement are discharged from the outlet 242 at the lower edge of the measurement container 240 after the measurement, and stored in the kernel tank 207.
  • a lower region from the lower edge of the measurement container 240 is covered by a skirt portion 243 extending downward with a larger sectional area than the measurement container 240.
  • the lower opening 244 of the skirt 243 faces the bottom of the grain tank 207.
  • the side wall of the skirt portion 243 prevents the grains stored in the grain tank 207 from entering the inside of the measurement container 240 from the discharge port 242 of the measurement container 240 with the increase. Thereby, a storage space for the grains discharged from the measurement container 240 is secured, so that the number of times of measurement by the flow rate measuring means 200GV is sufficiently secured.
  • the measurement container 240 as a temporary storage unit has a vertical passage penetrating the inside thereof in a vertical direction, a closed position for closing this passage, and opening this passage.
  • a shutter 200ST that can change the position between the open position and the open position is provided.
  • the position change of the shutter 200ST is performed by the driving force of the electric motor 200M1.
  • the first storage sensor 291 detects that the temporary storage of the grain has reached a certain amount.
  • the shutter 200ST When the storage of the grains reaches a certain amount, the shutter 200ST is switched to the closed position, and the temporarily stored grains are discharged into the skirt portion 243 through the discharge port 242.
  • the flow rate (yield per hour) of the harvested kernel is calculated.
  • the measurement container 240 is provided with a component value sensor 293 for measuring the component value of the grain temporarily stored in the measurement container 240.
  • the component value sensor 293 irradiates, for example, light to the grain temporarily stored in the measurement container 240 and, based on the light obtained from the grain, analyzes the moisture and protein of the grain by a spectroscopic analysis method. Used to measure the amount of a component, such as an amount.
  • FIG. 14 is a functional block diagram showing functions for detecting an illegal inflow, measuring a grain flow rate, and measuring a grain component in the combine control system.
  • the control unit 206 controls various devices mounted on the combine by sending various control signals via the device control unit 262.
  • This device includes an electric motor 200M1 that operates the shutter 200ST of the measurement container 240, and a notification device 820 that notifies a driver or a supervisor of information.
  • the notification device 820 is for notifying a driver or a supervisor of various events occurring in the combine, and is a general term for a lamp, a buzzer, a speaker, a display, and the like.
  • the input signal processing unit 261 receives signals from the traveling operation tool 211, the work operation tool 212, and the like.
  • signals and data from the weight measuring device 270, the first storage sensor 291, the second storage sensor 292, the component value sensor 293, and the like are input to the input signal processing unit 261.
  • the first storage sensor 291 and the second storage sensor 292 measure the volume of the grain temporarily stored in the measurement container 240.
  • the component value sensor processing unit 290 converts component data indicating the kernel component based on the sensor signal from the component value sensor 293. Calculate and output.
  • the weight measuring device 270 is a load cell for measuring the weight of the grain tank 207.
  • the first storage sensor 291 and the second storage sensor 292 are proximity sensors that output a signal when a grain approaches or when a grain contacts.
  • the engine control unit 263 adjusts a fuel supply amount and the like to the engine 200E based on a command from the control unit 206, and drives the engine 200E at a predetermined engine speed or a predetermined torque.
  • the control unit 206 includes a travel control unit 264, a work control unit 265, a shutter control unit 266, a grain measurement unit 267, an unauthorized inflow detection unit 268, and a notification control unit 269.
  • the traveling control unit 264 generates a control command to the crawler traveling device 201 based on the command from the traveling operation tool 211, and outputs the generated command via the device control unit 262.
  • the work control unit 265 generates a control command to a work device such as the reaper 203, the threshing device 205, the grain transport device 208, and the grain discharge device 209 based on the command from the work operation tool 212, and controls the device. Output to the working device via the unit 262.
  • the shutter control unit 266 gives a control command to the electric motor 200M1 via the device control unit 262 to change the position of the shutter 200ST.
  • the shutter control unit 266 changes the shutter 200ST to the closed position, temporarily stores the grains in the measurement container 240, and detects from the first storage sensor 291 that detects that the storage of the grains has reached a certain amount.
  • the shutter 200ST is changed to the open position based on the signal, and the temporarily stored grains are discharged from the measurement container 240.
  • the grain measuring unit 267 includes a grain flow rate calculating unit 267a and a grain component value calculating unit 267b.
  • the grain flow rate calculation unit 267a measures the flow rate of the grain that is charged into the grain tank 207 through the grain transport device 208 based on the time during which a fixed amount of grain is stored in the measurement container 240.
  • the grain component value calculation unit 267b calculates the component value of the grain stored in the measurement container 240 based on the data from the component value sensor processing unit 290.
  • the flow rate measuring unit 200GV having a function of measuring the grain component value also includes a measurement container 240, a shutter 200ST, a component value sensor 293, and the like.
  • the unauthorized inflow detecting unit 268 detects the kernel stored in the kernel tank 207 outside the measuring container 240 based on the temporal change amount of the kernel flow rate calculated by the kernel flow calculating unit 267a. Of illegal flow flowing into the measuring container 240 from the receiving port 241 of the measuring device 240 is detected. That is, the unauthorized inflow detection unit 268 determines that the time during which a certain amount of grains is stored in the measurement container 240 is shorter than a predetermined value (for example, a time equal to or less than half the normal time). This is a detection condition.
  • a predetermined value for example, a time equal to or less than half the normal time
  • the flow rate can be directly calculated from the time during which a certain amount of grains is stored in the measurement container 240, and the flow rate of the grains to be supplied to the grain tank 207 can be estimated from the flow rate.
  • this flow rate can be used for the first illegal inflow detection condition.
  • a first improper inflow detection condition is that the flow rate per hour of the grain entering the measurement container 240 is larger than a predetermined value (for example, a flow rate twice or more the normal flow rate).
  • the unauthorized inflow detection unit 268 indicates that the weight measured by the weight measuring device 270 has increased to such an extent that the grains stored in the grain tank 207 reach the receiving port 241 of the measurement container 240.
  • the condition that the value is larger than a predetermined value is defined as a second unauthorized inflow detection condition. If the first unauthorized inflow detection condition and the second unauthorized inflow detection condition are satisfied, the unauthorized inflow detection unit 268 detects an unauthorized inflow.
  • the unauthorized inflow detection unit 268 detects the unauthorized inflow, the grain measurement by the flow rate measuring unit 200GV is stopped. At the same time, when detecting the unauthorized inflow, the unauthorized inflow detection unit 268 gives a notification instruction to the notification control unit 269 in order to notify a driver or a monitor of an unauthorized inflow alarm.
  • This kernel measurement routine starts when the kernel is started to be transported from the threshing device 205 by the kernel transport device 208 (# 201 Yes branch).
  • the position of the shutter 200ST of the measurement container 240 is changed to the closed position (# 202), and the timer starts (# 203).
  • the second storage sensor 292 detects that the amount of grains stored on the shutter 200ST in the closed position has reached an amount suitable for the component value measurement (Yes in # 204)
  • the component value sensor 293 and the component value The component value measurement of the kernel is performed by the sensor processing unit 290 (# 205).
  • the grain moisture value and the protein component value, which are the results obtained by the component value measurement are recorded together with the map coordinates acquired by GPS or the like (# 206).
  • ⁇ Circle around (2) ⁇ It is checked whether the amount of grains stored on the shutter 200ST in the closed position has reached a certain amount detected by the first storage sensor 291 (# 207).
  • the kernel amount reaches a certain amount (Yes in # 207)
  • the timer is stopped (# 208), and the storage time for storing a certain amount of kernel in the measuring container 240 is calculated (# 209).
  • the second storage sensor 292 is used to measure the storage amount at which the component value measurement can be started
  • the first storage sensor 291 is used to measure the storage amount at which the flow rate measurement is performed.
  • the first storage sensor 291 is configured to measure a larger storage amount than the second storage sensor 292.
  • the storage of the grains in the measurement container 240 for the flow rate measurement is continued during the component value measurement. That is, since the component value measurement is performed during the flow rate measurement, the measurement efficiency is high. As a result, the flow rate can be measured with a large storage amount, and the short-term variation in the flow rate is averaged, so that the accuracy of the flow rate measurement is also improved.
  • This storage time is used for detecting the above-mentioned illegal inflow of grain. Therefore, whether or not the above-described first unauthorized inflow detection condition is satisfied, that is, the calculated storage time is compared with a preset predetermined time (# 210). If the storage time is longer than the predetermined time (Yes in # 210), the first unauthorized inflow detection condition is not satisfied, and it is determined that unauthorized inflow has not occurred. By dividing a certain amount by the storage time, a grain flow rate per unit time is calculated. Further, the amount of grain (yield) per traveling distance can be calculated from the grain flow rate. The calculated grain flow rate is also recorded together with the map coordinates acquired by GPS or the like (# 211).
  • the position of the shutter 200ST of the measurement container 240 is changed to the open position, and the grains temporarily stored in the measurement container 240 are discharged (# 212).
  • This series of grain measurement processing is repeatedly performed as long as grain transport by the grain transport device 208 is performed (No in # 213), and when grain transport by the grain transport device 208 is stopped (# 213 Yes branch), this routine also ends.
  • step # 210 if the storage time is shorter than the predetermined time (No in # 210), the first unauthorized inflow detection condition is satisfied.
  • the weight of the grain tank measured by the weight measuring device 270 is obtained to determine whether the second unauthorized inflow detection condition is satisfied ( # 221), the weight of the grain tank is compared with a predetermined weight (# 222). If the grain tank weight exceeds the predetermined weight (# 222, Yes branch), the second unauthorized inflow detection condition is satisfied, and the unauthorized inflow detecting unit 268 determines that unauthorized inflow has occurred (# 223). .
  • an illegal inflow alarm is notified through the notification device 820 (# 224). Further, the position of the shutter 200ST of the measurement container 240 is changed to the open position (# 225), and the subsequent grain measurement is stopped (# 226).
  • step # 222 If it is determined in step # 222 that the weight of the grain tank is equal to or less than the predetermined weight (No in # 222), the second unauthorized inflow detection condition is not satisfied, and no unauthorized inflow has occurred. Is determined to be abnormal, the measurement abnormality is recorded (# 231), and after the measurement abnormality alarm is notified (# 232), the process jumps to step # 212.
  • the kernel measurement may be stopped when a measurement abnormality occurs a predetermined number of times within a predetermined time.
  • the measurement container 240 is used for measuring the flow rate of the grain supplied from the grain transport device 208 to the grain tank 207 and for measuring the component value of the grain.
  • the measurement of the grain component value may be omitted.
  • the measurement of the grain flow rate and the measurement of the grain component value are performed using the same measurement vessel 240, but may be performed using separate measurement vessels 240, respectively. At that time, the unauthorized flow rate detection processing can be performed on each measurement container 240.
  • the first storage sensor 291 for measuring the flow rate and the second storage sensor 292 for measuring the component value were provided. Instead, one storage sensor may be used. In this case, if one storage sensor detects a predetermined storage amount, the flow rate measurement is started from the storage time, and at the same time, the component value measurement is started. When the component value measurement is completed, the shutter 200ST is changed to the open position. Then, the grains temporarily stored in the measurement container 240 may be discharged. Further, a configuration may be adopted in which only the first storage sensor 291 for measuring the flow rate is provided, and the component value measurement is started in a predetermined time after the shutter 200ST is changed to the closed position.
  • the first unauthorized inflow detection condition and the second unauthorized inflow detection condition are used for detecting unauthorized inflow.
  • only the first unauthorized inflow detection condition may be used.
  • the above-described combine can be configured as an unauthorized inflow detection system.
  • the unauthorized inflow detection system extends over a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and an upper portion of the threshing device and the grain tank.
  • a grain conveying device that is provided in a state, and conveys the grains obtained by the threshing device and throws them into the inside of the grain tank, and a receiving port for receiving a part of the grains to be thrown into the grain tank
  • a measuring vessel for receiving and storing the grains from the measuring vessel, and configured to return the grains to the grain tank after measuring the flow rate of the grains in the measuring vessel.
  • An unauthorized inflow detection system that detects the flow rate of the grains to be introduced into the grain tank based on the time during which a certain amount of grains are stored in the measurement container, the flow rate measurement means, Change over time And an unauthorized inflow detection unit configured to detect an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port, based on the amount, based on the amount. Is possible.
  • each function unit in the above embodiment includes a threshing device for threshing the harvested grain culm, a grain tank for storing the grains obtained by the threshing device, and an upper portion of the threshing device and the grain tank.
  • a grain conveying device that is provided in a state, and conveys the grains obtained by the threshing device and throws them into the inside of the grain tank, and a receiving port for receiving a part of the grains to be thrown into the grain tank
  • a measuring vessel for receiving and storing the grains from the measuring vessel, and configured to return the grains to the grain tank after measuring the flow rate of the grains in the measuring vessel.
  • a flow measurement function for measuring the flow rate of the kernels to be charged into the kernel tank based on the time during which a certain amount of kernels are stored in the measurement container; and Over time And an unauthorized inflow detection function of detecting an unauthorized inflow of the kernel stored in the grain tank outside the measurement container from the receiving port into the measurement container based on the amount of chemical conversion. Can be configured.
  • such an unauthorized inflow detection program may be configured to be recorded on a recording medium.
  • the above configuration can be configured as an unauthorized inflow detection method.
  • the unauthorized inflow detection method includes a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and an upper portion of the threshing device and the grain tank.
  • a grain conveying device that is provided in a state, and conveys the grains obtained by the threshing device and throws them into the inside of the grain tank, and a receiving port for receiving a part of the grains to be thrown into the grain tank
  • a measuring vessel for receiving and storing the grains from the measuring vessel, and configured to return the grains to the grain tank after measuring the flow rate of the grains in the measuring vessel.
  • an unauthorized inflow detection step of detecting an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container. is there.
  • the combine according to the present invention is a harvester that cuts planted grain culms at the front of a traveling body 402 that is self-propelled by a pair of left and right crawler traveling devices 401 and 401 as traveling devices.
  • a unit 403 is provided.
  • An operation unit 405 whose periphery is covered by a cabin 404 is provided on the front right side of the traveling body 402.
  • a threshing device 406 and a grain tank 407 are arranged behind the operation unit 405 in a state where they are arranged in a horizontal direction. The threshing device 406 threshes the harvested grain stalks harvested by the harvesting unit 403 and collects grains.
  • the grain tank 407 stores the grains obtained by the threshing device 406.
  • the grain tank 407 is located on the right side of the fuselage, and the threshing device 406 is located on the left side of the fuselage.
  • the operation unit 405 is located in front of the grain tank 407.
  • the engine 400E is provided below the driver's seat 408 in the driver 405.
  • a grain discharging device 409 is provided at the rear of the traveling machine body 402 and behind the grain tank 407, and the grain discharging device 409 discharges the grains stored in the grain tank 407 to the outside of the machine.
  • the longitudinal direction of the aircraft when defining the longitudinal direction of the aircraft, it is defined along the aircraft traveling direction in the working state, and when defining the lateral direction of the aircraft, the left and right are defined as viewed from the aircraft traveling direction. . That is, the direction indicated by the arrow (F) in FIG. 16 is the forward direction of the aircraft, and the direction indicated by the arrow (B) in FIG. 16 is the rearward direction of the aircraft. In addition, the front side of the paper of FIG. 16 is the right side of the aircraft, and the back side of the paper of FIG.
  • the cutting unit 403 includes a weeding tool 410, a plurality of raising devices 411, a clipper-type cutting blade 412, and a vertical transport device 413.
  • the weeder 410 guides the root of the planted culm to be harvested.
  • the raising device 411 raises the weeded planted cereal stem in a vertical posture.
  • the cutting blade 412 cuts the stem of the raised planted grain culm.
  • the vertical transport device 413 transports the harvested grain culm rearward while changing the posture from the vertical posture to the horizontal posture, and supplies the harvested culm to the threshing device 406.
  • a dustproof cover 414 is provided above the vertical transport device 413, and the vertical transport device 413 is covered by the dustproof cover 414.
  • the threshing device 406 performs threshing by handling the spike side in the handling room while nipping and transporting the stock side of the supplied harvested grain culm by the threshing feed chain.
  • the processed material after the threshing process is sorted into grains and straw chips in a lower sorting section.
  • a first-item transport device 415 and a deep-frying device 416 are provided as the grain transport device in the present invention.
  • the grains are transported out of the threshing apparatus 406 to the right and left side by the first object transporting device 415, and then are transported into the grain tank 407 by being lifted by the graining device 416.
  • the grain tank 407 stores the grains sent from the threshing device 406. Thereafter, the grains stored in the grain tank 407 are carried out to the outside by the grain discharging device 409.
  • a bottom screw 417 is provided at the bottom of the grain tank 407.
  • the bottom screw 417 rotates around the longitudinal axis and conveys the stored grains toward the rear of the machine.
  • the grain discharge device 409 has a vertical feed screw conveyor 409A and a horizontal feed screw conveyor 409C.
  • the vertical feed screw conveyor 409 ⁇ / b> A receives the grains discharged from the bottom screw 417 and conveys the grains upward.
  • the horizontal screw conveyor 409C conveys the grains in the horizontal direction from a base end connected to the upper end of the vertical screw conveyor 409A to a discharge port 409B at the front end.
  • the grain tank 407 includes a front wall portion 419 located on the front side of the aircraft, a rear wall portion 420 located on the rear side of the aircraft, a right side wall portion 421 located on the right side of the aircraft, and a left side of the aircraft. Is surrounded by each of the left side wall portions 422 located at. The upper side is covered by an upper side wall 423. Therefore, the inside of the grain tank 407, that is, the grain storage space 400Q, is surrounded by the front side wall 419, the rear side wall 420, the right side wall 421, the left side wall 422, and the upper side wall 423. As shown in FIG. 18, the left side wall 422 of the tank main body 424 is formed with a recess 425 for disposing the frying device 416 therein.
  • a front-rear frame 426 extending in the vehicle front-rear direction across the front and rear portions of the grain tank 407 is provided.
  • the front-rearward frame 426 is formed in a cylindrical shape, and extends between the front side wall portion 419 and the rear side wall portion 420 of the grain tank 407 in a state where the frame 426 is located in the vertical middle portion of the right side end of the body inside the grain tank 407. I have.
  • a full height detection sensor 430 as a full level sensor and height detection sensors 431 and 432 as other level sensors are provided on the side wall of the grain tank 407.
  • Each of the full height detection sensor 430 and the height detection sensors 431 and 432 is configured to be able to swing up and down around the swing fulcrum at the upper end, that is, around the horizontal axis.
  • each of the full height detection sensor 430 and the height detection sensors 431 and 432 swings downward.
  • the full height detection sensor 430 swings, the full height detection sensor 430 detects that the kernel is stored in the kernel tank 407 to the full height.
  • each of the height detection sensors 431 and 432 swings, so that each of the height detection sensors 431 and 432 detects that the kernel is stored in the kernel tank 407 to a specific height.
  • the full height detection sensor 430 is provided above the front side wall 419.
  • the height detection sensors 431 and 432 are provided at positions lower than the full height detection sensor 430.
  • the height detection sensor 431 is provided on the front wall 419 inside the grain tank 407. Further, the height detection sensor 432 is provided on the rear side wall portion 420 inside the grain tank 407. The height detection sensor 431 is located higher than the height detection sensor 432.
  • a quality measuring device 440 for measuring the quality of the grain is provided at an upper position inside the grain tank 407. As shown in FIGS. 18 and 19, the quality measuring device 440 performs a measuring operation on the temporary storage unit 441 that temporarily stores the kernel to be measured and the kernel that is stored in the temporary storage unit 441. And a measuring unit 442 for measuring the quality.
  • the temporary storage unit 441 is located inside the grain tank 407, and the measuring unit 442 is located outside the grain tank 407.
  • the measurement unit 442 is housed inside a storage case 443 formed in a sealed shape.
  • the temporary storage unit 441 includes a substantially rectangular cylindrical storage case 444 integrally connected to the inner side surface of the storage case 443, and can store grains therein.
  • the temporary storage unit 441 has a vertical passage 445 that penetrates vertically in the storage case 444, and a shutter 446 is provided in the middle of the vertical passage 445.
  • the position of the shutter 446 can be changed between a closed position (see FIG. 19) for closing the middle of the vertical passage 445 and an open position (not shown) for opening the middle of the vertical passage 445.
  • a grain intake 445a is formed at the upper end of the vertical passage 445. Part of the grains discharged from the fryer 416 is taken into the intake port 445a.
  • the measurement unit 442 irradiates the grain stored in the temporary storage space 445S with light, and measures the internal quality of the grain based on light obtained from the grain by a spectroscopic analysis technique that is a known technique. .
  • a window 447 through which light can pass is formed on a side surface on the measurement unit 442 side among the side surfaces forming the temporary storage space 445S for storage, and the measurement unit 442 irradiates the kernel with light through the window 447. At the same time, it receives light from the grains.
  • a measurement grain storage section 448 is provided below the temporary storage section 441, and the measurement grain storage section 448 is formed in a substantially flared cylindrical shape.
  • the upper part of the measured grain storage part 448 communicates with the vertical passage 445, and the lower part of the measured grain storage part 448 communicates with the storage space 400 ⁇ / b> Q of the grain tank 407. Therefore, when the shutter 446 is switched from the closed state to the open state in a state where the grains are stored in the temporary storage space 445S, the stored grains are dropped and discharged downward and stored in the grain tank 407. It is returned to the space 400Q.
  • the side of the measured grain storage unit 448 is partitioned from the storage space 400Q of the grain tank 407.
  • the measured grain storage unit 448 is formed so as to be wider in the front-rear direction and the left-right direction with respect to the temporary storage unit 441 in plan view, and the lower part is wider in the front-rear direction and the left-right direction than the upper part. It extends to the lower part of the tank 407.
  • a flared portion 448A is formed above the measured grain storage portion 448, and the flared portion 448A is wider toward the lower side in each of the temporary storage portion 441 in the front-rear direction and the left-right direction.
  • a wide portion 448B having a vertically oriented side wall is formed so as to be continuous with the lower end of the flared portion 448A.
  • the upper end of the flared portion 448A is connected to communicate with the lower end of the vertical passage 445 of the storage case 444.
  • the kernels collected at the bottom of the threshing unit 406 are discharged to the right side outside of the threshing unit 406 by the foremost object transporting unit 415 (see FIG. 17), and then discharged to the kernel tank 407 by the unhulling unit 416. It is transported upward.
  • the fryer 416 has a screw conveyor 435 that runs up and down, and the kernels are pumped by the screw conveyor 435 to near the upper end of the fryer 416. Further, a charging section 436 is formed at the upper end of the grain raising device 416, and the charging section 436 is connected to the inside of the grain tank 407 in communication.
  • a delivery blade 437 is connected to an upper end of the screw conveyor 435, and the delivery blade 437 is located within a range of the vertical height of the input unit 436.
  • the screw conveyor 435 and the delivery blade 437 integrally rotate clockwise in plan view.
  • the grains are pumped up to near the upper end of the graining device 416 by the screw conveyor 435, and are pushed out from the input section 436 to the storage space 400 ⁇ / b> Q of the grain tank 407 by the delivery blades 437.
  • the foremost material transporting device 415 and the grain lifting device 416 as the grain transporting devices are provided so as to extend over the threshing device 406 and the upper part of the grain tank 407, and the grain obtained by the threshing device 406 is provided. Is transported and charged into the storage space 400Q.
  • the flow rate sensor 450 is supported by the left side wall 422 of the grain tank 407.
  • the flow sensor 450 includes a flat detection plate 451, a load cell 452, a support bracket 453 that supports the detection plate 451 and the load cell 452, and a mounting bracket 454 that mounts the flow sensor 450 on the left side wall 422. I have.
  • One end of the load cell 452 and the detection plate 451 are connected, and the other end of the load cell 452 and the support bracket 453 are connected. That is, the load cell 452 is cantilevered with the connection point between the load cell 452 and the support bracket 453 as a base end. With this configuration, when a load acts on the detection plate 451, distortion of the load cell 452 is promoted.
  • the grains are bounced off from the input section 436 by the sending blades 437 and pressed against the detection plate 451, and the load cell 452 detects the pressing force applied to the detection plate 451.
  • the support bracket 453 is configured to be swingable with the mounting bracket 454 as a swing fulcrum, and the position of the flow sensor 450 with respect to the delivery blade 437 can be adjusted by adjusting the swing angle of the support bracket 453. Has become.
  • the grains are fed into the storage space 400 ⁇ / b> Q from the feeding unit 436 by the sending blades 437, and are pressed against the detection plate 451. Due to the pressing force of the grain, the load cell 452 is distorted, and an electric signal is generated. This electric signal is used as a detection signal for calculating the flow rate of the grain.
  • the electric signal is represented by a voltage value or a current value.
  • the flow rate sensor 450 provided in the input section 436 measures the flow rate of the input kernel.
  • the grains stored in the storage space 400Q may be stored in a mountain shape with the vertex directly below the input unit 436 as shown by a broken line 500E in FIG.
  • the kernels may accumulate near the input unit 436, and the flow rate sensor 450 may be buried in the kernels.
  • the detection plate 451 is pressed not only by the kernel input from the input unit 436 but also by the deposited kernel. Can not be measured accurately.
  • the load acting on the load cell 452 may continue to increase. If the load exceeds the rated load of the load cell 452, the load cell 452 may be inconvenienced. Therefore, in the present embodiment, a level sensor 460 for protecting the load cell 452 as described below is provided. Has been.
  • a control unit 461 capable of inputting the detection of the level sensor 460 is provided.
  • the control unit 461 is incorporated in a combine control system as a microcomputer module, for example.
  • the control unit 461 outputs a signal to the notification unit 462 and the traveling control unit 463 based on the detection signal of the level sensor 460.
  • the notifying unit 462 may be configured to notify the field manager or the occupant of the combine by outputting a voice, or by outputting the information to a display (not shown) provided in the operating unit 405 of the combine. A configuration for notifying the passenger may be employed.
  • the notification unit 462 may be configured to transmit the notification information to the portable communication terminal of the driver or the field manager via wireless communication, for example.
  • the traveling control unit 463 is a control module for performing traveling control on the crawler traveling devices 401, 401.
  • the grains stored in the storage space 400 ⁇ / b> Q may be stored in a mountain shape with the vertex directly below the input unit 436 in some cases.
  • a level sensor 460 is provided immediately below the charging section 436 and the flow rate sensor 450.
  • the level sensor 460 is configured to be able to detect the height near the peak of the mountain shape among the grains stored in the storage space 400Q.
  • the level sensor 460 is provided at a position lower than the lower end of the flow sensor 450. For this reason, when kernels accumulate to the height where the level sensor 460 is located, the level sensor 460 can output a detection signal to the control unit 461 before kernels accumulate to the height where the flow sensor 450 is located. Has become.
  • the level sensor 460 is configured to be able to swing up and down around a swing fulcrum at the upper end, that is, around a horizontal axis.
  • the level sensor 460 swings downward by receiving pressure from the grain as the grain is deposited.
  • the level sensor 460 is configured to detect that the kernel is stored in the kernel tank 407 up to the flow sensor 450.
  • the level sensor 460 is provided at a position lower than the full height detection sensor 430 and at a position higher than the height detection sensor 431. As described above, the level sensor 460 is configured to be able to detect the storage of the grains up to the flow sensor 450 before the full height detection sensor 430 detects the full state.
  • control unit 461 outputs a signal to notification unit 462 and traveling control unit 463 based on the detection signal of level sensor 460. Specifically, as shown in the flowchart of FIG. 24, when the input of the kernel is detected by the level sensor 460 (step # 401: Yes), the control unit 461 measures the duration of the detection signal. Is incremented (step # 402). When the control unit 461 does not receive the detection signal of the level sensor 460 (Step # 401: No), the count value of the timer counter TC is set to zero (Step # 411).
  • a notification signal is output from the control unit 461 to the notification unit 462, and the notification unit 462 notifies the flow sensor 450 that the kernel is stored based on the detection of the level sensor 460. (Step # 403). In addition, the notification unit 462 reports a decrease in the measurement accuracy of the flow sensor 450 based on the detection of the level sensor 460 (step # 404).
  • step # 405 it is determined whether or not the count value of the timer counter TC has reached a preset determination value T1 (step # 405). If the count value of the timer counter TC has not reached the determination value T1 (Step # 405: No), the process returns to Step # 401. When the count value of the timer counter TC reaches the determination value T1 (Step # 405: Yes), it is determined whether the flow sensor 450 continues to detect the input of the grain (Step # 406). If there is no detection of the input of the grain by the flow rate sensor 450 (Step # 406: No), the process returns to Step # 401.
  • Step # 406 If the detection of the input of the kernel by the flow rate sensor 450 is continued (Step # 406: Yes), a control signal is output from the control unit 461 to the travel control unit 463.
  • the traveling control unit 463 stops driving the pair of left and right crawler traveling devices 401, 401 based on the control signal of the control unit 461 (step # 407).
  • the control unit 461 is configured to stop the crawler traveling devices 401 as the traveling device when the input of the grain is detected by the flow sensor 450. . As a result, the harvesting work of the combine is not continued, and the possibility that the load applied to the load cell 452 exceeds the rated load and the load cell 452 is broken can be avoided.
  • the grain conveying device includes a foremost material conveying device 415 provided at the bottom of the threshing device 406 and a fry conveyor 470 arranged between the threshing device 406 and the grain tank 407. And a lateral feed screw 471 penetrating the front upper portion of the left side wall of the grain tank 407.
  • the fry conveyor 470 may be a screw conveyor or a bucket conveyor. After the grains are conveyed upward by the grain conveyor 470 to the grain tank 407, the grains are conveyed from the outside to the inside of the grain tank 407 by the lateral feed screw 471.
  • a feeding section 472 is provided in the transport direction end area of the lateral feed screw 471, and the grains transported to the feeding section 472 are pushed out from the feeding section 472 to the inside of the grain tank 407 by the delivery blades 473.
  • a flow sensor 474 for measuring the amount of grain input is provided in a state of being supported by the support frame 477 so as to face the input section 472.
  • the flow rate sensor 474 includes a flat detection plate 475 and a load cell 476.
  • the level sensor 478 is supported by the support frame 477, and the level sensor 478 is provided at a position lower than the lower end of the flow sensor 474.
  • each of the full height detection sensor 430 and the height detection sensors 431 and 432 is configured to be able to swing up and down around the swing fulcrum at the upper end, that is, around the horizontal axis.
  • the present invention is not limited to this embodiment.
  • the swing fulcrums of the full height detection sensor 430 and the height detection sensors 431 and 432 are located at the front end and the rear end, and are configured to be able to swing back and forth around the vertical axis. Is also good.
  • the level sensor 460 may be configured to be able to swing up and down around the horizontal axis.
  • each of the full height detection sensor 430 and the height detection sensors 431 and 432 may be, for example, a pressure sensor. Therefore, the full height detection sensor 430 may detect that the kernel is stored to the full height in the kernel tank 407 by detecting a pressure equal to or higher than a preset pressure. Further, by detecting a pressure equal to or higher than a preset pressure, each of the height detection sensors 431 and 432 detects that the kernel is stored in the kernel tank 407 to a specific height. Is also good.
  • control unit 461 is incorporated in the control system of the combine as a microcomputer module, for example, but is not limited to this embodiment.
  • the control unit 461 may be a relay circuit or a mechanical control mechanism.
  • the control unit 461 may be configured to stop or raise the cutting unit 403.
  • the control unit 461 may be configured to stop the input of the kernel to the kernel tank 407.
  • the notification unit 462 shown in the above-described embodiment may not be provided.
  • the combine stops the harvesting operation and automatically discharges the kernel to a carrier or the like. It may be. In this case, it is not always necessary to be notified that the grains are stored up to the flow sensor 450.
  • the level sensor 460 is provided at a position lower than the full height detection sensor 430, but is not limited to this embodiment.
  • the level sensor 460 may be provided at a higher position than the full height detection sensor 430.
  • the level sensor 460 may be provided at a position lower than the lower end of the flow rate sensor 450.
  • two height detection sensors 431 and 432 are provided as other level sensors, but the other level sensors are not limited to two, and three or more are provided. Is also good. That is, the number of other level sensors can be changed as appropriate.
  • Step # 406 the detection of the input of the kernel by the flow rate sensor 450 is continued.
  • the present invention is not limited to this embodiment.
  • a configuration may be employed in which the timer counter TC is not provided, and the determination in step # 406 is performed without going through the determination in step # 405.
  • the kernel as in step # 406 is used between the notification that the grain has been stored up to the flow sensor 450 (step # 403) and the notification that the measurement accuracy of the flow sensor 450 has decreased (step # 404). May be provided for determining the detection of the insertion of the power supply.
  • the configuration may be such that the notification process of step # 404 is performed if the input of the grain is still detected after the notification process of step # 403.
  • the storage level detection system includes a threshing device for threshing the harvested culm, a grain tank for storing the grains obtained by the threshing device, and an upper portion of the threshing device and the grain tank.
  • a grain transport device that is provided in a state, and transports the grains obtained by the threshing device and puts the grains into the inside of the grain tank, and a storage that detects a storage level of the grain tank.
  • a level detection system which is provided in an input section of the grain transport device, and which is provided at a position lower than a lower end portion of the flow rate sensor for measuring a flow rate of the input kernel, wherein the grain is provided. And a level sensor for detecting that the grain has been stored in the tank up to the flow rate sensor.
  • the present invention is suitable for various harvesting vehicles such as combine harvesters.
  • the present invention can be applied to, for example, a self-combining type combine that throws only a tip into a threshing device, in addition to a normal combine that puts all culms including the entire stem portion of a harvested grain culm into a threshing device. Can be.
  • the present invention is applicable not only to the self-removable combine, but also to a general-purpose combine in which all the culms of the harvested cereals are fed into the threshing apparatus.
  • 207 Kernel tank 208: Kernel transport device 209: Kernel discharge device 240: Measurement container 241: Receiving port 242: Discharge port 243: Skirt section 244: Lower opening 206: Control unit 266: Shutter control section 267: Grain Grain measuring section 267a: Kernel flow rate calculating section 267b: Kernel component value calculating section 268: Illegal inflow detecting section 269: Notification control section 820: Notification device 270: Weight measuring device 290: Component value sensor processing unit 291: First storage Sensor 292: Second storage sensor 293: Component value sensor 200GV: Flow rate measuring means 200ST: Shutter

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Threshing Machine Elements (AREA)

Abstract

A combine provided with a grain tank in which grains obtained by threshing are supplied and stored; a flow rate sensor 50 which is provided in the grain tank and measures a flow rate of the grains being supplied; a yield sensor 10 which is provided under the grain tank and outputs an output value based on the weight of the grain tank; and a control unit 22 which calculates a current yield of the grains stored in the grain tank on the basis of the flow rate and the output value.

Description

コンバイン、収量算出方法、収量算出システム、収量算出プログラム、及び収量算出プログラムを記録した記録媒体と、穀粒排出収量算出方法、穀粒排出収量算出システム、穀粒排出収量算出プログラム、及び穀粒排出収量算出プログラムを記録した記録媒体と、不正流入検知システム、不正流入検知プログラム、不正流入検知プログラムを記録した記録媒体、及び不正流入検知方法と、貯留レベル検出システムCombine, yield calculation method, yield calculation system, yield calculation program, and recording medium recording the yield calculation program, and kernel discharge yield calculation method, kernel discharge yield calculation system, kernel discharge yield calculation program, and kernel discharge Recording medium recording yield calculation program, unauthorized inflow detection system, unauthorized inflow detection program, recording medium recording unauthorized inflow detection program, unauthorized inflow detection method, and storage level detection system
 本発明は、脱穀した穀粒を貯留する穀粒タンクを備えるコンバイン、及び穀粒タンクに貯留された穀粒の収量を算出する技術に関する。 The present invention relates to a combine provided with a grain tank for storing threshed grains, and a technique for calculating the yield of the grains stored in the grain tank.
 また、本発明は、脱穀した穀粒を貯留する穀粒タンクを備えるコンバイン、及び穀粒タンクに貯留された穀粒の排出収量を算出する技術に関する。 The present invention also relates to a combine provided with a grain tank for storing threshed grains, and a technique for calculating the discharge yield of the grains stored in the grain tank.
 また、本発明は、刈取穀稈を脱穀処理する脱穀装置で得られた穀粒を搬送して穀粒タンクに投入する穀粒搬送装置と、穀粒タンクに投入される穀粒の流量を測定する流量測定手段とを備えたコンバイン、及び穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器を有するコンバインにおいて、測定容器に穀粒が流れ込む不正流入を検知する技術に関する。 Further, the present invention also provides a grain transport device for transporting grains obtained by a threshing apparatus for threshing a harvested grain culm and feeding the grains into a grain tank, and measuring a flow rate of grains fed to the grain tank. In a combine having a flow rate measuring means and a combine vessel having a measuring vessel that receives and stores a part of the grain to be supplied to a grain tank from a receiving port, an illegal inflow of the grain flowing into the measuring vessel is detected. About technology.
 また、本発明は、走行機体と、刈取穀稈を脱穀処理する脱穀装置と、脱穀装置で得られた穀粒を貯留する穀粒タンクと、脱穀装置で得られた穀粒を搬送して穀粒タンクのタンク内部に投入する穀粒搬送装置と、が備えられたコンバイン、及びこのようなコンバインの穀粒タンクの貯留レベルを検出する技術に関する。 Further, the present invention provides a traveling machine, a threshing device for threshing a harvested culm, a grain tank for storing grains obtained by the threshing device, and a grain for transporting grains obtained by the threshing device. The present invention relates to a combine provided with a grain transport device to be charged into the tank of a grain tank, and a technique for detecting the storage level of the grain tank of such a combine.
1-1.背景技術〔1〕
 コンバインには、脱穀した穀粒を穀粒タンクに貯留し、貯留された穀粒の収量を計測するものがある。収量の計測は様々な状況によって誤差が生じるため、誤差を考慮して収量を算出する場合がある。例えば、特許文献1に記載のコンバインでは、車体の水平面に対する姿勢に基づいて、計測された収量(重量)を補正する。
1-1. Background technology [1]
Some combiners store threshed grains in a grain tank and measure the yield of the stored grains. Since an error occurs in the measurement of the yield depending on various situations, the yield may be calculated in consideration of the error. For example, in the combine described in Patent Literature 1, the measured yield (weight) is corrected based on the posture of the vehicle body with respect to a horizontal plane.
1-2.背景技術〔2〕
 また、コンバインには、脱穀された穀粒を貯留する穀粒タンクと、穀粒タンクに貯留された穀粒を外部に排出する穀粒排出装置を備えるものがある。穀粒タンクに貯留された穀粒は、穀粒タンクが満杯となった際に穀粒排出装置から排出されることが一般的である。そのため、特許文献2に開示されたコンバインでは、穀粒タンク内の穀粒が満杯となったことを検出する満杯センサを備える。
1-2. Background technology [2]
Some combiners include a grain tank for storing threshed grains and a grain discharging device for discharging the grains stored in the grain tank to the outside. The grains stored in the grain tank are generally discharged from the grain discharging device when the grain tank is full. Therefore, the combine disclosed in Patent Literature 2 includes a full sensor that detects that the grains in the grain tank are full.
1-3.背景技術〔3〕
 また、例えば、特許文献3に開示されているコンバインでは、穀粒タンクに送り込まれてきた穀粒を一時的に貯留する一時貯留部が形成され、貯留している穀粒の内部品質を光学式の品質計測装置によって計測するように構成されている。計測が終了すると、一時貯留部の底部として開閉自在に構成されているシャッタが開放され、穀粒タンクの内部空間に穀粒が排出される。シャッタの下方側には、穀粒タンクの内部空間における貯留量が多くなってもシャッタの開操作が可能なように、穀粒タンクの内部空間に対して周囲が仕切られた排出確保用空間が形成されている。
1-3. Background technology [3]
In addition, for example, in the combine disclosed in Patent Document 3, a temporary storage unit that temporarily stores the grains sent to the grain tank is formed, and the internal quality of the stored grains is optically controlled. It is configured to measure by a quality measuring device. When the measurement is completed, the shutter configured to be openable and closable as the bottom of the temporary storage unit is opened, and the grains are discharged into the internal space of the grain tank. On the lower side of the shutter, a discharge securing space is provided which is separated from the internal space of the grain tank so that the shutter can be opened even if the storage amount in the internal space of the grain tank is large. Is formed.
 さらに、特許文献4に開示されているコンバインでは、穀粒タンク内に特許文献3に示すような一時貯留部が2つ設けられ、一方の一時貯留部における穀粒の貯留状況から単位走行収量が算定され、他方の一時貯留部に貯留された穀粒の食味に関する測定値から単位走行距離当たりの食味値が算定されるように構成されている。 Further, in the combine disclosed in Patent Literature 4, two temporary storage units as shown in Patent Literature 3 are provided in the grain tank, and the unit traveling yield is determined based on the storage state of the grains in one temporary storage unit. It is configured such that the taste value per unit mileage is calculated from the measured value related to the taste of the grain that has been calculated and stored in the other temporary storage unit.
1-4.背景技術〔4〕
 また、例えば特許文献5に、刈取穀稈を脱穀処理する脱穀装置と、脱穀装置で得られた穀粒を貯留する穀粒タンクと、脱穀装置で得られた穀粒を搬送して穀粒タンクのタンク内部に投入する穀粒搬送装置(文献の「穀粒搬送機構」)と、が備えられたコンバインが開示されている。穀粒搬送装置の搬送方向終端領域に、穀粒を穀粒タンクの内部に投入する投入口(文献の「穀粒放出口」)が形成され、投入口の近傍に、穀粒搬送装置を通過する穀粒の流量を計測する流量センサ(文献の「荷重検出器」)が備えられている。穀粒の量に基づく圧力が流量センサによって計測される。
1-4. Background technology [4]
In addition, for example, Patent Document 5 discloses a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a grain tank for transporting grains obtained by the threshing device. And a grain transfer device ("Grain transfer mechanism" in the literature) for charging the inside of the tank. An inlet (the “grain discharge port” in the literature) through which the grains are injected into the grain tank is formed in the end area of the grain transport device in the transport direction, and passes through the grain transport device near the inlet. A flow sensor ("load detector" in the literature) that measures the flow rate of the grain to be processed is provided. Pressure based on the amount of grain is measured by a flow sensor.
特開2017-18014号公報JP-A-2017-18014 特開2004-187505号公報JP 2004-187505 A 特開2016-67226号公報JP 2016-67226A 国際公開第2016/147521号International Publication No. WO 2016/147521 特開2018-38272号公報JP 2018-38272 A
2-1.課題〔1〕
 背景技術〔1〕に対応する課題は、以下の通りである。
 収量の計測は、コンバインが走行しながら収穫を行う最中にも行われる。走行中の穀粒の収量は、車体の姿勢以外にも様々な要因により誤差が生じる。誤差の要因の一つとして、穀粒タンクに供給される穀粒の流量によって、穀粒タンク内の穀粒の貯留状態が異なり、貯留状態によって収量に誤差が生じる場合がある。
2-1. Assignment [1]
The problems corresponding to the background art [1] are as follows.
The measurement of the yield is also performed while the combine is harvesting while traveling. There are errors in the yield of grains during traveling due to various factors other than the posture of the vehicle body. One of the causes of the error is that the storage state of the grains in the grain tank varies depending on the flow rate of the grains supplied to the grain tank, and an error may occur in the yield depending on the storage state.
 本発明は、精度よく穀粒の収量を求めることを目的とする。 An object of the present invention is to accurately determine the yield of a grain.
2-2.課題〔2〕
 背景技術〔2〕に対応する課題は、以下の通りである。
 特許文献2に開示された満杯センサは、穀粒タンク内の上部側領域に設けられ、満杯センサが穀粒を検知することにより満杯状態であることを検出する。そのため、穀粒タンク内の穀粒の貯留状態によっては、穀粒が満杯ではないにもかかわらず、穀粒タンクに貯留される穀粒が偏り、満杯センサが満杯状態を誤って検知する場合があった。逆に、想定された満杯以上に穀粒が貯留されているにもかかわらず、満杯センサが穀粒を検出しない場合もあった。
2-2. Assignment [2]
The problems corresponding to the background art [2] are as follows.
The full sensor disclosed in Patent Literature 2 is provided in an upper side area in a grain tank, and detects that the grain is full by detecting the grain by the full sensor. Therefore, depending on the state of storage of the grains in the grain tank, the grains stored in the grain tank are biased even though the grains are not full, and the full sensor may erroneously detect the full state. there were. Conversely, in some cases, the full sensor does not detect the kernel even though the kernel is stored more than the assumed full.
 本発明は、穀粒の貯留状態にかかわらず、穀粒タンクから穀粒を排出することが必要となる状態の収量を正確に算出することを目的とする。 An object of the present invention is to accurately calculate the yield in a state where it is necessary to discharge grains from a grain tank, regardless of the storage state of grains.
2-3.課題〔3〕
 背景技術〔3〕に対応する課題は、以下の通りである。
 上記従来構成は、収穫作業に伴って穀粒タンク内に穀粒が貯留され、貯留された穀粒が一時貯留部の排出口に近いレベルまで増加しても、一時貯留部から穀粒を排出するための排出確保用空間が形成されることで、増加してくる穀粒によってシャッタの動作が阻害されないように工夫されている。しかしながら、穀粒タンク内において、穀粒は常に全域にわたって均等に貯留されるとは限らず、一時貯留部が設けられている領域に穀粒が集中して貯留されるような状況下で、その貯留量が満杯に近づくと、一時貯留部を形成している筒状の測定容器の上端に位置する穀粒受け入れ口から一時貯留部内に流れ込んでしまう恐れがある。このような不正な流れ込みがあれば、一時貯留部に貯留される穀粒に対する測定が不正確になり、最悪の場合、測定不能となる。
2-3. Assignment [3]
The problems corresponding to the background art [3] are as follows.
According to the above conventional configuration, the grains are stored in the grain tank along with the harvesting operation, and the grains are discharged from the temporary storage section even if the stored grains increase to a level close to the outlet of the temporary storage section. In order to prevent the operation of the shutter from being hindered by an increase in grains, a space for ensuring discharge is formed. However, in the grain tank, the grains are not always stored uniformly over the entire area, and in a situation where the grains are concentrated and stored in the area where the temporary storage unit is provided, the When the storage amount is almost full, there is a possibility that the storage may flow into the temporary storage unit from the grain receiving port located at the upper end of the cylindrical measurement container forming the temporary storage unit. If there is such an improper inflow, the measurement of the grain stored in the temporary storage unit becomes inaccurate, and in the worst case, the measurement becomes impossible.
 そのような実情から、穀粒タンク内に形成された測定容器内に貯留させた穀粒を測定するコンバインにおいて、測定容器内への不正な流れ込みを検知できることが要望されている。 Under such circumstances, it is demanded that a combine that measures grains stored in a measuring container formed in a grain tank can detect an illegal flow into the measuring container.
2-4.課題〔4〕
 背景技術〔4〕に対応する課題は、以下の通りである。
 特許文献5の構成では、穀粒タンクにおける流量センサの位置する高さまで穀粒が堆積し、堆積した穀粒が流量センサを押圧する状態になると、流量センサは穀粒の流量を精度良く計測できなくなる虞がある。更に、この状態で穀粒タンクの内部に穀粒が投入され続け、堆積した穀粒が流量センサを更に強く押圧すると、流量センサに過大な荷重が作用し、流量センサが故障する虞がある。
2-4. Assignment [4]
The problems corresponding to the background art [4] are as follows.
In the configuration of Patent Literature 5, when the kernels are accumulated to a height at which the flow sensor is located in the kernel tank and the accumulated kernels press the flow sensor, the flow sensor can accurately measure the flow rate of the kernel. There is a risk of disappearing. Further, in this state, if the grains continue to be charged into the grain tank and the accumulated grains press the flow rate sensor more strongly, an excessive load acts on the flow rate sensor, and the flow rate sensor may be broken.
 上述した実情に鑑みて、本願発明の目的は、流量センサに不測の荷重が作用する前に、流量センサを保護可能なコンバインを提供することにある。 In view of the above circumstances, an object of the present invention is to provide a combine that can protect a flow sensor before an unexpected load acts on the flow sensor.
3-1.解決手段〔1〕
 課題〔1〕に対応する解決手段は、以下の通りである。
 一実施形態に係るコンバインは、
 脱穀された穀粒が供給されて貯留される穀粒タンクを備えるコンバインであって、
 前記穀粒タンクに設けられて、供給される前記穀粒の流量を測定する流量センサと、
 前記穀粒タンクの下方に設けられて、前記穀粒タンクの重量に基づく出力値を出力する収量センサと、
 前記流量及び前記出力値に基づいて前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する制御部とを備える。
3-1. Solution [1]
The means for solving the problem [1] is as follows.
The combine according to one embodiment includes:
A combine having a grain tank in which threshed grains are supplied and stored,
A flow sensor that is provided in the grain tank and measures a flow rate of the supplied grain,
A yield sensor that is provided below the grain tank and outputs an output value based on the weight of the grain tank,
A control unit for calculating a current yield of the kernel stored in the kernel tank based on the flow rate and the output value.
 このような構成により、供給される穀粒の流量により変化する穀粒の貯留状態による影響を考慮して、穀粒タンクに貯留された穀粒の実際の収量(現在収量)を、精度良く求めることができる。 With such a configuration, the actual yield (current yield) of the grains stored in the grain tank is accurately obtained in consideration of the influence of the storage state of the grains that changes according to the flow rate of the supplied grains. be able to.
 また、前記制御部は、
 特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップと、前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップとを用いて、前記出力値から前記現在収量を算出することが好ましい。
Further, the control unit includes:
A first map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; A second map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow rate value larger than the flow rate value. Preferably, the current yield is calculated from the output value using
 流量に対応した収量センサの出力値と収量との関係をマップとして事前に求め、マップを用いて現在収量を算出するため、より精度良く現在収量を求めることができる。 (4) Since the relationship between the output value of the yield sensor and the yield corresponding to the flow rate is obtained in advance as a map, and the current yield is calculated using the map, the current yield can be obtained more accurately.
 また、前記制御部は、前記出力値に対する前記第1マップにおける前記収量と、前記出力値に対する前記第2マップにおける前記収量とを、前記第1流量値、前記第2流量値及び前記流量に基づいて案分することにより、前記現在収量を算出することが好ましい。 Further, the control unit may determine the yield in the first map with respect to the output value and the yield in the second map with respect to the output value based on the first flow rate value, the second flow rate value, and the flow rate. Preferably, the current yield is calculated by dividing the current yield.
 このような構成により、あらかじめ求めたマップから、より精度良く現在収量を求めることができる。 に よ り With this configuration, the current yield can be obtained with higher accuracy from the map obtained in advance.
 また、前記第1流量値は前記流量センサで検出されると想定される最低の流量値であり、前記第2流量値は前記流量センサで検出されると想定される最高の流量値であることが好ましい。 Further, the first flow value is a lowest flow value assumed to be detected by the flow sensor, and the second flow value is a highest flow value assumed to be detected by the flow sensor. Is preferred.
 最低流量と最高流量とのマップを求めることにより、測定した流量が最低流量と最高流量との間の値となり、マップの信頼性が向上して、より精度良く現在収量を求めることができる。 求 め る By obtaining the map of the minimum flow rate and the maximum flow rate, the measured flow rate becomes a value between the minimum flow rate and the maximum flow rate, the reliability of the map is improved, and the current yield can be obtained more accurately.
 また、前記第1マップ及び前記第2マップは、脱穀される作物種類に応じて決定されても良い。 The first map and the second map may be determined according to the type of crop to be threshed.
 これにより、様々な作物を収穫するコンバインにおいても、精度良く現在収量を求めることができる。 This makes it possible to accurately determine the current yield even for combine harvesters that harvest various crops.
 また、前記流量センサは、
 供給される前記穀粒の一部を貯留する一時貯留箱と、
 一定量の前記穀粒が前記一時貯留箱に貯留される時間を計測する計測部と、
 一定量の前記穀粒が前記一時貯留箱に貯留されると前記穀粒を排出するシャッター部とを備え、一定量の前記穀粒が貯留される時間と貯留量とから前記流量を算出しても良い。
Further, the flow sensor is
A temporary storage box for storing a part of the supplied kernel,
A measuring unit that measures the time when a certain amount of the grains are stored in the temporary storage box,
A shutter unit that discharges the kernel when a certain amount of the kernel is stored in the temporary storage box, and calculates the flow rate from the time and storage amount in which a certain amount of the kernel is stored. Is also good.
 このような構成により、穀粒の供給中に継続して正確な流量を測定することができ、精度良く現在収量を求めることができる。 に よ り With such a configuration, the flow rate can be measured accurately while the grain is being supplied, and the current yield can be obtained with high accuracy.
 また、前記一時貯留箱に貯留された前記穀粒の成分を測定する成分センサが備えられていることが好ましい。 Preferably, a component sensor for measuring a component of the grain stored in the temporary storage box is provided.
 このような構成により、流量の測定と成分の測定を1つの装置で効率的に行うことができると共に、収量として、重量または体積を適宜選択して用いることができる。 With such a configuration, the measurement of the flow rate and the measurement of the components can be efficiently performed by one apparatus, and the weight or volume can be appropriately selected and used as the yield.
 また、外部と通信し、前記外部からの要求量を取得する通信部を備え、
 前記現在収量と前記要求量とを比較して収穫作業の終了タイミングを判定する作業管理部を備えても良い。
Further, a communication unit that communicates with the outside and acquires the requested amount from the outside,
An operation management unit that compares the current yield with the required amount and determines the end timing of the harvesting operation may be provided.
 このような構成により、外部から要求された収量を排出収量とすることができ、排出収量を汎用性高く管理することができる。 に よ り With such a configuration, the yield requested from the outside can be used as the emission yield, and the emission yield can be managed with high versatility.
 さらに、一実施形態に係る収量算出方法は、
 脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記出力値によって前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する収量算出方法であって、
 特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップをあらかじめ求める工程と、
 前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップをあらかじめ求める工程と、
 前記穀粒タンクに供給される前記穀粒の流量を測定する工程と、
 前記収量センサから出力された前記出力値を取得する工程と、
 前記第1流量値及び前記第2流量値に対する前記流量の比率に応じて、前記出力値に対する前記第1マップにおける前記収量及び前記出力値に対する前記第2マップにおける前記収量を案分して前記現在収量を算出する工程とを備える。
Further, the yield calculation method according to one embodiment,
In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, the combiner is stored in the grain tank by the output value. A yield calculation method for calculating the current yield of the grain,
A step of previously obtaining a first map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; ,
A second graph showing the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value larger than the first flow value. 2 a process of obtaining a map in advance;
Measuring the flow rate of the grain supplied to the grain tank,
Obtaining the output value output from the yield sensor,
According to the ratio of the flow rate to the first flow rate value and the second flow rate value, the yield in the first map for the output value and the yield in the second map for the output value are divided into the current Calculating the yield.
 このような構成により、出力値と収量との関係を示すマップを用いて、穀粒が供給される流量に伴う穀粒の貯留状態の影響を考慮して、穀粒タンクに貯留された穀粒の実際の収量(現在収量)を、精度良く求めることができる。 With such a configuration, using the map showing the relationship between the output value and the yield, the grain stored in the grain tank is considered in consideration of the influence of the storage state of the grain accompanying the flow rate at which the grain is supplied. Can be accurately obtained.
 また、一実施形態に係る収量算出システムは、
 脱穀された穀粒が供給されて貯留されるコンバインの穀粒タンクにおける前記穀粒の現在収量を算出する収量算出システムであって、
 前記穀粒タンクに供給される前記穀粒の流量を測定する流量センサと、
 前記穀粒タンクの重量に基づく出力値を出力する収量センサと、
 前記流量及び前記出力値に基づいて前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する制御部とを備える。
Further, the yield calculation system according to one embodiment,
A yield calculation system that calculates a current yield of the grain in a grain tank of a combine in which threshed grains are supplied and stored,
A flow sensor that measures the flow rate of the grain supplied to the grain tank,
A yield sensor that outputs an output value based on the weight of the grain tank,
A control unit for calculating a current yield of the kernel stored in the kernel tank based on the flow rate and the output value.
 このような収量算出システムであっても、上述したコンバインと同様の効果を奏することが可能である。 っ て も Even with such a yield calculation system, it is possible to achieve the same effects as those of the combine described above.
 また、一実施形態に係る収量算出プログラムは、
 脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記出力値によって前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する収量算出プログラムであって、
 特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップをあらかじめ求める機能と、
 前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップをあらかじめ求める機能と、
 前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、
 前記収量センサから出力された前記出力値を取得する機能と、
 前記第1流量値及び前記第2流量値に対する前記流量の比率に応じて、前記出力値に対する前記第1マップにおける前記収量及び前記出力値に対する前記第2マップにおける前記収量を案分して前記現在収量を算出する機能と、
をコンピュータに実現させる。
Further, the yield calculation program according to one embodiment,
In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, the combiner is stored in the grain tank by the output value. A yield calculation program for calculating the current yield of the grain,
A function for previously obtaining a first map indicating a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; ,
A second graph showing the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value larger than the first flow value. 2 A function to obtain a map in advance,
A function of measuring the flow rate of the kernel supplied to the kernel tank,
A function of acquiring the output value output from the yield sensor,
According to the ratio of the flow rate to the first flow rate value and the second flow rate value, the yield in the first map for the output value and the yield in the second map for the output value are divided into the current A function to calculate the yield,
On a computer.
 このような収量算出プログラムをコンピュータにインストールして実現させることで、上述したコンバインと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing such a yield calculation program in a computer and realizing it, it is possible to achieve the same effects as those of the combine described above.
 また、一実施形態に係る収量算出プログラムを記録した記録媒体は、
 脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記出力値によって前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する収量算出プログラムを記録した記録媒体であって、
 特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップをあらかじめ求める機能と、
 前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップをあらかじめ求める機能と、
 前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、
 前記収量センサから出力された前記出力値を取得する機能と、
 前記第1流量値及び前記第2流量値に対する前記流量の比率に応じて、前記出力値に対する前記第1マップにおける前記収量及び前記出力値に対する前記第2マップにおける前記収量を案分して前記現在収量を算出する機能と、
をコンピュータに実現させる収量算出プログラムが記録されている。
Further, the recording medium on which the yield calculation program according to one embodiment is recorded,
In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, the combiner is stored in the grain tank by the output value. A recording medium recording a yield calculation program for calculating the current yield of the grain,
A function for previously obtaining a first map indicating a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; ,
A second graph showing the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value larger than the first flow value. 2 A function to obtain a map in advance,
A function of measuring the flow rate of the kernel supplied to the kernel tank,
A function of acquiring the output value output from the yield sensor,
According to the ratio of the flow rate to the first flow rate value and the second flow rate value, the yield in the first map for the output value and the yield in the second map for the output value are divided into the current A function to calculate the yield,
Is recorded on the computer.
 このような記録媒体に記録された収量算出プログラムをコンピュータにインストールし、当該コンピュータに実現させることで、上述したコンバインと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing the yield calculation program recorded on such a recording medium on a computer and causing the computer to realize the same, it is possible to achieve the same effects as the above-described combine.
3-2.解決手段〔2〕
 課題〔2〕に対応する解決手段は、以下の通りである。
 一実施形態に係るコンバインは、
 脱穀された穀粒が供給されて貯留される穀粒タンクを備えるコンバインであって、
 前記穀粒タンクに設けられて、供給される前記穀粒の流量を測定する流量センサと、
 前記流量に基づいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する制御部とを備える。
3-2. Solution [2]
The means for solving the problem [2] is as follows.
The combine according to one embodiment includes:
A combine having a grain tank in which threshed grains are supplied and stored,
A flow sensor that is provided in the grain tank and measures a flow rate of the supplied grain,
A control unit configured to calculate, based on the flow rate, a discharge yield of the kernel stored in the kernel tank in a discharge state in which the kernel needs to be discharged from the kernel tank.
 このような構成により、供給される穀粒の流量の影響で、穀粒タンク内に穀粒が偏って
貯留された場合であっても、流量を考慮して排出状態に対応する排出収量を検出すること
ができ、適切なタイミングで貯留された穀粒を排出することができる。
With such a configuration, even when the grains are stored unevenly in the grain tank due to the influence of the flow rate of the supplied grains, the discharge yield corresponding to the discharge state is detected in consideration of the flow rate. And the stored grains can be discharged at an appropriate timing.
 また、前記穀粒タンク内に設けられて、前記穀粒タンクが満杯になった際に前記穀粒を検出する満杯レベルセンサを備え、
 前記排出状態は、前記満杯レベルセンサが前記穀粒を検出した状態であっても良い。
Further, a full level sensor is provided in the grain tank and detects the grain when the grain tank is full,
The discharge state may be a state in which the full level sensor has detected the kernel.
 このような構成により、満杯レベルセンサが穀粒を検出した状態の排出収量を正確に算出することができ、適切なタイミングで貯留された穀粒を排出することができる。 With such a configuration, it is possible to accurately calculate the discharge yield in a state where the full level sensor has detected the kernel, and it is possible to discharge the stored kernel at an appropriate timing.
 また、前記穀粒タンクの所定の高さまで穀粒が貯留されたことを検出する複数のレベルセンサと、
 外部と通信し、前記外部から要求量を取得する通信部とを備え、
 前記排出状態は、複数の前記レベルセンサの内の、前記要求量に対応するレベルセンサが前記穀粒を検出する状態であっても良い。
Further, a plurality of level sensors for detecting that the grain is stored to a predetermined height of the grain tank,
A communication unit that communicates with the outside and acquires the requested amount from the outside,
The discharge state may be a state in which a level sensor corresponding to the required amount among the plurality of level sensors detects the kernel.
 このような構成により、外部の機器が要求する様々な排出収量に対応しながら、それぞれの排出収量に応じた適切なタイミングで穀粒を排出することができる。 構成 With such a configuration, it is possible to discharge grains at an appropriate timing according to each discharge yield while coping with various discharge yields required by external devices.
 また、前記穀粒タンクの下方に設けられて、前記穀粒タンクの重量に基づく出力値を出力する収量センサを備え、
 前記制御部は、前記流量及び前記出力値に基づいて現在収量を算出することが好ましい。
Further, a yield sensor is provided below the grain tank and outputs an output value based on the weight of the grain tank,
Preferably, the control unit calculates a current yield based on the flow rate and the output value.
 このような構成により、排出収量と現在収量とを比較しながら、穀粒の排出を計画的に行うことができ、より適切なタイミングで排出収量まで貯留された穀粒を排出することができる。 構成 With such a configuration, it is possible to systematically discharge the grains while comparing the discharge yield with the current yield, and to discharge the grains stored up to the discharge yield at a more appropriate timing.
 また、前記制御部は、特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップと前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップとを用いて、前記出力値から前記現在収量を算出し、
 前記現在収量の算出は、前記出力値に対する前記第1マップにおける前記収量と、前記出力値に対する前記第2マップにおける前記収量とを、前記第1流量値、前記第2流量値及び前記流量に基づいて案分することが好ましい。
Further, the control unit is a second flow rate indicating the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value. Relationship between the output value and the yield of the kernel stored in the kernel tank when the kernel is stored in the kernel tank at a specific second flow rate value larger than the first map and the first flow rate value Using the second map indicating the above, the current yield is calculated from the output value,
The current yield is calculated by calculating the yield in the first map for the output value and the yield in the second map for the output value based on the first flow rate value, the second flow rate value, and the flow rate. It is preferable to prorate.
 このような構成により、収量センサの出力値と収量との関係を流量に対応して示すマップにより、より正確に現在収量を算出することができるため、排出収量と現在収量とを比較しながら、穀粒の排出を精度良く計画的に行うことができ、より適切なタイミングで排出収量まで貯留された穀粒を排出することができる。 With such a configuration, the map showing the relationship between the output value of the yield sensor and the yield in accordance with the flow rate allows the current yield to be calculated more accurately. The discharge of kernels can be accurately and systematically performed, and the stored kernels can be discharged at a more appropriate timing up to the discharge yield.
 また、前記制御部は、前記現在収量から前記排出収量となるまでの時間を前記流量に基づいて算出することが好ましい。 Preferably, the control unit calculates a time from the current yield to the discharge yield based on the flow rate.
 排出収量となるまでの時間を算出することにより、穀粒の排出を行うべきタイミングを時間で把握することができ、より容易に適切なタイミングで排出収量まで貯留された穀粒を排出することができる。 By calculating the time until the emission yield is reached, it is possible to grasp the timing at which the grain should be discharged by time, and it is easier to discharge the stored grain to the emission yield at an appropriate timing. it can.
 また、前記流量センサは、
 供給される前記穀粒の一部を貯留する一次貯留箱と、
 一定量の前記穀粒が前記一次貯留箱に貯留される時間を計測する計測部と、
 一定量の前記穀粒が前記一次貯留箱に貯留されると前記穀粒を排出するシャッター部とを備え、一定量の前記穀粒が貯留される時間と貯留量とから前記流量を算出することが好ましい。
Further, the flow sensor is
A primary storage box for storing a part of the supplied kernels,
A measuring unit that measures the time when a certain amount of the grains are stored in the primary storage box,
A shutter unit that discharges the kernel when a certain amount of the kernel is stored in the primary storage box, and calculates the flow rate from a time and a storage amount in which a certain amount of the kernel is stored. Is preferred.
 このような構成により、穀粒の供給中に継続して正確な流量を測定することができ、精度良く現在収量を求めることができるため、より適切なタイミングで排出収量まで貯留された穀粒を排出することができる。 With such a configuration, the flow rate can be accurately measured continuously during the supply of the grain, and the current yield can be obtained with high accuracy. Can be discharged.
 また、前記一次貯留箱に貯留された前記穀粒の成分を測定する成分センサを備えることが好ましい。 Preferably, a component sensor for measuring a component of the grain stored in the primary storage box is provided.
 このような構成により、流量の測定と成分の測定を1つの装置で効率的に行うことができると共に、収量として、重量または体積を適宜選択して用いることができる。 With such a configuration, the measurement of the flow rate and the measurement of the components can be efficiently performed by one apparatus, and the weight or volume can be appropriately selected and used as the yield.
 一実施形態に係る穀粒排出収量算出方法は、
 脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出方法であって、
 前記穀粒タンクに供給される前記穀粒の流量を測定する工程と、
 前記流量に基づいて前記排出収量を算出する工程とを備える。
Grain emission yield calculation method according to one embodiment,
In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, discharging the grains from the grain tank may be performed. A grain discharge yield calculation method for calculating a discharge yield of the grains stored in the grain tank in a required discharge state,
Measuring the flow rate of the grain supplied to the grain tank,
Calculating the emission yield based on the flow rate.
 このような構成により、供給される穀粒の流量の影響で、穀粒タンク内に穀粒が偏って貯留された場合であっても、流量を考慮して排出状態に対応する排出収量を検出することができ、適切なタイミングで貯留された穀粒を排出することができる。 With such a configuration, even when the grains are stored unevenly in the grain tank due to the influence of the flow rate of the supplied grains, the discharge yield corresponding to the discharge state is detected in consideration of the flow rate. And the stored grains can be discharged at an appropriate timing.
 また、特定の第1流量値で貯留し続けた時に前記排出状態となる第1収量をあらかじめ求める工程と、
 前記第1流量値より大きな特定の第2流量値で貯留し続けた時に前記排出状態となる第2収量をあらかじめ求める工程とを備え、
前記排出収量を算出する工程は、前記第1流量値及び前記第2流量値に対する前記流量の比率に応じて、前記第1収量及び前記第2収量を案分することが好ましい。
A step of previously obtaining a first yield at which the liquid is discharged when storage is continued at a specific first flow rate value;
A step of previously obtaining a second yield to be in the discharge state when the storage is continued at a specific second flow rate value larger than the first flow rate value,
In the step of calculating the discharge yield, it is preferable that the first yield and the second yield are proportioned according to a ratio of the flow rate to the first flow rate value and the second flow rate value.
 このような構成により、あらかじめ求めた流量と排出流量との関係を用いて、流量からより正確な排出収量を求めることができるため、より適切なタイミングで貯留された穀粒を排出することができる。 With such a configuration, using the relationship between the flow rate and the discharge flow rate obtained in advance, it is possible to obtain a more accurate discharge yield from the flow rate, so that the stored grains can be discharged at a more appropriate timing. .
 一実施形態に係る穀粒排出収量算出システムは、
 脱穀された穀粒が供給されて貯留されるコンバインの穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出システムであって、
 前記穀粒タンクに供給される前記穀粒の流量を測定する流量センサと、
 前記流量に基づいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する制御部とを備える。
Grain emission yield calculation system according to one embodiment,
A grain for calculating a discharge yield of the grain stored in the grain tank in a discharge state in which it is necessary to discharge the grain from a grain tank of a combine in which threshed grains are supplied and stored. A grain emission yield calculation system,
A flow sensor that measures the flow rate of the grain supplied to the grain tank,
A control unit configured to calculate, based on the flow rate, a discharge yield of the kernel stored in the kernel tank in a discharge state in which the kernel needs to be discharged from the kernel tank.
 このような穀粒排出収量算出システムであっても、上述したコンバインと同様の効果を奏することが可能である。 っ て も Even such a grain discharge / yield calculation system can achieve the same effect as the above-described combine.
 一実施形態に係る穀粒排出収量算出プログラムは、
 脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出プログラムであって、
 前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、
 前記流量に基づいて前記排出収量を算出する機能と、
をコンピュータに実現させる。
The kernel emission yield calculation program according to one embodiment,
In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, discharging the grains from the grain tank may be performed. A kernel discharge yield calculation program for calculating the discharge yield of the kernel stored in the kernel tank in a required discharge state,
A function of measuring the flow rate of the kernel supplied to the kernel tank,
A function of calculating the emission yield based on the flow rate,
On a computer.
 このような穀粒排出収量算出プログラムをコンピュータにインストールして実現させることで、上述したコンバインと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing and implementing such a grain discharge yield calculation program in a computer, it is possible to achieve the same effects as those of the combine described above.
 一実施形態に係る穀粒排出収量算出プログラムを記録した記録媒体は、
 脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出プログラムを記録した記録媒体であって、
 前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、
 前記流量に基づいて前記排出収量を算出する機能と、
をコンピュータに実現させるための穀粒排出収量算出プログラムが記録されている。
The recording medium on which the kernel discharge yield calculation program according to one embodiment is recorded,
In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, discharging the grains from the grain tank may be performed. A recording medium recording a kernel discharge yield calculation program for calculating a discharge yield of the kernel stored in the kernel tank in a required discharge state,
A function of measuring the flow rate of the kernel supplied to the kernel tank,
A function of calculating the emission yield based on the flow rate,
And a computer program for calculating a grain discharge yield to make the computer realize the above.
 このような記録媒体に記録された穀粒排出収量算出プログラムをコンピュータにインストールし、当該コンピュータに実現させることで、上述したコンバインと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing the kernel discharge yield calculation program recorded on such a recording medium in a computer and causing the computer to realize the same, it is possible to achieve the same effects as the above-described combine.
3-3.解決手段〔3〕
 課題〔3〕に対応する解決手段は、以下の通りである。
 本発明によるコンバインは、刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクの内部に設けられ、前記穀粒タンクに投入される穀粒の流量を測定する流量測定手段とを備えている。さらに、前記流量測定手段は、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器を有し、かつ、前記測定容器に一定量の穀粒が貯留される時間に基づいて前記流量を測定するとともに前記流量の測定後に穀粒を前記穀粒タンクに戻すように構成され、前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知部を備える。
3-3. Solution [3]
The means for solving the problem [3] is as follows.
A combine according to the present invention is provided with a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state extending over the threshing device and an upper portion of the grain tank. A grain transporting device that transports the grains obtained by the threshing apparatus and throws the grains into the inside of the grain tank; and a grain that is provided inside the grain tank and is thrown into the grain tank. Flow rate measuring means for measuring the flow rate of the particles. Further, the flow rate measuring means has a measurement container for receiving and storing a part of the grain to be supplied to the grain tank from a receiving port, and a certain amount of the grain is stored in the measurement container. It is configured to measure the flow rate based on time and return the kernel to the kernel tank after measuring the flow rate, based on the amount of change in the flow rate over time, outside the measurement container in the kernel tank. And an unauthorized inflow detecting unit for detecting an unauthorized inflow of the grains stored in the measuring container from the receiving port.
 ここで取り扱っている穀粒の不正流入とは、穀粒タンクに貯留されている穀粒が溢れて測定容器の外から受け入れ口を通じて測定容器内に流入することである。穀粒タンクにおける測定容器の外部に貯留されている穀粒が増大し、その一部が測定容器を乗り越えて受け入れ口から測定容器に不正に流れ込んだ場合、このような不正な流れ込みが流量測定手段によって測定される穀粒流量を異常増加させる。この構成によれば、このような穀粒流量の異常増加は、流量の経時的変化量の異常変化として現れてくるので、この異常変化から不正流入が検知可能となる。 不正 Illegal inflow of grains handled here means that the grains stored in the grain tank overflow and flow into the measuring container from outside the measuring container through the receiving port. When the amount of grains stored outside the measuring vessel in the grain tank increases and a part of the grains gets over the measuring vessel and flows illegally into the measuring vessel from the receiving port, such illegal inflow is caused by the flow rate measuring means. Abnormally increases the grain flow as measured by According to this configuration, such an abnormal increase in the grain flow rate appears as an abnormal change in the temporal change amount of the flow rate, so that an illegal inflow can be detected from the abnormal change.
 不正流入が検知された場合、流量測定手段による流量測定が不正確になるので、本発明の好適な実施形態の1つでは、前記不正流入検知部が前記不正流入を検知した場合、前記流量測定手段による測定が停止される。このように、不正流入が検知された時点で流量測定が停止されるので、不正確な流量測定に基づく不都合が回避される。 If an unauthorized inflow is detected, the flow measurement by the flow measuring means becomes inaccurate. Therefore, in one preferred embodiment of the present invention, when the unauthorized inflow detection unit detects the unauthorized inflow, the flow measurement is performed. The measurement by the means is stopped. As described above, since the flow measurement is stopped when the illegal inflow is detected, the inconvenience based on the incorrect flow measurement is avoided.
 このような不正流入の発生は、穀粒タンクが満杯に近づいているか、あるいは穀粒タンク内での穀粒の貯留状態が測定容器の周辺に偏っている場合に生じる。これに対処するためには、収穫作業走行を停止して、穀粒タンクからの穀粒の排出や穀粒タンクにおける穀粒偏在の解消などの緊急処理を行う必要がある。このことから、本発明の好適な実施形態の1つでは、前記不正流入検知部が前記不正流入を検知した場合、不正流入警報が報知される。 不正 The occurrence of such illegal inflow occurs when the grain tank is almost full or the state of storage of grains in the grain tank is biased around the measuring container. In order to cope with this, it is necessary to stop the harvesting operation and perform an urgent process such as discharging the kernel from the kernel tank or eliminating uneven distribution of the kernel in the kernel tank. For this reason, in one of the preferred embodiments of the present invention, when the unauthorized inflow detection unit detects the unauthorized inflow, an unauthorized inflow alarm is issued.
 圃場を走行しながら稲や麦などの穀粒を収穫するコンバインでは、収穫走行に伴って、測定容器に順次所定量ずつ貯留される穀粒の成分値(水分やタンパク質)が測定されると、圃場における穀粒成分の分布の作成が可能になるという利点が得られる。このことから、本発明の好適な実施形態の1つでは、前記測定容器に貯留された穀粒の成分値を測定する成分値センサが備えられている。 In a combine that harvests grains such as rice and wheat while traveling in a field, the component values (moisture and protein) of the grains that are sequentially stored in a predetermined amount in a measurement container are measured along with the harvest traveling. The advantage is obtained that the distribution of the grain component in the field can be created. For this reason, in one preferred embodiment of the present invention, a component value sensor for measuring the component value of the grain stored in the measurement container is provided.
 穀粒の不正流入に起因する穀粒流量の異常増加は、流量測定手段によって測定される流量を経時的変化量に基づいて検知されるが、その具体的な方法の1つは、測定された流量のしきい値評価である。このことから、本発明の好適な実施形態の1つでは、前記不正流入検知部は、前記流量が予め定められた所定値よりも大きいことを不正流入検知条件として設定している。その際、具体的には、センサ等によって規定される一定量の穀粒が貯留するまでの貯留時間が利用されることが好ましい。この貯留時間で一定量を除算すると、単位時間当たりの流量が算出される。その際、この貯留時間が、通常の収穫作業において穀粒搬送装置から直接測定容器に投入される穀粒だけでは一定量の貯留量になることが不可能である短い時間(判定基準である所定値)であった場合、不正流入が発生していると判定することができる。なお、貯留時間を判定基準とすることも、単位時間当たりの流量を判定基準とすることもその際、実質的には同じであるので、どちらを採用してもよい。 The abnormal increase in the grain flow rate caused by the illegal inflow of the grain is detected based on the amount of change over time in the flow rate measured by the flow rate measuring means. This is a threshold evaluation of the flow rate. For this reason, in one of the preferred embodiments of the present invention, the unauthorized inflow detection unit sets the fact that the flow rate is larger than a predetermined value as an unauthorized inflow detection condition. At that time, specifically, it is preferable to use a storage time until a fixed amount of grains defined by a sensor or the like is stored. By dividing a certain amount by the storage time, a flow rate per unit time is calculated. At this time, the storage time is a short time (a predetermined criterion as a criterion) in which it is impossible to obtain a certain amount of storage by using only the grains directly supplied from the grain transport device to the measurement container in a normal harvesting operation. Value), it can be determined that unauthorized inflow has occurred. It should be noted that the storage time is used as the determination criterion and the flow rate per unit time is used as the determination criterion.
 コンバインは、一般的には穀粒タンク(貯留されている穀粒も含む)の重量を測定する重量測定器を備えている。測定された重量から穀粒タンクのみの重量を減算すれば、貯留穀粒の重量、つまり収量が得られる。したがって、この測定重量に基づいて、穀粒タンクにおける穀粒の貯留状態が推定可能である。穀粒の不正流入は、穀粒の貯留状態が測定容器の受け入れ口より低い状態では発生しない。このことを利用して、本発明の好適な実施形態の1つでは、前記穀粒タンクの重量を測定する重量測定器が備えられている場合、前記不正流入検知部は、前記穀粒タンクの重量が予め定められた所定値よりも大きいことを、不正流入検知条件の1つとして設定している。これにより、不正流入の誤検知が低減される。 Combines are generally equipped with a weighing device that measures the weight of the grain tank (including the stored grain). Subtracting the weight of the grain tank alone from the measured weight gives the weight of the stored grain, ie the yield. Therefore, based on the measured weight, the storage state of the grains in the grain tank can be estimated. Unauthorized inflow of grain does not occur when the state of storage of grain is lower than the receiving port of the measuring container. Taking advantage of this, in one of the preferred embodiments of the present invention, when a weighing device for measuring the weight of the grain tank is provided, the unauthorized inflow detection unit includes The fact that the weight is larger than a predetermined value is set as one of the illegal inflow detection conditions. Thereby, erroneous detection of unauthorized inflow is reduced.
 一実施形態に係る不正流入検知システムは、
 刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知システムであって、
 前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定手段と、
 前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知部と、
を備える。
The unauthorized inflow detection system according to one embodiment includes:
A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port, And a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, wherein the unauthorized inflow detection system detects an unauthorized inflow flowing into the measurement container. hand,
Flow rate measuring means for measuring the flow rate of the grains to be charged into the grain tank based on the time during which a certain amount of grains are stored in the measurement container,
Based on the amount of change over time in the flow rate, an unauthorized inflow detection unit that detects an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container,
Is provided.
 このような不正流入検知システムであっても、上述したコンバインと同様の効果を奏することが可能である。 っ て も Even with such an unauthorized inflow detection system, it is possible to achieve the same effects as those of the combine described above.
 一実施形態に係る不正流入検知プログラムは、
 刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知プログラムであって、
 前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定機能と、
 前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知機能と、
をコンピュータに実現させる。
The unauthorized inflow detection program according to one embodiment includes:
A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port, And a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, wherein the unauthorized inflow detection program detects an unauthorized inflow flowing into the measurement container. hand,
A flow rate measurement function for measuring the flow rate of the grains to be supplied to the grain tank based on the time during which a certain amount of grains are stored in the measurement container,
Based on the amount of change in the flow rate over time, an unauthorized inflow detection function of detecting an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container,
On a computer.
 このような不正流入検知プログラムをコンピュータにインストールして実現させることで、上述したコンバインと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing such an unauthorized inflow detection program in a computer and realizing it, it is possible to achieve the same effects as those of the combine described above.
 一実施形態に係る不正流入検知プログラムを記録した記録媒体は、
 刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知プログラムを記録した記録媒体であって、
 前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定機能と、
 前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知機能と、
をコンピュータに実現させるための不正流入検知プログラムが記録されている。
The recording medium on which the unauthorized inflow detection program according to one embodiment is recorded,
A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port, In a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, an unauthorized inflow detection program that detects an unauthorized inflow flowing into the measurement container is recorded. Recording medium,
A flow rate measurement function for measuring the flow rate of the grains to be supplied to the grain tank based on the time during which a certain amount of grains are stored in the measurement container,
Based on the amount of change in the flow rate over time, an unauthorized inflow detection function of detecting an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container,
Is recorded on the computer.
 このような記録媒体に記録された不正流入検知プログラムをコンピュータにインストールし、当該コンピュータに実現させることで、上述したコンバインと同様の効果を奏することが可能である。 イ ン ス ト ー ル By installing the unauthorized inflow detection program recorded on such a recording medium into a computer and causing the computer to realize the same, it is possible to achieve the same effect as the above-described combine.
 一実施形態に係る不正流入検知方法は、
 刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知方法であって、
 前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定工程と、
 前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知工程と、
を備える。
An unauthorized inflow detection method according to one embodiment includes:
A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port, A combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, wherein the unauthorized inflow detection method detects an unauthorized inflow flowing into the measurement container. hand,
A flow rate measurement step of measuring the flow rate of the grains to be charged into the grain tank based on the time during which a certain amount of grains are stored in the measurement container,
Based on the amount of change in the flow rate over time, an unauthorized inflow detection step of detecting an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container,
Is provided.
 このような不正流入検知方法であっても、上述したコンバインと同様の効果を奏することが可能である。 っ て も Even with such an unauthorized inflow detection method, it is possible to achieve the same effects as those of the combine described above.
3-4.解決手段〔4〕
 課題〔4〕に対応する解決手段は、以下の通りである。
 本発明によるコンバインは、刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒搬送装置の投入部に設けられ、投入される穀粒の流量を計測する流量センサと、前記流量センサの下端部よりも低い位置に設けられ、前記穀粒タンクに穀粒が前記流量センサまで貯留されたことを検出するレベルセンサと、が備えられていることを特徴とする。
3-4. Solution [4]
The means for solving the problem [4] is as follows.
A combine according to the present invention is provided with a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state extending over the threshing device and an upper portion of the grain tank. A grain transport device for transporting the grains obtained by the threshing device and introducing the grains into the inside of the grain tank; and And a level sensor that is provided at a position lower than the lower end of the flow sensor and detects that kernels are stored in the kernel tank up to the flow sensor. It is characterized.
 本発明によると、レベルセンサが流量センサよりも下側に設けられ、穀粒が流量センサまで貯留されたことがレベルセンサによって検出される構成となっている。このため、レベルセンサは、堆積した穀粒が流量センサを押圧する直前の状態を検出可能となる。つまり、穀粒タンクの内部に穀粒が投入され続け、堆積した穀粒が流量センサを更に強く押圧する前に、穀粒の投入を停止する構成が可能となり、流量センサに過大な荷重が作用して流量センサが故障する虞が回避される。これにより、流量センサに不測の荷重が作用する前に、流量センサを保護可能なコンバインが実現される。 According to the present invention, the level sensor is provided below the flow rate sensor, and the fact that the kernel is stored up to the flow rate sensor is detected by the level sensor. For this reason, the level sensor can detect the state immediately before the deposited kernel presses the flow rate sensor. In other words, a configuration is possible in which the introduction of grains is stopped before the grains continue to be poured into the inside of the grain tank and the deposited grains press the flow rate sensor more strongly, and an excessive load acts on the flow rate sensor. As a result, the possibility that the flow sensor will fail can be avoided. This realizes a combine that can protect the flow sensor before an unexpected load acts on the flow sensor.
 本発明において、前記レベルセンサの検出に基づいて、前記流量センサまで穀粒が貯留されたことを報知する報知部が備えられていると好適である。 In the present invention, it is preferable that a notifying unit that notifies that the grain is stored to the flow rate sensor based on the detection of the level sensor is provided.
 本構成であれば、穀粒タンクに穀粒が流量センサまで貯留されたことが、コンバインの搭乗者等に報知されるため、例えば搭乗者が穀粒の排出作業等を行うこと等を容易かつ迅速に判断できる。 With this configuration, the fact that the grains are stored in the grain tank up to the flow rate sensor is notified to the passengers of the combine, etc., so that, for example, it is easy and easy for the passengers to perform the grain discharging work and the like. You can make quick decisions.
 本発明において、前記レベルセンサの検出に基づいて、前記流量センサの計測精度の低下を報知する報知部が備えられていると好適である。 In the present invention, it is preferable that a notifying unit that notifies a decrease in the measurement accuracy of the flow rate sensor based on the detection of the level sensor is provided.
 穀粒タンクに穀粒が流量センサの位置する高さまで堆積し、堆積した穀粒が流量センサを押圧する状態になると、流量センサは穀粒の流量を精度良く計測できなくなる虞がある。本構成であれば、搭乗者が流量センサの計測精度の低下を認識できるため、搭乗者はコンバインの刈取作業の中止を判断し易くなる。 (4) When the grains accumulate in the grain tank to a level where the flow rate sensor is located, and the accumulated grains press the flow rate sensor, the flow rate sensor may not be able to measure the flow rate of the grain with high accuracy. With this configuration, the occupant can recognize the decrease in the measurement accuracy of the flow rate sensor, so that the occupant can easily determine that the combine harvesting operation should be stopped.
 本発明において、走行装置が備えられ、前記レベルセンサの検出後において、前記流量センサによって穀粒の投入が検出されると、前記走行装置を停止すると好適である。 In the present invention, it is preferable that a traveling device is provided, and after the detection of the level sensor, if the introduction of the grain is detected by the flow rate sensor, the traveling device is stopped.
 穀粒タンクに穀粒が流量センサの位置する高さまで堆積し、堆積した穀粒が流量センサを押圧する状態で、穀粒タンクの内部に穀粒が更に投入され続けると、流量センサに過大な荷重が作用し、流量センサが故障する虞がある。本構成によると、走行装置が停止することによって、コンバインの刈取走行が継続不能となる。つまり、流量センサに過大な荷重が作用する前に、穀粒の投入が継続されなくなるため、流量センサが故障する虞が回避される。また、流量センサのデータに、精度の低い計測データが混ざることが防止される。 When the grains are deposited in the grain tank up to the height where the flow sensor is located, and the accumulated grains press the flow rate sensor, and the grains are further charged inside the grain tank, the flow rate sensor becomes excessively large. There is a possibility that a load acts and the flow sensor breaks down. According to this configuration, when the traveling device stops, the harvesting traveling of the combine cannot be continued. That is, before the excessive load is applied to the flow rate sensor, the feeding of the grain is not continued, so that the possibility that the flow rate sensor is broken can be avoided. Further, it is possible to prevent low-precision measurement data from being mixed with the flow sensor data.
 本発明において、前記タンク内部に設けられ、前記穀粒タンクに穀粒が満杯高さまで貯留されたことを検出する満杯レベルセンサが備えられ、前記レベルセンサは、前記満杯レベルセンサよりも低い位置に設けられていると好適である。 In the present invention, a full level sensor is provided inside the tank and detects that kernels are stored to a full height in the kernel tank, and the level sensor is at a position lower than the full level sensor. Preferably, it is provided.
 満杯レベルセンサは、タンク内部のかなり高い位置に設けられることが通常であるが、穀粒はタンク内部に水平に堆積するわけではなく、穀粒の投入流量によっては、タンク内部における穀粒の堆積に偏りが生じる場合がある。本構成であれば、満杯レベルセンサによって穀粒が検出される場合であっても、満杯レベルセンサよりも低い位置のレベルセンサが穀粒の未検出となると、より多くの穀粒の貯留が可能となる。つまり、流量センサの破損が防止されつつも、出来るだけ多くの穀粒がタンク内部に貯留される。 The full level sensor is usually installed at a relatively high position inside the tank, but the kernels do not accumulate horizontally inside the tank, and depending on the input flow rate of the kernels, the kernels accumulate inside the tank. May be biased. With this configuration, even when a kernel is detected by the full level sensor, more kernels can be stored if the level sensor at a position lower than the full level sensor does not detect the kernel. It becomes. In other words, as many grains as possible are stored in the tank while preventing the flow sensor from being damaged.
 本発明において、前記タンク内部における前記満杯レベルセンサよりも低い位置に、前記穀粒タンクに穀粒が特定の高さまで貯留されたことを検出する他のレベルセンサが複数備えられ、前記レベルセンサは、前記複数の他のレベルセンサのうち前記満杯レベルセンサの次に高い位置に位置する他のレベルセンサよりも高い位置に設けられていると好適である。 In the present invention, at a position lower than the full level sensor inside the tank, a plurality of other level sensors for detecting that grains are stored in the grain tank up to a specific height are provided, and the level sensor is Preferably, of the plurality of other level sensors, the sensor is provided at a position higher than another level sensor located at the next higher position than the full level sensor.
 本構成であれば、レベルセンサが満杯レベルセンサよりも低い位置に設けられていても、レベルセンサは、満杯レベルセンサの次に高く位置する他のレベルセンサよりも、高く設けられている。これにより、タンク内部に、より多くの穀粒が貯留される。 With this configuration, even if the level sensor is provided at a position lower than the full level sensor, the level sensor is provided higher than other level sensors located next to the full level sensor. Thereby, more grains are stored inside the tank.
 一実施形態に係る貯留レベル検出システムは、
 刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、を有するコンバインにおいて、前記穀粒タンクの貯留レベルを検出する貯留レベル検出システムであって、
 前記穀粒搬送装置の投入部に設けられ、投入される穀粒の流量を計測する流量センサと、
 前記流量センサの下端部よりも低い位置に設けられ、前記穀粒タンクに穀粒が前記流量センサまで貯留されたことを検出するレベルセンサと、が備えられている。
The storage level detection system according to one embodiment,
A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws the grains into the inside of the grain tank, and a combine having a storage level detection system that detects a storage level of the grain tank.
A flow sensor that is provided in the input unit of the grain transport device and measures a flow rate of the input kernel,
A level sensor that is provided at a position lower than the lower end of the flow rate sensor and detects that grains are stored in the grain tank up to the flow rate sensor.
 このような貯留レベル検出システムであっても、上述したコンバインと同様の効果を奏することが可能である。 っ て も Even with such a storage level detection system, it is possible to achieve the same effects as those of the combine described above.
コンバインの全体側面図である。It is a whole side view of a combine. 穀粒搬送機構と穀粒タンクとを示すコンバイン縦断背面図である。It is a combine vertical back view which shows a grain conveyance mechanism and a grain tank. 品質計測装置配設部の縦断側面図である。It is a vertical side view of a quality measuring device installation part. 穀粒タンクに貯留される穀粒の貯留状態を説明する概念図である。It is a conceptual diagram explaining the storage state of the grain stored in a grain tank. 収量を補正する構成を説明する概略図である。It is a schematic diagram explaining the composition which corrects yield. 収量を補正する方法のフローを示す図である。It is a figure which shows the flow of the method of correcting a yield. マップを用いた収量の補正について説明する図である。It is a figure explaining correction of yield using a map. 収量により排出状態を検出する方法のフローを示す図である。It is a figure which shows the flow of the method of detecting a discharge state by a yield. コンバインの排出作業を説明する概略図である。It is the schematic explaining the discharge operation | movement of a combine. コンバインの全体側面図である。It is a whole side view of a combine. 穀粒タンクの縦断背面図である。It is a vertical back view of a grain tank. 穀粒タンクの縦断右側面図である。It is a vertical right side view of a grain tank. 穀粒タンクの斜視図である。It is a perspective view of a grain tank. コンバインの制御系における不正流入検知と可能な穀粒流量測定と穀粒成分測定のための機能を示す機能ブロック図である。It is a functional block diagram which shows the function for illegal inflow detection in the control system of a combine, possible grain flow rate measurement, and grain component measurement. 穀粒測定制御の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of kernel measurement control. コンバインの全体を示す機体右側面図である。FIG. 2 is a right side view of the fuselage showing the entire combine. コンバインの全体平面図である。It is an overall top view of a combine. 穀粒タンクのタンク内部を示す平面図である。It is a top view which shows the tank inside of a grain tank. 穀粒タンクのタンク内部を示す図18のXIX-XIX線断面図である。FIG. 19 is a sectional view taken along line XIX-XIX of FIG. 18 showing the inside of the grain tank. 穀粒タンクのタンク内部を示す図18のXX-XX線断面図である。FIG. 19 is a sectional view taken along the line XX-XX of FIG. 18 showing the inside of the grain tank. 流量センサを示す平面図である。It is a top view which shows a flow sensor. 流量センサを示す機体右側面図である。FIG. 2 is a right side view of the machine body showing the flow rate sensor. 流量センサに基づく制御構成を示すブロック図である。It is a block diagram showing a control configuration based on a flow sensor. 流量センサに基づく制御構成を示すフローチャート図である。It is a flowchart figure which shows the control structure based on a flow sensor. 穀粒搬送装置と流量センサとレベルセンサとの構成に関する別実施形態を示す背面図である。It is a rear view showing another embodiment about composition of a grain conveying device, a flow sensor, and a level sensor.
4-1.第1の実施形態
 以下、一実施形態に係るコンバインについて図面に基づいて説明する。
4-1. First Embodiment A combine according to an embodiment will be described below with reference to the drawings.
 〔全体構成〕
 図1に示すように、本発明に係るコンバインは、左右一対のクローラ走行装置1,1によって自走する走行機体2と、走行機体2の前部に植立穀稈を収穫する収穫部3とが備えられている。走行機体2の前部右側に、キャビン4にて周囲が覆われた運転部5が備えられている。運転部5の後方には、収穫部3にて収穫された穀稈を脱穀処理する脱穀装置6と、脱穀処理にて得られた穀粒を貯留する穀粒タンク7とが、横方向に並ぶ状態で配備されている。穀粒タンク7は機体右側に位置し、脱穀装置6は機体左側に位置している。つまり、運転部5は穀粒タンク7の前方に位置している。運転部5における運転座席8の下方にエンジンが備えられている。走行機体2の後部であって穀粒タンク7の後方に、穀粒タンク7に貯留された穀粒を機外に排出する穀粒排出装置9が備えられている。脱穀された穀粒は、穀粒搬送機構16により、脱穀装置6から穀粒タンク7の内部に搬送される。また、穀粒タンク7の下方には、穀粒タンク7に貯留されている穀粒の収量を測定するための収量センサの一例としてロードセル10が設けられる。ロードセル10は穀粒の重量(収量)に応じて受ける圧力をひずみセンサで電圧等として検出する。貯留された穀粒の重量(収量)は、出力値である電圧から算出される。
〔overall structure〕
As shown in FIG. 1, a combine according to the present invention includes a traveling machine body 2 that is self-propelled by a pair of left and right crawler traveling devices 1 and 1, and a harvesting unit 3 that harvests planted grain culms at the front of the traveling machine body 2. Is provided. An operating unit 5 whose periphery is covered by a cabin 4 is provided on the front right side of the traveling body 2. Behind the operation unit 5, a threshing device 6 for threshing grain culms harvested by the harvesting unit 3 and a grain tank 7 for storing grains obtained by threshing are arranged side by side. Deployed in state. The grain tank 7 is located on the right side of the fuselage, and the threshing device 6 is located on the left side of the fuselage. That is, the operating unit 5 is located in front of the grain tank 7. An engine is provided below the driver's seat 8 in the driver 5. At the rear of the traveling machine body 2 and behind the grain tank 7, there is provided a grain discharging device 9 for discharging the grains stored in the grain tank 7 out of the machine. The threshed grains are transported from the threshing device 6 to the interior of the grain tank 7 by the grain transport mechanism 16. A load cell 10 is provided below the grain tank 7 as an example of a yield sensor for measuring the yield of grains stored in the grain tank 7. The load cell 10 detects the pressure received according to the weight (yield) of the grain as a voltage or the like by a strain sensor. The weight (yield) of the stored grains is calculated from the output voltage.
 〔穀粒搬送機構〕
 次に、図2,図3を用いて一実施形態に係る穀粒搬送機構16について説明する。穀粒搬送機構16は、脱穀装置6の底部に設けられた一番物回収スクリュー16Aと揚送コンベヤ16Bと横送りコンベヤ16Cとを含む。
(Grain transport mechanism)
Next, the grain transport mechanism 16 according to the embodiment will be described with reference to FIGS. The grain transport mechanism 16 includes a first thing collection screw 16A, a lifting conveyor 16B, and a horizontal conveyor 16C provided at the bottom of the threshing device 6.
 横送りコンベヤ16Cの終端領域に、穀粒タンク7の内部に穀粒を拡散放出する穀粒放出装置13が設けられている。穀粒放出装置13は、放出回転体32と放出回転体32の周囲を覆う放出ケース31とを備えている。放出回転体32は、回転軸32bと、回転軸32bに設けられた羽根板32aからなる回転羽根である。羽根板32aは、回転軸32bから径外方向に突出するように回転軸32bに固定されている。羽根板32aは、その回転方向に穀粒を押し出していく実質的に平坦な押し出し面を有している。放出ケース31は、羽根板32aの回転軌跡より少し大きな内径を有する円筒形である。放出ケース31の周面の一部が切り欠かれている。この切り欠きによって、羽根板32aの回転によって穀粒を穀粒タンク7の内部における後方側へ放出する穀粒放出口30が形成されている。さらに、穀粒放出装置13の放出ケース31の下面側に複数の開口33が形成される。後述する計測用の穀粒(タンクに貯留される穀粒の一部)は、開口33を漏下して後述する一時貯留部51に供給される。 穀 A grain discharging device 13 for diffusing and discharging the grains inside the grain tank 7 is provided in the terminal region of the traverse conveyor 16C. The grain discharge device 13 includes a discharge rotating body 32 and a discharge case 31 that covers the periphery of the discharge rotating body 32. The discharge rotating body 32 is a rotating blade composed of a rotating shaft 32b and a blade plate 32a provided on the rotating shaft 32b. The blade 32a is fixed to the rotating shaft 32b so as to protrude radially outward from the rotating shaft 32b. The slat 32a has a substantially flat pushing surface for pushing the grains in the direction of rotation. The discharge case 31 is a cylindrical shape having an inner diameter slightly larger than the rotation locus of the blade plate 32a. A part of the peripheral surface of the discharge case 31 is notched. The cutout forms a grain discharge port 30 that releases the grain to the rear side inside the grain tank 7 by the rotation of the blade plate 32a. Further, a plurality of openings 33 are formed on the lower surface side of the discharge case 31 of the grain discharge device 13. Grains for measurement described later (part of the grains stored in the tank) leak through the opening 33 and are supplied to a temporary storage section 51 described later.
 〔品質計測装置〕
 穀粒タンク7の内部における上部位置に、穀粒の品質を計測する品質計測装置50が備えられている。品質計測装置50は、穀粒の水分量やタンパク量等の穀粒の成分(品質)を計測する。図3に示すように、品質計測装置50は、計測対象である穀粒を一時貯留する第一貯留部としての一時貯留部51と、一時貯留部51にて貯留されている穀粒に対して計測作用して品質を計測する品質計測部としての計測部52とを備えている。図3に示すように、一時貯留部51が穀粒タンク7の内方側に位置し、計測部52が穀粒タンク7の外方側に位置している。計測部52は、密閉状に形成された収納ケース53の内部に収納されている。一時貯留部51は、収納ケース53の内方側の側面に一体的に連結された略角筒状に形成され、その内部に穀粒を貯留することができる。
[Quality measuring device]
At an upper position inside the grain tank 7, a quality measuring device 50 that measures the quality of the grain is provided. The quality measuring device 50 measures the components (quality) of the grain such as the water content and the protein amount of the grain. As shown in FIG. 3, the quality measuring device 50 controls a temporary storage unit 51 as a first storage unit for temporarily storing a kernel to be measured and a kernel stored in the temporary storage unit 51. A measuring unit 52 is provided as a quality measuring unit that measures quality by performing a measuring operation. As shown in FIG. 3, the temporary storage unit 51 is located inside the grain tank 7, and the measurement unit 52 is located outside the grain tank 7. The measuring unit 52 is housed inside a storage case 53 formed in a sealed shape. The temporary storage unit 51 is formed in a substantially rectangular tube shape integrally connected to the inner side surface of the storage case 53, and can store grains therein.
 一時貯留部51は、その内部に、上下方向に貫通する上下向き通路55が形成され、上下向き通路55の途中に形成された排出口56と、排出口56を閉塞する閉位置(図参照)と排出口56を開放する開位置(図示せず)とに位置変更可能なシャッター57と、図示しない電動モータの駆動力によりシャッター57を姿勢変更する操作部(図示せず)が備えられている。 The temporary storage section 51 has an up-down passage 55 penetrating in the up-down direction inside thereof, a discharge port 56 formed in the middle of the up-down path 55, and a closed position for closing the discharge port 56 (see the figure). A shutter 57 whose position can be changed to an open position (not shown) for opening the discharge port 56, and an operation unit (not shown) for changing the attitude of the shutter 57 by the driving force of an electric motor (not shown). .
 一時貯留部51は、穀粒搬送機構16により穀粒タンク7の内部に搬送され、穀粒放出装置13から放出される穀粒の一部を、計測用の穀粒として受止めて貯留する。 (4) The temporary storage unit 51 receives and stores a part of the kernel transported into the kernel tank 7 by the kernel transport mechanism 16 and released from the kernel release device 13 as a kernel for measurement.
 一時貯留部51は、上下向き通路55の上端が開放され、穀粒の取込口62が形成されている。穀粒放出装置13から放出された穀粒をこの取込口62から取り込み、シャッター57を閉状態に切り換えている状態で穀粒を受止めて、シャッター57の上部に形成された貯留用の空間63に穀粒を貯留することができる。シャッター57を開状態に切り換えると、貯留されていた穀粒が下方に落下排出されて穀粒タンク7の内部に戻される。 In the temporary storage unit 51, the upper end of the vertical passage 55 is opened, and a grain intake 62 is formed. The grains released from the grain discharging device 13 are taken in from the intake port 62, the grains are received in a state where the shutter 57 is switched to the closed state, and a storage space formed above the shutter 57 for storage. 63 can store the grains. When the shutter 57 is switched to the open state, the stored grains are dropped and discharged downward and returned to the inside of the grain tank 7.
 一時貯留部51は、空間63内に一次貯留センサ65を備える。一次貯留センサ65は接触センサであり、空間63内に一定量の穀粒が貯留されたことを検出できる。計測部52は、穀粒が一定量貯留された状態で穀粒の品質を計測する。一次貯留センサ65が空間63内に一定量の穀粒が貯留されたことを検知された後、計測部52が成分(品質)を計測すると、操作部(図示せず)は、シャッター57を開位置変更させて、後述の計測穀粒貯留空間Sに穀粒を排出する。 The temporary storage unit 51 includes a primary storage sensor 65 in the space 63. The primary storage sensor 65 is a contact sensor, and can detect that a certain amount of grains has been stored in the space 63. The measuring unit 52 measures the quality of the grains in a state where the grains are stored in a certain amount. After the primary storage sensor 65 detects that a certain amount of grain has been stored in the space 63, and the measuring unit 52 measures the component (quality), the operating unit (not shown) opens the shutter 57. The position is changed, and the kernel is discharged to the measured kernel storage space S described later.
 計測部52は、貯留用の空間63に貯留される穀粒に向けて光を照射し、穀粒から得られた光に基づいて、公知技術である分光分析手法によって穀粒の内部品質を計測する。貯留用の空間63を形成する側面のうち計測部52側の側面に光が透過可能な窓部64が形成され、計測部52は、この窓部64を通して、穀粒に光を照射するとともに、穀粒からの光を受光する。 The measuring unit 52 irradiates light toward the grains stored in the storage space 63 and measures the internal quality of the grains based on the light obtained from the grains by a spectroscopic analysis technique that is a known technique. I do. A window 64 through which light can pass is formed on the side surface on the measurement unit 52 side of the side surface forming the storage space 63, and the measurement unit 52 irradiates the kernel with light through the window 64, Receives light from the grain.
 図3に示すように、計測穀粒貯留空間Sは、壁66によって囲まれた領域であり、排出口56を介して一時貯留部51における貯留用の空間63と連通し、且つ、側部が穀粒タンク7の貯留空間Q(内部空間)と区画されると共に下部が穀粒タンク7の貯留空間Qと連通している。計測穀粒貯留空間Sは、平面視において、一時貯留部51に対して前後方向並びに左右方向に幅広に形成され、且つ、下部が上部よりも前後方向並びに左右方向に幅広になる形態で穀粒タンク7の下部にまで延設されている。計測穀粒貯留空間Sは貯留空間Qと区画されているため、穀粒の貯留中に貯留空間Qから穀粒が流入しない。そのため、穀粒タンク7の貯留状態にかかわらず、計測穀粒貯留空間Sには、一時貯留部51から排出される穀粒のみが貯留される。その結果、計測穀粒貯留空間Sの大きさに応じた回数の流量の計測を確実に行うことができる。 As shown in FIG. 3, the measured grain storage space S is an area surrounded by a wall 66, communicates with the storage space 63 in the temporary storage unit 51 through the discharge port 56, and has a side portion. The storage space Q (inner space) of the grain tank 7 is defined, and the lower part thereof communicates with the storage space Q of the grain tank 7. The measured grain storage space S is formed to be wider in the front-rear direction and the left-right direction with respect to the temporary storage part 51 in plan view, and the lower part is wider in the front-rear direction and the left-right direction than the upper part. It extends to the lower part of the tank 7. Since the measured grain storage space S is partitioned from the storage space Q, no grain flows from the storage space Q during storage of the grain. Therefore, regardless of the storage state of the grain tank 7, only the grains discharged from the temporary storage unit 51 are stored in the measured grain storage space S. As a result, the flow rate can be reliably measured a number of times corresponding to the size of the measured grain storage space S.
 また、上述するように、シャッター57が閉じると空間63内に穀粒が貯留され、空間63に一定量の穀粒が貯留された後、成分の計測が終了すると、シャッター57が開いて穀粒が排出される。そのため、穀粒タンク7に穀粒が供給されている状態において、品質計測装置50は、穀粒タンク7内に供給される穀粒の流量を測定することができる。すなわち、貯留される穀粒の体積は一定であるので、シャッター57が閉じてから、一次貯留センサ65が穀粒を検出して一定量の穀粒が貯留されるまでの時間を計測することにより、単位時間当たりに供給される穀粒の体積である流量を計測することができる。流量は、この体積を計測された時間で割ることにより求めることができる。また、品質として穀粒の水分量を測定している場合、体積を重量に換算することができる。そのため、流量として、単位時間当たりに供給される穀粒の重量を求めることもできる。 Further, as described above, when the shutter 57 is closed, grains are stored in the space 63, and after a certain amount of grains are stored in the space 63, when the measurement of the components is completed, the shutter 57 is opened to open the grain. Is discharged. Therefore, in a state where the grains are supplied to the grain tank 7, the quality measuring device 50 can measure the flow rate of the grains supplied into the grain tank 7. That is, since the volume of the stored grains is constant, by measuring the time from when the shutter 57 is closed to when the primary storage sensor 65 detects the grains and a certain amount of grains is stored. In addition, the flow rate, which is the volume of grain supplied per unit time, can be measured. The flow rate can be determined by dividing this volume by the measured time. Further, when the moisture content of the grain is measured as the quality, the volume can be converted to the weight. Therefore, the weight of the grain supplied per unit time can be obtained as the flow rate.
 〔穀粒の貯留状態〕
 次に、図2,図4を用いて穀粒タンクにおける穀粒の貯留状態(穀粒の溜まり方)における、穀粒の流量が与える影響について説明する。加えて、穀粒の貯留状態と、穀粒の排出を要する状態(以下、単に排出状態とも称す)の検出との関係について説明する。
(Grain storage state)
Next, the influence of the flow rate of the grains on the state of storing the grains in the grain tank (how the grains are stored) will be described with reference to FIGS. In addition, the relationship between the storage state of kernels and the detection of a state in which kernels need to be discharged (hereinafter, also simply referred to as a discharge state) will be described.
 穀粒タンク7において、穀粒放出装置13は走行機体2(図1参照。以下同様)の前方側に配置され、穀粒は走行機体2の後方側に向かって放出される。穀粒の放出は供給される穀粒の流量に影響を受ける。流量が大きい場合、矢印Iで表すように、穀粒は走行機体2の後方側に向かって遠くまで放出され、流量が小さい場合、矢印IIで表すように、穀粒は流量が大きい場合に比べて近い位置までしか放出されない。そのため、流量が大きい場合、穀粒は穀粒タンク7の後方側から溜まりはじめ、流量が小さい場合、穀粒は穀粒タンク7の前方側から溜まりはじめる。その結果、流量が大きい場合の穀粒の貯留状態20は穀粒タンク7の後方側で穀粒が多く前方側で穀粒が少なくなり、流量が小さい場合の穀粒の貯留状態21は穀粒タンク7の後方側で穀粒が少なく前方側で穀粒が多くなる傾向がある。このような貯留状態のために、コンバインに設けられる各種センサに検出誤差が生じる。以下、モミセンサの誤差及びロードセルの誤差を例に、センサの誤差について説明する。 に お い て In the grain tank 7, the grain discharging device 13 is disposed in front of the traveling machine body 2 (see FIG. 1; the same applies hereinafter), and the grains are ejected toward the rear side of the traveling machine body 2. Grain release is affected by the flow rate of the supplied grain. When the flow rate is large, the kernel is discharged far away toward the rear side of the traveling vehicle 2 as indicated by the arrow I. When the flow rate is small, the kernel is compared with the case where the flow rate is large, as indicated by the arrow II. It is released only to the nearest position. Therefore, when the flow rate is large, the grains start to accumulate from the rear side of the grain tank 7, and when the flow rate is small, the grains start to accumulate from the front side of the grain tank 7. As a result, when the flow rate is large, the grain storage state 20 is such that the number of grains is large at the rear side of the grain tank 7 and the number of kernels is small at the front side. There is a tendency that the grain is small on the rear side of the tank 7 and the grain is large on the front side. Due to such a storage state, detection errors occur in various sensors provided in the combine. Hereinafter, the error of the sensor will be described using the error of the fir sensor and the error of the load cell as examples.
 穀粒タンク7には、穀粒が貯留された量を検出するレベルセンサである1または複数のモミセンサ11が設けられる。モミセンサ11は、例えば接触センサであり、貯留された穀粒がモミセンサ11に到達したことを検出する。モミセンサ11の内、穀粒タンク7の上端部近傍に設けられるモミセンサ11aは、穀粒タンク7内の穀粒が満杯となり、排出を要する状態まで貯留されたことを検出する。例えば、モミセンサ11aが穀粒を検出すると、作業者にその旨が報知され、作業者は、穀粒を排出するための行動に移行する。 The grain tank 7 is provided with one or a plurality of fir sensors 11 which are level sensors for detecting the amount of stored grains. The fir sensor 11 is, for example, a contact sensor, and detects that the stored grain has reached the fir sensor 11. Among the fir sensors 11, a fir sensor 11a provided near the upper end of the grain tank 7 detects that the grains in the grain tank 7 are full and have been stored to a state requiring discharge. For example, when the fir sensor 11a detects a grain, the worker is notified of the fact, and the worker shifts to an action for discharging the grain.
 モミセンサ11は、走行機体2の前後方向の中心よりずれた位置、例えば、穀粒タンク7内の走行機体2の前方側よりに配置される。また、前述のように、穀粒の貯留状態は流量に応じて偏る。そのため、モミセンサ11aが反応して穀粒が満杯状態まで貯留されたことを検出した時の、実際の穀粒タンク7内の穀粒の収量は、流量によって異なる。図4に示すように、穀粒がモミセンサ11aに到達したときの収量は、流量が大きい時の方が流量が小さい時より多くなる。その結果、モミセンサ11aが穀粒を検出した時の穀粒の貯留状態も流量によって異なる。モミセンサ11aが穀粒を検出した際に、穀粒タンク7に貯留された穀粒の収量が満杯状態として想定される収量と異なる場合、排出する穀粒の収量に過不足が生じ、その後乾燥作業等が効率的に行えない等の不具合が生じる場合がある。特に、穀粒タンク7に貯留された穀粒の収量が満杯状態として想定される収量より多くなった場合(例えば、貯留状態20となった状態)、穀粒が穀粒タンク7からあふれたり、穀粒の圧力により穀粒タンク7に設けられる点検扉(図示せず)が開いてしまう場合もある。 The fir sensor 11 is arranged at a position shifted from the center of the traveling machine body 2 in the front-rear direction, for example, from the front side of the traveling machine body 2 in the grain tank 7. Further, as described above, the storage state of the grains is biased according to the flow rate. Therefore, the actual yield of the grains in the grain tank 7 when the fir sensor 11a detects that the grains are stored up to the full state varies depending on the flow rate. As shown in FIG. 4, the yield when the grain reaches the fir sensor 11a is higher when the flow rate is high than when the flow rate is low. As a result, the storage state of the grains when the fir sensor 11a detects the grains also differs depending on the flow rate. When the fir sensor 11a detects a grain, if the yield of the grain stored in the grain tank 7 is different from the yield assumed to be full, the yield of the discharged grain may be excessive or insufficient, and then the drying operation may be performed. And the like may not be performed efficiently. In particular, when the yield of the kernel stored in the kernel tank 7 is larger than the yield assumed as a full state (for example, the state of the storage state 20), the kernel overflows from the kernel tank 7, Inspection doors (not shown) provided in the grain tank 7 may be opened due to the pressure of the grains.
 また、上述のように、貯留された穀粒の重量(収量)は、ロードセル10(図1参照。以下同様)の出力値から算出される。具体的には、あらかじめ、ロードセル10上の穀粒タンク7に穀粒が貯留された際に、貯留された穀粒の重量と、この重量に対するロードセル10の出力値との関係を調べ、マップとして記憶する。このマップにおける穀粒の重量は、穀粒タンク7の重量を考慮して定められる。そして、貯留された穀粒の重量(収量)は、ロードセル10の出力値とマップとから算出される。なお、収量として算出された重量は、穀粒に含まれる水分量に基づいて体積に換算することができる。 As described above, the weight (yield) of the stored grains is calculated from the output value of the load cell 10 (see FIG. 1; the same applies hereinafter). Specifically, when the kernels are stored in the kernel tank 7 on the load cell 10 in advance, the relationship between the weight of the stored kernels and the output value of the load cell 10 with respect to this weight is checked, and a map is obtained. Remember. The weight of the grain in this map is determined in consideration of the weight of the grain tank 7. Then, the weight (yield) of the stored grains is calculated from the output value of the load cell 10 and the map. The weight calculated as the yield can be converted into a volume based on the amount of water contained in the grain.
 ロードセル10から求められる収量も、流量による誤差を内在する。すなわち、ロードセル10は、穀粒タンク7の前後方向の中心に対して偏在している。一般的には、ロードセル10は、穀粒タンク7の前後方向において、中心より前側に配置される。また、上述のように、穀粒タンク7内の穀粒は流量に応じて偏って貯留される。そのため、貯留された穀粒の重心がロードセル10の直上に位置しない場合、ロードセル10から求められる収量に誤差が生じる。 収 量 The yield obtained from the load cell 10 also has an error due to the flow rate. That is, the load cell 10 is unevenly distributed with respect to the center of the grain tank 7 in the front-back direction. Generally, the load cell 10 is disposed forward of the center in the front-rear direction of the grain tank 7. Further, as described above, the grains in the grain tank 7 are stored unevenly in accordance with the flow rate. Therefore, when the center of gravity of the stored grains is not located directly above the load cell 10, an error occurs in the yield obtained from the load cell 10.
 以上のように、特定の収量をモミセンサ11により検出しようとしても、モミセンサ11が穀粒を検出した時点で貯留された穀粒の収量は流量の影響を受ける。そのため、モミセンサ11によって正確な収量の穀粒が貯留されたことを検出することは困難である。同様に、ロードセル10から求められる収量に誤差が生じる。これらに伴い、本実施形態においては、流量に伴う貯留状態を考慮した正確な収量(以下、現在収量とも称す)を求める。また、穀粒を排出することを要する状態(排出状態)、例えば、モミセンサ11が穀粒を検出した際の正確な収量(以下、排出収量とも称す)を求める。 As described above, even if the fir sensor 11 attempts to detect a specific yield, the yield of the stored grains at the time when the fir sensor 11 detects the grains is affected by the flow rate. For this reason, it is difficult for the fir sensor 11 to detect that a grain with an accurate yield is stored. Similarly, an error occurs in the yield obtained from the load cell 10. Accordingly, in the present embodiment, an accurate yield (hereinafter, also referred to as a current yield) in consideration of the storage state accompanying the flow rate is obtained. In addition, a state in which the grain needs to be discharged (discharge state), for example, an accurate yield (hereinafter, also referred to as a discharge yield) when the fir sensor 11 detects the grain is obtained.
 以下、現在収量を求める構成と、排出収量を求める構成とを順に説明する。 構成 Hereinafter, the structure for obtaining the current yield and the structure for obtaining the emission yield will be described in order.
 〔収量の算出〕
 まず、ロードセル10の出力値から収量(現在収量)を算出する構成について、図4~図7を用いて説明する。ここでは、現在収量を算出する構成を収量算出装置12として説明する。ただし、収量の算出は収量算出装置12を用いる場合に限らず、各構成要素を分散して実現しても良いし、任意の構成要素を適宜集めた装置構成を組み合わせても良い。さらに、装置構成によらず、プログラムを実行する等の様々な方法で現在収量の算出を実施しても良い。プログラムを用いる場合、プログラムは、後述の記憶装置23に格納され、後述の制御装置22により実行される。
[Calculation of yield]
First, a configuration for calculating the yield (current yield) from the output value of the load cell 10 will be described with reference to FIGS. Here, a configuration for calculating the current yield will be described as the yield calculation device 12. However, the calculation of the yield is not limited to the case of using the yield calculating device 12, but may be realized by dispersing each component, or may be combined with a device configuration in which arbitrary components are appropriately collected. Further, the present yield may be calculated by various methods such as executing a program, regardless of the device configuration. When a program is used, the program is stored in a storage device 23 described below and executed by a control device 22 described later.
 収量算出装置12は、制御装置(制御部に対応)22と記憶装置23とを備える。制御装置22は、品質計測装置50、ロードセル10及び記憶装置23とデータ通信が可能なように接続される。記憶装置23は、第1マップ24と第2マップ25とが格納される。第1マップ24は、ある特定の流量(第1流量値)で穀粒タンク7に穀粒が貯留された場合に、ロードセル10が出力する出力値(電圧値等。以下、電圧値であるとして説明する)とこの電圧値に対応する収量との関係を示す情報である。同様に、第2マップ25は、第1流量値と異なる特定の流量(第2流量値)で穀粒タンク7に穀粒が貯留された場合に、ロードセル10が出力する電圧値とこの電圧値に対応する収量との関係を示す情報である。品質計測装置50は、穀粒放出装置13から流入する穀粒の流量を計測し、制御装置22に送信する。ロードセル10は電圧値を計測し、出力値として電圧値を制御装置22に出力する。制御装置22は、品質計測装置50から送信された流量を受け取ると共に、ロードセル10から送信された電圧値を受け取る。制御装置22は、第1マップ24と第2マップ25とから、流量を用いて、受け取った電圧値に対応する収量を穀粒タンク7に貯留された穀粒の現在収量として算出する。具体的には、ロードセル10が出力した電圧値に対する第1マップにおける収量と、この電圧値に対する第2マップにおける収量とを、計測された流量、第1流量値、及び第2流量値に基づいて案分することにより現在収量を算出する。制御装置22は、例えば、CPUやECU等のコンピュータ等とすることができる。 The yield calculation device 12 includes a control device (corresponding to a control unit) 22 and a storage device 23. The control device 22 is connected to the quality measurement device 50, the load cell 10, and the storage device 23 so that data communication is possible. The storage device 23 stores a first map 24 and a second map 25. The first map 24 indicates an output value (such as a voltage value) output by the load cell 10 when the kernel is stored in the kernel tank 7 at a specific flow rate (first flow rate value). This is information indicating the relationship between the voltage and the yield corresponding to this voltage value. Similarly, the second map 25 shows the voltage value output by the load cell 10 and the voltage value when the kernel is stored in the kernel tank 7 at a specific flow rate (second flow rate value) different from the first flow rate value. Is information indicating the relationship with the yield corresponding to. The quality measuring device 50 measures the flow rate of the grain flowing from the grain discharging device 13 and transmits the measured flow rate to the control device 22. The load cell 10 measures a voltage value and outputs the voltage value to the control device 22 as an output value. The control device 22 receives the flow rate transmitted from the quality measurement device 50 and the voltage value transmitted from the load cell 10. The control device 22 calculates the yield corresponding to the received voltage value from the first map 24 and the second map 25 as the current yield of the grains stored in the grain tank 7 using the flow rate. Specifically, the yield in the first map for the voltage value output by the load cell 10 and the yield in the second map for this voltage value are determined based on the measured flow rate, the first flow rate value, and the second flow rate value. The current yield is calculated by pro-rata. The control device 22 can be, for example, a computer such as a CPU or an ECU.
 ここで、第1マップや第2マップ等のマップは、上述のように、ロードセル10が出力する電圧値と電圧値に基づいて想定される収量との関係を示す情報であり、穀粒の流量によって決まる。この収量は、ロードセル10が出力する電圧値が大きくなるほど大きくなり、一定の関係を示す。実際に穀粒タンク7に貯留されている穀粒の収量は、穀粒の貯留状態によって決まり、穀粒の貯留状態は供給される穀粒の流量によって決まる。そのため、マップの関係は、流量毎に異なる関係を示し、流量毎に電圧値と収量が一定の関係を示す。その結果、マップは、穀粒の貯留状態が考慮されたものとなる(図7参照)。 Here, the maps such as the first map and the second map are information indicating the relationship between the voltage value output by the load cell 10 and the yield assumed based on the voltage value, as described above, and the flow rate of the kernel Depends on This yield increases as the voltage value output by the load cell 10 increases, indicating a certain relationship. The yield of the grains actually stored in the grain tank 7 is determined by the storage state of the grains, and the storage state of the grains is determined by the flow rate of the supplied grains. Therefore, the relationship of the map shows a different relationship for each flow rate, and shows a constant relationship between the voltage value and the yield for each flow rate. As a result, the map takes into account the state of storage of the grains (see FIG. 7).
 以下、現在収量を算出する具体的な工程例について説明する。 Hereinafter, a specific example of the process for calculating the current yield will be described.
 まず、あらかじめ複数の流量におけるマップを実験的に求める。本実施形態では、第1マップ24と第2マップ25とを求める。第1マップ24は、穀粒タンク7と穀粒搬送機構16と穀粒放出装置13とによって想定される、穀粒が最も遅く供給された場合の流量(最低流量)に対応するマップである。第2マップ25は、穀粒が最も早く供給された場合の流量(最高流量)に対応するマップである(図6のステップ#1)。求められた第1マップ24と第2マップ25とは、記憶装置23に格納される。 First, experimentally obtain maps for a plurality of flow rates in advance. In the present embodiment, a first map 24 and a second map 25 are obtained. The first map 24 is a map corresponding to the flow rate (lowest flow rate) when the kernel is supplied at the latest, which is assumed by the kernel tank 7, the kernel transport mechanism 16, and the kernel discharge device 13. The second map 25 is a map corresponding to the flow rate (the highest flow rate) when the grain is supplied earliest (step # 1 in FIG. 6). The obtained first map 24 and second map 25 are stored in the storage device 23.
 次に、供給される穀粒の流量を品質計測装置50により算出する。流量の算出は、穀粒の貯留中に、品質計測装置50に一定量の穀粒が貯留される毎に行われる。上述のように、流量は、この一定量の穀粒が貯留される時間と貯留された穀粒の量(重量または体積)から測定される。穀粒タンク7に穀粒の貯留を開始してから複数回流量を測定している場合、その時点の流量として、それまでに計測された流量の平均値を求める(図6のステップ#2)。品質計測装置50は、求めた流量を制御装置22に送信する。 Next, the flow rate of the supplied grain is calculated by the quality measuring device 50. The calculation of the flow rate is performed every time a certain amount of grains is stored in the quality measuring device 50 during storage of the grains. As described above, the flow rate is measured from the time during which this fixed amount of grain is stored and the amount (weight or volume) of the stored grain. If the flow rate has been measured a plurality of times since the storage of the grains in the grain tank 7 has been started, an average value of the flow rates measured so far is determined as the flow rate at that time (step # 2 in FIG. 6). . The quality measuring device 50 transmits the obtained flow rate to the control device 22.
 次に、ロードセル10から出力された電圧を取得する(図6のステップ#3)。ロードセル10は、検出した電圧を制御装置22に送信する。 Next, the voltage output from the load cell 10 is obtained (Step # 3 in FIG. 6). The load cell 10 transmits the detected voltage to the control device 22.
 最後に、第1マップ24及び第2マップ25を用い、流量と電圧とに基づいて現在収量を算出する(図6のステップ#4)。以下、具体的に説明する。 Finally, the current yield is calculated using the first map 24 and the second map 25 based on the flow rate and the voltage (step # 4 in FIG. 6). Hereinafter, a specific description will be given.
 第1マップ24は流量がA[m/sec]の場合のマップであり、第2マップ25は流量がB[m/sec]の場合のマップであるとする。品質計測装置50で計測された流量はX[m/sec]、ロードセル10から出力された電圧はV[v]であったとする。この場合の現在収量WX[m]は、式(1)で示すように、電圧V[v]に対応する第1マップ24における収量WA[m]と、電圧Vに対応する第2マップ25における収量WB[m]とを、計測された流量Xに対する第1マップ24の流量A及び第2マップ25の流量Bの比率で案分することにより求める。現在収量WXの算出は、制御装置22によって行われる。
 
  WX=(WA-WB)・(X-B)/(A-B)+WB ・・・(式1)
 
 以降、穀粒タンク7が満杯になる等、収量の計測が不要となるまでステップ#2~ステップ#4に係る工程を繰り返す。
The first map 24 is a map when the flow rate is A [m 3 / sec], and the second map 25 is a map when the flow rate is B [m 3 / sec]. It is assumed that the flow rate measured by the quality measuring device 50 is X [m 3 / sec], and the voltage output from the load cell 10 is V [v]. In this case, the present yield WX [m 3 ] is obtained by, as shown in Expression (1), the yield WA [m 3 ] in the first map 24 corresponding to the voltage V [v] and the second map corresponding to the voltage V. The yield WB [m 3 ] at 25 is obtained by prorating the ratio of the flow rate A of the first map 24 and the flow rate B of the second map 25 to the measured flow rate X. The calculation of the current yield WX is performed by the control device 22.

WX = (WA−WB) · (X−B) / (AB) + WB (Formula 1)

Thereafter, the steps # 2 to # 4 are repeated until the measurement of the yield becomes unnecessary, for example, when the grain tank 7 becomes full.
 以上のように、流量に対応する複数のマップを用い、出力された電圧から流量に基づいて現在収量を求めることができる。そのため、穀粒の貯留状態を考慮して、穀粒タンクに貯留された穀粒の収量を、精度良く求めることができる。 As described above, the current yield can be obtained based on the flow rate from the output voltage using a plurality of maps corresponding to the flow rate. Therefore, the yield of the grains stored in the grain tank can be accurately determined in consideration of the storage state of the grains.
 〔排出収量の算出及び検出〕
 穀粒タンク7は、満杯になったときやその他の穀粒を排出することが必要となる状態(排出状態)になった場合に、穀粒排出装置9を介して穀粒が排出される。排出状態における排出収量を、流量を用いて精度良く算出する。
(Calculation and detection of emission yield)
When the grain tank 7 is full or when it becomes necessary to discharge other grains (discharge state), the grains are discharged via the grain discharge device 9. The discharge yield in the discharge state is accurately calculated using the flow rate.
 以下、図5,図8を用いて、排出収量を算出し、排出収量となることを検出する構成について説明する。 Hereinafter, a configuration for calculating the emission yield and detecting that the emission yield is reached will be described with reference to FIGS. 5 and 8.
 まず、満杯状態等の排出状態になった際の収量(排出収量)と流量との関係を、あらかじめ実験的に求めておく。具体的には、異なる2つの流量における排出収量を実験的に求める。2つの流量は、上述のように想定される最高の流量と最低の流量とすることが好ましい。そして、2つの流量における排出収量から、流量と排出収量の関係を線型的に求める。具体的には、2点における流量と収量から、流量と収量との関係を示す一次関数を求める(図8のステップ#11)。求められた線型関数は、排出関数27として記憶装置23に格納される。 First, the relationship between the yield (discharge yield) and the flow rate in the case of a discharge state such as a full state is determined experimentally in advance. Specifically, the emission yields at two different flow rates are experimentally determined. The two flow rates are preferably the highest flow rate and the lowest flow rate assumed as described above. Then, the relationship between the flow rate and the discharge yield is linearly determined from the discharge yields at the two flow rates. Specifically, a linear function indicating the relationship between the flow rate and the yield is obtained from the flow rate and the yield at two points (step # 11 in FIG. 8). The obtained linear function is stored in the storage device 23 as the discharge function 27.
 次に、供給される穀粒の流量を品質計測装置50により算出する。流量の算出は、穀粒の貯留中に、品質計測装置50に一定量の穀粒が貯留される毎に行われる。上述のように、流量は、この一定量の穀粒が貯留される時間と貯留された穀粒の量(重量または体積)により算出される。穀粒タンク7に穀粒の貯留を開始してから、流量の測定を複数回行っている場合、その時点の流量として、それまでに計測された流量の平均値を求める(図8のステップ#12)。品質計測装置50は、求めた流量を制御装置22に送信する。 Next, the flow rate of the supplied grain is calculated by the quality measuring device 50. The calculation of the flow rate is performed every time a certain amount of grains is stored in the quality measuring device 50 during storage of the grains. As described above, the flow rate is calculated based on the time during which the fixed amount of grains is stored and the amount (weight or volume) of the stored grains. If the measurement of the flow rate has been performed a plurality of times since the storage of the grains in the grain tank 7 has been started, an average value of the flow rates measured so far is obtained as the flow rate at that time (step # in FIG. 12). The quality measuring device 50 transmits the obtained flow rate to the control device 22.
 次に、排出関数27から、算出された流量における排出収量26を求める。具体的には、排出関数27に対して、算出された流量を導入して求められた収量を排出収量26とする(図8のステップ#13)。制御装置22は排出収量26を算出し、記憶装置23に格納する。 Next, the emission yield 26 at the calculated flow rate is obtained from the emission function 27. Specifically, the yield obtained by introducing the calculated flow rate into the emission function 27 is set as the emission yield 26 (step # 13 in FIG. 8). The control device 22 calculates the emission yield 26 and stores it in the storage device 23.
 次に、図6等を用いて説明した方法で、算出した収量から現在収量を算出する(図8のステップ#14)。排出収量26を求めることにより、モミセンサ11等が穀粒を検出した時点の、流量を考慮した収量を把握することが可能となる。そのため、穀粒が偏って貯留されてモミセンサ11で穀粒を検出した時に想定以上に穀粒が貯留されていることが予測でき、現在収量を把握することと合わせて、穀粒が穀粒タンク7からあふれる等の事態を回避することができる。 Next, the current yield is calculated from the calculated yield by the method described with reference to FIG. 6 and the like (step # 14 in FIG. 8). By obtaining the discharge yield 26, it is possible to grasp the yield in consideration of the flow rate when the fir sensor 11 or the like detects a grain. Therefore, when the grains are stored unevenly and the grains are detected by the fir sensor 11, it can be predicted that the grains are stored more than expected. 7 can be avoided.
 次に、算出した収量が排出収量26と一致するか否かを判定する(図8のステップ#15)。具体的には、制御装置22は、算出された現在収量と記憶装置23に格納される排出収量26とを比較する。 Next, it is determined whether or not the calculated yield matches the emission yield 26 (step # 15 in FIG. 8). Specifically, the control device 22 compares the calculated current yield with the emission yield 26 stored in the storage device 23.
 現在収量が排出収量26と一致する場合、穀粒タンク7に貯留される穀粒が、排出状態となったと判断され、その旨を報知し、処理を終了する(図8のステップ#16)。具体的には、制御装置22は、運転部5(図1参照)に設けられたランプ等の報知装置29に穀粒タンク7が満杯等の排出状態となった旨の報知をさせる。この報知を確認することにより、作業者は、穀粒を排出する必要があることを認識し、作物の収穫を停止し、穀粒の排出作業等に移行することができる。 If the current yield is equal to the discharge yield 26, it is determined that the grains stored in the grain tank 7 are in the discharge state, and that is notified, and the process is terminated (step # 16 in FIG. 8). More specifically, the control device 22 causes a notification device 29 such as a lamp provided in the operation unit 5 (see FIG. 1) to notify that the grain tank 7 has been discharged such as being full. By confirming this notification, the worker recognizes that the grain needs to be discharged, and can stop harvesting the crop and shift to a grain discharging operation or the like.
 取得した収量が排出収量26と一致しない場合、流量を算出する工程(図8のステップ#12)に処理を戻すこともできるが、排出状態となるまでに必要な収量を、空収量として算出しても良い(図8のステップ#17)。具体的には、制御装置22は、記憶装置23に格納される排出収量26と現在収量との差を空収量として算出する。 If the obtained yield does not coincide with the discharge yield 26, the process can be returned to the step of calculating the flow rate (step # 12 in FIG. 8), but the yield required before the discharge state is calculated as the empty yield. (Step # 17 in FIG. 8). Specifically, the control device 22 calculates the difference between the discharge yield 26 stored in the storage device 23 and the current yield as an empty yield.
 最後に、空収量を表示すると共に、流量を算出する工程(図8のステップ#12)に処理を戻す(図8のステップ#18)。具体的には、制御装置22は、運転部5(図1参照)に設けられた液晶パネル等の表示装置28に算出した空収量を示す表示をさせる。この表示により、作業者は排出が必要となるタイミングを計りながら作業を行うことができる。 Finally, the process returns to the step of calculating the flow rate (step # 12 in FIG. 8) while displaying the empty yield (step # 18 in FIG. 8). Specifically, the control device 22 causes the display device 28 such as a liquid crystal panel provided in the driving section 5 (see FIG. 1) to display a display indicating the calculated empty yield. With this display, the operator can work while measuring the timing at which the discharge is required.
 以上のように、現在までの平均流量に基づいて穀粒の排出を要する状態に対応する排出収量を求めると共に、平均流量に応じて現在収量を算出する。排出収量は平均流量に基づいて求めるため、排出収量は穀粒の貯留状態に対応した値となる。また、現在収量も平均流量から求められた穀粒タンク7に収容されている穀粒の正確な値である。そのため、供給される穀粒の流量の影響で、穀粒タンク7内に穀粒が偏って貯留され、モミセンサ11等による貯留状態の確認が適切に行われない場合であっても(図4参照)、正確な現在収量により正確に穀粒の排出を要する状態を検出することができ、適切なタイミングで貯留された穀粒を排出することができる。 As described above, based on the average flow rate up to the present time, the emission yield corresponding to the state requiring the discharge of the kernel is obtained, and the current yield is calculated according to the average flow rate. Since the emission yield is obtained based on the average flow rate, the emission yield is a value corresponding to the state of storage of the grain. The current yield is also an accurate value of the grains stored in the grain tank 7 determined from the average flow rate. Therefore, even in the case where the grains are unevenly stored in the grain tank 7 due to the influence of the flow rate of the supplied grains, and the storage state is not properly confirmed by the fir sensor 11 or the like (see FIG. 4). ), It is possible to accurately detect a state in which kernel discharge is required based on an accurate current yield, and discharge stored kernels at an appropriate timing.
 なお、上記説明では空収量を算出し、空収量のみを表示したが、さらに、排出状態となるまでの時間(穀粒排出時間とも称す)や、排出状態となるまでの走行距離(穀粒排出距離とも称す)を求め、表示しても良い。 In the above description, the empty yield is calculated and only the empty yield is displayed. However, the time until the discharge state (also referred to as the kernel discharge time) and the travel distance until the discharge state (the kernel discharge May be obtained and displayed.
 例えば、空収量を表示した後、まず、ここまでと同じペースで穀粒が貯留され続けた場合に、排出収量となるまでの時間を穀粒排出時間として算出する(図8のステップ#19)。具体的には、穀粒の貯留を開始してからの経過時間を継続的に計測しておく。そして、制御装置22は、現在収量を経過時間で除することにより、穀粒の貯留を開始してからの平均貯留速度を算出する。さらに、制御装置22は、空収量を平均貯留速度で除することにより、排出収量となるまでの穀粒排出時間を算出する。 For example, after displaying the empty yield, first, when the kernels are continuously stored at the same pace as above, the time until the discharge yield is calculated as the kernel discharge time (step # 19 in FIG. 8). . Specifically, the elapsed time from the start of storage of grains is continuously measured. Then, the control device 22 calculates the average storage speed since the storage of the kernels by dividing the current yield by the elapsed time. Further, the control device 22 calculates the kernel discharge time until the discharge yield by dividing the empty yield by the average storage speed.
 次に、算出された穀粒排出時間を表示する。なお、後述の穀粒排出距離を算出しない場合は、穀粒排出時間を表示した後、流量を算出する工程(図8のステップ#12)に処理を戻しても良い(図8のステップ#20)。具体的には、制御装置22は、運転部5(図1参照)に設けられた液晶パネル等の表示装置28に算出した穀粒排出時間を表示させる。表示装置28は、空収量を表示したものと同じでも良いし、異なるものでも良く、空収量であるのか穀粒排出時間であるのかを区別できれば良く、これらを同時に表示しても良い。 Next, the calculated grain discharge time is displayed. If the grain discharge distance described later is not calculated, the process may return to the step of calculating the flow rate (step # 12 in FIG. 8) after displaying the grain discharge time (step # 20 in FIG. 8). ). Specifically, the control device 22 causes the display device 28 such as a liquid crystal panel provided in the operation unit 5 (see FIG. 1) to display the calculated grain discharge time. The display device 28 may be the same as the one displaying the empty yield, or may be a different one, as long as it can distinguish between the empty yield and the kernel discharge time, and these may be displayed simultaneously.
 次に、排出収量となるまでの走行距離を穀粒排出距離として算出する(図8のステップ#21)。具体的には、穀粒の貯留を開始してからの走行距離を継続的に計測しておき、制御装置22は走行距離と経過時間とから平均走行速度を算出する。そして、制御装置22は、平均走行速度に穀粒排出時間を乗じて穀粒排出距離する。 Next, the travel distance until the emission yield is reached is calculated as the kernel emission distance (step # 21 in FIG. 8). Specifically, the traveling distance from the start of storing the grains is continuously measured, and the control device 22 calculates the average traveling speed from the traveling distance and the elapsed time. Then, the control device 22 multiplies the average traveling speed by the kernel discharge time to determine the kernel discharge distance.
 最後に、穀粒排出距離を表示すると共に、流量を算出する工程(図8のステップ#12)に処理を戻す(図8のステップ#22)。具体的には、制御装置22は、運転部5(図1参照)に設けられた液晶パネル等の表示装置28に算出した穀粒排出距離を表示させる。表示装置28は、空収量や穀粒排出時間を表示したものと共通でも良いし、異なるものでも良く、空収量であるのか穀粒排出時間であるのか穀粒排出距離であるのかを区別できる状態で表示されれば良く、これらを同時に表示しても良い。 Finally, the process returns to the step of displaying the grain discharge distance and calculating the flow rate (step # 12 in FIG. 8) (step # 22 in FIG. 8). Specifically, the control device 22 causes the display device 28 such as a liquid crystal panel provided in the driving unit 5 (see FIG. 1) to display the calculated grain discharge distance. The display device 28 may be the same as the one that displays the empty yield or the grain discharge time, or may be different, and can distinguish between the empty yield, the grain discharge time, and the grain discharge distance. And these may be displayed simultaneously.
 なお、穀粒排出時間を表示した後、穀粒排出距離を表示する例を説明したが、いずれか一方のみを表示される構成とすることもできる。 Although the example in which the grain discharge time is displayed and then the grain discharge distance is displayed has been described, a configuration in which only one of them is displayed may be employed.
 このように、排出収量となるまでの空収量、穀粒排出時間、及び穀粒排出距離の内の少なくとも1つを算出して表示することにより、作業者は排出状態となることを正確に確認することができる。図4に示すように、モミセンサ11により穀粒が満杯等になることを検出する場合、穀粒の貯留状態は流量に伴って偏り、モミセンサ11では正確な収量(満杯状態)を検出することができない。この場合であっても、モミセンサ11に頼らずに、正確な現在の収量と、空収量、穀粒排出時間、穀粒排出距離の少なくともいずれかを用いて、作業者は排出状態となるタイミングを確認することができる。さらに、空収量、穀粒排出時間、穀粒排出距離により、排出を行うまでの作業計画を容易に立てて、効率的に作業を行うことが可能となる。 As described above, by calculating and displaying at least one of the empty yield until the discharge yield, the grain discharge time, and the grain discharge distance, the operator can accurately confirm that the discharge state is attained. can do. As shown in FIG. 4, when the fir sensor 11 detects that a grain is full or the like, the storage state of the grain is biased with the flow rate, and the fir sensor 11 may detect an accurate yield (full state). Can not. Even in this case, without relying on the fir sensor 11, the operator uses the accurate current yield and / or the empty yield, the grain discharge time, and / or the grain discharge distance to determine the timing of the discharge state. You can check. Further, the work plan until the discharge is performed can be easily set and the work can be efficiently performed based on the empty yield, the grain discharge time, and the grain discharge distance.
〔別実施形態〕
 本発明は、上記実施形態において、下記の別実施形態を適宜組み合わせて実施することができる。
[Another embodiment]
The present invention can be implemented by appropriately combining the following embodiments with the above embodiments.
(1)
 上記実施形態では、品質計測装置50を用いて流量を計測している。そのため、流量の計測と成分(品質)の測定と、1つの装置を用いて行うことができ、効率的に流量の計測と成分の測定とを行うことができる。ただし、専用の流量計測装置と専用の品質計測装置50とを、それぞれ個別に穀粒タンク7内等に設けても良い。少なくとも、専用の流量計測装置を設ければ良い。
(1)
In the above embodiment, the flow rate is measured using the quality measuring device 50. Therefore, the measurement of the flow rate and the measurement of the component (quality) can be performed using one device, and the measurement of the flow rate and the measurement of the component can be performed efficiently. However, the dedicated flow rate measuring device and the dedicated quality measuring device 50 may be individually provided in the grain tank 7 or the like. At least, a dedicated flow measurement device may be provided.
 また、品質計測装置50にて穀粒の水分量を測定する場合、流量及び収量を、水分量を換算して重量から体積に係る値に変換して用いることができる。体積を用いて収量を処理することができるため、穀粒タンク7内の穀粒の収量をより的確に判断することができる。逆に、流量計測装置を独立して設ける場合、品質計測装置50を設けない構成とすることもできる。この場合は、流量及び収量を重量として処理する。 When measuring the water content of the grain with the quality measuring device 50, the flow rate and the yield can be converted from the water content to a value relating to the volume and used. Since the yield can be processed using the volume, the yield of the grains in the grain tank 7 can be more accurately determined. Conversely, when the flow rate measuring device is provided independently, a configuration without the quality measuring device 50 may be adopted. In this case, the flow rate and the yield are treated as weight.
(2)
 上記実施形態では、ロードセル10を用いて収量を計測したが、他の収量センサを用いて収量を測定することもできる。この場合、電圧以外のパラメータで収量を計測し、マップは収量とそのパラメータとの関係を示すものとする。
(2)
In the above embodiment, the yield was measured using the load cell 10, but the yield can be measured using another yield sensor. In this case, the yield is measured using parameters other than the voltage, and the map indicates the relationship between the yield and the parameter.
(3)
 上記実施形態では、穀粒の排出を要する状態として、満杯状態を例に説明したが、穀粒の排出を要する状態はあらかじめ定められた収量としても良いし、外部から入力された収量でも良い。例えば、外部と通信する通信部がさらに設けられ、通信部が外部の乾燥機や管理サーバ等の外部機器と通信し、外部機器から穀粒の排出を要する状態となる収量を受信しても良い。
(3)
In the above-described embodiment, the full state is described as an example of the state in which the kernel needs to be discharged, but the state in which the kernel needs to be discharged may be a predetermined yield or a yield input from the outside. For example, a communication unit that communicates with the outside may be further provided, and the communication unit may communicate with an external device such as an external dryer or a management server, and may receive the yield from which the kernel needs to be discharged from the external device. .
 乾燥機は、穀粒を一定の収量毎に乾燥させると効率的である。そのため、乾燥機は、必要な穀粒の収量を排出収量としてコンバインに伝え、コンバインは、穀粒タンク7内にその収量が貯留された時点で穀粒を排出して乾燥機に持ち込む。排出収量の検出は、モミセンサ11の内、排出収量に対応するモミセンサ11が穀粒を検出することにより行うことができる。あるいは、この排出収量に対する空収量、穀粒排出時間及び穀粒排出距離の少なくともいずれかを用いて排出収量を検出することもできる。 Driers are efficient when grains are dried at a certain yield. For this reason, the dryer transmits the required grain yield to the combine as a discharge yield, and the combine discharges the grain when the yield is stored in the grain tank 7 and brings the grain to the dryer. The detection of the discharge yield can be performed by detecting a grain by the fir sensor 11 corresponding to the discharge yield among the fir sensors 11. Alternatively, the discharge yield can be detected using at least one of the empty yield, the grain discharge time, and the grain discharge distance with respect to the discharge yield.
 このように、乾燥機等の外部機器が効率的に処理を行うことができる穀粒の収量を排出収量としてコンバインに送信し、コンバインはその排出収量を正確に判定する。作業者は、貯留された穀粒がこの排出収量に到達した時点で穀粒を排出することにより、乾燥機等の外部機器を効率的に動作させることができる。 Thus, the grain yield that can be efficiently processed by an external device such as a dryer is transmitted to the combine as a discharge yield, and the combine accurately determines the discharge yield. The worker discharges the grains when the stored grains reach this discharge yield, so that external devices such as a dryer can be operated efficiently.
 なお、水分量に応じた乾燥機が複数あり、管理サーバがこれらの乾燥機を管理する場合がある。この場合、管理サーバは、水分量とその水分量の穀粒を乾燥するのに適した収量とをひも付けてコンバインに送信する。コンバインまたは作業者は、この情報を受信し、自己が貯留している穀粒の水分量にひも付けられた収量(排出収量)が貯留されることを判定する。これにより、水分量に応じた複数の乾燥機が稼働している場合であっても、その水分量に応じた排出収量の穀粒を正確に乾燥機に搬送することができる In addition, there are a plurality of dryers according to the water content, and the management server may manage these dryers. In this case, the management server links the amount of water and the yield suitable for drying the grain with the amount of water to the combine server and transmits the resultant to the combine. The combiner or the worker receives this information and determines that the yield (discharge yield) associated with the water content of the grain stored therein is stored. Thereby, even when a plurality of dryers according to the amount of moisture are operating, it is possible to accurately transport the grains having a discharge yield according to the amount of moisture to the dryer.
(4)
 コンバインは自動走行を行うことができ、この場合、収穫状態から穀粒排出状態への移行も自動制御により行うことができる。例えば、図9に示すように、コンバインが、自動走行によって圃場71の作物を収穫する場合、コンバインは、排出収量となったことを検出することによって収穫作業を中止し、圃場71の周囲の畔際等に停車された運搬車72(モミ車)等の近くに移動し、貯留された穀粒を運搬車72に排出する。地点PAにおいて、穀粒排出距離がLであったとし、排出収量まで穀粒を貯留して距離Lだけコンバインが移動すると、コンバインは地点PBに到達するとする。図9のような位置関係となった場合、地点PBでコンバインが収穫を中止し、運搬車72まで移動しようとすると、地点PBから後退する等の必要が生じる。この際、コンバインは、新たな収穫作業を行わず、地点PAから直接運搬車72に向かうと(走行軌跡D)、効率的に穀粒の排出作業を行うことができる。上記実施形態において、穀粒排出距離を算出することにより、コンバインは、自動走行において、効率的に穀粒の排出作業を行うことのできる走行軌跡Dを走行することができる。
(4)
The combine can run automatically, and in this case, the transition from the harvesting state to the grain discharging state can also be performed by automatic control. For example, as illustrated in FIG. 9, when the combine harvests the crop in the field 71 by the automatic traveling, the combine stops the harvesting operation by detecting that the discharge yield has been reached, and stops the harvesting around the field 71. The vehicle moves to a position near a transport vehicle 72 (fir wheel) that is stopped and the like, and discharges the stored grains to the transport vehicle 72. At the point PA, it is assumed that the grain discharge distance is L, the grain is stored until the discharge yield, and the combine moves by the distance L and the combine reaches the point PB. In the case of the positional relationship shown in FIG. 9, when the combine stops harvesting at the point PB and tries to move to the transport vehicle 72, it is necessary to retreat from the point PB. At this time, if the combine goes directly from the point PA to the transport vehicle 72 (traveling locus D) without performing a new harvesting operation, the combine can efficiently perform the grain discharging operation. In the above embodiment, by calculating the grain discharge distance, the combine can travel on the traveling trajectory D that can efficiently perform the grain discharge work in automatic traveling.
 上記実施形態では、コンバイン70及び収量算出方法について説明した。上記実施形態における各機能部を収量算出システムとして構成することも可能である。係る場合、収量算出システムは、脱穀された穀粒が供給されて貯留されるコンバインの穀粒タンクにおける前記穀粒の現在収量を算出する収量算出システムであって、前記穀粒タンクに供給される前記穀粒の流量を測定する流量センサと、前記穀粒タンクの重量に基づく出力値を出力する収量センサと、前記流量及び前記出力値に基づいて前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する制御部とを備えるように構成することが可能である。 In the above embodiment, the combine 70 and the yield calculation method have been described. Each functional unit in the above embodiment can be configured as a yield calculation system. In such a case, the yield calculation system is a yield calculation system that calculates a current yield of the grain in a combine grain tank in which the threshed grain is supplied and stored, and is supplied to the grain tank. A flow rate sensor that measures the flow rate of the grain, a yield sensor that outputs an output value based on the weight of the grain tank, and the grain stored in the grain tank based on the flow rate and the output value. And a control unit for calculating the current yield of the above.
 また、上記実施形態における各機能部をコンピュータに実現させるための収量算出プログラムとして構成することも可能である。係る場合、収量算出プログラムは、脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記出力値によって前記穀粒タンクに貯留されている前記穀粒の現在収量を算出するプログラムとして構成され、特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップをあらかじめ求める機能と、前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップをあらかじめ求める機能と、前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、前記収量センサから出力された前記出力値を取得する機能と、前記第1流量値及び前記第2流量値に対する前記流量の比率に応じて、前記出力値に対する前記第1マップにおける前記収量及び前記出力値に対する前記第2マップにおける前記収量を案分して前記現在収量を算出する機能と、をコンピュータに実現させるように構成することが可能である。 Further, it is also possible to configure as a yield calculation program for causing a computer to realize each functional unit in the above embodiment. In such a case, the yield calculation program is a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, wherein the output value is The output value and the kernel tank when the kernel is stored in the kernel tank at a specific first flow rate value, configured as a program for calculating the current yield of the kernel stored in the kernel tank. A function for previously obtaining a first map indicating a relationship with the yield of the kernel stored in the case, and storing the kernel in the kernel tank at a specific second flow value larger than the first flow value A function for previously obtaining a second map indicating a relationship between the output value and the yield of the kernel stored in the kernel tank; and measuring a flow rate of the kernel supplied to the kernel tank. A function of obtaining the output value output from the yield sensor, and a ratio of the flow rate to the first flow rate value and the second flow rate value, in the first map for the output value. The computer may be configured to realize the function of calculating the current yield by dividing the yield in the second map with respect to the yield and the output value.
 また、このような収量算出プログラムを、記録媒体に記録するように構成することも可能である。 Furthermore, such a yield calculation program can be configured to be recorded on a recording medium.
 更に、穀粒排出収量算出システムとして構成することも可能である。係る場合、穀粒排出収量算出システムは、脱穀された穀粒が供給されて貯留されるコンバインの穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出システムであって、前記穀粒タンクに供給される前記穀粒の流量を測定する流量センサと、前記流量に基づいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する制御部とを備えるように構成することが可能である。 Furthermore, the system can be configured as a kernel emission yield calculation system. In such a case, the kernel discharge yield calculation system is stored in the kernel tank in a discharge state in which it is necessary to discharge the kernel from a kernel tank of a combine in which the threshed kernel is supplied and stored. A grain discharge yield calculation system for calculating the yield of the grain, wherein the flow rate sensor measures a flow rate of the grain supplied to the grain tank, and the grain tank based on the flow rate And a control unit that calculates a discharge yield of the kernel stored in the kernel tank in a discharge state in which the kernel needs to be discharged from the tank.
 また、上記実施形態における各機能部をコンピュータに実現させるための穀粒排出収量算出プログラムとして構成することも可能である。係る場合、穀粒排出収量算出プログラムは、脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出プログラムであって、前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、前記流量に基づいて前記排出収量を算出する機能と、をコンピュータに実現させるように構成することが可能である。 Further, it is also possible to configure a kernel discharge yield calculation program for causing a computer to realize each functional unit in the above embodiment. In such a case, the grain discharge yield calculation program is a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank. A kernel discharge yield calculation program for calculating a discharge yield of the kernel stored in the kernel tank in a discharge state in which it is necessary to discharge the kernel from the kernel tank, wherein the kernel discharge yield calculation program supplies the kernel to the kernel tank. The function of measuring the flow rate of the grain and the function of calculating the discharge yield based on the flow rate can be configured to be realized by a computer.
 また、このような穀粒排出収量算出プログラムを、記録媒体に記録するように構成することも可能である。 Further, such a kernel discharge yield calculation program can be configured to be recorded on a recording medium.
4-2.第2の実施形態
 以下、本発明に係るコンバインの一例として、普通型コンバインについて図面に基づいて説明する。
4-2. Second Embodiment Hereinafter, as an example of a combine according to the present invention, an ordinary combine will be described with reference to the drawings.
 この実施形態では、機体の前後方向は、作業状態における機体進行方向に沿って定義されており、図10に符号(F)で示す方向が機体前側、符号(B)で示す方向が機体後側である。機体の左右方向の定義は、機体前進方向視で見た状態で左右が定義されている。 In this embodiment, the longitudinal direction of the fuselage is defined along the fuselage advancing direction in the working state, and the direction indicated by the symbol (F) in FIG. 10 is the front side of the aircraft, and the direction indicated by the symbol (B) is the rear side of the aircraft. It is. The definition of the left-right direction of the body is defined as left and right as viewed from the forward direction of the body.
 図10に示すように、このコンバインは、左右一対のクローラ走行装置201によって自走する走行機体202の前方に、植立穀稈を刈り取る刈取部203が配置されている。走行機体202の前部右側に、キャビンにて周囲が覆われた運転部204が配置されている。運転部204の後方には、刈取部203にて刈り取られた穀稈を脱穀処理する脱穀装置205が配置されている。脱穀装置205の横側方には穀粒タンク207が配置され、脱穀装置205と穀粒タンク207との間に脱穀装置205から穀粒タンク207に穀粒を搬送する穀粒搬送装置208が配置されている。刈取部203で刈り取られた刈取穀稈の全稈を脱穀装置205に投入する刈取搬送部203Aが、運転部204の左側方に配置されている。穀粒タンク207は機体右側に位置し、脱穀装置205は機体左側に位置している。運転部204の下方にエンジン200Eが備えられている。走行機体202の後部から穀粒タンク207に貯留された穀粒を機外に排出する穀粒排出装置209が立設されている。 刈 As shown in FIG. 10, in this combine, a cutting unit 203 that cuts planted grain culms is disposed in front of a traveling machine body 202 that is self-propelled by a pair of left and right crawler traveling devices 201. A driving unit 204 whose periphery is covered by a cabin is disposed on the front right side of the traveling body 202. A threshing device 205 for threshing the grain stalks cut by the cutting unit 203 is disposed behind the operation unit 204. A grain tank 207 is arranged laterally of the threshing device 205, and a grain transport device 208 for transporting grains from the threshing device 205 to the grain tank 207 is arranged between the threshing device 205 and the grain tank 207. Have been. A harvesting and transporting unit 203 </ b> A that inputs all the culms of the harvested grain culms that have been harvested by the reaping unit 203 to the threshing device 205 is disposed on the left side of the operation unit 204. The grain tank 207 is located on the right side of the fuselage, and the threshing device 205 is located on the left side of the fuselage. An engine 200E is provided below the operation unit 204. A grain discharging device 209 that discharges the grains stored in the grain tank 207 from the rear of the traveling machine body 202 to the outside of the machine is provided upright.
 図11、12、13に示すように、穀粒タンク207の内部における上部(前壁の上部)に、穀粒タンク207に投入される穀粒の流量を測定する流量測定手段200GVが設けられている。流量測定手段200GVは、筒状の測定容器240を有する。測定容器240は、穀粒タンク207の内部に入り込んでいる穀粒搬送装置208の排出部280の下方に位置する。排出部280に配置された回転式の送り出し羽根282によって掻き出される穀粒は、排出部280に形成された投入口283を通じて穀粒タンク207に放出される。さらに、排出部280を構成する筒状体の下面領域には、パンチングメタルなどの多孔材で覆われた開口281が形成されている。送り出し羽根282によって掻き出される穀粒の一部は、この開口281を通じて落下する。測定容器240の上側縁部は、開口281から落ちてくる穀粒を受け取る受け入れ口241として機能する。つまり、穀粒搬送装置208のスクリューコンベアによって排出部280まで搬送されてきた穀粒は、スクリューコンベアと連動回転する送り出し羽根282の掻き出しにより、投入口283を通じて穀粒タンク207に投入されるとともに、その一部は、開口281を通じて測定容器240の受け入れ口241に投入される。 As shown in FIGS. 11, 12 and 13, a flow rate measuring unit 200 GV for measuring the flow rate of the grains to be supplied to the grain tank 207 is provided at an upper part (upper part of the front wall) inside the grain tank 207. I have. The flow measuring means 200GV has a cylindrical measuring container 240. The measurement container 240 is located below the discharge portion 280 of the grain transport device 208 that has entered the inside of the grain tank 207. The grains scraped out by the rotary delivery blades 282 arranged in the discharge section 280 are discharged to the grain tank 207 through an inlet 283 formed in the discharge section 280. Further, an opening 281 covered with a porous material such as punching metal is formed in a lower surface region of the cylindrical body that forms the discharge unit 280. A part of the grain scraped out by the delivery blade 282 falls through the opening 281. The upper edge of the measurement container 240 functions as a receiving port 241 for receiving the grains falling from the opening 281. In other words, the grains transported to the discharge unit 280 by the screw conveyor of the grain transport device 208 are thrown into the grain tank 207 through the inlet 283 by scraping out the delivery blades 282 that rotate in conjunction with the screw conveyor, A part thereof is put into the receiving port 241 of the measuring container 240 through the opening 281.
 測定容器240は、穀粒搬送装置208から穀粒タンク207に投入される穀粒の一部を受け入れて一時的に貯留する一時貯留部として機能する。測定容器240に一定量の穀粒が貯留される時間を測定し、この測定時間に基づいて、穀粒が測定容器240に流入する流量を算出することができる。この算出された流量から、コンバインの走行距離当たりの収穫穀粒量、つまり単位区画当たりの収量を求めることも可能である。測定のために測定容器240に一時的に貯留された穀粒は、測定後に測定容器240の下縁である排出口242から排出され、穀粒タンク207に貯留される。 The measurement container 240 functions as a temporary storage unit that receives a part of the grain fed from the grain transport device 208 to the grain tank 207 and temporarily stores the grain. The time during which a certain amount of grains is stored in the measurement container 240 is measured, and the flow rate of the grains flowing into the measurement container 240 can be calculated based on the measurement time. From the calculated flow rate, it is also possible to obtain the amount of harvested grains per traveling distance of the combine, that is, the yield per unit block. The grains temporarily stored in the measurement container 240 for measurement are discharged from the outlet 242 at the lower edge of the measurement container 240 after the measurement, and stored in the kernel tank 207.
 測定容器240の下縁から下方領域は、測定容器240より大きな断面積をもって下方に延びているスカート部243によって覆われている。このスカート部243の下側開口244は、穀粒タンク207の底部に向き合っている。このスカート部243の側壁は、穀粒タンク207に貯留されている穀粒が、その増加とともに測定容器240の排出口242から測定容器240の内部に侵入することを防いでいる。これにより、測定容器240から排出された穀粒の貯留スペースが確保されるので、流量測定手段200GVによる測定回数が十分に確保される。 下方 A lower region from the lower edge of the measurement container 240 is covered by a skirt portion 243 extending downward with a larger sectional area than the measurement container 240. The lower opening 244 of the skirt 243 faces the bottom of the grain tank 207. The side wall of the skirt portion 243 prevents the grains stored in the grain tank 207 from entering the inside of the measurement container 240 from the discharge port 242 of the measurement container 240 with the increase. Thereby, a storage space for the grains discharged from the measurement container 240 is secured, so that the number of times of measurement by the flow rate measuring means 200GV is sufficiently secured.
 図14に模式的に示されているように、一時貯留部としての測定容器240は、その内部の上下方向に貫通する上下向き通路に、この通路を閉鎖する閉位置と、この通路を開放する開位置とに位置変更可能なシャッタ200STを備えている。シャッタ200STの位置変更は、電動モータ200M1の駆動力により行われる。シャッタ200STを閉位置に切り換えている状態では、受け入れ口241から受け入れられた穀粒がシャッタ200STによって受止められ、シャッタ200STの上方に穀粒が一時的に貯留される。この一時的な穀粒の貯留が、一定量に達したことは、第1貯留センサ291によって検出される。穀粒の貯留が、一定量に達すると、シャッタ200STが閉位置に切り替えられて、一時的に貯留している穀粒が、排出口242を通じて、スカート部243の内部に排出される。測定容器240において一定量に穀粒が貯留される時間を計測することにより、収穫穀粒の流量(時間当たり収量)が算出される。 As schematically shown in FIG. 14, the measurement container 240 as a temporary storage unit has a vertical passage penetrating the inside thereof in a vertical direction, a closed position for closing this passage, and opening this passage. A shutter 200ST that can change the position between the open position and the open position is provided. The position change of the shutter 200ST is performed by the driving force of the electric motor 200M1. When the shutter 200ST is switched to the closed position, the grains received from the receiving port 241 are received by the shutter 200ST, and the grains are temporarily stored above the shutter 200ST. The first storage sensor 291 detects that the temporary storage of the grain has reached a certain amount. When the storage of the grains reaches a certain amount, the shutter 200ST is switched to the closed position, and the temporarily stored grains are discharged into the skirt portion 243 through the discharge port 242. By measuring the time during which the kernel is stored in a fixed amount in the measurement container 240, the flow rate (yield per hour) of the harvested kernel is calculated.
 この実施形態では、測定容器240には、測定容器240に一時的に貯留された穀粒の成分値を測定する成分値センサ293が備えられている。成分値センサ293は、例えば、測定容器240に一時的に貯留されている穀粒に向けて光を照射し、穀粒から得られた光に基づいて、分光分析手法によって穀粒の水分やタンパク質量などの成分量を測定するために用いられる。 In this embodiment, the measurement container 240 is provided with a component value sensor 293 for measuring the component value of the grain temporarily stored in the measurement container 240. The component value sensor 293 irradiates, for example, light to the grain temporarily stored in the measurement container 240 and, based on the light obtained from the grain, analyzes the moisture and protein of the grain by a spectroscopic analysis method. Used to measure the amount of a component, such as an amount.
 図14には、このコンバインの制御系における不正流入検知と可能な穀粒流量測定と穀粒成分測定のための機能を示す機能ブロックが示されている。 FIG. 14 is a functional block diagram showing functions for detecting an illegal inflow, measuring a grain flow rate, and measuring a grain component in the combine control system.
 制御ユニット206には、入力信号処理ユニット261を介して、種々の信号が入力される。制御ユニット206は、機器制御ユニット262を介して、種々の制御信号を送ることで、コンバインに搭載されている各種機器を制御する。この機器には、測定容器240のシャッタ200STを動作させる電動モータ200M1や運転者や監視員に情報を報知する報知デバイス820が含まれている。報知デバイス820は、運転者や監視者にこのコンバインに生じている各種事象を報知するものであり、ランプ、ブザー、スピーカ、ディスプレイなどの総称である。入力信号処理ユニット261には、走行操作具211や作業操作具212などからの信号が入力される。さらに、入力信号処理ユニット261には、重量測定器270、第1貯留センサ291、第2貯留センサ292、成分値センサ293などからの信号やデータが入力される。第1貯留センサ291及び第2貯留センサ292は、測定容器240に一時貯留される穀粒の容積を測定する。一時貯留される穀粒が第2貯留センサ292によって検出される容積になった段階で、成分値センサ処理ユニット290は、成分値センサ293からのセンサ信号に基づいて穀粒成分を示す成分データを算出し、出力する。 Various signals are input to the control unit 206 via the input signal processing unit 261. The control unit 206 controls various devices mounted on the combine by sending various control signals via the device control unit 262. This device includes an electric motor 200M1 that operates the shutter 200ST of the measurement container 240, and a notification device 820 that notifies a driver or a supervisor of information. The notification device 820 is for notifying a driver or a supervisor of various events occurring in the combine, and is a general term for a lamp, a buzzer, a speaker, a display, and the like. The input signal processing unit 261 receives signals from the traveling operation tool 211, the work operation tool 212, and the like. Further, signals and data from the weight measuring device 270, the first storage sensor 291, the second storage sensor 292, the component value sensor 293, and the like are input to the input signal processing unit 261. The first storage sensor 291 and the second storage sensor 292 measure the volume of the grain temporarily stored in the measurement container 240. At the stage where the temporarily stored kernel reaches the volume detected by the second storage sensor 292, the component value sensor processing unit 290 converts component data indicating the kernel component based on the sensor signal from the component value sensor 293. Calculate and output.
 重量測定器270は、穀粒タンク207の重量を測定するロードセルである。第1貯留センサ291及び第2貯留センサ292は、穀粒が近接した際に、または穀粒が接触した際に信号を出力する近接センサである。 The weight measuring device 270 is a load cell for measuring the weight of the grain tank 207. The first storage sensor 291 and the second storage sensor 292 are proximity sensors that output a signal when a grain approaches or when a grain contacts.
 エンジン制御ユニット263は、制御ユニット206から指令に基づいて、エンジン200Eへの燃料供給量等を調節して、所定のエンジン回転数あるいは所定のトルクでエンジン200Eを駆動させる。 The engine control unit 263 adjusts a fuel supply amount and the like to the engine 200E based on a command from the control unit 206, and drives the engine 200E at a predetermined engine speed or a predetermined torque.
 制御ユニット206は、走行制御部264、作業制御部265、シャッタ制御部266、穀粒測定部267、不正流入検知部268、報知制御部269を備えている。走行制御部264は、走行操作具211からの指令に基づいて、クローラ走行装置201への制御指令を生成し、機器制御ユニット262を介して出力する。 The control unit 206 includes a travel control unit 264, a work control unit 265, a shutter control unit 266, a grain measurement unit 267, an unauthorized inflow detection unit 268, and a notification control unit 269. The traveling control unit 264 generates a control command to the crawler traveling device 201 based on the command from the traveling operation tool 211, and outputs the generated command via the device control unit 262.
 作業制御部265は、作業操作具212からの指令に基づいて、刈取部203、脱穀装置205、穀粒搬送装置208、穀粒排出装置209などの作業装置への制御指令を生成し、機器制御ユニット262を介して作業装置に出力する。 The work control unit 265 generates a control command to a work device such as the reaper 203, the threshing device 205, the grain transport device 208, and the grain discharge device 209 based on the command from the work operation tool 212, and controls the device. Output to the working device via the unit 262.
 シャッタ制御部266は、機器制御ユニット262を介して、電動モータ200M1に制御指令を与えて、シャッタ200STの位置変更を行う。シャッタ制御部266は、シャッタ200STを閉位置に変更して、測定容器240内に穀粒を一時貯留し、穀粒の貯留が一定量に達したことを検出する第1貯留センサ291からの検出信号に基づいてシャッタ200STを開位置に変更して、一時貯留していた穀粒を測定容器240から排出する。 The shutter control unit 266 gives a control command to the electric motor 200M1 via the device control unit 262 to change the position of the shutter 200ST. The shutter control unit 266 changes the shutter 200ST to the closed position, temporarily stores the grains in the measurement container 240, and detects from the first storage sensor 291 that detects that the storage of the grains has reached a certain amount. The shutter 200ST is changed to the open position based on the signal, and the temporarily stored grains are discharged from the measurement container 240.
 穀粒測定部267には、穀粒流量算出部267aと穀粒成分値算出部267bとが含まれている。穀粒流量算出部267aは、穀粒搬送装置208を通じて穀粒タンク207に投入される穀粒の流量を、測定容器240に一定量の穀粒が貯留される時間に基づいて測定する。穀粒成分値算出部267bは、成分値センサ処理ユニット290からのデータに基づいて測定容器240に貯留された穀粒の成分値を算出する。この実施形態では、穀粒成分値も測定する機能を有する流量測定手段200GVは、測定容器240、シャッタ200ST、成分値センサ293などから構成されている。 The grain measuring unit 267 includes a grain flow rate calculating unit 267a and a grain component value calculating unit 267b. The grain flow rate calculation unit 267a measures the flow rate of the grain that is charged into the grain tank 207 through the grain transport device 208 based on the time during which a fixed amount of grain is stored in the measurement container 240. The grain component value calculation unit 267b calculates the component value of the grain stored in the measurement container 240 based on the data from the component value sensor processing unit 290. In this embodiment, the flow rate measuring unit 200GV having a function of measuring the grain component value also includes a measurement container 240, a shutter 200ST, a component value sensor 293, and the like.
 不正流入検知部268は、穀粒流量算出部267aによって算出される穀粒流量の経時的変化量に基づいて、穀粒タンク207における測定容器240の外部に貯留されている穀粒が測定容器240の受け入れ口241から測定容器240に流れ込む不正流入を検知する。つまり、不正流入検知部268は、測定容器240において一定量の穀粒が貯留される時間が予め定められた所定値(例えば、通常の半分以下の時間)よりも短いことを第1の不正流入検知条件とする。なお、測定容器240に一定量の穀粒が貯留される時間から直接その流量を算出することができ、その流量から、穀粒タンク207に投入される穀粒の流量も推定することができる。この実施形態では流量も算出されるので、この流量を第1の不正流入検知条件に利用することも可能である。そのような第1の不正流入検知条件は、測定容器240に入り込んでくる穀粒の時間当たりの流量が予め定められた所定値(例えば、通常の2倍以上の流量)よりも大きいことである。さらに、不正流入検知部268は、重量測定器270によって測定された重量が、穀粒タンク207に貯留されている穀粒が測定容器240の受け入れ口241に達する程度に増加していることを示す所定値より大きいことを、第2の不正流入検知条件とする。第1の不正流入検知条件と第2の不正流入検知条件とが成立すると、不正流入検知部268は不正流入を検知する。 The unauthorized inflow detecting unit 268 detects the kernel stored in the kernel tank 207 outside the measuring container 240 based on the temporal change amount of the kernel flow rate calculated by the kernel flow calculating unit 267a. Of illegal flow flowing into the measuring container 240 from the receiving port 241 of the measuring device 240 is detected. That is, the unauthorized inflow detection unit 268 determines that the time during which a certain amount of grains is stored in the measurement container 240 is shorter than a predetermined value (for example, a time equal to or less than half the normal time). This is a detection condition. Note that the flow rate can be directly calculated from the time during which a certain amount of grains is stored in the measurement container 240, and the flow rate of the grains to be supplied to the grain tank 207 can be estimated from the flow rate. In this embodiment, since the flow rate is also calculated, this flow rate can be used for the first illegal inflow detection condition. Such a first improper inflow detection condition is that the flow rate per hour of the grain entering the measurement container 240 is larger than a predetermined value (for example, a flow rate twice or more the normal flow rate). . Furthermore, the unauthorized inflow detection unit 268 indicates that the weight measured by the weight measuring device 270 has increased to such an extent that the grains stored in the grain tank 207 reach the receiving port 241 of the measurement container 240. The condition that the value is larger than a predetermined value is defined as a second unauthorized inflow detection condition. If the first unauthorized inflow detection condition and the second unauthorized inflow detection condition are satisfied, the unauthorized inflow detection unit 268 detects an unauthorized inflow.
 不正流入検知部268が不正流入を検知した場合、この流量測定手段200GVによる穀粒測定を停止する。同時に、不正流入検知部268は、不正流入を検知した場合、不正流入警報を運転者や監視者に報知すべく、報知制御部269に報知指令を与える。 (4) When the unauthorized inflow detecting unit 268 detects the unauthorized inflow, the grain measurement by the flow rate measuring unit 200GV is stopped. At the same time, when detecting the unauthorized inflow, the unauthorized inflow detection unit 268 gives a notification instruction to the notification control unit 269 in order to notify a driver or a monitor of an unauthorized inflow alarm.
 次に、図15のフローチャートを用いて、不正流入検知を含む穀粒測定処理を説明する。この穀粒測定ルーチンは、穀粒搬送装置208によって脱穀装置205から穀粒が搬送され始めると、スタートする(#201Yes分岐)。まず、測定容器240のシャッタ200STが閉位置に位置変更され(#202)、タイマーがスタートする(#203)。閉位置のシャッタ200ST上に貯留した穀粒量が、成分値測定に適した量に達したことが、第2貯留センサ292によって検出されると(#204Yes分岐)、成分値センサ293と成分値センサ処理ユニット290とによる、穀粒の成分値測定が行われる(#205)。成分値測定で得られた結果である、穀粒の水分値及びタンパク成分値が、GPS等で取得された地図座標とともに記録される(#206)。 Next, the grain measurement processing including the detection of unauthorized inflow will be described with reference to the flowchart of FIG. This kernel measurement routine starts when the kernel is started to be transported from the threshing device 205 by the kernel transport device 208 (# 201 Yes branch). First, the position of the shutter 200ST of the measurement container 240 is changed to the closed position (# 202), and the timer starts (# 203). When the second storage sensor 292 detects that the amount of grains stored on the shutter 200ST in the closed position has reached an amount suitable for the component value measurement (Yes in # 204), the component value sensor 293 and the component value The component value measurement of the kernel is performed by the sensor processing unit 290 (# 205). The grain moisture value and the protein component value, which are the results obtained by the component value measurement, are recorded together with the map coordinates acquired by GPS or the like (# 206).
 さらに、閉位置のシャッタ200ST上に貯留されていく穀粒量が、第1貯留センサ291によって検出される一定量に達したかどうかチェックされる(#207)。穀粒量が一定量に達すると(#207Yes分岐)、タイマーストップし(#208)、測定容器240で一定量の穀粒が貯留される貯留時間が算出される(#209)。この実施形態では、成分値測定が開始可能となる貯留量を測定するために第2貯留センサ292が用いられ、流量測定が行われる貯留量を測定するために第1貯留センサ291が用いられる。第1貯留センサ291は第2貯留センサ292より大きな貯留量を測定するように構成されている。これにより、成分値測定中も流量測定のための測定容器240での穀粒の貯留は続けられる。つまり、流量測定の間に、成分値測定が実施されるので、測定効率がよい。また、その結果、大きな貯留量で流量測定を行うこと可能となり、短期の流量のばらつきが平均化されるので、流量測定の精度も向上する。 {Circle around (2)} It is checked whether the amount of grains stored on the shutter 200ST in the closed position has reached a certain amount detected by the first storage sensor 291 (# 207). When the kernel amount reaches a certain amount (Yes in # 207), the timer is stopped (# 208), and the storage time for storing a certain amount of kernel in the measuring container 240 is calculated (# 209). In this embodiment, the second storage sensor 292 is used to measure the storage amount at which the component value measurement can be started, and the first storage sensor 291 is used to measure the storage amount at which the flow rate measurement is performed. The first storage sensor 291 is configured to measure a larger storage amount than the second storage sensor 292. Thereby, the storage of the grains in the measurement container 240 for the flow rate measurement is continued during the component value measurement. That is, since the component value measurement is performed during the flow rate measurement, the measurement efficiency is high. As a result, the flow rate can be measured with a large storage amount, and the short-term variation in the flow rate is averaged, so that the accuracy of the flow rate measurement is also improved.
 この貯留時間は、上述した穀粒の不正流入の検知に用いられる。そのため、上述した第1の不正流入検知条件が成立しているかどうか、つまり、算出された貯留時間と、予め設定されている所定時間とが比較される(#210)。貯留時間が所定時間より長ければ(#210Yes分岐)、第1の不正流入検知条件が不成立となり、不正流入が生じていないと判定される。この貯留時間で一定量を除算することで、単位時間当たりの穀粒流量が算出される。さらに、穀粒流量から走行距離当たりの穀粒量(収量)を算出することができる。算出された穀粒流量も、GPS等で取得された地図座標とともに記録される(#211)。次いで、測定容器240のシャッタ200STが開位置に位置変更され、測定容器240に一時貯留されていた穀粒が排出される(#212)。この一連の穀粒測定処理は、穀粒搬送装置208による穀粒搬送が行われている限り(#213No分岐)、繰り返し行われ、穀粒搬送装置208による穀粒搬送が停止されると(#213Yes分岐)、このルーチンも終了する。 This storage time is used for detecting the above-mentioned illegal inflow of grain. Therefore, whether or not the above-described first unauthorized inflow detection condition is satisfied, that is, the calculated storage time is compared with a preset predetermined time (# 210). If the storage time is longer than the predetermined time (Yes in # 210), the first unauthorized inflow detection condition is not satisfied, and it is determined that unauthorized inflow has not occurred. By dividing a certain amount by the storage time, a grain flow rate per unit time is calculated. Further, the amount of grain (yield) per traveling distance can be calculated from the grain flow rate. The calculated grain flow rate is also recorded together with the map coordinates acquired by GPS or the like (# 211). Next, the position of the shutter 200ST of the measurement container 240 is changed to the open position, and the grains temporarily stored in the measurement container 240 are discharged (# 212). This series of grain measurement processing is repeatedly performed as long as grain transport by the grain transport device 208 is performed (No in # 213), and when grain transport by the grain transport device 208 is stopped (# 213 Yes branch), this routine also ends.
 ステップ#210の比較において、貯留時間が所定時間未満であれば(#210No分岐)、第1の不正流入検知条件が成立していることになる。 比較 In the comparison of step # 210, if the storage time is shorter than the predetermined time (No in # 210), the first unauthorized inflow detection condition is satisfied.
 第1の不正流入検知条件が成立していれば、第2の不正流入検知条件が成立しているかどうかを判定するために、重量測定器270によって測定されている穀粒タンク重量を取得し(#221)、この穀粒タンク重量と所定重量とが比較される(#222)。穀粒タンク重量が所定重量を超えていれば(#222Yes分岐)、第2の不正流入検知条件が成立するので、不正流入検知部268は、不正流入が生じていると判定する(#223)。不正流入が発停されると、報知デバイス820を通じて、不正流入警報が報知される(#224)。さらに、測定容器240のシャッタ200STが開位置に位置変更され(#225)、以後の穀粒測定が中止される(#226)。 If the first unauthorized inflow detection condition is satisfied, the weight of the grain tank measured by the weight measuring device 270 is obtained to determine whether the second unauthorized inflow detection condition is satisfied ( # 221), the weight of the grain tank is compared with a predetermined weight (# 222). If the grain tank weight exceeds the predetermined weight (# 222, Yes branch), the second unauthorized inflow detection condition is satisfied, and the unauthorized inflow detecting unit 268 determines that unauthorized inflow has occurred (# 223). . When the illegal inflow is started and stopped, an illegal inflow alarm is notified through the notification device 820 (# 224). Further, the position of the shutter 200ST of the measurement container 240 is changed to the open position (# 225), and the subsequent grain measurement is stopped (# 226).
 ステップ#222のチェックで、穀粒タンク重量が所定重量以下であれば(#222No分岐)、第2の不正流入検知条件が成立しないので、不正流入は発生していないが、突発的な何らかの原因で流量測定が異常となっているとみなされ、測定異常が記録され(#231)、測定異常警報が報知されたのち(#232)、ステップ#212にジャンプする。なお、このフローチャートでは示されていないが、測定異常が所定時間内で所定回数以上生じた場合、穀粒測定が中止されるように構成してもよい。 If it is determined in step # 222 that the weight of the grain tank is equal to or less than the predetermined weight (No in # 222), the second unauthorized inflow detection condition is not satisfied, and no unauthorized inflow has occurred. Is determined to be abnormal, the measurement abnormality is recorded (# 231), and after the measurement abnormality alarm is notified (# 232), the process jumps to step # 212. Although not shown in this flowchart, the kernel measurement may be stopped when a measurement abnormality occurs a predetermined number of times within a predetermined time.
 〔別実施形態〕
(1)上述した実施形態では、測定容器240は、穀粒搬送装置208から穀粒タンク207へ投入される穀粒の流量を測定するため、及び穀粒の成分値を測定するために用いられていたが、穀粒成分値の測定は省略されてもよい。
[Another embodiment]
(1) In the above-described embodiment, the measurement container 240 is used for measuring the flow rate of the grain supplied from the grain transport device 208 to the grain tank 207 and for measuring the component value of the grain. However, the measurement of the grain component value may be omitted.
(2)上述した実施形態では、穀粒流量測定と穀粒成分値の測定は、同一の測定容器240を用いて行われたが、それぞれ別々の測定容器240を用いて行われてもよい。その際、不正流量検知処理は、それぞれの測定容器240に対して行うことができる。 (2) In the above-described embodiment, the measurement of the grain flow rate and the measurement of the grain component value are performed using the same measurement vessel 240, but may be performed using separate measurement vessels 240, respectively. At that time, the unauthorized flow rate detection processing can be performed on each measurement container 240.
(3)上記実施形態では、流量測定のための第1貯留センサ291と成分値測定ための第2貯留センサ292とが備えられていた。これに代えて、1つの貯留センサを用いるようにしてもよい。この場合、1つの貯留センサが所定の貯留量を検出すれば、その貯留時間から流量測定を行うと同時に、成分値測定を開始し、成分値測定が完了すれば、シャッタ200STを開位置に変更し、測定容器240に一時貯留されていた穀粒を排出するとよい。また、流量測定のための第1貯留センサ291だけを備えて、成分値測定の開始はシャッタ200STの閉位置への変更から所定時間で行われるような構成を採用してもよい。 (3) In the above embodiment, the first storage sensor 291 for measuring the flow rate and the second storage sensor 292 for measuring the component value were provided. Instead, one storage sensor may be used. In this case, if one storage sensor detects a predetermined storage amount, the flow rate measurement is started from the storage time, and at the same time, the component value measurement is started. When the component value measurement is completed, the shutter 200ST is changed to the open position. Then, the grains temporarily stored in the measurement container 240 may be discharged. Further, a configuration may be adopted in which only the first storage sensor 291 for measuring the flow rate is provided, and the component value measurement is started in a predetermined time after the shutter 200ST is changed to the closed position.
(4)上述した実施形態では、不正流入検知のために、第1の不正流入検知条件と第2の不正流入検知条件とが用いられていたが、第1の不正流入検知条件だけでもよい。 (4) In the above-described embodiment, the first unauthorized inflow detection condition and the second unauthorized inflow detection condition are used for detecting unauthorized inflow. However, only the first unauthorized inflow detection condition may be used.
(5)
 上述したコンバインを、不正流入検知システムとして構成することも可能である。係る場合、不正流入検知システムは、刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知システムであって、前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定手段と、前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知部と、を備えるように構成することが可能である。
(5)
The above-described combine can be configured as an unauthorized inflow detection system. In such a case, the unauthorized inflow detection system extends over a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and an upper portion of the threshing device and the grain tank. A grain conveying device that is provided in a state, and conveys the grains obtained by the threshing device and throws them into the inside of the grain tank, and a receiving port for receiving a part of the grains to be thrown into the grain tank A measuring vessel for receiving and storing the grains from the measuring vessel, and configured to return the grains to the grain tank after measuring the flow rate of the grains in the measuring vessel. An unauthorized inflow detection system that detects the flow rate of the grains to be introduced into the grain tank based on the time during which a certain amount of grains are stored in the measurement container, the flow rate measurement means, Change over time And an unauthorized inflow detection unit configured to detect an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port, based on the amount, based on the amount. Is possible.
(6)
 また、上記実施形態における各機能部をコンピュータに実現させるための不正流入検知プログラムとして構成することも可能である。係る場合、不正流入検知プログラムは、刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する正流入検知プログラムであって、前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定機能と、前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知機能と、をコンピュータに実現させるように構成することが可能である。
(6)
Further, it is also possible to configure each function unit in the above embodiment as an unauthorized inflow detection program for causing a computer to realize. In such a case, the unauthorized inflow detection program includes a threshing device for threshing the harvested grain culm, a grain tank for storing the grains obtained by the threshing device, and an upper portion of the threshing device and the grain tank. A grain conveying device that is provided in a state, and conveys the grains obtained by the threshing device and throws them into the inside of the grain tank, and a receiving port for receiving a part of the grains to be thrown into the grain tank A measuring vessel for receiving and storing the grains from the measuring vessel, and configured to return the grains to the grain tank after measuring the flow rate of the grains in the measuring vessel. A flow measurement function for measuring the flow rate of the kernels to be charged into the kernel tank based on the time during which a certain amount of kernels are stored in the measurement container; and Over time And an unauthorized inflow detection function of detecting an unauthorized inflow of the kernel stored in the grain tank outside the measurement container from the receiving port into the measurement container based on the amount of chemical conversion. Can be configured.
(7)
 また、このような不正流入検知プログラムを、記録媒体に記録するように構成することも可能である。
(7)
Further, such an unauthorized inflow detection program may be configured to be recorded on a recording medium.
(8)
 更には、上記構成を不正流入検知方法として構成することも可能である。係る場合、不正流入検知方法は、刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知方法であって、前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定工程と、前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知工程と、を備えるように構成することも可能である。
(8)
Further, the above configuration can be configured as an unauthorized inflow detection method. In such a case, the unauthorized inflow detection method includes a threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and an upper portion of the threshing device and the grain tank. A grain conveying device that is provided in a state, and conveys the grains obtained by the threshing device and throws them into the inside of the grain tank, and a receiving port for receiving a part of the grains to be thrown into the grain tank A measuring vessel for receiving and storing the grains from the measuring vessel, and configured to return the grains to the grain tank after measuring the flow rate of the grains in the measuring vessel. A flow measurement step of measuring the flow rate of the grains to be introduced into the grain tank based on the time during which a certain amount of grains are stored in the measurement container, Changes with time. And an unauthorized inflow detection step of detecting an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container. is there.
4-3.第3の実施形態
 以下、本実施形態に係る自脱型のコンバインについて図面に基づいて説明する。
4-3. Third Embodiment A self-contained combine according to this embodiment will be described below with reference to the drawings.
〔全体構成〕
 図16および図17に示されるように、本発明に係るコンバインは、走行装置としての左右一対のクローラ走行装置401,401によって自走する走行機体402の前部に、植立穀稈を刈り取る刈取部403が備えられている。走行機体402の前部右側に、キャビン404にて周囲が覆われた運転部405が備えられている。運転部405の後方に、脱穀装置406と穀粒タンク407とが横方向に並ぶ状態で配備されている。脱穀装置406は、刈取部403にて刈り取られた刈取穀稈を脱穀処理して穀粒を回収する。穀粒タンク407は、脱穀装置406で得られた穀粒を貯留する。穀粒タンク407は機体右側に位置し、脱穀装置406は機体左側に位置している。運転部405は穀粒タンク407の前方に位置している。運転部405における運転座席408の下方にエンジン400Eが備えられている。走行機体402の後部であって穀粒タンク407の後方に穀粒排出装置409が備えられ、穀粒排出装置409は穀粒タンク407に貯留された穀粒を機外に排出する。
〔overall structure〕
As shown in FIGS. 16 and 17, the combine according to the present invention is a harvester that cuts planted grain culms at the front of a traveling body 402 that is self-propelled by a pair of left and right crawler traveling devices 401 and 401 as traveling devices. A unit 403 is provided. An operation unit 405 whose periphery is covered by a cabin 404 is provided on the front right side of the traveling body 402. A threshing device 406 and a grain tank 407 are arranged behind the operation unit 405 in a state where they are arranged in a horizontal direction. The threshing device 406 threshes the harvested grain stalks harvested by the harvesting unit 403 and collects grains. The grain tank 407 stores the grains obtained by the threshing device 406. The grain tank 407 is located on the right side of the fuselage, and the threshing device 406 is located on the left side of the fuselage. The operation unit 405 is located in front of the grain tank 407. The engine 400E is provided below the driver's seat 408 in the driver 405. A grain discharging device 409 is provided at the rear of the traveling machine body 402 and behind the grain tank 407, and the grain discharging device 409 discharges the grains stored in the grain tank 407 to the outside of the machine.
 本実施形態では、機体の前後方向を定義するときは、作業状態における機体進行方向に沿って定義し、機体の左右方向を定義するときは、機体進行方向視で見た状態で左右を定義する。すなわち、図16に符号(F)の矢印で示される方向が機体前方向、図16に符号(B)の矢印で示される方向が機体後方向である。また、図16の紙面手前方向が機体右方向、図16の紙面奥方向が機体左方向である。 In the present embodiment, when defining the longitudinal direction of the aircraft, it is defined along the aircraft traveling direction in the working state, and when defining the lateral direction of the aircraft, the left and right are defined as viewed from the aircraft traveling direction. . That is, the direction indicated by the arrow (F) in FIG. 16 is the forward direction of the aircraft, and the direction indicated by the arrow (B) in FIG. 16 is the rearward direction of the aircraft. In addition, the front side of the paper of FIG. 16 is the right side of the aircraft, and the back side of the paper of FIG.
 刈取部403に、分草具410と、複数の引き起こし装置411と、バリカン型の刈刃412と、縦搬送装置413と、が備えられている。分草具410は、刈取対象となる植立穀稈の株元を分草案内する。引き起こし装置411は、分草された植立穀稈を縦姿勢に引き起こす。刈刃412は、引き起された植立穀稈の株元を切断する。縦搬送装置413は、刈取穀稈を縦姿勢から徐々に横倒れ姿勢になるように姿勢変更しながら後方に搬送して脱穀装置406に供給する。縦搬送装置413よりも上側に防塵カバー414が備えられ、縦搬送装置413は防塵カバー414によって覆われている。 The cutting unit 403 includes a weeding tool 410, a plurality of raising devices 411, a clipper-type cutting blade 412, and a vertical transport device 413. The weeder 410 guides the root of the planted culm to be harvested. The raising device 411 raises the weeded planted cereal stem in a vertical posture. The cutting blade 412 cuts the stem of the raised planted grain culm. The vertical transport device 413 transports the harvested grain culm rearward while changing the posture from the vertical posture to the horizontal posture, and supplies the harvested culm to the threshing device 406. A dustproof cover 414 is provided above the vertical transport device 413, and the vertical transport device 413 is covered by the dustproof cover 414.
 図示はしていないが、脱穀装置406は、供給された刈取穀稈の株元側を脱穀フィードチェーンによって挟持搬送しながら、穂先側を扱室にて扱き処理して脱穀処理を行う。脱穀処理された後の処理物が下方の選別部にて穀粒とワラ屑等に選別される。本発明における穀粒搬送装置として、一番物搬送装置415と揚穀装置416とが備えられている。穀粒は、一番物搬送装置415によって脱穀装置406の右横側外方に搬出されたのち、揚穀装置416によって揚送されて穀粒タンク407の内部に搬送される。穀粒タンク407は、脱穀装置406から送り込まれる穀粒を貯留する。その後、穀粒タンク407に貯留された穀粒は、穀粒排出装置409により外部に搬出される。 Although not shown, the threshing device 406 performs threshing by handling the spike side in the handling room while nipping and transporting the stock side of the supplied harvested grain culm by the threshing feed chain. The processed material after the threshing process is sorted into grains and straw chips in a lower sorting section. As the grain transport device in the present invention, a first-item transport device 415 and a deep-frying device 416 are provided. The grains are transported out of the threshing apparatus 406 to the right and left side by the first object transporting device 415, and then are transported into the grain tank 407 by being lifted by the graining device 416. The grain tank 407 stores the grains sent from the threshing device 406. Thereafter, the grains stored in the grain tank 407 are carried out to the outside by the grain discharging device 409.
 図16に示されるように、穀粒タンク407の底部には底部スクリュー417が設けられている。底部スクリュー417は、前後向き軸芯回りで回転して貯留された穀粒を機体後方向に向けて搬送する。穀粒排出装置409は、縦送りスクリューコンベア409Aと横送りスクリューコンベア409Cとを有する。縦送りスクリューコンベア409Aは、底部スクリュー417から搬出される穀粒を受け入れて、その穀粒を上方に向けて搬送する。横送りスクリューコンベア409Cは、縦送りスクリューコンベア409Aの上端部に連なる基端部から先端部の排出口409Bまで穀粒を横方向に向けて搬送する。 底 As shown in FIG. 16, a bottom screw 417 is provided at the bottom of the grain tank 407. The bottom screw 417 rotates around the longitudinal axis and conveys the stored grains toward the rear of the machine. The grain discharge device 409 has a vertical feed screw conveyor 409A and a horizontal feed screw conveyor 409C. The vertical feed screw conveyor 409 </ b> A receives the grains discharged from the bottom screw 417 and conveys the grains upward. The horizontal screw conveyor 409C conveys the grains in the horizontal direction from a base end connected to the upper end of the vertical screw conveyor 409A to a discharge port 409B at the front end.
〔穀粒タンク〕
 図18乃至図20に示されるように、穀粒タンク407は、機体前側に位置する前側壁部419、機体後側に位置する後側壁部420、機体右側に位置する右側壁部421、機体左側に位置する左側壁部422の夫々により周囲が囲まれている。また、上側は上側壁部423により覆われている。従って、穀粒タンク407のタンク内部、即ち穀粒の貯留空間400Qは、前側壁部419、後側壁部420、右側壁部421、左側壁部422、上側壁部423によって囲まれている。図18に示されるように、タンク本体部424のうち左側壁部422には、揚穀装置416を入り込ませた状態で配備するための凹入部425が形成されている。
[Grain tank]
As shown in FIGS. 18 to 20, the grain tank 407 includes a front wall portion 419 located on the front side of the aircraft, a rear wall portion 420 located on the rear side of the aircraft, a right side wall portion 421 located on the right side of the aircraft, and a left side of the aircraft. Is surrounded by each of the left side wall portions 422 located at. The upper side is covered by an upper side wall 423. Therefore, the inside of the grain tank 407, that is, the grain storage space 400Q, is surrounded by the front side wall 419, the rear side wall 420, the right side wall 421, the left side wall 422, and the upper side wall 423. As shown in FIG. 18, the left side wall 422 of the tank main body 424 is formed with a recess 425 for disposing the frying device 416 therein.
 穀粒タンク407の前部と後部とに亘って機体前後方向に延びる前後向きフレーム426が備えられている。前後向きフレーム426は、円筒状に形成され、穀粒タンク407内部の機体右側端部の上下中間部に位置する状態で、穀粒タンク407における前側壁部419と後側壁部420とに亘っている。 前後 A front-rear frame 426 extending in the vehicle front-rear direction across the front and rear portions of the grain tank 407 is provided. The front-rearward frame 426 is formed in a cylindrical shape, and extends between the front side wall portion 419 and the rear side wall portion 420 of the grain tank 407 in a state where the frame 426 is located in the vertical middle portion of the right side end of the body inside the grain tank 407. I have.
 穀粒タンク407の側壁に、満杯レベルセンサとしての満杯高さ検出センサ430と、他のレベルセンサとしての高さ検出センサ431,432と、が備えられている。満杯高さ検出センサ430と、高さ検出センサ431,432と、の夫々は上端部の揺動支点回り、即ち横向き軸芯回りに上下揺動可能なように構成されている。穀粒の堆積に伴って穀粒から圧力を受けることによって、満杯高さ検出センサ430と、高さ検出センサ431,432と、の夫々が下方向に揺動する。満杯高さ検出センサ430が揺動することによって、満杯高さ検出センサ430は穀粒タンク407に穀粒が満杯高さまで貯留されたことを検出する。また、高さ検出センサ431,432の夫々が揺動することによって、高さ検出センサ431,432の夫々は、穀粒タンク407に穀粒が特定の高さまで貯留されたことを検出する。 A full height detection sensor 430 as a full level sensor and height detection sensors 431 and 432 as other level sensors are provided on the side wall of the grain tank 407. Each of the full height detection sensor 430 and the height detection sensors 431 and 432 is configured to be able to swing up and down around the swing fulcrum at the upper end, that is, around the horizontal axis. By receiving pressure from the kernel as the kernel is accumulated, each of the full height detection sensor 430 and the height detection sensors 431 and 432 swings downward. When the full height detection sensor 430 swings, the full height detection sensor 430 detects that the kernel is stored in the kernel tank 407 to the full height. In addition, each of the height detection sensors 431 and 432 swings, so that each of the height detection sensors 431 and 432 detects that the kernel is stored in the kernel tank 407 to a specific height.
 満杯高さ検出センサ430は前側壁部419の上部に設けられている。高さ検出センサ431,432は、満杯高さ検出センサ430よりも低い位置に設けられている。高さ検出センサ431は、穀粒タンク407のタンク内部における前側壁部419に設けられている。また、高さ検出センサ432は、穀粒タンク407のタンク内部における後側壁部420に設けられている。高さ検出センサ431は高さ検出センサ432よりも高く位置する。 The full height detection sensor 430 is provided above the front side wall 419. The height detection sensors 431 and 432 are provided at positions lower than the full height detection sensor 430. The height detection sensor 431 is provided on the front wall 419 inside the grain tank 407. Further, the height detection sensor 432 is provided on the rear side wall portion 420 inside the grain tank 407. The height detection sensor 431 is located higher than the height detection sensor 432.
〔品質計測装置〕
 穀粒タンク407の内部における上部位置に、穀粒の品質を計測する品質計測装置440が備えられている。図18および図19に示されるように、品質計測装置440は、計測対象である穀粒を一時貯留する一時貯留部441と、一時貯留部441にて貯留されている穀粒に対して計測作用して品質を計測する計測部442と、を有する。一時貯留部441が穀粒タンク407の内方側に位置し、計測部442が穀粒タンク407の外方側に位置している。計測部442は、密閉状に形成された収納ケース443の内部に収納されている。一時貯留部441は、収納ケース443の内方側の側面に一体的に連結された略角筒状の貯留用ケース444を備え、その内部に穀粒を貯留することができる。
[Quality measuring device]
A quality measuring device 440 for measuring the quality of the grain is provided at an upper position inside the grain tank 407. As shown in FIGS. 18 and 19, the quality measuring device 440 performs a measuring operation on the temporary storage unit 441 that temporarily stores the kernel to be measured and the kernel that is stored in the temporary storage unit 441. And a measuring unit 442 for measuring the quality. The temporary storage unit 441 is located inside the grain tank 407, and the measuring unit 442 is located outside the grain tank 407. The measurement unit 442 is housed inside a storage case 443 formed in a sealed shape. The temporary storage unit 441 includes a substantially rectangular cylindrical storage case 444 integrally connected to the inner side surface of the storage case 443, and can store grains therein.
 一時貯留部441は、貯留用ケース444の内部に、上下方向に貫通する上下向き通路445が形成され、上下向き通路445の途中にシャッター446が備えられている。シャッター446は、上下向き通路445の途中を閉塞する閉位置(図19参照)と、上下向き通路445の途中を開放する開位置(不図示)と、に位置変更可能に構成されている。上下向き通路445の上端に、穀粒の取込口445aが形成されている。揚穀装置416から放出された穀粒の一部が取込口445aに取り込まれる。シャッター446が閉状態に切り換えられている状態で、穀粒は、上下向き通路445のうち、シャッター446よりも上側の一時貯留空間445Sに貯留される。シャッター446が開状態に切り換えられると、貯留されていた穀粒が落下する。 The temporary storage unit 441 has a vertical passage 445 that penetrates vertically in the storage case 444, and a shutter 446 is provided in the middle of the vertical passage 445. The position of the shutter 446 can be changed between a closed position (see FIG. 19) for closing the middle of the vertical passage 445 and an open position (not shown) for opening the middle of the vertical passage 445. At the upper end of the vertical passage 445, a grain intake 445a is formed. Part of the grains discharged from the fryer 416 is taken into the intake port 445a. With the shutter 446 switched to the closed state, the grains are stored in the temporary storage space 445S above the shutter 446 in the up-down passage 445. When the shutter 446 is switched to the open state, the stored grains fall.
 計測部442は、一時貯留空間445Sに貯留される穀粒に向けて光を照射し、穀粒から得られた光に基づいて、公知技術である分光分析手法によって穀粒の内部品質を計測する。貯留用の一時貯留空間445Sを形成する側面のうち計測部442側の側面に光が透過可能な窓部447が形成され、計測部442は、この窓部447を通して、穀粒に光を照射するとともに、穀粒からの光を受光する。 The measurement unit 442 irradiates the grain stored in the temporary storage space 445S with light, and measures the internal quality of the grain based on light obtained from the grain by a spectroscopic analysis technique that is a known technique. . A window 447 through which light can pass is formed on a side surface on the measurement unit 442 side among the side surfaces forming the temporary storage space 445S for storage, and the measurement unit 442 irradiates the kernel with light through the window 447. At the same time, it receives light from the grains.
 一時貯留部441の下方に計測穀粒貯留部448が備えられ、計測穀粒貯留部448は略末広がりの筒状に形成されている。計測穀粒貯留部448の上部が上下向き通路445と連通し、かつ、計測穀粒貯留部448の下部が穀粒タンク407の貯留空間400Qと連通する。このことから、穀粒が一時貯留空間445Sに貯留された状態で、シャッター446が閉状態から開状態に切り換えられると、貯留されていた穀粒が下方に落下排出されて穀粒タンク407の貯留空間400Qに戻される。 計 測 A measurement grain storage section 448 is provided below the temporary storage section 441, and the measurement grain storage section 448 is formed in a substantially flared cylindrical shape. The upper part of the measured grain storage part 448 communicates with the vertical passage 445, and the lower part of the measured grain storage part 448 communicates with the storage space 400 </ b> Q of the grain tank 407. Therefore, when the shutter 446 is switched from the closed state to the open state in a state where the grains are stored in the temporary storage space 445S, the stored grains are dropped and discharged downward and stored in the grain tank 407. It is returned to the space 400Q.
 計測穀粒貯留部448の側部が穀粒タンク407の貯留空間400Qと区画される。計測穀粒貯留部448は、平面視において、一時貯留部441に対して前後方向並びに左右方向に幅広に形成され、かつ、下部が上部よりも前後方向並びに左右方向に幅広になる形態で穀粒タンク407の下部にまで延設されている。計測穀粒貯留部448の上部に末広がり部448Aが形成され、末広がり部448Aは、一時貯留部441の前後方向および左右方向の夫々に対して、下側ほど幅広となる。末広がり部448Aの下端に連なる状態で縦向き姿勢の側壁を有する幅広部448Bが形成されている。末広がり部448Aの上端部が、貯留用ケース444における上下向き通路445の下端に連通する状態で接続されている。 側 The side of the measured grain storage unit 448 is partitioned from the storage space 400Q of the grain tank 407. The measured grain storage unit 448 is formed so as to be wider in the front-rear direction and the left-right direction with respect to the temporary storage unit 441 in plan view, and the lower part is wider in the front-rear direction and the left-right direction than the upper part. It extends to the lower part of the tank 407. A flared portion 448A is formed above the measured grain storage portion 448, and the flared portion 448A is wider toward the lower side in each of the temporary storage portion 441 in the front-rear direction and the left-right direction. A wide portion 448B having a vertically oriented side wall is formed so as to be continuous with the lower end of the flared portion 448A. The upper end of the flared portion 448A is connected to communicate with the lower end of the vertical passage 445 of the storage case 444.
〔穀粒搬送装置〕
 脱穀装置406の底部で回収された穀粒は、一番物搬送装置415(図17参照)によって脱穀装置406の右横側外方に排出されたのち、揚穀装置416によって穀粒タンク407の上方に向けて搬送される。揚穀装置416は、上下に亘るスクリューコンベア435を有し、穀粒はスクリューコンベア435によって揚穀装置416の上端部近くまで揚送される。また、揚穀装置416の上端部に投入部436が形成され、投入部436は穀粒タンク407の内部と連通接続する。また、スクリューコンベア435の上端に送り出し羽根437が連結され、送り出し羽根437は投入部436の上下高さの範囲内に位置する。スクリューコンベア435および送り出し羽根437は平面視で時計回りに一体回転する。穀粒は、スクリューコンベア435によって揚穀装置416の上端部近くまで揚送され、送り出し羽根437によって投入部436から穀粒タンク407の貯留空間400Qへ押し出される。このように、穀粒搬送装置としての一番物搬送装置415および揚穀装置416は、脱穀装置406と穀粒タンク407の上部とに亘る状態で設けられ、脱穀装置406で得られた穀粒を搬送して貯留空間400Qに投入する。
[Grain transport device]
The kernels collected at the bottom of the threshing unit 406 are discharged to the right side outside of the threshing unit 406 by the foremost object transporting unit 415 (see FIG. 17), and then discharged to the kernel tank 407 by the unhulling unit 416. It is transported upward. The fryer 416 has a screw conveyor 435 that runs up and down, and the kernels are pumped by the screw conveyor 435 to near the upper end of the fryer 416. Further, a charging section 436 is formed at the upper end of the grain raising device 416, and the charging section 436 is connected to the inside of the grain tank 407 in communication. Further, a delivery blade 437 is connected to an upper end of the screw conveyor 435, and the delivery blade 437 is located within a range of the vertical height of the input unit 436. The screw conveyor 435 and the delivery blade 437 integrally rotate clockwise in plan view. The grains are pumped up to near the upper end of the graining device 416 by the screw conveyor 435, and are pushed out from the input section 436 to the storage space 400 </ b> Q of the grain tank 407 by the delivery blades 437. As described above, the foremost material transporting device 415 and the grain lifting device 416 as the grain transporting devices are provided so as to extend over the threshing device 406 and the upper part of the grain tank 407, and the grain obtained by the threshing device 406 is provided. Is transported and charged into the storage space 400Q.
 図18乃至図22に示されるように、流量センサ450が、穀粒タンク407の左側壁部422に支持されている。流量センサ450に、平板状の検知板451と、ロードセル452と、検知板451およびロードセル452を支持する支持ブラケット453と、左側壁部422に流量センサ450を取り付ける取付ブラケット454と、が備えられている。ロードセル452の一端部と検知板451とが連結され、ロードセル452の他端部と支持ブラケット453とが連結されている。つまり、ロードセル452と支持ブラケット453との連結箇所を基端として、ロードセル452は片持ち支持される。この構成によって、検知板451に荷重が作用すると、ロードセル452の歪みが促進される。穀粒が送り出し羽根437によって投入部436から跳ね飛ばされて検知板451に押し当てられ、ロードセル452は検知板451に掛かる押圧力を検出する。また、支持ブラケット453は、取付ブラケット454を揺動支点として揺動自在に構成され、支持ブラケット453の揺動角度を調整することによって、送り出し羽根437に対する流量センサ450の位置が調整可能に構成となっている。 乃至 As shown in FIGS. 18 to 22, the flow rate sensor 450 is supported by the left side wall 422 of the grain tank 407. The flow sensor 450 includes a flat detection plate 451, a load cell 452, a support bracket 453 that supports the detection plate 451 and the load cell 452, and a mounting bracket 454 that mounts the flow sensor 450 on the left side wall 422. I have. One end of the load cell 452 and the detection plate 451 are connected, and the other end of the load cell 452 and the support bracket 453 are connected. That is, the load cell 452 is cantilevered with the connection point between the load cell 452 and the support bracket 453 as a base end. With this configuration, when a load acts on the detection plate 451, distortion of the load cell 452 is promoted. The grains are bounced off from the input section 436 by the sending blades 437 and pressed against the detection plate 451, and the load cell 452 detects the pressing force applied to the detection plate 451. The support bracket 453 is configured to be swingable with the mounting bracket 454 as a swing fulcrum, and the position of the flow sensor 450 with respect to the delivery blade 437 can be adjusted by adjusting the swing angle of the support bracket 453. Has become.
 穀粒は、送り出し羽根437によって投入部436から貯留空間400Qに投入され、検知板451に押し当てられる。穀粒の押圧力によってロードセル452に歪みが生じて電気信号が発生する。穀粒の流量を算出するための検出信号として、この電気信号が用いられ、例えば電気信号は電圧値や電流値で表される。揚穀装置416から送られてくる穀粒の投入量が多くなる程、検知板451に対する穀粒の押圧力は大きくなり、ロードセル452の検出信号も大きくなる。このように、投入部436に設けられた流量センサ450は、投入される穀粒の流量を計測する。 The grains are fed into the storage space 400 </ b> Q from the feeding unit 436 by the sending blades 437, and are pressed against the detection plate 451. Due to the pressing force of the grain, the load cell 452 is distorted, and an electric signal is generated. This electric signal is used as a detection signal for calculating the flow rate of the grain. For example, the electric signal is represented by a voltage value or a current value. As the input amount of the grains sent from the fryer 416 increases, the pressing force of the grains on the detection plate 451 increases, and the detection signal of the load cell 452 also increases. Thus, the flow rate sensor 450 provided in the input section 436 measures the flow rate of the input kernel.
 貯留空間400Qに貯留される穀粒は、図20の破線500Eに示されるように、投入部436の真下を頂点とした山状に貯留される場合がある。この場合、満杯高さ検出センサ430によって穀粒の満杯状態が検出されるよりも先に、投入部436の近傍まで穀粒が堆積して、流量センサ450が穀粒に埋もれる虞がある。流量センサ450が穀粒に埋もれると、検知板451は、投入部436から投入される穀粒に押圧されるだけでなく、堆積された穀粒にも押圧されるため、流量センサ450は穀粒の流量を精度良く計測できなくなる。この状態で、コンバインの刈取作業が継続されて、投入部436から穀粒が貯留空間400Qに投入され続けると、ロードセル452に作用する荷重が増え続ける虞がある。そして、当該荷重がロードセル452の定格荷重を超えると、ロードセル452が故障するという不都合を生じる虞があるため、本実施形態では、以下のような、ロードセル452を保護するためのレベルセンサ460が備えられている。 穀 The grains stored in the storage space 400Q may be stored in a mountain shape with the vertex directly below the input unit 436 as shown by a broken line 500E in FIG. In this case, before the full height detection sensor 430 detects the full state of the kernels, the kernels may accumulate near the input unit 436, and the flow rate sensor 450 may be buried in the kernels. When the flow sensor 450 is buried in the kernel, the detection plate 451 is pressed not only by the kernel input from the input unit 436 but also by the deposited kernel. Can not be measured accurately. In this state, if the harvesting work of the combine is continued and the grains are continuously thrown into the storage space 400Q from the throwing section 436, the load acting on the load cell 452 may continue to increase. If the load exceeds the rated load of the load cell 452, the load cell 452 may be inconvenienced. Therefore, in the present embodiment, a level sensor 460 for protecting the load cell 452 as described below is provided. Has been.
〔レベルセンサについて〕
 図23に示されるように、レベルセンサ460の検出を入力可能な制御部461が備えられている。制御部461は、例えばマイクロコンピュータのモジュールとしてコンバインの制御システムに組み込まれている。制御部461は、レベルセンサ460の検出信号に基づいて、報知部462と走行制御部463とに信号を出力する。報知部462は、音声出力することによって、圃場管理者やコンバインの搭乗者に報知する構成であっても良いし、コンバインの運転部405に設けられたディスプレイ(不図示)に表示出力することによって搭乗者に報知する構成であっても良い。また、報知部462は、例えば無線通信を介して運転者や圃場管理者の携帯通信端末に報知情報を送信する構成であっても良い。走行制御部463は、クローラ走行装置401,401に対する走行制御を行うための制御モジュールである。
[About level sensor]
As shown in FIG. 23, a control unit 461 capable of inputting the detection of the level sensor 460 is provided. The control unit 461 is incorporated in a combine control system as a microcomputer module, for example. The control unit 461 outputs a signal to the notification unit 462 and the traveling control unit 463 based on the detection signal of the level sensor 460. The notifying unit 462 may be configured to notify the field manager or the occupant of the combine by outputting a voice, or by outputting the information to a display (not shown) provided in the operating unit 405 of the combine. A configuration for notifying the passenger may be employed. Further, the notification unit 462 may be configured to transmit the notification information to the portable communication terminal of the driver or the field manager via wireless communication, for example. The traveling control unit 463 is a control module for performing traveling control on the crawler traveling devices 401, 401.
 上述したように、貯留空間400Qに貯留される穀粒は、投入部436の真下を頂点とした山状に貯留される場合がある。図19および図20に示されるように、投入部436および流量センサ450の真下にレベルセンサ460が設けられている。このため、レベルセンサ460は、貯留空間400Qに貯留される穀粒のうち、当該山状の頂点付近の高さを検出可能な構成となっている。レベルセンサ460は、流量センサ450の下端部よりも低い位置に設けられている。このため、レベルセンサ460の位置する高さまで穀粒が堆積すると、レベルセンサ460は、流量センサ450の位置する高さまで穀粒が堆積する前に、制御部461に検出信号を出力可能な構成となっている。 穀 As described above, the grains stored in the storage space 400 </ b> Q may be stored in a mountain shape with the vertex directly below the input unit 436 in some cases. As shown in FIGS. 19 and 20, a level sensor 460 is provided immediately below the charging section 436 and the flow rate sensor 450. For this reason, the level sensor 460 is configured to be able to detect the height near the peak of the mountain shape among the grains stored in the storage space 400Q. The level sensor 460 is provided at a position lower than the lower end of the flow sensor 450. For this reason, when kernels accumulate to the height where the level sensor 460 is located, the level sensor 460 can output a detection signal to the control unit 461 before kernels accumulate to the height where the flow sensor 450 is located. Has become.
 レベルセンサ460は上端部の揺動支点回り、即ち横向き軸芯回りに上下揺動可能なように構成されている。穀粒の堆積に伴って穀粒から圧力を受けることによって、レベルセンサ460が下方向に揺動する。これにより、レベルセンサ460は、穀粒タンク407に穀粒が流量センサ450まで貯留されたことを検出するように構成されている。 The level sensor 460 is configured to be able to swing up and down around a swing fulcrum at the upper end, that is, around a horizontal axis. The level sensor 460 swings downward by receiving pressure from the grain as the grain is deposited. Thus, the level sensor 460 is configured to detect that the kernel is stored in the kernel tank 407 up to the flow sensor 450.
 レベルセンサ460は、満杯高さ検出センサ430よりも低い位置に設けられるとともに、高さ検出センサ431よりも高い位置に設けられている。このように、レベルセンサ460は、満杯高さ検出センサ430による満杯状態の検出前に、流量センサ450まで穀粒が貯留されたことを検出可能な構成となっている。 The level sensor 460 is provided at a position lower than the full height detection sensor 430 and at a position higher than the height detection sensor 431. As described above, the level sensor 460 is configured to be able to detect the storage of the grains up to the flow sensor 450 before the full height detection sensor 430 detects the full state.
 図23に示されるように、制御部461は、レベルセンサ460の検出信号に基づいて、報知部462と走行制御部463とに信号を出力する。具体的には、図24のフローチャートに示されるように、制御部461がレベルセンサ460によって穀粒の投入が検出されると(ステップ#401:Yes)、当該検出信号の継続時間を計測するためのタイマカウンタTCが加算される(ステップ#402)。制御部461がレベルセンサ460の検出信号を受信しない場合(ステップ#401:No)、タイマカウンタTCのカウント値は零値に設定される(ステップ#411)。ステップ#402の処理の後、制御部461から報知部462に報知信号が出力され、報知部462は、レベルセンサ460の検出に基づいて、流量センサ450まで穀粒が貯留されたことを報知する(ステップ#403)。また、報知部462は、レベルセンサ460の検出に基づいて、流量センサ450の計測精度の低下を報知する(ステップ#404)。 制 御 As shown in FIG. 23, control unit 461 outputs a signal to notification unit 462 and traveling control unit 463 based on the detection signal of level sensor 460. Specifically, as shown in the flowchart of FIG. 24, when the input of the kernel is detected by the level sensor 460 (step # 401: Yes), the control unit 461 measures the duration of the detection signal. Is incremented (step # 402). When the control unit 461 does not receive the detection signal of the level sensor 460 (Step # 401: No), the count value of the timer counter TC is set to zero (Step # 411). After the process of step # 402, a notification signal is output from the control unit 461 to the notification unit 462, and the notification unit 462 notifies the flow sensor 450 that the kernel is stored based on the detection of the level sensor 460. (Step # 403). In addition, the notification unit 462 reports a decrease in the measurement accuracy of the flow sensor 450 based on the detection of the level sensor 460 (step # 404).
 ステップ#403およびステップ#404の処理の後、タイマカウンタTCのカウント値が予め設定された判定値T1に到達したかどうかが判定される(ステップ#405)。タイマカウンタTCのカウント値が判定値T1に到達していなければ(ステップ#405:No)、処理がステップ#401に戻される。タイマカウンタTCのカウント値が判定値T1に到達すると(ステップ#405:Yes)、流量センサ450による穀粒の投入の検出が継続しているかどうかが判定される(ステップ#406)。流量センサ450による穀粒の投入の検出が無ければ(ステップ#406:No)、処理がステップ#401に戻される。流量センサ450による穀粒の投入の検出が継続していれば(ステップ#406:Yes)、制御部461から走行制御部463に制御信号が出力される。走行制御部463は制御部461の制御信号に基づいて、左右一対のクローラ走行装置401,401の駆動を停止する(ステップ#407)。このように、レベルセンサ460の検出後において、流量センサ450によって穀粒の投入が検出されると、走行装置としてのクローラ走行装置401,401を停止するように、制御部461は構成されている。これにより、コンバインの刈取作業が継続されなくなり、ロードセル452に掛かる荷重が定格荷重を超えてロードセル452が故障する虞が回避される。 (4) After the processing of step # 403 and step # 404, it is determined whether or not the count value of the timer counter TC has reached a preset determination value T1 (step # 405). If the count value of the timer counter TC has not reached the determination value T1 (Step # 405: No), the process returns to Step # 401. When the count value of the timer counter TC reaches the determination value T1 (Step # 405: Yes), it is determined whether the flow sensor 450 continues to detect the input of the grain (Step # 406). If there is no detection of the input of the grain by the flow rate sensor 450 (Step # 406: No), the process returns to Step # 401. If the detection of the input of the kernel by the flow rate sensor 450 is continued (Step # 406: Yes), a control signal is output from the control unit 461 to the travel control unit 463. The traveling control unit 463 stops driving the pair of left and right crawler traveling devices 401, 401 based on the control signal of the control unit 461 (step # 407). As described above, after the detection of the level sensor 460, the control unit 461 is configured to stop the crawler traveling devices 401 as the traveling device when the input of the grain is detected by the flow sensor 450. . As a result, the harvesting work of the combine is not continued, and the possibility that the load applied to the load cell 452 exceeds the rated load and the load cell 452 is broken can be avoided.
〔別実施形態〕
 本発明は、上述の実施形態に例示された構成に限定されるものではなく、以下、本発明の代表的な別実施形態を例示する。
[Another embodiment]
The present invention is not limited to the configuration exemplified in the above-described embodiment, and another representative embodiment of the present invention will be exemplified below.
(1)上述した実施形態の他に、穀粒搬送装置と流量センサとレベルセンサとの構成に関する他の一例を、図25に基づいて説明する。図25に示されるように、穀粒搬送装置は、脱穀装置406の底部に設けられた一番物搬送装置415と、脱穀装置406と穀粒タンク407との間に配置された揚穀コンベア470と、穀粒タンク407の左側壁の前上部を貫通する横送りスクリュー471と、を有する。揚穀コンベア470はスクリューコンベアであっても良いし、バケットコンベアであっても良い。穀粒が、揚穀コンベア470によって穀粒タンク407の上方に向けて搬送された後、横送りスクリュー471によって穀粒タンク407の外側から内側へ搬送される。横送りスクリュー471の搬送方向終端領域に投入部472が備えられ、投入部472に搬送された穀粒は、送り出し羽根473によって投入部472から穀粒タンク407の内部へ押し出される。 (1) Another example of the configuration of the grain transport device, the flow rate sensor, and the level sensor other than the above-described embodiment will be described with reference to FIG. As shown in FIG. 25, the grain conveying device includes a foremost material conveying device 415 provided at the bottom of the threshing device 406 and a fry conveyor 470 arranged between the threshing device 406 and the grain tank 407. And a lateral feed screw 471 penetrating the front upper portion of the left side wall of the grain tank 407. The fry conveyor 470 may be a screw conveyor or a bucket conveyor. After the grains are conveyed upward by the grain conveyor 470 to the grain tank 407, the grains are conveyed from the outside to the inside of the grain tank 407 by the lateral feed screw 471. A feeding section 472 is provided in the transport direction end area of the lateral feed screw 471, and the grains transported to the feeding section 472 are pushed out from the feeding section 472 to the inside of the grain tank 407 by the delivery blades 473.
 投入部472に対向する状態で、穀粒の投入量を計測する流量センサ474が、支持フレーム477に支持された状態で設けられている。流量センサ474に、平板状の検知板475とロードセル476とが備えられている。そして、レベルセンサ478が支持フレーム477に支持され、レベルセンサ478は流量センサ474の下端部よりも低い位置に設けられている。 流量 A flow sensor 474 for measuring the amount of grain input is provided in a state of being supported by the support frame 477 so as to face the input section 472. The flow rate sensor 474 includes a flat detection plate 475 and a load cell 476. The level sensor 478 is supported by the support frame 477, and the level sensor 478 is provided at a position lower than the lower end of the flow sensor 474.
(2)上述した実施形態において、満杯高さ検出センサ430と、高さ検出センサ431,432の夫々は、上端部の揺動支点回り、即ち横向き軸芯回りに上下揺動可能なように構成されているが、この実施形態に限定されない。例えば、満杯高さ検出センサ430と、高さ検出センサ431,432の夫々の揺動支点は、前端部や後端部に位置し、縦向き軸芯回りに前後揺動可能な構成であっても良い。もちろん、レベルセンサ460が、横向き軸芯回りに上下揺動可能なように構成されていても良い。また、満杯高さ検出センサ430と、高さ検出センサ431,432の夫々は、例えば感圧センサであっても良い。このため、予め設定された圧力以上の圧力が検出されることによって、穀粒タンク407に穀粒が満杯高さまで貯留されたことを満杯高さ検出センサ430が検出する構成であっても良い。また、予め設定された圧力以上の圧力が検出されることによって、穀粒タンク407に穀粒が特定の高さまで貯留されたことを高さ検出センサ431,432の夫々が検出する構成であっても良い。 (2) In the embodiment described above, each of the full height detection sensor 430 and the height detection sensors 431 and 432 is configured to be able to swing up and down around the swing fulcrum at the upper end, that is, around the horizontal axis. However, the present invention is not limited to this embodiment. For example, the swing fulcrums of the full height detection sensor 430 and the height detection sensors 431 and 432 are located at the front end and the rear end, and are configured to be able to swing back and forth around the vertical axis. Is also good. Of course, the level sensor 460 may be configured to be able to swing up and down around the horizontal axis. Further, each of the full height detection sensor 430 and the height detection sensors 431 and 432 may be, for example, a pressure sensor. Therefore, the full height detection sensor 430 may detect that the kernel is stored to the full height in the kernel tank 407 by detecting a pressure equal to or higher than a preset pressure. Further, by detecting a pressure equal to or higher than a preset pressure, each of the height detection sensors 431 and 432 detects that the kernel is stored in the kernel tank 407 to a specific height. Is also good.
(3)上述した実施形態において、制御部461は、例えばマイクロコンピュータのモジュールとしてコンバインの制御システムに組み込まれているが、この実施形態に限定されない。例えば、制御部461はリレー回路であっても良いし、機械式の制御機構であっても良い。また、レベルセンサ460の検出後において、流量センサ450によって穀粒の投入が検出されると、制御部461は、刈取部403を停止したり、上昇させたりする構成であっても良い。要するに、レベルセンサ460の検出後において、流量センサ450によって穀粒の投入が検出されると、制御部461は、穀粒タンク407への穀粒の投入を停止させる構成であれば良い。 (3) In the above-described embodiment, the control unit 461 is incorporated in the control system of the combine as a microcomputer module, for example, but is not limited to this embodiment. For example, the control unit 461 may be a relay circuit or a mechanical control mechanism. In addition, after the detection of the level sensor 460, when the input of the grain is detected by the flow rate sensor 450, the control unit 461 may be configured to stop or raise the cutting unit 403. In short, after the detection of the level sensor 460, if the input of the kernel is detected by the flow rate sensor 450, the control unit 461 may be configured to stop the input of the kernel to the kernel tank 407.
(4)上述した実施形態に示された報知部462は備えられなくても良い。例えば、穀粒タンク407に穀粒が流量センサ450まで貯留されたことがレベルセンサ460によって検出されると、コンバインが刈取作業を中止して、自動的に搬送車等に穀粒を排出する構成であっても良い。この場合、流量センサ450まで穀粒が貯留されたことが、必ずしも報知されなくても良い。 (4) The notification unit 462 shown in the above-described embodiment may not be provided. For example, when the level sensor 460 detects that the kernel is stored in the kernel tank 407 up to the flow rate sensor 450, the combine stops the harvesting operation and automatically discharges the kernel to a carrier or the like. It may be. In this case, it is not always necessary to be notified that the grains are stored up to the flow sensor 450.
(5)上述した実施形態において、レベルセンサ460が満杯高さ検出センサ430よりも低い位置に設けられているが、この実施形態に限定されない。例えば、流量センサ450が満杯高さ検出センサ430よりも高い位置にある場合、レベルセンサ460は満杯高さ検出センサ430よりも高い位置に設けられても良い。要するに、レベルセンサ460は、流量センサ450の下端部よりも低い位置に設けられれば良い。 (5) In the embodiment described above, the level sensor 460 is provided at a position lower than the full height detection sensor 430, but is not limited to this embodiment. For example, when the flow sensor 450 is at a position higher than the full height detection sensor 430, the level sensor 460 may be provided at a higher position than the full height detection sensor 430. In short, the level sensor 460 may be provided at a position lower than the lower end of the flow rate sensor 450.
(6)上述した実施形態において、他のレベルセンサとして、二つの高さ検出センサ431,432が備えられているが、他のレベルセンサは二つに限定されず、三個以上備えられていても良い。つまり、他のレベルセンサの個数は適宜変更可能である。 (6) In the embodiment described above, two height detection sensors 431 and 432 are provided as other level sensors, but the other level sensors are not limited to two, and three or more are provided. Is also good. That is, the number of other level sensors can be changed as appropriate.
(7)上述した実施形態の図24に示されたフローチャートにおいて、タイマカウンタTCのカウント値が判定値T1に到達すると(ステップ#405:Yes)、流量センサ450による穀粒の投入の検出が継続しているかどうかが判定される(ステップ#406)構成となっているが、この実施形態に限定されない。例えば、タイマカウンタTCが設けられず、ステップ#405の判定を介さずにステップ#406の判定が行われる構成であっても良い。また、流量センサ450まで穀粒が貯留されたことの報知(ステップ#403)と、流量センサ450の計測精度の低下の報知(ステップ#404)との間に、ステップ#406のような穀粒の投入の検出を判定する処理が設けられていても良い。つまり、ステップ#403の報知処理の後に、なおも穀粒の投入が検出されると、ステップ#404の報知処理が行われる構成であっても良い。 (7) In the flowchart shown in FIG. 24 of the above-described embodiment, when the count value of the timer counter TC reaches the determination value T1 (Step # 405: Yes), the detection of the input of the kernel by the flow rate sensor 450 is continued. (Step # 406), but the present invention is not limited to this embodiment. For example, a configuration may be employed in which the timer counter TC is not provided, and the determination in step # 406 is performed without going through the determination in step # 405. Also, between the notification that the grain has been stored up to the flow sensor 450 (step # 403) and the notification that the measurement accuracy of the flow sensor 450 has decreased (step # 404), the kernel as in step # 406 is used. May be provided for determining the detection of the insertion of the power supply. In other words, the configuration may be such that the notification process of step # 404 is performed if the input of the grain is still detected after the notification process of step # 403.
(8)
 上述したコンバインを、貯留レベル検出システムとして構成することも可能である。係る場合、貯留レベル検出システムは、刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、を有するコンバインにおいて、前記穀粒タンクの貯留レベルを検出する貯留レベル検出システムであって、前記穀粒搬送装置の投入部に設けられ、投入される穀粒の流量を計測する流量センサと、前記流量センサの下端部よりも低い位置に設けられ、前記穀粒タンクに穀粒が前記流量センサまで貯留されたことを検出するレベルセンサと、を備えるように構成することが可能である。
(8)
The combine described above can be configured as a storage level detection system. In such a case, the storage level detection system includes a threshing device for threshing the harvested culm, a grain tank for storing the grains obtained by the threshing device, and an upper portion of the threshing device and the grain tank. A grain transport device that is provided in a state, and transports the grains obtained by the threshing device and puts the grains into the inside of the grain tank, and a storage that detects a storage level of the grain tank. A level detection system, which is provided in an input section of the grain transport device, and which is provided at a position lower than a lower end portion of the flow rate sensor for measuring a flow rate of the input kernel, wherein the grain is provided. And a level sensor for detecting that the grain has been stored in the tank up to the flow rate sensor.
 本発明は、コンバイン等の様々な収穫作業車に好適である。 The present invention is suitable for various harvesting vehicles such as combine harvesters.
 また、本発明は、刈取穀稈の茎部の全体を含む全稈を脱穀装置に投入する普通型コンバイン以外にも、例えば、脱穀装置に穂先だけを投入する自脱型コンバインにも適用することができる。 In addition, the present invention can be applied to, for example, a self-combining type combine that throws only a tip into a threshing device, in addition to a normal combine that puts all culms including the entire stem portion of a harvested grain culm into a threshing device. Can be.
 また、本発明は、自脱型コンバインのみならず、刈取穀稈の全稈を脱穀装置に投入する汎用コンバインにも適用可能である。 The present invention is applicable not only to the self-removable combine, but also to a general-purpose combine in which all the culms of the harvested cereals are fed into the threshing apparatus.
〔第1の実施形態〕
  7:穀粒タンク
 10:ロードセル
 11:モミセンサ
 22:制御装置
 24:第1マップ
 25:第2マップ
 26:排出収量
 50:品質計測装置
 51:一時貯留部
 52:計測部
 57:シャッター
[First Embodiment]
7: Grain tank 10: Load cell 11: Fir sensor 22: Control device 24: First map 25: Second map 26: Emission yield 50: Quality measuring device 51: Temporary storage unit 52: Measuring unit 57: Shutter
〔第2の実施形態〕
 207:穀粒タンク
 208:穀粒搬送装置
 209:穀粒排出装置
 240:測定容器
 241:受け入れ口
 242:排出口
 243:スカート部
 244:下側開口
 206:制御ユニット
 266:シャッタ制御部
 267:穀粒測定部
 267a:穀粒流量算出部
 267b:穀粒成分値算出部
 268:不正流入検知部
 269:報知制御部
 820:報知デバイス
 270:重量測定器
 290:成分値センサ処理ユニット
 291:第1貯留センサ
 292:第2貯留センサ
 293:成分値センサ
 200GV:流量測定手段
 200ST:シャッタ
[Second embodiment]
207: Kernel tank 208: Kernel transport device 209: Kernel discharge device 240: Measurement container 241: Receiving port 242: Discharge port 243: Skirt section 244: Lower opening 206: Control unit 266: Shutter control section 267: Grain Grain measuring section 267a: Kernel flow rate calculating section 267b: Kernel component value calculating section 268: Illegal inflow detecting section 269: Notification control section 820: Notification device 270: Weight measuring device 290: Component value sensor processing unit 291: First storage Sensor 292: Second storage sensor 293: Component value sensor 200GV: Flow rate measuring means 200ST: Shutter
〔第3の実施形態〕
 401:クローラ走行装置(走行装置)
 406:脱穀装置
 407:穀粒タンク
 415:一番物搬送装置(穀粒搬送装置)
 416:揚穀装置(穀粒搬送装置)
 430:満杯高さ検出センサ(満杯レベルセンサ)
 431:高さ検出センサ(他のレベルセンサ)
 432:高さ検出センサ(他のレベルセンサ)
 436:投入部
 450:流量センサ
 460:レベルセンサ
 462:報知部
 400Q:貯留空間(タンク内部)
[Third embodiment]
401: Crawler traveling device (traveling device)
406: Threshing device 407: Grain tank 415: First thing transport device (Grain transport device)
416: Frying equipment (grain conveying equipment)
430: full height detection sensor (full level sensor)
431: Height detection sensor (other level sensor)
432: Height detection sensor (other level sensor)
436: Input section 450: Flow rate sensor 460: Level sensor 462: Notification section 400Q: Storage space (inside tank)

Claims (42)

  1.  脱穀された穀粒が供給されて貯留される穀粒タンクを備えるコンバインであって、
     前記穀粒タンクに設けられて、供給される前記穀粒の流量を測定する流量センサと、
     前記穀粒タンクの下方に設けられて、前記穀粒タンクの重量に基づく出力値を出力する収量センサと、
     前記流量及び前記出力値に基づいて前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する制御部とを備えるコンバイン。
    A combine having a grain tank in which threshed grains are supplied and stored,
    A flow sensor that is provided in the grain tank and measures a flow rate of the supplied grain,
    A yield sensor that is provided below the grain tank and outputs an output value based on the weight of the grain tank,
    A control unit for calculating a current yield of the kernel stored in the kernel tank based on the flow rate and the output value.
  2.  前記制御部は、
     特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップと、前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップとを用いて、前記出力値から前記現在収量を算出する請求項1に記載のコンバイン。
    The control unit includes:
    A first map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; A second map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow rate value larger than the flow rate value. The combine according to claim 1, wherein the current yield is calculated from the output value by using the following.
  3.  前記制御部は、前記出力値に対する前記第1マップにおける前記収量と、前記出力値に対する前記第2マップにおける前記収量とを、前記第1流量値、前記第2流量値及び前記流量に基づいて案分することにより、前記現在収量を算出する請求項2に記載のコンバイン。 The control unit estimates the yield in the first map for the output value and the yield in the second map for the output value based on the first flow rate value, the second flow rate value, and the flow rate. The combine according to claim 2, wherein the current yield is calculated by dividing the yield.
  4.  前記第1流量値は前記流量センサで検出されると想定される最低の流量値であり、前記第2流量値は前記流量センサで検出されると想定される最高の流量値である請求項2又は3に記載のコンバイン。 3. The flow rate sensor according to claim 2, wherein the first flow rate value is a lowest flow rate value assumed to be detected by the flow rate sensor, and the second flow rate value is a highest flow rate value assumed to be detected by the flow rate sensor. Or the combine according to 3.
  5.  前記第1マップ及び前記第2マップは、脱穀される作物種類に応じて決定される請求項2から4のいずれか一項に記載のコンバイン。 The combine according to any one of claims 2 to 4, wherein the first map and the second map are determined according to the type of crop to be threshed.
  6.  前記流量センサは、
     供給される前記穀粒の一部を貯留する一時貯留箱と、
     一定量の前記穀粒が前記一時貯留箱に貯留される時間を計測する計測部と、
     一定量の前記穀粒が前記一時貯留箱に貯留されると前記穀粒を排出するシャッター部とを備え、一定量の前記穀粒が貯留される時間と貯留量とから前記流量を算出する請求項1から5のいずれか一項に記載のコンバイン。
    The flow sensor,
    A temporary storage box for storing a part of the supplied kernel,
    A measuring unit that measures the time when a certain amount of the grains are stored in the temporary storage box,
    A shutter unit that discharges the kernel when a certain amount of the kernel is stored in the temporary storage box, and calculates the flow rate from a time and a storage amount in which a certain amount of the kernel is stored. Item 6. The combine according to any one of Items 1 to 5.
  7.  前記一時貯留箱に貯留された前記穀粒の成分を測定する成分センサが備えられている請求項6に記載のコンバイン。 7. The combine according to claim 6, further comprising a component sensor for measuring a component of the grain stored in the temporary storage box.
  8.  外部と通信し、前記外部からの要求量を取得する通信部を備え、
     前記現在収量と前記要求量とを比較して収穫作業の終了タイミングを判定する作業管理部を備える請求項1から7のいずれか一項に記載のコンバイン。
    A communication unit that communicates with the outside and acquires the requested amount from the outside,
    The combine according to any one of claims 1 to 7, further comprising: a work management unit configured to compare the current yield with the required amount to determine a timing of ending the harvest work.
  9.  脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記出力値によって前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する収量算出方法であって、
     特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップをあらかじめ求める工程と、
     前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップをあらかじめ求める工程と、
     前記穀粒タンクに供給される前記穀粒の流量を測定する工程と、
     前記収量センサから出力された前記出力値を取得する工程と、
     前記第1流量値及び前記第2流量値に対する前記流量の比率に応じて、前記出力値に対する前記第1マップにおける前記収量及び前記出力値に対する前記第2マップにおける前記収量を案分して前記現在収量を算出する工程とを備える収量算出方法。
    In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, the combiner is stored in the grain tank by the output value. A yield calculation method for calculating the current yield of the grain,
    A step of previously obtaining a first map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; ,
    A second graph showing the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value larger than the first flow value. 2 a process of obtaining a map in advance;
    Measuring the flow rate of the grain supplied to the grain tank,
    Obtaining the output value output from the yield sensor,
    According to the ratio of the flow rate to the first flow rate value and the second flow rate value, the yield in the first map for the output value and the yield in the second map for the output value are divided into the current And a step of calculating the yield.
  10.  脱穀された穀粒が供給されて貯留されるコンバインの穀粒タンクにおける前記穀粒の現在収量を算出する収量算出システムであって、
     前記穀粒タンクに供給される前記穀粒の流量を測定する流量センサと、
     前記穀粒タンクの重量に基づく出力値を出力する収量センサと、
     前記流量及び前記出力値に基づいて前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する制御部とを備える収量算出システム。
    A yield calculation system that calculates a current yield of the grain in a grain tank of a combine in which threshed grains are supplied and stored,
    A flow sensor that measures the flow rate of the grain supplied to the grain tank,
    A yield sensor that outputs an output value based on the weight of the grain tank,
    A control unit configured to calculate a current yield of the kernel stored in the kernel tank based on the flow rate and the output value.
  11.  脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記出力値によって前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する収量算出プログラムであって、
     特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップをあらかじめ求める機能と、
     前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップをあらかじめ求める機能と、
     前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、
     前記収量センサから出力された前記出力値を取得する機能と、
     前記第1流量値及び前記第2流量値に対する前記流量の比率に応じて、前記出力値に対する前記第1マップにおける前記収量及び前記出力値に対する前記第2マップにおける前記収量を案分して前記現在収量を算出する機能と、
    をコンピュータに実現させるための収量算出プログラム。
    In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, the combiner is stored in the grain tank by the output value. A yield calculation program for calculating the current yield of the grain,
    A function for previously obtaining a first map indicating a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; ,
    A second graph showing the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value larger than the first flow value. 2 A function to obtain a map in advance,
    A function of measuring the flow rate of the kernel supplied to the kernel tank,
    A function of acquiring the output value output from the yield sensor,
    According to the ratio of the flow rate to the first flow rate value and the second flow rate value, the yield in the first map for the output value and the yield in the second map for the output value are divided into the current A function to calculate the yield,
    Is a computer program for calculating the yield.
  12.  脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記出力値によって前記穀粒タンクに貯留されている前記穀粒の現在収量を算出する収量算出プログラムを記録した記録媒体であって、
     特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップをあらかじめ求める機能と、
     前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップをあらかじめ求める機能と、
     前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、
     前記収量センサから出力された前記出力値を取得する機能と、
     前記第1流量値及び前記第2流量値に対する前記流量の比率に応じて、前記出力値に対する前記第1マップにおける前記収量及び前記出力値に対する前記第2マップにおける前記収量を案分して前記現在収量を算出する機能と、
    をコンピュータに実現させるための収量算出プログラムが記録されている記録媒体。
    In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, the combiner is stored in the grain tank by the output value. A recording medium recording a yield calculation program for calculating the current yield of the grain,
    A function for previously obtaining a first map indicating a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value; ,
    A second graph showing the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value larger than the first flow value. 2 A function to obtain a map in advance,
    A function of measuring the flow rate of the kernel supplied to the kernel tank,
    A function of acquiring the output value output from the yield sensor,
    According to the ratio of the flow rate to the first flow rate value and the second flow rate value, the yield in the first map for the output value and the yield in the second map for the output value are divided into the current A function to calculate the yield,
    Recording medium on which a yield calculation program for causing a computer to realize the above is recorded.
  13.  脱穀された穀粒が供給されて貯留される穀粒タンクを備えるコンバインであって、
     前記穀粒タンクに設けられて、供給される前記穀粒の流量を測定する流量センサと、
     前記流量に基づいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する制御部とを備えるコンバイン。
    A combine having a grain tank in which threshed grains are supplied and stored,
    A flow sensor that is provided in the grain tank and measures a flow rate of the supplied grain,
    A controller configured to calculate, based on the flow rate, a discharge yield of the kernel stored in the kernel tank in a discharge state in which the kernel needs to be discharged from the kernel tank.
  14.  前記穀粒タンク内に設けられて、前記穀粒タンクが満杯になった際に前記穀粒を検出する満杯レベルセンサを備え、
     前記排出状態は、前記満杯レベルセンサが前記穀粒を検出した状態である請求項13に記載のコンバイン。
    A full level sensor is provided in the kernel tank and detects the kernel when the kernel tank is full,
    14. The combine according to claim 13, wherein the discharge state is a state in which the full level sensor detects the kernel.
  15.  前記穀粒タンクの所定の高さまで穀粒が貯留されたことを検出する複数のレベルセンサと、
     外部と通信し、前記外部から要求量を取得する通信部とを備え、
     前記排出状態は、複数の前記レベルセンサの内の、前記要求量に対応するレベルセンサが前記穀粒を検出する状態である請求項13又は14に記載のコンバイン。
    A plurality of level sensors for detecting that grains are stored to a predetermined height of the grain tank,
    A communication unit that communicates with the outside and acquires the requested amount from the outside,
    The combine according to claim 13 or 14, wherein the discharge state is a state in which a level sensor corresponding to the required amount among the plurality of level sensors detects the kernel.
  16.  前記穀粒タンクの下方に設けられて、前記穀粒タンクの重量に基づく出力値を出力する収量センサを備え、
     前記制御部は、前記流量及び前記出力値に基づいて現在収量を算出する請求項13から15のいずれか一項に記載のコンバイン。
    A yield sensor that is provided below the grain tank and outputs an output value based on the weight of the grain tank,
    The combine according to any one of claims 13 to 15, wherein the control unit calculates a current yield based on the flow rate and the output value.
  17.  前記制御部は、特定の第1流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第1マップと前記第1流量値より大きな特定の第2流量値で前記穀粒タンクに前記穀粒を貯留する場合における前記出力値と前記穀粒タンクに貯留された前記穀粒の収量との関係を示す第2マップとを用いて、前記出力値から前記現在収量を算出し、
     前記現在収量の算出は、前記出力値に対する前記第1マップにおける前記収量と、前記出力値に対する前記第2マップにおける前記収量とを、前記第1流量値、前記第2流量値及び前記流量に基づいて案分することにより行われる請求項16に記載のコンバイン。
    The control unit is configured to provide a first map showing a relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific first flow rate value. And shows the relationship between the output value and the yield of the kernel stored in the kernel tank when storing the kernel in the kernel tank at a specific second flow value greater than the first flow value. Using the second map, calculate the current yield from the output value,
    The current yield is calculated by calculating the yield in the first map for the output value and the yield in the second map for the output value based on the first flow rate value, the second flow rate value, and the flow rate. The combine according to claim 16, which is performed by prorating.
  18.  前記制御部は、前記現在収量から前記排出収量となるまでの時間を前記流量に基づいて算出する請求項16又は17に記載のコンバイン。 18. The combine according to claim 16 or 17, wherein the control unit calculates a time from the current yield to the emission yield based on the flow rate.
  19.  前記流量センサは、
     供給される前記穀粒の一部を貯留する一次貯留箱と、
     一定量の前記穀粒が前記一次貯留箱に貯留される時間を計測する計測部と、
     一定量の前記穀粒が前記一次貯留箱に貯留されると前記穀粒を排出するシャッター部とを備え、一定量の前記穀粒が貯留される時間と貯留量とから前記流量を算出する請求項13から18のいずれか一項に記載のコンバイン。
    The flow sensor,
    A primary storage box for storing a part of the supplied kernels,
    A measuring unit that measures the time when a certain amount of the grains are stored in the primary storage box,
    A shutter unit that discharges the kernel when a certain amount of the kernel is stored in the primary storage box, and calculates the flow rate from a time and a storage amount in which a certain amount of the kernel is stored. Item 19. The combine according to any one of Items 13 to 18.
  20.  前記一次貯留箱に貯留された前記穀粒の成分を測定する成分センサを備える請求項19に記載のコンバイン。 20. The combine according to claim 19, further comprising: a component sensor for measuring a component of the kernel stored in the primary storage box.
  21.  脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出方法であって、
     前記穀粒タンクに供給される前記穀粒の流量を測定する工程と、
     前記流量に基づいて前記排出収量を算出する工程とを備える穀粒排出収量算出方法。
    In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, discharging the grains from the grain tank may be performed. A grain discharge yield calculation method for calculating a discharge yield of the grains stored in the grain tank in a required discharge state,
    Measuring the flow rate of the grain supplied to the grain tank,
    Calculating the emission yield based on the flow rate.
  22.  特定の第1流量値で貯留し続けた時に前記排出状態となる第1収量をあらかじめ求める工程と、
     前記第1流量値より大きな特定の第2流量値で貯留し続けた時に前記排出状態となる第2収量をあらかじめ求める工程とを備え、
    前記排出収量を算出する工程は、前記第1流量値及び前記第2流量値に対する前記流量の比率に応じて、前記第1収量及び前記第2収量を案分することにより前記排出収量を算出する請求項21に記載の穀粒排出収量算出方法。
    A step of previously obtaining a first yield that is in the discharge state when the storage is continued at a specific first flow rate value;
    A step of previously obtaining a second yield to be in the discharge state when the storage is continued at a specific second flow rate value larger than the first flow rate value,
    The step of calculating the discharge yield calculates the discharge yield by dividing the first yield and the second yield according to a ratio of the flow rate to the first flow rate value and the second flow rate value. 22. The method for calculating a grain discharge yield according to claim 21.
  23.  脱穀された穀粒が供給されて貯留されるコンバインの穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出システムであって、
     前記穀粒タンクに供給される前記穀粒の流量を測定する流量センサと、
     前記流量に基づいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する制御部とを備える穀粒排出収量算出システム。
    A grain for calculating a discharge yield of the grain stored in the grain tank in a discharge state in which it is necessary to discharge the grain from a grain tank of a combine in which threshed grains are supplied and stored. A grain emission yield calculation system,
    A flow sensor that measures the flow rate of the grain supplied to the grain tank,
    A controller configured to calculate a discharge yield of the kernel stored in the kernel tank in a discharge state in which it is necessary to discharge the kernel from the kernel tank based on the flow rate. Yield calculation system.
  24.  脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出プログラムであって、
     前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、
     前記流量に基づいて前記排出収量を算出する機能と、
    をコンピュータに実現させるための穀粒排出収量算出プログラム。
    In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, discharging the grains from the grain tank may be performed. A kernel discharge yield calculation program for calculating the discharge yield of the kernel stored in the kernel tank in a required discharge state,
    A function of measuring the flow rate of the kernel supplied to the kernel tank,
    A function of calculating the emission yield based on the flow rate,
    Is a computer program for calculating grain emissions and yields.
  25.  脱穀された穀粒が供給されて貯留される穀粒タンクと前記穀粒タンクの重量に基づく出力値を出力する収量センサとを有するコンバインにおいて、前記穀粒タンクから前記穀粒を排出することが必要となる排出状態における前記穀粒タンクに貯留された前記穀粒の排出収量を算出する穀粒排出収量算出プログラムを記録した記録媒体であって、
     前記穀粒タンクに供給される前記穀粒の流量を測定する機能と、
     前記流量に基づいて前記排出収量を算出する機能と、
    をコンピュータに実現させるための穀粒排出収量算出プログラムが記録されている記録媒体。
    In a combine having a grain tank in which threshed grains are supplied and stored and a yield sensor that outputs an output value based on the weight of the grain tank, discharging the grains from the grain tank may be performed. A recording medium recording a kernel discharge yield calculation program for calculating a discharge yield of the kernel stored in the kernel tank in a required discharge state,
    A function of measuring the flow rate of the kernel supplied to the kernel tank,
    A function of calculating the emission yield based on the flow rate,
    Recording medium for recording a kernel discharge yield calculation program for causing a computer to realize the above.
  26.  刈取穀稈を脱穀処理する脱穀装置と、
     前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、
     前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、
     前記穀粒タンクの内部に設けられ、前記穀粒タンクに投入される穀粒の流量を測定する流量測定手段と、を備え、
     前記流量測定手段は、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器を有し、かつ、前記測定容器に一定量の穀粒が貯留される時間に基づいて前記流量を測定するとともに前記流量の測定後に穀粒を前記穀粒タンクに戻すように構成され、
     前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知部を備えたコンバイン。
    A threshing device for threshing the harvested culm,
    A grain tank that stores the grains obtained by the threshing device,
    A grain transport device that is provided so as to extend over the threshing device and the upper portion of the grain tank, transports the grains obtained by the threshing device, and throws the grains into the tank of the grain tank.
    Flow rate measuring means provided inside the grain tank, for measuring the flow rate of the grain to be charged into the grain tank,
    The flow rate measuring means has a measuring container for receiving and storing a part of the grains to be supplied to the grain tank from a receiving port, and at a time when a certain amount of grains is stored in the measuring container. Configured to return the kernels to the kernel tank after measuring the flow rate and measuring the flow rate based on the
    An illegal inflow detection unit configured to detect an illegal inflow of grains stored in the grain tank outside the measurement container from the receiving port and flowing into the measurement container based on a temporal change amount of the flow rate. Combine.
  27.  前記不正流入検知部が前記不正流入を検知した場合、前記流量測定手段による測定を停止する請求項26に記載のコンバイン。 27. The combine according to claim 26, wherein when the unauthorized inflow detecting unit detects the unauthorized inflow, the measurement by the flow rate measuring unit is stopped.
  28.  前記不正流入検知部が前記不正流入を検知した場合、不正流入警報が報知される請求項26又は27に記載のコンバイン。 28. The combine according to claim 26 or 27, wherein when the unauthorized inflow detection unit detects the unauthorized inflow, an unauthorized inflow alarm is issued.
  29.  前記測定容器に貯留された穀粒の成分値を測定する成分値センサが備えられている請求項26から28のいずれか一項に記載のコンバイン。 The combine according to any one of claims 26 to 28, further comprising a component value sensor that measures a component value of the kernel stored in the measurement container.
  30.  前記不正流入検知部は、前記流量が予め定められた所定値よりも大きいことを不正流入検知条件として設定している請求項26から29のいずれか一項に記載のコンバイン。 The combine according to any one of claims 26 to 29, wherein the unauthorized inflow detection unit sets, as the unauthorized inflow detection condition, that the flow rate is greater than a predetermined value.
  31.  前記穀粒タンクの重量を測定する重量測定器が備えられており、
     前記不正流入検知部は、前記穀粒タンクの重量が予め定められた所定値よりも大きいことを、不正流入検知条件として設定している請求項26から30のいずれか一項に記載のコンバイン。
    A weight measuring device for measuring the weight of the grain tank is provided,
    The combine according to any one of claims 26 to 30, wherein the unauthorized inflow detection unit sets, as an unauthorized inflow detection condition, that the weight of the grain tank is larger than a predetermined value.
  32.  刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知システムであって、
     前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定手段と、
     前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知部と、
    を備える不正流入検知システム。
    A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port, And a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, wherein the unauthorized inflow detection system detects an unauthorized inflow flowing into the measurement container. hand,
    Flow rate measuring means for measuring the flow rate of the grains to be charged into the grain tank based on the time during which a certain amount of grains are stored in the measurement container,
    Based on the amount of change over time in the flow rate, an unauthorized inflow detection unit that detects an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container,
    Unauthorized inflow detection system equipped with.
  33.  刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知プログラムであって、
     前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定機能と、
     前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知機能と、
    をコンピュータに実現させるための不正流入検知プログラム。
    A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port, And a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, wherein the unauthorized inflow detection program detects an unauthorized inflow flowing into the measurement container. hand,
    A flow rate measurement function for measuring the flow rate of the grains to be supplied to the grain tank based on the time during which a certain amount of grains are stored in the measurement container,
    Based on the amount of change in the flow rate over time, an unauthorized inflow detection function of detecting an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container,
    Intrusion detection program to make a computer realize.
  34.  刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知プログラムを記録した記録媒体であって、
     前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定機能と、
     前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知機能と、
    をコンピュータに実現させるための不正流入検知プログラムが記録されている記録媒体。
    A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port, In a combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, an unauthorized inflow detection program that detects an unauthorized inflow flowing into the measurement container is recorded. Recording medium,
    A flow rate measurement function for measuring the flow rate of the grains to be supplied to the grain tank based on the time during which a certain amount of grains are stored in the measurement container,
    Based on the amount of change in the flow rate over time, an unauthorized inflow detection function of detecting an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container,
    Recording medium on which an unauthorized inflow detection program for causing a computer to realize the above is recorded.
  35.  刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、前記穀粒タンクに投入される穀粒の一部を受け入れ口から受け入れて貯留する測定容器と、を有し、前記測定容器における前記穀粒の流量の測定後に前記穀粒を前記穀粒タンクに戻すように構成されるコンバインにおいて、前記測定容器に流れ込む不正流入を検知する不正流入検知方法であって、
     前記測定容器に一定量の穀粒が貯留される時間に基づいて前記穀粒タンクに投入される穀粒の流量を測定する流量測定工程と、
     前記流量の経時的変化量に基づいて、前記穀粒タンクにおける前記測定容器の外部に貯留されている穀粒が前記受け入れ口から前記測定容器に流れ込む不正流入を検知する不正流入検知工程と、
    を備える不正流入検知方法。
    A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws them into the inside of the grain tank, and a measuring container that receives and stores a part of the grains thrown into the grain tank from a receiving port, A combine configured to return the kernels to the kernel tank after measuring the flow rate of the kernels in the measurement container, wherein the unauthorized inflow detection method detects an unauthorized inflow flowing into the measurement container. hand,
    A flow rate measurement step of measuring the flow rate of the grains to be charged into the grain tank based on the time during which a certain amount of grains are stored in the measurement container,
    Based on the amount of change in the flow rate over time, an unauthorized inflow detection step of detecting an unauthorized inflow of grains stored outside the measurement container in the kernel tank from the receiving port into the measurement container,
    Unauthorized inflow detection method comprising:
  36.  刈取穀稈を脱穀処理する脱穀装置と、
     前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、
     前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、
     前記穀粒搬送装置の投入部に設けられ、投入される穀粒の流量を計測する流量センサと、
     前記流量センサの下端部よりも低い位置に設けられ、前記穀粒タンクに穀粒が前記流量センサまで貯留されたことを検出するレベルセンサと、が備えられているコンバイン。
    A threshing device for threshing the harvested culm,
    A grain tank that stores the grains obtained by the threshing device,
    A grain transport device that is provided so as to extend over the threshing device and the upper portion of the grain tank, transports the grains obtained by the threshing device, and throws the grains into the tank of the grain tank.
    A flow sensor that is provided in the input unit of the grain transport device and measures a flow rate of the input kernel,
    A level sensor provided at a position lower than a lower end of the flow rate sensor and detecting that kernels are stored in the grain tank up to the flow rate sensor.
  37.  前記レベルセンサの検出に基づいて、前記流量センサまで穀粒が貯留されたことを報知する報知部が備えられている請求項36に記載のコンバイン。 37. The combine according to claim 36, further comprising: a notifying unit that notifies that the grain has been stored to the flow sensor based on the detection of the level sensor.
  38.  前記レベルセンサの検出に基づいて、前記流量センサの計測精度の低下を報知する報知部が備えられている請求項36又は37に記載のコンバイン。 38. The combine according to claim 36 or 37, further comprising a reporting unit that reports a decrease in measurement accuracy of the flow sensor based on the detection of the level sensor.
  39.  走行装置が備えられ、
     前記レベルセンサの検出後において、前記流量センサによって穀粒の投入が検出されると、前記走行装置を停止する請求項36から38のいずれか一項に記載のコンバイン。
    A traveling device is provided,
    The combine according to any one of claims 36 to 38, wherein, after the detection of the level sensor, when the introduction of the grain is detected by the flow rate sensor, the traveling device is stopped.
  40.  前記タンク内部に設けられ、前記穀粒タンクに穀粒が満杯高さまで貯留されたことを検出する満杯レベルセンサが備えられ、
     前記レベルセンサは、前記満杯レベルセンサよりも低い位置に設けられている請求項36から39のいずれか一項に記載のコンバイン。
    A full level sensor that is provided inside the tank and detects that kernels are stored to the full height in the kernel tank is provided,
    The combine according to any one of claims 36 to 39, wherein the level sensor is provided at a position lower than the full level sensor.
  41.  前記タンク内部における前記満杯レベルセンサよりも低い位置に、前記穀粒タンクに穀粒が特定の高さまで貯留されたことを検出する他のレベルセンサが複数備えられ、
     前記レベルセンサは、前記複数の他のレベルセンサのうち前記満杯レベルセンサの次に高い位置に位置する他のレベルセンサよりも高い位置に設けられている請求項40に記載のコンバイン。
    At a position lower than the full level sensor inside the tank, a plurality of other level sensors for detecting that kernels are stored to a specific height in the kernel tank are provided,
    41. The combine according to claim 40, wherein the level sensor is provided at a position higher than another level sensor located at a position higher than the full level sensor among the plurality of other level sensors.
  42.  刈取穀稈を脱穀処理する脱穀装置と、前記脱穀装置で得られた穀粒を貯留する穀粒タンクと、前記脱穀装置と前記穀粒タンクの上部とに亘る状態で設けられ、前記脱穀装置で得られた穀粒を搬送して前記穀粒タンクのタンク内部に投入する穀粒搬送装置と、を有するコンバインにおいて、前記穀粒タンクの貯留レベルを検出する貯留レベル検出システムであって、
     前記穀粒搬送装置の投入部に設けられ、投入される穀粒の流量を計測する流量センサと、
     前記流量センサの下端部よりも低い位置に設けられ、前記穀粒タンクに穀粒が前記流量センサまで貯留されたことを検出するレベルセンサと、が備えられている貯留レベル検出システム。
    A threshing device for threshing a harvested grain culm, a grain tank for storing grains obtained by the threshing device, and a state provided over the threshing device and an upper portion of the grain tank, wherein the threshing device is provided. A grain transport device that transports the obtained grains and throws the grains into the inside of the grain tank, and a combine having a storage level detection system that detects a storage level of the grain tank.
    A flow sensor that is provided in the input unit of the grain transport device and measures a flow rate of the input kernel,
    A level sensor that is provided at a position lower than a lower end of the flow rate sensor and detects that grains are stored in the grain tank up to the flow rate sensor.
PCT/JP2019/021536 2018-06-25 2019-05-30 Combine, yield calculation method, yield calculation system, yield calculation program, recording medium having yield calculation program recorded thereon, grain discharge yield calculation method, grain discharge yield calculation system, grain discharge yield calculation program, recording medium having grain discharge yield calculation program recorded thereon, irregular inflow detection system, irregular inflow detection program, recording medium having irregular inflow detection program recorded thereon, irregular inflow detection method, and storage level detection system WO2020003882A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980028011.1A CN112533475A (en) 2018-06-25 2019-05-30 A combine harvester, a harvest amount calculation method, a calculation system, a calculation program, and a recording medium having the calculation program recorded thereon; a grain discharge yield calculation method, a calculation system, a calculation program, a recording medium on which the calculation program is recorded, an abnormal inflow detection system, a detection program, a recording medium on which the detection program is recorded, and a detection method; storage level detection system
KR1020207029762A KR20210023805A (en) 2018-06-25 2019-05-30 A recording medium recording a combine, a quantity calculation method, a quantity calculation system, a quantity calculation program, and a quantity calculation program, and a grain discharge quantity calculation method, a grain discharge quantity calculation system, a grain discharge quantity calculation program, and a grain discharge quantity calculation program are recorded. A recording medium, a fraudulent inflow detection system, a fraudulent inflow detection program, a recording medium recording the fraudulent inflow detection program, and a fraudulent inflow detection method, and a storage level detection system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018119983A JP7059121B2 (en) 2018-06-25 2018-06-25 combine
JP2018-119983 2018-06-25
JP2018-120283 2018-06-25
JP2018-120284 2018-06-25
JP2018120283A JP7059124B2 (en) 2018-06-25 2018-06-25 Combine and yield calculation method
JP2018120284A JP7059125B2 (en) 2018-06-25 2018-06-25 Combine and grain emission yield calculation method
JP2018-123154 2018-06-28
JP2018123154A JP6952652B2 (en) 2018-06-28 2018-06-28 combine

Publications (1)

Publication Number Publication Date
WO2020003882A1 true WO2020003882A1 (en) 2020-01-02

Family

ID=68987065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021536 WO2020003882A1 (en) 2018-06-25 2019-05-30 Combine, yield calculation method, yield calculation system, yield calculation program, recording medium having yield calculation program recorded thereon, grain discharge yield calculation method, grain discharge yield calculation system, grain discharge yield calculation program, recording medium having grain discharge yield calculation program recorded thereon, irregular inflow detection system, irregular inflow detection program, recording medium having irregular inflow detection program recorded thereon, irregular inflow detection method, and storage level detection system

Country Status (3)

Country Link
KR (1) KR20210023805A (en)
CN (1) CN112533475A (en)
WO (1) WO2020003882A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281762A1 (en) * 2015-08-20 2019-09-19 Cnh Industrial America Llc Side shake rate based on machine throughputs

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102470736B1 (en) * 2021-11-29 2022-11-28 주식회사 대동 Apparatus for measuring grain volume flow-rate of combine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354416A (en) * 1999-06-16 2000-12-26 Yanmar Agricult Equip Co Ltd Harvested quantity detector for combine harvester
JP2003000047A (en) * 2001-06-22 2003-01-07 National Agricultural Research Organization Method for measuring influent grain weight into combine tank and device therefor
KR20080020356A (en) * 2006-08-31 2008-03-05 대한민국(관리부서:농촌진흥청) Measuring equipments of total paddy rice yield for head-feeding combine
WO2016147521A1 (en) * 2015-03-18 2016-09-22 株式会社クボタ Combine, and grain-evaluation control device for combine
JP2017169515A (en) * 2016-03-25 2017-09-28 井関農機株式会社 combine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318403A (en) * 1994-03-29 1995-12-08 Satake Eng Co Ltd Flow quantity display device for grains measuring and sorting device
JP3710910B2 (en) * 1997-02-20 2005-10-26 ヤンマー農機株式会社 Combine
JP4846942B2 (en) * 2001-09-06 2011-12-28 三菱農機株式会社 Yield measuring device for combine
JP3828837B2 (en) * 2002-06-21 2006-10-04 三菱農機株式会社 Aircraft position calculation method
JP2004187505A (en) 2002-12-06 2004-07-08 Kubota Corp Grain storage structure of combine harvester
JP4396307B2 (en) * 2004-02-16 2010-01-13 井関農機株式会社 Combine
JP2005278539A (en) * 2004-03-30 2005-10-13 Mitsubishi Agricult Mach Co Ltd Yield-measuring system in combine harvester
JP4340609B2 (en) * 2004-09-06 2009-10-07 ヤンマー株式会社 Combine
JP6088880B2 (en) * 2013-03-26 2017-03-01 株式会社クボタ Grain harvester
JP6037912B2 (en) * 2013-03-27 2016-12-07 株式会社クボタ Combine
CN104142674B (en) * 2013-10-21 2017-01-25 江苏大学 Multi-input fault diagnosis method for combined harvester
JP6023139B2 (en) 2014-09-26 2016-11-09 株式会社クボタ Combine
JP6451530B2 (en) 2015-07-08 2019-01-16 井関農機株式会社 Combine
CN107613754B (en) * 2015-09-02 2021-03-02 株式会社久保田 Combine harvester
JP6566833B2 (en) * 2015-10-20 2019-08-28 ヤンマー株式会社 Mapping system, mapping apparatus and computer program
JP6715595B2 (en) 2015-12-25 2020-07-01 株式会社クボタ combine
CN107509449A (en) * 2017-08-11 2017-12-26 潍坊艾格瑞智能科技有限公司 A kind of united reaper yield monitoring system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354416A (en) * 1999-06-16 2000-12-26 Yanmar Agricult Equip Co Ltd Harvested quantity detector for combine harvester
JP2003000047A (en) * 2001-06-22 2003-01-07 National Agricultural Research Organization Method for measuring influent grain weight into combine tank and device therefor
KR20080020356A (en) * 2006-08-31 2008-03-05 대한민국(관리부서:농촌진흥청) Measuring equipments of total paddy rice yield for head-feeding combine
WO2016147521A1 (en) * 2015-03-18 2016-09-22 株式会社クボタ Combine, and grain-evaluation control device for combine
JP2017169515A (en) * 2016-03-25 2017-09-28 井関農機株式会社 combine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190281762A1 (en) * 2015-08-20 2019-09-19 Cnh Industrial America Llc Side shake rate based on machine throughputs
US11723309B2 (en) * 2015-08-20 2023-08-15 Cnh Industrial America Llc Side shake rate based on machine throughputs

Also Published As

Publication number Publication date
CN112533475A (en) 2021-03-19
KR20210023805A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
CN107613754B (en) Combine harvester
WO2020003882A1 (en) Combine, yield calculation method, yield calculation system, yield calculation program, recording medium having yield calculation program recorded thereon, grain discharge yield calculation method, grain discharge yield calculation system, grain discharge yield calculation program, recording medium having grain discharge yield calculation program recorded thereon, irregular inflow detection system, irregular inflow detection program, recording medium having irregular inflow detection program recorded thereon, irregular inflow detection method, and storage level detection system
US20210195837A1 (en) Combine Harvester and Grain Yield Management System for Combine Harvester
CN106332599B (en) Combine harvester
JP2015177750A (en) harvester
JP7059125B2 (en) Combine and grain emission yield calculation method
WO2021261115A1 (en) Combine harvester
JP6952652B2 (en) combine
KR20160140729A (en) Combine
JP6832625B2 (en) Grain yield management system for combine harvesters
JP6621490B2 (en) Harvester
CN113766827B (en) Combine harvester
JP6300591B2 (en) Harvesting machine
JP4396307B2 (en) Combine
JP7059121B2 (en) combine
JP6279960B2 (en) Combine
JP7531453B2 (en) Support System
JP2020156324A (en) combine
WO2022124173A1 (en) Combine, determination system, determination method, determination program, and recording medium
JP7059124B2 (en) Combine and yield calculation method
JP2017099342A (en) combine
JP2022072503A (en) combine
JP2006067975A (en) Combine harvester
JP2022007916A (en) combine
JP2023184076A (en) Combine harvester measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824782

Country of ref document: EP

Kind code of ref document: A1