WO2020090160A1 - 無方向性電磁鋼板とその製造方法およびモータコアとその製造方法 - Google Patents
無方向性電磁鋼板とその製造方法およびモータコアとその製造方法 Download PDFInfo
- Publication number
- WO2020090160A1 WO2020090160A1 PCT/JP2019/027949 JP2019027949W WO2020090160A1 WO 2020090160 A1 WO2020090160 A1 WO 2020090160A1 JP 2019027949 W JP2019027949 W JP 2019027949W WO 2020090160 A1 WO2020090160 A1 WO 2020090160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- steel sheet
- oriented electrical
- electrical steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 58
- 239000010959 steel Substances 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000000034 method Methods 0.000 title claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 124
- 238000000137 annealing Methods 0.000 claims abstract description 68
- 229910052742 iron Inorganic materials 0.000 claims abstract description 57
- 238000005096 rolling process Methods 0.000 claims abstract description 44
- 238000005097 cold rolling Methods 0.000 claims abstract description 23
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 claims description 39
- 230000009467 reduction Effects 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 16
- 230000004907 flux Effects 0.000 claims description 13
- 238000002791 soaking Methods 0.000 claims description 12
- 229910052748 manganese Inorganic materials 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 229910052721 tungsten Inorganic materials 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 229910052787 antimony Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 2
- 229910001224 Grain-oriented electrical steel Inorganic materials 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 8
- 238000005098 hot rolling Methods 0.000 abstract description 6
- 239000011162 core material Substances 0.000 description 57
- 230000035882 stress Effects 0.000 description 20
- 230000000694 effects Effects 0.000 description 18
- 238000001953 recrystallisation Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 11
- 238000009864 tensile test Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000001603 reducing effect Effects 0.000 description 5
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 239000010731 rolling oil Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/011—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/04—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1261—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14791—Fe-Si-Al based alloys, e.g. Sendust
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to a non-oriented electrical steel sheet used as an iron core material of a motor for an automobile, a manufacturing method thereof, a motor core using the non-oriented electrical steel sheet, and a manufacturing method thereof.
- the motor core is divided into a stator core and a rotor core. Since the HEV drive motor has a large outer diameter, a large centrifugal force acts on the rotor core, and depending on the structure, there is a very narrow portion (1-2 mm) called the rotor core bridge portion. Therefore, it is desirable that the non-oriented electrical steel sheet used for the rotor core has higher strength than conventional ones. On the other hand, the non-oriented electrical steel sheet used for the stator core preferably has a high magnetic flux density and a low iron loss in order to downsize the motor and increase the output. That is, it is ideal that the steel plate used for the motor core has high strength for the rotor core and high magnetic flux density and low iron loss for the stator core.
- Patent Document 1 As a technique for producing a non-oriented electrical steel sheet with high strength and low iron loss as described above, for example, in Patent Document 1, a steel sheet after finish annealing is subjected to skin pass rolling of 3% or more and less than 10% to obtain high strength.
- the rotor core material and the stator core material are sampled from the steel sheet by punching, the rotor core and the stator core are assembled, and only the stator core is subjected to strain relief annealing to obtain a high strength rotor core.
- a technique for manufacturing a low core loss stator core from the same material is disclosed.
- the impurity elements (Ti, S, N, V, Nb, Zr and As) contained in the steel are reduced to an extremely low level in order to promote the crystal grain growth in the strain relief annealing, and Ni is further added. ing.
- Patent Document 1 has a problem that the manufacturing cost increases because the skin pass rolling is performed after the finish annealing in order to promote grain growth in high strength and strain relief annealing. Furthermore, there is a problem that the cost becomes higher when Ni, which has a high raw material cost, is added to a considerable extent.
- the present invention has been made in view of the problems that the above-mentioned conventional technology has, and an object thereof is a high-strength and low iron loss non-oriented electrical steel sheet that can be preferably used as an iron core material of an automobile motor. It is to provide a motor core using the steel sheet and to propose an inexpensive manufacturing method thereof.
- the present invention developed to solve the above problems and achieve the above objects is, firstly, C: 0.005 mass% or less, Si: 2.8 to 6.5 mass%, Mn: 0.05 to 2 mass%, Al: 3.0 mass% or less, P: 0.20 mass% or less, S: 0.005 mass% or less, N: 0.005 mass% or less, Ti: 0.003 mass% or less, V: 0.005 mass% or less.
- Nb 0.005 mass% or less
- Si, Mn and Al satisfy Si-2Al-Mn ⁇ 0, and the balance is a non-oriented electrical steel sheet having a composition composition of Fe and inevitable impurities, frequency 400 Hz
- the mean value of the rolling direction of the magnetostrictive ⁇ p-p (L) and magnetostriction of direction perpendicular to rolling direction ⁇ p-p (C) in the magnetic flux density 1.0T is 4.5 ⁇ 10 - Or less
- the area ratio of recrystallized grains in the steel sheet rolling direction cross-section of 40 to 95% and an average particle size provides a non-oriented electrical steel sheet, which is a 10 ⁇ 40 [mu] m.
- the non-oriented electrical steel sheet of the present invention preferably contains, in addition to the above component composition, components of at least one of the following groups A to D.
- the non-oriented electrical steel sheet of the present invention has a yield stress of 500 MPa or more, and the sheet thickness t (mm) and the iron loss W 10/400 (W / kg) are expressed by the following formula (1); W 10/400 ⁇ 9 + 62 ⁇ t (1) It is preferable to satisfy the relationship.
- the present invention is C: 0.005 mass% or less, Si: 2.8 to 6.5 mass%, Mn: 0.05 to 2.0 mass%, Al: 3.0 mass% or less, P: 0.20 mass% or less, S: 0.005 mass% or less, N: 0.005 mass% or less, Ti: 0.003 mass% or less, V: 0.005 mass% or less and Nb: 0.005 mass% or less, and , Si, Mn and Al satisfy Si-2Al-Mn ⁇ 0, and a steel slab having a composition with the balance being Fe and inevitable impurities is hot-rolled into a hot-rolled sheet, and hot-rolled sheet is annealed.
- a method for producing a non-oriented electrical steel sheet comprising a series of steps of forming a cold-rolled sheet having a final thickness by cold rolling once or twice or more with intermediate annealing sandwiched, and subjecting the cold-rolled sheet to finish annealing
- Final cold The ratio between the average rolling speed of 100 ⁇ 900m / min in the rolling, the friction coefficient at the time of the final pass to 0.01 to 0.10 total reduction ratio R t (%) and the final pass reduction ratio R s (%) (R s / R t ) is set to 0.15 to 0.45, and a soaking temperature of finish annealing is set to a range of 700 to 820 ° C., and a method for producing a non-oriented electrical steel sheet is proposed. ..
- the steel slab used in the method for producing a non-oriented electrical steel sheet of the present invention preferably contains, in addition to the above component composition, components of at least one of the following groups A to D.
- the present invention thirdly provides a motor core comprising a stator core and a rotor core, each of which is laminated with the non-oriented electrical steel sheet described above, wherein the rotor core has an average crystal grain size of 10 to 40 ⁇ m.
- a motor core having a diameter of 80 ⁇ m or more.
- a stator core formed by laminating non-oriented electrical steel sheets having an average crystal grain size of 10 to 40 ⁇ m is subjected to strain relief annealing to have an average crystal grain size of 80 ⁇ m or more.
- a method of manufacturing a motor core is proposed.
- a rotor core required to have high strength and a stator core required to have low iron loss can be manufactured from the same non-oriented electrical steel sheet, so that a material for an iron core of an automobile motor can be stably and inexpensively manufactured. Can be provided to.
- FIG. 6 is a graph showing the relationship between magnetostriction ⁇ pp and iron loss W 10/400 of the steel sheet after finish annealing.
- L-direction samples and C-direction samples having a width of 30 mm and a length of 280 mm were sampled from the steel sheet after the finish annealing, and a magnetostriction ⁇ pp (frequency 400 Hz, magnetic flux of magnetic flux of 400 Hz, magnetic flux of the steel sheet after the finish annealing was taken using a laser displacement meter. A density of 1.0 T) was measured. Further, the iron loss W 10/400 was measured by an Epstein test in accordance with JIS C2550-1: 2011 using the sample after the magnetostriction measurement. Further, a JIS No.
- FIG. 1 shows the relationship between the magnetostriction ⁇ pp (average value of the values in the L direction and the C direction) after the finish annealing and the iron loss W 10/400 . From this figure, there is a correlation between the magnetostriction ⁇ pp after finish annealing and the iron loss W 10/400 , and as the magnetostriction ⁇ pp becomes smaller, the iron loss W 10/400 tends to decrease. Further, it is understood that when the magnetostriction ⁇ pp is 4.5 ⁇ 10 ⁇ 6 or less, excellent iron loss characteristics with an iron loss W 10/400 of 27.6 W / kg or less can be obtained. It is considered that this is because as the magnetostriction increases, the magnetoelastic energy also increases, and the hysteresis loss greatly increases.
- the cold-rolled sheet is subjected to finish annealing at 790 ° C. for 10 seconds in a non-oxidizing atmosphere of 20 vol% H 2 -80 vol% N 2.
- finish annealing was a steel plate. After that, an L-direction sample and a C-direction sample having a width of 30 mm and a length of 280 mm were sampled from the plate width center portion (every 100 m in the coil) of this finish annealed plate, and the iron loss W 10/400 of the steel plate after the finish annealing was taken.
- a hot rolled sheet after annealing of a hot rolled sheet having the same composition as the steel slab described above was used as a material, and five-stage tandem rolling was performed.
- the machine was used to change the average rolling speed, the coefficient of friction of the final pass, and the ratio (R s / R t ) of the final pass reduction R s to the total reduction R t .
- the cold-rolled sheet was treated under a non-oxidizing atmosphere of 20 vol% H 2 -80 vol% N 2 at 790 ° C. for 10 seconds.
- Finish annealing was performed to obtain a non-oriented electrical steel sheet.
- the friction coefficient in the final pass of the final cold rolling was adjusted by changing the rolling oil.
- the mechanism of the cold rolling conditions affecting the magnetostrictive properties and the area ratio of recrystallized grains after finish annealing and the average crystal grain size is not sufficiently clear at the present time, but changes in cold rolling conditions Changes the amount of strain introduced and the deformation mechanism, and changes the recrystallization behavior and grain growth behavior during subsequent finish annealing, which changes the recrystallization rate and recrystallization texture after finish annealing, resulting in magnetostrictive properties. It is thought that it affects the strength characteristics.
- the present invention was developed by further studying the above new findings.
- a rotor core is a steel sheet after finish annealing, which is processed into a core shape by punching, laminated, and clamped (fixed) by welding or caulking. It will not be given. However, as described above, a large centrifugal force acts on the rotor core. Therefore, it is desirable that the steel sheet used for the rotor core has high strength after the finish annealing as described above. Further, in general, the fatigue strength (fatigue limit) of a steel sheet increases as the yield stress increases.
- the preferable yield stress of the steel sheet after finish annealing is specified to be 500 MPa or more. More preferably, it is 520 MPa or more.
- the above-mentioned yield stress is an upper yield point when a JIS No. 5 tensile test piece is subjected to a tensile test in accordance with JIS Z 2241: 2011.
- the non-oriented electrical steel sheet of the present invention preferably has a yield stress of 500 MPa or more after finish annealing.
- the non-oriented electrical steel sheet of the present invention has an area ratio (recrystallization ratio) of recrystallized grains of 40 to 95% and an average grain size of recrystallized grains of 10 after finish annealing. It is necessary to be in the range of -40 ⁇ m.
- the recrystallized grains When the area ratio of recrystallized grains is less than 40% and the average grain size of recrystallized grains is less than 10 ⁇ m, recrystallization becomes insufficient, the magnetostriction becomes large, and the iron loss also largely increases, as described above. On the other hand, when the area ratio of recrystallized grains exceeds 95% and the average grain size of recrystallized grains exceeds 40 ⁇ m, recrystallization excessively proceeds, and yield stress of 500 MPa or more cannot be secured.
- the recrystallized grains have an area ratio of 50 to 90%, and the recrystallized grains have an average particle size of 15 to 30 ⁇ m.
- Iron loss W 10/400 9 + 62t (W / kg) or less (t: plate thickness (mm))
- the iron loss W 10/400 is related to the product sheet thickness (final cold-rolled sheet thickness) t (mm) in the following formula (1); W 10/400 ⁇ 9 + 62 ⁇ t (1) Stipulated to meet. This is because the iron loss value depends on the plate thickness, and when the iron loss value does not satisfy the above expression (1), the heat generation of the motor core increases and the motor efficiency remarkably decreases.
- Magnetostriction ⁇ pp 4.5 ⁇ 10 ⁇ 6 or less
- the iron loss W 10/400 of the steel sheet after the finish annealing has a strong correlation with the magnetostriction ⁇ pp.
- the magnetostriction ⁇ pp after finish annealing is limited to 4.5 ⁇ 10 ⁇ 6 or less where the iron loss W 10/400 in FIG. 1 satisfies the formula (1). It is preferably 4.0 ⁇ 10 ⁇ 6 or less.
- the value of the magnetostriction lambda p-p, the frequency: 400 Hz, the magnetic flux density B measured rolling direction at 1.0 T (L) and the average value of the magnetostriction lambda p-p of the perpendicular direction (C) to the rolling direction Is.
- C 0.0050 mass% or less
- C contained in the product plate is a harmful element that forms a carbide to cause magnetic aging and deteriorates iron loss characteristics. Therefore, the upper limit of C contained in the material is limited to 0.0050 mass%. Preferably, it is 0.0040 mass% or less.
- the lower limit of C is not specified, but it is preferably about 0.0001 mass% from the viewpoint of suppressing the decarburization cost in the refining process.
- Si 2.8 to 6.5 mass% Si has the effect of increasing the specific resistance of the steel and reducing the iron loss, and also has the effect of increasing the strength of the steel by solid solution strengthening, so it is contained at 2.8 mass% or more. On the other hand, if it exceeds 6.5 mass%, rolling becomes difficult, so the upper limit is made 6.5 mass%. It is preferably in the range of 3.0 to 6.0 mass%.
- Mn 0.05 to 2.0 mass%
- Mn is an element useful for increasing the specific resistance and strength of steel, and is also an element for suppressing hot embrittlement by forming a sulfide, so it is contained in an amount of 0.05 mass% or more.
- addition of more than 2.0 mass% causes slab cracking and the like and deteriorates operability in the steelmaking process, so the upper limit is made 2.0 mass%. It is preferably in the range of 0.1 to 1.5 mass%.
- P 0.20 mass% or less P is a useful element used for adjusting the strength (hardness) of steel. However, if it exceeds 0.20 mass%, the steel becomes brittle and rolling becomes difficult, so the upper limit is made 0.20 mass%.
- the lower limit is not particularly specified, but it is preferably about 0.001 mass% from the viewpoint of suppressing the P removal cost in the refining process. It is preferably in the range of 0.01 to 0.1 mass%.
- Al 3.0 mass% or less
- Al is a useful element that has the effect of increasing the specific resistance of steel and reducing iron loss. However, if it exceeds 3.0 mass%, rolling becomes difficult, so the upper limit of Al is made 3.0 mass%. It is preferably 2.0 mass% or less.
- the Al content is in the range of more than 0.01 mass% and less than 0.10 mass%, fine AlN precipitates and iron loss increases, so Al is in the range of 0.01 mass% or less or 0.10 mass% or more. Is preferred.
- Al 0.01 mass% or less is preferable. More preferably, it is 0.003 mass% or less.
- S, N, Nb and V are elements that form fine precipitates and inhibit grain growth during stress relief annealing to adversely affect iron loss characteristics. Particularly, when the content exceeds 0.005 mass%, the adverse effect becomes remarkable, so the upper limits are limited to 0.005 mass%. Preferably, each is 0.003 mass% or less.
- Ti 0.003 mass% or less
- Ti is an element that also forms fine precipitates and hinders grain growth during stress relief annealing to adversely affect iron loss characteristics.
- the upper limit is limited to 0.003 mass%. It is preferably 0.002 mass% or less.
- the value on the left side of the equation (2) is preferably 0.2 mass% or more.
- the non-oriented electrical steel sheet of the present invention may contain the following components in addition to the above components.
- Mo and W 0.0020 to 0.10 mass% in total Both Mo and W are effective elements for suppressing the occurrence of surface defects (hair drop) on the steel sheet.
- the non-oriented electrical steel sheet of the present invention is a high-alloy steel, and its surface is easily oxidized. Therefore, it is feared that a beading due to surface cracking may occur. By adding it, the crack can be suppressed.
- the above effect is not sufficient when the total content of Mo and W is less than 0.0020 mass%, while the above effect is saturated and the alloy cost is increased even if added in excess of 0.10 mass%. is there. Therefore, when Mo or W is added, the total amount of Mo and W is preferably in the range of 0.0020 to 0.10 mass%. More preferably, the total amount of Mo and W is in the range of 0.0050 to 0.050 mass%.
- each Sn and Sb have the effects of improving the recrystallization texture and improving the magnetic flux density and iron loss characteristics. In order to obtain the above effect, it is necessary to add 0.005 mass% or more. However, even if it is added over 0.20 mass%, the above effect is saturated. Therefore, when adding Sn and Sb, it is preferable to set each in the range of 0.005 to 0.20 mass%. More preferably, each is in the range of 0.01 to 0.1 mass%.
- Ca and Mg 0.001 to 0.010 mass% in total Both Ca and Mg form stable sulfides and selenides and have the effect of improving grain growth during strain relief annealing. In order to obtain the above effect, it is necessary to add Ca and Mg in a total amount of 0.001 mass% or more. On the other hand, if added in excess of 0.010 mass%, the iron loss rather rises. Therefore, when Ca or Mg is added, the total amount is preferably 0.001 to 0.010 mass%. More preferably, the total amount of Ca and Mg is in the range of 0.003 to 0.008 mass%.
- Cu, Ni and Cr 0.01 to 1.0 mass% in total Cu, Ni and Cr are effective in increasing the specific resistance of steel, reducing iron loss and increasing the strength of steel.
- the method for producing a non-oriented electrical steel sheet of the present invention is to produce a steel material (slab) having the above-described composition, and hot-roll the hot rolled slab to obtain a hot-rolled sheet, and then subject the sheet to annealing. It consists of a series of steps in which a cold-rolled sheet having a final thickness is obtained by cold rolling once or twice or more with intermediate annealing interposed therebetween, and finish annealing is performed. The details will be described below.
- the steel slab used in the production of the non-oriented electrical steel sheet of the present invention is a steel having a component composition compatible with the above-mentioned present invention, which is generally known refining using a converter, an electric furnace, a vacuum degassing device, etc. It can be melted in the process and can be manufactured by a conventional continuous casting method or an ingot-slab rolling method. In addition, a thin cast piece having a thickness of 100 mm or less may be manufactured by the direct casting method.
- the above steel slab is hot rolled into a hot rolled sheet by a generally known method.
- the steel slab is usually reheated to a predetermined temperature in a heating furnace and then subjected to hot rolling, but it may be immediately subjected to hot rolling without reheating after casting. Further, in the case of a thin slab, hot rolling may be performed, or hot rolling may be omitted and the process may be directly performed.
- the soaking temperature is preferably in the range of 800 to 1100 ° C. If it is lower than 800 ° C, the effect of hot-rolled sheet annealing is small and sufficient magnetic property improving effect cannot be obtained. On the other hand, if it exceeds 1100 ° C, the crystal grains become coarse and brittle fracture during cold rolling (plate rupture). ), And may be disadvantageous in terms of manufacturing cost.
- the soaking time is preferably 3 minutes or less from the viewpoint of ensuring productivity. More preferably, the soaking temperature is 850 to 1000 ° C., and the soaking time is 1 min or less.
- the hot-rolled sheet after annealing the hot-rolled sheet is then pickled and cold-rolled once or twice or more with intermediate annealing to obtain a cold-rolled sheet having a final thickness.
- the average rolling speed in the final cold rolling to obtain the final plate thickness, the friction coefficient of the final pass, and the reduction rate of the final pass relative to the total reduction rate It is important to adjust each of the ratios (R s / R t ) within the predetermined ranges described below.
- the final plate thickness (product plate thickness) is preferably in the range of 0.1 to 0.35 mm. This is because if it is less than 0.1 mm, the productivity is lowered, while if it exceeds 0.35 mm, the iron loss reducing effect is small.
- the average rolling speed in the final cold rolling needs to be in the range of 100 to 900 m / min.
- the average rolling speed in the final cold rolling is less than 100 m / min, the magnetostriction becomes large and the iron loss also largely increases.
- it exceeds 900 m / min the crystal grain size of the recrystallized grains becomes large and the strength is lowered.
- a preferred average rolling speed is in the range of 200 to 800 m / min.
- the above-mentioned average rolling speed refers to an average rolling speed of 1 to n passes when a Zenzimir rolling mill is used for final cold rolling in n passes, and an tandem rolling mill with n stands. Means the average rolling speed of 1 to n stands.
- the friction coefficient of the final pass in the final cold rolling needs to be in the range of 0.01 to 0.10. As described above, when the friction coefficient of the final pass is less than 0.01, magnetostriction increases and iron loss also increases significantly. On the other hand, if it exceeds 0.10, the average grain size of the recrystallized grains becomes large and the strength is lowered.
- the preferred final pass coefficient of friction is in the range of 0.02 to 0.08.
- the coefficient of friction can be determined from the plate thickness, tension, rolling load, deformation resistance, etc. according to the Brand & Ford equation.
- the adjustment of the friction coefficient can be performed by changing the rolling oil, adjusting the roughness of the rolling roll, or the like.
- the ratio (R s / R t ) of the reduction ratio R s in the final pass to the total reduction ratio R t in the final cold rolling needs to be controlled in the range of 0.15 to 0.45.
- R s / R t is less than 0.15, magnetostriction becomes large and iron loss also greatly increases.
- R s / R t exceeds 0.45, the average grain size of the recrystallized grains becomes large, and the strength decreases.
- the preferred R s / R t is in the range of 0.20 to 0.40.
- the cold-rolled sheet with the final thickness is subjected to finish annealing, and it is preferable that this condition is continuous annealing with an annealing temperature (soaking temperature) of 700 to 820 ° C. If the soaking temperature is lower than 700 ° C., recrystallization becomes insufficient, the area ratio of recrystallized grains cannot be 40% or more, and the average grain size cannot be 10 ⁇ m or more, and good magnetic properties cannot be obtained. In addition, the shape correction effect in continuous annealing cannot be sufficiently obtained.
- soaking temperature soaking temperature
- the temperature exceeds 820 ° C.
- recrystallization is excessively advanced to the contrary, the area ratio of recrystallized grains exceeds 95%, or the crystal grain size becomes coarse to exceed 40 ⁇ m, and 500 MPa or more after finish annealing.
- the yield stress cannot be secured.
- the soaking time is preferably 1 to 300 seconds.
- the finish annealing conditions are as low as possible and as short as possible within the range where shape correction is possible, specifically, 720 to 800 ° C x 1 It is preferably in the range of up to 20 seconds.
- the steel sheet after the finish annealing is preferably coated with an insulating coating on the surface of the steel sheet in order to secure the insulation during lamination.
- an insulating coating it is desirable to select an organic coating containing a resin in order to secure good punchability, and to select a semi-organic or inorganic coating when importance is placed on weldability.
- the stator core of the motor if a material with an area ratio of recrystallized grains of 95% or less and a crystal grain size of 40 ⁇ m or less is used for the stator core of the motor, iron loss increases and motor efficiency decreases.
- the problem is that the iron loss ratio of the rotor core to the iron loss of the entire motor is small and the iron core of the stator core is small, such as the core of a permanent magnet type motor such as SPM or IPM used for a power source of a hybrid vehicle (HEV).
- the loss is dominant, the rotor core maintains strength by keeping the recrystallization rate and crystal grains small, while the stator core is assembled into the core and then subjected to stress relief annealing to increase the crystal grains. It is effective to reduce iron loss.
- the area ratio of recrystallized grains after strain relief annealing is 100% and the average grain size is 80 ⁇ m or more.
- a more preferable average particle size is 90 ⁇ m or more, and further preferably 100 ⁇ m or more.
- the strain relief annealing can be performed under general conditions, for example, a soaking temperature of 700 to 950 ° C. and a soaking time of 10 to 300 min.
- the steel slabs A to BC having different component compositions shown in Tables 3-1 and 3-2 were heated at 1100 ° C. for 30 minutes and then hot-rolled to form a hot-rolled sheet having a sheet thickness of 2.0 mm. After the hot rolled sheet is annealed at 980 ° C for 30 seconds, the 4-rolled tandem rolling mill is used for one cold rolling and various final sheets under the conditions shown in Tables 4-1 and 4-2. A thick cold-rolled sheet was obtained, and thereafter, finish annealing was carried out by soaking at the temperatures shown in Tables 4-1 and 4-2 for 10 seconds to produce a non-oriented electrical steel sheet (product sheet).
- No. Steel sheets 6 to 11 were subjected to strain relief annealing at 825 ° C x 1 hr (in N 2 atmosphere) similar to the strain relief annealing of the stator core, and the iron loss in the L + C direction was measured by the Epstein test, and the cross section in the rolling direction was measured. The average grain size observed was measured. The results are shown in Table 5. From these, it can be seen that high strength and low iron loss materials are compatible in the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
Description
記
・A群:MoおよびWから選ばれる1種または2種を合計で0.0020~0.10mass%
・B群:SnおよびSbから選ばれる1種または2種を0.005~0.20mass%
・C群:CaおよびMgから選ばれる1種または2種を合計で0.001~0.010mass%
・D群:CuおよびNi,Crから選ばれる1種または2種以上を合計で0.01~1.0mass%
W10/400≦9+62×t ・・・(1)
の関係を満たすことが好ましい。
記
・A群:MoおよびWから選ばれる1種または2種を合計で0.0020~0.10mass%
・B群:SnおよびSbから選ばれる1種または2種を0.005~0.20mass%
・C群:CaおよびMgから選ばれる1種または2種を合計で0.001~0.010mass%
・D群:CuおよびNi,Crから選ばれる1種または2種以上を合計で0.01~1.0mass%
<実験1>
高周波域の鉄損W10/400に及ぼす磁歪の影響について調査するため、表1に示す成分組成を有するA~Hの鋼スラブを熱間圧延して板厚2.0mmの熱延板とし、該熱延板に960℃×30秒の熱延板焼鈍を施し、酸洗した後、1回の冷間圧延で最終板厚が0.30mm(全圧下率Rt:85%)の冷延板とした後、20vol%H2-80vol%N2の非酸化性雰囲気下で、750℃×10秒の仕上焼鈍を施して無方向性電磁鋼板とした。
ここで、上記最終板厚とする冷間圧延は、5スタンドのタンデム圧延機を用いて行い、その際、各スタンドの平均圧延速度は600m/min、最終スタンドの摩擦係数は0.03、最終スタンドの圧下率Rsは25%(Rs/Rt=0.29)となる条件とした。
また、上記磁歪測定後のサンプルを用いて、JIS C2550-1:2011に準拠し、エプスタイン試験で鉄損W10/400を測定した。
また、上記磁歪測定後のL方向サンプルから、JIS5号引張試験片を採取し、JIS Z2241:2011に準じて引張試験を行い、降伏応力(上降伏点)を測定した。
さらに、上記サンプルから、L方向:15mm×C方向:10mmの試料を採取し、鋼板の圧延方向断面(板幅方向に垂直な断面)を研磨、エッチングして光学顕微鏡で観察し、再結晶率(再結晶粒の面積率)を求めるとともに、再結晶粒の平均粒径を求めた。再結晶粒の平均粒径は、鋼板断面(板厚×1000μm)の領域を3視野撮影し、画像処理等により再結晶粒の個々の面積を求め、これらを平均した面積から算出した円相当径とする。
次に、上記結果に基づき、更なる鉄損低減および高強度化を実現するため、下記の実験を行った。
C:0.0027mass%、Si:3.61mass%、Mn:0.31mass%、P:0.01mass%、S:0.0018mass%、Al:1.2mass%、N:0.0017mass%、O:0.0023mass%、Ti:0.0013mass%、Nb:0.0007mass%およびV:0.0008mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延して板厚1.9mmの熱延板とし、該熱延板に940℃×30秒の熱延板焼鈍を施し、酸洗した後、1回の冷間圧延で最終板厚0.25mm(全圧下率Rt=87%)の冷延板とした後、該冷延板に、20vol%H2-80vol%N2の非酸化性雰囲気下で、790℃×10秒の仕上焼鈍を施して無方向性電磁鋼板とした。
その後、この仕上焼鈍板の板幅中央部(コイル内100m毎に)から、幅30mm×長さ280mmのL方向サンプルおよびC方向サンプルを採取し、仕上焼鈍後の鋼板の鉄損W10/400をJIS C2550-1:2011に準拠し、測定した。
また、上記鉄損測定後のL方向サンプルから、JIS5号引張試験片を採取し、JIS Z2241:2011に準じて引張試験を行い、降伏応力YS(上降伏点)を測定した。
上記の結果から、上記コイル内の鉄損特性および強度特性のバラツキの原因は、コイル内での最終冷間圧延条件の変動が大きく影響していることが裏付けられた。
本発明は、上記の新規な知見に、さらに検討を重ねて開発したものである。
降伏応力:500MPa以上
ロータコアは、一般に、仕上焼鈍後の鋼板を、打抜加工等でコア形状に加工した後、積層し、溶接やカシメ等でクランプ(固定)したものであり、歪取焼鈍が施されることはない。しかし、ロータコアには、先述したように、大きな遠心力が働く。したがって、ロータコアに用いられる鋼板は、先述したように仕上焼鈍後の状態で高強度であることが望ましい。また、一般に、鋼板の疲労強度(疲労限度)は、降伏応力が高いほど高くなる。そこで、本発明は、仕上焼鈍後の鋼板の好ましい降伏応力を500MPa以上と規定する。より好ましくは520MPa以上である。ここで、上記降伏応力は、JIS5号引張試験片をJIS Z 2241:2011に準拠して引張試験したときの上降伏点である。
本発明の無方向性電磁鋼板は、上記したように仕上焼鈍後の降伏応力が500MPa以上であることが望ましい。上記強度を確保するため、本発明の無方向性電磁鋼板は、仕上焼鈍後において、再結晶粒の面積率(再結晶率)が40~95%、かつ、再結晶粒の平均粒径が10~40μmの範囲内にあることが必要である。再結晶粒の面積率が40%未満、再結晶粒の平均粒径が10μm未満では、先述したように、再結晶が不十分となり、磁歪が大きくなり、鉄損も大きく上昇してしまう。一方、再結晶粒の面積率が95%超え、再結晶粒の平均粒径が40μm超えでは、逆に再結晶が進行し過ぎて、降伏応力500MPa以上を確保できなくなる。好ましくは、再結晶粒の面積率は50~90%、再結晶粒の平均粒径は15~30μmの範囲である。
モータのロータコアは、強度のみならず発熱も問題となるため、低鉄損であることが望ましい。そこで、本発明では、HEV駆動モータの駆動・制御条件に合わせ、鉄損特性の指標として鉄損W10/400(周波数:400Hz、磁束密度B=1.0T)(W/kg)を用い、鉄損W10/400が、製品板厚(最終冷延板厚)t(mm)との関係において、下記(1)式;
W10/400≦9+62×t ・・・(1)
を満たすことと規定した。これは、鉄損値は、板厚に依存すること、および、鉄損値が上記(1)式を満たさない場合には、モータコアの発熱が大きくなり、モータ効率が著しく低下するためである。
図1に示したように、仕上焼鈍後の鋼板の鉄損W10/400は、磁歪λp-pと強い相関があり、仕上焼鈍後の磁歪λp-pを低くすることで、仕上焼鈍後の鉄損W10/400も低い値にすることができる。そこで、本発明においては、仕上焼鈍後の磁歪λp-pを、図1において、鉄損W10/400が(1)式を満たす4.5×10-6以下に制限する。好ましくは、4.0×10-6以下である。なお、上記磁歪λp-pの値は、周波数:400Hz、磁束密度B=1.0Tで測定した圧延方向(L)および圧延方向に対し直角方向(C)の磁歪λp-pの平均値である。
C:0.0050mass%以下
製品板中に含まれるCは、炭化物を形成して磁気時効を起こし、鉄損特性を劣化させる有害元素である。そのため、素材中に含まれるCの上限は0.0050mass%に制限する。好ましくは、0.0040mass%以下である。なお、Cの下限は特に規定しないが、精錬工程での脱炭コストを抑制する観点から、0.0001mass%程度とするのが好ましい。
Siは、鋼の固有抵抗を高め、鉄損を低減する効果があり、また、固溶強化により鋼の強度を高める効果があるため、2.8mass%以上含有させる。一方、6.5mass%を超えると、圧延することが困難になるため、上限は6.5mass%とする。好ましくは3.0~6.0mass%の範囲である。
Mnは、Siと同様、鋼の固有抵抗と強度を高めるのに有用な元素であり、また、硫化物を形成して熱間脆性を抑止する元素でもあるため、0.05mass%以上含有させる。一方、2.0mass%を超える添加は、スラブ割れ等を起こし、製鋼工程での操業性を悪化させるため、上限は2.0mass%とする。好ましくは0.1~1.5mass%の範囲である。
Pは、鋼の強度(硬さ)調整に用いられる有用な元素である。しかし、0.20mass%を超えると、鋼が脆化し、圧延することが困難となるため、上限は0.20mass%とする。なお、下限は特に規定しないが、精錬工程での脱Pコストを抑制する観点から、0.001mass%程度とするのが好ましい。好ましくは0.01~0.1mass%の範囲である。
Alは、Siと同様、鋼の固有抵抗を高め、鉄損を低減する効果がある有用な元素である。しかし、3.0mass%を超えると、圧延することが困難になるため、Alの上限は3.0mass%とする。好ましくは2.0mass%以下である。
なお、Alの含有量が0.01mass%超え0.10mass%未満の範囲では、微細なAlNが析出して鉄損が増加するため、Alは0.01mass%以下もしくは0.10mass%以上の範囲とするのが好ましい。特に、Alを低減すると、集合組織が改善され、磁束密度が向上するので、磁束密度を重視する場合はAl:0.01mass%以下とするのが好ましい。より好ましくは0.003mass%以下である。
S,N,NbおよびVは、微細析出物を形成し、歪取焼鈍時の粒成長を阻害して鉄損特性に悪影響を及ぼす元素であり、特に、0.005mass%を超えると、その悪影響が顕著になるため、上限をそれぞれ0.005mass%に制限する。好ましくはそれぞれ0.003mass%以下である。
Tiは、同じく微細析出物を形成し、歪取焼鈍時の粒成長を阻害して鉄損特性に悪影響を及ぼす元素であり、特に、0.003mass%を超えると、その悪影響が顕著になるため、上限を0.003mass%に制限する。好ましくは0.002mass%以下である。
本発明の無方向性電磁鋼板は、上記成分が上記所定の範囲の組成を満たすことに加えて、Si,AlおよびMnの含有量(mass%)が下記(2)式;
Si-2Al-Mn≧0 ・・・(2)
を満たして含有していることが必要である。上記(2)式から外れる、すなわち、(2)式の左辺が0未満となると、周波数:400Hz、磁束密度B=1.0Tにおける仕上焼鈍後のヒステリシス損が大きくなり、磁歪λp-pも大きくなるためである。なお、(2)式の左辺の値は、好ましくは0.2mass%以上である。
MoおよびW:合計で0.0020~0.10mass%
MoおよびWは、いずれも鋼板の表面欠陥(ヘゲ)の発生を抑止するのに有効な元素である。特に、本発明の無方向性電磁鋼板は、高合金鋼で、表面が酸化され易いため、表面割れに起因するヘゲの発生が懸念されるが、高温強度を高める元素であるMoやWを添加することで、上記割れを抑制することができる。上記効果は、MoおよびWの合計含有量が0.0020mass%を下回ると十分ではなく、一方、0.10mass%を超えて添加しても、上記効果が飽和し、合金コストが上昇するだけである。よって、MoやWを添加する場合は、MoおよびWの合計で0.0020~0.10mass%の範囲とするのが好ましい。より好ましくはMoおよびWの合計で0.0050~0.050mass%の範囲である。
SnおよびSbは、再結晶集合組織を改善し、磁束密度、鉄損特性を改善する効果がある。上記効果を得るためには0.005mass%以上の添加が必要である。しかし、0.20mass%を超えて添加しても、上記効果が飽和する。よって、Sn,Sbを添加する場合は、それぞれ0.005~0.20mass%の範囲とするのが好ましい。より好ましくはそれぞれ0.01~0.1mass%の範囲である。
CaおよびMgは、いずれも安定な硫化物やセレン化物を形成し、歪取焼鈍時の粒成長性を改善する効果がある。上記効果を得るためには、CaおよびMgを合計で0.001mass%以上の添加が必要であり、一方、0.010mass%を超えて添加すると、却って鉄損が上昇してしまう。よって、CaやMgを添加する場合は、合計で0.001~0.010mass%の範囲とするのが好ましい。より好ましくはCaおよびMgの合計で0.003~0.008mass%の範囲である。
Cu,NiおよびCrは鋼の固有抵抗を上昇させ、鉄損を低減し、かつ鋼の強度を上昇させる効果がある。上記効果を得るためには、Cu,NiおよびCrを合計で0.01mass%以上添加する必要があるが、1.0mass%以上の添加はコストの上昇を招く。よって、上記元素の添加は、合計で0.01~1.0mass%の範囲とすることが好ましい。より好ましくは、0.1~0.5mass%の範囲である。さらに好ましくは、0.1mass%以上0.5mass%未満である。
本発明の無方向性電磁鋼板の製造方法は、上記した成分組成を有する鋼素材(スラブ)を製造し、該スラブを熱間圧延して熱延板とし、熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、仕上焼鈍を施す一連の工程からなる。以下、具体的に説明する。
ここで、上記平均圧延速度とは、最終冷間圧延としてゼンジミア圧延機を用いてnパスで行う場合には、1~nパスの平均圧延速度を、また、nスタンドのタンデム圧延機で行う場合には、1~nスタンドの平均圧延速度のことをいう。
なお、上記摩擦係数は、板厚、張力、圧延荷重、変形抵抗などからBrand&Fordの式により求めることができる。また、上記摩擦係数の調整は、圧延油の変更、圧延ロールの粗度調整などにより行うことができる。
次いで、上記製品板から、幅:30mm×長さ:280mmのL方向サンプルおよびC方向サンプルをコイル幅中央部から採取し、レーザー変位計を用いて、L方向およびC方向の平均磁歪λp-p、および、エプスタイン試験にて鉄損W10/400を測定した。また、上記磁歪および鉄損測定後のL方向サンプルからJIS5号引張試験片を採取し、JIS Z2241:2011に準拠して引張試験を行い、降伏応力(上降伏点)を測定した。さらに、上記L方向サンプルから、15mm×10mmの試料を採取し、圧延方向の断面組織を観察し、仕上焼鈍後の再結晶粒の面積率(再結晶率)および再結晶粒の平均粒径を測定した。
Claims (7)
- C:0.005mass%以下、Si:2.8~6.5mass%、Mn:0.05~2.0mass%、Al:3.0mass%以下、P:0.20mass%以下、S:0.005mass%以下、N:0.005mass%以下、Ti:0.003mass%以下、V:0.005mass%以下およびNb:0.005mass%以下を含有し、かつ、Si、MnおよびAlがSi-2Al-Mn≧0を満たし、残部がFeおよび不可避的不純物からなる成分組成を有する無方向性電磁鋼板において、
周波数400Hz、磁束密度1.0Tにおける圧延方向の磁歪λp-p(L)と圧延方向に対し直角方向の磁歪λp-p(C)の平均値が4.5×10-6以下であり、さらに、
鋼板圧延方向断面における再結晶粒の面積率が40~95%で、かつ、平均粒径が10~40μmであることを特徴とする無方向性電磁鋼板。 - 前記成分組成に加えてさらに、下記A~D群のうちの少なくとも1群の成分を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
記
・A群:MoおよびWから選ばれる1種または2種を合計で0.0020~0.10mass%
・B群:SnおよびSbから選ばれる1種または2種を0.005~0.20mass%
・C群:CaおよびMgから選ばれる1種または2種を合計で0.001~0.010mass%
・D群:CuおよびNi,Crから選ばれる1種または2種以上を合計で0.01~1.0mass% - 降伏応力が500MPa以上で、板厚t(mm)と鉄損W10/400(W/kg)とが下記(1)式の関係を満たすことを特徴とする請求項1または2に記載の無方向性電磁鋼板。
記
W10/400≦9+62×t ・・・(1) - C:0.005mass%以下、Si:2.8~6.5mass%、Mn:0.05~2.0mass%、Al:3.0mass%以下、P:0.20mass%以下、S:0.005mass%以下、N:0.005mass%以下、Ti:0.003mass%以下、V:0.005mass%以下およびNb:0.005mass%以下を含有し、かつ、Si,MnおよびAlがSi-2Al-Mn≧0を満たし、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを熱間圧延して熱延板とし、熱延板焼鈍を施した後、1回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚の冷延板とし、該冷延板に仕上焼鈍を施す一連の工程からなる無方向性電磁鋼板の製造方法において、
最終冷間圧延における平均圧延速度を100~900m/min、最終パス時の摩擦係数を0.01~0.10とし、全圧下率Rt(%)と最終パスの圧下率Rs(%)との比(Rs/Rt)を0.15~0.45とし、かつ、
仕上焼鈍の均熱温度を700~820℃の範囲とすることを特徴とする無方向性電磁鋼板の製造方法。 - 前記鋼スラブは、上記成分組成に加えてさらに、下記A~D群のうちの少なくとも1群の成分を含有することを特徴とする請求項4に記載の無方向性電磁鋼板の製造方法。
記
・A群:MoおよびWから選ばれる1種または2種を合計で0.0020~0.10mass%
・B群:SnおよびSbから選ばれる1種または2種を0.005~0.20mass%
・C群:CaおよびMgから選ばれる1種または2種を合計で0.001~0.010mass%
・D群:CuおよびNi,Crから選ばれる1種または2種以上を合計で0.01~1.0mass% - 請求項1~3のいずれか1項に記載の無方向性電磁鋼板を積層したステータコアとロータコアからなるモータコアにおいて、
ロータコアの平均結晶粒径が10~40μmであり、
ステータコアの平均結晶粒径が80μm以上であることを特徴とするモータコア。 - 請求項6に記載のモータコアの製造方法において、
平均結晶粒径が10~40μmの無方向性電磁鋼板を積層したステータコアに、歪取焼鈍を施して平均結晶粒径を80μm以上とすることを特徴とするモータコアの製造方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019559860A JP6866935B2 (ja) | 2018-10-31 | 2019-07-16 | 無方向性電磁鋼板の製造方法 |
CN201980070235.9A CN112930412A (zh) | 2018-10-31 | 2019-07-16 | 无取向性电磁钢板及其制造方法以及电动机铁心及其制造方法 |
MX2021004862A MX2021004862A (es) | 2018-10-31 | 2019-07-16 | Chapa de acero electrico no orientado y metodo para producir la misma y nucleo de motor y metodo para producir el mismo. |
CA3116571A CA3116571C (en) | 2018-10-31 | 2019-07-16 | Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same |
KR1020217010245A KR102516331B1 (ko) | 2018-10-31 | 2019-07-16 | 무방향성 전기 강판과 그 제조 방법 및 모터 코어와 그 제조 방법 |
EP19880415.5A EP3859032B1 (en) | 2018-10-31 | 2019-07-16 | Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same |
US17/281,617 US11525169B2 (en) | 2018-10-31 | 2019-07-16 | Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same |
BR112021006711-6A BR112021006711B1 (pt) | 2018-10-31 | 2019-07-16 | Chapa de aço elétrico não orientado e método de produção da mesma, e núcleo de motor e método de produção do mesmo |
US17/977,178 US11718891B2 (en) | 2018-10-31 | 2022-10-31 | Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-204956 | 2018-10-31 | ||
JP2018204956 | 2018-10-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/281,617 A-371-Of-International US11525169B2 (en) | 2018-10-31 | 2019-07-16 | Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same |
US17/977,178 Division US11718891B2 (en) | 2018-10-31 | 2022-10-31 | Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020090160A1 true WO2020090160A1 (ja) | 2020-05-07 |
Family
ID=70464393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/027949 WO2020090160A1 (ja) | 2018-10-31 | 2019-07-16 | 無方向性電磁鋼板とその製造方法およびモータコアとその製造方法 |
Country Status (10)
Country | Link |
---|---|
US (2) | US11525169B2 (ja) |
EP (1) | EP3859032B1 (ja) |
JP (2) | JP6866935B2 (ja) |
KR (1) | KR102516331B1 (ja) |
CN (1) | CN112930412A (ja) |
BR (1) | BR112021006711B1 (ja) |
CA (1) | CA3116571C (ja) |
MX (1) | MX2021004862A (ja) |
TW (2) | TWI732315B (ja) |
WO (1) | WO2020090160A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021210672A1 (ja) * | 2020-04-16 | 2021-10-21 | 日本製鉄株式会社 | 無方向性電磁鋼板およびその製造方法 |
KR20220089077A (ko) * | 2020-12-21 | 2022-06-28 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
WO2022139359A1 (ko) * | 2020-12-21 | 2022-06-30 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
JPWO2022211004A1 (ja) * | 2021-04-02 | 2022-10-06 | ||
WO2022210895A1 (ja) * | 2021-03-31 | 2022-10-06 | 日本製鉄株式会社 | 回転電機、ステータの鉄心及びロータの鉄心のセット、回転電機の製造方法、ステータ用無方向性電磁鋼板及びロータ用無方向性電磁鋼板の製造方法、ステータ及びロータの製造方法、及び、無方向性電磁鋼板のセット |
WO2023282197A1 (ja) * | 2021-07-08 | 2023-01-12 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法、ならびにモータコア |
WO2023282196A1 (ja) * | 2021-07-08 | 2023-01-12 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法、ならびにモータコア |
JP7231133B1 (ja) * | 2022-10-26 | 2023-03-01 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法、ならびにモータコア |
WO2023090424A1 (ja) * | 2021-11-18 | 2023-05-25 | 日本製鉄株式会社 | 回転電機、無方向性電磁鋼板、及び積層コア、並びに、回転電機の製造方法、及び積層コアの製造方法 |
US20240035131A1 (en) * | 2021-03-31 | 2024-02-01 | Nippon Steel Corporation | Non-oriented electrical steel sheet and manufacturing method therefor |
RU2826073C2 (ru) * | 2021-03-31 | 2024-09-03 | Ниппон Стил Корпорейшн | Вращающаяся электрическая машина, набор сердечника статора и сердечника ротора, способ изготовления вращающейся электрической машины, способ изготовления листа изотропной электротехнической стали для статора и листа изотропной электротехнической стали для ротора, способ изготовления статора и ротора и набор листов изотропной электротехнической стали |
WO2024214371A1 (ja) * | 2023-04-13 | 2024-10-17 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
WO2024214370A1 (ja) * | 2023-04-13 | 2024-10-17 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230019158A (ko) * | 2020-06-30 | 2023-02-07 | 제이에프이 스틸 가부시키가이샤 | 방향성 전기 강판의 제조 방법 및 설비열 |
MX2024005824A (es) * | 2021-11-17 | 2024-05-28 | Jfe Steel Corp | Lamina de acero electrico no orientado y metodo para producirla, y metodo para producir el nucleo de un motor. |
WO2024127068A1 (en) * | 2022-12-15 | 2024-06-20 | Arcelormittal | A non-oriented electrical steel and a method of manufacturing non-oriented electrical steel thereof |
KR20240098851A (ko) * | 2022-12-21 | 2024-06-28 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
KR20240098441A (ko) * | 2022-12-21 | 2024-06-28 | 주식회사 포스코 | 무방향성 전기강판, 그 제조방법 및 그를 포함하는 모터 코어 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61264131A (ja) * | 1985-05-20 | 1986-11-22 | Kawasaki Steel Corp | 磁気的異方性が小さくかつ低磁場特性に優れる電磁鋼板の製造方法 |
JPH0841603A (ja) * | 1994-08-01 | 1996-02-13 | Kawasaki Steel Corp | 磁気特性の優れた無方向性電磁鋼板およびその製造方法 |
JPH09157744A (ja) * | 1995-11-30 | 1997-06-17 | Kawasaki Steel Corp | 一方向性けい素鋼板の製造方法 |
JP2008050686A (ja) | 2006-07-27 | 2008-03-06 | Nippon Steel Corp | 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法 |
JP2012136763A (ja) * | 2010-12-28 | 2012-07-19 | Jfe Steel Corp | 高強度電磁鋼板の製造方法 |
JP2012140676A (ja) * | 2010-12-28 | 2012-07-26 | Jfe Steel Corp | 無方向性電磁鋼板およびその製造方法 |
WO2016017263A1 (ja) * | 2014-07-31 | 2016-02-04 | Jfeスチール株式会社 | 無方向性電磁鋼板とその製造方法ならびにモータコアとその製造方法 |
JP2016138316A (ja) * | 2015-01-28 | 2016-08-04 | Jfeスチール株式会社 | 無方向性電磁鋼板とモータコア |
CN105950960A (zh) * | 2016-05-04 | 2016-09-21 | 武汉钢铁股份有限公司 | 电动汽车驱动电机用无取向硅钢及其制备方法 |
WO2018164185A1 (ja) * | 2017-03-07 | 2018-09-13 | 新日鐵住金株式会社 | 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法 |
WO2018179871A1 (ja) * | 2017-03-30 | 2018-10-04 | Jfeスチール株式会社 | 無方向性電磁鋼板の製造方法、モータコアの製造方法およびモータコア |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5375149B2 (ja) | 2008-09-11 | 2013-12-25 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
JP5609057B2 (ja) | 2009-10-22 | 2014-10-22 | Jfeスチール株式会社 | モータコア |
JP5310599B2 (ja) | 2010-02-26 | 2013-10-09 | 新日鐵住金株式会社 | 高周波用無方向性電磁鋼板の製造方法 |
DE102011053722C5 (de) | 2011-09-16 | 2020-12-24 | Voestalpine Stahl Gmbh | Verfahren zum Herstellen eines höherfesten Elektrobandes, Elektroband und dessen Verwendung |
CN103498096B (zh) | 2013-09-16 | 2016-03-16 | 武汉钢铁(集团)公司 | Rm≥600MPa的优良磁性能无取向电工钢及其生产方法 |
RU2665649C1 (ru) | 2014-11-27 | 2018-09-03 | ДжФЕ СТИЛ КОРПОРЕЙШН | Способ изготовления листа из текстурированной электротехнической стали |
JP6048699B2 (ja) | 2015-02-18 | 2016-12-21 | Jfeスチール株式会社 | 無方向性電磁鋼板とその製造方法ならびにモータコア |
CN109477186B (zh) | 2016-07-29 | 2020-11-27 | 杰富意钢铁株式会社 | 取向性电磁钢板用热轧钢板及其制造方法、以及取向性电磁钢板的制造方法 |
JP6794705B2 (ja) | 2016-08-05 | 2020-12-02 | 日本製鉄株式会社 | 無方向性電磁鋼板、無方向性電磁鋼板の製造方法及びモータコアの製造方法 |
-
2019
- 2019-07-16 JP JP2019559860A patent/JP6866935B2/ja active Active
- 2019-07-16 MX MX2021004862A patent/MX2021004862A/es unknown
- 2019-07-16 US US17/281,617 patent/US11525169B2/en active Active
- 2019-07-16 EP EP19880415.5A patent/EP3859032B1/en active Active
- 2019-07-16 KR KR1020217010245A patent/KR102516331B1/ko active IP Right Grant
- 2019-07-16 CA CA3116571A patent/CA3116571C/en active Active
- 2019-07-16 WO PCT/JP2019/027949 patent/WO2020090160A1/ja unknown
- 2019-07-16 BR BR112021006711-6A patent/BR112021006711B1/pt active IP Right Grant
- 2019-07-16 CN CN201980070235.9A patent/CN112930412A/zh active Pending
- 2019-10-15 TW TW108136965A patent/TWI732315B/zh active
- 2019-10-15 TW TW109145018A patent/TWI768605B/zh active
-
2020
- 2020-10-15 JP JP2020174016A patent/JP2021036075A/ja active Pending
-
2022
- 2022-10-31 US US17/977,178 patent/US11718891B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61264131A (ja) * | 1985-05-20 | 1986-11-22 | Kawasaki Steel Corp | 磁気的異方性が小さくかつ低磁場特性に優れる電磁鋼板の製造方法 |
JPH0841603A (ja) * | 1994-08-01 | 1996-02-13 | Kawasaki Steel Corp | 磁気特性の優れた無方向性電磁鋼板およびその製造方法 |
JPH09157744A (ja) * | 1995-11-30 | 1997-06-17 | Kawasaki Steel Corp | 一方向性けい素鋼板の製造方法 |
JP2008050686A (ja) | 2006-07-27 | 2008-03-06 | Nippon Steel Corp | 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法 |
JP2012136763A (ja) * | 2010-12-28 | 2012-07-19 | Jfe Steel Corp | 高強度電磁鋼板の製造方法 |
JP2012140676A (ja) * | 2010-12-28 | 2012-07-26 | Jfe Steel Corp | 無方向性電磁鋼板およびその製造方法 |
WO2016017263A1 (ja) * | 2014-07-31 | 2016-02-04 | Jfeスチール株式会社 | 無方向性電磁鋼板とその製造方法ならびにモータコアとその製造方法 |
JP2016138316A (ja) * | 2015-01-28 | 2016-08-04 | Jfeスチール株式会社 | 無方向性電磁鋼板とモータコア |
CN105950960A (zh) * | 2016-05-04 | 2016-09-21 | 武汉钢铁股份有限公司 | 电动汽车驱动电机用无取向硅钢及其制备方法 |
WO2018164185A1 (ja) * | 2017-03-07 | 2018-09-13 | 新日鐵住金株式会社 | 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法 |
WO2018179871A1 (ja) * | 2017-03-30 | 2018-10-04 | Jfeスチール株式会社 | 無方向性電磁鋼板の製造方法、モータコアの製造方法およびモータコア |
Non-Patent Citations (1)
Title |
---|
See also references of EP3859032A4 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021210672A1 (ja) * | 2020-04-16 | 2021-10-21 | 日本製鉄株式会社 | 無方向性電磁鋼板およびその製造方法 |
JP7001210B1 (ja) * | 2020-04-16 | 2022-01-19 | 日本製鉄株式会社 | 無方向性電磁鋼板およびその製造方法 |
KR20220089077A (ko) * | 2020-12-21 | 2022-06-28 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
WO2022139359A1 (ko) * | 2020-12-21 | 2022-06-30 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
WO2022139335A1 (ko) * | 2020-12-21 | 2022-06-30 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
KR102438475B1 (ko) | 2020-12-21 | 2022-09-01 | 주식회사 포스코 | 무방향성 전기강판 및 그 제조방법 |
WO2022210895A1 (ja) * | 2021-03-31 | 2022-10-06 | 日本製鉄株式会社 | 回転電機、ステータの鉄心及びロータの鉄心のセット、回転電機の製造方法、ステータ用無方向性電磁鋼板及びロータ用無方向性電磁鋼板の製造方法、ステータ及びロータの製造方法、及び、無方向性電磁鋼板のセット |
JPWO2022210895A1 (ja) * | 2021-03-31 | 2022-10-06 | ||
RU2826073C2 (ru) * | 2021-03-31 | 2024-09-03 | Ниппон Стил Корпорейшн | Вращающаяся электрическая машина, набор сердечника статора и сердечника ротора, способ изготовления вращающейся электрической машины, способ изготовления листа изотропной электротехнической стали для статора и листа изотропной электротехнической стали для ротора, способ изготовления статора и ротора и набор листов изотропной электротехнической стали |
JP7527378B2 (ja) | 2021-03-31 | 2024-08-02 | 日本製鉄株式会社 | 回転電機、ステータの鉄心及びロータの鉄心のセット、ステータ用無方向性電磁鋼板及びロータ用無方向性電磁鋼板の製造方法、ステータ及びロータの製造方法、及び、無方向性電磁鋼板のセット |
US20240035131A1 (en) * | 2021-03-31 | 2024-02-01 | Nippon Steel Corporation | Non-oriented electrical steel sheet and manufacturing method therefor |
TWI813234B (zh) * | 2021-03-31 | 2023-08-21 | 日商日本製鐵股份有限公司 | 旋轉電機、定子鐵心及轉子鐵心的組合、旋轉電機的製造方法、定子用無方向性電磁鋼板及轉子用無方向性電磁鋼板的製造方法、定子及轉子的製造方法、以及無方向性電磁鋼板的組合 |
WO2022211004A1 (ja) * | 2021-04-02 | 2022-10-06 | 日本製鉄株式会社 | 無方向性電磁鋼板およびその製造方法 |
KR20230143194A (ko) * | 2021-04-02 | 2023-10-11 | 닛폰세이테츠 가부시키가이샤 | 무방향성 전자 강판 및 그 제조 방법 |
KR102706290B1 (ko) * | 2021-04-02 | 2024-09-19 | 닛폰세이테츠 가부시키가이샤 | 무방향성 전자 강판 및 그 제조 방법 |
JP7231116B2 (ja) | 2021-04-02 | 2023-03-01 | 日本製鉄株式会社 | 無方向性電磁鋼板およびその製造方法 |
JPWO2022211004A1 (ja) * | 2021-04-02 | 2022-10-06 | ||
TWI824601B (zh) * | 2021-07-08 | 2023-12-01 | 日商杰富意鋼鐵股份有限公司 | 無方向性電磁鋼板及其製造方法、以及馬達鐵芯 |
JP7235187B1 (ja) * | 2021-07-08 | 2023-03-08 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法、ならびにモータコア |
WO2023282196A1 (ja) * | 2021-07-08 | 2023-01-12 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法、ならびにモータコア |
WO2023282197A1 (ja) * | 2021-07-08 | 2023-01-12 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法、ならびにモータコア |
WO2023090424A1 (ja) * | 2021-11-18 | 2023-05-25 | 日本製鉄株式会社 | 回転電機、無方向性電磁鋼板、及び積層コア、並びに、回転電機の製造方法、及び積層コアの製造方法 |
TWI837908B (zh) * | 2022-10-26 | 2024-04-01 | 日商杰富意鋼鐵股份有限公司 | 無方向性電磁鋼板及其製造方法、以及馬達鐵芯 |
WO2024089827A1 (ja) * | 2022-10-26 | 2024-05-02 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法、ならびにモータコア |
JP7231133B1 (ja) * | 2022-10-26 | 2023-03-01 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法、ならびにモータコア |
WO2024214371A1 (ja) * | 2023-04-13 | 2024-10-17 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
WO2024214370A1 (ja) * | 2023-04-13 | 2024-10-17 | Jfeスチール株式会社 | 無方向性電磁鋼板 |
Also Published As
Publication number | Publication date |
---|---|
TWI732315B (zh) | 2021-07-01 |
CA3116571C (en) | 2023-01-17 |
TWI768605B (zh) | 2022-06-21 |
CA3116571A1 (en) | 2020-05-07 |
JP2021036075A (ja) | 2021-03-04 |
BR112021006711B1 (pt) | 2023-10-24 |
EP3859032A1 (en) | 2021-08-04 |
BR112021006711A2 (pt) | 2021-07-27 |
KR102516331B1 (ko) | 2023-03-31 |
CN112930412A (zh) | 2021-06-08 |
JPWO2020090160A1 (ja) | 2021-02-15 |
EP3859032A4 (en) | 2021-12-01 |
MX2021004862A (es) | 2021-06-15 |
TW202018102A (zh) | 2020-05-16 |
EP3859032B1 (en) | 2023-03-29 |
US11525169B2 (en) | 2022-12-13 |
US20230065674A1 (en) | 2023-03-02 |
JP6866935B2 (ja) | 2021-04-28 |
TW202122602A (zh) | 2021-06-16 |
KR20210056391A (ko) | 2021-05-18 |
US20210371948A1 (en) | 2021-12-02 |
US11718891B2 (en) | 2023-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020090160A1 (ja) | 無方向性電磁鋼板とその製造方法およびモータコアとその製造方法 | |
TWI672384B (zh) | 無方向性電磁鋼板的製造方法、馬達鐵芯的製造方法以及馬達鐵芯 | |
KR102477535B1 (ko) | 무방향성 전자 강판과 그의 제조 방법 | |
JP6601646B2 (ja) | 無方向性電磁鋼板の製造方法とモータコアの製造方法ならびにモータコア | |
JP7054074B2 (ja) | 無方向性電磁鋼板の製造方法とモータコアの製造方法およびモータコア | |
WO2013080891A1 (ja) | 無方向性電磁鋼板の製造方法 | |
WO2018079059A1 (ja) | 無方向性電磁鋼板およびその製造方法 | |
WO2018135414A1 (ja) | 無方向性電磁鋼板およびその製造方法 | |
JP2011084761A (ja) | 回転子用無方向性電磁鋼板およびその製造方法 | |
CN113727788B (zh) | 无取向性电磁钢板的制造方法 | |
WO2017056383A1 (ja) | 無方向性電磁鋼板およびその製造方法 | |
KR20200076831A (ko) | 무방향성 전기강판 및 그 제조방법 | |
CN117545868A (zh) | 无取向性电磁钢板及其制造方法 | |
WO2024214370A1 (ja) | 無方向性電磁鋼板 | |
WO2024214371A1 (ja) | 無方向性電磁鋼板 | |
TWI824601B (zh) | 無方向性電磁鋼板及其製造方法、以及馬達鐵芯 | |
WO2024089828A1 (ja) | 無方向性電磁鋼板およびその製造方法 | |
WO2024089827A1 (ja) | 無方向性電磁鋼板およびその製造方法、ならびにモータコア | |
CN116848271A (zh) | 无取向电工钢板及其制造方法 | |
JPH1046247A (ja) | 磁束密度が高い無方向性電磁鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019559860 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19880415 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217010245 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3116571 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021006711 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019880415 Country of ref document: EP Effective date: 20210430 |
|
ENP | Entry into the national phase |
Ref document number: 112021006711 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210408 |