Nothing Special   »   [go: up one dir, main page]

WO2020003848A1 - Lithium nickel cobalt tungsten oxide having layered rock salt structure - Google Patents

Lithium nickel cobalt tungsten oxide having layered rock salt structure Download PDF

Info

Publication number
WO2020003848A1
WO2020003848A1 PCT/JP2019/020874 JP2019020874W WO2020003848A1 WO 2020003848 A1 WO2020003848 A1 WO 2020003848A1 JP 2019020874 W JP2019020874 W JP 2019020874W WO 2020003848 A1 WO2020003848 A1 WO 2020003848A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
oxide
lithium
rock salt
lncw
Prior art date
Application number
PCT/JP2019/020874
Other languages
French (fr)
Japanese (ja)
Inventor
潤 齊田
宏隆 曽根
大 松代
泰彰 岡山
太郎 橋詰
亘久 竹内
橋本 康弘
貴志 島津
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018220299A external-priority patent/JP2020007210A/en
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020003848A1 publication Critical patent/WO2020003848A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium nickel cobalt tungsten oxide having a layered rock salt structure used as a positive electrode active material of a lithium ion secondary battery.
  • lithium nickel oxide represented by LiNiO 2 was widely used as a positive electrode active material at the beginning of development of a lithium ion secondary battery as described in Patent Document 1.
  • Patent Literature 2 specifically describes a lithium ion secondary battery employing LiNi 0.81 Co 0.15 Al 0.04 O 2 as a positive electrode active material.
  • Patent Literature 3 discloses a lithium ion employing LiNi 0.8 Co 0.16 Al 0.04 O 2 or LiNi 0.8 Co 0.15 Al 0.04 O 1.9 F 0.1 as a positive electrode active material. A secondary battery is specifically described.
  • Patent Literature 4 specifically describes a lithium ion secondary battery employing LiNi 0.8 Co 0.15 Al 0.05 O 2 as a positive electrode active material.
  • Patent Literature 5 discloses Li 1.013 Ni 0.831 Co 0.119 Al 0.050 O 2 , Li 1.013 Ni 0.858 Co 0.123 Al 0.020 O 2 or Li 1 as a positive electrode active material. Lithium ion secondary batteries employing 0.013 Ni 0.867 Co 0.098 Al 0.035 O 2 are specifically described.
  • the present invention has been made in view of such circumstances, and has as its object to provide a new material that can be a positive electrode active material.
  • the lithium nickel cobalt tungsten oxide having a layered rock salt structure of the present invention is represented by the following general formula (1).
  • Formula (1) Li a Ni b Co c W d D e O f F g
  • D is a doping element.
  • a new material that can be a suitable positive electrode active material can be provided.
  • 3 is an SEM image of a lithium nickel cobalt tungsten oxide having a layered rock salt structure of Example 1.
  • 3 is a charge / discharge curve of the lithium ion secondary battery of Example 1.
  • 9 is a charge / discharge curve of the lithium ion secondary battery of Example 3.
  • the numerical range “xy” described in this specification includes the lower limit x and the upper limit y.
  • a numerical range can be formed by arbitrarily combining these upper and lower limits and the numerical values listed in the examples.
  • numerical values arbitrarily selected from within the numerical value range can be set as upper and lower limit numerical values.
  • Lithium nickel cobalt tungsten oxide having a layered rock salt structure of the present invention (hereinafter, may be abbreviated as LNCW oxide of the present invention.
  • lithium nickel cobalt tungsten oxide having a layered rock salt structure may be abbreviated as LNCW oxide. Is represented by the following general formula (1).
  • Formula (1) Li a Ni b Co c W d D e O f F g
  • D is a doping element.
  • LNCW oxide of the present invention functions as a positive electrode active material of a lithium ion secondary battery.
  • the valence of lithium is +1 and the valence of oxygen is -2, in the conventional lithium nickel cobalt aluminum oxide, lithium was excluded in order to secure electrical neutrality between the metal and oxygen.
  • the valence of the entire nickel cobalt aluminum is +3.
  • cobalt and aluminum have a valence of +3 and are stable, it is considered that the valence of nickel is also +3.
  • nickel is an element that preferentially contributes to the oxidation reaction during charging. Then, as the oxidation reaction of lithium nickel cobalt aluminum oxide during charging, one-electron oxidation of Ni 3+ ⁇ Ni 4+ + e ⁇ occurs.
  • Tungsten is present in the LNCW oxide of the present invention.
  • Tungsten has a valence of +6 and is stable. Due to the presence of tungsten with a high oxidation number, it can be said that the LNCW oxide of the present invention allows the presence of nickel having a valence of +2 in addition to nickel having a valence of +3. Then, the oxidation reaction at the time of charging also causes two-electron oxidation of Ni 2+ ⁇ Ni 4+ + 2e ⁇ . Therefore, it can be said that the LNCW oxide of the present invention has a large charge / discharge capacity.
  • the value of b in the general formula (1) is determined by the capacity of the LNCW oxide of the present invention. Is a value that greatly affects b preferably satisfies 0.6 ⁇ b ⁇ 0.97, more preferably satisfies 0.7 ⁇ b ⁇ 0.97, and satisfies 0.8 ⁇ b ⁇ 0.96. More preferred. Also, 0.95 or 0.9 can be adopted as the upper limit of b.
  • c preferably satisfies 0.01 ⁇ c ⁇ 0.3, more preferably satisfies 0.02 ⁇ c ⁇ 0.2, and 0.03 ⁇ c ⁇ 0. .15, more preferably 0.04 ⁇ c ⁇ 0.1.
  • d preferably satisfies 0.001 ⁇ d ⁇ 0.3, more preferably satisfies 0.003 ⁇ d ⁇ 0.2, and 0.004 ⁇ d ⁇ 0. .1 is more preferable, and it is particularly preferable that 0.005 ⁇ d ⁇ 0.05 is satisfied.
  • a, e, f, and g may be numerical values within the range defined by the general formula (1), and are preferably 0.5 ⁇ a ⁇ 1.5, 0 ⁇ e ⁇ 0.15, 1.8 ⁇ f ⁇ 2.1, 0 ⁇ g ⁇ 0.15, more preferably 0.8 ⁇ a ⁇ 1.3, 0 ⁇ e ⁇ 0.1, 1.9 ⁇ f ⁇ 2.1, 0 ⁇ g ⁇ 0 .1 can be exemplified.
  • D in the general formula (1) is a doping element, which is an element capable of improving the characteristics of the LNCW oxide of the present invention.
  • F in the general formula (1) is also an element capable of improving the characteristics of the LNCW oxide of the present invention.
  • One preferred embodiment of the general formula (1) is the following general formula (1-1).
  • Formula (1-1) Li a Ni b Co c W d D 1 e1 D 2 e2 O f F g
  • a, b, c, d, e1, e2, f, and g are 0.5 ⁇ a ⁇ 2, 0.5 ⁇ b ⁇ 0.97, and 0 ⁇ c ⁇ 0.
  • D 1 is Zr, Ca, V, Mn, Cu, Ni, Sn, Tl, Fe, Sr, Ti, Ba, Mo, Y, a rare earth element, Os, Ir, Cd, Re, Bi, Rh, W, Cr, At least one element selected from Co, Zn, In, Al, Li, Na, Pb, Ru, and Nb.
  • D 2 is an element other than Li, Ni, Co, W, D 1, O, F.
  • D 1 in the general formula (1-1) is a doping element that can particularly suitably improve the characteristics of the LNCW oxide of the present invention.
  • e1 preferably satisfies 0.0001 ⁇ e1 ⁇ 0.2, more preferably satisfies 0.001 ⁇ e1 ⁇ 0.2, and satisfies 0.01 ⁇ e1 ⁇ 0.15. More preferred.
  • e1 may be 0 or 0 ⁇ e1 ⁇ 0.2.
  • D 2 in the general formula (1-1) is a doping element capable of suitably improving the characteristics of the LNCW oxide of the present invention.
  • Examples of the range of e2 in the general formula (1-1) include 0 ⁇ e2 ⁇ 0.1, 0 ⁇ e2 ⁇ 0.00.05, and 0 ⁇ e2 ⁇ 0.01. In addition, e2 may be 0.
  • One embodiment of the method for producing an LNCW oxide of the present invention is: Preparing a transition metal hydroxide containing nickel, cobalt and tungsten, Heating the transition metal hydroxide to remove adhering water or a transition metal oxide; A step of mixing the transition metal hydroxide from which the attached water has been removed or the transition metal oxide with a lithium salt and calcining the mixture.
  • a preferred embodiment of the method for producing an LNCW oxide of the present invention (hereinafter, also referred to as a “preferred production method of the present invention”) is described below. a) preparing a transition metal hydroxide containing nickel, cobalt and tungsten; b) heating the transition metal hydroxide to remove adhering water or to form a transition metal oxide; c) a step of coating the transition metal hydroxide or the transition metal oxide from which adhering water has been removed with a metal compound to form a coated body; d) mixing the coated body and a lithium salt and firing the mixture.
  • D 1 in the general formula (1-1) is a metal mainly derived from the metal compound in step c).
  • D 2 is an element derived from predominantly a) step and / or d) compounds that may be added in step.
  • step c) particles of a transition metal hydroxide or a transition metal oxide are coated with a metal compound, and in the subsequent step d), the metal compound in the coated portion is It is considered to be a barrier, preventing nickel inside the particles from migrating to lithium sites having a layered rock salt structure. That is, in the LNCW oxide manufactured by the preferable manufacturing method of the present invention, it is considered that the ratio of nickel correctly present in the transition metal site that should originally exist is higher than that of the conventional one. As a result, the lithium ion secondary battery including the positive electrode including the preferred LNCW oxide of the present invention exhibits favorable battery characteristics.
  • the pH defined in this specification refers to a value measured at 25 ° C.
  • Step a) is a step of preparing a transition metal hydroxide containing nickel, cobalt and tungsten.
  • the transition metal hydroxide containing nickel, cobalt and tungsten used in the step a) can be produced by mixing an aqueous solution containing nickel, cobalt and tungsten and a basic aqueous solution to precipitate the transition metal hydroxide. .
  • the production process of the transition metal hydroxide will be described in detail.
  • the production process of the transition metal hydroxide Dissolving a nickel salt, a cobalt salt and a tungsten compound in water, and preparing a transition metal-containing aqueous solution containing nickel, cobalt and tungsten at a predetermined ratio, A step of preparing a basic aqueous solution, A transition metal hydroxide precipitation step of supplying the transition metal-containing aqueous solution to the basic aqueous solution to precipitate nickel, cobalt and tungsten as transition metal hydroxides.
  • nickel salt examples include nickel sulfate, nickel carbonate, nickel nitrate, nickel acetate, and nickel chloride.
  • cobalt salt examples include cobalt sulfate, cobalt carbonate, cobalt nitrate, cobalt acetate, and cobalt chloride.
  • tungsten compound examples include tungstates such as Li 2 WO 4 , Na 2 WO 4 , K 2 WO 4 , and (NH 4 ) 2 WO 4 .
  • the mixing ratio of the nickel salt, the cobalt salt and the tungsten compound in the aqueous solution containing the transition metal may be adjusted so that the mixing ratio becomes a desired metal composition ratio of the LNCW oxide.
  • the step of preparing the transition metal-containing aqueous solution is preferably performed in a reaction vessel equipped with a stirrer, and more preferably in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon. Further, a reaction tank provided with a device under constant temperature conditions is more preferable.
  • the transition metal-containing aqueous solution is preferably heated to a temperature in the range of preferably 40 to 90 ° C, more preferably 40 to 80 ° C.
  • the pH of the basic aqueous solution is preferably in the range of 9 to 14, more preferably in the range of 10 to 13, and still more preferably in the range of 10.5 to 12.
  • the basic compound that can be used any compound that dissolves in water and exhibits basicity may be used. Examples thereof include ammonia, sodium hydroxide, potassium hydroxide, and alkali metal hydroxides such as lithium hydroxide, sodium carbonate, and carbonate.
  • Alkali metal carbonates such as potassium and lithium carbonate; alkali metal phosphates such as trisodium phosphate, tripotassium phosphate and trilithium phosphate; and alkali metal acetates such as sodium acetate, potassium acetate and lithium acetate. Can be.
  • the basic compound may be used alone or in combination of two or more. In the following steps, it is preferable that the pH of the aqueous solution is maintained in a suitable range, and therefore, the basic aqueous solution preferably contains at least a basic compound having a buffering ability.
  • the basic compound having a buffering ability include ammonia, alkali metal carbonate, alkali metal phosphate, and alkali metal acetate.
  • the step of preparing the basic aqueous solution is preferably performed in a reaction vessel equipped with a stirrer, and more preferably in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon. Further, a reaction tank provided with a device under constant temperature conditions is more preferable.
  • the basic aqueous solution is preferably heated to a temperature in the range of preferably 40 to 90 ° C, more preferably 40 to 80 ° C.
  • transition metal hydroxide precipitation step by supplying the transition metal-containing aqueous solution to the basic aqueous solution, metal ions and hydroxide ions react, and nickel, cobalt and tungsten having low solubility in water. Is generated and precipitates.
  • tungstate When tungstate is used, tungsten is precipitated as tungstic acid, O 2 W (OH) 2 , together with nickel hydroxide and cobalt hydroxide.
  • transition metal hydroxides are collectively referred to as transition metal hydroxides.
  • the precipitated transition metal hydroxide particles form the basis of the primary particles of the LNCW oxide.
  • transition metal hydroxide precipitation step is performed under conditions where the transition metal hydroxide deposition rate is extremely high, that is, under conditions where transition metal hydroxide nuclei are generated everywhere, disordered transition metal hydroxides are formed. Particles may form, which may result in undesirable crystal habits of the primary particles of the LNCW oxide. Therefore, in the transition metal hydroxide precipitation step, it is preferable to precipitate particles of the transition metal hydroxide under as mild conditions as possible.
  • the rate of supplying the transition metal-containing aqueous solution is preferably from 10 to 1000 mL / h, more preferably from 20 to 500 mL / h, and particularly preferably from 50 to 300 mL / h.
  • the reaction solution is preferably maintained at a constant pH.
  • the pH value means the value itself obtained by measuring the reaction solution with a pH meter.
  • the pH is preferably in the range of 9 to 14, more preferably in the range of 10 to 12, and particularly preferably in the range of 10.5 to 11.
  • the transition metal hydroxide precipitation step is preferably performed in a reaction vessel equipped with a stirrer, and more preferably in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon. Further, a reaction tank provided with a device under constant temperature conditions is more preferable.
  • the amount of dissolved oxygen present in the reaction system is small. If the amount of dissolved oxygen present in the reaction system is large, an undesired oxidation reaction may occur, or a suitable crystallization of the transition metal hydroxide accompanying the precipitation of the transition metal hydroxide may be hindered.
  • the transition metal hydroxide precipitation step is performed under heating, while performing while introducing an inert gas into the reaction system, a deoxidizer, It is preferable to carry out the reaction in the presence of a reducing agent, an antioxidant and the like.
  • Examples of the heating range are 40 to 90 ° C. and 60 to 80 ° C.
  • Examples of the inert gas include nitrogen, argon, and helium.
  • Examples of the oxygen scavenger, reducing agent and antioxidant include ascorbic acid and its salts, glyoxylic acid and its salts, hydrazine, dimethylhydrazine, hydroquinone, dimethylamine borane, NaBH 4 , NaBH 3 CN, KBH 4 , sulfurous acid and its salts Thiosulfuric acid and its salts, pyrosulfite and its salts, phosphorous acid and its salts, hypophosphorous acid and its salts.
  • the transition metal hydroxide is separated by filtration or the like. With the above method, a transition metal hydroxide can be obtained.
  • transition metal hydroxide containing D 2 may be manufactured.
  • the step b) is a step of heating a transition metal hydroxide containing nickel to remove adhered water or to form a transition metal oxide.
  • the heating temperature is preferably in the range of 100 to 800 ° C, more preferably in the range of 200 to 700 ° C, and particularly preferably in the range of 300 to 600 ° C.
  • Step b) may be performed under normal pressure or under reduced pressure.
  • the step c) is a step of coating a transition metal hydroxide or a transition metal oxide from which adhering water has been removed with a metal compound to obtain a coated body.
  • a case where the “transition metal oxide” is coated with a metal compound will be described.
  • “transition metal oxide” is appropriately changed to “transition metal hydroxide from which adhered water has been removed”. Then, it should be read.
  • a method in which a precursor of each metal compound or an aqueous solution in which each metal is dissolved is sprayed on the transition metal oxide, and / or simultaneously, may be dried.
  • the transition metal oxide is immersed in an aqueous solution in which the precursor of each metal compound or each metal is dissolved, and the precursor of each metal compound or the hydroxide of each metal is attached to the surface of the transition metal oxide. Then, a method of heating and drying may be adopted.
  • a dispersion of the transition metal oxide, a precursor of each metal compound and an aqueous solution in which each metal is dissolved are mixed, and a hydroxide of each metal is precipitated on the surface of the transition metal oxide, and then dried.
  • precipitation method a dispersion of the transition metal oxide, a precursor of each metal compound and an aqueous solution in which each metal is dissolved
  • D 1 is the preferred precipitation method when the Zr, will be described in detail.
  • the precipitation method includes the following steps c-1), c-2) and c-3). If D 1 is a metal other than Zr are, c-1) step, c-2) step and c-3) zirconium may be read as to the metal in the process.
  • c-1 a metal other than Zr
  • c-1 step, c-2) step and c-3) zirconium
  • zirconium zirconium
  • zirconium zirconium
  • step c-2 an aqueous solution containing a plurality of metals
  • the steps c-2) and c-3) may be repeated.
  • c-1) a dispersion liquid preparing step of dispersing the transition metal oxide in water
  • c-2) a zirconium precipitation step of mixing the zirconium aqueous solution containing the hetero element-containing organic compound and the dispersion to precipitate zirconium hydroxide on the surface of the transition metal oxide
  • c-3) A step of drying a transition metal oxide having zirconium hydroxide deposited on the surface to form a coated body
  • the transition metal oxide it is preferable to pulverize the transition metal oxide before the step (c-1). Further, it is preferable to adjust the pH so that the pH of the dispersion is in the range of about 9 to 12.
  • a zirconium aqueous solution containing a hetero element-containing organic compound is produced by dissolving a zirconium salt and a hetero element-containing organic compound in water.
  • the aqueous zirconium solution containing the hetero element-containing organic compound is usually an acidic solution.
  • zirconium salt examples include zirconium oxide, zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium phosphate, and zirconium halide.
  • the hetero element in the hetero element-containing organic compound means N, O, P or S.
  • the hetero element-containing organic compound include an amino group, an amide group, an imide group, an imino group, a cyano group, an azo group, a hydroxyl group, an alkoxy group, a carboxyl group, an ester group, an ether group, a carbonyl group, which can be coordinated with a metal ion.
  • a chelate compound having a plurality of the above groups and capable of coordinating to a metal ion at a plurality of positions is preferable.
  • chelating compounds include polyamine compounds such as ethylenediamine, diethylenetriamine, glycine, alanine, cysteine, glutamine, arginine, asparagine, aspartic acid, serine, amino acids such as ethylenediaminetetraacetic acid, malonic acid, succinic acid, glutaric acid, and maleic acid.
  • polyamine compounds such as ethylenediamine, diethylenetriamine, glycine, alanine, cysteine, glutamine, arginine, asparagine, aspartic acid, serine
  • amino acids such as ethylenediaminetetraacetic acid, malonic acid, succinic acid, glutaric acid, and maleic acid.
  • dicarboxylic acids such as phthalic acid, and hydroxycarboxylic acids.
  • hydroxycarboxylic acid is particularly preferred.
  • examples of the hydroxycarboxylic acid having a hydroxyl group and a carboxyl group in a molecule include an aliphatic hydroxycarboxylic acid and an aromatic hydroxycarboxylic acid.
  • Aliphatic hydroxycarboxylic acids include glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxybutyric acid, malic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, leucic acid , Mevalonic acid, pantoic acid, quinic acid and shikimic acid.
  • aromatic hydroxycarboxylic acid examples include o-hydroxybenzoic acid derivatives such as salicylic acid, gentisic acid and orseric acid, mandelic acid, benzylic acid and 2-hydroxy-2-phenylpropionic acid.
  • Any of the above specific hydroxycarboxylic acids can form a conformation in which an OH group and a CO 2 H group can coordinate to the same zirconium ion.
  • step c-2 it is preferable to control the pH of the mixed solution in step c-2) in order to deposit zirconium efficiently.
  • zirconium hydroxide having low solubility is precipitated on the surface of the transition metal oxide by setting the pH of the mixed solution to the alkali side.
  • a basic aqueous solution so that the pH of the solution in step c-2) is in the range of 9 to 13.
  • the basic aqueous solution those described in the step a) may be employed.
  • the transition metal oxide that has passed through the step c-2) is separated by a method such as filtration and supplied to the step c-3).
  • the drying in the step c-3) is preferably performed under heating and / or under reduced pressure.
  • Examples of the heating temperature are in the range of 100 to 500 ° C and 200 to 400 ° C.
  • the main purpose of the drying in the step c-3) is to remove water adhering to the transition metal oxide having zirconium hydroxide precipitated on the surface.
  • zirconium hydroxide present on the surface of the transition metal oxide may be dehydrated and changed to zirconium oxide. That is, the coated body may be a transition metal oxide coated with zirconium hydroxide or a transition metal oxide coated with zirconium oxide.
  • Step d) is a step in which the coated body and the lithium salt are mixed and fired.
  • lithium salt examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, lithium oxalate, and lithium halide.
  • the amount of the lithium salt may be appropriately determined so that the LNCW oxide has a desired lithium composition.
  • Examples of the mixing device include a mortar and pestle, a stirring mixer, a V-type mixer, a W-type mixer, a ribbon-type mixer, a drum mixer, and a ball mill.
  • F compounds may be mixed.
  • a compound selected from a Na compound, an F compound and a P compound is preferably mixed. Due to the presence of D 2, the improvement of rate characteristics and / or the capacity retention rate of the lithium ion secondary battery having a LNCW oxide of the present invention can be expected.
  • the Na compounds exemplified NaF, NaCl, NaBr, NaI, and sodium salts, such as Na 3 PO 4, Na 2 HPO 4, NaH 2 PO 4, Na 2 SO 4, NaHSO 4, NaNO 3, CH 3 CO 2 Na it can.
  • the F compound include metal fluorides such as LiF, NaF, KF, MgF 2 , CaF 2 , BaF 2 , and AlF 3 .
  • Examples of the P compound include H 3 PO 4 , LiH 2 PO 4 , Li 2 HPO 4 , Li 3 PO 4 , NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 , KH 2 PO 4 , K 2 HPO 4 , phosphoric acid and phosphates such K 3 PO 4 can be exemplified.
  • the firing may be performed in an air atmosphere or an oxygen gas atmosphere, or may be performed in the presence of an inert gas such as helium or argon.
  • the heating temperature in the firing step can be, for example, in the range of 400 to 1200 ° C.
  • the heating time in the firing step can be, for example, 1 to 50 hours.
  • the baking in the step d) may be performed under a single temperature condition, or may be performed by combining a plurality of baking processes having different temperature conditions, or may be performed by setting a specific temperature raising program. May be.
  • a first firing step in which the mixture of the coated body and the lithium salt is heated at 400 to 800 ° C. to form a first fired body;
  • a second firing step of heating at 550 to 1000 ° C. can be mentioned.
  • Examples of the temperature of the first baking step include a range of 400 to 800 ° C. and 650 to 750 ° C.
  • Examples of the heating time in the first firing step include a range of 3 to 30 hours, 5 to 20 hours, and 5 to 15 hours.
  • the second firing step is a step of heating the first fired body at 550 to 1000 ° C.
  • the temperature of the second firing step may be in the range of 550 to 950 ° C., 550 to 900 ° C., 550 to 850 ° C., and 550 to 800 ° C.
  • Examples of the heating time in the second baking step include a range of 3 to 30 hours, 5 to 20 hours, and 5 to 15 hours.
  • step c) the transition metal oxide particles are coated with the metal compound, so that the coated metal compound becomes a barrier in the first and second firing steps, It is considered that nickel is restrained from migrating to lithium sites having a layered rock salt structure.
  • the LNCW oxide obtained in the step d) has a certain particle size distribution through a pulverizing step and a classification step.
  • the average particle size (D 50 ) is preferably 50 ⁇ m or less, more preferably 1 ⁇ m or more and 30 ⁇ m or less, still more preferably 1 ⁇ m or more and 20 ⁇ m or less in a measurement with a general laser scattering diffraction type particle size distribution meter. And 2 ⁇ m or more and 10 ⁇ m or less are particularly preferable.
  • Another preferred embodiment of the method for producing an LNCW oxide of the present invention (hereinafter, also referred to as a “second production method”) is as follows. a′-1) preparing a transition metal hydroxide containing nickel and cobalt; a′-2) a step of adding an aqueous solution of tungstate to a basic suspension containing a transition metal hydroxide, a′-3) a step of lowering the pH of the suspension after the addition of the aqueous solution of tungstate to precipitate tungstic acid on the surface of the transition metal hydroxide to form a coated body; b ′) heating the coated body to remove adhering water or to form a transition metal oxide; d ′) a step of mixing the transition metal hydroxide or the transition metal oxide from which the adhering water has been removed with a lithium salt and firing the mixture.
  • each step includes the a) step or c) step described above for the a′-1) to a′-3) steps, and the b) step described above for the b ′) step.
  • the technical content of the step d) described above is appropriately and appropriately used.
  • third production method is as follows. a '') providing a transition metal hydroxide comprising nickel and cobalt; b '') heating the transition metal hydroxide to remove adhering water or to form a transition metal oxide; c '') To the transition metal hydroxide or the suspension containing the transition metal oxide from which the adhering water has been removed, an aqueous solution of tungstate is added to convert the transition metal hydroxide or the transition metal oxide into tungsten. Coating with an acid to form a coated body, d '') mixing the coated body and a lithium salt and firing the mixture.
  • each step includes the a) step described above for the a ′′) step, the b) step described above for the b ′′) step, and the previously described b) step for the c ′′) step.
  • the steps a′-2), a′-3), and d ′′) the technical contents of the step d) described above are appropriately and appropriately used.
  • tungsten is added in the step a'-2) and integrated with the transition metal hydroxide containing nickel and cobalt in the step a'-3).
  • tungsten is integrated with a transition metal hydroxide containing nickel and cobalt in step c ′′).
  • a transition metal hydroxide containing nickel, cobalt and tungsten is produced at a time by coprecipitation, a tungstate composed of hexavalent tungsten is used as a nickel hydroxide. May be partially oxidized to form nickel oxyhydroxide. As a result, it is assumed that the crystal growth of the transition metal hydroxide is hindered.
  • a transition metal hydroxide is produced without adding tungsten, as in the second production method and the third production method, in the a′-1) step and the a ′′) step where tungsten is not added, It is considered that the crystal growth of the transition metal hydroxide containing nickel and cobalt proceeds smoothly because there is no inhibition of the crystal growth as described above.
  • the size of the crystal of the transition metal hydroxide as an intermediate is considered to be the basis of the size of the primary particles of the LNCW oxide of the present invention, it is produced by the second production method and the third production method. It can be said that the LNCW oxide of the present invention contains relatively large primary particles. And, the LNCW oxide of the present invention containing large primary particles is expected to have low resistance.
  • the size of the primary particles of the LNCW oxide is preferably in the range of 50 nm to 1000 nm, more preferably in the range of 100 nm to 500 nm, and even more preferably in the range of 150 nm to 500 nm by microscopic observation.
  • the primary particles mean particles that are recognized as one particle during SEM observation.
  • the peak intensity (lamellar intensity) derived from the lamellar structure observed at 2 ⁇ 17 to 20 ° is obtained.
  • the LNCW oxide of the present invention can be used as an active material of a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention includes the LNCW oxide of the present invention as an active material.
  • the lithium ion secondary battery of the present invention includes a positive electrode including the LNCW oxide of the present invention as a positive electrode active material, a negative electrode, and a solid electrolyte, or includes the LNCW oxide of the present invention as a positive electrode active material.
  • a positive electrode, a negative electrode, an electrolytic solution, and a separator provided as materials are provided.
  • the positive electrode has a current collector and a positive electrode active material layer bound to the surface of the current collector.
  • the current collector refers to a chemically inert electronic conductor that keeps current flowing through the electrodes during discharging or charging of the lithium ion secondary battery.
  • As the current collector at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel A metal material can be exemplified.
  • the current collector may be covered with a known protective layer. A current collector whose surface is treated by a known method may be used as the current collector.
  • the current collector can be in the form of a foil, a sheet, a film, a line, a bar, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive auxiliary and / or a binder.
  • any material containing the LNCW oxide of the present invention may be used, and only the LNCW oxide of the present invention may be employed, or a combination of the LNCW oxide of the present invention and a known positive electrode active material may be used. May be.
  • Examples of the known positive electrode active material include a spinel structure compound such as LiMn 2 O 4 , and a general formula: LiM h PO 4 (M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, and Ba). , At least one element selected from Ti, Al, Si, B, Te and Mo, an olivine structure compound represented by 0 ⁇ h ⁇ 2), LiMVO 4 or Li 2 MSiO 4 (where M is Co, Ni , Mn, or Fe), a polyanionic compound represented by LiMPO 4 F (M is a transition metal), a tabolite compound represented by LiMPO 3 (M is a transition metal). Borate compounds, Li 2 MnO 3 and the like.
  • LiM h PO 4 M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, and Ba
  • At least one element selected from Ti, Al, Si, B, Te and Mo an olivine structure compound represented by 0 ⁇ h
  • the conductive additive is added to increase the conductivity of the electrode. Therefore, the conductive assistant may be arbitrarily added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent.
  • the conductive additive may be any chemically inert high electron conductor, and examples thereof include carbon black, graphite, vapor grown carbon fiber (Vapor Grown Carbon Fiber), and various metal particles. You. Examples of the carbon black include acetylene black, Ketjen Black (registered trademark), furnace black, and channel black. These conductive aids can be used alone or in combination of two or more.
  • the compounding ratio of the conductive additive in the active material layer is preferably from 1: 0.005 to 1: 0.5, and preferably from 1: 0.01 to 1: 0, by mass ratio. .2, more preferably 1: 0.03 to 1: 0.1. If the amount of the conductive auxiliary agent is too small, an efficient conductive path cannot be formed, and if the amount of the conductive auxiliary agent is too large, the moldability of the active material layer deteriorates and the energy density of the electrode decreases.
  • the binder plays a role of anchoring the active material and the conductive assistant to the surface of the current collector and maintaining the conductive network in the electrode.
  • the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber; thermoplastic resins such as polypropylene and polyethylene; imide-based resins such as polyimide and polyamideimide; resins containing alkoxysilyl groups; Examples include acrylic resins such as (meth) acrylic acid, styrene-butadiene rubber (SBR), and carboxymethyl cellulose. These binders may be used alone or in combination.
  • the mixing ratio of the binder in the active material layer is preferably 1: 0.001 to 1: 0.3, and 1: 0.005 to 1: 0, in terms of mass ratio. .2, more preferably 1: 0.01 to 1: 0.15. This is because if the amount of the binder is too small, the moldability of the electrode decreases, and if the amount of the binder is too large, the energy density of the electrode decreases.
  • the negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector.
  • the current collector those described for the positive electrode may be appropriately employed.
  • the negative electrode active material layer contains a negative electrode active material and, if necessary, a conductive auxiliary and / or a binder.
  • the negative electrode active material a known material may be employed, and examples thereof include a carbon-based material capable of inserting and extracting lithium, an element capable of being alloyed with lithium, and a compound having an element capable of being alloyed with lithium. .
  • the carbon-based material examples include non-graphitizable carbon, graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon and carbon blacks.
  • the organic polymer compound fired body is obtained by firing a polymer material such as phenols and furans at an appropriate temperature and carbonizing the polymer material.
  • elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, and Si.
  • Ge, Sn, Pb, Sb, and Bi can be exemplified, and Si or Sn is particularly preferable.
  • the compound having an element that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSiO or LiSnO, and in particular, SiO x (0.3 ⁇ x ⁇ 1.6, or 0.5 ⁇ x ⁇ 1.5) Is preferred.
  • the negative electrode active material preferably contains a Si-based material having Si.
  • the Si-based material is preferably made of silicon or / and a silicon compound capable of occluding and releasing lithium ions, and is preferably, for example, SiO x (0.5 ⁇ x ⁇ 1.5).
  • SiO x 0.5 ⁇ x ⁇ 1.5
  • silicon has a large theoretical charge / discharge capacity
  • silicon has a large volume change during charge / discharge. Therefore, the volume change of silicon can be reduced by using SiO x containing silicon as the negative electrode active material.
  • a Si material obtained by heating a layered polysilane obtained by treating CaSi 2 with an acid such as hydrochloric acid or hydrofluoric acid at 300 to 1000 ° C. may be employed. Further, the Si material may be heated together with a carbon source, and a carbon-coated Si material may be used as the negative electrode active material.
  • the negative electrode active material one or more of the above can be used.
  • conductive auxiliary agent and the binder used for the negative electrode those described for the positive electrode may be appropriately and appropriately employed in the same mixing ratio.
  • the current is collected using a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method.
  • the active material may be applied to the surface of the body.
  • a slurry is prepared by mixing an active material, a solvent, and, if necessary, a binder and / or a conductive assistant.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • the slurry is applied to the surface of the current collector and then dried. The dried product may be compressed to increase the electrode density.
  • a solid electrolyte that can be used as a solid electrolyte of a lithium ion secondary battery may be appropriately adopted.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
  • cyclic carbonate As the non-aqueous solvent, cyclic carbonate, cyclic ester, chain carbonate, chain ester, ethers and the like can be used.
  • the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate
  • examples of the cyclic ester include gamma-butyrolactone, 2-methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone, and gamma-valerolactone.
  • Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate
  • examples of the chain ester include alkyl propionate, dialkyl malonate, and alkyl acetate.
  • Examples of the ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • As the non-aqueous solvent a compound in which part or all of the hydrogen in the chemical structure of the above specific solvent is replaced by fluorine may be used.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , and LiN (CF 3 SO 2 ) 2 .
  • lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , and LiN (CF 3 SO 2 ) 2 .
  • Examples of the electrolyte include a solution in which a lithium salt is dissolved in a nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate at a concentration of about 0.5 mol / L to 1.7 mol / L.
  • a nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate at a concentration of about 0.5 mol / L to 1.7 mol / L.
  • the separator separates the positive electrode and the negative electrode, and prevents lithium ions from passing through while preventing a short circuit due to contact between the two electrodes.
  • the separator include synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid, polyester, and polyacrylonitrile; polysaccharides such as cellulose and amylose; and natural resins such as fibroin, keratin, lignin, and suberin. Examples thereof include a porous body, a nonwoven fabric, and a woven fabric using one or a plurality of electric insulating materials such as polymers and ceramics. Further, the separator may have a multilayer structure.
  • a separator is interposed between the positive electrode and the negative electrode as necessary to form an electrode body.
  • the electrode body may be any of a stacked type in which a positive electrode, a separator, and a negative electrode are stacked, or a wound type in which a positive electrode, a separator, and a negative electrode are wound.
  • an electrolytic solution is added to the electrode body and lithium ion secondary Use a battery.
  • the lithium ion secondary battery of the present invention may be charged and discharged in a voltage range suitable for the type of active material included in the electrode.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical type, a square type, a coin type, and a laminate type can be adopted.
  • the lithium ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be any vehicle that uses electric energy from a lithium ion secondary battery for all or part of its power source, such as an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery.
  • devices equipped with a lithium ion secondary battery include various home electric appliances, office equipment, industrial equipment, and the like, other than vehicles, such as personal computers and portable communication devices, which are driven by batteries.
  • the lithium ion secondary battery of the present invention can be used as a wind power photovoltaic power generator, a hydroelectric power generator, a power storage device and a power smoothing device for a power system, a power supply source for motive power of ships and the like, and / or auxiliary equipment, an aircraft, a space.
  • Example 1 The LNCW oxide of Example 1 was manufactured as follows.
  • Step 80 g of nickel sulfate hexahydrate, 11 g of cobalt sulfate heptahydrate, and 5 g of sodium tungstate dihydrate were dissolved in 400 mL of pure water to prepare a transition metal-containing aqueous solution. .
  • the molar ratio of nickel, cobalt, and tungsten in the transition metal-containing aqueous solution is 85: 11: 4.
  • a transition metal-containing aqueous solution was supplied to the second basic aqueous solution under nitrogen gas introduction and stirring conditions to precipitate nickel, cobalt and tungsten as transition metal hydroxides. .
  • a first basic aqueous solution and a 48 wt% aqueous sodium hydroxide solution were appropriately added dropwise.
  • the pH value means the value itself obtained by measuring the reaction solution with a pH meter.
  • the transition metal hydroxide was separated by filtration.
  • the transition metal hydroxide was washed with pure water using an ultrasonic cleaner, and then the transition metal hydroxide was isolated by filtration.
  • Step A transition metal oxide dispersion was prepared by adding the transition metal oxide to pure water.
  • aqueous solution of zirconium containing hydroxycarboxylic acid 0.3 g of zirconium sulfate and 0.17 g of glycolic acid as hydroxycarboxylic acid were dissolved in water to prepare an aqueous solution of zirconium containing hydroxycarboxylic acid.
  • the molar ratio of zirconium to glycolic acid was 1: 2.
  • Step 10 g of the dried coated body, 2.12 g of lithium hydroxide anhydride, 0.13 g of Na 3 PO 4 , and 0.023 g of LiF were mixed in a mortar to form a mixture. Then, the mixture was heated at 650 ° C. for 5 hours in an air atmosphere to obtain a first fired body.
  • the first fired body was crushed in a mortar to obtain a powder.
  • the powdery first fired body was heated at 750 ° C. for 15 hours in an oxygen gas atmosphere to obtain an LNCW oxide.
  • the LNCW oxide was crushed in a mortar to obtain the LNCW oxide of Example 1.
  • the composition of the theoretical LNCW oxide of Example 1 is Li 1 Ni 0.85 Co 0.11 W 0.04 Zr 0.0025 Na 0.01 P 0.01 O 2 F 0.01.
  • Example 1 A lithium ion secondary battery of Example 1 was manufactured as follows.
  • a 20 ⁇ m-thick aluminum foil was prepared as a positive electrode current collector.
  • 94 parts by mass of the LNCW oxide of Example 1 as a positive electrode active material, 3 parts by mass of acetylene black as a conductive additive, and 3 parts by mass of polyvinylidene fluoride as a binder were mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. The slurry was placed on the surface of the aluminum foil, and the slurry was applied using a doctor blade so as to form a film. The aluminum foil coated with the slurry was dried at 80 ° C.
  • the aluminum foil having the positive electrode active material layer formed on the surface was compressed using a roll press, and the aluminum foil and the positive electrode active material layer were firmly adhered and joined to form a bonded article.
  • the joined article was heated at 120 ° C. for 6 hours using a vacuum dryer, cut into a predetermined shape, and used as a positive electrode.
  • the negative electrode was manufactured as follows. 98.3 parts by mass of graphite, 1 part by mass of styrene-butadiene rubber as a binder and 0.7 parts by mass of carboxymethylcellulose were mixed, and the mixture was dispersed in an appropriate amount of ion-exchanged water to produce a slurry.
  • the slurry was applied to a 20 ⁇ m-thick copper foil serving as a negative electrode current collector using a doctor blade so as to form a film.
  • the current collector coated with the slurry was dried and then pressed to obtain a bonded article.
  • the bonded article was heated at 120 ° C. for 6 hours using a vacuum dryer, cut into a predetermined shape, and used as a negative electrode.
  • a laminate type lithium ion secondary battery was manufactured. Specifically, a 25 ⁇ m-thick rectangular sheet made of a resin film having a three-layer structure of polypropylene / polyethylene / polypropylene was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. This electrode group was covered with a set of two laminated films, three sides were sealed, and then an electrolyte was injected into the bag-shaped laminated film.
  • the electrolytic solution a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent obtained by mixing ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate at a volume ratio of 3: 3: 4 was used.
  • the four sides were hermetically sealed, and the laminated lithium ion secondary battery of Example 1 in which the electrode plate group and the electrolyte were sealed was obtained.
  • the positive electrode and the negative electrode have tabs that can be electrically connected to the outside, and some of these tabs extend outside the laminated lithium ion secondary battery.
  • the lithium ion secondary battery of Example 1 was manufactured.
  • Example 2 In the step a), the LNCW oxide and the lithium ion secondary battery of Example 2 were manufactured in the same manner as in Example 1, except that ascorbic acid was added to the aqueous solution containing a transition metal.
  • the transition metal-containing aqueous solution used in Example 2 was a solution having a concentration of ascorbic acid of 7.5 g / L. In the solution, W and ascorbic acid are present in equimolar amounts.
  • Example 3 (Example 3) c)
  • the LNCW oxide and lithium ion secondary battery of Example 3 were manufactured in the same manner as in Example 1, except that the step was not performed.
  • Comparative Example 1 A lithium ion secondary battery of Comparative Example 1 was manufactured in the same manner as in Example 1 except that LiNi 0.85 Co 0.11 Al 0.04 O 2 was used as the positive electrode active material.
  • FIG. 1 shows an SEM image of the LNCW oxide of Example 1. According to the measurement with the SEM image, the primary particle diameter of the LNCW oxide of Example 1 was about 50 nm, and the secondary particle diameter was about 4 ⁇ m.
  • the lithium ion secondary battery of Example 1 is superior to the lithium ion secondary battery of Comparative Example 1 in both parameters of the initial discharge capacity and the discharge capacity retention rate.
  • FIG. 2 shows a charge / discharge curve of the lithium ion secondary battery of Example 1
  • FIG. 3 shows a charge / discharge curve of the lithium ion secondary battery of Example 3.
  • the capacity of the lithium ion secondary battery of Example 1 is larger than the capacity of the lithium ion secondary battery of Example 3 in both charging and discharging. It can be said that the LNCW oxide of Example 1 to which Zr was added was more preferable than the LNCW oxide of Example 3 to which Zr was not added.
  • Example 4 (Example 4) a) The molar ratio of nickel, cobalt, and tungsten in the aqueous solution containing the transition metal in the step was 92: 4: 4, the step c) was not performed, and the firing temperature and the firing time in the step d) slightly changed. Except having made it, the LNCW oxide of Example 4 and the lithium ion secondary battery of Example 4 were manufactured by the method similar to Example 1.
  • Example 5 (Example 5) a) The molar ratio of nickel, cobalt, and tungsten in the aqueous solution containing the transition metal in the step was 95: 3: 2, the step c) was not performed, and the firing temperature and the firing time in the step d) slightly changed. Except having made it, the LNCW oxide of Example 5 and the lithium ion secondary battery of Example 5 were manufactured by the method similar to Example 1.
  • Example 6 (Example 6) a) The molar ratio of nickel, cobalt, and tungsten in the aqueous solution containing the transition metal in the step was 95: 4: 1, the step c) was not performed, and the firing temperature and the firing time in the step d) slightly changed. Except having made it, the LNCW oxide of Example 6 and the lithium ion secondary battery of Example 6 were manufactured by the method similar to Example 1.
  • Example 7 a) the molar ratio of nickel, cobalt, and tungsten in the aqueous solution containing the transition metal in step a) was 95.5: 4: 0.5; c) step was not performed; and b) the firing temperature and firing in step d).
  • An LNCW oxide and a lithium ion secondary battery of Example 7 were produced in the same manner as in Example 1, except that the time was slightly changed.
  • Evaluation example 5 With respect to the lithium ion secondary batteries of Examples 4 to 7 and Comparative Example 1, a charge / discharge cycle of charging to 4.4 V and discharging to 2.5 V at a 0.1 C rate was repeated. Evaluation example 5 was performed on a different date and time from evaluation example 3. Table 3 shows the charge capacity and the discharge capacity per unit volume of the positive electrode active material in the first charge / discharge cycle, together with the composition ratio of nickel, cobalt, and tungsten in the LNCW oxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a novel material that may be an active material. The present invention is a lithium nickel cobalt tungsten oxide having a layered rock salt structure which is characterized by being represented by general formula (1). General formula (1): LiaNibCocWdDeOfFg In general formula (1), a, b, c, d, e, f, and g satisfy 0.5≤a≤2, 0.5≤b≤0.97, 0<c<0.5, 0<d<0.5, 0≤e≤0.2, b+c+d+e=1, 1.8≤f≤2.2, and 0≤g≤0.2. D is a doping element.

Description

層状岩塩構造のリチウムニッケルコバルトタングステン酸化物Lithium nickel cobalt tungsten oxide with layered rock salt structure
 本発明は、リチウムイオン二次電池の正極活物質として用いられる層状岩塩構造のリチウムニッケルコバルトタングステン酸化物に関する。 The present invention relates to a lithium nickel cobalt tungsten oxide having a layered rock salt structure used as a positive electrode active material of a lithium ion secondary battery.
 リチウムイオン二次電池の正極活物質には種々の材料が用いられることが知られている。そのうち、LiNiOで表されるリチウムニッケル酸化物は、特許文献1に記載されているとおり、リチウムイオン二次電池の開発当初、正極活物質として汎用されていた。 It is known that various materials are used as a positive electrode active material of a lithium ion secondary battery. Among them, lithium nickel oxide represented by LiNiO 2 was widely used as a positive electrode active material at the beginning of development of a lithium ion secondary battery as described in Patent Document 1.
 また、LiNiOのニッケルの一部を他の金属で置換したリチウムニッケル金属酸化物が開発され、当該リチウムニッケル金属酸化物を正極活物質として用いたリチウムイオン二次電池についての研究が精力的に為されてきた。特に近年、LiNiOのニッケルの一部をコバルト及びアルミニウムで置換した層状岩塩構造のリチウムニッケルコバルトアルミニウム酸化物を、正極活物質として採用したリチウムイオン二次電池が、多数報告されている。 In addition, a lithium nickel metal oxide in which a part of nickel of LiNiO 2 has been replaced by another metal has been developed, and research on a lithium ion secondary battery using the lithium nickel metal oxide as a positive electrode active material has been actively conducted. Has been done. In particular, in recent years, a large number of lithium ion secondary batteries employing a lithium nickel cobalt aluminum oxide having a layered rock salt structure in which part of nickel of LiNiO 2 is replaced by cobalt and aluminum as a positive electrode active material have been reported.
 特許文献2には、正極活物質としてLiNi0.81Co0.15Al0.04を採用したリチウムイオン二次電池が具体的に記載されている。 Patent Literature 2 specifically describes a lithium ion secondary battery employing LiNi 0.81 Co 0.15 Al 0.04 O 2 as a positive electrode active material.
 特許文献3には、正極活物質としてLiNi0.8Co0.16Al0.04やLiNi0.8Co0.15Al0.041.90.1を採用したリチウムイオン二次電池が具体的に記載されている。 Patent Literature 3 discloses a lithium ion employing LiNi 0.8 Co 0.16 Al 0.04 O 2 or LiNi 0.8 Co 0.15 Al 0.04 O 1.9 F 0.1 as a positive electrode active material. A secondary battery is specifically described.
 特許文献4には、正極活物質としてLiNi0.8Co0.15Al0.05を採用したリチウムイオン二次電池が具体的に記載されている。 Patent Literature 4 specifically describes a lithium ion secondary battery employing LiNi 0.8 Co 0.15 Al 0.05 O 2 as a positive electrode active material.
 特許文献5には、正極活物質としてLi1.013Ni0.831Co0.119Al0.050、Li1.013Ni0.858Co0.123Al0.020又はLi1.013Ni0.867Co0.098Al0.035を採用したリチウムイオン二次電池が具体的に記載されている。 Patent Literature 5 discloses Li 1.013 Ni 0.831 Co 0.119 Al 0.050 O 2 , Li 1.013 Ni 0.858 Co 0.123 Al 0.020 O 2 or Li 1 as a positive electrode active material. Lithium ion secondary batteries employing 0.013 Ni 0.867 Co 0.098 Al 0.035 O 2 are specifically described.
特開昭63-121260号公報JP-A-63-121260 特開2006-128119号公報JP 2006-128119 A 特開2006-278341号公報JP 2006-278341 A 特開2014-139926号公報JP 2014-139926 A 特開2017-195020号公報JP-A-2017-195020
 しかしながら、リチウムイオン二次電池の正極活物質に対する要求は増加しており、より優れた正極活物質となり得る新たなリチウム複合金属酸化物の提供が熱望されている。 However, the demand for a positive electrode active material of a lithium ion secondary battery is increasing, and there is an eager desire to provide a new lithium composite metal oxide that can be a more excellent positive electrode active material.
 本発明は、かかる事情に鑑みて為されたものであり、正極活物質となり得る新たな材料を提供することを目的とする。 The present invention has been made in view of such circumstances, and has as its object to provide a new material that can be a positive electrode active material.
 本発明者が鋭意検討した結果、LiNiOのニッケルの一部をコバルト及びタングステンで置換した層状岩塩構造のリチウムニッケルコバルトタングステン酸化物が、好適な正極活物質であることを知見した。本発明はかかる知見に基づき完成されたものである。 As a result of intensive studies by the present inventors, it has been found that a lithium nickel cobalt tungsten oxide having a layered rock salt structure in which part of nickel of LiNiO 2 is replaced with cobalt and tungsten is a suitable cathode active material. The present invention has been completed based on such findings.
 本発明の層状岩塩構造のリチウムニッケルコバルトタングステン酸化物は、下記一般式(1)で表されることを特徴とする。
 一般式(1) LiNiCo
 一般式(1)において、a、b、c、d、e、f、gは、0.5≦a≦2、0.5≦b≦0.97、0<c<0.5、0<d<0.5、0≦e≦0.2、b+c+d+e=1、1.8≦f≦2.2、0≦g≦0.2を満足する。Dはドープ元素である。
The lithium nickel cobalt tungsten oxide having a layered rock salt structure of the present invention is represented by the following general formula (1).
Formula (1) Li a Ni b Co c W d D e O f F g
In the general formula (1), a, b, c, d, e, f, and g are 0.5 ≦ a ≦ 2, 0.5 ≦ b ≦ 0.97, 0 <c <0.5, 0 < d <0.5, 0 ≦ e ≦ 0.2, b + c + d + e = 1, 1.8 ≦ f ≦ 2.2, and 0 ≦ g ≦ 0.2. D is a doping element.
 本発明により、好適な正極活物質となり得る新たな材料を提供できる。 According to the present invention, a new material that can be a suitable positive electrode active material can be provided.
実施例1の層状岩塩構造のリチウムニッケルコバルトタングステン酸化物のSEM像である。3 is an SEM image of a lithium nickel cobalt tungsten oxide having a layered rock salt structure of Example 1. 実施例1のリチウムイオン二次電池の充放電曲線である。3 is a charge / discharge curve of the lithium ion secondary battery of Example 1. 実施例3のリチウムイオン二次電池の充放電曲線である。9 is a charge / discharge curve of the lithium ion secondary battery of Example 3.
 以下に、本発明を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。 Hereinafter, the best mode for carrying out the present invention will be described. Unless otherwise specified, the numerical range “xy” described in this specification includes the lower limit x and the upper limit y. A numerical range can be formed by arbitrarily combining these upper and lower limits and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from within the numerical value range can be set as upper and lower limit numerical values.
 本発明の層状岩塩構造のリチウムニッケルコバルトタングステン酸化物(以下、本発明のLNCW酸化物と省略することがある。また、層状岩塩構造のリチウムニッケルコバルトタングステン酸化物を、LNCW酸化物と省略することがある。)は、下記一般式(1)で表されることを特徴とする。
 一般式(1) LiNiCo
 一般式(1)において、a、b、c、d、e、f、gは、0.5≦a≦2、0.5≦b≦0.97、0<c<0.5、0<d<0.5、0≦e≦0.2、b+c+d+e=1、1.8≦f≦2.2、0≦g≦0.2を満足する。Dはドープ元素である。
Lithium nickel cobalt tungsten oxide having a layered rock salt structure of the present invention (hereinafter, may be abbreviated as LNCW oxide of the present invention. In addition, lithium nickel cobalt tungsten oxide having a layered rock salt structure may be abbreviated as LNCW oxide. Is represented by the following general formula (1).
Formula (1) Li a Ni b Co c W d D e O f F g
In the general formula (1), a, b, c, d, e, f, and g are 0.5 ≦ a ≦ 2, 0.5 ≦ b ≦ 0.97, 0 <c <0.5, 0 < d <0.5, 0 ≦ e ≦ 0.2, b + c + d + e = 1, 1.8 ≦ f ≦ 2.2, and 0 ≦ g ≦ 0.2. D is a doping element.
 本発明のLNCW酸化物は、リチウムイオン二次電池の正極活物質として機能する。 L The LNCW oxide of the present invention functions as a positive electrode active material of a lithium ion secondary battery.
 リチウムの価数は+1であり、酸素の価数は-2であることから、従来のリチウムニッケルコバルトアルミニウム酸化物においては、金属と酸素の電気的中性を担保するために、リチウムを除いたニッケルコバルトアルミニウム全体の価数は+3となる。ここで、コバルト及びアルミニウムは価数が+3で安定であるため、ニッケルの価数も+3となると考えられる。そして、リチウムニッケルコバルトアルミニウム酸化物において、充電時の酸化反応に優先的に寄与する元素はニッケルである。
 そうすると、リチウムニッケルコバルトアルミニウム酸化物における充電時の酸化反応としては、Ni3+→Ni4++eとの一電子酸化が生じることになる。
Since the valence of lithium is +1 and the valence of oxygen is -2, in the conventional lithium nickel cobalt aluminum oxide, lithium was excluded in order to secure electrical neutrality between the metal and oxygen. The valence of the entire nickel cobalt aluminum is +3. Here, since cobalt and aluminum have a valence of +3 and are stable, it is considered that the valence of nickel is also +3. In the lithium nickel cobalt aluminum oxide, nickel is an element that preferentially contributes to the oxidation reaction during charging.
Then, as the oxidation reaction of lithium nickel cobalt aluminum oxide during charging, one-electron oxidation of Ni 3+ → Ni 4+ + e occurs.
 本発明のLNCW酸化物には、タングステンが存在する。タングステンは価数が+6で安定である。高い酸化数のタングステンが存在するため、本発明のLNCW酸化物は、価数が+3のニッケルに加えて、価数が+2のニッケルの存在を許容するといえる。そうすると、充電時の酸化反応は、Ni2+→Ni4++2eとの二電子酸化も生じることになる。よって、本発明のLNCW酸化物は、充放電容量が大きいといえる。 Tungsten is present in the LNCW oxide of the present invention. Tungsten has a valence of +6 and is stable. Due to the presence of tungsten with a high oxidation number, it can be said that the LNCW oxide of the present invention allows the presence of nickel having a valence of +2 in addition to nickel having a valence of +3. Then, the oxidation reaction at the time of charging also causes two-electron oxidation of Ni 2+ → Ni 4+ + 2e . Therefore, it can be said that the LNCW oxide of the present invention has a large charge / discharge capacity.
 本発明のLNCW酸化物において、充放電時の酸化還元反応に優先的に寄与する元素はニッケルであると考えられるため、一般式(1)におけるbの値は、本発明のLNCW酸化物の容量に大きく影響する値である。
 bは、0.6≦b≦0.97を満足するのが好ましく、0.7≦b≦0.97を満足するのがより好ましく、0.8≦b≦0.96を満足するのがさらに好ましい。また、bの上限値として0.95や0.9を採用することもできる。
In the LNCW oxide of the present invention, nickel is considered to be an element that preferentially contributes to the oxidation-reduction reaction during charge and discharge. Therefore, the value of b in the general formula (1) is determined by the capacity of the LNCW oxide of the present invention. Is a value that greatly affects
b preferably satisfies 0.6 ≦ b ≦ 0.97, more preferably satisfies 0.7 ≦ b ≦ 0.97, and satisfies 0.8 ≦ b ≦ 0.96. More preferred. Also, 0.95 or 0.9 can be adopted as the upper limit of b.
 一般式(1)において、cは、0.01≦c≦0.3を満足するのが好ましく、0.02≦c≦0.2を満足するのがより好ましく、0.03≦c≦0.15を満足するのがさらに好ましく、0.04≦c≦0.1を満足するのが特に好ましい。
 一般式(1)において、dは、0.001≦d≦0.3を満足するのが好ましく、0.003≦d≦0.2を満足するのがより好ましく、0.004≦d≦0.1を満足するのがさらに好ましく、0.005≦d≦0.05を満足するのが特に好ましい。
 c及びdの値が大きく変動すると、本発明のLNCW酸化物の一次粒子の大きさが大きく変化する場合や、結晶構造の空間群が変化する場合がある。
In the general formula (1), c preferably satisfies 0.01 ≦ c ≦ 0.3, more preferably satisfies 0.02 ≦ c ≦ 0.2, and 0.03 ≦ c ≦ 0. .15, more preferably 0.04 ≦ c ≦ 0.1.
In the general formula (1), d preferably satisfies 0.001 ≦ d ≦ 0.3, more preferably satisfies 0.003 ≦ d ≦ 0.2, and 0.004 ≦ d ≦ 0. .1 is more preferable, and it is particularly preferable that 0.005 ≦ d ≦ 0.05 is satisfied.
When the values of c and d greatly change, the size of the primary particles of the LNCW oxide of the present invention may change significantly, or the space group of the crystal structure may change.
 a、e、f、gについては一般式(1)で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0<e≦0.15、1.8≦f≦2.1、0<g≦0.15、より好ましくは0.8≦a≦1.3、0<e≦0.1、1.9≦f≦2.1、0<g≦0.1を例示することができる。 a, e, f, and g may be numerical values within the range defined by the general formula (1), and are preferably 0.5 ≦ a ≦ 1.5, 0 <e ≦ 0.15, 1.8 ≦ f ≦ 2.1, 0 <g ≦ 0.15, more preferably 0.8 ≦ a ≦ 1.3, 0 <e ≦ 0.1, 1.9 ≦ f ≦ 2.1, 0 <g ≦ 0 .1 can be exemplified.
 一般式(1)におけるDはドープ元素であり、本発明のLNCW酸化物の特性を向上可能な元素である。一般式(1)におけるFも、本発明のLNCW酸化物の特性を向上可能な元素である。 D in the general formula (1) is a doping element, which is an element capable of improving the characteristics of the LNCW oxide of the present invention. F in the general formula (1) is also an element capable of improving the characteristics of the LNCW oxide of the present invention.
 一般式(1)の好適な一態様として下記一般式(1-1)を挙げることができる。
 一般式(1-1) LiNiCo e1 e2
 一般式(1-1)において、a、b、c、d、e1、e2、f、gは、0.5≦a≦2、0.5≦b≦0.97、0<c<0.5、0<d<0.5、0≦e1≦0.2、0≦e2<0.2、0<e1+e2≦0.2、b+c+d+e1+e2=1、1.8≦f≦2.2、0≦g≦0.2を満足する。
 DはZr、Ca、V、Mn、Cu、Ni、Sn、Tl、Fe、Sr、Ti、Ba、Mo、Y、希土類元素、Os、Ir、Cd、Re、Bi、Rh、W、Cr、Co、Zn、In、Al、Li、Na、Pb、Ru、Nbから選ばれる少なくとも1の元素である。
 DはLi、Ni、Co、W、D、O、F以外の元素である。
One preferred embodiment of the general formula (1) is the following general formula (1-1).
Formula (1-1) Li a Ni b Co c W d D 1 e1 D 2 e2 O f F g
In the general formula (1-1), a, b, c, d, e1, e2, f, and g are 0.5 ≦ a ≦ 2, 0.5 ≦ b ≦ 0.97, and 0 <c <0. 5, 0 <d <0.5, 0 ≦ e1 ≦ 0.2, 0 ≦ e2 <0.2, 0 <e1 + e2 ≦ 0.2, b + c + d + e1 + e2 = 1, 1.8 ≦ f ≦ 2.2, 0 ≦ g ≦ 0.2 is satisfied.
D 1 is Zr, Ca, V, Mn, Cu, Ni, Sn, Tl, Fe, Sr, Ti, Ba, Mo, Y, a rare earth element, Os, Ir, Cd, Re, Bi, Rh, W, Cr, At least one element selected from Co, Zn, In, Al, Li, Na, Pb, Ru, and Nb.
D 2 is an element other than Li, Ni, Co, W, D 1, O, F.
 一般式(1-1)におけるa、b、c、d、f、gの好適な範囲は、一般式(1)における説明を援用する。 好 適 For the preferred ranges of a, b, c, d, f, and g in the general formula (1-1), the description in the general formula (1) is cited.
 一般式(1-1)におけるDは、本発明のLNCW酸化物の特性を特に好適に向上可能なドープ元素である。e1は、0.0001≦e1≦0.2を満足するのが好ましく、0.001≦e1≦0.2を満足するのがより好ましく、0.01≦e1≦0.15を満足するのがさらに好ましい。なお、e1は0でもよいし、0<e1≦0.2を満足してもよい。 D 1 in the general formula (1-1) is a doping element that can particularly suitably improve the characteristics of the LNCW oxide of the present invention. e1 preferably satisfies 0.0001 ≦ e1 ≦ 0.2, more preferably satisfies 0.001 ≦ e1 ≦ 0.2, and satisfies 0.01 ≦ e1 ≦ 0.15. More preferred. In addition, e1 may be 0 or 0 <e1 ≦ 0.2.
 一般式(1-1)におけるDは、本発明のLNCW酸化物の特性を好適に向上可能なドープ元素である。Dとしては、Mn、Al、Mo、Na、Pから選ばれる少なくとも1の元素が好ましい。
 一般式(1-1)におけるe2の範囲としては、0<e2≦0.1、0<e2≦0.0.05、0<e2≦0.01を例示できる。なお、e2は0でもよい。
D 2 in the general formula (1-1) is a doping element capable of suitably improving the characteristics of the LNCW oxide of the present invention. The D 2, Mn, Al, Mo , Na, at least one element selected from P preferred.
Examples of the range of e2 in the general formula (1-1) include 0 <e2 ≦ 0.1, 0 <e2 ≦ 0.00.05, and 0 <e2 ≦ 0.01. In addition, e2 may be 0.
 次に、本発明のLNCW酸化物の製造方法について説明する。 Next, a method for producing the LNCW oxide of the present invention will be described.
 本発明のLNCW酸化物の製造方法の一態様は、
 ニッケル、コバルト及びタングステンを含む遷移金属水酸化物を準備する工程、
 遷移金属水酸化物を加熱して、付着水を除去する又は遷移金属酸化物とする工程、
 付着水を除去した遷移金属水酸化物又は前記遷移金属酸化物をリチウム塩と混合して焼成する工程、を有する。
One embodiment of the method for producing an LNCW oxide of the present invention is:
Preparing a transition metal hydroxide containing nickel, cobalt and tungsten,
Heating the transition metal hydroxide to remove adhering water or a transition metal oxide;
A step of mixing the transition metal hydroxide from which the attached water has been removed or the transition metal oxide with a lithium salt and calcining the mixture.
 また、本発明のLNCW酸化物の製造方法の好適な一態様(以下、「好適な本発明の製造方法」ということがある。)は、
 a)ニッケル、コバルト及びタングステンを含む遷移金属水酸化物を準備する工程、
 b)前記遷移金属水酸化物を加熱して、付着水を除去する又は遷移金属酸化物とする工程、
 c)付着水を除去した遷移金属水酸化物又は前記遷移金属酸化物を金属化合物でコートして、コート体とする工程、
 d)前記コート体とリチウム塩を混合し、焼成する工程、を有する。
A preferred embodiment of the method for producing an LNCW oxide of the present invention (hereinafter, also referred to as a “preferred production method of the present invention”) is described below.
a) preparing a transition metal hydroxide containing nickel, cobalt and tungsten;
b) heating the transition metal hydroxide to remove adhering water or to form a transition metal oxide;
c) a step of coating the transition metal hydroxide or the transition metal oxide from which adhering water has been removed with a metal compound to form a coated body;
d) mixing the coated body and a lithium salt and firing the mixture.
 一般式(1-1)におけるDは、主にc)工程の金属化合物に由来する金属である。
 Dは主にa)工程及び/又はd)工程で添加され得る化合物に由来する元素である。
D 1 in the general formula (1-1) is a metal mainly derived from the metal compound in step c).
D 2 is an element derived from predominantly a) step and / or d) compounds that may be added in step.
 好適な本発明の製造方法においては、c)工程にて、遷移金属水酸化物又は遷移金属酸化物の粒子を金属化合物でコートすることで、その後のd)工程において、コート部分の金属化合物が障壁となり、粒子内部のニッケルが層状岩塩構造のリチウムサイトに移動することを抑制していると考えられる。すなわち、好適な本発明の製造方法で製造されるLNCW酸化物においては、本来存在すべき遷移金属サイトにニッケルが正しく存在する割合が、従来のものよりも高いと考えられる。
 その結果、本発明の好適なLNCW酸化物を具備する正極を備えるリチウムイオン二次電池は、好適な電池特性を示す。
In a preferred production method of the present invention, in step c), particles of a transition metal hydroxide or a transition metal oxide are coated with a metal compound, and in the subsequent step d), the metal compound in the coated portion is It is considered to be a barrier, preventing nickel inside the particles from migrating to lithium sites having a layered rock salt structure. That is, in the LNCW oxide manufactured by the preferable manufacturing method of the present invention, it is considered that the ratio of nickel correctly present in the transition metal site that should originally exist is higher than that of the conventional one.
As a result, the lithium ion secondary battery including the positive electrode including the preferred LNCW oxide of the present invention exhibits favorable battery characteristics.
 以下、好適な本発明の製造方法をa)工程から順に説明する。なお、特段の言及がない限り、本明細書で規定するpHは25℃で測定した場合の値をいう。 Hereinafter, a preferred production method of the present invention will be described in order from step a). Unless otherwise specified, the pH defined in this specification refers to a value measured at 25 ° C.
 まず、a)工程について説明する。a)工程は、ニッケル、コバルト及びタングステンを含む遷移金属水酸化物を準備する工程である。 First, the step a) will be described. Step a) is a step of preparing a transition metal hydroxide containing nickel, cobalt and tungsten.
 a)工程で用いる、ニッケル、コバルト及びタングステンを含む遷移金属水酸化物は、ニッケル、コバルト及びタングステンを含む水溶液と塩基性水溶液を混合して、遷移金属水酸化物を析出させることで、製造できる。かかる遷移金属水酸化物の製造工程について詳細に説明する。 The transition metal hydroxide containing nickel, cobalt and tungsten used in the step a) can be produced by mixing an aqueous solution containing nickel, cobalt and tungsten and a basic aqueous solution to precipitate the transition metal hydroxide. . The production process of the transition metal hydroxide will be described in detail.
 遷移金属水酸化物の製造工程は、
 ニッケル塩、コバルト塩及びタングステン化合物を水に溶解し、ニッケル、コバルト及びタングステンを所定の比で含む遷移金属含有水溶液を調製する工程、
 塩基性水溶液を調製する工程、
 前記塩基性水溶液に前記遷移金属含有水溶液を供給し、ニッケル、コバルト及びタングステンを遷移金属水酸化物として析出させる遷移金属水酸化物析出工程、を含む。
The production process of the transition metal hydroxide,
Dissolving a nickel salt, a cobalt salt and a tungsten compound in water, and preparing a transition metal-containing aqueous solution containing nickel, cobalt and tungsten at a predetermined ratio,
A step of preparing a basic aqueous solution,
A transition metal hydroxide precipitation step of supplying the transition metal-containing aqueous solution to the basic aqueous solution to precipitate nickel, cobalt and tungsten as transition metal hydroxides.
 ニッケル塩としては、例えば、硫酸ニッケル、炭酸ニッケル、硝酸ニッケル、酢酸ニッケル、塩化ニッケルを挙げることができる。コバルト塩としては、例えば、硫酸コバルト、炭酸コバルト、硝酸コバルト、酢酸コバルト、塩化コバルトを挙げることができる。タングステン化合物としては、例えば、LiWO、NaWO、KWO、(NHWOなどのタングステン酸塩を挙げることができる。 Examples of the nickel salt include nickel sulfate, nickel carbonate, nickel nitrate, nickel acetate, and nickel chloride. Examples of the cobalt salt include cobalt sulfate, cobalt carbonate, cobalt nitrate, cobalt acetate, and cobalt chloride. Examples of the tungsten compound include tungstates such as Li 2 WO 4 , Na 2 WO 4 , K 2 WO 4 , and (NH 4 ) 2 WO 4 .
 遷移金属含有水溶液におけるニッケル塩、コバルト塩及びタングステン化合物の配合比は、これらの配合比が、所望のLNCW酸化物の金属組成比となるように調製すればよい。 ニ ッ ケ ル The mixing ratio of the nickel salt, the cobalt salt and the tungsten compound in the aqueous solution containing the transition metal may be adjusted so that the mixing ratio becomes a desired metal composition ratio of the LNCW oxide.
 遷移金属含有水溶液を調製する工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。 (4) The step of preparing the transition metal-containing aqueous solution is preferably performed in a reaction vessel equipped with a stirrer, and more preferably in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon. Further, a reaction tank provided with a device under constant temperature conditions is more preferable.
 遷移金属含有水溶液は、好ましくは40~90℃、より好ましくは40~80℃の範囲内に加温しておくのがよい。 The transition metal-containing aqueous solution is preferably heated to a temperature in the range of preferably 40 to 90 ° C, more preferably 40 to 80 ° C.
 塩基性水溶液のpHは9~14の範囲が好ましく、10~13の範囲がより好ましく、10.5~12の範囲がさらに好ましい。使用し得る塩基性化合物としては水に溶解して塩基性を示すものであれば良く、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどのアルカリ金属炭酸塩、リン酸三ナトリウム、リン酸三カリウム、リン酸三リチウムなどのアルカリ金属リン酸塩、酢酸ナトリウム、酢酸カリウム、酢酸リチウムなどのアルカリ金属酢酸塩を挙げることができる。塩基性化合物は単独で用いても良いし、複数を併用しても良い。以下の工程において、水溶液のpHは、それぞれ好適な範囲に保たれることが好ましいため、塩基性水溶液には、少なくとも緩衝能を有する塩基性化合物が含まれるのが好ましい。緩衝能を有する塩基性化合物としては、例えば、アンモニア、アルカリ金属炭酸塩、アルカリ金属リン酸塩、アルカリ金属酢酸塩を挙げることができる。 PH The pH of the basic aqueous solution is preferably in the range of 9 to 14, more preferably in the range of 10 to 13, and still more preferably in the range of 10.5 to 12. As the basic compound that can be used, any compound that dissolves in water and exhibits basicity may be used. Examples thereof include ammonia, sodium hydroxide, potassium hydroxide, and alkali metal hydroxides such as lithium hydroxide, sodium carbonate, and carbonate. Alkali metal carbonates such as potassium and lithium carbonate; alkali metal phosphates such as trisodium phosphate, tripotassium phosphate and trilithium phosphate; and alkali metal acetates such as sodium acetate, potassium acetate and lithium acetate. Can be. The basic compound may be used alone or in combination of two or more. In the following steps, it is preferable that the pH of the aqueous solution is maintained in a suitable range, and therefore, the basic aqueous solution preferably contains at least a basic compound having a buffering ability. Examples of the basic compound having a buffering ability include ammonia, alkali metal carbonate, alkali metal phosphate, and alkali metal acetate.
 塩基性水溶液を調製する工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。 The step of preparing the basic aqueous solution is preferably performed in a reaction vessel equipped with a stirrer, and more preferably in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon. Further, a reaction tank provided with a device under constant temperature conditions is more preferable.
 塩基性水溶液は、好ましくは40~90℃、より好ましくは40~80℃の範囲内に加温しておくのがよい。 (4) The basic aqueous solution is preferably heated to a temperature in the range of preferably 40 to 90 ° C, more preferably 40 to 80 ° C.
 遷移金属水酸化物析出工程においては、前記塩基性水溶液に前記遷移金属含有水溶液を供給することにより、金属イオンと水酸化物イオンが反応して、水に対して溶解度の低いニッケル、コバルト及びタングステンを含む遷移金属水酸化物が生成し、これが析出する。なお、タングステン酸塩を使用した場合には、タングステンはタングステン酸であるOW(OH)として、水酸化ニッケル及び水酸化コバルトと共に析出する。ここでは、かかる析出物を総称して、遷移金属水酸化物という。析出した遷移金属水酸化物の粒子がLNCW酸化物の一次粒子の基礎となる。そのため、遷移金属水酸化物析出工程を遷移金属水酸化物の析出速度が著しく速い条件下、すなわち遷移金属水酸化物の核がいたるところで発生する条件下とすると、無秩序な遷移金属水酸化物の粒子が形成されることになり、その結果、LNCW酸化物の一次粒子の好ましくない晶癖を生じる恐れがある。従って、遷移金属水酸化物析出工程においては、できるだけ緩和な条件下で、遷移金属水酸化物の粒子を析出させることが好ましい。 In the transition metal hydroxide precipitation step, by supplying the transition metal-containing aqueous solution to the basic aqueous solution, metal ions and hydroxide ions react, and nickel, cobalt and tungsten having low solubility in water. Is generated and precipitates. When tungstate is used, tungsten is precipitated as tungstic acid, O 2 W (OH) 2 , together with nickel hydroxide and cobalt hydroxide. Here, such precipitates are collectively referred to as transition metal hydroxides. The precipitated transition metal hydroxide particles form the basis of the primary particles of the LNCW oxide. Therefore, if the transition metal hydroxide precipitation step is performed under conditions where the transition metal hydroxide deposition rate is extremely high, that is, under conditions where transition metal hydroxide nuclei are generated everywhere, disordered transition metal hydroxides are formed. Particles may form, which may result in undesirable crystal habits of the primary particles of the LNCW oxide. Therefore, in the transition metal hydroxide precipitation step, it is preferable to precipitate particles of the transition metal hydroxide under as mild conditions as possible.
 上記の観点から、遷移金属含有水溶液を供給する速度は、10~1000mL/hが好ましく、20~500mL/hがより好ましく、50~300mL/hが特に好ましい。 か ら In view of the above, the rate of supplying the transition metal-containing aqueous solution is preferably from 10 to 1000 mL / h, more preferably from 20 to 500 mL / h, and particularly preferably from 50 to 300 mL / h.
 遷移金属水酸化物析出工程においては、反応溶液を一定のpHに保つことが好ましい。なお、ここでのpH値は、反応液をpHメーターで測定した数値そのものを意味する。当該pHとしては、9~14の範囲が好ましく、10~12の範囲がより好ましく、10.5~11の範囲が特に好ましい。反応溶液を一定のpHに保つために、他の塩基性水溶液を準備して、遷移金属水酸化物析出工程の反応溶液に適宜添加することが好ましい。 In the transition metal hydroxide precipitation step, the reaction solution is preferably maintained at a constant pH. Here, the pH value means the value itself obtained by measuring the reaction solution with a pH meter. The pH is preferably in the range of 9 to 14, more preferably in the range of 10 to 12, and particularly preferably in the range of 10.5 to 11. In order to maintain the reaction solution at a constant pH, it is preferable to prepare another basic aqueous solution and appropriately add it to the reaction solution in the transition metal hydroxide precipitation step.
 遷移金属水酸化物析出工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。 The transition metal hydroxide precipitation step is preferably performed in a reaction vessel equipped with a stirrer, and more preferably in a reaction vessel equipped with a device capable of introducing an inert gas such as nitrogen or argon. Further, a reaction tank provided with a device under constant temperature conditions is more preferable.
 遷移金属水酸化物析出工程においては、反応系内に存在する溶存酸素の量が少ない方が好ましい。反応系内に存在する溶存酸素の量が多いと、不都合な酸化反応が生じるおそれや、遷移金属水酸化物の析出に伴う遷移金属水酸化物の好適な結晶化が阻害されるおそれがある。 In the transition metal hydroxide precipitation step, it is preferable that the amount of dissolved oxygen present in the reaction system is small. If the amount of dissolved oxygen present in the reaction system is large, an undesired oxidation reaction may occur, or a suitable crystallization of the transition metal hydroxide accompanying the precipitation of the transition metal hydroxide may be hindered.
 反応系内に存在する溶存酸素の量を低下させるために、遷移金属水酸化物析出工程を、加温下で行うこと、不活性ガスを反応系内に導入しながら行うこと、脱酸素剤、還元剤、酸化防止剤などの存在下で行うことが好ましい。 In order to reduce the amount of dissolved oxygen present in the reaction system, the transition metal hydroxide precipitation step is performed under heating, while performing while introducing an inert gas into the reaction system, a deoxidizer, It is preferable to carry out the reaction in the presence of a reducing agent, an antioxidant and the like.
 加温下としては、40~90℃、60~80℃の範囲を例示できる。
 不活性ガスとしては、窒素、アルゴン、ヘリウムを例示できる。
 脱酸素剤、還元剤、酸化防止剤としては、アスコルビン酸及びその塩、グリオキシル酸及びその塩、ヒドラジン、ジメチルヒドラジン、ヒドロキノン、ジメチルアミンボラン、NaBH、NaBHCN、KBH、亜硫酸及びその塩、チオ硫酸及びその塩、ピロ亜硫酸及びその塩、亜リン酸及びその塩、次亜リン酸及びその塩を例示できる。
Examples of the heating range are 40 to 90 ° C. and 60 to 80 ° C.
Examples of the inert gas include nitrogen, argon, and helium.
Examples of the oxygen scavenger, reducing agent and antioxidant include ascorbic acid and its salts, glyoxylic acid and its salts, hydrazine, dimethylhydrazine, hydroquinone, dimethylamine borane, NaBH 4 , NaBH 3 CN, KBH 4 , sulfurous acid and its salts Thiosulfuric acid and its salts, pyrosulfite and its salts, phosphorous acid and its salts, hypophosphorous acid and its salts.
 遷移金属水酸化物析出工程後に、遷移金属水酸化物を濾過などで分離する。以上の方法で、遷移金属水酸化物を得ることができる。 後 に After the transition metal hydroxide precipitation step, the transition metal hydroxide is separated by filtration or the like. With the above method, a transition metal hydroxide can be obtained.
 なお、a)工程においては、一般式(1-1)におけるDの元素を含有する化合物が添加されて、Dを含有する遷移金属水酸化物が製造されてもよい。 Incidentally, a) in the process, compounds containing an element of D 2 in the general formula (1-1) is added, transition metal hydroxide containing D 2 may be manufactured.
 次に、b)工程について説明する。b)工程は、ニッケルを含む遷移金属水酸化物を加熱して、付着水を除去する又は遷移金属酸化物とする工程である。
 加熱温度としては、100~800℃の範囲内が好ましく、200~700℃の範囲内がより好ましく、300~600℃の範囲内が特に好ましい。b)工程は常圧下で行ってもよいし、減圧下で行ってもよい。
Next, the step b) will be described. The step b) is a step of heating a transition metal hydroxide containing nickel to remove adhered water or to form a transition metal oxide.
The heating temperature is preferably in the range of 100 to 800 ° C, more preferably in the range of 200 to 700 ° C, and particularly preferably in the range of 300 to 600 ° C. Step b) may be performed under normal pressure or under reduced pressure.
 次に、c)工程について説明する。c)工程は、付着水を除去した遷移金属水酸化物又は遷移金属酸化物を金属化合物でコートして、コート体とする工程である。
 以下、「遷移金属酸化物」を金属化合物でコートする場合について説明を行う。「付着水を除去した遷移金属水酸化物」を金属化合物でコートする場合については、以下の説明において、「遷移金属酸化物」を「付着水を除去した遷移金属水酸化物」に、適宜適切に、読み替えればよい。
Next, the step c) will be described. The step c) is a step of coating a transition metal hydroxide or a transition metal oxide from which adhering water has been removed with a metal compound to obtain a coated body.
Hereinafter, a case where the “transition metal oxide” is coated with a metal compound will be described. In the case where the “transition metal hydroxide from which adhered water has been removed” is coated with a metal compound, in the following description, “transition metal oxide” is appropriately changed to “transition metal hydroxide from which adhered water has been removed”. Then, it should be read.
 金属化合物の具体例としては、Dの水酸化物や、例えば、ZrO、CaVO、MnO、LaCuO、LaNiO、SnO、TlMn、EuO、Fe、CaMnO、SrMnO、(Sr,La)TiO、LaTiO、SrFeO、BaMoO、CaMoO、LnOs(LnはY及び希土類元素から選択される元素である。)、TlIr、CdRe、LuIr、BiRh、BiIr、Ti、WO、VO、V、LaMnO、CaCrO、LaCoO、(ZnO)、SrCrO、In0.970.03、ZnAlO(x+y=1)、LiV、Na1-xCoO(0<x<1)、LiTi、SrMoO、BaPbO、TlOs、PbOs、PbIr、LuRu、BiRu、SrRuO、CaRuO、CrO、MoO、ReO、TiO、LaO、SmO、LaNiO、SrVO、ReO、IrO、RuO、RhO、OsO、NdO、NbO、La、NiO、LaSrCo(x+y=1)、NaCoO、NaNiO、LiCoO、LiNiOから選択される金属酸化物又はこれらの前駆体の金属水酸化物を例示できる。
 金属化合物のうち、金属酸化物は、ペロブスカイト型などの結晶構造を示すものが好ましい。
Specific examples of the metal compounds, the or hydroxide D 1, for example, ZrO 2, CaVO 3, MnO 2, La 2 CuO 4, La 2 NiO 4, SnO 2, Tl 2 Mn 2 O 7, EuO, Fe 2 O 3 , CaMnO 3 , SrMnO 3 , (Sr, La) TiO 3 , LaTiO 3 , SrFeO 3 , BaMoO 3 , CaMoO 3 , Ln 2 Os 2 O 7 (Ln is an element selected from Y and rare earth elements) .), Tl 2 Ir 2 O 7, Cd 2 Re 2 O 7, Lu 2 Ir 2 O 7, Bi 2 Rh 2 O 7, Bi 2 Ir 2 O 7, Ti 2 O 3, WO 2, VO, V 2 O 3, LaMnO 3, CaCrO 3 , LaCoO 3, (ZnO) 5, SrCrO 3, In 0.97 Y 0.03 O 3, Zn x Al y O (x + y = 1 , LiV 2 O 4, Na 1 -x CoO 2 (0 <x <1), LiTi 2 O 4, SrMoO 3, BaPbO 3, Tl 2 Os 2 O 7, Pb 2 Os 2 O 7, Pb 2 Ir 2 O 7, Lu 2 Ru 2 O 7 , Bi 2 Ru 2 O 7, SrRuO 3, CaRuO 3, CrO 2, MoO 2, ReO 2, TiO, LaO, SmO, LaNiO 3, SrVO 3, ReO 3, IrO 2, RuO 2, RhO 2, OsO 2, NdO, NbO, La 2 O 3, NiO, LaSr x Co y O 3 (x + y = 1), NaCoO 3, NaNiO 3, LiCoO 3, metal oxide selected from LiNiO 3 or Metal hydroxides of these precursors can be exemplified.
Among the metal compounds, the metal oxide preferably has a crystal structure such as a perovskite type.
 遷移金属酸化物を金属化合物でコートするには、各金属化合物の前駆体や各金属が溶解した水溶液を遷移金属酸化物に対して噴霧し、次いで/又は同時に、乾燥する方法を採用すればよい。また、各金属化合物の前駆体や各金属が溶解した水溶液に、遷移金属酸化物を浸漬させて、遷移金属酸化物の表面に各金属化合物の前駆体や各金属の水酸化物などを付着させた上で、加熱乾燥する方法を採用してもよい。特に、遷移金属酸化物の分散液と、各金属化合物の前駆体や各金属が溶解した水溶液を混合して、遷移金属酸化物の表面に各金属の水酸化物を析出させた上で、乾燥する方法(以下、「析出法」ということがある。)を採用するのが好ましい。 In order to coat the transition metal oxide with the metal compound, a method in which a precursor of each metal compound or an aqueous solution in which each metal is dissolved is sprayed on the transition metal oxide, and / or simultaneously, may be dried. . Further, the transition metal oxide is immersed in an aqueous solution in which the precursor of each metal compound or each metal is dissolved, and the precursor of each metal compound or the hydroxide of each metal is attached to the surface of the transition metal oxide. Then, a method of heating and drying may be adopted. In particular, a dispersion of the transition metal oxide, a precursor of each metal compound and an aqueous solution in which each metal is dissolved are mixed, and a hydroxide of each metal is precipitated on the surface of the transition metal oxide, and then dried. (Hereinafter, sometimes referred to as “precipitation method”).
 以下、DがZrの場合の好適な析出法について、詳細に説明する。当該析出法は、以下のc-1)工程、c-2)工程及びc-3)工程を有する。DがZr以外の金属の場合には、c-1)工程、c-2)工程及びc-3)工程におけるジルコニウムを当該金属に読み替えればよい。また、Dが複数の金属の場合には、c-2)工程にて複数の金属を含有する水溶液を用いてもよいし、金属水溶液の金属種を変更しつつ、c-1)工程、c-2)工程及びc-3)工程を繰り返して実施してもよい。 Hereinafter, D 1 is the preferred precipitation method when the Zr, will be described in detail. The precipitation method includes the following steps c-1), c-2) and c-3). If D 1 is a metal other than Zr are, c-1) step, c-2) step and c-3) zirconium may be read as to the metal in the process. When D 1 is a plurality of metals, an aqueous solution containing a plurality of metals may be used in step c-2), or the metal species of the aqueous metal solution may be changed while the step c-1) is performed. The steps c-2) and c-3) may be repeated.
 c-1)遷移金属酸化物を水に分散させる分散液調製工程、
 c-2)ヘテロ元素含有有機化合物を含有するジルコニウム水溶液と、前記分散液を混合し、遷移金属酸化物の表面に水酸化ジルコニウムを析出させるジルコニウム析出工程、
 c-3)表面に水酸化ジルコニウムを析出させた遷移金属酸化物を乾燥してコート体とする工程
c-1) a dispersion liquid preparing step of dispersing the transition metal oxide in water,
c-2) a zirconium precipitation step of mixing the zirconium aqueous solution containing the hetero element-containing organic compound and the dispersion to precipitate zirconium hydroxide on the surface of the transition metal oxide;
c-3) A step of drying a transition metal oxide having zirconium hydroxide deposited on the surface to form a coated body
 c-1)工程の前に、遷移金属酸化物を粉砕しておくのが好ましい。また、分散液のpHが9~12程度の範囲内となるようにpH調製を行うことが好ましい。 It is preferable to pulverize the transition metal oxide before the step (c-1). Further, it is preferable to adjust the pH so that the pH of the dispersion is in the range of about 9 to 12.
 次に、c-2)工程について説明する。
 ヘテロ元素含有有機化合物を含有するジルコニウム水溶液は、ジルコニウム塩とヘテロ元素含有有機化合物を水に溶解して製造される。ヘテロ元素含有有機化合物を含有するジルコニウム水溶液は、通常、酸性の溶液である。ジルコニウム塩のジルコニウムとヘテロ元素含有有機化合物の配合比は、モル比でジルコニウム:ヘテロ元素含有有機化合物=1:1~1:3の範囲内が好ましい。
Next, the step c-2) will be described.
A zirconium aqueous solution containing a hetero element-containing organic compound is produced by dissolving a zirconium salt and a hetero element-containing organic compound in water. The aqueous zirconium solution containing the hetero element-containing organic compound is usually an acidic solution. The mixing ratio of zirconium and the hetero element-containing organic compound in the zirconium salt is preferably in a molar ratio of zirconium: hetero element-containing organic compound = 1: 1 to 1: 3.
 ジルコニウム塩としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、リン酸ジルコニウム、ハロゲン化ジルコニウムを挙げることができる。 Examples of the zirconium salt include zirconium oxide, zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium phosphate, and zirconium halide.
 ヘテロ元素含有有機化合物におけるヘテロ元素とは、N、O、P又はSを意味する。ヘテロ元素含有有機化合物としては、金属イオンに配位可能なアミノ基、アミド基、イミド基、イミノ基、シアノ基、アゾ基、水酸基、アルコキシ基、カルボキシル基、エステル基、エーテル基、カルボニル基、リン酸基、リン酸エステル基、ホスホン酸基、ホスホン酸エステル基、ホスフィン酸基、ホスフィン酸エステル基、ホスフェン酸基、ホスフェン酸エステル基、亜ホスフェン酸基、亜ホスフェン酸エステル基、チオール基、スルフィド基、スルフィニル基、スルホニル基、スルホン酸基、チオカルボキシル基、チオエステル基若しくはチオカルボニル基を具備する有機化合物を挙げることができる。 ヘ テ ロ The hetero element in the hetero element-containing organic compound means N, O, P or S. Examples of the hetero element-containing organic compound include an amino group, an amide group, an imide group, an imino group, a cyano group, an azo group, a hydroxyl group, an alkoxy group, a carboxyl group, an ester group, an ether group, a carbonyl group, which can be coordinated with a metal ion. Phosphate group, phosphate group, phosphonate group, phosphonate group, phosphinate group, phosphinate group, phosphenate group, phosphenate group, phosphite group, phosphenite group, thiol group, Organic compounds having a sulfide group, a sulfinyl group, a sulfonyl group, a sulfonic acid group, a thiocarboxyl group, a thioester group, or a thiocarbonyl group can be given.
 特に、ヘテロ元素含有有機化合物としては、上記の基を複数有し、かつ、複数箇所で金属イオンに配位可能なキレート化合物が好ましい。 Particularly, as the hetero element-containing organic compound, a chelate compound having a plurality of the above groups and capable of coordinating to a metal ion at a plurality of positions is preferable.
 キレート化合物の具体例としては、エチレンジアミン、ジエチレントリアミンなどのポリアミン化合物、グリシン、アラニン、システイン、グルタミン、アルギニン、アスパラギン、アスパラギン酸、セリン、エチレンジアミン四酢酸などのアミノ酸、マロン酸、コハク酸、グルタル酸、マレイン酸、フタル酸などのジカルボン酸、及び、ヒドロキシカルボン酸を挙げることができる。 Specific examples of chelating compounds include polyamine compounds such as ethylenediamine, diethylenetriamine, glycine, alanine, cysteine, glutamine, arginine, asparagine, aspartic acid, serine, amino acids such as ethylenediaminetetraacetic acid, malonic acid, succinic acid, glutaric acid, and maleic acid. Examples thereof include acids, dicarboxylic acids such as phthalic acid, and hydroxycarboxylic acids.
 キレート化合物としては、ヒドロキシカルボン酸が特に好ましい。分子内に水酸基とカルボキシル基を有するヒドロキシカルボン酸としては、脂肪族ヒドロキシカルボン酸及び芳香族ヒドロキシカルボン酸を挙げることができる。 As the chelate compound, hydroxycarboxylic acid is particularly preferred. Examples of the hydroxycarboxylic acid having a hydroxyl group and a carboxyl group in a molecule include an aliphatic hydroxycarboxylic acid and an aromatic hydroxycarboxylic acid.
 脂肪族ヒドロキシカルボン酸としては、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、リンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、キナ酸、シキミ酸を例示できる。 Aliphatic hydroxycarboxylic acids include glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, γ-hydroxybutyric acid, malic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, leucic acid , Mevalonic acid, pantoic acid, quinic acid and shikimic acid.
 芳香族ヒドロキシカルボン酸としては、サリチル酸、ゲンチジン酸、オルセリン酸などのo-ヒドロキシ安息香酸誘導体、マンデル酸、ベンジル酸、2-ヒドロキシ-2-フェニルプロピオン酸を例示できる。 Examples of the aromatic hydroxycarboxylic acid include o-hydroxybenzoic acid derivatives such as salicylic acid, gentisic acid and orseric acid, mandelic acid, benzylic acid and 2-hydroxy-2-phenylpropionic acid.
 上記具体的なヒドロキシカルボン酸は、いずれも、同一のジルコニウムイオンにOH基とCOH基が配位可能なコンホメーションを形成できる。 Any of the above specific hydroxycarboxylic acids can form a conformation in which an OH group and a CO 2 H group can coordinate to the same zirconium ion.
 c-2)工程においては、効率的にジルコニウムを析出させるために、c-2)工程の混合液のpHをコントロールするのが好ましい。ここでは、混合液のpHをアルカリ側にすることで、溶解度の低い水酸化ジルコニウムが、遷移金属酸化物の表面に析出することが想定される。例えば、c-2)工程の溶液のpHが9~13の範囲内となるように、塩基性水溶液を添加するのが好ましい。塩基性水溶液としては、a)工程で説明したものを採用すればよい。 In step c-2), it is preferable to control the pH of the mixed solution in step c-2) in order to deposit zirconium efficiently. Here, it is assumed that zirconium hydroxide having low solubility is precipitated on the surface of the transition metal oxide by setting the pH of the mixed solution to the alkali side. For example, it is preferable to add a basic aqueous solution so that the pH of the solution in step c-2) is in the range of 9 to 13. As the basic aqueous solution, those described in the step a) may be employed.
 c-2)工程を経た遷移金属酸化物は、濾過などの方法で分離されて、c-3)工程に供される。 The transition metal oxide that has passed through the step c-2) is separated by a method such as filtration and supplied to the step c-3).
 c-3)工程での乾燥は、加熱下及び/又は減圧下で行われるのが好ましい。加熱温度としては、100~500℃、200~400℃の範囲内を例示できる。
 c-3)工程での乾燥は、表面に水酸化ジルコニウムを析出させた遷移金属酸化物に付着した水分を除去することが主な目的である。ただし、加熱温度を高くすることで、遷移金属酸化物の表面に存在する水酸化ジルコニウムを脱水させて、酸化ジルコニウムに変化させてもよい。すなわち、コート体は、水酸化ジルコニウムでコートされた遷移金属酸化物でもよいし、酸化ジルコニウムでコートされた遷移金属酸化物でもよい。
The drying in the step c-3) is preferably performed under heating and / or under reduced pressure. Examples of the heating temperature are in the range of 100 to 500 ° C and 200 to 400 ° C.
The main purpose of the drying in the step c-3) is to remove water adhering to the transition metal oxide having zirconium hydroxide precipitated on the surface. However, by increasing the heating temperature, zirconium hydroxide present on the surface of the transition metal oxide may be dehydrated and changed to zirconium oxide. That is, the coated body may be a transition metal oxide coated with zirconium hydroxide or a transition metal oxide coated with zirconium oxide.
 次に、d)工程について説明する。d)工程は、コート体とリチウム塩を混合し、焼成する工程である。 Next, the step d) will be described. Step d) is a step in which the coated body and the lithium salt are mixed and fired.
 リチウム塩としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムを例示することができる。リチウム塩の配合量は、所望のリチウム組成のLNCW酸化物となるように適宜決定すればよい。 Examples of the lithium salt include lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, lithium oxalate, and lithium halide. The amount of the lithium salt may be appropriately determined so that the LNCW oxide has a desired lithium composition.
 混合装置としては、乳鉢及び乳棒、撹拌混合機、V型混合機、W型混合機、リボン型混合機、ドラムミキサー、ボールミルを例示できる。 Examples of the mixing device include a mortar and pestle, a stirring mixer, a V-type mixer, a W-type mixer, a ribbon-type mixer, a drum mixer, and a ball mill.
 d)工程においては、一般式(1-1)におけるDの元素を含有する化合物や、F化合物が混合されてもよい。特に、Na化合物、F化合物及びP化合物から選択される化合物が混合されるのが好ましい。Dの存在に因り、本発明のLNCW酸化物を具備するリチウムイオン二次電池のレート特性及び/又は容量維持率の改善が期待できる。 In the d) step, the compound and containing an element of D 2 in the general formula (1-1), F compounds may be mixed. In particular, a compound selected from a Na compound, an F compound and a P compound is preferably mixed. Due to the presence of D 2, the improvement of rate characteristics and / or the capacity retention rate of the lithium ion secondary battery having a LNCW oxide of the present invention can be expected.
 Na化合物としては、NaF、NaCl、NaBr、NaI、NaPO、NaHPO、NaHPO、NaSO、NaHSO、NaNO、CHCONaなどのナトリウム塩を例示できる。
 F化合物としては、LiF、NaF、KF、MgF、CaF、BaF、AlFなどの金属フッ化物を例示できる。
 P化合物としては、HPO、LiHPO、LiHPO、LiPO、NaHPO、NaHPO、NaPO、KHPO、KHPO、KPOなどのリン酸及びリン酸塩を例示できる。
The Na compounds, exemplified NaF, NaCl, NaBr, NaI, and sodium salts, such as Na 3 PO 4, Na 2 HPO 4, NaH 2 PO 4, Na 2 SO 4, NaHSO 4, NaNO 3, CH 3 CO 2 Na it can.
Examples of the F compound include metal fluorides such as LiF, NaF, KF, MgF 2 , CaF 2 , BaF 2 , and AlF 3 .
Examples of the P compound include H 3 PO 4 , LiH 2 PO 4 , Li 2 HPO 4 , Li 3 PO 4 , NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 , KH 2 PO 4 , K 2 HPO 4 , phosphoric acid and phosphates such K 3 PO 4 can be exemplified.
 焼成は、大気雰囲気下や酸素ガス雰囲気下で行ってもよいし、ヘリウム、アルゴンなどの不活性ガス存在下で行ってもよい。焼成工程の加熱温度は400~1200℃の範囲を例示できる。焼成工程の加熱時間は1~50時間を例示できる。 The firing may be performed in an air atmosphere or an oxygen gas atmosphere, or may be performed in the presence of an inert gas such as helium or argon. The heating temperature in the firing step can be, for example, in the range of 400 to 1200 ° C. The heating time in the firing step can be, for example, 1 to 50 hours.
 d)工程における焼成は、単一の温度条件で実施してもよいし、温度条件が異なる複数の焼成工程を組み合わせて実施してもよく、また、特定の昇温プログラムを設定して実施してもよい。 The baking in the step d) may be performed under a single temperature condition, or may be performed by combining a plurality of baking processes having different temperature conditions, or may be performed by setting a specific temperature raising program. May be.
 温度条件が異なる複数の焼成工程を組み合わせる方法としては、前記コート体及びリチウム塩の混合物を400~800℃で加熱して第1焼成体とする第1焼成工程、及び、前記第1焼成体を550~1000℃で加熱する第2焼成工程を挙げることができる。複数の焼成工程を組み合わせることで、より好適な活物質となり得るLNCW酸化物を製造することができる。 As a method of combining a plurality of firing steps having different temperature conditions, a first firing step in which the mixture of the coated body and the lithium salt is heated at 400 to 800 ° C. to form a first fired body; A second firing step of heating at 550 to 1000 ° C. can be mentioned. By combining a plurality of firing steps, an LNCW oxide that can be a more suitable active material can be manufactured.
 第1焼成工程の温度としては、400~800℃、650~750℃の範囲を例示できる。第1焼成工程の加熱時間としては、3~30時間、5~20時間、5~15時間の範囲を例示できる。 温度 Examples of the temperature of the first baking step include a range of 400 to 800 ° C. and 650 to 750 ° C. Examples of the heating time in the first firing step include a range of 3 to 30 hours, 5 to 20 hours, and 5 to 15 hours.
 第2焼成工程は、前記第1焼成体を550~1000℃で加熱する工程である。
 ここで、LNCW酸化物の結晶生成の点から言及すると、なるべく低温で加熱した方が、均一な組成であって均一な形状の結晶が生成しやすい。そのため、第2焼成工程の温度としては、550~950℃、550~900℃、550~850℃、550~800℃の範囲を例示できる。
The second firing step is a step of heating the first fired body at 550 to 1000 ° C.
Here, from the viewpoint of LNCW oxide crystal formation, heating at as low a temperature as possible facilitates generation of crystals having a uniform composition and a uniform shape. Therefore, the temperature of the second firing step may be in the range of 550 to 950 ° C., 550 to 900 ° C., 550 to 850 ° C., and 550 to 800 ° C.
 第2焼成工程の加熱時間としては、3~30時間、5~20時間、5~15時間の範囲を例示できる。 加熱 Examples of the heating time in the second baking step include a range of 3 to 30 hours, 5 to 20 hours, and 5 to 15 hours.
 好適な本発明の製造方法では、c)工程にて、遷移金属酸化物の粒子を金属化合物でコートしているため、第1焼成工程及び第2焼成工程において、コートした金属化合物が障壁となり、ニッケルが層状岩塩構造のリチウムサイトに移動することを抑制していると考えられる。 In the preferred production method of the present invention, in step c), the transition metal oxide particles are coated with the metal compound, so that the coated metal compound becomes a barrier in the first and second firing steps, It is considered that nickel is restrained from migrating to lithium sites having a layered rock salt structure.
 d)工程で得られたLNCW酸化物は、粉砕工程、分級工程を経て、一定の粒度分布のものとするのが好ましい。粒度分布の範囲としては、一般的なレーザー散乱回折式粒度分布計での測定において、平均粒子径(D50)は50μm以下が好ましく、1μm以上30μm以下がより好ましく、1μm以上20μm以下がさらに好ましく、2μm以上10μm以下が特に好ましい。 It is preferable that the LNCW oxide obtained in the step d) has a certain particle size distribution through a pulverizing step and a classification step. As the range of the particle size distribution, the average particle size (D 50 ) is preferably 50 μm or less, more preferably 1 μm or more and 30 μm or less, still more preferably 1 μm or more and 20 μm or less in a measurement with a general laser scattering diffraction type particle size distribution meter. And 2 μm or more and 10 μm or less are particularly preferable.
 また、本発明のLNCW酸化物の製造方法の好適な他の一態様(以下、「第二の製造方法」ということがある。)は、
 a’-1)ニッケル及びコバルトを含む遷移金属水酸化物を準備する工程、
 a’-2)遷移金属水酸化物を含有する塩基性の懸濁液に対して、タングステン酸塩水溶液を添加する工程、
 a’-3)タングステン酸塩水溶液を添加後の懸濁液のpHを低下して、遷移金属水酸化物の表面にタングステン酸を析出させて、コート体とする工程、
 b’)コート体を加熱して、付着水を除去する又は遷移金属酸化物とする工程、
 d’)付着水を除去した遷移金属水酸化物又は遷移金属酸化物をリチウム塩と混合し、焼成する工程、を有する。
 なお、各工程を特定する技術的事項は、a’-1)~a’-3)工程については既述のa)工程又はc)工程、b’)工程については既述のb)工程、d’)工程については既述のd)工程の技術内容を、適宜適切に援用する。
Another preferred embodiment of the method for producing an LNCW oxide of the present invention (hereinafter, also referred to as a “second production method”) is as follows.
a′-1) preparing a transition metal hydroxide containing nickel and cobalt;
a′-2) a step of adding an aqueous solution of tungstate to a basic suspension containing a transition metal hydroxide,
a′-3) a step of lowering the pH of the suspension after the addition of the aqueous solution of tungstate to precipitate tungstic acid on the surface of the transition metal hydroxide to form a coated body;
b ′) heating the coated body to remove adhering water or to form a transition metal oxide;
d ′) a step of mixing the transition metal hydroxide or the transition metal oxide from which the adhering water has been removed with a lithium salt and firing the mixture.
The technical items that specify each step include the a) step or c) step described above for the a′-1) to a′-3) steps, and the b) step described above for the b ′) step. Regarding the step d ′), the technical content of the step d) described above is appropriately and appropriately used.
 さらに、本発明のLNCW酸化物の製造方法の好適な他の一態様(以下、「第三の製造方法」ということがある。)は、
 a’’)ニッケル及びコバルトを含む遷移金属水酸化物を準備する工程、
 b’’)遷移金属水酸化物を加熱して、付着水を除去する又は遷移金属酸化物とする工程、
 c’’)付着水を除去した遷移金属水酸化物又は遷移金属酸化物を含有する懸濁液に対して、タングステン酸塩水溶液を添加して、遷移金属水酸化物又は遷移金属酸化物をタングステン酸でコートして、コート体とする工程、
 d’’)前記コート体とリチウム塩を混合し、焼成する工程、を有する。
 なお、各工程を特定する技術的事項は、a’’)工程については既述のa)工程、b’’)工程については既述のb)工程、c’’)工程については既述のc)工程並びにa’-2)工程及びa’-3)工程、d’’)工程については既述のd)工程の技術内容を、適宜適切に援用する。
Further, another preferred aspect of the method for producing an LNCW oxide of the present invention (hereinafter, may be referred to as “third production method”) is as follows.
a '') providing a transition metal hydroxide comprising nickel and cobalt;
b '') heating the transition metal hydroxide to remove adhering water or to form a transition metal oxide;
c '') To the transition metal hydroxide or the suspension containing the transition metal oxide from which the adhering water has been removed, an aqueous solution of tungstate is added to convert the transition metal hydroxide or the transition metal oxide into tungsten. Coating with an acid to form a coated body,
d '') mixing the coated body and a lithium salt and firing the mixture.
In addition, the technical items specifying each step include the a) step described above for the a ″) step, the b) step described above for the b ″) step, and the previously described b) step for the c ″) step. For the step c), the steps a′-2), a′-3), and d ″), the technical contents of the step d) described above are appropriately and appropriately used.
 第二の製造方法においては、タングステンはa’-2)工程で添加されて、a’-3)工程でニッケル及びコバルトを含む遷移金属水酸化物と一体化する。第三の製造方法においては、タングステンはc’’)工程でニッケル及びコバルトを含む遷移金属水酸化物と一体化する。 In the second manufacturing method, tungsten is added in the step a'-2) and integrated with the transition metal hydroxide containing nickel and cobalt in the step a'-3). In the third manufacturing method, tungsten is integrated with a transition metal hydroxide containing nickel and cobalt in step c ″).
 ここで、ニッケル、コバルト及びタングステンの3者を含む遷移金属水酸化物を共沈法にて一度に製造する場合には、6価のタングステンで構成されるタングステン酸塩が、ニッケルの水酸化物を一部酸化して、ニッケルのオキシ水酸化物が形成される場合があると考えられる。その結果、遷移金属水酸化物の結晶成長が妨げられることが想定される。
 他方、第二の製造方法や第三の製造方法のように、タングステンを添加せずに遷移金属水酸化物を製造する場合、タングステン未添加のa’-1)工程及びa’’)工程においては、上記のような結晶成長の阻害がないため、ニッケル及びコバルトを含む遷移金属水酸化物の結晶成長が円滑に進行すると考えられる。
Here, when a transition metal hydroxide containing nickel, cobalt and tungsten is produced at a time by coprecipitation, a tungstate composed of hexavalent tungsten is used as a nickel hydroxide. May be partially oxidized to form nickel oxyhydroxide. As a result, it is assumed that the crystal growth of the transition metal hydroxide is hindered.
On the other hand, when a transition metal hydroxide is produced without adding tungsten, as in the second production method and the third production method, in the a′-1) step and the a ″) step where tungsten is not added, It is considered that the crystal growth of the transition metal hydroxide containing nickel and cobalt proceeds smoothly because there is no inhibition of the crystal growth as described above.
 中間体である遷移金属水酸化物の結晶の大きさは、本発明のLNCW酸化物の一次粒子の大きさの基礎となると考えられるため、第二の製造方法及び第三の製造方法で製造された本発明のLNCW酸化物は、比較的大きな一次粒子を含有するといえる。そして、大きな一次粒子を含有する本発明のLNCW酸化物は、低抵抗となることが期待される。 Since the size of the crystal of the transition metal hydroxide as an intermediate is considered to be the basis of the size of the primary particles of the LNCW oxide of the present invention, it is produced by the second production method and the third production method. It can be said that the LNCW oxide of the present invention contains relatively large primary particles. And, the LNCW oxide of the present invention containing large primary particles is expected to have low resistance.
 LNCW酸化物の一次粒子の大きさは、顕微鏡観察にて50nm~1000nmの範囲内のものが好ましく、100nm~500nmの範囲内のものがより好ましく、150nm~500nmの範囲内のものがさらに好ましい。なお、一次粒子とは、SEM観察の際に1粒と認識される粒子のことを意味する。 The size of the primary particles of the LNCW oxide is preferably in the range of 50 nm to 1000 nm, more preferably in the range of 100 nm to 500 nm, and even more preferably in the range of 150 nm to 500 nm by microscopic observation. The primary particles mean particles that are recognized as one particle during SEM observation.
 本発明のLNCW酸化物は、Cu-καを用いた粉末X線回折測定において観測されるピークのうち、2θ=17~20°に観測される層状構造に由来するピークの強度(層状強度)と、2θ=42~46°に観測される岩塩構造に由来するピークの強度(岩塩強度)の関係が、(層状強度)/(岩塩強度)≧0.5を満足するのが好ましく、(層状強度)/(岩塩強度)≧0.6を満足するのがより好ましく、(層状強度)/(岩塩強度)≧0.7を満足するのがさらに好ましく、(層状強度)/(岩塩強度)≧0.9を満足するのがさらにより好ましく、(層状強度)/(岩塩強度)≧1を満足するのが特に好ましい。(層状強度)/(岩塩強度)の上限値としては、4、3、2を例示できる。 In the LNCW oxide of the present invention, among the peaks observed in the powder X-ray diffraction measurement using Cu-κα, the peak intensity (lamellar intensity) derived from the lamellar structure observed at 2θ = 17 to 20 ° is obtained. The relationship between the peak intensity (rock salt strength) derived from the rock salt structure observed at 2θ = 42 to 46 ° preferably satisfies (layer strength) / (rock salt strength) ≧ 0.5, and (layer strength) ) / (Rock salt strength) ≧ 0.6, more preferably (layer strength) / (rock salt strength) ≧ 0.7, more preferably (layer strength) / (rock salt strength) ≧ 0 .9, and more preferably (layer strength) / (rock salt strength) ≧ 1. As the upper limit of (layer strength) / (rock salt strength), 4, 3, and 2 can be exemplified.
 本発明のLNCW酸化物は、リチウムイオン二次電池の活物質として使用し得る。本発明のリチウムイオン二次電池は、本発明のLNCW酸化物を活物質として具備する。具体的には、本発明のリチウムイオン二次電池は、本発明のLNCW酸化物を正極活物質として具備する正極、負極、固体電解質を具備するか、又は、本発明のLNCW酸化物を正極活物質として具備する正極、負極、電解液及びセパレータを具備する。 L The LNCW oxide of the present invention can be used as an active material of a lithium ion secondary battery. The lithium ion secondary battery of the present invention includes the LNCW oxide of the present invention as an active material. Specifically, the lithium ion secondary battery of the present invention includes a positive electrode including the LNCW oxide of the present invention as a positive electrode active material, a negative electrode, and a solid electrolyte, or includes the LNCW oxide of the present invention as a positive electrode active material. A positive electrode, a negative electrode, an electrolytic solution, and a separator provided as materials are provided.
 正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。 The positive electrode has a current collector and a positive electrode active material layer bound to the surface of the current collector.
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。 (4) The current collector refers to a chemically inert electronic conductor that keeps current flowing through the electrodes during discharging or charging of the lithium ion secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel A metal material can be exemplified. The current collector may be covered with a known protective layer. A current collector whose surface is treated by a known method may be used as the current collector.
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。 The current collector can be in the form of a foil, a sheet, a film, a line, a bar, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of a foil, sheet, or film, the thickness is preferably in the range of 1 μm to 100 μm.
 正極活物質層は正極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。 The positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive auxiliary and / or a binder.
 正極活物質としては、本発明のLNCW酸化物を含むものであればよく、本発明のLNCW酸化物のみを採用してもよいし、本発明のLNCW酸化物と公知の正極活物質を併用してもよい。 As the positive electrode active material, any material containing the LNCW oxide of the present invention may be used, and only the LNCW oxide of the present invention may be employed, or a combination of the LNCW oxide of the present invention and a known positive electrode active material may be used. May be.
 公知の正極活物質の例として、LiMn等のスピネル構造化合物、一般式:LiMPO(MはMn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B、Te及びMoから選ばれる少なくとも1の元素、0<h<2)で表されるオリビン構造化合物、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)で表されるポリアニオン系化合物、LiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiMBO(Mは遷移金属)で表されるボレート系化合物、LiMnOなどを挙げることができる。 Examples of the known positive electrode active material include a spinel structure compound such as LiMn 2 O 4 , and a general formula: LiM h PO 4 (M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, and Ba). , At least one element selected from Ti, Al, Si, B, Te and Mo, an olivine structure compound represented by 0 <h <2), LiMVO 4 or Li 2 MSiO 4 (where M is Co, Ni , Mn, or Fe), a polyanionic compound represented by LiMPO 4 F (M is a transition metal), a tabolite compound represented by LiMPO 3 (M is a transition metal). Borate compounds, Li 2 MnO 3 and the like.
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。 The conductive additive is added to increase the conductivity of the electrode. Therefore, the conductive assistant may be arbitrarily added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent. The conductive additive may be any chemically inert high electron conductor, and examples thereof include carbon black, graphite, vapor grown carbon fiber (Vapor Grown Carbon Fiber), and various metal particles. You. Examples of the carbon black include acetylene black, Ketjen Black (registered trademark), furnace black, and channel black. These conductive aids can be used alone or in combination of two or more.
 活物質層中の導電助剤の配合割合は、質量比で、活物質:導電助剤=1:0.005~1:0.5であるのが好ましく、1:0.01~1:0.2であるのがより好ましく、1:0.03~1:0.1であるのがさらに好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。 The compounding ratio of the conductive additive in the active material layer is preferably from 1: 0.005 to 1: 0.5, and preferably from 1: 0.01 to 1: 0, by mass ratio. .2, more preferably 1: 0.03 to 1: 0.1. If the amount of the conductive auxiliary agent is too small, an efficient conductive path cannot be formed, and if the amount of the conductive auxiliary agent is too large, the moldability of the active material layer deteriorates and the energy density of the electrode decreases.
 結着剤は、活物質や導電助剤を集電体の表面に繋ぎ止め、電極中の導電ネットワークを維持する役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロースを例示することができる。これらの結着剤を単独で又は複数で採用すれば良い。 The binder plays a role of anchoring the active material and the conductive assistant to the surface of the current collector and maintaining the conductive network in the electrode. Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber; thermoplastic resins such as polypropylene and polyethylene; imide-based resins such as polyimide and polyamideimide; resins containing alkoxysilyl groups; Examples include acrylic resins such as (meth) acrylic acid, styrene-butadiene rubber (SBR), and carboxymethyl cellulose. These binders may be used alone or in combination.
 活物質層中の結着剤の配合割合は、質量比で、活物質:結着剤=1:0.001~1:0.3であるのが好ましく、1:0.005~1:0.2であるのがより好ましく、1:0.01~1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。 The mixing ratio of the binder in the active material layer is preferably 1: 0.001 to 1: 0.3, and 1: 0.005 to 1: 0, in terms of mass ratio. .2, more preferably 1: 0.01 to 1: 0.15. This is because if the amount of the binder is too small, the moldability of the electrode decreases, and if the amount of the binder is too large, the energy density of the electrode decreases.
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。集電体については、正極で説明したものを適宜適切に採用すれば良い。負極活物質層は負極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。 The negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector. As the current collector, those described for the positive electrode may be appropriately employed. The negative electrode active material layer contains a negative electrode active material and, if necessary, a conductive auxiliary and / or a binder.
 負極活物質としては、公知のものを採用すればよく、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物を例示することができる。 As the negative electrode active material, a known material may be employed, and examples thereof include a carbon-based material capable of inserting and extracting lithium, an element capable of being alloyed with lithium, and a compound having an element capable of being alloyed with lithium. .
 炭素系材料としては、難黒鉛化性炭素、黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適切な温度で焼成して炭素化したものをいう。 Examples of the carbon-based material include non-graphitizable carbon, graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon and carbon blacks. Here, the organic polymer compound fired body is obtained by firing a polymer material such as phenols and furans at an appropriate temperature and carbonizing the polymer material.
 リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、Si又はSnが好ましい。 Specific examples of elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, and Si. , Ge, Sn, Pb, Sb, and Bi can be exemplified, and Si or Sn is particularly preferable.
 リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiOあるいはLiSnOを例示でき、特に、SiO(0.3≦x≦1.6、又は0.5≦x≦1.5)が好ましい。 Specific examples of the compound having an element that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2, CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO or LiSnO, and in particular, SiO x (0.3 ≦ x ≦ 1.6, or 0.5 ≦ x ≦ 1.5) Is preferred.
 中でも、負極活物質は、Siを有するSi系材料を含むものがよい。Si系材料は、リチウムイオンを吸蔵・放出可能な珪素又は/及び珪素化合物からなるとよく、例えば、SiO(0.5≦x≦1.5)がよい。珪素は理論充放電容量が大きいものの、珪素は充放電時の体積変化が大きい。そこで、負極活物質を珪素を含むSiOとすることで珪素の体積変化を緩和することができる。 Above all, the negative electrode active material preferably contains a Si-based material having Si. The Si-based material is preferably made of silicon or / and a silicon compound capable of occluding and releasing lithium ions, and is preferably, for example, SiO x (0.5 ≦ x ≦ 1.5). Although silicon has a large theoretical charge / discharge capacity, silicon has a large volume change during charge / discharge. Therefore, the volume change of silicon can be reduced by using SiO x containing silicon as the negative electrode active material.
 負極活物質として、CaSiを塩酸やフッ化水素酸などの酸で処理して得られる層状ポリシランを、300~1000℃で加熱して得られるSi材料を採用しても良い。さらに、上記Si材料を炭素源とともに加熱して、カーボンコートしたものを負極活物質として採用してもよい。 As the negative electrode active material, a Si material obtained by heating a layered polysilane obtained by treating CaSi 2 with an acid such as hydrochloric acid or hydrofluoric acid at 300 to 1000 ° C. may be employed. Further, the Si material may be heated together with a carbon source, and a carbon-coated Si material may be used as the negative electrode active material.
 負極活物質としては、以上のものの一種以上を使用することができる。 一種 As the negative electrode active material, one or more of the above can be used.
 負極に用いる導電助剤及び結着剤については、正極で説明したものを同様の配合割合で適宜適切に採用すれば良い。 導電 As for the conductive auxiliary agent and the binder used for the negative electrode, those described for the positive electrode may be appropriately and appropriately employed in the same mixing ratio.
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、溶剤、並びに必要に応じて結着剤及び/又は導電助剤を混合し、スラリーを調製する。上記溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。該スラリーを集電体の表面に塗布後、乾燥する。電極密度を高めるべく、乾燥後のものを圧縮しても良い。 In order to form an active material layer on the surface of the current collector, the current is collected using a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method. The active material may be applied to the surface of the body. Specifically, a slurry is prepared by mixing an active material, a solvent, and, if necessary, a binder and / or a conductive assistant. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. The slurry is applied to the surface of the current collector and then dried. The dried product may be compressed to increase the electrode density.
 固体電解質としては、リチウムイオン二次電池の固体電解質として使用可能なものを適宜採用すればよい。 も の As the solid electrolyte, a solid electrolyte that can be used as a solid electrolyte of a lithium ion secondary battery may be appropriately adopted.
 電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。 The electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
 非水溶媒としては、環状カーボネート、環状エステル、鎖状カーボネート、鎖状エステル、エーテル類等が使用できる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートを例示でき、環状エステルとしては、ガンマブチロラクトン、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネートを例示でき、鎖状エステルとしては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。 環状 As the non-aqueous solvent, cyclic carbonate, cyclic ester, chain carbonate, chain ester, ethers and the like can be used. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and examples of the cyclic ester include gamma-butyrolactone, 2-methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone, and gamma-valerolactone. Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate, and examples of the chain ester include alkyl propionate, dialkyl malonate, and alkyl acetate. Examples of the ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. As the non-aqueous solvent, a compound in which part or all of the hydrogen in the chemical structure of the above specific solvent is replaced by fluorine may be used.
 電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , and LiN (CF 3 SO 2 ) 2 .
 電解液としては、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの非水溶媒にリチウム塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を例示できる。 Examples of the electrolyte include a solution in which a lithium salt is dissolved in a nonaqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate at a concentration of about 0.5 mol / L to 1.7 mol / L.
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。 The separator separates the positive electrode and the negative electrode, and prevents lithium ions from passing through while preventing a short circuit due to contact between the two electrodes. Examples of the separator include synthetic resins such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid, polyester, and polyacrylonitrile; polysaccharides such as cellulose and amylose; and natural resins such as fibroin, keratin, lignin, and suberin. Examples thereof include a porous body, a nonwoven fabric, and a woven fabric using one or a plurality of electric insulating materials such as polymers and ceramics. Further, the separator may have a multilayer structure.
 次に、リチウムイオン二次電池の製造方法の一例について説明する。 Next, an example of a method for manufacturing a lithium ion secondary battery will be described.
 正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から、外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。 セ パ レ ー タ A separator is interposed between the positive electrode and the negative electrode as necessary to form an electrode body. The electrode body may be any of a stacked type in which a positive electrode, a separator, and a negative electrode are stacked, or a wound type in which a positive electrode, a separator, and a negative electrode are wound. After connecting the current collector of the positive electrode and the current collector of the negative electrode to the positive electrode terminal and the negative electrode terminal leading to the outside using a current collecting lead or the like, an electrolytic solution is added to the electrode body and lithium ion secondary Use a battery. In addition, the lithium ion secondary battery of the present invention may be charged and discharged in a voltage range suitable for the type of active material included in the electrode.
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。 形状 The shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical type, a square type, a coin type, and a laminate type can be adopted.
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。 リ チ ウ ム The lithium ion secondary battery of the present invention may be mounted on a vehicle. The vehicle may be any vehicle that uses electric energy from a lithium ion secondary battery for all or part of its power source, such as an electric vehicle or a hybrid vehicle. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery. Examples of devices equipped with a lithium ion secondary battery include various home electric appliances, office equipment, industrial equipment, and the like, other than vehicles, such as personal computers and portable communication devices, which are driven by batteries. Furthermore, the lithium ion secondary battery of the present invention can be used as a wind power photovoltaic power generator, a hydroelectric power generator, a power storage device and a power smoothing device for a power system, a power supply source for motive power of ships and the like, and / or auxiliary equipment, an aircraft, a space. Power supply for motive power of ships and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, electric power It may be used for a power storage device that temporarily stores power required for charging at a vehicle charging station or the like.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。 Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. The present invention can be implemented in various forms with modifications, improvements, and the like that can be made by those skilled in the art without departing from the gist of the present invention.
 以下に、実施例および比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。 実 施 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. Note that the present invention is not limited by these examples.
(実施例1)
 以下のとおり、実施例1のLNCW酸化物を製造した。
(Example 1)
The LNCW oxide of Example 1 was manufactured as follows.
 a)工程
 80gの硫酸ニッケル6水和物、11gの硫酸コバルト7水和物、及び、5gのタングステン酸ナトリウム2水和物を、400mLの純水に溶解させて、遷移金属含有水溶液を調製した。遷移金属含有水溶液におけるニッケル、コバルト、タングステンのモル比は、85:11:4である。
a) Step 80 g of nickel sulfate hexahydrate, 11 g of cobalt sulfate heptahydrate, and 5 g of sodium tungstate dihydrate were dissolved in 400 mL of pure water to prepare a transition metal-containing aqueous solution. . The molar ratio of nickel, cobalt, and tungsten in the transition metal-containing aqueous solution is 85: 11: 4.
 30gの25%アンモニア水を純水と混合して、400mLの第1塩基性水溶液を調製した。 30 g of 25% aqueous ammonia was mixed with pure water to prepare 400 mL of a first basic aqueous solution.
 水酸化ナトリウム、アンモニア水及び純水を混合して、pH10.75の第2塩基性水溶液を調製した。 ナ ト リ ウ ム Sodium hydroxide, ammonia water and pure water were mixed to prepare a second basic aqueous solution having a pH of 10.75.
 80℃に維持した恒温槽中で、窒素ガス導入及び撹拌条件下の第2塩基性水溶液に対して、遷移金属含有水溶液を供給し、ニッケル、コバルト及びタングステンを遷移金属水酸化物として析出させた。この際に、反応溶液のpHを10.75~10.80の範囲内に維持させるために、第1塩基性水溶液と48wt%水酸化ナトリウム水溶液を適宜滴下した。なお、ここでのpH値は、反応液をpHメーターで測定した数値そのものを意味する。 In a constant temperature bath maintained at 80 ° C., a transition metal-containing aqueous solution was supplied to the second basic aqueous solution under nitrogen gas introduction and stirring conditions to precipitate nickel, cobalt and tungsten as transition metal hydroxides. . At this time, in order to maintain the pH of the reaction solution in the range of 10.75 to 10.80, a first basic aqueous solution and a 48 wt% aqueous sodium hydroxide solution were appropriately added dropwise. Here, the pH value means the value itself obtained by measuring the reaction solution with a pH meter.
 遷移金属水酸化物を濾過により分離した。超音波洗浄機を用いて、遷移金属水酸化物を純水で洗浄し、その後、濾過により遷移金属水酸化物を単離した。 The transition metal hydroxide was separated by filtration. The transition metal hydroxide was washed with pure water using an ultrasonic cleaner, and then the transition metal hydroxide was isolated by filtration.
 b)工程
 大気下、遷移金属水酸化物を300℃で5時間加熱して、遷移金属酸化物とした。
b) Step In the atmosphere, the transition metal hydroxide was heated at 300 ° C. for 5 hours to obtain a transition metal oxide.
 c)工程
 純水に遷移金属酸化物を加えて、遷移金属酸化物の分散液を調製した。
c) Step A transition metal oxide dispersion was prepared by adding the transition metal oxide to pure water.
 0.3gの硫酸ジルコニウム、及び、ヒドロキシカルボン酸としてのグリコール酸0.17gを水に溶解して、ヒドロキシカルボン酸含有ジルコニウム水溶液を調製した。なお、当該ヒドロキシカルボン酸含有ジルコニウム水溶液において、ジルコニウムとグリコール酸のモル比は1:2であった。 0.3 g of zirconium sulfate and 0.17 g of glycolic acid as hydroxycarboxylic acid were dissolved in water to prepare an aqueous solution of zirconium containing hydroxycarboxylic acid. In the aqueous solution of zirconium containing hydroxycarboxylic acid, the molar ratio of zirconium to glycolic acid was 1: 2.
 上記遷移金属酸化物の分散液と、上記ヒドロキシカルボン酸含有ジルコニウム水溶液を混合し混合液とした。次いで、該混合液のpHが12.5になるまで、水酸化ナトリウム溶液を1時間かけて添加し、遷移金属酸化物の表面に水酸化ジルコニウムを析出させたコート体を得た。コート体を濾過で分離した後に、乾燥した。 (4) The dispersion of the transition metal oxide and the aqueous solution of zirconium containing hydroxycarboxylic acid were mixed to form a mixed solution. Then, a sodium hydroxide solution was added over 1 hour until the pH of the mixed solution reached 12.5, to obtain a coated body in which zirconium hydroxide was deposited on the surface of the transition metal oxide. After the coated body was separated by filtration, it was dried.
 d)工程
 10gの乾燥後のコート体、2.12gの水酸化リチウム無水物、0.13gのNaPO、0.023gのLiFを乳鉢で混合し、混合物とした。そして、前記混合物を、大気雰囲気下、650℃で5時間加熱し、第1焼成体とした。
d) Step 10 g of the dried coated body, 2.12 g of lithium hydroxide anhydride, 0.13 g of Na 3 PO 4 , and 0.023 g of LiF were mixed in a mortar to form a mixture. Then, the mixture was heated at 650 ° C. for 5 hours in an air atmosphere to obtain a first fired body.
 第1焼成体を乳鉢で解砕し、粉末状とした。粉末状の第1焼成体を、酸素ガス雰囲気下、750℃で15時間加熱し、LNCW酸化物を得た。該LNCW酸化物を乳鉢で解砕し、実施例1のLNCW酸化物とした。
 実施例1のLNCW酸化物の理論上の組成は、LiNi0.85Co0.110.04Zr0.0025Na0.010.010.01である。
The first fired body was crushed in a mortar to obtain a powder. The powdery first fired body was heated at 750 ° C. for 15 hours in an oxygen gas atmosphere to obtain an LNCW oxide. The LNCW oxide was crushed in a mortar to obtain the LNCW oxide of Example 1.
The composition of the theoretical LNCW oxide of Example 1 is Li 1 Ni 0.85 Co 0.11 W 0.04 Zr 0.0025 Na 0.01 P 0.01 O 2 F 0.01.
 以下のとおり、実施例1のリチウムイオン二次電池を製造した。 リ チ ウ ム A lithium ion secondary battery of Example 1 was manufactured as follows.
 正極用集電体として厚み20μmのアルミニウム箔を準備した。正極活物質として実施例1のLNCW酸化物を94質量部、導電助剤として3質量部のアセチレンブラック、および結着剤として3質量部のポリフッ化ビニリデンを混合した。この混合物を適量のN-メチル-2-ピロリドンに分散させて、スラリーを製造した。上記アルミニウム箔の表面に上記スラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように塗布した。スラリーを塗布したアルミニウム箔を80℃で20分間乾燥することで、N-メチル-2-ピロリドンを揮発により除去し、アルミニウム箔表面に正極活物質層を形成させた。表面に正極活物質層を形成させたアルミニウム箔を、ロ-ルプレス機を用いて圧縮し、アルミニウム箔と正極活物質層とを強固に密着接合させて接合物とした。真空乾燥機を用いて、接合物を120℃で6時間加熱し、所定の形状に切り取り、正極とした。 ア ル ミ ニ ウ ム A 20 μm-thick aluminum foil was prepared as a positive electrode current collector. 94 parts by mass of the LNCW oxide of Example 1 as a positive electrode active material, 3 parts by mass of acetylene black as a conductive additive, and 3 parts by mass of polyvinylidene fluoride as a binder were mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. The slurry was placed on the surface of the aluminum foil, and the slurry was applied using a doctor blade so as to form a film. The aluminum foil coated with the slurry was dried at 80 ° C. for 20 minutes to remove N-methyl-2-pyrrolidone by volatilization, thereby forming a positive electrode active material layer on the surface of the aluminum foil. The aluminum foil having the positive electrode active material layer formed on the surface was compressed using a roll press, and the aluminum foil and the positive electrode active material layer were firmly adhered and joined to form a bonded article. The joined article was heated at 120 ° C. for 6 hours using a vacuum dryer, cut into a predetermined shape, and used as a positive electrode.
 負極を以下のように製造した。
 グラファイト98.3質量部と、結着剤としてスチレン-ブタジエンゴム1質量部及びカルボキシメチルセルロース0.7質量部とを混合し、この混合物を適量のイオン交換水に分散させてスラリーを製造した。このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布し、スラリーを塗布した集電体を乾燥後にプレスして接合物とした。真空乾燥機を用いて、接合物を120℃で6時間加熱し、所定の形状に切り取り、負極とした。
The negative electrode was manufactured as follows.
98.3 parts by mass of graphite, 1 part by mass of styrene-butadiene rubber as a binder and 0.7 parts by mass of carboxymethylcellulose were mixed, and the mixture was dispersed in an appropriate amount of ion-exchanged water to produce a slurry. The slurry was applied to a 20 μm-thick copper foil serving as a negative electrode current collector using a doctor blade so as to form a film. The current collector coated with the slurry was dried and then pressed to obtain a bonded article. The bonded article was heated at 120 ° C. for 6 hours using a vacuum dryer, cut into a predetermined shape, and used as a negative electrode.
 上記の正極および負極を用いて、ラミネート型リチウムイオン二次電池を製造した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン/ポリエチレン/ポリプロピレンの3層構造の樹脂膜からなる厚さ25μmの矩形状シートを挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としては、エチレンカーボネート、エチルメチルカーボネート及びジメチルカーボネートを体積比3:3:4で混合した溶媒にLiPF6を1mol/Lとなるよう溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉された実施例1のラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。
 以上の工程で、実施例1のリチウムイオン二次電池を製造した。
Using the above positive electrode and negative electrode, a laminate type lithium ion secondary battery was manufactured. Specifically, a 25 μm-thick rectangular sheet made of a resin film having a three-layer structure of polypropylene / polyethylene / polypropylene was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. This electrode group was covered with a set of two laminated films, three sides were sealed, and then an electrolyte was injected into the bag-shaped laminated film. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a solvent obtained by mixing ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate at a volume ratio of 3: 3: 4 was used. Thereafter, by sealing the remaining one side, the four sides were hermetically sealed, and the laminated lithium ion secondary battery of Example 1 in which the electrode plate group and the electrolyte were sealed was obtained. Note that the positive electrode and the negative electrode have tabs that can be electrically connected to the outside, and some of these tabs extend outside the laminated lithium ion secondary battery.
Through the above steps, the lithium ion secondary battery of Example 1 was manufactured.
(実施例2)
 a)工程において、遷移金属含有水溶液に対して、アスコルビン酸を添加したこと以外は、実施例1と同様の方法で、実施例2のLNCW酸化物及びリチウムイオン二次電池を製造した。
 実施例2で用いた遷移金属含有水溶液は、アスコルビン酸の濃度が7.5g/Lの溶液である。当該溶液において、Wとアスコルビン酸は等モルで存在する。
(Example 2)
In the step a), the LNCW oxide and the lithium ion secondary battery of Example 2 were manufactured in the same manner as in Example 1, except that ascorbic acid was added to the aqueous solution containing a transition metal.
The transition metal-containing aqueous solution used in Example 2 was a solution having a concentration of ascorbic acid of 7.5 g / L. In the solution, W and ascorbic acid are present in equimolar amounts.
(実施例3)
 c)工程を行わなかったこと以外は、実施例1と同様の方法で、実施例3のLNCW酸化物及びリチウムイオン二次電池を製造した。
(Example 3)
c) The LNCW oxide and lithium ion secondary battery of Example 3 were manufactured in the same manner as in Example 1, except that the step was not performed.
(比較例1)
 正極活物質として、LiNi0.85Co0.11Al0.04を採用した以外は、実施例1と同様の方法で、比較例1のリチウムイオン二次電池を製造した。
(Comparative Example 1)
A lithium ion secondary battery of Comparative Example 1 was manufactured in the same manner as in Example 1 except that LiNi 0.85 Co 0.11 Al 0.04 O 2 was used as the positive electrode active material.
(評価例1)
 実施例1のLNCW酸化物につき、走査型電子顕微鏡(SEM)にて、表面観察を行った。図1に実施例1のLNCW酸化物のSEM像を示す。
 SEM像での測定によると、実施例1のLNCW酸化物の一次粒子径は50nm程度であり、二次粒子径は4μm程度であった。
(Evaluation Example 1)
The surface of the LNCW oxide of Example 1 was observed with a scanning electron microscope (SEM). FIG. 1 shows an SEM image of the LNCW oxide of Example 1.
According to the measurement with the SEM image, the primary particle diameter of the LNCW oxide of Example 1 was about 50 nm, and the secondary particle diameter was about 4 μm.
 また、走査型電子顕微鏡にエネルギー分散型X線分光法を組み合わせたSEM-EDXにて、実施例1のLNCW酸化物の二次粒子を分析したところ、ニッケル、コバルト及びタングステンが均一に分布していることが確認できた。 When the secondary particles of the LNCW oxide of Example 1 were analyzed by SEM-EDX in which the scanning electron microscope was combined with energy dispersive X-ray spectroscopy, nickel, cobalt and tungsten were uniformly distributed. Was confirmed.
(評価例2)
 実施例1、実施例2及び実施例3のLNCW酸化物につき、Cu-καを用いた粉X線回折装置にて、結晶構造の分析を行った。
 いずれのLNCW酸化物も、層状岩塩構造の回折パターンを示すことが確認できた。
(Evaluation example 2)
The crystal structures of the LNCW oxides of Examples 1, 2 and 3 were analyzed with a powder X-ray diffractometer using Cu-κα.
It was confirmed that all the LNCW oxides showed a diffraction pattern of a layered rock salt structure.
 2θ=17~20°に観測される層状構造に由来するピークの強度(層状強度)と、2θ=42~46°に観測される岩塩構造に由来するピークの強度(岩塩強度)の関係について、表1に示す。 Regarding the relationship between the peak intensity derived from the layered structure observed at 2θ = 17 to 20 ° (layered intensity) and the peak intensity derived from the rock salt structure observed at 2θ = 42 to 46 ° (rock salt intensity), It is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(評価例3)
 実施例1及び比較例1のリチウムイオン二次電池につき、0.1Cレートで、4.4Vまで充電してから2.5Vまで放電するとの充放電サイクルを繰り返し行った。
 初回充放電サイクルにおける正極活物質の単位体積あたりの放電容量と、充放電サイクルを12回繰り返した時点での放電容量維持率を、表2に示す。放電容量維持率は、初回放電容量に対する割合である。
(Evaluation example 3)
With respect to the lithium ion secondary batteries of Example 1 and Comparative Example 1, a charge / discharge cycle of charging to 4.4 V and discharging to 2.5 V at a rate of 0.1 C was repeated.
Table 2 shows the discharge capacity per unit volume of the positive electrode active material in the initial charge / discharge cycle and the discharge capacity retention rate at the time when the charge / discharge cycle was repeated 12 times. The discharge capacity retention ratio is a ratio to the initial discharge capacity.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1のリチウムイオン二次電池は、比較例1のリチウムイオン二次電池よりも、初回放電容量及び放電容量維持率の両パラメータに優れていることがわかる。 わ か る It can be seen that the lithium ion secondary battery of Example 1 is superior to the lithium ion secondary battery of Comparative Example 1 in both parameters of the initial discharge capacity and the discharge capacity retention rate.
(評価例4)
 実施例1及び実施例3のリチウムイオン二次電池につき、0.03Cレートで、4.0Vまで充電してから2.5Vまで放電するとの1回目の充放電を行い、4.2Vまで充電してから2.5Vまで放電するとの2回目の充放電を行い、4.3Vまで充電してから2.5Vまで放電するとの3回目の充放電を行った。
 実施例1のリチウムイオン二次電池の充放電曲線を図2に示し、実施例3のリチウムイオン二次電池の充放電曲線を図3に示す。
(Evaluation example 4)
For the lithium ion secondary batteries of Examples 1 and 3, the first charge / discharge of charging to 4.0 V and discharging to 2.5 V at a 0.03 C rate was performed, and the battery was charged to 4.2 V. A second charge / discharge of discharging the battery to 2.5 V was performed, and a third charging / discharging of charging the battery to 4.3 V and discharging the battery to 2.5 V was performed.
FIG. 2 shows a charge / discharge curve of the lithium ion secondary battery of Example 1, and FIG. 3 shows a charge / discharge curve of the lithium ion secondary battery of Example 3.
 図2及び図3から、いずれの充放電においても、実施例1のリチウムイオン二次電池の容量が、実施例3のリチウムイオン二次電池の容量よりも、大きいことがわかる。
 Zrが添加された実施例1のLNCW酸化物が、Zr未添加の実施例3のLNCW酸化物よりも、好適なことが裏付けられたといえる。
2 and 3 that the capacity of the lithium ion secondary battery of Example 1 is larger than the capacity of the lithium ion secondary battery of Example 3 in both charging and discharging.
It can be said that the LNCW oxide of Example 1 to which Zr was added was more preferable than the LNCW oxide of Example 3 to which Zr was not added.
(実施例4)
 a)工程の遷移金属含有水溶液におけるニッケル、コバルト、タングステンのモル比を92:4:4としたこと、c)工程を行わなかったこと、及び、d)工程の焼成温度と焼成時間を若干変動させたこと以外は、実施例1と同様の方法で、実施例4のLNCW酸化物及びリチウムイオン二次電池を製造した。
(Example 4)
a) The molar ratio of nickel, cobalt, and tungsten in the aqueous solution containing the transition metal in the step was 92: 4: 4, the step c) was not performed, and the firing temperature and the firing time in the step d) slightly changed. Except having made it, the LNCW oxide of Example 4 and the lithium ion secondary battery of Example 4 were manufactured by the method similar to Example 1.
(実施例5)
 a)工程の遷移金属含有水溶液におけるニッケル、コバルト、タングステンのモル比を95:3:2としたこと、c)工程を行わなかったこと、及び、d)工程の焼成温度と焼成時間を若干変動させたこと以外は、実施例1と同様の方法で、実施例5のLNCW酸化物及びリチウムイオン二次電池を製造した。
(Example 5)
a) The molar ratio of nickel, cobalt, and tungsten in the aqueous solution containing the transition metal in the step was 95: 3: 2, the step c) was not performed, and the firing temperature and the firing time in the step d) slightly changed. Except having made it, the LNCW oxide of Example 5 and the lithium ion secondary battery of Example 5 were manufactured by the method similar to Example 1.
(実施例6)
 a)工程の遷移金属含有水溶液におけるニッケル、コバルト、タングステンのモル比を95:4:1としたこと、c)工程を行わなかったこと、及び、d)工程の焼成温度と焼成時間を若干変動させたこと以外は、実施例1と同様の方法で、実施例6のLNCW酸化物及びリチウムイオン二次電池を製造した。
(Example 6)
a) The molar ratio of nickel, cobalt, and tungsten in the aqueous solution containing the transition metal in the step was 95: 4: 1, the step c) was not performed, and the firing temperature and the firing time in the step d) slightly changed. Except having made it, the LNCW oxide of Example 6 and the lithium ion secondary battery of Example 6 were manufactured by the method similar to Example 1.
(実施例7)
 a)工程の遷移金属含有水溶液におけるニッケル、コバルト、タングステンのモル比を95.5:4:0.5としたこと、c)工程を行わなかったこと、及び、d)工程の焼成温度と焼成時間を若干変動させたこと以外は、実施例1と同様の方法で、実施例7のLNCW酸化物及びリチウムイオン二次電池を製造した。
(Example 7)
a) the molar ratio of nickel, cobalt, and tungsten in the aqueous solution containing the transition metal in step a) was 95.5: 4: 0.5; c) step was not performed; and b) the firing temperature and firing in step d). An LNCW oxide and a lithium ion secondary battery of Example 7 were produced in the same manner as in Example 1, except that the time was slightly changed.
(評価例5)
 実施例4~実施例7及び比較例1のリチウムイオン二次電池につき、0.1Cレートで、4.4Vまで充電してから2.5Vまで放電するとの充放電サイクルを繰り返し行った。なお、評価例5は、評価例3とは別の日時に実施した。
 初回充放電サイクルにおける正極活物質の単位体積あたりの充電容量及び放電容量を、LNCW酸化物におけるニッケル、コバルト、タングステンの組成比と共に、表3に示す。
(Evaluation example 5)
With respect to the lithium ion secondary batteries of Examples 4 to 7 and Comparative Example 1, a charge / discharge cycle of charging to 4.4 V and discharging to 2.5 V at a 0.1 C rate was repeated. Evaluation example 5 was performed on a different date and time from evaluation example 3.
Table 3 shows the charge capacity and the discharge capacity per unit volume of the positive electrode active material in the first charge / discharge cycle, together with the composition ratio of nickel, cobalt, and tungsten in the LNCW oxide.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、ニッケル比率が高く、タングステン比率が低いLNCW酸化物の容量が高いといえる。 結果 From the results in Table 3, it can be said that the capacity of the LNCW oxide having a high nickel ratio and a low tungsten ratio is high.

Claims (7)

  1.  下記一般式(1)で表されることを特徴とする層状岩塩構造のリチウムニッケルコバルトタングステン酸化物。
     一般式(1) LiNiCo
     一般式(1)において、a、b、c、d、e、f、gは、0.5≦a≦2、0.5≦b≦0.97、0<c<0.5、0<d<0.5、0≦e≦0.2、b+c+d+e=1、1.8≦f≦2.2、0≦g≦0.2を満足する。Dはドープ元素である。
    A lithium nickel cobalt tungsten oxide having a layered rock salt structure, which is represented by the following general formula (1).
    Formula (1) Li a Ni b Co c W d D e O f F g
    In the general formula (1), a, b, c, d, e, f, and g are 0.5 ≦ a ≦ 2, 0.5 ≦ b ≦ 0.97, 0 <c <0.5, 0 < d <0.5, 0 ≦ e ≦ 0.2, b + c + d + e = 1, 1.8 ≦ f ≦ 2.2, and 0 ≦ g ≦ 0.2. D is a doping element.
  2.  前記一般式(1)が、下記一般式(1-1)である請求項1に記載の層状岩塩構造のリチウムニッケルコバルトタングステン酸化物。
     一般式(1-1) LiNiCo e1 e2
     一般式(1-1)において、a、b、c、d、e1、e2、f、gは、0.5≦a≦2、0.5≦b≦0.97、0<c<0.5、0<d<0.5、0≦e1≦0.2、0≦e2<0.2、0<e1+e2≦0.2、b+c+d+e1+e2=1、1.8≦f≦2.2、0≦g≦0.2を満足する。
     DはZr、Ca、V、Mn、Cu、Ni、Sn、Tl、Fe、Sr、Ti、Ba、Mo、Y、希土類元素、Os、Ir、Cd、Re、Bi、Rh、W、Cr、Co、Zn、In、Al、Li、Na、Pb、Ru、Nbから選ばれる少なくとも1の元素である。
     DはLi、Ni、Co、W、D、O、F以外の元素である。
    The lithium nickel cobalt tungsten oxide having a layered rock salt structure according to claim 1, wherein the general formula (1) is the following general formula (1-1).
    Formula (1-1) Li a Ni b Co c W d D 1 e1 D 2 e2 O f F g
    In the general formula (1-1), a, b, c, d, e1, e2, f, and g are 0.5 ≦ a ≦ 2, 0.5 ≦ b ≦ 0.97, and 0 <c <0. 5, 0 <d <0.5, 0 ≦ e1 ≦ 0.2, 0 ≦ e2 <0.2, 0 <e1 + e2 ≦ 0.2, b + c + d + e1 + e2 = 1, 1.8 ≦ f ≦ 2.2, 0 ≦ g ≦ 0.2 is satisfied.
    D 1 is Zr, Ca, V, Mn, Cu, Ni, Sn, Tl, Fe, Sr, Ti, Ba, Mo, Y, a rare earth element, Os, Ir, Cd, Re, Bi, Rh, W, Cr, At least one element selected from Co, Zn, In, Al, Li, Na, Pb, Ru, and Nb.
    D 2 is an element other than Li, Ni, Co, W, D 1, O, F.
  3.  DがMn、Al、Mo、Na、Pから選ばれる少なくとも1の元素である請求項2に記載の層状岩塩構造のリチウムニッケルコバルトタングステン酸化物。 D 2 is Mn, Al, Mo, Na, lithium-nickel-cobalt tungsten oxide of layered rock salt structure according to claim 2, wherein at least one element selected from P.
  4.  DがNa及びPを含み、gが0<g≦0.2を満足する請求項2又は3に記載の層状岩塩構造のリチウムニッケルコバルトタングステン酸化物。 The lithium nickel cobalt tungsten oxide having a layered rock salt structure according to claim 2 or 3, wherein D 2 contains Na and P, and g satisfies 0 <g ≦ 0.2.
  5.  Cu-καを用いた粉末X線回折測定において、2θ=17~20°に観測される層状構造に由来するピークの強度(層状強度)と、2θ=42~46°に観測される岩塩構造に由来するピークの強度(岩塩強度)の関係が、(層状強度)/(岩塩強度)≧0.5を満足する、請求項1~4のいずれか1項に記載の層状岩塩構造のリチウムニッケルコバルトタングステン酸化物。 In the powder X-ray diffraction measurement using Cu-κα, the peak intensity (layer intensity) derived from the layer structure observed at 2θ = 17 to 20 ° and the rock salt structure observed at 2θ = 42 to 46 ° The lithium nickel cobalt having a layered rock salt structure according to any one of claims 1 to 4, wherein the relationship of the peak intensity (rock salt strength) derived from the composition satisfies (layer strength) / (rock salt strength) ≧ 0.5. Tungsten oxide.
  6.  請求項1~5のいずれか1項に記載の層状岩塩構造のリチウムニッケルコバルトタングステン酸化物を含有する正極。 A positive electrode containing the lithium nickel cobalt tungsten oxide having a layered rock salt structure according to any one of claims 1 to 5.
  7.  請求項6の正極を備えるリチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode according to claim 6.
PCT/JP2019/020874 2018-06-29 2019-05-27 Lithium nickel cobalt tungsten oxide having layered rock salt structure WO2020003848A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-125354 2018-06-29
JP2018125354 2018-06-29
JP2018-220299 2018-11-26
JP2018220299A JP2020007210A (en) 2018-06-29 2018-11-26 Lithium nickel cobalt tungsten oxide having layered rock salt structure

Publications (1)

Publication Number Publication Date
WO2020003848A1 true WO2020003848A1 (en) 2020-01-02

Family

ID=68984841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020874 WO2020003848A1 (en) 2018-06-29 2019-05-27 Lithium nickel cobalt tungsten oxide having layered rock salt structure

Country Status (1)

Country Link
WO (1) WO2020003848A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446433A (en) * 2020-04-23 2020-07-24 华鼎国联四川电池材料有限公司 Positive electrode composite material for lithium battery and preparation method thereof
CN113461058A (en) * 2021-07-15 2021-10-01 河南理工大学 Cathode material Li with disordered rock salt structure1.3Mo0.3V0.4O2Method of synthesis of
WO2022070898A1 (en) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216759A (en) * 2001-01-23 2002-08-02 Toshiba Corp Lithium ion secondary battery
JP2003308880A (en) * 2002-04-16 2003-10-31 Japan Storage Battery Co Ltd Method of manufacturing lithium secondary battery
JP2012033397A (en) * 2010-07-30 2012-02-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013239434A (en) * 2012-04-18 2013-11-28 Nichia Chem Ind Ltd Positive electrode composition for nonaqueous electrolyte secondary battery
WO2017175978A1 (en) * 2016-04-08 2017-10-12 한양대학교 산학협력단 Positive electrode active material, method for manufacturing same, and lithium secondary battery containing same
JP2018078103A (en) * 2016-11-02 2018-05-17 株式会社豊田自動織機 Non-aqueous secondary battery and gassing inhibitor used for same, and non-aqueous electrolyte solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216759A (en) * 2001-01-23 2002-08-02 Toshiba Corp Lithium ion secondary battery
JP2003308880A (en) * 2002-04-16 2003-10-31 Japan Storage Battery Co Ltd Method of manufacturing lithium secondary battery
JP2012033397A (en) * 2010-07-30 2012-02-16 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013239434A (en) * 2012-04-18 2013-11-28 Nichia Chem Ind Ltd Positive electrode composition for nonaqueous electrolyte secondary battery
WO2017175978A1 (en) * 2016-04-08 2017-10-12 한양대학교 산학협력단 Positive electrode active material, method for manufacturing same, and lithium secondary battery containing same
JP2018078103A (en) * 2016-11-02 2018-05-17 株式会社豊田自動織機 Non-aqueous secondary battery and gassing inhibitor used for same, and non-aqueous electrolyte solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446433A (en) * 2020-04-23 2020-07-24 华鼎国联四川电池材料有限公司 Positive electrode composite material for lithium battery and preparation method thereof
WO2022070898A1 (en) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN113461058A (en) * 2021-07-15 2021-10-01 河南理工大学 Cathode material Li with disordered rock salt structure1.3Mo0.3V0.4O2Method of synthesis of
CN113461058B (en) * 2021-07-15 2022-09-09 宜宾职业技术学院 Cathode material Li with disordered rock salt structure 1.3 Mo 0.3 V 0.4 O 2 Method of synthesis of

Similar Documents

Publication Publication Date Title
JP7213427B2 (en) Positive electrode active material in which aluminum is uniformly dispersed
JP6413949B2 (en) Material containing lithium composite metal oxide part and conductive oxide part
JP6803028B2 (en) Method for manufacturing lithium metal composite oxide powder and lithium metal composite oxide powder
JP7215260B2 (en) Cathode active material showing layered rock salt structure and containing lithium, nickel, cobalt, tungsten, aluminum, zirconium and oxygen, and method for producing the same
JP6288285B2 (en) MSix (M is at least one element selected from Group 3 to 9 elements, where 1/3 ≦ x ≦ 3) containing silicon material and manufacturing method thereof
WO2020003848A1 (en) Lithium nickel cobalt tungsten oxide having layered rock salt structure
JP6848172B2 (en) Material with lithium composite metal oxide part, intermediate part and conductive oxide part
JP2020007210A (en) Lithium nickel cobalt tungsten oxide having layered rock salt structure
WO2021010321A1 (en) Positive electrode active material in which aluminum is dispersed uniformly
JP7404886B2 (en) A positive electrode active material exhibiting a layered rock salt structure and containing lithium, nickel, cobalt, tungsten, aluminum and oxygen, and a method for producing the same
JP2015084273A (en) Positive electrode active material for lithium ion secondary battery
JP7172896B2 (en) Method for producing positive electrode active material exhibiting layered rock salt structure and containing lithium, nickel, cobalt, tungsten, aluminum and oxygen
JP7215259B2 (en) Positive electrode active material showing layered rock salt structure and containing lithium, nickel, aluminum, tungsten and oxygen, and method for producing the same
JP7218687B2 (en) Method for producing positive electrode active material exhibiting layered rock salt structure and containing lithium, nickel, tungsten and oxygen
JP5447452B2 (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery using the positive electrode active material, and method for producing lithium manganese silver composite oxide
JP6202205B2 (en) Method for producing lithium composite metal oxide
JP2020001985A (en) Manufacturing method of lithium transition metal oxide with layered rock-salt structure containing nickel
JP6252864B2 (en) Method for producing silicon material
JP7099286B2 (en) Lithium Nickel Cobalt Molybdenum Oxide
JP7215261B2 (en) Positive electrode active material showing layered rock salt structure and containing lithium, nickel, cobalt, tungsten, zirconium and oxygen, and method for producing the same
WO2020026687A1 (en) Method for manufacturing cathode active material for lithium-ion secondary battery
JP2020158343A (en) Method for producing lithium metal complex oxide powder
JP6635292B2 (en) M-containing silicon material (M is at least one element selected from Sn, Pb, Sb, Bi, In, Zn or Au) and method for producing the same
JP6443675B2 (en) Positive electrode and Li-ion secondary battery containing LiaMxMnyO4 powder having a spinel crystal structure, and methods for producing the same
JP7446596B2 (en) Method for producing lithium metal composite oxide powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826470

Country of ref document: EP

Kind code of ref document: A1