WO2020085028A1 - 画像認識装置および画像認識方法 - Google Patents
画像認識装置および画像認識方法 Download PDFInfo
- Publication number
- WO2020085028A1 WO2020085028A1 PCT/JP2019/039070 JP2019039070W WO2020085028A1 WO 2020085028 A1 WO2020085028 A1 WO 2020085028A1 JP 2019039070 W JP2019039070 W JP 2019039070W WO 2020085028 A1 WO2020085028 A1 WO 2020085028A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- condition
- recognition rate
- recognition
- subject
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B15/00—Special procedures for taking photographs; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B7/00—Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
- G03B7/08—Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
- G03B7/091—Digital circuits
- G03B7/093—Digital circuits for control of exposure time
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/61—Control of cameras or camera modules based on recognised objects
- H04N23/611—Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/617—Upgrading or updating of programs or applications for camera control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/63—Control of cameras or camera modules by using electronic viewfinders
- H04N23/631—Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
- H04N23/632—Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters for displaying or modifying preview images prior to image capturing, e.g. variety of image resolutions or capturing parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/64—Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/66—Remote control of cameras or camera parts, e.g. by remote control devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/72—Combination of two or more compensation controls
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/73—Circuitry for compensating brightness variation in the scene by influencing the exposure time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/743—Bracketing, i.e. taking a series of images with varying exposure conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
Definitions
- the present disclosure relates to an image recognition device and an image recognition method.
- Such a device may be mounted on various machines.
- An example of such a machine is an autonomous vehicle.
- Examples of such machines include robots used for factory automation.
- Patent Document 1 describes an example of an algorithm.
- This disclosure is A processing circuit that receives a first image obtained by multiple exposure shooting of a first subject and calculates a recognition rate of the first subject using the first image, When the recognition rate is smaller than a recognition rate threshold value, a control circuit for changing the conditions of the multiple-exposure shooting, An image recognition device is provided.
- the present disclosure provides technology for improving the accuracy of information processing using images.
- FIG. 1 is a block diagram of an image recognition device.
- FIG. 2A is an explanatory diagram of a method of multiple exposure shooting.
- FIG. 2B is an explanatory diagram of how to perform multiple exposure shooting.
- FIG. 2C is a block diagram of the image recognition device.
- FIG. 3 is an explanatory diagram of an image obtained by multiple exposure shooting.
- FIG. 4A is an explanatory diagram of a method of multiple exposure shooting.
- FIG. 4B is an explanatory diagram of an image obtained by multiple exposure shooting.
- FIG. 5A is an explanatory diagram of an image obtained by multiple exposure shooting.
- FIG. 5B is an explanatory diagram of an image obtained by multiple exposure shooting.
- FIG. 6 is a flowchart showing the control of the image recognition device.
- FIG. 6 is a flowchart showing the control of the image recognition device.
- FIG. 7A is an explanatory diagram showing changes in conditions for multiple exposure shooting.
- FIG. 7B is an explanatory diagram showing changes in the recognition rate.
- FIG. 8 is an explanatory diagram showing changes in the exposure interval and the recognition rate.
- FIG. 9A is an explanatory diagram showing changes in conditions for multiple exposure shooting.
- FIG. 9B is an explanatory diagram showing changes in the recognition rate.
- FIG. 10 is an explanatory diagram of the neural network.
- FIG. 11 is a block diagram of the image recognition device.
- FIG. 12 is a flowchart showing the control of the image recognition device.
- FIG. 13A is an explanatory diagram showing changes in conditions for multiple exposure shooting.
- FIG. 13B is an explanatory diagram showing changes in the error E.
- FIG. 14 is a flowchart showing the control of the image recognition device.
- FIG. 13A is an explanatory diagram showing changes in conditions for multiple exposure shooting.
- FIG. 13B is an explanatory diagram showing changes in the error E.
- FIG. 15 is an explanatory diagram showing changes in the exposure interval and the recognition rate.
- FIG. 16 is a flowchart showing the control of the image recognition device.
- FIG. 17 is a flowchart showing the control of the image recognition device.
- FIG. 18 is an explanatory diagram showing changes in the exposure interval.
- FIG. 19 is a flowchart showing the control of the image recognition device.
- FIG. 20 is a flowchart showing the control of the image recognition device.
- FIG. 21A is an explanatory diagram showing changes in conditions for multiple-exposure shooting.
- FIG. 21B is an explanatory diagram showing changes in the error E.
- FIG. 22 is a flowchart showing the control of the image recognition device.
- Patent Document 1 describes an example of information processing using images.
- an image obtained by performing one exposure is used.
- the present inventor has considered increasing the accuracy of information processing by using images taken by multiple exposure.
- An image recognition device that receives a first image obtained by multiple exposure shooting of a first subject and calculates a recognition rate of the first subject using the first image, When the recognition rate is smaller than a recognition rate threshold value, a control circuit for changing the conditions of the multiple-exposure shooting, Equipped with.
- the technology according to the first aspect is suitable for ensuring the accuracy of recognition rate calculation.
- the condition changed when the recognition rate is smaller than the recognition rate threshold is (a) in obtaining the first image The length of each exposure period employed, (b) the length of each exposure interval employed in obtaining the first image, (c) the number of exposures employed in obtaining the first image, (d) the Exposure sensitivity of the first image, (e) gain of the imaging device used to obtain the first image, (f) focal length of the imaging device used to obtain the first image, (g) the first It may include at least one selected from the group consisting of (h) the output resolution of the first image, and the diaphragm of the imaging device used to obtain the image.
- the change of the conditions of the second aspect can contribute to the improvement of the recognition rate.
- the image recognition apparatus recognizes the built-in display device that displays the recognition rate and the external display device that displays the recognition rate. It may further include at least one selected from the output interfaces for outputting the rate.
- the recognition rate can be visually confirmed.
- the image recognition apparatus may further include an imaging device used to obtain the first image.
- the first image can be easily obtained.
- condition and the first image may be associated with each other.
- the fifth aspect it is easy to use the condition of multiple exposure shooting as information.
- condition held in the control circuit may be used as the condition associated with the first image.
- the image recognition apparatus may further include an imaging device used to obtain the first image, and the condition associated with the first image.
- the condition held in the imaging device may be used.
- the processing circuit is a teacher that respectively corresponds to the first image and the object name of the first subject.
- Supervised learning may be performed using a plurality of combinations of images and correct labels, and after the supervised learning, the recognition rate may be calculated using the first image.
- the image recognition apparatus of the eighth aspect may further include a second imaging device used to obtain the teacher image.
- the processing circuit reads an operation model represented by a neural network, and the processing circuit performs the supervised learning.
- the recognition rate may be calculated using the first image after the supervised learning.
- Neural networks are suitable for information processing using images.
- the recognition rate is calculated by the processing circuit, and the recognition rate is smaller than the recognition rate threshold value.
- the change of the condition by the control circuit in the case may be repeated until the ending condition is satisfied.
- the 11th mode is suitable for obtaining a high recognition rate.
- the processing circuit has a first recognition rate that is the recognition rate and the first subject is A first recognition rate that represents the likelihood of being a first object and a second recognition rate that represents the likelihood of that the first subject is a second object may be calculated, and the control circuit may Even when the difference obtained by subtracting the second recognition rate from the first recognition rate is Z or less, the condition of the multiple exposure shooting may be changed.
- Z is a value of 0 or more.
- the image recognition device so that the subject in the image can be recognized not only as a specific object but also as another object.
- the technique according to the ninth aspect can be used in such an image recognition device.
- the processing circuit calculates a plurality of recognition rates under a plurality of conditions different from each other.
- the recognition rate for a plurality of references may be calculated by performing the first image, and the control circuit may compare the recognition rates for a plurality of references with each other to obtain the base recognition condition.
- a certain base condition may be selected, and the processing circuit is different from the first image obtained by the base condition and different from the first image for calculating the recognition rates for a plurality of references.
- the first image may be used to calculate the recognition rate to be compared with the recognition rate threshold.
- the thirteenth aspect is advantageous from the viewpoint of quickly finding the conditions for multiple-exposure shooting at which a high recognition rate can be obtained.
- An image recognition device is A first image obtained by multiple exposure shooting of a first subject is input, and an estimated range that is an estimated range of the velocity of the first subject and a range of a value V ⁇ error E is calculated using the first image.
- the technology according to the fourteenth aspect is suitable for ensuring the calculation accuracy of the speed of the first subject.
- An image recognition method is Calculating a recognition rate of the first subject using a first image obtained by multiple exposure shooting of the first subject; Changing the condition of the multiple-exposure shooting when the recognition rate is smaller than a recognition rate threshold value.
- the technology according to the fifteenth aspect is suitable for ensuring the accuracy of the recognition rate calculation.
- An image recognition method Calculating an estimated range, which is an estimated range of the velocity of the first subject and is a range of a value V ⁇ error E, using a first image obtained by multiple exposure photographing of the first subject; Changing the condition of the multiple-exposure shooting when the error E is larger than an error threshold.
- the technology according to the sixteenth aspect is suitable for ensuring the calculation accuracy of the speed of the first subject.
- An image recognition device is An image recognition device comprising a memory and a processor, The processor is The first image obtained by multiple exposure shooting of the first subject is input, Calculating the recognition rate of the first subject using the first image, When the recognition rate is smaller than the recognition rate threshold value, the condition of the multiple exposure shooting is changed.
- the technology according to the seventeenth aspect is suitable for ensuring the accuracy of recognition rate calculation.
- An image recognition device is An image recognition device comprising a memory and a processor, The processor is The first image obtained by multiple exposure shooting of the first subject is input, Using the first image, an estimated range that is an estimated range of the velocity of the first subject and is a range of value V ⁇ error E is calculated, When the error E is larger than the error threshold, the condition for the multiple exposure shooting is changed.
- the technology according to the eighteenth aspect is suitable for ensuring the calculation accuracy of the speed of the first subject.
- An image recognition device is A processing circuit that receives a first image obtained by multiple exposure shooting of a first subject and calculates a recognition rate of the first subject using the first image, A control circuit for changing the conditions of the multiple-exposure shooting, The processing circuit calculates the recognition rates by performing the calculation of the recognition rates on the plurality of first images obtained under the different conditions.
- the technology according to the nineteenth aspect is suitable for ensuring the accuracy of recognition rate calculation.
- An image recognition device is A first image obtained by multiple exposure shooting of a first subject is input, and an estimated range that is an estimated range of the velocity of the first subject and a range of a value V ⁇ error E is calculated using the first image.
- the technology according to the twentieth aspect is suitable for ensuring the calculation accuracy of the speed of the first subject.
- Image recognition device technology can be applied to image recognition methods.
- the technique of the image recognition method can be applied to the image recognition device.
- FIG. 1 shows an image recognition device 99 according to the first embodiment.
- the image recognition device 99 includes an optical system 110, an image pickup device 100, an image forming circuit 130, a control circuit 120, a processing circuit 170, and a display device 160.
- the image forming circuit 130 includes an output buffer 140.
- the image recognition device 99 includes a camera unit 80.
- the camera unit 80 includes an optical system 110, an image pickup apparatus 100, an image forming circuit 130, and a control circuit 120.
- the optical system 110 includes at least one lens.
- the control circuit 120 is a system controller.
- the term recognition rate may be used.
- the recognition rate will be described.
- the image recognition device 99 recognizes the subject in the image.
- the recognition rate is calculated as a numerical value representing the certainty of the recognition.
- the image recognition device 99 can perform recognition in a mode in which a subject is an object with a recognition rate of X and Y.
- X is a value of 0% or more and 100% or less.
- Y is the object name. Y is, for example, a car, a person, a house, a sign, or a traffic light.
- the number of values that the recognition rate can take is more than two. Possible values of the recognition rate include values greater than 0% and less than 100%.
- a computer is typically configured in the processing circuit 170. The recognition rate can take any value from 0% to 100% within the range of the accuracy of the computer.
- the imaging device 100 images a subject through the optical system 110.
- the imaging device 100 includes an image sensor.
- the image capturing apparatus 100 captures an image using an image sensor.
- the image pickup apparatus 100 outputs a signal representing the image pickup content. This signal corresponds to RAW data.
- the image forming circuit 130 converts this signal into an image. Specifically, the image forming circuit 130 converts RAW data into image data. In this way, the RAW data is imaged. Hereinafter, the image data may be simply referred to as an image.
- the image forming circuit 130 outputs the image to the processing circuit 170 via the output buffer 140.
- the image forming circuit 130 may be capable of executing various types of image processing.
- the image processing is, for example, various correction processing and color processing.
- Examples of the correction processing include dark frame correction and defective pixel correction.
- Examples of color processing include white balance processing, color matrix processing, and Bayer interpolation processing.
- Other image processing may also be employed.
- the edge enhancement and binarization processing can contribute to the improvement of the recognition rate.
- the image processing may be performed by the processing circuit 170.
- the image recognition device 99 may not have a component that performs image processing.
- the processing circuit 170 calculates the recognition rate using the image. Specifically, the processing circuit 170 recognizes what the subject in the image is. In other words, the processing circuit 170 recognizes the object name of the subject in the image. Then, the processing circuit 170 calculates a recognition rate indicating the certainty of the recognition.
- the processing circuit 170 outputs the image, the recognized object name, and the recognition rate of the recognition to the display device 160.
- the processing circuit 170 also outputs the recognition rate to the control circuit 120.
- the display device 160 displays the image, the recognized object name, and the recognition rate of the recognition.
- the control circuit 120 controls the imaging conditions of the imaging device 100.
- the control circuit 120 also controls the image forming conditions of the image forming circuit 130.
- the image pickup apparatus 100 can perform multiple exposure shooting.
- RAW data including a plurality of images of one subject can be obtained by multiple exposure shooting.
- the image forming circuit 130 can convert such RAW data into an image including a plurality of images of one subject.
- a first image such an image may be referred to as a first image.
- this one subject may be referred to as a first subject.
- the processing circuit 170 receives the first image obtained by multiple exposure shooting of the first subject.
- the processing circuit 170 calculates the recognition rate of the first subject using the first image.
- the sharpness of the contour of the subject in the image and the large amount of motion information included in the image can be easily achieved at the same time as compared with the image including only one image of the subject. Therefore, the first image is advantageous from the viewpoint of obtaining a high recognition rate.
- the processing circuit 170 recognizes the object name of the first subject in the first image, and calculates the recognition rate indicating the certainty of the recognition.
- the following will further explain the reason why the first image is advantageous from the viewpoint of obtaining a high recognition rate as compared with the image including only one image of one subject, with specific examples.
- An image that contains only one image of one subject may also contain motion information. For example, consider shooting a moving car with a long exposure time. In that case, an image of a subject with large blur is obtained. According to the image including the image of the subject with large blur, it is easy to determine whether or not the subject is moving. This is because such an image contains motion information about the subject. However, in an image of a subject with large blurring, the contours that characterize the subject are blurred. For this reason, it is difficult to determine that the subject corresponding to the image is a car.
- FIG. 4B The way in which this compatibility is achieved by multiple-exposure shooting appears in the upper part of FIG. 4B, which will be described in detail later.
- a clear contour of the subject C is obtained. This sharp contour characterizes the car. Therefore, it is easy to determine from the image in FIG. 4B that the subject corresponding to the image is a car.
- the image of FIG. 4B also includes multiple images of subject C, and thus motion information. Therefore, it is easy to determine from the image that the vehicle, which is the subject, is traveling. As described above, the ease of distinguishing between them is advantageous from the viewpoint of ensuring the accuracy of calculating the recognition rate and the accuracy of calculating the speed of the first subject.
- the control circuit 120 changes the conditions for multiple exposure shooting when the recognition rate is smaller than the recognition rate threshold. This change can contribute to the improvement of the recognition rate.
- the recognition rate threshold value is, for example, a specific value in the range of 10% or more and 70% or less.
- the processing circuit 170 and the control circuit 120 have a configuration suitable for improving the accuracy of recognition rate calculation. Further, the operations of the processing circuit 170 and the control circuit 120 do not require an excessive calculation load. Therefore, according to the technique of the present embodiment, it is possible to achieve both the suppression of the calculation load and the improvement of the recognition rate calculation accuracy.
- the processing circuit 170 uses the first image to calculate the recognition rate again.
- the calculation of the recognition rate by the processing circuit 170 and the change of the condition by the control circuit 120 when the recognition rate is smaller than the recognition rate threshold value are satisfied until the end condition is satisfied. Repeated.
- the mode of changing the conditions for multiple exposure shooting is not particularly limited.
- the imaging device 100 may have a register.
- the control circuit 120 can write the condition to the register. This writing can be performed by serial communication or the like, for example.
- the conditions of the multiple-exposure shooting that are changed when the recognition rate is smaller than the recognition rate threshold include, for example, condition (a), condition (b), condition (c), condition (d), condition (e), and condition ( At least one selected from the group consisting of f), condition (g) and condition (h).
- condition (a) is the length of each exposure period adopted in obtaining the first image.
- condition (b) is the length of each exposure interval adopted in obtaining the first image.
- the exposure interval corresponds to the non-exposure period between the exposure periods.
- the condition (c) is the number of exposures that is adopted in obtaining the first image.
- the condition (d) is the exposure sensitivity of the first image.
- the condition (e) is the gain of the imaging device 100 used to obtain the first image.
- the condition (f) is the focal length of the imaging device 100 used to obtain the first image.
- the condition (g) is an aperture of the image pickup apparatus 100 used to obtain the first image.
- the condition (h) is the output resolution of the first image. Changes in these conditions can contribute to an improvement in recognition rate.
- the display device 160 is an internal display device of the image recognition device 99.
- the image recognition device 99 includes the internal display device that displays the recognition rate.
- the internal display device can display the first image, the recognized object name, and the recognition rate of the recognition.
- the image recognition device 99 may include an output interface that outputs the recognition rate to an external display device that displays the recognition rate.
- the image recognition device 99 may include an output interface that outputs the first image, the recognized object name, and the recognition rate of the recognition to an external display device. Then, the external display device may display the first image, the recognized object name, and the recognition rate of the recognition.
- the image recognition device 99 may include one of an internal display device and an output interface.
- the image recognition device 99 may include both of them.
- the multiple exposure shooting condition and the first image are associated with each other. This makes it easy to use the conditions for multiple exposure shooting as information. This association is performed, for example, after the first image is obtained.
- the display device 160 displays the multiple-exposure shooting condition when the first image is subjected to multiple-exposure shooting, superimposed on the first image. This superposition corresponds to the correspondence between the multiple exposure shooting condition and the first image.
- information indicating that the multiple-exposure shooting condition when the first image is subjected to multiple-exposure shooting corresponds to the first image is stored in a text file format. This storage also corresponds to the correspondence between the multiple exposure shooting condition and the first image.
- condition held in the control circuit 120 is used as the condition associated with the first image.
- the image recognition device 99 includes an imaging device 100 used to obtain the first image.
- the condition held in the image capturing apparatus 100 is used as the condition associated with the first image.
- FIGS. 2A and 2B show a format in which there are multiple exposure periods in one frame period.
- the exposure operation is performed a plurality of times during one frame period. Then, the signal obtained by the exposure is read.
- the “sensor data output” in FIGS. 2A and 2B corresponds to this reading.
- the formats of FIGS. 2A and 2B can be realized when the image sensor of the imaging device 100 has a global shutter function.
- the format of FIG. 2A can be realized when the imaging device 100 has an image sensor that performs exposure and readout serially.
- the non-exposure period and the exposure period appear alternately in one frame period, and then the signals obtained by these multiple exposures are read.
- the format of FIG. 2A is adopted.
- FIG. 2B The format of FIG. 2B can be realized when the imaging device 100 has an image sensor that performs exposure and reading in parallel.
- frame F1 is followed by frame F2.
- the non-exposure period and the exposure period appear alternately.
- the signals obtained by these multiple exposures are read in the frame F2.
- the non-exposure period and the exposure period appear alternately in one frame, and the signals obtained by these exposures are read in the next frame.
- the multiple-exposure shooting and the global shutter function can be realized by, for example, a stacked imaging device in which a photoelectric conversion film is sandwiched between a pixel electrode and a counter electrode.
- the exposure period and the non-exposure period can be set by controlling the voltage applied to the counter electrode.
- the stacking type image pickup device refer to Patent Document 2 and the like.
- the imaging device 100 does not have the global shutter function. Even with such an image recognition device 99, it is possible to obtain a first image in which the first subject has been subjected to multiple exposure shooting.
- the image forming circuit 130 according to the modified example includes a frame memory 151 and a frame addition circuit 152, as shown in FIG. 2C.
- the imaging device 100 outputs the data obtained by the image sensor to the frame memory 151. This one output data includes only one image of one subject.
- the frame memory 151 stores a plurality of output data.
- the frame addition circuit 152 performs frame addition of these plural output data. In this way, a pseudo multiple exposure image is obtained.
- such a pseudo multiple exposure image is also included in the first image. Even when a pseudo multiple exposure image is obtained, it can be said that the first subject is subjected to multiple exposure shooting. Specifically, in this case, it can be said that the imaging device 100 cooperates with the image forming circuit 130 to perform multiple-exposure shooting of the first subject.
- the expression “adopted for obtaining the first image” is intended to include both the case adopted in the image pickup apparatus 100 and the case adopted in the image forming circuit 130.
- the setting of the conditions for the multiple-exposure shooting can be performed for the imaging device 100 in the examples of FIGS. 2A and 2B. In the example of FIG. 2C, this setting can be performed on the image pickup apparatus 100 and the image forming circuit 130.
- FIGS. 3, 4A, 4B, 5A, and 5B An image obtained by multiple-exposure shooting will be described with reference to FIGS. 3, 4A, 4B, 5A, and 5B.
- FIG. 3 is an example of an image obtained by multiple exposure shooting.
- the image of FIG. 3 shows a subject A, a subject B, a subject C, and a subject D.
- Subject A and subject B are stationary subjects.
- the image of the stationary subject is obtained by multiple-exposure shooting and when it is obtained by normal-exposure shooting, there is a difference in luminance value when the total exposure time differs between multiple-exposure shooting and normal-exposure shooting.
- the subject A is a tree.
- Subject B is a house.
- Subjects C and D are moving subjects. When multiple-exposure shooting is performed on a moving subject, a plurality of images of the subject appear to be offset from each other.
- the subject C is a fast moving subject. There is a size between the images of the subject C.
- the subject D is a subject whose movement is slow. There is a small gap between the images of the subject C.
- the subject C is a car.
- the subject D is a human.
- FIG. 4A shows that the format of FIG. 2A is adopted in the multiple-exposure shooting of the subject C.
- the exposure periods T1, T2 and T3 appear in this order.
- FIG. 4A shows the exposure intervals W1 and W2. As shown, the exposure intervals correspond to non-exposure periods between exposure periods.
- An image of the subject C obtained during the exposure period T1, an image of the subject C obtained during the exposure period T2, and an image of the subject C obtained during the exposure period T3 are shown on the lower side of FIG. 4B.
- the multiple exposure image shown in the upper part of FIG. 4B is obtained.
- the obtained multiple exposure image can be output from the image sensor.
- FIG. 5A indicates the traveling direction of the subject C.
- FIG. 5B shows each image when the subject C moves in the traveling direction.
- the image on the upper side of FIG. 5B represents a multiple-exposure image obtained when the exposure interval is long. In this case, the deviation between the images of the subject C is large.
- the lower image in FIG. 5B represents a multiple-exposure image obtained when the exposure interval is short. In this case, the shift between the images of the subject C is small.
- the magnitude of the shift between the images of the subject C changes according to the exposure interval.
- step S1 the initial values of the conditions for multiple exposure shooting are set. This setting can be performed by the control circuit 120. After step S1, the flow proceeds to step S2.
- step S2 it is determined whether the termination condition is satisfied. This determination is performed by the control circuit 120, for example. A specific example of the ending condition will be described later. If the end condition is satisfied, the flow ends. If the ending condition is not satisfied, the flow proceeds to step S3.
- step S3 imaging is performed by the imaging device 100. Imaging is performed according to the set multiple exposure shooting conditions. After step S3, the flow proceeds to step S4.
- step S4 the RAW data is output from the image pickup apparatus 100 to the image forming circuit 130.
- This RAW data represents the imaging content of step S3.
- step S4 the flow proceeds to step S5.
- step S5 the RAW data is imaged by the image forming circuit 130.
- the image forming circuit 130 outputs the obtained image data to the processing circuit 170.
- step S6 the flow proceeds to step S6.
- step S6 the processing circuit 170 performs recognition processing.
- a subject included in the image is recognized.
- the image used for recognition may be the above-described first image obtained by multiple exposure shooting of the first subject.
- the processing circuit 170 uses the first image to calculate the recognition rate of the first subject.
- the processing circuit 170 outputs the recognition rate to the control circuit 120.
- the processing circuit 170 recognizes the object name of the first subject in the first image, and calculates the recognition rate indicating the certainty of the recognition. Then, the processing circuit 170 outputs the recognition rate to the control circuit 120.
- step S6 the flow proceeds to step S7.
- step S7 the control circuit 120 determines whether the recognition rate is smaller than the recognition rate threshold value. If the recognition rate is lower than the recognition rate threshold value, the flow proceeds to step S8. If the recognition rate is equal to or higher than the recognition rate threshold value, the flow proceeds to step S2.
- step S8 the control circuit 120 changes the conditions for multiple exposure shooting. After step S8, the flow proceeds to step S2.
- the first example of the ending condition in step S2 is the condition that an ending command is input from outside the image recognition device 99.
- the flow ends. If the end command has not been input, the flow proceeds to step S3.
- step S2 The second example of the ending condition of step S2 is the condition that an instruction to turn off the power of the image recognition device 99 is input. When this command is input, the flow ends. If this instruction has not been input, the flow proceeds to step S3.
- a third example of the termination condition of step S2 is a condition that the recognition rate calculated in the latest step S6 is larger than the first upper limit threshold. If the recognition rate is greater than the first upper threshold, the flow ends. If the recognition rate is less than or equal to the first upper limit threshold, the flow proceeds to step S3.
- the first upper limit threshold is typically larger than the recognition rate threshold.
- a fourth example of the ending condition of step S2 is a condition that the recognition rate calculated in the latest step S6 is smaller than the first lower limit threshold. If the recognition rate is lower than the first lower limit threshold, the flow ends. If the recognition rate is equal to or higher than the first lower limit threshold, the flow proceeds to step S3.
- the first lower limit threshold value is typically smaller than the recognition rate threshold value.
- the flow may be ended when the condition of the third example or the condition of the fourth example is satisfied, and otherwise the flow may proceed to step S3.
- the fifth example of the ending condition of step S2 is a condition that the situation that the recognition rate calculated in step S6 is larger than the first upper limit threshold continues for the first threshold number of times. If this situation continues for the first threshold number of times, the flow ends. Otherwise, the flow proceeds to step S3. It can be said that this condition is a condition that the frames that bring about the above situation appear consecutively for the first threshold number of times.
- the sixth example of the ending condition of step S2 is a condition that the situation that the recognition rate calculated in step S6 is smaller than the first lower limit threshold continues for the second threshold number of times. If this situation continues for the second threshold number of times, the flow ends. Otherwise, the flow proceeds to step S3. It can be said that this condition is a condition that the frames that bring about the above situation appear consecutively for the second threshold number of times.
- the flow may be terminated if the condition of the fifth example or the condition of the sixth example is satisfied, and if not, the flow may proceed to step S3.
- the first threshold number and the second threshold number may be the same or different.
- a seventh example of the ending condition of step S2 is a condition that the imaging in step S3 is performed a third threshold number of times after “start” in FIG. If the imaging in step S3 has been performed the third threshold number of times, the flow ends. Otherwise, the flow proceeds to step S3. It can be said that this condition is a condition that the frame is generated the third threshold number of times after “start” in FIG.
- FIG. 7A shows conditions for multiple exposure shooting in frame n and conditions for multiple exposure shooting in frame n + ⁇ . n and ⁇ are natural numbers. FIG. 7A shows that the exposure interval is changed from 2 ms to 4 ms according to the flowchart of FIG.
- FIG. 7B shows the recognition rate in frame n and the recognition rate in frame n + ⁇ .
- the first subject is an automobile.
- FIG. 7B shows that the recognition rate of the first subject is improved according to the flowchart of FIG. Specifically, when the first subject in the first image is recognized as an automobile, the recognition rate indicating the certainty of the recognition is increased from 35% to 85%.
- the exposure interval is lengthened when the recognition rate is smaller than the recognition rate threshold value in step S7.
- increasing the exposure interval may increase the recognition rate.
- the recognition rate may increase by shortening the exposure interval.
- the recognition rate is smaller than the recognition rate threshold value in step S7, the numerical value may be increased or decreased.
- the recognition rate increases by changing the numerical value in the direction of increasing or decreasing, it is possible to change the numerical value in that direction until the recognition rate becomes equal to or higher than the recognition rate threshold value.
- the recognition rate decreases when the numerical value is changed in that direction, the numerical value may be changed in the opposite direction. Then, when the recognition rate increases due to the change of the numerical value in the opposite direction, it is possible to change the numerical value in the opposite direction until the recognition rate becomes equal to or higher than the recognition rate threshold value.
- the recognition rate may increase as the above number is increased or decreased. However, typically, the above numerical values have optimum values for increasing the recognition rate. In this typical case, when the numerical value is changed in a certain direction, the change in the recognition rate changes from increase to decrease when the numerical value crosses the optimum value.
- the recognition rate can be a value close to the maximum value by adopting a numerical value in the vicinity of the stride.
- the recognition rate will change as the conditions for multiple exposure shooting change according to the flowchart in Figure 6.
- An example of the mode of change will be described with reference to FIG. In the example of FIG. 8, it is assumed that the changed condition is the exposure interval.
- step S7 it is determined in step S7 regarding the frame N that the recognition rate is equal to or higher than the recognition rate threshold value. Therefore, in the next frame N + 1, the exposure interval of the frame N is maintained.
- step S7 regarding frame N + 1 it is determined that the recognition rate is equal to or higher than the recognition rate threshold value. Therefore, in the next frame N + 2, the exposure interval of the frame N + 1 is maintained.
- step S7 regarding frame N + 2 it is determined that the recognition rate is smaller than the recognition rate threshold value. Therefore, in the next frame N + 3, an exposure interval longer than the exposure interval of the frame N + 2 is adopted.
- step S7 regarding frame N + 3 the recognition rate is determined to be smaller than the recognition rate threshold value. Therefore, in the next frame N + 4, an exposure interval longer than the exposure interval of the frame N + 3 is adopted.
- step S7 regarding frame N + 4 it is determined that the recognition rate is smaller than the recognition rate threshold value. Therefore, in the next frame N + 5, an exposure interval longer than the exposure interval of the frame N + 4 is adopted.
- the recognition rate exceeds the recognition rate threshold as a result of adopting an exposure interval longer than the frame N + 4.
- the terms first recognition rate, second recognition rate and third recognition rate may be used.
- the first recognition rate represents the certainty that the first subject is the first object.
- the first recognition rate corresponds to the recognition rate in the flowchart of FIG.
- the second recognition rate represents the probability that the first subject is the second object.
- the third recognition rate represents the certainty that the first subject is the third object.
- the first object is an object whose priority is 1.
- the second object is an object whose priority is 2.
- the third object is an object whose priority is 3.
- a low priority value means a high priority. That is, of these objects, the first object has the highest priority.
- the first recognition rate, the second recognition rate, and the third recognition rate are calculated, and the first recognition rate is not the maximum among these. In that case, the conditions for multiple exposure shooting are changed so that the first recognition rate is maximized among the first recognition rate, the second recognition rate, and the third recognition rate.
- the first object is a person.
- the second object is a car.
- the third object is a house.
- the first recognition rate represents the likelihood that the first subject is a person.
- the second recognition rate represents the certainty that the first subject is an automobile.
- the third recognition rate represents the certainty that the first subject is a house.
- the exposure interval is adopted as the condition for changing the multiple-exposure shooting.
- FIG. 9A shows the conditions for multiple exposure shooting in frame n and the conditions for multiple exposure shooting in frame n + ⁇ . n and ⁇ are natural numbers. FIG. 9A shows that the exposure interval is changed from 2 ms to 4 ms.
- FIG. 9B shows the recognition rate in frame n and the recognition rate in frame n + ⁇ .
- the first recognition rate is 40%.
- the second recognition rate is 75%.
- the third recognition rate is 20%.
- the first recognition rate is higher than the third recognition rate.
- the first recognition rate is lower than the second recognition rate.
- the exposure interval is changed so that the first recognition rate becomes the maximum among the first recognition rate, the second recognition rate, and the third recognition rate.
- the first recognition rate is maximum among the first recognition rate, the second recognition rate, and the third recognition rate.
- the first recognition rate is 60%.
- the second recognition rate is 30%.
- the third recognition rate is no recognition. No recognition can be treated as 0%.
- the subject in the image is the first object, the second object, and the third object is recognized.
- the number of objects recognized as correct object candidates may be two or four or more.
- the processing circuit 170 has a first recognition rate that is the above-described recognition rate and that represents the likelihood that the first subject is the first object, and the first subject is the second object. And a second recognition rate that represents the certainty of the thing. Then, the control circuit 120 may change the condition of the multiple-exposure shooting even when the difference obtained by subtracting the second recognition rate from the first recognition rate is Z or less.
- Z is a value of 0 or more.
- AZ may be a value greater than 0, for example, a value in the range of 10% or more and 20% or less. By doing so, the first recognition rate can be made higher than the second recognition rate. It is also possible to improve the reliability of recognition by making a significant difference between the first recognition rate and the second recognition rate.
- the subject in the image may not only be a specific object but also another object.
- the technique that can be used in that case is not limited to the technique of setting the priority.
- the larger one of the first recognition rate and the second recognition rate obtained first may be associated with the recognition rate in the flowchart of FIG. 6.
- a plurality of object name candidates for a certain first subject are first obtained together with a recognition rate indicating the certainty.
- the maximum recognition rate among the plurality of recognition rates can be associated with the recognition rate of the first subject in the flowchart of FIG.
- the processing circuit 170 performs supervised learning using a plurality of combinations of teacher images and correct labels.
- the teacher image corresponds to the first image.
- the correct label corresponds to the object name of the first subject.
- the object name is, for example, a car, a person, a house, or the like.
- the processing circuit 170 calculates the recognition rate using the first image after the supervised learning. According to such a processing circuit 170, the accuracy of calculating the recognition rate can be ensured.
- the image recognition device 99 includes the imaging device 100 used to obtain the first image.
- this imaging device may be referred to as a first imaging device.
- the image recognition device 99 includes a second imaging device used to obtain a teacher image.
- the second image pickup device is the same as the first image pickup device 100. That is, one first imaging device 100 is used as both the first imaging device and the second imaging device. However, the second imaging device may be an imaging device different from the first imaging device 100.
- the processing circuit 170 reads an operation model represented by a neural network.
- the processing circuit 170 performs supervised learning, and after the supervised learning, calculates the recognition rate using the first image.
- Such a processing circuit 170 can perform supervised learning based on a neural network, and can calculate a recognition rate using the first image after supervised learning.
- Neural networks are suitable for information processing using images.
- the neural network is, for example, DCNN (Deep Convolutional Neural Network).
- the DCNN shown in FIG. 10 has an input layer, a plurality of intermediate layers, and an output layer.
- the processing circuit 170 inputs a vector including values of a plurality of pixels included in the teacher image to the input layer in order to learn the DCNN. Then, the processing circuit 170 performs processing such as convolution in the intermediate layer. This convolves a plurality of pixels included in the teacher image. Then, the processing circuit 170 calculates an error between the output from the output layer and the correct answer label corresponding to the input teacher image.
- the processing circuit 170 sets the number of nodes in the output layer to three. That is, the output vector from the output layer is calculated from the first output value output from the first node, the second output value output from the second node, and the third output value output from the third node. Become.
- the processing circuit 170 makes the first output value correspond to the certainty that the subject of the teacher image is a person.
- the processing circuit 170 makes the second recognition rate correspond to the certainty that the subject of the teacher image is an automobile.
- the processing circuit 170 makes the third output value correspond to the certainty that the subject of the teacher image is a house. Further, the processing circuit 170 generates a teacher vector corresponding to the correct answer label.
- the processing circuit 170 when the correct answer label is a person, the teacher vector (1, 0, 0) is generated. Then, the processing circuit 170 obtains an error vector between the teacher vector and the output vector from the output layer of the DCNN. The processing circuit 170 updates the coefficient (for example, weight) of each node in the intermediate layer so that the error vector approaches the zero vector. Further, the processing circuit 170 may update the coefficient of each node in the input layer as well as the intermediate layer.
- the processing circuit 170 learns DCNN by using a plurality of combinations of the teacher image and the correct answer label.
- the learning mode of DCNN is not limited to the above example.
- the processing circuit 170 uses the learned DCNN in order to calculate the recognition rate for the first image. Specifically, the processing circuit 170 inputs the values of the plurality of pixels included in the first image to the input layer of the DCNN, and performs the convolution processing in the intermediate layer. Then, the processing circuit 170 obtains the recognition rate based on the output vector from the output layer. In the above example, when the output vector (0.04, 0.92, 0.01) is obtained, the processing circuit 170 determines whether the first subject in the first image is the automobile. A recognition rate of 0.92 is calculated.
- the processing circuit 170 may perform preprocessing on the image before inputting the image to the DCNN.
- the pre-processing includes noise removal by filtering. This improves the accuracy of learning and recognition.
- the control circuit 120 may be configured to calculate the recognition rate by template matching, feature matching, or the like.
- the processing circuit 170 may be configured to calculate the recognition rate by a pattern recognition model such as a support vector machine (SVM).
- SVM support vector machine
- the image recognition device 199 has two camera units 80.
- the processing circuit 170 and the display device 160 are shared by these two camera units 80.
- the two camera units 80 may form a stereo camera.
- the condition of one multiple-exposure shooting of the two camera units 80 may be different from the condition of the other multiple-exposure shooting.
- the recognition processing of FIG. 6 and the like can be executed in two parallels. This enables high-speed image recognition.
- a value relating to the speed of the first subject is calculated instead of the recognition rate.
- the processing circuit 170 is input with the first image obtained by performing multiple-exposure shooting of the first subject.
- the processing circuit 170 calculates the estimated range of the velocity of the first subject using the first image.
- the estimation range is a range of value V ⁇ error E.
- the estimation range being a value V ⁇ error E means that the estimation range is a value V ⁇ error E or more and a value V + error E or less.
- the first image is more suitable for ensuring the calculation accuracy of the speed of the first subject than the image including only one image of one subject.
- the velocity may be an absolute value or a vector.
- the control circuit 120 changes the conditions for multiple exposure shooting when the error E is larger than the error threshold.
- the large error E indicates that the calculation accuracy of the velocity of the first subject is low.
- the conditions for multiple exposure shooting are changed. This change can reduce the error E. That is, it is possible to obtain a situation in which it is suggested that the calculation accuracy of the speed of the first subject is high.
- the error threshold is, for example, a specific value in the range of 3% or more and 20% or less.
- the processing circuit 170 when the conditions for multiple-exposure shooting are changed, the first image that reflects the changes is input to the processing circuit 170.
- the processing circuit 170 recalculates the estimated range of the velocity of the first subject using the first image.
- the calculation of the estimated range by the processing circuit 170 and the change of the condition by the control circuit 120 when the error E is larger than the error threshold are repeated until the end condition is satisfied. Be done.
- the processing circuit 170 outputs the image and the estimated range of the speed of the first subject to the display device 160.
- the processing circuit 170 may be configured to output the value V and the error E to the display device 160. Further, the processing circuit 170 outputs the error E to the control circuit 120.
- the display device 160 displays the image and the estimated range of the speed of the first subject.
- the display device 160 may be configured to display the value V and the error E.
- the control circuit 120 controls the imaging conditions of the imaging device 100.
- the control circuit 120 can change the conditions for multiple exposure shooting as in the first embodiment.
- the condition to be changed may include at least one selected from the group consisting of conditions (a) to (h) as in the first embodiment.
- the control circuit 120 also controls the image forming conditions of the image forming circuit 130.
- the display device 160 is an internal display device of the image recognition device 99.
- the image recognition device 99 includes the internal display device that displays the estimated range of the velocity of the first subject.
- the internal display device may specifically display the first image and the estimated range.
- the internal display device may be configured to display the value V and the error E.
- the image recognition device 99 may include an output interface that outputs the estimated range to an external display device that displays the estimated range. Specifically, the image recognition device 99 may include an output interface that outputs the first image and the estimated range to an external display device. Then, the external display device may display the first image and the estimated range. The output interface may also be configured to output the value V and the error E. Then, the external display device may be configured to display the value V and the error E.
- the image recognition device 99 may include one of an internal display device and an output interface.
- the image recognition device 99 may include both of them.
- the multiple exposure shooting condition and the first image can be associated with each other.
- the processing circuit 170 performs supervised learning using a plurality of combinations of the teacher image and the correct answer label.
- the teacher image corresponds to the first image.
- the correct answer label corresponds to the speed of the first subject.
- the processing circuit 170 uses the first image to calculate the estimated range of the velocity of the first subject. According to such a processing circuit 170, it is easy to ensure the calculation accuracy of the speed of the first subject.
- step S16 the processing circuit 170 calculates the estimated range of the speed of the subject included in the image.
- the image used for this calculation may be the above-described first image obtained by multiple exposure shooting of the first subject.
- the processing circuit 170 uses the first image to calculate the estimated range of the velocity of the first subject. Then, the processing circuit 170 outputs the error E to the control circuit 120.
- step S17 the flow proceeds to step S17.
- step S17 the control circuit 120 determines whether the error E is larger than the error threshold. If the error E is larger than the error threshold, the flow proceeds to step S8. If the error E is less than or equal to the error threshold, the flow proceeds to step S2.
- the first example of the termination condition of step S2 of the second embodiment is the first example of the termination condition of step S2 of the first embodiment.
- the second example of the termination condition of step S2 of the second embodiment is the second example of the termination condition of step S2 of the first embodiment.
- a third example of the ending condition of step S2 is a condition that the error E calculated in the latest step S16 is larger than the second upper limit threshold. If the error E is greater than the second upper threshold, the flow ends. If the error E is less than or equal to the second upper limit threshold, the flow proceeds to step S3.
- the second upper limit threshold is typically larger than the error threshold.
- a fourth example of the ending condition of step S2 is a condition that the error E calculated in the latest step S16 is smaller than the second lower limit threshold. If the error E is less than the second lower threshold, the flow ends. If the error E is greater than or equal to the second lower threshold, the flow proceeds to step S3.
- the second lower limit threshold is typically smaller than the error threshold.
- the flow may be ended when the condition of the third example or the condition of the fourth example is satisfied, and otherwise the flow may proceed to step S3.
- a fifth example of the ending condition of step S2 is a condition that the error E calculated in step S16 is larger than the second upper limit threshold continuously for the fourth threshold number of times. If this situation continues for the fourth threshold number of times, the flow ends. Otherwise, the flow proceeds to step S3. It should be noted that this condition can also be said to be a condition that the frames that bring about the above situation appear consecutively for the fourth threshold number of times.
- a sixth example of the ending condition of step S2 is that the error E calculated in step S16 is smaller than the second lower limit threshold continuously for the fifth threshold number of times. If this situation continues for the fifth threshold number of times, the flow ends. Otherwise, the flow proceeds to step S3. Note that this condition can also be said to be a condition that the frames that bring about the above situation appear consecutively for the fifth threshold number of times.
- the flow may be terminated if the condition of the fifth example or the condition of the sixth example is satisfied, and if not, the flow may proceed to step S3.
- the fourth threshold number and the fifth threshold number may be the same or different.
- the seventh example of the termination condition of step S2 of the second embodiment is the seventh example of the termination condition of step S2 of the first embodiment.
- FIG. 13A shows the conditions for multiple exposure shooting in frame n and the conditions for multiple exposure shooting in frame n + ⁇ . n and ⁇ are natural numbers. FIG. 13A shows that the exposure interval is changed from 2 ms to 4 ms according to the flowchart of FIG.
- FIG. 13B shows the value V and the error E in the frame n, and the value V and the error E in the frame n + ⁇ .
- the value V is 50 km / h.
- the error E in frame n is 15 km / h.
- the error E in the frame n + ⁇ is 5 km / h.
- the error E in frame n + ⁇ is smaller than the error E in frame n.
- FIG. 13B shows that the calculation accuracy of the velocity of the first subject is improved according to the flowchart of FIG.
- step S21 it is determined whether or not the transition condition is satisfied. A specific example of the transition condition will be described later. If the transition condition is satisfied, the flow proceeds to step S26. If the transition condition is not satisfied, the flow proceeds to step S22.
- step S22 steps S3, S4, S5 and S6 of FIG. 6 are executed in this order. After step S22, the flow proceeds to step S23.
- step S23 it is determined whether the frame for which the recognition process is performed in step S6 is an even frame or an odd frame counted from "start". If this frame is an even frame, the flow proceeds to step S24. If this frame is an odd frame, the flow proceeds to step S25.
- step S24 the control circuit 120 changes the condition for multiple-exposure shooting to condition A. After step S24, the flow proceeds to step S21.
- step S25 the control circuit 120 changes the condition for multiple-exposure shooting to condition B. After step S25, the flow proceeds to step S21.
- the transition condition of step S21 is a condition that the recognition rate A and the recognition rate B have been obtained J times, respectively, starting from “start”.
- J is a natural number. J is 1, for example.
- the recognition rate A is a recognition rate obtained by executing the step S6 of the step S22 while the condition A is adopted in the step S24.
- the recognition rate B is a recognition rate obtained by executing the step S6 of the step S22 while the condition B is adopted in the step S25.
- the condition A and the condition B are shooting conditions different from each other.
- step S26 the recognition rate A and the recognition rate B are compared. If the recognition rate A is equal to or higher than the recognition rate B, the flow proceeds to step S27. If the recognition rate A is smaller than the recognition rate B, the flow proceeds to step S28.
- condition A is set as the base condition.
- condition B is set as the base condition.
- the recognition rate A and the recognition rate B are used to set the base condition.
- the recognition rate A and the recognition rate B can be referred to as reference recognition rates.
- step S29 steps S3, S4, S5 and S6 of FIG. 6 are executed in this order.
- step S29 the image pickup in step S3 is performed.
- the condition A is set as the base condition
- the first imaging in step S29 is performed with the condition of the multiple exposure shooting set to the condition A.
- the condition B is set to the base condition
- the first imaging in step S29 is performed with the condition of the multiple exposure shooting set to the condition B.
- step S2 as in the first embodiment, it is determined whether or not the end condition is satisfied. If the end condition is satisfied, the flow ends. If the ending condition is not satisfied, the flow proceeds to step S7.
- step S7 the control circuit 120 determines whether the recognition rate is smaller than the recognition rate threshold value. If the recognition rate is lower than the recognition rate threshold value, the flow proceeds to step S8. If the recognition rate is equal to or higher than the recognition rate threshold value, the flow proceeds to step S29.
- step S8 the control circuit 120 changes the conditions for multiple-exposure shooting, as in the first embodiment. After step S8, the flow proceeds to step S29.
- step S26 which of the condition A and the condition B can obtain a higher recognition rate.
- step S29 the condition for obtaining the higher recognition rate is used as the condition for the first multiple-exposure shooting. This is advantageous from the viewpoint of quickly finding the conditions for multiple-exposure shooting at which a high recognition rate can be obtained after step S29.
- the recognition rate will change as the conditions for multiple exposure shooting change according to the flowchart in Figure 14.
- An example of the mode of change will be described with reference to FIG. In the example of FIG. 15, it is assumed that the changed condition is the exposure interval.
- multiple-exposure shooting is performed under condition A in step S22 related to frame N.
- step S22 for frame N + 1 multiple exposure shooting is performed under condition B.
- condition A and condition B are exposure intervals.
- the exposure interval of the frame N + 1 is shorter than the exposure interval of the frame N. This means that the exposure interval under condition B is shorter than the exposure interval under condition A.
- the recognition rate of the frame N + 1 is lower than the recognition rate of the frame N. In this situation, it is determined in step S26 that the recognition rate A ⁇ the recognition rate B. Then, the flow proceeds to step S27, and the condition A is set as the base condition.
- step S29 Since the base condition is condition A, the multiple-exposure shooting in step S29 is performed under condition A in frame N + 2.
- step S7 of the frame N + 2 it is determined that the recognition rate is smaller than the recognition rate threshold value. Therefore, in the next frame N + 3, an exposure interval longer than the exposure interval of the frame N + 2 is adopted.
- step S7 regarding frame N + 3 the recognition rate is determined to be smaller than the recognition rate threshold value. Therefore, in the next frame N + 4, an exposure interval longer than the exposure interval of the frame N + 3 is adopted.
- step S7 regarding frame N + 4 it is determined that the recognition rate is smaller than the recognition rate threshold value. Therefore, in the next frame N + 5, an exposure interval longer than the exposure interval of the frame N + 4 is adopted.
- the recognition rate exceeds the recognition rate threshold as a result of the exposure interval being longer in frame N + 5 than in frame N + 4.
- the processing circuit 170 calculates the recognition rates for a plurality of references by performing the calculation of the recognition rates for the plurality of first images obtained under different conditions.
- the control circuit 120 selects a base condition which is a base condition by comparing a plurality of reference recognition rates with each other.
- the base condition is, for example, a condition in which the highest recognition rate is obtained among the different conditions.
- the processing circuit 170 should be compared with the recognition rate threshold value by using the first image obtained by the base condition and different from the first image for calculating the plurality of reference recognition rates. Calculate the recognition rate.
- conditions A and B are prepared as conditions for multiple exposure shooting.
- the processing circuit 170 uses the first image obtained under the condition A to calculate the recognition rate A, which is the recognition rate of the first subject in the first image.
- the condition B the first subject is subjected to multiple exposure shooting.
- the processing circuit 170 uses the first image obtained under the condition B to calculate the recognition rate B which is the recognition rate of the first subject in the first image.
- the control circuit 120 compares the recognition rate A with the recognition rate B.
- the control circuit 120 selects the base condition based on this comparison.
- the base condition is one of the conditions A and B for which a high recognition rate is obtained.
- the processing circuit 170 should be compared with the recognition rate threshold value by using the first image obtained by the base condition and different from the first image for calculating the recognition rate A and the recognition rate B. Calculate the recognition rate.
- the processing circuit 170 calculates the recognition rate of the first subject using the first image obtained under the base condition.
- the control circuit 120 changes the conditions for multiple exposure shooting when the recognition rate is smaller than the recognition rate threshold value. Specifically, when the conditions for multiple-exposure shooting are changed, the first image in which the changes are reflected is input to the processing circuit 170. The processing circuit 170 uses the first image to calculate the recognition rate again.
- step S21 it is determined whether or not the transition condition is satisfied. A specific example of the transition condition will be described later. If the transition condition is satisfied, the flow proceeds to step S36. If the transition condition is not satisfied, the flow proceeds to step S32.
- step S32 steps S3, S4, S5 and S16 of FIG. 12 are executed in this order. After step S32, the flow proceeds to step S23.
- step S23 it is determined whether the frame in which the speed of the subject is calculated in step S16 is an even frame or an odd frame counted from "start". If this frame is an even frame, the flow proceeds to step S24. If this frame is an odd frame, the flow proceeds to step S25.
- step S24 the control circuit 120 changes the condition for multiple-exposure shooting to condition A. After step S24, the flow proceeds to step S21.
- step S25 the control circuit 120 changes the condition for multiple-exposure shooting to condition B. After step S25, the flow proceeds to step S21.
- the transition condition of step S21 is a condition that the error EA and the error EB have been obtained K times from “start”.
- K is a natural number.
- K is 1, for example.
- the error EA is the error E obtained by executing the step S16 of the step S32 while the condition A is adopted in the step S24.
- the error EB is the error E obtained by executing the step S16 of the step S32 while the condition B is adopted in the step S25.
- step S36 the error EA and the error EB are compared. If the error EA is less than or equal to the error EB, the flow proceeds to step S27. If the error EA is larger than the error EB, the flow proceeds to step S28.
- condition A is set as the base condition.
- condition B is set as the base condition.
- the error EA and the error EB are used to set the base condition.
- the error EA and the error EB can be referred to as an error E for reference.
- step S39 steps S3, S4, S5 and S16 of FIG. 12 are executed in this order.
- step S39 the image pickup in step S3 is performed.
- the condition A is set as the base condition
- the first imaging in step S39 is performed with the condition of the multiple-exposure shooting set to the condition A.
- the condition B is set to the base condition
- the first imaging in step S39 is performed with the condition of the multiple exposure shooting set to the condition B.
- step S2 as in the second embodiment, it is determined whether the termination condition is satisfied. If the end condition is satisfied, the flow ends. If the ending condition is not satisfied, the flow proceeds to step S17.
- step S17 the control circuit 120 determines whether the error E is smaller than the error threshold. If the error E is larger than the error threshold, the flow proceeds to step S8. If the error E is less than or equal to the error threshold, the flow proceeds to step S39.
- step S8 the conditions for multiple-exposure shooting are changed by the control circuit 120, as in the second embodiment. After step S8, the flow proceeds to step S39.
- step S36 it can be seen in step S36 whether the smaller error E is obtained under the condition A or the condition B.
- step S39 the condition for obtaining the smaller error E is used as the condition for the first multiple-exposure shooting. This is advantageous from the viewpoint of quickly finding the conditions for multiple-exposure shooting at which a small error E is obtained after step S39.
- the processing circuit 170 calculates a plurality of reference errors E by performing the calculation of the estimation range for the plurality of first images obtained under mutually different conditions.
- the control circuit 120 selects a base condition that is a base condition by comparing a plurality of reference errors E with each other.
- the base condition is, for example, a condition in which the smallest error E is obtained among the different conditions.
- the processing circuit 170 uses the first image that is obtained by the base condition and is different from the first image for calculating the plurality of reference errors E, and uses the first image that is to be compared with the error threshold. Calculate E.
- condition A and condition B are prepared as conditions for multiple exposure shooting.
- the processing circuit 170 calculates the error EA which is the error E using the first image obtained using the condition A.
- the condition B the first subject is subjected to multiple exposure shooting.
- the processing circuit 170 uses the first image obtained under the condition B to calculate the error EB which is the error E.
- the control circuit 120 compares the error EA and the error EB.
- the control circuit 120 selects the base condition based on this comparison.
- the base condition is one of the conditions A and B for which the small error E is obtained.
- the processing circuit 170 uses the first image, which is the first image obtained by the base condition and is different from the first image for calculating the error EA and the error EB, and determines the error E to be compared with the error threshold. calculate.
- the processing circuit 170 calculates the estimated range of the velocity of the first subject using the first image obtained under the base condition.
- the control circuit 120 changes the conditions for multiple exposure shooting when the error E is larger than the error threshold. Specifically, when the conditions for multiple-exposure shooting are changed, the first image in which the changes are reflected is input to the processing circuit 170. The processing circuit 170 uses the first image to calculate the estimated range again.
- Reference Embodiment 1 In the reference embodiment 1, the conditions for multiple-exposure shooting can be changed according to the flowchart of FIG. The flowchart of FIG. 17 will be described below. In the following description, description that overlaps with the flowcharts of FIG. 6 and / or FIG. 14 may be omitted.
- step S2 similarly to the first embodiment, it is determined whether the ending condition is satisfied. If the end condition is satisfied, the flow ends. If the ending condition is not satisfied, the flow proceeds to step S3.
- steps S3, S4, S5 and S6 of FIG. 6 are executed in this order. After step S6, the flow proceeds to step S23.
- step S23 as in the third embodiment, it is determined whether the frame for which the recognition process is performed in step S6 is an even frame or an odd frame counted from “start”. If this frame is an even frame, the flow proceeds to step S24. If this frame is an odd frame, the flow proceeds to step S25.
- step S24 the control circuit 120 changes the condition for multiple-exposure shooting to condition A, as in the third embodiment. After step S24, the flow proceeds to step S2.
- step S25 the control circuit 120 changes the condition for multiple-exposure shooting to condition B, as in the third embodiment. After step S25, the flow proceeds to step S2.
- the recognition rate changes as the conditions for multiple exposure shooting change according to the flowchart in Figure 17.
- An example of the mode of change will be described with reference to FIG.
- the condition to be changed is the exposure interval.
- step S3 multiple-exposure shooting is performed under condition A in step S3 regarding frames N, N + 2, and N + 4.
- step S3 relating to the frames N + 1, N + 3, and N + 5 multiple exposure shooting is performed under the condition B.
- condition A and condition B are exposure intervals. As shown in FIG. 18, the exposure interval of frame N + 1 is shorter than the exposure interval of frame N. This means that the exposure interval under condition B is shorter than the exposure interval under condition A.
- the image recognition device 99 includes the processing circuit 170 and the control circuit 120.
- the processing circuit 170 receives the first image obtained by multiple exposure shooting of the first subject, and calculates the recognition rate of the first subject using the first image.
- the control circuit 120 changes the conditions for multiple exposure shooting.
- the processing circuit 170 calculates the recognition rates by performing the calculation of the recognition rates on the plurality of first images obtained under the mutually different conditions.
- conditions A and B are prepared as conditions for multiple exposure shooting.
- the first subject is subjected to multiple exposure shooting.
- the processing circuit 170 uses the first image obtained under the condition A to calculate the recognition rate of the first subject in the first image.
- the condition B the first subject is subjected to multiple exposure shooting.
- the processing circuit 170 uses the first image obtained under the condition B to calculate the recognition rate of the first subject in the first image.
- step S2 similarly to the second embodiment, it is determined whether or not the ending condition is satisfied. If the end condition is satisfied, the flow ends. If the ending condition is not satisfied, the flow proceeds to step S3.
- steps S3, S4, S5 and S16 of FIG. 6 are executed in this order. After step S16, the flow proceeds to step S23.
- step S23 as in the fourth embodiment, it is determined whether the frame in which the speed of the subject is calculated in step S16 is an even frame or an odd frame counted from “start”. If this frame is an even frame, the flow proceeds to step S24. If this frame is an odd frame, the flow proceeds to step S25.
- step S24 the control circuit 120 changes the condition for multiple-exposure shooting to condition A, as in the fourth embodiment. After step S24, the flow proceeds to step S2.
- step S25 the control circuit 120 changes the condition for multiple-exposure shooting to condition B, as in the fourth embodiment. After step S25, the flow proceeds to step S2.
- the image recognition device 99 includes the processing circuit 170 and the control circuit 120.
- the processing circuit 170 receives the first image obtained by multiple exposure shooting of the first subject, and calculates the estimated range of the velocity of the first subject using the first image.
- the control circuit 120 changes the conditions for multiple exposure shooting.
- the processing circuit 170 calculates a plurality of errors E by calculating the estimation range for a plurality of first images obtained under different conditions.
- conditions A and B are prepared as conditions for multiple exposure shooting.
- the condition A the first subject is subjected to multiple exposure shooting.
- the processing circuit 170 uses the first image obtained under the condition A to calculate the estimated range of the velocity of the first subject.
- the condition B the first subject is subjected to multiple exposure shooting.
- the processing circuit 170 uses the first image obtained under the condition B to calculate the estimation range.
- a value related to the relative speed of the image capturing apparatus 100 with the first subject as a reference is calculated.
- a stationary subject may be selected as the first subject.
- the calculated relative speed of the image capturing apparatus 100 is the speed of the image capturing apparatus 100, that is, the speed of the moving body, for example, the vehicle in which the image capturing apparatus 100 is installed.
- the value relating to the speed of the moving body in which the image capturing apparatus 100 is installed is calculated by capturing the image of the stationary first subject.
- the processing circuit 170 is input with the first image obtained by performing multiple-exposure shooting of the first subject.
- the processing circuit 170 uses the first image and the distance information to the first subject to calculate the estimated range of the velocity of the moving body in which the imaging device 100 is installed.
- the distance information to the first subject may be acquired by a device such as a stereo camera, a TOF (Time of Flight) sensor, a laser radar, and a sonar.
- a device such as a stereo camera, a TOF (Time of Flight) sensor, a laser radar, and a sonar.
- the distance information to the first subject may be acquired based on the size of the first subject in the first image.
- a technique for calculating the speed of a moving body in which the image pickup apparatus 100 is installed from an image captured by multiple exposure is described in, for example, International Publication WO2018 / 139212 and US Application Publication No. 2019/0113332. .
- the entire disclosures of International Publication No. WO2018 / 139212 and US Application Publication No. 2019/0113332 are incorporated herein by reference.
- the estimation range is a range of value V ⁇ error E.
- the estimation range being a value V ⁇ error E means that the estimation range is a value V ⁇ error E or more and a value V + error E or less.
- the first image is more suitable for ensuring the calculation accuracy of the speed of the first subject than the image including only one image of one subject.
- the velocity may be an absolute value or a vector.
- the control circuit 120 changes the conditions for multiple exposure shooting when the error E is larger than the error threshold.
- the large error E suggests that the speed calculation accuracy of the moving body in which the imaging device 100 is installed is low.
- the conditions for multiple-exposure shooting are changed. This change can reduce the error E. That is, it is possible to obtain a situation in which the calculation accuracy of the speed of the moving body in which the imaging device 100 is installed is high.
- the error threshold is, for example, a specific value in the range of 3% or more and 20% or less.
- the processing circuit 170 uses the first image and the distance information to the first subject to recalculate the estimated range of the velocity of the moving body in which the imaging device 100 is installed.
- the calculation of the estimated range by the processing circuit 170 and the change of the condition by the control circuit 120 when the error E is larger than the error threshold are repeated until the end condition is satisfied. Be done.
- the processing circuit 170 outputs the image and the estimated range of the speed of the moving body in which the imaging device 100 is installed to the display device 160.
- the processing circuit 170 may be configured to output the value V and the error E to the display device 160. Further, the processing circuit 170 outputs the error E to the control circuit 120.
- the display device 160 displays an image and an estimated range of the speed of the moving body in which the imaging device 100 is installed.
- the display device 160 may be configured to display the value V and the error E.
- the control circuit 120 controls the imaging conditions of the imaging device 100.
- the control circuit 120 can change the conditions for multiple exposure shooting as in the first embodiment.
- the condition to be changed may include at least one selected from the group consisting of conditions (a) to (h) as in the first embodiment.
- the control circuit 120 also controls the image forming conditions of the image forming circuit 130.
- the display device 160 is an internal display device of the image recognition device 99.
- the image recognition device 99 includes the internal display device that displays the estimated range of the speed of the moving body in which the imaging device 100 is installed.
- the internal display device may specifically display the first image and the estimated range.
- the internal display device may be configured to display the value V and the error E.
- the image recognition device 99 may include an output interface that outputs the estimated range to an external display device that displays the estimated range. Specifically, the image recognition device 99 may include an output interface that outputs the first image and the estimated range to an external display device. Then, the external display device may display the first image and the estimated range. The output interface may also be configured to output the value V and the error E. Then, the external display device may be configured to display the value V and the error E.
- the image recognition device 99 may include one of an internal display device and an output interface.
- the image recognition device 99 may include both of them.
- the conditions for multiple-exposure shooting can be associated with the first image.
- the processing circuit 170 performs supervised learning using a plurality of combinations of the teacher image and the correct answer label.
- the teacher image corresponds to the first image.
- the correct answer label corresponds to the speed of the moving body in which the imaging device 100 is installed.
- the processing circuit 170 uses the first image to calculate the estimated range of the velocity of the moving body in which the imaging device 100 is installed. According to such a processing circuit 170, it is easy to ensure the calculation accuracy of the speed of the moving body in which the imaging device 100 is installed.
- the conditions for multiple exposure shooting can be changed according to the flowchart of FIG.
- the flowchart of FIG. 20 will be described below. In the following description, the description overlapping with the flowchart of FIG. 6 may be omitted.
- step S46 the processing circuit 170 identifies a stationary subject such as a building or a sign among the subjects included in the image, and the estimated range of the velocity of the moving body in which the imaging device 100 is installed when the subject is a reference. Is calculated.
- the image used for this calculation may be the above-described first image obtained by multiple exposure shooting of the first subject.
- the processing circuit 170 uses the first image to calculate the estimated range of the speed of the moving body in which the imaging device 100 is installed when the first subject is the reference. Then, the processing circuit 170 outputs the error E to the control circuit 120.
- step S16 the flow proceeds to step S17.
- step S17 the control circuit 120 determines whether the error E is larger than the error threshold. If the error E is larger than the error threshold, the flow proceeds to step S8. If the error E is less than or equal to the error threshold, the flow proceeds to step S2.
- the first example of the termination condition of step S2 of the fifth embodiment is the first example of the termination condition of step S2 of the first embodiment.
- the second example of the termination condition of step S2 of the fifth embodiment is the second example of the termination condition of step S2 of the first embodiment.
- a third example of the ending condition of step S2 is a condition that the error E calculated in the latest step S46 is larger than the second upper limit threshold. If the error E is greater than the second upper threshold, the flow ends. If the error E is less than or equal to the second upper limit threshold, the flow proceeds to step S3.
- the second upper limit threshold is typically larger than the error threshold.
- a fourth example of the ending condition of step S2 is a condition that the error E calculated in the latest step S46 is smaller than the second lower limit threshold. If the error E is less than the second lower threshold, the flow ends. If the error E is greater than or equal to the second lower threshold, the flow proceeds to step S3.
- the second lower limit threshold is typically smaller than the error threshold.
- the flow may be ended when the condition of the third example or the condition of the fourth example is satisfied, and otherwise the flow may proceed to step S3.
- the fifth example of the ending condition of step S2 is a condition that the error E calculated in step S46 is larger than the second upper limit threshold continuously for the fourth threshold number of times. If this situation continues for the fourth threshold number of times, the flow ends. Otherwise, the flow proceeds to step S3. It should be noted that this condition can also be said to be a condition that the frames that bring about the above situation appear consecutively for the fourth threshold number of times.
- step S2 The sixth example of the ending condition of step S2 is that the error E calculated in step S46 is smaller than the second lower limit threshold value continuously for the fifth threshold number of times. If this situation continues for the fifth threshold number of times, the flow ends. Otherwise, the flow proceeds to step S3. Note that this condition can also be said to be a condition that the frames that bring about the above situation appear consecutively for the fifth threshold number of times.
- the flow may be terminated if the condition of the fifth example or the condition of the sixth example is satisfied, and if not, the flow may proceed to step S3.
- the fourth threshold number and the fifth threshold number may be the same or different.
- the seventh example of the termination condition of step S2 of the second embodiment is the seventh example of the termination condition of step S2 of the first embodiment.
- the changed condition is the exposure interval.
- FIG. 21A shows the conditions for multiple exposure shooting in frame n and the conditions for multiple exposure shooting in frame n + ⁇ . n and ⁇ are natural numbers. FIG. 21A shows that the exposure interval is changed from 2 ms to 4 ms according to the flowchart of FIG.
- FIG. 21B shows the value V and the error E in the frame n, and the value V and the error E in the frame n + ⁇ .
- the value V is 50 km / h.
- the error E in frame n is 15 km / h.
- the error E in the frame n + ⁇ is 5 km / h.
- the error E in frame n + ⁇ is smaller than the error E in frame n.
- FIG. 21B shows that the calculation accuracy of the moving body in which the imaging device 100 is installed is improved according to the flowchart of FIG.
- step S21 it is determined whether or not the transition condition is satisfied. A specific example of the transition condition will be described later. When the transition condition is satisfied, the flow proceeds to step S36. If the transition condition is not satisfied, the flow proceeds to step S42.
- step S42 steps S3, S4, S5 and S46 of FIG. 20 are executed in this order. After step S42, the flow proceeds to step S23.
- step S23 it is determined whether the frame in which the speed of the moving body in which the imaging device 100 is installed in step S46 is calculated is an even frame or an odd frame counted from “start”. If this frame is an even frame, the flow proceeds to step S24. If this frame is an odd frame, the flow proceeds to step S25.
- step S24 the control circuit 120 changes the condition for multiple-exposure shooting to condition A. After step S24, the flow proceeds to step S21.
- step S25 the control circuit 120 changes the condition for multiple-exposure shooting to condition B. After step S25, the flow proceeds to step S21.
- the transition condition of step S21 is a condition that the error EA and the error EB have been obtained K times from “start”.
- K is a natural number.
- K is 1, for example.
- the error EA is the error E obtained by executing step S16 of step S42 in a state where the condition A is adopted in step S24.
- the error EB is the error E obtained by executing step S16 of step S42 in a state where the condition B is adopted in step S25.
- step S36 the error EA and the error EB are compared. If the error EA is less than or equal to the error EB, the flow proceeds to step S27. If the error EA is larger than the error EB, the flow proceeds to step S28.
- condition A is set as the base condition.
- condition B is set as the base condition.
- the error EA and the error EB are used to set the base condition.
- the error EA and the error EB can be referred to as an error E for reference.
- step S49 steps S3, S4, S5 and S16 of FIG. 20 are executed in this order.
- step S49 the image pickup in step S3 is performed.
- the condition A is set as the base condition
- the first imaging in step S49 is performed with the condition of the multiple exposure shooting set to the condition A.
- the condition B is set as the base condition
- the first imaging in step S49 is performed with the condition of the multiple-exposure shooting set at the condition B.
- step S2 as in the fourth embodiment, it is determined whether the ending condition is satisfied. If the end condition is satisfied, the flow ends. If the ending condition is not satisfied, the flow proceeds to step S17.
- step S17 the control circuit 120 determines whether the error E is smaller than the error threshold. If the error E is larger than the error threshold, the flow proceeds to step S8. If the error E is less than or equal to the error threshold, the flow proceeds to step S49.
- step S8 the control circuit 120 changes the conditions for multiple-exposure shooting, as in the fourth embodiment. After step S8, the flow proceeds to step S49.
- step S36 it can be seen in step S36 whether the smaller error E is obtained under the condition A or the condition B.
- step S49 the condition for obtaining the smaller error E is used as the condition for the first multiple-exposure shooting. This is advantageous from the viewpoint of quickly finding the conditions for multiple-exposure shooting at which a small error E is obtained after step S49.
- the processing circuit 170 calculates the plurality of reference errors E by performing the calculation of the estimation range for the plurality of first images obtained under mutually different conditions.
- the control circuit 120 selects a base condition that is a base condition by comparing a plurality of reference errors E with each other.
- the base condition is, for example, a condition in which the smallest error E is obtained among the different conditions.
- the processing circuit 170 uses the first image that is obtained by the base condition and is different from the first image for calculating the plurality of reference errors E, and uses the first image that is to be compared with the error threshold. Calculate E.
- conditions A and B are prepared as conditions for multiple exposure shooting.
- the processing circuit 170 calculates the error EA which is the error E using the first image obtained using the condition A.
- the condition B the first subject is subjected to multiple exposure shooting.
- the processing circuit 170 uses the first image obtained under the condition B to calculate the error EB which is the error E.
- the control circuit 120 compares the error EA and the error EB.
- the control circuit 120 selects the base condition based on this comparison.
- the base condition is one of the conditions A and B for which the small error E is obtained.
- the processing circuit 170 uses the first image, which is the first image obtained by the base condition and is different from the first image for calculating the error EA and the error EB, and determines the error E to be compared with the error threshold. calculate.
- the processing circuit 170 calculates the estimated range of the velocity of the first subject using the first image obtained under the base condition.
- the control circuit 120 changes the conditions for multiple exposure shooting when the error E is larger than the error threshold. Specifically, when the conditions for multiple-exposure shooting are changed, the first image in which the changes are reflected is input to the processing circuit 170. The processing circuit 170 uses the first image to calculate the estimated range again.
- the image recognition device can be used for various image recognition systems such as autonomous driving vehicles, industrial robots, and consumer robots.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Studio Devices (AREA)
- Image Analysis (AREA)
- Exposure Control For Cameras (AREA)
Abstract
画像認識装置99は、処理回路170と、制御回路120と、を備える。処理回路170には、第1被写体が多重露光撮影された第1画像が入力される。処理回路170は、第1画像を用いて第1被写体の認識率を算出する。制御回路120は、認識率が認識率閾値よりも小さい場合に、多重露光撮影の条件を変更する。
Description
本開示は、画像認識装置および画像認識方法に関する。
近年、画像を用いて情報処理を行う装置が普及しつつある。そのような装置は、種々の機械に搭載され得る。そのような機械として、自動運転車が挙げられる。そのような機械として、工場の自動化に利用されるロボットも挙げられる。
情報処理の一例は、画像に写っている物体の認識である。この認識を行うためのアルゴリズムが研究開発されている。特許文献1には、アルゴリズムの一例が記載されている。
画像を用いた情報処理の精度を高める技術が要求されている。
本開示は、
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて前記第1被写体の認識率を算出する処理回路と、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更する制御回路と、
を備える、画像認識装置を提供する。
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて前記第1被写体の認識率を算出する処理回路と、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更する制御回路と、
を備える、画像認識装置を提供する。
本開示は、画像を用いた情報処理の精度を高める技術を提供する。
(本開示の基礎となった知見)
特許文献1には、画像を用いた情報処理の一例が記載されている。特許文献1の情報処理では、1回の露光を行うことにより得られた画像が用いられる。
特許文献1には、画像を用いた情報処理の一例が記載されている。特許文献1の情報処理では、1回の露光を行うことにより得られた画像が用いられる。
本発明者は、多重露光撮影された画像を用いることにより、情報処理の精度を高めることを検討した。
(本開示に係る一態様の概要)
本開示の第1態様に係る画像認識装置は、
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて前記第1被写体の認識率を算出する処理回路と、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更する制御回路と、
を備える。
本開示の第1態様に係る画像認識装置は、
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて前記第1被写体の認識率を算出する処理回路と、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更する制御回路と、
を備える。
第1態様に係る技術は、認識率の算出精度を確保するのに適している。
本開示の第2態様において、例えば、第1態様に係る画像認識装置では、前記認識率が前記認識率閾値よりも小さい場合に変更される前記条件は、(a)前記第1画像を得るにあたって採用される各露光期間の長さ、(b)前記第1画像を得るにあたって採用される各露光間隔の長さ、(c)前記第1画像を得るにあたって採用される露光回数、(d)前記第1画像の露光感度、(e)前記第1画像を得るのに用いられる撮像装置のゲイン、(f)前記第1画像を得るのに用いられる撮像装置の焦点距離、(g)前記第1画像を得るのに用いられる撮像装置の絞り、および(h)前記第1画像の出力解像度、からなる群より選択される少なくとも1つを含んでいてもよい。
第2態様の条件の変更は、認識率の向上に寄与し得る。
本開示の第3態様において、例えば、第1態様または第2態様に係る画像認識装置は、前記認識率を表示する内蔵表示装置、および、前記認識率を表示する外付け表示装置へと前記認識率を出力する出力インターフェースから選ばれる少なくとも1つをさらに備えていてもよい。
第3態様によれば、認識率を視認できる。
本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る画像認識装置は、前記第1画像を得るのに用いられる撮像装置をさらに備えていてもよい。
第4態様によれば、第1画像が容易に得られる。
本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る画像認識装置では、前記条件と前記第1画像とが対応付けられてもよい。
第5態様によれば、多重露光撮影の条件を情報として利用し易い。
本開示の第6態様において、例えば、第5態様に係る画像認識装置は、前記第1画像と対応付けられる前記条件として、前記制御回路において保持されている前記条件が用いられてもよい。
本開示の第7態様において、例えば、第5態様に係る画像認識装置は、前記第1画像を得るのに用いられる撮像装置をさらに備えていてもよく、前記第1画像と対応付けられる前記条件として、前記撮像装置において保持されている前記条件が用いられてもよい。
第6態様によっても第7態様によっても、多重露光撮影の条件と第1画像とを適切に対応づけることができる。
本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る画像認識装置では、前記処理回路は、前記第1画像および前記第1被写体の物体名にそれぞれ対応する教師画像および正解ラベルの組み合わせを複数組用いた教師あり学習を行ってもよく、前記教師あり学習後において、前記第1画像を用いて前記認識率を算出してもよい。
第8態様の処理回路によれば、認識率の算出精度を確保できる。
本開示の第9態様において、例えば、第8態様の画像認識装置は、前記教師画像を得るのに用いられる第2撮像装置をさらに備えていてもよい。
第9態様の撮像装置によれば、学習を行い易い。
本開示の第10態様において、例えば、第8態様または第9態様の画像認識装置では、前記処理回路は、ニューラルネットワークで表現される演算モデルを読み込んでおり、前記処理回路は、前記教師あり学習を行ってもよく、前記教師あり学習後において、前記第1画像を用いて前記認識率を算出してもよい。
ニューラルネットワークは、画像を用いた情報処理に適している。
本開示の第11態様において、例えば、第1から第10態様のいずれか1つに係る画像認識装置では、前記処理回路による前記認識率の算出と、前記認識率が前記認識率閾値よりも小さい場合における前記制御回路による前記条件の変更と、が、終了条件が成立するまで繰り返されてもよい。
第11態様は、高い認識率を得るのに適している。
本開示の第12態様において、例えば、第1から第11態様のいずれか1つに係る画像認識装置では、前記処理回路は、前記認識率である第1認識率であって前記第1被写体が第1物体であることの確からしさを表す第1認識率と、前記第1被写体が第2物体であることの確からしさを表す第2認識率と、を算出してもよく、前記制御回路は、前記第1認識率から前記第2認識率を差し引いた差分がZ以下である場合にも、前記多重露光撮影の条件を変更してもよい。ここで、Zは、0以上の値である。
画像における被写体が特定の物体である可能性のみならず他の物体である可能性もあると認識され得るように、画像認識装置を構成することは可能である。第9態様に係る技術は、そのような画像認識装置において、利用可能である。
本開示の第13態様において、例えば、第1から第12態様のいずれか1つに係る画像認識装置では、前記処理回路は、前記認識率の算出を、互いに異なる前記条件により得られた複数の前記第1画像について行うことによって、複数の参照用の前記認識率を算出してもよく、前記制御回路は、複数の参照用の前記認識率を互いに比較することによって、ベースとなる前記条件であるベース条件を選択してもよく、前記処理回路は、前記ベース条件により得られた前記第1画像であって複数の参照用の前記認識率を算出するための前記第1画像とは異なる前記第1画像を用いて、前記認識率閾値と比較されるべき前記認識率を算出してもよい。
第13態様は、高い認識率が得られる多重露光撮影の条件を素早く見出す観点から有利である。
本開示の第14態様に係る画像認識装置は、
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出する処理回路と、
前記誤差Eが誤差閾値よりも大きい場合に、前記多重露光撮影の条件を変更する制御回路と、
を備える。
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出する処理回路と、
前記誤差Eが誤差閾値よりも大きい場合に、前記多重露光撮影の条件を変更する制御回路と、
を備える。
第14態様に係る技術は、第1被写体の速度の算出精度を確保するのに適している。
本開示の第15態様に係る画像認識方法は、
第1被写体が多重露光撮影された第1画像を用いて前記第1被写体の認識率を算出することと、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更することと、を含む。
第1被写体が多重露光撮影された第1画像を用いて前記第1被写体の認識率を算出することと、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更することと、を含む。
第15態様に係る技術は、認識率の算出精度を確保するのに適している。
本開示の第16態様に係る画像認識方法は、
第1被写体が多重露光撮影された第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出することと、
前記誤差Eが誤差閾値よりも大きい場合に、前記多重露光撮影の条件を変更することと、を含む。
第1被写体が多重露光撮影された第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出することと、
前記誤差Eが誤差閾値よりも大きい場合に、前記多重露光撮影の条件を変更することと、を含む。
第16態様に係る技術は、第1被写体の速度の算出精度を確保するのに適している。
本開示の第17態様に係る画像認識装置は、
メモリとプロセッサとを備えた画像認識装置であって、
前記プロセッサは、
第1被写体が多重露光撮影された第1画像が入力され、
前記第1画像を用いて前記第1被写体の認識率を算出し、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更する。
メモリとプロセッサとを備えた画像認識装置であって、
前記プロセッサは、
第1被写体が多重露光撮影された第1画像が入力され、
前記第1画像を用いて前記第1被写体の認識率を算出し、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更する。
第17態様に係る技術は、認識率の算出精度を確保するのに適している。
本開示の第18態様に係る画像認識装置は、
メモリとプロセッサとを備えた画像認識装置であって、
前記プロセッサは、
第1被写体が多重露光撮影された第1画像が入力され、
前記第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出し、
前記誤差Eが誤差閾値よりも大きい場合に、前記多重露光撮影の条件を変更する。
メモリとプロセッサとを備えた画像認識装置であって、
前記プロセッサは、
第1被写体が多重露光撮影された第1画像が入力され、
前記第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出し、
前記誤差Eが誤差閾値よりも大きい場合に、前記多重露光撮影の条件を変更する。
第18態様に係る技術は、第1被写体の速度の算出精度を確保するのに適している。
本開示の第19態様に係る画像認識装置は、
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて前記第1被写体の認識率を算出する処理回路と、
前記多重露光撮影の条件を変更する制御回路と、を備え、
前記処理回路は、前記認識率の算出を、互いに異なる前記条件により得られた複数の前記第1画像について行うことによって、複数の前記認識率を算出する。
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて前記第1被写体の認識率を算出する処理回路と、
前記多重露光撮影の条件を変更する制御回路と、を備え、
前記処理回路は、前記認識率の算出を、互いに異なる前記条件により得られた複数の前記第1画像について行うことによって、複数の前記認識率を算出する。
第19態様に係る技術は、認識率の算出精度を確保するのに適している。
本開示の第20態様に係る画像認識装置は、
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出する処理回路と、
前記多重露光撮影の条件を変更する制御回路と、を備え、
前記処理回路は、前記推定範囲の算出を、互いに異なる前記条件により得られた複数の前記第1画像について行うことによって、複数の前記誤差Eを算出する。
第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出する処理回路と、
前記多重露光撮影の条件を変更する制御回路と、を備え、
前記処理回路は、前記推定範囲の算出を、互いに異なる前記条件により得られた複数の前記第1画像について行うことによって、複数の前記誤差Eを算出する。
第20態様に係る技術は、第1被写体の速度の算出精度を確保するのに適している。
画像認識装置の技術は、画像認識方法に適用できる。画像認識方法の技術は、画像認識装置に適用できる。
(実施の形態1)
図1に、実施の形態1における画像認識装置99を示す。画像認識装置99は、光学系110と、撮像装置100と、画像形成回路130と、制御回路120と、処理回路170と、表示装置160と、を含む。画像形成回路130は、出力バッファ140を含む。
図1に、実施の形態1における画像認識装置99を示す。画像認識装置99は、光学系110と、撮像装置100と、画像形成回路130と、制御回路120と、処理回路170と、表示装置160と、を含む。画像形成回路130は、出力バッファ140を含む。
画像認識装置99では、カメラ部80が構成されている。カメラ部80は、光学系110と、撮像装置100と、画像形成回路130と、制御回路120と、を含む。
本実施の形態では、光学系110は、少なくとも1つのレンズを含む。制御回路120は、システムコントローラである。
以下の説明では、認識率という用語を使用することがある。認識率について説明する。本実施の形態では、画像認識装置99は、画像における被写体を認識する。画像認識装置99では、その認識の確からしさを表す数値として、認識率が算出される。
具体的には、画像認識装置99は、被写体は認識率XでYという物体である、という態様の認識を行い得る。Xは、0%以上100%以下の値である。Yは、物体名である。Yは、例えば、自動車、人、家、標識、信号機である。
典型的には、認識率が採り得る値の数は2つよりも多い。認識率が採り得る値には0%よりも大きく100%よりも小さい値が含まれる。典型的には、処理回路170では、計算機が構成されている。認識率は、その計算機の精度の範囲で、0%以上100%以下の任意の値を採り得る。
[画像認識装置99の構成要素の動作について]
撮像装置100は、光学系110を通じて被写体を撮像する。具体的には、撮像装置100は、イメージセンサを含む。撮像装置100は、イメージセンサを用いて、撮像を行う。撮像装置100は、撮像内容を表す信号を出力する。この信号は、RAWデータに対応する。
撮像装置100は、光学系110を通じて被写体を撮像する。具体的には、撮像装置100は、イメージセンサを含む。撮像装置100は、イメージセンサを用いて、撮像を行う。撮像装置100は、撮像内容を表す信号を出力する。この信号は、RAWデータに対応する。
画像形成回路130は、この信号を画像に変換する。具体的には、画像形成回路130は、RAWデータを画像データに変換する。こうして、RAWデータが画像化される。以下、画像データを、単に画像と称することがある。画像形成回路130は、出力バッファ140を介して処理回路170へと、画像を出力する。
画像形成回路130は、各種画像処理を実行可能なものであってもよい。画像処理は、例えば、各種補正処理、色処理等である。補正処理として、暗フレーム補正、欠陥画素補正が例示される。色処理として、ホワイトバランス処理、色マトリクス処理、ベイヤー補間処理が例示される。他の画像処理も採用され得る。例えば、エッジ強調、2値化処理は、認識率の向上に寄与し得る。画像処理が実行された場合、画像形成回路130は、出力バッファ140を介して処理回路170へと、画像処理後の画像を出力する。
画像処理は、処理回路170に担当させてもよい。画像認識装置99は、画像処理を行う構成要素を有していなくてもよい。
処理回路170は、画像を用いて認識率を算出する。具体的には、処理回路170は、画像における被写体が何であるのかを認識する。言い換えると、処理回路170は、画像における被写体の物体名を認識する。そして、処理回路170は、その認識の確からしさを表す認識率を算出する。
処理回路170は、表示装置160へと、画像と、認識した物体名と、その認識の認識率と、を出力する。また、処理回路170は、制御回路120へと、認識率を出力する。
表示装置160は、画像と、認識した物体名と、その認識の認識率と、を表示する。
制御回路120は、撮像装置100の撮像条件を制御する。また、制御回路120は、画像形成回路130の画像形成条件を制御する。
[多重露光撮影について]
撮像装置100は、多重露光撮影を実行できる。多重露光撮影により、1つの被写体の像を複数個含むRAWデータを得ることができる。画像形成回路130は、そのようなRAWデータを、1つの被写体の像を複数個含む画像に変換できる。以下、そのような画像を第1画像と称することがある。また、この1つの被写体を、第1被写体と称することがある。
撮像装置100は、多重露光撮影を実行できる。多重露光撮影により、1つの被写体の像を複数個含むRAWデータを得ることができる。画像形成回路130は、そのようなRAWデータを、1つの被写体の像を複数個含む画像に変換できる。以下、そのような画像を第1画像と称することがある。また、この1つの被写体を、第1被写体と称することがある。
処理回路170には、第1被写体が多重露光撮影された第1画像が入力される。処理回路170は、その第1画像を用いて、第1被写体の認識率を算出する。第1画像によれば、1つの被写体の像を1個だけ含む画像に比べ、画像における被写体の輪郭の鮮明さと、画像に含まれる動き情報の多さと、を両立させ易い。このため、第1画像は、高い認識率を得る観点から有利である。具体的に、処理回路170は、第1画像における第1被写体の物体名を認識し、その認識の確からしさを表す認識率を算出する。
以下、1つの被写体の像を1個だけ含む画像に比べ、第1画像が高い認識率を得る観点から有利である理由を、具体例を挙げながらさらに説明する。
1つの被写体の像を1個だけ含む画像も、動き情報を含んでいることがある。例えば、走行中の車を長い露光時間で撮影することを考える。その場合、ぶれが大きい被写体の像が得られる。ぶれが大きい被写体の像を含む画像によれば、被写体が移動しているのかどうかを判別し易い。なぜなら、そのような画像には、被写体に関する動き情報が含まれているためである。しかし、ぶれが大きい被写体の像では、被写体を特徴づける輪郭はぼやけている。このため、像に対応する被写体が車であると判別するのは難しい。
反対に、走行中の車を短い露光時間で撮影することを考える。その場合、ぶれが小さい被写体の像が得られる。ぶれが小さい被写体の像では、被写体を特徴づける鮮明な輪郭が得られ易い。このため、像に対応する被写体が車であると判別し易い。しかし、ぶれが小さい被写体の像では、画像から車が移動しているのかどうかを判別し難い。なぜなら、そのような画像は、被写体である車に関する動き情報に乏しいためである。
これらに対し、多重露光撮影により得られた画像では、画像における被写体の輪郭の鮮明さと、画像に含まれる動き情報の多さと、を両立させ易い。この両立が可能であることは、認識率の算出精度を確保する観点から有利である。また、この両立が可能であることは、後述の実施形態2において第1被写体の速度の算出精度を確保する観点からも有利である。
この両立が多重露光撮影により実現されている様子が、後に詳細に説明する図4Bの上側に現れている。具体的には、図4Bの例では、被写体Cの鮮明な輪郭が得られている。この鮮明な輪郭は、車を特徴づけている。このため、図4Bの画像から、像に対応する被写体が車であると判別し易い。また、図4Bの画像は、被写体Cの複数の像を含んでおり、従って動き情報を含んでいる。このため、画像から、被写体である車が走行中であると判別し易い。上述のように、これらを判別し易いことは、認識率の算出精度および第1被写体の速度の算出精度を確保する観点から有利である。
制御回路120は、認識率が認識率閾値よりも小さい場合に、多重露光撮影の条件を変更する。この変更は、認識率の向上に寄与し得る。認識率閾値は、例えば、10%以上70%以下の範囲にある特定の値である。
以上の説明から理解されるように、処理回路170および制御回路120は、認識率の算出精度向上に適した構成を有している。また、処理回路170および制御回路120の動作は、過度な演算負荷を必要としない。このため、本実施の形態の技術によれば、演算負荷の抑制と認識率の算出精度向上とを両立させることも可能である。
具体的には、本実施の形態では、多重露光撮影の条件が変更された場合において、その変更が反映された第1画像が、処理回路170に入力される。処理回路170は、その第1画像を用いて、認識率を再度算出する。
より具体的には、本実施の形態では、処理回路170による認識率の算出と、認識率が認識率閾値よりも小さい場合における制御回路120による条件の変更と、が、終了条件が成立するまで繰り返される。
多重露光撮影の条件の変更の態様は、特に限定されない。例えば、撮像装置100がレジスタを有している場合がある。その場合、制御回路120は、そのレジスタに条件を書き込むことができる。この書き込みは、例えば、シリアル通信等により行うことができる。
認識率が認識率閾値よりも小さい場合に変更される多重露光撮影の条件は、例えば、条件(a)、条件(b)、条件(c)、条件(d)、条件(e)、条件(f)、条件(g)および条件(h)からなる群より選択される少なくとも1つを含む。条件(a)は、第1画像を得るにあたって採用される各露光期間の長さである。条件(b)は、第1画像を得るにあたって採用される各露光間隔の長さである。露光間隔は、露光期間の間の非露光期間に対応する。条件(c)は、第1画像を得るにあたって採用される露光回数である。条件(d)は、第1画像の露光感度である。条件(e)は、第1画像を得るのに用いられる撮像装置100のゲインである。条件(f)は、第1画像を得るのに用いられる撮像装置100の焦点距離である。条件(g)は、第1画像を得るのに用いられる撮像装置100の絞りである。条件(h)は、第1画像の出力解像度である。これらの条件の変更は、認識率の向上に寄与し得る。
図1の例では、表示装置160は、画像認識装置99の内部表示装置である。このように、画像認識装置99は、認識率を表示する内部表示装置を備える。内部表示装置は、具体的には、第1画像と、認識した物体名と、その認識の認識率と、を表示し得る。
ただし、画像認識装置99は、認識率を表示する外付け表示装置へと認識率を出力する出力インターフェースを備えていてもよい。具体的には、画像認識装置99は、第1画像と、認識した物体名と、その認識の認識率と、を外付け表示装置へと出力する出力インターフェースを備えていてもよい。そして、外付け表示装置は、第1画像と、認識した物体名と、その認識の認識率と、を表示するものであってもよい。
画像認識装置99は、内部表示装置および出力インターフェースの一方を備えていてもよい。画像認識装置99は、これらの両方を備えていてもよい。
本実施の形態では、多重露光撮影の条件と第1画像とが対応付けられる。このようにすれば、多重露光撮影の条件を情報として利用し易い。この対応付けは、例えば、第1画像が得られた後になされる。
一例では、表示装置160は、第1画像が多重露光撮影された際の多重露光撮影の条件を、第1画像上に重ね合わせて表示する。この重ね合わせは、多重露光撮影の条件と第1画像との対応付けに該当する。別の例では、第1画像が多重露光撮影された際の多重露光撮影の条件が第1画像と対応する旨を表す情報が、テキストファイル形式で記憶される。この記憶も、多重露光撮影の条件と第1画像との対応付けに該当する。
一例では、第1画像と対応付けられる条件として、制御回路120において保持されている条件が用いられる。
別の例では、画像認識装置99は、第1画像を得るのに用いられる撮像装置100を備える。第1画像と対応付けられる条件として、撮像装置100において保持されている条件が用いられる。
多重露光撮影の具体的態様について、図2A、図2Bおよび図2Cを参照しながら説明する。
図2Aおよび2Bでは、1フレーム期間中に複数回の露光期間が存在する形式が示されている。この形式では、1フレーム期間中に、複数回の露光動作が実行される。その後、露光により得られた信号が読み出される。図2Aおよび2Bの「センサデータ出力」が、この読み出しに相当する。図2Aおよび2Bの形式は、撮像装置100のイメージセンサがグローバルシャッタ機能を有している場合に実現され得る。
具体的には、図2Aの形式は、撮像装置100が露光と読み出しとをシリアルに行うイメージセンサを有する場合に、実現され得る。この形式では、1フレーム期間中において、非露光の期間と露光の期間とが交互に現れ、その後、これらの複数回の露光により得られた信号が読み出される。本実施の形態では、図2Aの形式が採用されている。
図2Bの形式は、撮像装置100が露光と読み出しとをパラレルに行うイメージセンサを有する場合に、実現され得る。図2Bでは、フレームF1に、フレームF2が後続している。フレームF1の1フレーム期間中において、非露光の期間と露光の期間とが交互に現れる。これらの複数回の露光により得られた信号は、フレームF2において読み出される。このように、この形式では、あるフレームにおいて非露光の期間と露光の期間とが交互に現れ、これらの露光により得られた信号が、その次のフレームにおいて読み出される。
多重露光撮影およびグローバルシャッタ機能は、例えば、画素電極と対向電極とによって光電変換膜が挟まれた積層型の撮像装置で実現可能である。例えば、そのような積層型の撮像装置において、対向電極に印加する電圧を制御することによって露光期間と非露光期間とを設定できる。積層型の撮像装置の具体例については、特許文献2等を参照されたい。
変形例の画像認識装置99では、撮像装置100は、グローバルシャッタ機能を有さない。そのような画像認識装置99であっても、第1被写体が多重露光撮影された第1画像を得ることは可能である。具体的には、変形例に係る画像形成回路130は、図2Cに示すように、フレームメモリ151およびフレーム加算回路152を含む。この変形例では、撮像装置100は、イメージセンサで得たデータを、フレームメモリ151に出力する。この1つの出力データは、1つの被写体の像を1つだけ含む。フレームメモリ151では、複数の出力データが貯えられる。フレーム加算回路152は、これら複数の出力データのフレーム加算を行う。こうして、疑似的な多重露光画像が得られる。
本明細書では、このような疑似的な多重露光画像も、上記第1画像に含まれるものとする。疑似的な多重露光画像が得られる場合も、第1被写体が多重露光撮影されると言える。具体的に、この場合、撮像装置100が、画像形成回路130と協働して第1被写体を多重露光撮影すると言える。また、「第1画像を得るにあたって採用される」という表現は、撮像装置100において採用される場合と、画像形成回路130において採用される場合と、の両方を包含する意の表現である。
多重露光撮影の条件の設定は、図2Aおよび図2Bの例では、撮像装置100に対して行われ得る。この設定は、図2Cの例では、撮像装置100および画像形成回路130に対して行われ得る。
図3、図4A、図4B、図5Aおよび図5Bを参照して、多重露光撮影で得られる画像について説明する。
図3は、多重露光撮影で得られる画像の一例である。図3の画像には、被写体Aと、被写体Bと、被写体Cと、被写体Dと、が写っている。
被写体Aおよび被写体Bは、静止している被写体である。静止した被写体の像を多重露光撮影により得た場合と通常露光撮影により得た場合とでは、多重露光撮影と通常露光撮影とで露光時間の合計が異なる場合、輝度値に差が生じる。ただし、それ以外に、見た目に大きな差は生じない。図3の例では、被写体Aは、木である。被写体Bは、家である。
被写体Cおよび被写体Dは、動いている被写体である。動いている被写体を多重露光撮影すると、その被写体の複数の像が互いにずれて現れる。被写体Cは、動きが速い被写体である。被写体Cの各像の間には大きいずれがある。被写体Dは、動きが遅い被写体である。被写体Cの各像の間には小さいずれがある。図3の例では、被写体Cは、車である。被写体Dは、人間である。
図4Aおよび図4Bを参照して、被写体Cの多重露光撮影について、さらに説明する。
図4Aは、被写体Cの多重露光撮影において、図2Aの形式が採用されていることを表している。図4Aの具体例では、露光期間T1、T2およびT3がこの順に現れる。また、図4Aには、露光間隔W1およびW2を示している。図示しているように、露光間隔は、露光期間の間の非露光期間に対応する。
図4Bの下側には、露光期間T1において得られる被写体Cの像と、露光期間T2において得られる被写体Cの像と、露光期間T3において得られる被写体Cの像と、が示されている。これらの像が多重化されると、図4Bの上側に示す多重露光画像が得られる。得られた多重露光画像は、イメージセンサから出力され得る。
図5Aおよび図5Bを参照して、露光間隔と、得られる多重露光画像と、の関係を説明する。
図5Aのブロック矢印は、被写体Cの進行方向を表している。図5Bは、その進行方向に被写体Cが動く場合の各像を示している。図5Bの上側の画像は、露光間隔が長い場合に得られる多重露光画像を表している。この場合、被写体Cの各像の間のずれが大きい。図5Bの下側の画像は、露光間隔が短い場合に得られる多重露光画像を表している。この場合、被写体Cの各像の間のずれが小さい。露光間隔に応じて、被写体Cの各像の間のずれの大きさが変化する。
[多重露光撮影の条件の変更の仕方の具体例]
図6のフローチャートに従って、多重露光撮影の条件が変更され得る。
図6のフローチャートに従って、多重露光撮影の条件が変更され得る。
ステップS1において、多重露光撮影の条件の初期値が設定される。この設定は、制御回路120によって行われ得る。ステップS1の後、フローは、ステップS2に進む。
ステップS2において、終了条件が成立しているか否かが判定される。この判定は、例えば、制御回路120によって行われる。終了条件の具体例については後述する。終了条件が成立している場合、フローは終了する。終了条件が成立していない場合、フローは、ステップS3に進む。
ステップS3において、撮像装置100によって、撮像が行われる。撮像は、設定された多重露光撮影の条件に従って行われる。ステップS3の後、フローは、ステップS4に進む。
ステップS4において、撮像装置100から、RAWデータが、画像形成回路130へと出力される。このRAWデータは、ステップS3の撮像内容を表す。ステップS4の後、フローは、ステップS5に進む。
ステップS5において、画像形成回路130によって、RAWデータが画像化される。画像形成回路130は、得られた画像データを、処理回路170へと出力する。ステップS5の後、フローは、ステップS6に進む。
ステップS6において、処理回路170によって、認識処理が行われる。認識処理では、画像に含まれる被写体の認識が行われる。認識に用いられる画像は、上述の、第1被写体が多重露光撮影された第1画像である場合がある。この場合、処理回路170は、第1画像を用いて、第1被写体の認識率を算出する。そして、処理回路170は、認識率を、制御回路120へと出力する。具体的には、処理回路170は、第1画像における第1被写体の物体名を認識し、その認識の確からしさを表す認識率を算出する。そして、処理回路170は、認識率を、制御回路120へと出力する。ステップS6の後、フローは、ステップS7に進む。
ステップS7において、制御回路120によって、認識率が認識率閾値よりも小さいか否かが判定される。認識率が認識率閾値よりも小さい場合、フローは、ステップS8に進む。認識率が認識率閾値以上である場合、フローは、ステップS2に進む。
ステップS8において、制御回路120によって、多重露光撮影の条件が変更される。ステップS8の後、フローは、ステップS2に進む。
ステップS2の終了条件の第1の例は、画像認識装置99の外部から終了命令が入力されたという条件である。終了命令が入力された場合、フローは終了する。終了命令が入力されていない場合、フローは、ステップS3に進む。
ステップS2の終了条件の第2の例は、画像認識装置99の電源をオフにする命令が入力されたという条件である。この命令が入力された場合、フローは終了する。この命令が入力されていない場合、フローは、ステップS3に進む。
ステップS2の終了条件の第3の例は、直近のステップS6で算出された認識率が、第1上限閾値よりも大きいという条件である。認識率が第1上限閾値よりも大きい場合、フローは終了する。認識率が第1上限閾値以下である場合、フローは、ステップS3に進む。第1上限閾値は、典型的には、認識率閾値よりも大きい。
ステップS2の終了条件の第4の例は、直近のステップS6で算出された認識率が、第1下限閾値よりも小さいという条件である。認識率が第1下限閾値よりも小さい場合、フローは終了する。認識率が第1下限閾値以上である場合、フローは、ステップS3に進む。第1下限閾値は、典型的には、認識率閾値よりも小さい。
第3の例の条件または第4の例の条件が成立している場合にフローを終了させ、そうでない場合にフローをステップS3に進めてもよい。
ステップS2の終了条件の第5の例は、ステップS6で算出された認識率が第1上限閾値よりも大きいという状況が連続して第1閾値回数続いているという条件である。この状況が連続して第1閾値回数続いている場合、フローは終了する。そうでない場合、フローは、ステップS3に進む。この条件は、上記状況をもたらすフレームが連続して第1閾値回数続いて現れるという条件であるとも言える。
ステップS2の終了条件の第6の例は、ステップS6で算出された認識率が第1下限閾値よりも小さいという状況が連続して第2閾値回数続いているという条件である。この状況が連続して第2閾値回数続いている場合、フローは終了する。そうでない場合、フローは、ステップS3に進む。この条件は、上記状況をもたらすフレームが連続して第2閾値回数続いて現れるという条件であるとも言える。
第5の例の条件または第6の例の条件が成立している場合にフローを終了させ、そうでない場合にフローをステップS3に進めてもよい。その場合、第1閾値回数および第2閾値回数は、同じであってもよく、異なっていてもよい。
ステップS2の終了条件の第7の例は、図6の「開始」の後に、ステップS3の撮像が第3閾値回数行われているという条件である。ステップS3の撮像が第3閾値回数行われている場合、フローは終了する。そうでない場合、フローは、ステップS3に進む。この条件は、図6の「開始」の後に、フレームが第3閾値回数生成されたという条件であるとも言える。
図6のフローチャートを改変することも可能である。例えば、図2Cに従って疑似的な多重露光画像を形成する場合、フレーム加算がなされるように、図6のフローチャートが改変され得る。
図6のフローチャートに従った多重露光撮影の条件の変更は、認識率を向上させ得る。この点について、図7Aおよび図7Bを参照して説明する。図7Aおよび図7Bの例では、変更される上記条件は、露光間隔であるものとする。
図7Aに、フレームnにおける多重露光撮影の条件と、フレームn+αにおける多重露光撮影の条件と、を示す。nおよびαは、自然数である。図7Aは、図6のフローチャートに従って、露光間隔が2msから4msに変更されたことを表している。
図7Bに、フレームnにおける認識率と、フレームn+αにおける認識率と、を示す。図7Bの例では、第1被写体は、自動車であるものとする。図7Bは、図6のフローチャートに従って、第1被写体の認識率が向上したことを表している。具体的には、第1画像における第1被写体が自動車と認識した場合において、その認識の確からしさを表す認識率が35%から85%に上昇したことを表している。
図7Aおよび図7Bの例では、ステップS7において認識率が認識率閾値よりも小さい場合に、露光間隔を長くしている。現実に、露光間隔を長くすることにより、認識率が上昇することもある。ただし、露光間隔を短くすることにより、認識率が上昇することもある。
このことは、ある多重露光撮影の条件が数値で表される場合に一般化できる。ステップS7において認識率が認識率閾値よりも小さい場合に、その数値を大きくしてもよいし、小さくしてもよい。数値を大きくする方向または小さくする方向に変化させることで認識率が上昇する場合、認識率が認識率閾値以上になるまでその数値をその方向に変化させることが考えられる。一方、数値をその方向に変化させると認識率が低下する場合、その数値を逆方向に変化させることが考えられる。そして、逆方向への数値の変化により認識率が上昇する場合、認識率が認識率閾値以上になるまでその数値を当該逆方向に変化させることが考えられる。
上記の数値を大きくすればするほど、あるいは小さくすればするほど認識率が上昇する場合もある。しかし、典型的には、上記の数値には、認識率を高めるための最適値が存在する。この典型的な場合においては、ある方向に数値を変化させていくと、その数値が最適値を跨ぐときに認識率の変化が増加から減少に転じる。その跨ぐときの付近の数値を採用することにより、認識率は極大値に近い値をとることができる。
図6のフローチャートに従った多重露光撮影の条件変更により、認識率は変化していく。その変化の態様の例を、図8を参照して説明する。図8の例では、変更される上記条件は、露光間隔であるものとする。
図8の例では、フレームNに関するステップS7において、認識率が認識率閾値以上であると判定されている。このため、その次のフレームN+1において、フレームNの露光間隔が維持されている。
フレームN+1に関するステップS7において、認識率が認識率閾値以上であると判定されている。このため、その次のフレームN+2において、フレームN+1の露光間隔が維持されている。
フレームN+2に関するステップS7において、認識率が認識率閾値よりも小さいと判定されている。このため、その次のフレームN+3において、フレームN+2の露光間隔よりも長い露光間隔が採用されている。
フレームN+3に関するステップS7において、認識率が認識率閾値よりも小さいと判定されている。このため、その次のフレームN+4において、フレームN+3の露光間隔よりも長い露光間隔が採用されている。
フレームN+4に関するステップS7において、認識率が認識率閾値よりも小さいと判定されている。このため、その次のフレームN+5において、フレームN+4の露光間隔よりも長い露光間隔が採用されている。
図8の例では、フレームN+5において、フレームN+4よりも長い露光間隔が採用された結果、認識率が認識率閾値を超えるに至っている。
[画像における被写体が特定の物体である可能性のみならず他の物体である可能性もあると認識される得る画像認識装置において、利用可能な技術]
図7Aおよび図7Bの例では、画像における被写体が自動車である可能性が認識されている。一方、画像における被写体が人である可能性および家である可能性は認識されていない。つまり、図7Aおよび図7Bの例では、画像において被写体が特定の物体である可能性のみが認識されている。しかし、現実には、画像における被写体が特定の物体である可能性のみならず他の物体である可能性もあると認識されることもあり得る。以下、そのような場合に利用可能な技術を説明する。なお、以下では、図6、図7A、図7Bおよび図8を参照して説明した内容については、その説明を省略することがある。
図7Aおよび図7Bの例では、画像における被写体が自動車である可能性が認識されている。一方、画像における被写体が人である可能性および家である可能性は認識されていない。つまり、図7Aおよび図7Bの例では、画像において被写体が特定の物体である可能性のみが認識されている。しかし、現実には、画像における被写体が特定の物体である可能性のみならず他の物体である可能性もあると認識されることもあり得る。以下、そのような場合に利用可能な技術を説明する。なお、以下では、図6、図7A、図7Bおよび図8を参照して説明した内容については、その説明を省略することがある。
以下の説明では、第1認識率、第2認識率および第3認識率という用語を用いることがある。第1認識率は、第1被写体が第1物体であることの確からしさを表す。第1認識率は、図6のフローチャートの認識率に相当する。第2認識率は、第1被写体が第2物体であることの確からしさを表す。第3認識率は、第1被写体が第3物体であることの確からしさを表す。第1物体は、優先度が1である物体である。第2物体は、優先度が2である物体である。第3物体は、優先度が3である物体である。優先度の数値が小さいことは、優先度が高いことを意味する。つまり、これらの物体の中で、第1物体の優先度が最も高い。
第1認識率、第2認識率および第3認識率を算出し、これらの中で第1認識率が最大ではなかったとする。その場合、第1認識率、第2認識率および第3認識率の中で第1認識率が最大となるように、多重露光撮影の条件が変更される。
以下、図9Aおよび9Bを参照して、この技術について、具体例を挙げて説明する。図9Aおよび9Bの具体例では、第1物体は、人である。第2物体は、自動車である。第3物体は、家である。第1認識率は、第1被写体が人であることの確からしさを表す。第2認識率は、第1被写体が自動車であることの確からしさを表す。第3認識率は、第1被写体が家であることの確からしさを表す。この具体例では、変更される多重露光撮影の条件として、露光間隔が採用されている。
図9Aに、フレームnにおける多重露光撮影の条件と、フレームn+αにおける多重露光撮影の条件と、を示す。nおよびαは、自然数である。図9Aは、露光間隔が2msから4msに変更されたことを表している。
図9Bに、フレームnにおける認識率と、フレームn+αにおける認識率と、を示す。フレームnでは、第1認識率は、40%である。第2認識率は、75%である。第3認識率は、20%である。第1認識率は、第3認識率よりも高い。しかし、第1認識率は、第2認識率よりも低い。
このため、第1認識率、第2認識率および第3認識率の中で第1認識率が最大となるように、露光間隔が変更される。この変更の結果、フレームn+αでは、第1認識率、第2認識率および第3認識率の中で第1認識率が最大となっている。具体的に、第1認識率は、60%である。第2認識率は、30%である。第3認識率は、認識なしである。認識なしは、0%と扱うことができる。
上述の説明では、画像における被写体が第1物体である可能性と、第2物体である可能性と、第3物体である可能性とが認識される場合について述べた。ただし、正解の物体の候補として認識される物体の数は、2つであってもよく、4以上であってもよい。
例えば、処理回路170は、上記の認識率である第1認識率であって第1被写体が第1物体であることの確からしさを表す第1認識率と、第1被写体が第2物体であることの確からしさを表す第2認識率と、を算出するように構成され得る。そして、制御回路120は、第1認識率から第2認識率を差し引いた差分がZ以下である場合にも、多重露光撮影の条件を変更するものであり得る。ここで、Zは、0以上の値である。そのような処理回路170および制御回路120は、上述の技術の実現に適している。
Zは、0よりも大きい値、例えば10%以上20%以下の範囲の値であってもよい。このようにすれば、第1認識率を第2認識率よりも大きくすることができる。第1認識率と第2認識率との間に有意差が生じるようにすることにより、認識の信頼性を向上させることも可能である。
画像における被写体が特定の物体である可能性のみならず他の物体である可能性もあると認識され得る場合がある。その場合に利用可能な技術は、優先度を設定する技術に限られない。例えば、最初に得られた第1認識率および第2認識率のうち大きい方を、図6のフローチャートの認識率に対応付けてもよい。より一般的には、ある第1被写体についての物体名の複数の候補が、その確からしさを表す認識率とともに最初に得られたとする。その場合において、複数の認識率のうち最大のものを、図6のフローチャートの第1被写体の認識率に対応付けることができる。
[処理回路170の具体例]
一具体例では、処理回路170は、教師画像および正解ラベルの組み合わせを複数組用いた教師あり学習を行う。教師画像は、第1画像に対応する。正解ラベルは、第1被写体の物体名に対応する。先に説明したように、物体名は、例えば、自動車、人、家等である。処理回路170は、教師あり学習後において、第1画像を用いて認識率を算出する。このような処理回路170によれば、認識率の算出精度を確保できる。
一具体例では、処理回路170は、教師画像および正解ラベルの組み合わせを複数組用いた教師あり学習を行う。教師画像は、第1画像に対応する。正解ラベルは、第1被写体の物体名に対応する。先に説明したように、物体名は、例えば、自動車、人、家等である。処理回路170は、教師あり学習後において、第1画像を用いて認識率を算出する。このような処理回路170によれば、認識率の算出精度を確保できる。
本実施の形態では、画像認識装置99は、第1画像を得るのに用いられる撮像装置100を備える。以下、この撮像装置を、第1撮像装置と称することがある。画像認識装置99は、教師画像を得るのに用いられる第2撮像装置を備える。本実施の形態では、第2撮像装置は、第1撮像装置100と同じである。つまり、1つの第1撮像装置100が、第1撮像装置および第2撮像装置の両方として用いられる。ただし、第2撮像装置は、第1撮像装置100とは異なる撮像装置であってもよい。
一具体例では、処理回路170は、ニューラルネットワークで表現される演算モデルを読み込んでいる。処理回路170は、教師あり学習を行い、教師あり学習後において、第1画像を用いて認識率を算出する。このような処理回路170は、ニューラルネットワークに基づいて、教師あり学習を行い、教師あり学習後において、第1画像を用いて認識率を算出することができる。ニューラルネットワークは、画像を用いた情報処理に適している。ニューラルネットワークは、例えば、DCNN(Deep Convolutional Neural Network)である。
処理回路170が有するDCNNの例について、図10を参照して説明する。図10に示すDCNNは、入力層と、複数の中間層と、出力層と、を有する。
図10に示すDCNNの学習について説明する。処理回路170は、DCNNを学習させるために、教師画像に含まれる複数の画素の値からなるベクトルを入力層に入力する。そして、処理回路170は、中間層において畳み込みなどの処理を行う。これにより、教師画像に含まれる複数の画素の畳み込みがなされる。そして、処理回路170は、出力層からの出力と、入力された教師画像に対応する正解ラベルと、の誤差を算出する。
例えば、認識候補となる物体が人、自動車、及び家である場合、処理回路170は、出力層のノード数を3つに設定する。すなわち、出力層からの出力ベクトルは、第1ノードから出力される第1出力値と、第2ノードから出力される第2出力値と、第3ノードから出力される第3出力値と、からなる。処理回路170は、第1出力値を、教師画像の被写体が人であることの確からしさに対応させる。処理回路170は、第2認識率を、教師画像の被写体が自動車であることの確からしさに対応させる。処理回路170は、第3出力値を、教師画像の被写体が家であることの確からしさに対応させる。また、処理回路170は、正解ラベルに対応する教師ベクトルを生成する。上述の例では、正解ラベルが人である場合、教師ベクトル(1,0,0)を生成する。そして、処理回路170は、教師ベクトルと、DCNNの出力層からの出力ベクトルとの誤差ベクトルを求める。処理回路170は、誤差ベクトルが0ベクトルに近づくように、中間層の各ノードの係数(例えば重み)を更新する。また、処理回路170は、中間層だけでなく入力層における各ノードの係数を更新してもよい。
処理回路170は、教師画像と正解ラベルとの組み合わせを複数用いることで、DCNNを学習させる。ただし、DCNNの学習の態様は上述の例に限らない。
処理回路170は、第1画像に対する認識率を算出するために、学習済みのDCNNを用いる。具体的には、処理回路170は、第1画像に含まれる複数の画素の値をDCNNの入力層に入力し、中間層において畳み込み処理を行う。そして、処理回路170は、出力層からの出力ベクトルに基づいて認識率を求める。上述の例において、出力ベクトル(0.04,0.92,0.01)が求められた場合、処理回路170は、第1画像の第1被写体が自動車であることの確からしさを表す第1認識率0.92を求める。
なお、処理回路170は、画像をDCNNに入力する前に、当該画像に前処理を行ってもよい。例えば、前処理には、フィルタリングによるノイズ除去が含まれる。これにより、学習及び認識の精度は向上する。
処理回路170において学習が行われることは、必須ではない。制御回路120は、テンプレートマッチング、特徴マッチング等によって、認識率を算出するように構成されていてもよい。処理回路170は、サポートベクターマシン(SVM:Support Vector Machine)のようなパターン認識モデルによって、認識率を算出するように構成されていてもよい。
[複数の撮像装置100を用いた例]
図11の例では、画像認識装置199は、2つのカメラ部80を有する。これらの2つのカメラ部80によって、処理回路170および表示装置160が共用されている。2つのカメラ部80は、ステレオカメラを構成していてもよい。
図11の例では、画像認識装置199は、2つのカメラ部80を有する。これらの2つのカメラ部80によって、処理回路170および表示装置160が共用されている。2つのカメラ部80は、ステレオカメラを構成していてもよい。
2つのカメラ部80の一方の多重露光撮影の条件は、他方の多重露光撮影の条件と異なっていてもよい。そのようにすれば、2並列で図6の認識処理等を実行できる。これにより、高速な画像認識が可能となる。
(実施の形態2)
以下、実施の形態2について説明する。以下では、実施の形態1と重複する説明は省略することがある。
以下、実施の形態2について説明する。以下では、実施の形態1と重複する説明は省略することがある。
実施の形態2では、認識率に代えて、第1被写体の速度に関する値が算出される。具体的には、処理回路170に、第1被写体が多重露光撮影された第1画像が入力される。処理回路170は、第1画像を用いて、第1被写体の速度の推定範囲を算出する。推定範囲は、値V±誤差Eの範囲である。推定範囲が値V±誤差Eの範囲であるとは、推定範囲が値V-誤差E以上、値V+誤差E以下の範囲であることを指す。第1画像は、1つの被写体の像を1個だけ含む画像に比べ、第1被写体の速度の算出精度を確保するのに適している。なお、速度は、絶対値であってもよく、ベクトルであってもよい。
推定範囲についてさらに説明する。現実の速度の推定においては、誤差の存在が考慮されることがある。その場合、速度はある一点の値であるとのピンポイントな推定ではなく、速度はある範囲にあるとの幅のある推定がなされることがある。後者の幅のある推定が、上記推定範囲の算出に対応する。
制御回路120は、誤差Eが誤差閾値よりも大きい場合に、多重露光撮影の条件を変更する。誤差Eが大きいことは、第1被写体の速度の算出精度が低いことを示唆している。実施の形態2では、誤差Eが大きいときに、多重露光撮影の条件を変更する。この変更により、誤差Eを小さくすることができる。つまり、第1被写体の速度の算出精度が高いことが示唆される状況を得ることができる。誤差閾値は、例えば、3%以上20%以下の範囲にある特定の値である。
具体的には、本実施の形態では、多重露光撮影の条件が変更された場合において、その変更が反映された第1画像が、処理回路170に入力される。処理回路170は、その第1画像を用いて、第1被写体の速度の推定範囲を再度算出する。
より具体的には、本実施の形態では、処理回路170による推定範囲の算出と、誤差Eが誤差閾値よりも大きい場合における制御回路120による条件の変更と、が、終了条件が成立するまで繰り返される。
処理回路170は、表示装置160へと、画像と、第1被写体の速度の推定範囲と、を出力する。処理回路170は、表示装置160へと、値Vおよび誤差Eを出力するように構成されていてもよい。また、処理回路170は、制御回路120へと、誤差Eを出力する。
表示装置160は、画像と、第1被写体の速度の推定範囲と、を表示する。表示装置160は、値Vおよび誤差Eを表示するように構成されていてもよい。
制御回路120は、撮像装置100の撮像条件を制御する。制御回路120は、実施の形態1と同様に、多重露光撮影の条件を変更できる。変更される条件は、実施の形態1と同様、条件(a)~(h)からなる群より選択される少なくとも1つを含み得る。また、制御回路120は、画像形成回路130の画像形成条件を制御する。
実施の形態2では、表示装置160は、画像認識装置99の内部表示装置である。このように、画像認識装置99は、第1被写体の速度の推定範囲を表示する内部表示装置を備える。内部表示装置は、具体的には、第1画像と、推定範囲と、を表示し得る。内部表示装置は、値Vおよび誤差Eを表示するように構成されていてもよい。
画像認識装置99は、推定範囲を表示する外付け表示装置へと推定範囲を出力する出力インターフェースを備えていてもよい。具体的には、画像認識装置99は、第1画像と、推定範囲と、を外付け表示装置へと出力する出力インターフェースを備えていてもよい。そして、外付け表示装置は、第1画像と、推定範囲と、を表示するものであってもよい。また、出力インターフェースは、値Vおよび誤差Eを出力するように構成されていてもよい。そして、外付け表示装置は、値Vおよび誤差Eを表示するように構成されていてもよい。
画像認識装置99は、内部表示装置および出力インターフェースの一方を備えていてもよい。画像認識装置99は、これらの両方を備えていてもよい。
実施の形態2でも、実施の形態1と同様、多重露光撮影の条件と第1画像とが対応付けられ得る。
実施の形態2でも、実施の形態1と同様、処理回路170は、教師画像および正解ラベルの組み合わせを複数組用いた教師あり学習を行う。教師画像は、第1画像に対応する。正解ラベルは、第1被写体の速度に対応する。処理回路170は、教師あり学習後において、第1画像を用いて、第1被写体の速度の推定範囲を算出する。このような処理回路170によれば、第1被写体の速度の算出精度が確保され易い。
実施の形態1の他の技術も、実施の形態2に適用され得る。
[多重露光撮影の条件の変更の仕方の具体例]
実施の形態2では、図12のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図12のフローチャートについて、説明する。以下の説明では、図6のフローチャートと重複する説明については、省略することがある。
実施の形態2では、図12のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図12のフローチャートについて、説明する。以下の説明では、図6のフローチャートと重複する説明については、省略することがある。
ステップS16において、処理回路170によって、画像に含まれる被写体の速度の推定範囲が算出される。この算出に用いられる画像は、上述の、第1被写体が多重露光撮影された第1画像である場合がある。この場合、処理回路170は、第1画像を用いて、第1被写体の速度の推定範囲を算出する。そして、処理回路170は、誤差Eを、制御回路120へと出力する。ステップS16の後、フローは、ステップS17に進む。
ステップS17において、制御回路120によって、誤差Eが誤差閾値よりも大きいか否かが判定される。誤差Eが誤差閾値よりも大きい場合、フローは、ステップS8に進む。誤差Eが誤差閾値以下である場合、フローは、ステップS2に進む。
実施の形態2のステップS2の終了条件の第1の例は、実施の形態1のステップS2の終了条件の第1の例である。
実施の形態2のステップS2の終了条件の第2の例は、実施の形態1のステップS2の終了条件の第2の例である。
ステップS2の終了条件の第3の例は、直近のステップS16で算出された誤差Eが、第2上限閾値よりも大きいという条件である。誤差Eが第2上限閾値よりも大きい場合、フローは終了する。誤差Eが第2上限閾値以下である場合、フローは、ステップS3に進む。第2上限閾値は、典型的には、誤差閾値よりも大きい。
ステップS2の終了条件の第4の例は、直近のステップS16で算出された誤差Eが、第2下限閾値よりも小さいという条件である。誤差Eが第2下限閾値よりも小さい場合、フローは終了する。誤差Eが第2下限閾値以上である場合、フローは、ステップS3に進む。第2下限閾値は、典型的には、誤差閾値よりも小さい。
第3の例の条件または第4の例の条件が成立している場合にフローを終了させ、そうでない場合にフローをステップS3に進めてもよい。
ステップS2の終了条件の第5の例は、ステップS16で算出された誤差Eが第2上限閾値よりも大きいという状況が連続して第4閾値回数続いているという条件である。この状況が連続して第4閾値回数続いている場合、フローは終了する。そうでない場合、フローは、ステップS3に進む。なお、この条件は、上記状況をもたらすフレームが連続して第4閾値回数続いて現れるという条件であるとも言える。
ステップS2の終了条件の第6の例は、ステップS16で算出された誤差Eが第2下限閾値よりも小さいという状況が連続して第5閾値回数続いているという条件である。この状況が連続して第5閾値回数続いている場合、フローは終了する。そうでない場合、フローは、ステップS3に進む。なお、この条件は、上記状況をもたらすフレームが連続して第5閾値回数続いて現れるという条件であるとも言える。
第5の例の条件または第6の例の条件が成立している場合にフローを終了させ、そうでない場合にフローをステップS3に進めてもよい。その場合、第4閾値回数および第5閾値回数は、同じであってもよく、異なっていてもよい。
実施の形態2のステップS2の終了条件の第7の例は、実施の形態1のステップS2の終了条件の第7の例である。
図12のフローチャートに従った多重露光撮影の条件の変更は、速度の算出精度を向上させ得る。この点について、図13Aおよび図13Bを参照して説明する。なお、図13Aおよび図13Bの例では、変更される上記条件は、露光間隔であるものとする。
図13Aに、フレームnにおける多重露光撮影の条件と、フレームn+αにおける多重露光撮影の条件と、を示す。nおよびαは、自然数である。図13Aは、図12のフローチャートに従って、露光間隔が2msから4msに変更されたことを表している。
図13Bに、フレームnにおける値Vおよび誤差Eと、フレームn+αにおける値Vおよび誤差Eと、を示す。両フレームにおいて、値Vは50km/hである。フレームnにおける誤差Eは、15km/hである。フレームn+αにおける誤差Eは、5km/hである。フレームn+αにおける誤差Eは、フレームnにおける誤差Eよりも小さい。図13Bは、図12のフローチャートに従って、第1被写体の速度の算出精度が向上したことを表している。
(実施の形態3)
実施の形態3では、図14のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図14のフローチャートについて、説明する。以下の説明では、図6のフローチャートと重複する説明については、省略することがある。
実施の形態3では、図14のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図14のフローチャートについて、説明する。以下の説明では、図6のフローチャートと重複する説明については、省略することがある。
ステップS1の後、フローは、ステップS21に進む。ステップS21では、移行条件が成立しているか否かが判定される。移行条件の具体例については後述する。移行条件が成立している場合、フローは、ステップS26に進む。移行条件が成立していない場合、フローは、ステップS22に進む。
ステップS22では、図6のステップS3,S4,S5およびS6が、この順に実行される。ステップS22の後、フローは、ステップS23に進む。
ステップS23において、ステップS6で認識処理が行われたフレームが「開始」から数えて偶数フレームなのか奇数フレームなのかが判定される。このフレームが偶数フレームの場合、フローは、ステップS24に進む。このフレームが奇数フレームの場合、フローは、ステップS25に進む。
ステップS24において、制御回路120によって、多重露光撮影の条件が条件Aに変更される。ステップS24の後、フローは、ステップS21に進む。
ステップS25において、制御回路120によって、多重露光撮影の条件が条件Bに変更される。ステップS25の後、フローは、ステップS21に進む。
この具体例では、ステップS21の移行条件は、「開始」から数えて認識率Aと認識率BがそれぞれJ回得られているという条件である。Jは、自然数である。Jは、例えば1である。認識率Aは、ステップS24で条件Aが採用された状態で、ステップS22のステップS6を実行することにより得られる認識率である。認識率Bは、ステップS25で条件Bが採用された状態で、ステップS22のステップS6を実行することにより得られる認識率である。条件Aと条件Bとは、互いに異なる撮影条件である。
ステップS26において、認識率Aと認識率Bとが比較される。認識率Aが認識率B以上である場合、フローは、ステップS27に進む。認識率Aが認識率Bよりも小さい場合、フローは、ステップS28に進む。
フローがステップS27に進んだ場合、条件Aがベース条件に設定される。フローがステップS28に進んだ場合、条件Bがベース条件に設定される。
上述の説明から理解されるように、認識率Aおよび認識率Bは、ベース条件を設定するのに用いられる。認識率Aおよび認識率Bを、参照用の認識率を称することができる。
ステップS27またはステップS28の後、ステップS29では、図6のステップS3,S4,S5およびS6が、この順に実行される。
ステップS29では、ステップS3の撮像が行われる。条件Aがベース条件に設定された場合、ステップS29の初回の撮像は、多重露光撮影の条件が条件Aに設定された状態で行われる。条件Bがベース条件に設定された場合、ステップS29の初回の撮像は、多重露光撮影の条件が条件Bに設定された状態で行われる。ステップS29の後、フローは、ステップS2に進む。
ステップS2において、実施の形態1と同様、終了条件が成立しているか否かが判定される。終了条件が成立している場合、フローは終了する。終了条件が成立していない場合、フローは、ステップS7に進む。
ステップS7において、実施の形態1と同様、制御回路120によって、認識率が認識率閾値よりも小さいか否かが判定される。認識率が認識率閾値よりも小さい場合、フローは、ステップS8に進む。認識率が認識率閾値以上である場合、フローは、ステップS29に進む。
ステップS8において、実施の形態1と同様、制御回路120によって、多重露光撮影の条件が変更される。ステップS8の後、フローは、ステップS29に進む。
図14のフローチャートによれば、ステップS26において、条件Aと条件Bのどちらによればより高い認識率が得られるのかが分かる。ステップS29において、そのより高い認識率が得られる条件が、初回の多重露光撮影の条件として用いられる。このようにすることは、ステップS29以降において、高い認識率が得られる多重露光撮影の条件を素早く見出す観点から有利である。
図14のフローチャートに従った多重露光撮影の条件変更により、認識率が変化していく。その変化の態様の例を、図15を参照して説明する。なお、図15の例では、変更される上記条件は、露光間隔であるものとする。
図15の例では、フレームNに関するステップS22において、条件Aで多重露光撮影がなされている。
フレームN+1に関するステップS22において、条件Bで多重露光撮影がなされている。
この例では、条件Aおよび条件Bは、露光間隔である。図15の下図に示されているように、フレームN+1の露光間隔は、フレームNの露光間隔よりも短い。このことは、条件Bの露光間隔は、条件Aの露光間隔よりも短いことを意味する。図15の上図に示されているように、フレームN+1の認識率は、フレームNの認識率よりも低い。この状況では、ステップS26で、認識率A≧認識率Bと判定される。そして、フローはステップS27に進み、条件Aがベース条件に設定される。
ベース条件が条件Aであるため、フレームN+2において、条件AでステップS29の多重露光撮影がなされる。そのフレームN+2のステップS7において、認識率が認識率閾値よりも小さいと判定されている。このため、その次のフレームN+3において、フレームN+2の露光間隔よりも長い露光間隔が採用されている。
フレームN+3に関するステップS7において、認識率が認識率閾値よりも小さいと判定されている。このため、その次のフレームN+4において、フレームN+3の露光間隔よりも長い露光間隔が採用されている。
フレームN+4に関するステップS7において、認識率が認識率閾値よりも小さいと判定されている。このため、その次のフレームN+5において、フレームN+4の露光間隔よりも長い露光間隔が採用されている。
図15の例では、フレームN+5において、フレームN+4よりも長い露光間隔が採用された結果、認識率が認識率閾値を超えるに至っている。
このように、実施の形態3では、処理回路170は、認識率の算出を、互いに異なる条件により得られた複数の第1画像について行うことによって、複数の参照用の認識率を算出する。制御回路120は、複数の参照用の認識率を互いに比較することによって、ベースとなる条件であるベース条件を選択する。ベース条件は、例えば、上記互いに異なる条件のうち最も大きい認識率が得られる条件である。処理回路170は、ベース条件により得られた第1画像であって複数の参照用の認識率を算出するための第1画像とは異なる第1画像を用いて、認識率閾値と比較されるべき認識率を算出する。
実施の形態3では、具体的には、多重露光撮影の条件として、条件Aと条件Bとが準備されている。条件Aを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Aを用いて得られた第1画像を用いて、第1画像における第1被写体の認識率である認識率Aを算出する。条件Bを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Bを用いて得られた第1画像を用いて、第1画像における第1被写体の認識率である認識率Bを算出する。制御回路120は、認識率Aと認識率Bとを比較する。制御回路120は、この比較により、ベース条件を選択する。ベース条件は、条件AおよびBのうち、高い認識率が得られたほうの条件である。処理回路170は、ベース条件により得られた第1画像であって認識率Aおよび認識率Bを算出するための第1画像とは異なる第1画像を用いて、認識率閾値と比較されるべき認識率を算出する。
その後、処理回路170は、ベース条件により得られた第1画像を用いて第1被写体の認識率を算出する。制御回路120は、認識率が認識率閾値よりも小さい場合に、多重露光撮影の条件を変更する。具体的には、多重露光撮影の条件が変更された場合において、その変更が反映された第1画像が、処理回路170に入力される。処理回路170は、その第1画像を用いて、認識率を再度算出する。
(実施の形態4)
実施の形態4では、図16のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図16のフローチャートについて、説明する。以下の説明では、図12および/または図14のフローチャートと重複する説明については、省略することがある。
実施の形態4では、図16のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図16のフローチャートについて、説明する。以下の説明では、図12および/または図14のフローチャートと重複する説明については、省略することがある。
ステップS1の後、フローは、ステップS21に進む。ステップS21では、移行条件が成立しているか否かが判定される。移行条件の具体例については後述する。移行条件が成立している場合、フローは、ステップS36に進む。移行条件が成立していない場合、フローは、ステップS32に進む。
ステップS32では、図12のステップS3,S4,S5およびS16が、この順に実行される。ステップS32の後、フローは、ステップS23に進む。
ステップS23において、ステップS16の被写体の速度の算出が行われたフレームが「開始」から数えて偶数フレームなのか奇数フレームなのかが判定される。このフレームが偶数フレームの場合、フローは、ステップS24に進む。このフレームが奇数フレームの場合、フローは、ステップS25に進む。
ステップS24において、制御回路120によって、多重露光撮影の条件が条件Aに変更される。ステップS24の後、フローは、ステップS21に進む。
ステップS25において、制御回路120によって、多重露光撮影の条件が条件Bに変更される。ステップS25の後、フローは、ステップS21に進む。
この具体例では、ステップS21の移行条件は、「開始」から数えて誤差EAと誤差EBがそれぞれK回得られているという条件である。Kは、自然数である。Kは、例えば1である。誤差EAは、ステップS24で条件Aが採用された状態で、ステップS32のステップS16を実行することにより得られる誤差Eである。誤差EBは、ステップS25で条件Bが採用された状態で、ステップS32のステップS16を実行することにより得られる誤差Eである。
ステップS36において、誤差EAと誤差EBとが比較される。誤差EAが誤差EB以下である場合、フローは、ステップS27に進む。誤差EAが誤差EBよりも大きい場合、フローは、ステップS28に進む。
フローがステップS27に進んだ場合、条件Aがベース条件に設定される。フローがステップS28に進んだ場合、条件Bがベース条件に設定される。
上述の説明から理解されるように、誤差EAおよび誤差EBは、ベース条件を設定するのに用いられる。誤差EAおよび誤差EBを、参照用の誤差Eを称することができる。
ステップS27またはステップS28の後、ステップS39では、図12のステップS3,S4,S5およびS16が、この順に実行される。
ステップS39では、ステップS3の撮像が行われる。条件Aがベース条件に設定された場合、ステップS39の初回の撮像は、多重露光撮影の条件が条件Aに設定された状態で行われる。条件Bがベース条件に設定された場合、ステップS39の初回の撮像は、多重露光撮影の条件が条件Bに設定された状態で行われる。ステップS39の後、フローは、ステップS2に進む。
ステップS2において、実施の形態2と同様、終了条件が成立しているか否かが判定される。終了条件が成立している場合、フローは終了する。終了条件が成立していない場合、フローは、ステップS17に進む。
ステップS17において、実施の形態2と同様、制御回路120によって、誤差Eが誤差閾値よりも小さいか否かが判定される。誤差Eが誤差閾値よりも大きい場合、フローは、ステップS8に進む。誤差Eが誤差閾値以下である場合、フローは、ステップS39に進む。
ステップS8において、実施の形態2と同様、制御回路120によって、多重露光撮影の条件が変更される。ステップS8の後、フローは、ステップS39に進む。
図16のフローチャートによれば、ステップS36において、条件Aと条件Bのどちらによればより小さい誤差Eが得られるのかが分かる。ステップS39において、そのより小さい誤差Eが得られる条件が、初回の多重露光撮影の条件として用いられる。このようにすることは、ステップS39以降において、小さい誤差Eが得られる多重露光撮影の条件を素早く見出す観点から有利である。
このように、実施の形態4では、処理回路170は、推定範囲の算出を、互いに異なる条件により得られた複数の第1画像について行うことによって、複数の参照用の誤差Eを算出する。制御回路120は、複数の参照用の誤差Eを互いに比較することによって、ベースとなる条件であるベース条件を選択する。ベース条件は、例えば、上記互いに異なる条件のうち最も小さい誤差Eが得られる条件である。処理回路170は、ベース条件により得られた第1画像であって複数の参照用の誤差Eを算出するための第1画像とは異なる第1画像を用いて、誤差閾値と比較されるべき誤差Eを算出する。
実施の形態4では、具体的には、多重露光撮影の条件として、条件Aと条件Bとが準備されている。条件Aを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Aを用いて得られた第1画像を用いて、誤差Eである誤差EAを算出する。条件Bを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Bを用いて得られた第1画像を用いて、誤差Eである誤差EBを算出する。制御回路120は、誤差EAと誤差EBとを比較する。制御回路120は、この比較により、ベース条件を選択する。ベース条件は、条件AおよびBのうち、小さい誤差Eが得られたほうの条件である。処理回路170は、ベース条件により得られた第1画像であって誤差EAおよび誤差EBを算出するための第1画像とは異なる第1画像を用いて、誤差閾値と比較されるべき誤差Eを算出する。
その後、処理回路170は、ベース条件により得られた第1画像を用いて、第1被写体の速度の推定範囲を算出する。制御回路120は、誤差Eが誤差閾値よりも大きい場合に、多重露光撮影の条件を変更する。具体的には、多重露光撮影の条件が変更された場合において、その変更が反映された第1画像が、処理回路170に入力される。処理回路170は、その第1画像を用いて、推定範囲を再度算出する。
(参考実施形態1)
参考実施形態1では、図17のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図17のフローチャートについて、説明する。以下の説明では、図6および/または図14のフローチャートと重複する説明については、省略することがある。
参考実施形態1では、図17のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図17のフローチャートについて、説明する。以下の説明では、図6および/または図14のフローチャートと重複する説明については、省略することがある。
ステップS1の後、フローは、ステップS2に進む。ステップS2において、実施の形態1と同様、終了条件が成立しているか否かが判定される。終了条件が成立している場合、フローは終了する。終了条件が成立していない場合、フローは、ステップS3に進む。
実施の形態1と同様、図6のステップS3,S4,S5およびS6が、この順に実行される。ステップS6の後、フローは、ステップS23に進む。
ステップS23において、実施の形態3と同様、ステップS6で認識処理が行われたフレームが「開始」から数えて偶数フレームなのか奇数フレームなのかが判定される。このフレームが偶数フレームの場合、フローは、ステップS24に進む。このフレームが奇数フレームの場合、フローは、ステップS25に進む。
ステップS24において、実施の形態3と同様、制御回路120によって、多重露光撮影の条件が条件Aに変更される。ステップS24の後、フローは、ステップS2に進む。
ステップS25において、実施の形態3と同様、制御回路120によって、多重露光撮影の条件が条件Bに変更される。ステップS25の後、フローは、ステップS2に進む。
図17のフローチャートに従った多重露光撮影の条件変更により、認識率が変化していく。その変化の態様の例を、図18を参照して説明する。なお、図18の例では、変更される上記条件は、露光間隔であるものとする。
図18の例では、フレームN,N+2およびN+4に関するステップS3において、条件Aで多重露光撮影がなされている。フレームN+1,N+3およびN+5に関するステップS3において、条件Bで多重露光撮影がなされている。
この例では、条件Aおよび条件Bは、露光間隔である。図18に示されているように、フレームN+1の露光間隔は、フレームNの露光間隔よりも短い。このことは、条件Bの露光間隔は、条件Aの露光間隔よりも短いことを意味する。
このように、図18の例では、長い露光間隔での多重露光撮影と、短い露光間隔での多重露光撮影と、が繰り返される。典型的には、どちらかの露光間隔によって、高い認識率が得られる。このようにすれば、高い認識率が得られる条件が見出されるまでに実行されるフローチャートの繰り返し数を削減できる。この点で、図18の例は、図6の例よりも有利であり得る。
このように、参考実施形態1では、画像認識装置99は、処理回路170と、制御回路120と、を備える。処理回路170は、第1被写体が多重露光撮影された第1画像が入力され、第1画像を用いて第1被写体の認識率を算出する。制御回路120は、多重露光撮影の条件を変更する。処理回路170は、認識率の算出を、互いに異なる条件により得られた複数の第1画像について行うことによって、複数の認識率を算出する。
具体的には、多重露光撮影の条件として、条件Aと条件Bとが準備されている。条件Aを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Aを用いて得られた第1画像を用いて、第1画像における第1被写体の認識率を算出する。条件Bを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Bを用いて得られた第1画像を用いて、第1画像における第1被写体の認識率を算出する。
(参考実施形態2)
参考実施形態2では、図19のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図19のフローチャートについて、説明する。以下の説明では、図12および/または図17のフローチャートと重複する説明については、省略することがある。
参考実施形態2では、図19のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図19のフローチャートについて、説明する。以下の説明では、図12および/または図17のフローチャートと重複する説明については、省略することがある。
ステップS1の後、フローは、ステップS2に進む。ステップS2において、実施の形態2と同様、終了条件が成立しているか否かが判定される。終了条件が成立している場合、フローは終了する。終了条件が成立していない場合、フローは、ステップS3に進む。
実施の形態2と同様、図6のステップS3,S4,S5およびS16が、この順に実行される。ステップS16の後、フローは、ステップS23に進む。
ステップS23において、実施の形態4と同様、ステップS16で被写体の速度の算出が行われたフレームが「開始」から数えて偶数フレームなのか奇数フレームなのかが判定される。このフレームが偶数フレームの場合、フローは、ステップS24に進む。このフレームが奇数フレームの場合、フローは、ステップS25に進む。
ステップS24において、実施の形態4と同様、制御回路120によって、多重露光撮影の条件が条件Aに変更される。ステップS24の後、フローは、ステップS2に進む。
ステップS25において、実施の形態4と同様、制御回路120によって、多重露光撮影の条件が条件Bに変更される。ステップS25の後、フローは、ステップS2に進む。
このように、参考実施形態2では、画像認識装置99は、処理回路170と、制御回路120と、を備える。処理回路170は、第1被写体が多重露光撮影された第1画像が入力され、第1画像を用いて、第1被写体の速度の推定範囲を算出する。制御回路120は、多重露光撮影の条件を変更する。処理回路170は、推定範囲の算出を、互いに異なる条件により得られた複数の第1画像について行うことによって、複数の誤差Eを算出する。
具体的には、多重露光撮影の条件として、条件Aと条件Bとが準備されている。条件Aを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Aを用いて得られた第1画像を用いて、第1被写体の速度の推定範囲を算出する。条件Bを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Bを用いて得られた第1画像を用いて、推定範囲を算出する。
(実施の形態5)
以下、実施の形態5について説明する。以下では、実施の形態1および2と重複する説明は省略することがある。
以下、実施の形態5について説明する。以下では、実施の形態1および2と重複する説明は省略することがある。
実施の形態5では、第1被写体の速度に代えて、第1被写体を基準としたときの撮影装置100の相対速度に関する値が算出される。第1被写体として静止している被写体を選択してもよい。その場合には、算出された撮影装置100の相対速度は、撮影装置100の速度、すなわち撮影装置100が設置された移動体、例えば車両の速度である。本実施の形態では、静止している第1被写体を撮像することにより、撮像装置100が設置された移動体の速度に関する値が算出される。具体的には、処理回路170に、第1被写体が多重露光撮影された第1画像が入力される。処理回路170は、第1画像と、第1被写体までの距離情報とを用いて、撮像装置100が設置された移動体の速度の推定範囲を算出する。第1被写体までの距離情報は、例えばステレオカメラ、TOF(Time of Flight)センサ、レーザーレーダーおよびソナーなどの装置によって取得してもよい。
また、第1被写体が一定の大きさを有するものである場合には、第1画像における第1被写体の大きさに基づいて第1被写体までの距離情報を取得してもよい。なお、多重露光撮影された画像から撮像装置100が設置された移動体の速度を算出する技術については、例えば、国際公開公報WO2018/139212号および米国出願公開公報2019/0113332号に記載されている。国際公開公報WO2018/139212号および米国出願公開公報2019/0113332号の開示内容の全てを、参考のために本明細書に援用する。推定範囲は、値V±誤差Eの範囲である。推定範囲が値V±誤差Eの範囲であるとは、推定範囲が値V-誤差E以上、値V+誤差E以下の範囲であることを指す。第1画像は、1つの被写体の像を1個だけ含む画像に比べ、第1被写体の速度の算出精度を確保するのに適している。なお、速度は、絶対値であってもよく、ベクトルであってもよい。
推定範囲についてさらに説明する。現実の速度の推定においては、誤差の存在が考慮されることがある。その場合、速度はある一点の値であるとのピンポイントな推定ではなく、速度はある範囲にあるとの幅のある推定がなされることがある。後者の幅のある推定が、上記推定範囲の算出に対応する。
制御回路120は、誤差Eが誤差閾値よりも大きい場合に、多重露光撮影の条件を変更する。誤差Eが大きいことは、撮像装置100が設置された移動体の速度の算出精度が低いことを示唆している。実施の形態5では、誤差Eが大きいときに、多重露光撮影の条件を変更する。この変更により、誤差Eを小さくすることができる。つまり、撮像装置100が設置された移動体の速度の算出精度が高いことが示唆される状況を得ることができる。誤差閾値は、例えば、3%以上20%以下の範囲にある特定の値である。
具体的には、本実施の形態では、多重露光撮影の条件が変更された場合において、その変更が反映された第1画像が、処理回路170に入力される。処理回路170は、その第1画像と第1被写体までの距離情報とを用いて、撮像装置100が設置された移動体の速度の推定範囲を再度算出する。
より具体的には、本実施の形態では、処理回路170による推定範囲の算出と、誤差Eが誤差閾値よりも大きい場合における制御回路120による条件の変更と、が、終了条件が成立するまで繰り返される。
処理回路170は、表示装置160へと、画像と、撮像装置100が設置された移動体の速度の推定範囲と、を出力する。処理回路170は、表示装置160へと、値Vおよび誤差Eを出力するように構成されていてもよい。また、処理回路170は、制御回路120へと、誤差Eを出力する。
表示装置160は、画像と、撮像装置100が設置された移動体の速度の推定範囲と、を表示する。表示装置160は、値Vおよび誤差Eを表示するように構成されていてもよい。
制御回路120は、撮像装置100の撮像条件を制御する。制御回路120は、実施の形態1と同様に、多重露光撮影の条件を変更できる。変更される条件は、実施の形態1と同様、条件(a)~(h)からなる群より選択される少なくとも1つを含み得る。また、制御回路120は、画像形成回路130の画像形成条件を制御する。
実施の形態5では、表示装置160は、画像認識装置99の内部表示装置である。このように、画像認識装置99は、撮像装置100が設置された移動体の速度の推定範囲を表示する内部表示装置を備える。内部表示装置は、具体的には、第1画像と、推定範囲と、を表示し得る。内部表示装置は、値Vおよび誤差Eを表示するように構成されていてもよい。
画像認識装置99は、推定範囲を表示する外付け表示装置へと推定範囲を出力する出力インターフェースを備えていてもよい。具体的には、画像認識装置99は、第1画像と、推定範囲と、を外付け表示装置へと出力する出力インターフェースを備えていてもよい。そして、外付け表示装置は、第1画像と、推定範囲と、を表示するものであってもよい。また、出力インターフェースは、値Vおよび誤差Eを出力するように構成されていてもよい。そして、外付け表示装置は、値Vおよび誤差Eを表示するように構成されていてもよい。
画像認識装置99は、内部表示装置および出力インターフェースの一方を備えていてもよい。画像認識装置99は、これらの両方を備えていてもよい。
実施の形態5でも、実施の形態1と同様、多重露光撮影の条件と第1画像とが対応付けられ得る。
実施の形態5でも、実施の形態1と同様、処理回路170は、教師画像および正解ラベルの組み合わせを複数組用いた教師あり学習を行う。教師画像は、第1画像に対応する。正解ラベルは、撮像装置100が設置された移動体の速度に対応する。処理回路170は、教師あり学習後において、第1画像を用いて、撮像装置100が設置された移動体の速度の推定範囲を算出する。このような処理回路170によれば、撮像装置100が設置された移動体の速度の算出精度が確保され易い。
実施の形態1の他の技術も、実施の形態5に適用され得る。
[多重露光撮影の条件の変更の仕方の具体例]
実施の形態5では、図20のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図20のフローチャートについて、説明する。以下の説明では、図6のフローチャートと重複する説明については、省略することがある。
実施の形態5では、図20のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図20のフローチャートについて、説明する。以下の説明では、図6のフローチャートと重複する説明については、省略することがある。
ステップS46において、処理回路170によって、画像に含まれる被写体のうち建物や標識などの静止した被写体が特定され、その被写体を基準としたときの撮像装置100が設置された移動体の速度の推定範囲が算出される。この算出に用いられる画像は、上述の、第1被写体が多重露光撮影された第1画像である場合がある。この場合、処理回路170は、第1画像を用いて、第1被写体を基準としたときの撮像装置100が設置された移動体の速度の推定範囲を算出する。そして、処理回路170は、誤差Eを、制御回路120へと出力する。ステップS16の後、フローは、ステップS17に進む。
ステップS17において、制御回路120によって、誤差Eが誤差閾値よりも大きいか否かが判定される。誤差Eが誤差閾値よりも大きい場合、フローは、ステップS8に進む。誤差Eが誤差閾値以下である場合、フローは、ステップS2に進む。
実施の形態5のステップS2の終了条件の第1の例は、実施の形態1のステップS2の終了条件の第1の例である。
実施の形態5のステップS2の終了条件の第2の例は、実施の形態1のステップS2の終了条件の第2の例である。
ステップS2の終了条件の第3の例は、直近のステップS46で算出された誤差Eが、第2上限閾値よりも大きいという条件である。誤差Eが第2上限閾値よりも大きい場合、フローは終了する。誤差Eが第2上限閾値以下である場合、フローは、ステップS3に進む。第2上限閾値は、典型的には、誤差閾値よりも大きい。
ステップS2の終了条件の第4の例は、直近のステップS46で算出された誤差Eが、第2下限閾値よりも小さいという条件である。誤差Eが第2下限閾値よりも小さい場合、フローは終了する。誤差Eが第2下限閾値以上である場合、フローは、ステップS3に進む。第2下限閾値は、典型的には、誤差閾値よりも小さい。
第3の例の条件または第4の例の条件が成立している場合にフローを終了させ、そうでない場合にフローをステップS3に進めてもよい。
ステップS2の終了条件の第5の例は、ステップS46で算出された誤差Eが第2上限閾値よりも大きいという状況が連続して第4閾値回数続いているという条件である。この状況が連続して第4閾値回数続いている場合、フローは終了する。そうでない場合、フローは、ステップS3に進む。なお、この条件は、上記状況をもたらすフレームが連続して第4閾値回数続いて現れるという条件であるとも言える。
ステップS2の終了条件の第6の例は、ステップS46で算出された誤差Eが第2下限閾値よりも小さいという状況が連続して第5閾値回数続いているという条件である。この状況が連続して第5閾値回数続いている場合、フローは終了する。そうでない場合、フローは、ステップS3に進む。なお、この条件は、上記状況をもたらすフレームが連続して第5閾値回数続いて現れるという条件であるとも言える。
第5の例の条件または第6の例の条件が成立している場合にフローを終了させ、そうでない場合にフローをステップS3に進めてもよい。その場合、第4閾値回数および第5閾値回数は、同じであってもよく、異なっていてもよい。
実施の形態2のステップS2の終了条件の第7の例は、実施の形態1のステップS2の終了条件の第7の例である。
図20のフローチャートに従った多重露光撮影の条件の変更は、速度の算出精度を向上させ得る。この点について、図21Aおよび図21Bを参照して説明する。なお、図21Aおよび図21Bの例では、変更される上記条件は、露光間隔であるものとする。
図21Aに、フレームnにおける多重露光撮影の条件と、フレームn+αにおける多重露光撮影の条件と、を示す。nおよびαは、自然数である。図21Aは、図20のフローチャートに従って、露光間隔が2msから4msに変更されたことを表している。
図21Bに、フレームnにおける値Vおよび誤差Eと、フレームn+αにおける値Vおよび誤差Eと、を示す。両フレームにおいて、値Vは50km/hである。フレームnにおける誤差Eは、15km/hである。フレームn+αにおける誤差Eは、5km/hである。フレームn+αにおける誤差Eは、フレームnにおける誤差Eよりも小さい。図21Bは、図20のフローチャートに従って、撮像装置100が設置された移動体の算出精度が向上したことを表している。
(実施の形態6)
実施の形態6では、図22のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図22のフローチャートについて、説明する。以下の説明では、図20および/または図14のフローチャートと重複する説明については、省略することがある。
実施の形態6では、図22のフローチャートに従って、多重露光撮影の条件が変更され得る。以下、図22のフローチャートについて、説明する。以下の説明では、図20および/または図14のフローチャートと重複する説明については、省略することがある。
ステップS1の後、フローは、ステップS21に進む。ステップS21では、移行条件が成立しているか否かが判定される。移行条件の具体例については後述する。移行条件が成立している場合、フローは、ステップS36に進む。移行条件が成立していない場合、フローは、ステップS42に進む。
ステップS42では、図20のステップS3,S4,S5およびS46が、この順に実行される。ステップS42の後、フローは、ステップS23に進む。
ステップS23において、ステップS46の撮像装置100が設置された移動体の速度の算出が行われたフレームが「開始」から数えて偶数フレームなのか奇数フレームなのかが判定される。このフレームが偶数フレームの場合、フローは、ステップS24に進む。このフレームが奇数フレームの場合、フローは、ステップS25に進む。
ステップS24において、制御回路120によって、多重露光撮影の条件が条件Aに変更される。ステップS24の後、フローは、ステップS21に進む。
ステップS25において、制御回路120によって、多重露光撮影の条件が条件Bに変更される。ステップS25の後、フローは、ステップS21に進む。
この具体例では、ステップS21の移行条件は、「開始」から数えて誤差EAと誤差EBがそれぞれK回得られているという条件である。Kは、自然数である。Kは、例えば1である。誤差EAは、ステップS24で条件Aが採用された状態で、ステップS42のステップS16を実行することにより得られる誤差Eである。誤差EBは、ステップS25で条件Bが採用された状態で、ステップS42のステップS16を実行することにより得られる誤差Eである。
ステップS36において、誤差EAと誤差EBとが比較される。誤差EAが誤差EB以下である場合、フローは、ステップS27に進む。誤差EAが誤差EBよりも大きい場合、フローは、ステップS28に進む。
フローがステップS27に進んだ場合、条件Aがベース条件に設定される。フローがステップS28に進んだ場合、条件Bがベース条件に設定される。
上述の説明から理解されるように、誤差EAおよび誤差EBは、ベース条件を設定するのに用いられる。誤差EAおよび誤差EBを、参照用の誤差Eを称することができる。
ステップS27またはステップS28の後、ステップS49では、図20のステップS3,S4,S5およびS16が、この順に実行される。
ステップS49では、ステップS3の撮像が行われる。条件Aがベース条件に設定された場合、ステップS49の初回の撮像は、多重露光撮影の条件が条件Aに設定された状態で行われる。条件Bがベース条件に設定された場合、ステップS49の初回の撮像は、多重露光撮影の条件が条件Bに設定された状態で行われる。ステップS49の後、フローは、ステップS2に進む。
ステップS2において、実施の形態4と同様、終了条件が成立しているか否かが判定される。終了条件が成立している場合、フローは終了する。終了条件が成立していない場合、フローは、ステップS17に進む。
ステップS17において、実施の形態4と同様、制御回路120によって、誤差Eが誤差閾値よりも小さいか否かが判定される。誤差Eが誤差閾値よりも大きい場合、フローは、ステップS8に進む。誤差Eが誤差閾値以下である場合、フローは、ステップS49に進む。
ステップS8において、実施の形態4と同様、制御回路120によって、多重露光撮影の条件が変更される。ステップS8の後、フローは、ステップS49に進む。
図22のフローチャートによれば、ステップS36において、条件Aと条件Bのどちらによればより小さい誤差Eが得られるのかが分かる。ステップS49において、そのより小さい誤差Eが得られる条件が、初回の多重露光撮影の条件として用いられる。このようにすることは、ステップS49以降において、小さい誤差Eが得られる多重露光撮影の条件を素早く見出す観点から有利である。
このように、実施の形態6では、処理回路170は、推定範囲の算出を、互いに異なる条件により得られた複数の第1画像について行うことによって、複数の参照用の誤差Eを算出する。制御回路120は、複数の参照用の誤差Eを互いに比較することによって、ベースとなる条件であるベース条件を選択する。ベース条件は、例えば、上記互いに異なる条件のうち最も小さい誤差Eが得られる条件である。処理回路170は、ベース条件により得られた第1画像であって複数の参照用の誤差Eを算出するための第1画像とは異なる第1画像を用いて、誤差閾値と比較されるべき誤差Eを算出する。
実施の形態6では、具体的には、多重露光撮影の条件として、条件Aと条件Bとが準備されている。条件Aを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Aを用いて得られた第1画像を用いて、誤差Eである誤差EAを算出する。条件Bを用いて、第1被写体が多重露光撮影される。処理回路170は、条件Bを用いて得られた第1画像を用いて、誤差Eである誤差EBを算出する。制御回路120は、誤差EAと誤差EBとを比較する。制御回路120は、この比較により、ベース条件を選択する。ベース条件は、条件AおよびBのうち、小さい誤差Eが得られたほうの条件である。処理回路170は、ベース条件により得られた第1画像であって誤差EAおよび誤差EBを算出するための第1画像とは異なる第1画像を用いて、誤差閾値と比較されるべき誤差Eを算出する。
その後、処理回路170は、ベース条件により得られた第1画像を用いて、第1被写体の速度の推定範囲を算出する。制御回路120は、誤差Eが誤差閾値よりも大きい場合に、多重露光撮影の条件を変更する。具体的には、多重露光撮影の条件が変更された場合において、その変更が反映された第1画像が、処理回路170に入力される。処理回路170は、その第1画像を用いて、推定範囲を再度算出する。
本開示による画像認識装置は、自動運転車、産業用ロボット、民生用ロボットなど様々な画像認識システムへの利用が可能である。
80 カメラ部
99,199 画像認識装置
100 撮像装置
110 光学系
120 制御回路
130 画像形成回路
140 出力バッファ
151 フレームメモリ
152 フレーム加算回路
160 表示装置
170 処理回路
A,B,C,D 被写体
99,199 画像認識装置
100 撮像装置
110 光学系
120 制御回路
130 画像形成回路
140 出力バッファ
151 フレームメモリ
152 フレーム加算回路
160 表示装置
170 処理回路
A,B,C,D 被写体
Claims (16)
- 第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて前記第1被写体の認識率を算出する処理回路と、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更する制御回路と、
を備える、画像認識装置。 - 前記認識率が前記認識率閾値よりも小さい場合に変更される前記条件は、
(a)前記第1画像を得るにあたって採用される各露光期間の長さ、
(b)前記第1画像を得るにあたって採用される各露光間隔の長さ、
(c)前記第1画像を得るにあたって採用される露光回数、
(d)前記第1画像の露光感度、
(e)前記第1画像を得るのに用いられる撮像装置のゲイン、
(f)前記第1画像を得るのに用いられる撮像装置の焦点距離、
(g)前記第1画像を得るのに用いられる撮像装置の絞り、および
(h)前記第1画像の出力解像度、
からなる群より選択される少なくとも1つを含む、請求項1に記載の画像認識装置。 - 前記認識率を表示する内蔵表示装置、および、前記認識率を表示する外付け表示装置へと前記認識率を出力する出力インターフェースから選ばれる少なくとも1つをさらに備える、請求項1または2に記載の画像認識装置。
- 前記第1画像を得るのに用いられる撮像装置をさらに備える、請求項1から3のいずれか1項に記載の画像認識装置。
- 前記条件と前記第1画像とが対応付けられる、請求項1から4のいずれか1項に記載の画像認識装置。
- 前記第1画像と対応付けられる前記条件として、前記制御回路において保持されている前記条件が用いられる、請求項5に記載の画像認識装置。
- 前記第1画像を得るのに用いられる撮像装置をさらに備え、
前記第1画像と対応付けられる前記条件として、前記撮像装置において保持されている前記条件が用いられる、請求項5に記載の画像認識装置。 - 前記処理回路は、前記第1画像および前記第1被写体の物体名にそれぞれ対応する教師画像および正解ラベルの組み合わせを複数組用いた教師あり学習を行い、前記教師あり学習後において、前記第1画像を用いて前記認識率を算出する、請求項1から7のいずれか1項に記載の画像認識装置。
- 前記教師画像を得るのに用いられる第2撮像装置をさらに備える、請求項8に記載の画像認識装置。
- 前記処理回路は、ニューラルネットワークで表現される演算モデルを読み込んでおり、
前記処理回路は、前記教師あり学習を行い、前記教師あり学習後において、前記第1画像を用いて前記認識率を算出する、請求項8または9に記載の画像認識装置。 - 前記処理回路による前記認識率の算出と、前記認識率が前記認識率閾値よりも小さい場合における前記制御回路による前記条件の変更と、が、終了条件が成立するまで繰り返される、請求項1から10のいずれか1項に記載の画像認識装置。
- 前記処理回路は、前記認識率である第1認識率であって前記第1被写体が第1物体であることの確からしさを表す第1認識率と、前記第1被写体が第2物体であることの確からしさを表す第2認識率と、を算出し、
前記制御回路は、前記第1認識率から前記第2認識率を差し引いた差分がZ以下である場合にも、前記多重露光撮影の条件を変更する、請求項1から11のいずれか1項に記載の画像認識装置。
ここで、Zは、0以上の値である。 - 前記処理回路は、前記認識率の算出を、互いに異なる前記条件により得られた複数の前記第1画像について行うことによって、複数の参照用の前記認識率を算出し、
前記制御回路は、複数の参照用の前記認識率を互いに比較することによって、ベースとなる前記条件であるベース条件を選択し、
前記処理回路は、前記ベース条件により得られた前記第1画像であって複数の参照用の前記認識率を算出するための前記第1画像とは異なる前記第1画像を用いて、前記認識率閾値と比較されるべき前記認識率を算出する、請求項1から12のいずれか1項に記載の画像認識装置。 - 第1被写体が多重露光撮影された第1画像が入力され、前記第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出する処理回路と、
前記誤差Eが誤差閾値よりも大きい場合に、前記多重露光撮影の条件を変更する制御回路と、
を備える、画像認識装置。 - 第1被写体が多重露光撮影された第1画像を用いて前記第1被写体の認識率を算出することと、
前記認識率が認識率閾値よりも小さい場合に、前記多重露光撮影の条件を変更することと、を含む、画像認識方法。 - 第1被写体が多重露光撮影された第1画像を用いて、前記第1被写体の速度の推定範囲であって値V±誤差Eの範囲である推定範囲を算出することと、
前記誤差Eが誤差閾値よりも大きい場合に、前記多重露光撮影の条件を変更することと、を含む、画像認識方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020553045A JP7345101B2 (ja) | 2018-10-26 | 2019-10-03 | 画像認識装置および画像認識方法 |
CN201980045952.6A CN112385208B (zh) | 2018-10-26 | 2019-10-03 | 图像识别装置以及图像识别方法 |
US17/198,191 US11394889B2 (en) | 2018-10-26 | 2021-03-10 | Image recognition apparatus and image recognition method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018202188 | 2018-10-26 | ||
JP2018-202188 | 2018-10-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/198,191 Continuation US11394889B2 (en) | 2018-10-26 | 2021-03-10 | Image recognition apparatus and image recognition method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020085028A1 true WO2020085028A1 (ja) | 2020-04-30 |
Family
ID=70330960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039070 WO2020085028A1 (ja) | 2018-10-26 | 2019-10-03 | 画像認識装置および画像認識方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11394889B2 (ja) |
JP (1) | JP7345101B2 (ja) |
CN (1) | CN112385208B (ja) |
WO (1) | WO2020085028A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023149295A1 (ja) * | 2022-02-01 | 2023-08-10 | ソニーグループ株式会社 | 情報処理装置、情報処理方法、及びプログラム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11493914B2 (en) * | 2020-06-26 | 2022-11-08 | Intel Corporation | Technology to handle ambiguity in automated control systems |
US11989888B2 (en) * | 2021-08-04 | 2024-05-21 | Sony Semiconductor Solutions Corporation | Image sensor with integrated efficient multiresolution hierarchical deep neural network (DNN) |
CN114596597A (zh) * | 2022-04-12 | 2022-06-07 | 深圳市汇顶科技股份有限公司 | 指纹识别的方法、装置和电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008167299A (ja) * | 2006-12-28 | 2008-07-17 | Casio Comput Co Ltd | 撮影装置及びそのプログラム |
JP2010066221A (ja) * | 2008-09-12 | 2010-03-25 | Calsonic Kansei Corp | 車両用距離画像データ生成装置 |
JP2018005682A (ja) * | 2016-07-05 | 2018-01-11 | 日立オートモティブシステムズ株式会社 | 画像処理装置 |
WO2018021035A1 (ja) * | 2016-07-26 | 2018-02-01 | ソニー株式会社 | 画像処理装置および方法、内視鏡システム、並びにプログラム |
JP2018160785A (ja) * | 2017-03-22 | 2018-10-11 | パナソニックIpマネジメント株式会社 | 画像生成装置、画像生成方法、プログラム及びそれを記録した記録媒体 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3238816B2 (ja) | 1993-12-24 | 2001-12-17 | キヤノン株式会社 | 撮像装置 |
JP2002027315A (ja) | 2000-07-07 | 2002-01-25 | Sony Corp | 動き検出装置及び動き検出方法 |
JP3565338B2 (ja) * | 2001-04-11 | 2004-09-15 | 日本電気株式会社 | 赤外線撮像装置及びドリフト補正方法 |
US20070248330A1 (en) | 2006-04-06 | 2007-10-25 | Pillman Bruce H | Varying camera self-determination based on subject motion |
JP2007306436A (ja) * | 2006-05-12 | 2007-11-22 | Sharp Corp | 撮像装置 |
JP2008206021A (ja) * | 2007-02-22 | 2008-09-04 | Matsushita Electric Ind Co Ltd | 撮像装置及びレンズ鏡筒 |
JP4895204B2 (ja) | 2007-03-22 | 2012-03-14 | 富士フイルム株式会社 | 画像成分分離装置、方法、およびプログラム、ならびに、正常画像生成装置、方法、およびプログラム |
JP5515871B2 (ja) * | 2010-03-05 | 2014-06-11 | 株式会社豊田中央研究所 | 物体認識装置及びプログラム |
JP2011244144A (ja) * | 2010-05-17 | 2011-12-01 | Panasonic Corp | 撮像装置 |
TWI444753B (zh) * | 2010-11-16 | 2014-07-11 | Altek Corp | 影像擷取裝置及其曝光時間調整方法 |
JP2015192222A (ja) | 2014-03-27 | 2015-11-02 | パナソニックIpマネジメント株式会社 | 撮像装置及び撮像制御方法 |
JP6351452B2 (ja) * | 2014-09-08 | 2018-07-04 | オリンパス株式会社 | 撮像装置、撮像方法およびプログラム |
JP6537385B2 (ja) | 2015-07-17 | 2019-07-03 | 日立オートモティブシステムズ株式会社 | 車載環境認識装置 |
US9549125B1 (en) | 2015-09-01 | 2017-01-17 | Amazon Technologies, Inc. | Focus specification and focus stabilization |
WO2017094229A1 (ja) | 2015-12-03 | 2017-06-08 | パナソニックIpマネジメント株式会社 | 撮像装置 |
JP6685843B2 (ja) * | 2016-06-06 | 2020-04-22 | オリンパス株式会社 | 撮像装置 |
JP2018005520A (ja) | 2016-06-30 | 2018-01-11 | クラリオン株式会社 | 物体検出装置及び物体検出方法 |
-
2019
- 2019-10-03 CN CN201980045952.6A patent/CN112385208B/zh active Active
- 2019-10-03 JP JP2020553045A patent/JP7345101B2/ja active Active
- 2019-10-03 WO PCT/JP2019/039070 patent/WO2020085028A1/ja active Application Filing
-
2021
- 2021-03-10 US US17/198,191 patent/US11394889B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008167299A (ja) * | 2006-12-28 | 2008-07-17 | Casio Comput Co Ltd | 撮影装置及びそのプログラム |
JP2010066221A (ja) * | 2008-09-12 | 2010-03-25 | Calsonic Kansei Corp | 車両用距離画像データ生成装置 |
JP2018005682A (ja) * | 2016-07-05 | 2018-01-11 | 日立オートモティブシステムズ株式会社 | 画像処理装置 |
WO2018021035A1 (ja) * | 2016-07-26 | 2018-02-01 | ソニー株式会社 | 画像処理装置および方法、内視鏡システム、並びにプログラム |
JP2018160785A (ja) * | 2017-03-22 | 2018-10-11 | パナソニックIpマネジメント株式会社 | 画像生成装置、画像生成方法、プログラム及びそれを記録した記録媒体 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023149295A1 (ja) * | 2022-02-01 | 2023-08-10 | ソニーグループ株式会社 | 情報処理装置、情報処理方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
CN112385208B (zh) | 2024-05-24 |
JPWO2020085028A1 (ja) | 2021-09-30 |
US20210195085A1 (en) | 2021-06-24 |
CN112385208A (zh) | 2021-02-19 |
US11394889B2 (en) | 2022-07-19 |
JP7345101B2 (ja) | 2023-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020085028A1 (ja) | 画像認識装置および画像認識方法 | |
CN111741211B (zh) | 图像显示方法和设备 | |
US11783593B2 (en) | Monocular depth supervision from 3D bounding boxes | |
CN109858309B (zh) | 一种识别道路线的方法和装置 | |
JP7297470B2 (ja) | 画像処理方法、画像処理装置、プログラム、画像処理システム、および、学習済みモデルの製造方法 | |
CN110248097A (zh) | 追焦方法、装置、终端设备、计算机可读存储介质 | |
KR102320999B1 (ko) | 폴트 톨러런스 및 플럭츄에이션 로버스트를 위한 복수의 뉴럴 네트워크를 사용하여 흔들리는 카메라로 인해 생성된 비디오에서 지터링을 제거하기 위한 학습 방법 및 학습 장치, 그리고 이를 이용한 테스트 방법 및 테스트 장치 | |
CN114885112B (zh) | 基于数据融合的高帧率视频生成方法及装置 | |
JP2021196643A (ja) | 推論装置、撮像装置、学習装置、推論方法、学習方法、及びプログラム | |
CN113763481B (zh) | 一种移动场景中多相机视觉三维地图构建与自标定方法 | |
CN113139567B (zh) | 信息处理装置及其控制方法、车辆、记录介质、信息处理服务器、信息处理方法 | |
CN114531546A (zh) | 镜头调整方法及装置、存储介质及电子设备 | |
CN110121055B (zh) | 用于对象识别的方法和设备 | |
WO2020003764A1 (ja) | 画像処理装置、移動装置、および方法、並びにプログラム | |
US20230353881A1 (en) | Methods and systems for shift estimation for one or more output frames | |
EP4047548A1 (en) | Image processing method and apparatus, training method and apparatus of machine learning model, and program | |
CN115191928A (zh) | 信息处理装置、信息处理方法、学习方法以及存储介质 | |
CN115249269A (zh) | 目标检测方法、计算机程序产品、存储介质及电子设备 | |
WO2024009377A1 (ja) | 情報処理装置、自己位置推定方法、及び非一時的なコンピュータ可読媒体 | |
JP2021164059A (ja) | 画像処理装置、画像処理方法、及びプログラム | |
JP2017034616A (ja) | 画像処理装置及びその制御方法 | |
WO2023149295A1 (ja) | 情報処理装置、情報処理方法、及びプログラム | |
JP6454112B2 (ja) | ぶれ補正装置、ぶれ補正方法及びプログラム、並びに撮像装置 | |
US20240257557A1 (en) | Facial expression recognition using enrollment images | |
JP5364531B2 (ja) | 車載画像認識システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19875893 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020553045 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19875893 Country of ref document: EP Kind code of ref document: A1 |