WO2020080442A1 - Elastomer-metal cord composite body and tire using same - Google Patents
Elastomer-metal cord composite body and tire using same Download PDFInfo
- Publication number
- WO2020080442A1 WO2020080442A1 PCT/JP2019/040763 JP2019040763W WO2020080442A1 WO 2020080442 A1 WO2020080442 A1 WO 2020080442A1 JP 2019040763 W JP2019040763 W JP 2019040763W WO 2020080442 A1 WO2020080442 A1 WO 2020080442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- elastomer
- metal cord
- rubber
- cord composite
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/04—Condensation polymers of aldehydes or ketones with phenols only
- C08L61/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
Definitions
- the present invention relates to an elastomer-metal cord composite and a tire using the same, and more specifically, an elastomer-metal cord composite obtained by coating a metal cord composed of a bundle of metal filaments aligned without twisting with an elastomer, And a tire using the same.
- a carcass including reinforcing cords embedded along the meridian direction of the ring-shaped tire body is arranged, and a belt layer is arranged on the tire radial outside of the carcass.
- This belt layer is usually formed by using an elastomer-metal cord composite obtained by coating a metal cord such as steel with an elastomer, and imparts load resistance, traction resistance and the like to the tire.
- the elastomer for coating the belt layer is required to have high durability, especially high crack growth resistance.
- Patent Document 1 Although BES resistance is examined, steering stability, low loss, and crack growth resistance are not examined. Therefore, it has been required to realize a reinforcing material that can satisfy these required performances.
- an object of the present invention is to coat a plurality of metal filaments without twisting the metal cords made of a bundle of metal cords covered with an elastomer, steering stability and crack growth resistance, low loss of tire and the like.
- An object of the present invention is to provide an elastomer-metal cord composite capable of improving various performances, and a tire using the same.
- the elastomer-metal cord composite of the present invention is an elastomer-metal cord composite in which a metal cord composed of a bundle in which a plurality of metal filaments are not twisted and aligned in a row is coated with an elastomer.
- a metal cord composed of a bundle in which a plurality of metal filaments are not twisted and aligned in a row is coated with an elastomer.
- there is at least one pair of adjacent metal filaments having different at least one of a molding amount and a molding pitch, and a 200% modulus with respect to a 50% modulus value (M50) of the elastomer.
- the ratio M200 / M50 of the value (M200) is 5.0 or less.
- FIG. 1 is an explanatory diagram of the metal filament showing the definition of the metal filament forming amount h and the forming pitch p, and the forming amount h refers to the width of fluctuation that does not include the wire diameter of the metal filament 1.
- the amount h of the metal filament 1 to be imprinted is measured by projecting the metal filament 1 after imprinting with a projector and projecting a projected image of the metal filament on a screen or the like.
- the 50% modulus is the tensile stress at the elongation of the elastomer of 50%
- the 200% modulus is the tensile stress of the elastomer at the elongation of 200%.
- the metal filament in the metal cord is imprinted in the width direction of the metal cord. Further, in the elastomer-metal cord composite of the present invention, it is preferable that the elastomer coverage of the adjacent metal filaments on the side surface in the width direction of the metal cord is 10% or more per unit length.
- At least one of the metal filaments in the metal cord is preferably a substantially straight metal filament. Furthermore, in the elastomer-metal cord composite of the present invention, it is preferable that the straight metal filaments and the patterned metal filaments are alternately arranged. Furthermore, in the elastomer-metal cord composite of the present invention, the metal filaments arranged at both ends of the metal cord are preferably the straight metal filaments.
- the metal filament is two-dimensionally shaped, and the metal filament has an amount of 0.03 mm or more and 0.30 mm or less. It is preferable that the patterning pitch of is 2 mm or more and 30 mm or less.
- the elastomer of the present invention is a rubber component, and carbon black DBP absorption is less than 50 cm 3/100 g or more 100 cm 3/100 g, a phenol resin, a methylene donor It is preferably composed of a rubber composition containing
- the elastomer coverage means, for example, when rubber is used as the elastomer and steel cord is used as the metal cord, the rubber cord obtained by coating the steel cord with rubber and vulcanizing is obtained.
- the steel cord is pulled out from the composite, and the length of the side surface of the steel filament in the width direction of the metal cord, which is covered with the rubber that has penetrated into the gap between the steel filaments that make up the steel cord, is measured and calculated based on the following formula It means the average of the values.
- Elastomer coverage (rubber coating length / sample length) x 100 (%) The same calculation can be performed when an elastomer other than rubber is used as the elastomer and when a metal cord other than the steel cord is used as the metal cord.
- a straight metal filament refers to a metal filament that is not intentionally modeled and is substantially unmolded.
- the tire of the present invention is characterized by using the elastomer-metal cord composite of the present invention.
- a metal cord made of a bundle in which a plurality of metal filaments are aligned without being twisted is coated with an elastomer, and various tire performances such as steering stability, crack growth resistance, and low loss property are provided. It was possible to provide an elastomer-metal cord composite capable of improving the above, and a tire using the same.
- FIG. 3 is a partial cross-sectional view in the width direction of the elastomer-metal cord composite according to the preferred embodiment of the present invention.
- FIG. 3 is a schematic plan view of a metal cord according to an elastomer-metal cord composite of a preferred embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view in the width direction of a metal cord according to an elastomer-metal cord composite of a preferred embodiment of the present invention.
- FIG. 3 is a partial cross-sectional view in the width direction of the elastomer-metal cord composite according to the preferred embodiment of the present invention.
- FIG. 3 is a schematic plan view of a metal cord according to an elastomer-metal cord composite of a preferred embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view in the width direction of a metal cord according to an elastomer-metal cord composite of a preferred embodiment of the present invention.
- FIG. 5 is a schematic cross-sectional view in the width direction of a metal cord according to an elastomer-metal cord composite of another preferred embodiment of the present invention.
- 1 is a schematic one-sided cross-sectional view of a tire according to a preferred embodiment of the present invention.
- FIG. 2 is a partial cross-sectional view in the width direction of an elastomer-metal cord composite according to a preferred embodiment of the present invention
- FIG. 3 is an elastomer-metal cord composite of a preferred embodiment of the present invention
- FIG. 4 is a schematic plan view of the metal cord relating to the body
- FIG. 4 is a schematic cross-sectional view in the width direction of the metal cord relating to the elastomer-metal cord composite of the preferred embodiment of the present invention.
- the elastomer-metal cord composite 10 of the present invention has a plurality of metal filaments 1 covered with an elastomer 3 on a metal cord 2 formed of a bundle in which the metal filaments 1 are not twisted and aligned in a line.
- the number of the metal filaments 1 is preferably 2 or more, more preferably 5 or more, preferably 20 or less, more preferably 18 or less, further preferably 15 or less, particularly preferably
- the metal cord 2 is composed of a bundle of 12 or less. In the illustrated example, five metal filaments 1 are aligned without being twisted to form a metal cord 2.
- the metal cord 2 has at least one pair of adjacent metal filaments 1 having different at least one of the molding amount and the molding pitch.
- the phases of the two do not match each other.
- the elastomer coating region is eliminated, and the elastomer can be sufficiently permeated between the adjacent metal filaments 1.
- the steel cord can be out-of-plane deformed at the time of compression input, and the steel cord can be prevented from being broken.
- the corrosion resistance is greatly improved.
- the adjacent metal filaments 1 are constrained by the elastomer, by using the elastomer-metal cord composite 10 of the present invention as a cord for a belt of a tire, the adjacent metal filaments can be mutually protected even when the tire is rolling. As a result, the in-plane rigidity of the belt can be improved and steering stability can be improved.
- the inventors of the present invention have conducted extensive studies on compatibility between low loss property and crack growth resistance property, and as a result, 200% modulus value (50% modulus value (M50)) of the elastomer 3 covering the metal cord 2 ( It was noted that the ratio M200 / M50 of M200) is highly related to the crack growth resistance. As a result of further study, the present inventors have made it possible to achieve both low loss property and crack propagation resistance at a higher level than in the prior art by setting the ratio M200 / M50 to a specific value or less. I found that. That is, in the elastomer-metal cord composite 10 of the present invention, the ratio M200 / M50 of the 200% modulus value to the 50% modulus value of the elastomer 3 covering the metal cord 2 is 5.0 or less.
- the metal cord 2 including the pair of the predetermined metal filaments 1 and the elastomer 3 having the predetermined physical property values in combination a tire is obtained.
- adjacent metal filaments 1 are different from each other in at least one of the molding amount and the molding pitch, particularly the molding amount and the molding pitch in the direction perpendicular to the extending direction of the metal filament 1. At least one pair of each other is included. In particular, at least 50% or more of the pair of metal filaments 1 are different from each other in at least one of the amount and pitch of the metal filaments 1 adjacent to each other in the direction perpendicular to the extending direction of the metal filaments 1. Is preferred.
- the typed metal filaments 1a and the non-typed metal filaments 1b are alternately arranged, but different typed metal filaments are alternately arranged.
- metal filaments having different embossing pitches may be alternately arranged.
- the arrangement of the metal filaments that make up the bundle is a straight metal filament with both sides unshaped.
- the existence of continuous non-elastomeric coating regions between adjacent metal filaments is eliminated, corrosion resistance is ensured, and the in-plane rigidity of the belt is improved and the steering stability is improved.
- the elastomer coverage on the side surface in the width direction of the metal cord 2 of the adjacent metal filaments 1 is preferably 10% or more per unit length, more preferably 20% or more.
- the coating is more preferably 50% or more, and particularly preferably 80% or more. Most preferably, it is in a state of being covered by 90% or more.
- the metal filament 1 may be shaped in a zigzag shape or a wavy two-dimensional shape as illustrated, or in a spiral three-dimensional shape. However, from the viewpoint of weight reduction, it is preferable that the metal filaments 1 do not overlap each other in the thickness direction of the metal cord 2.
- the mold amount of the metal filament 1 is preferably 0.03 mm or more and 0.30 mm or less.
- the imprinting amount is 0.30 mm or less, the strength of the elastomer-metal cord composite can be secured, and the effects of the present invention can be sufficiently obtained.
- the molding amount is preferably 0.03 mm or more and 0.30 mm or less, and more preferably 0. It is 0.03 mm or more and 0.25 mm or less, and most preferably 0.03 mm or more and 0.20 mm or less.
- the molding pitch of the metal filament 1 is preferably 2 mm or more and 30 mm or less, more preferably 2 mm or more and 20 mm or less, and most preferably 3 mm or more and 15 mm or less.
- the molding amount of the metal filament 1 is preferably 0.10 mm or more and 0.50 mm or less, more preferably 0.20 mm or more and 0.30 mm or less. By setting the mold amount to 0.50 mm or less, it is possible to suppress the decrease in the strength of the elastomer-metal cord composite and obtain the effects of the present invention sufficiently.
- the molding pitch of the metal filament 1 is preferably 5 mm or more, more preferably 8 mm or more and 20 mm or less.
- FIG. 5 is a schematic cross-sectional view in the width direction of the metal cord according to the elastomer-metal cord composite of another preferred embodiment of the present invention. Even with such a structure, rubber can be sufficiently permeated between the adjacent metal filaments 1, and the effect of the present invention can be obtained.
- the elastomer-metal cord composite 10 of the present invention from the viewpoint of lightness, it is possible to make the elastomer-metal cord composite thinner when the molding directions of the adjacent metal filaments 1 are in the width direction of the metal cord 2. It is preferable because it is possible.
- the metal filaments 1 in the metal cord 2 is a substantially straight metal filament.
- the phases of the two do not match, so that they are not in point contact with each other. Become. Therefore, since the amount of the elastomer penetrating between the metal filaments 1a and 1b is large, the elastomer coverage of the adjacent metal filaments 1a and 1b on the side surface in the width direction of the metal cord 2 is high, and the non-elastomer coating region varies. Can be suppressed to a minimum, and the effects of the present invention can be satisfactorily obtained.
- the metal filaments 1 arranged at both ends of the metal cord 2 are straight metal filaments, whereby the distance w between the adjacent metal cords 2 in the elastomer is increased. Since it can be widened, the durability can be improved. More preferably, as shown in FIG. 3 and the like, straight metal filaments 1b that are not shaped and metal filaments 1a that are shaped are alternately arranged.
- the metal filament 1 is generally a steel, that is, a linear wire containing iron as a main component (the mass of iron is more than 50 mass% based on the total mass of the metal filament). It means a metal, and may be composed only of iron, or may contain a metal other than iron, such as zinc, copper, aluminum or tin.
- the surface state of the metal filament 1 is not particularly limited, but for example, the following forms can be adopted. That is, as the metal filament 1, the N atom on the surface is 2 atom% or more and 60 atom% or less, and the Cu / Zn ratio on the surface is 1 or more and 4 or less. In addition, as the metal filament 1, the amount of phosphorus contained as an oxide in the outermost layer of the filament up to 5 nm inward in the radial direction of the filament from the filament surface is 7.0 atom% in the ratio of the total amount excluding the amount of C. The following cases may be mentioned.
- the surface of the metal filament 1 may be plated.
- the type of plating is not particularly limited, and examples thereof include zinc (Zn) plating, copper (Cu) plating, tin (Sn) plating, brass (copper-zinc (Cu-Zn)) plating, and bronze (copper-tin ( In addition to Cu-Sn)) plating and the like, there are ternary plating such as copper-zinc-tin (Cu-Zn-Sn) plating and copper-zinc-cobalt (Cu-Zn-Co) plating. Among these, brass plating and copper-zinc-cobalt plating are preferable.
- the brass-plated metal filament has excellent adhesion to rubber.
- the ratio of copper and zinc (copper: zinc) is usually 60 to 70:30 to 40 on a mass basis, and in copper-zinc-cobalt plating, copper is usually 60 to 75 mass%, Cobalt is 0.5 to 10 mass%.
- the thickness of the plating layer is generally 100 nm or more and 300 nm or less.
- the wire diameter, tensile strength, and cross-sectional shape of the metal filament 1 are not particularly limited.
- the wire diameter of the metal filament 1 can be 0.15 mm or more and 0.40 mm or less.
- the metal filament 1 one having a tensile strength of 2500 MPa (250 kg / mm 2 ) or more can be used.
- the cross-sectional shape of the metal filament 1 in the width direction is not particularly limited, and may be an elliptical shape, a rectangular shape, a triangular shape, a polygonal shape, or the like, but a circular shape is preferable.
- a wrapping filament spiral filament
- the elastomer 3 used in the elastomer-metal cord composite 10 of the present invention may be one having a ratio M200 / M50 of 200% modulus value (M200) to 50% modulus value (M50) of 5.0 or less.
- M200 modulus value
- M50 50% modulus value
- the above M50 is a parameter related to the elasticity of the elastomer in the low strain region. Therefore, M50 needs to be as high as possible in order to suppress the deformation of the belt portion of the tire.
- M50 for example, in the rubber composition, it is considered that the phenol resin and the methylene donor described later are contained while adjusting the type and the content of carbon black described below.
- the M200 is a parameter related to the elasticity of the elastomer in the high strain range. Therefore, from the viewpoint of suppressing crack growth, M200 needs to have a low value in order to reduce the concentration of stress at the crack tip. For this purpose, for example, in a rubber composition, it is possible to adjust the kind and content of carbon black described later.
- the ratio of the size of the M200 to the size of the M50 is preferably 4.8 or less, and more preferably 4.5 or less.
- M50 is 1.6 MPa or more and M200 is M200. Is preferably 10.5 MPa or less, more preferably M50 is 1.8 MPa or more and M200 is 9.0 MPa or less.
- elastomer 3 specifically, a rubber composition or the like which has been conventionally used for coating a metal cord can be used.
- main component of the elastomer 3 include natural rubber (NR), isoprene rubber (IR), epoxidized natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR, high cis BR and low cis BR), nitrile rubber.
- NBR hydrogenated NBR
- SBR hydrogenated SBR and other diene rubbers and hydrogenated products thereof
- ethylene propylene rubber EPDM, EPM
- maleic acid-modified ethylene propylene rubber M-EPM
- butyl rubber IIR
- isobutylene Aromatic vinyl or diene monomer copolymer acrylic rubber (ACM), olefin rubber such as ionomer, Br-IIR, CI-IIR, bromide of isobutylene paramethylstyrene copolymer (Br-IPMS), chloroprene rubber (CR), hydrin rubber (CHR), chlorosulfone Halogen-containing rubber such as polyethylene rubber (CSM), chlorinated polyethylene rubber (CM), maleic acid modified chlorinated polyethylene rubber (M-CM), silicone rubber such as methyl vinyl silicone rubber, dimethyl silicone rubber and methylphenyl vinyl silicone rubber.
- CSM polyethylene rubber
- CM chlorinated polyethylene rubber
- M-CM maleic acid modified
- Sulfur-containing rubber such as polysulfide rubber, vinylidene fluoride rubber, fluorine-containing vinyl ether rubber, tetrafluoroethylene-propylene rubber, fluorine-containing silicon rubber, fluorine-containing phosphazene rubber and other fluorine rubber, styrene-based elastomer, olefin-based rubber
- Thermoplastic elastomers such as elastomers, ester elastomers, urethane elastomers and polyamide elastomers can be preferably used. These may be used alone or in combination of two or more.
- the elastomer 3 contains, in addition to the above main components, sulfur, vulcanization accelerators, carbon black, antioxidants, zinc oxide, stearic acid, etc. which are commonly used in rubber products such as tires and conveyor belts. Can be appropriately mixed.
- the rubber component Regarding the rubber component, from the viewpoint that excellent crack growth resistance and abrasion resistance can be obtained, natural rubber or a diene-based synthetic rubber is used alone, or a combination of a natural rubber and a diene-based synthetic rubber is used. Can be included. Further, the rubber component may be composed of only the above-mentioned diene rubber, but may also contain a rubber other than the diene rubber as long as the object of the present invention is not impaired. The content of the diene rubber in the rubber component is preferably 30% by mass or more, more preferably 40% by mass or more, and 50% by mass from the viewpoint that excellent crack growth resistance can be obtained. % Or more is more preferable.
- the diene synthetic rubber polybutadiene rubber (BR), isoprene rubber (IR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), acrylonitrile butadiene rubber ( NBR) and the like.
- the non-diene rubber include ethylene propylene diene rubber (EPDM), ethylene propylene rubber (EPM), butyl rubber (IIR) and the like.
- EPDM ethylene propylene diene rubber
- EPM ethylene propylene rubber
- IIR butyl rubber
- DBP dibutyl phthalate
- DBP absorption amount can be used are as follows 50 cm 3/100 g or more 100 cm 3/100 g.
- the DBP absorption is set to be lower than or equal 100 cm 3/100 g, by reducing the structure, moderately suppressed reinforcement of the rubber composition, to ensure flexibility, to obtain a sufficient resistance to crack growth resistance it can.
- DBP absorption of carbon black is preferably 90cm 3/100 g or less, more preferably 80 cm 3/100 g or less.
- the structure of carbon black is the size of the structure (aggregate of carbon black particles) formed as a result of fusion and connection of spherical carbon black particles.
- the DBP absorption amount of carbon black is the amount of DBP (dibutyl phthalate) absorbed by 100 g of carbon black, and can be measured in accordance with JIS K 6217-4 (2008).
- the carbon black has a nitrogen adsorption specific surface area (N 2 SA) of preferably 70 m 2 / g or more and 90 m 2 / g or less, more preferably 75 m 2 / g or more and 85 m 2 / g or less. .
- N 2 SA nitrogen adsorption specific surface area
- the nitrogen adsorption specific surface area can be measured by a single point method according to ISO 4652-1. For example, after degassed carbon black is immersed in liquid nitrogen, the surface of carbon black is equilibrated.
- the specific surface area (m 2 / g) can be calculated from the measured value by measuring the amount of nitrogen adsorbed on.
- the kind of the carbon black is not particularly limited except that it has the above DBP absorption amount.
- any hard carbon manufactured by the oil furnace method can be used.
- HAF grade carbon black from the viewpoint of realizing more excellent low loss property and crack growth resistance.
- the content of carbon black is preferably 35 parts by mass or more and 45 parts by mass or less with respect to 100 parts by mass of the rubber component.
- the content of carbon black is 35 parts by mass or more with respect to 100 parts by mass of the rubber component, high reinforcing property and crack growth resistance can be obtained, and when it is 45 parts by mass or less, low content can be obtained. It is possible to further improve the loss property.
- the 50% modulus value (M50) can be improved by including the phenol resin together with the methylene donor described later. While maintaining the excellent low loss property, the reinforcing property of the rubber composition can be improved and the excellent crack propagation resistance can be realized.
- the phenol resin is not particularly limited, and can be appropriately selected according to the required performance. Examples thereof include those produced by subjecting phenols such as phenol, cresol, resorcin, tert-butylphenol or a mixture thereof to formaldehyde and condensation reaction in the presence of an acid catalyst such as hydrochloric acid or oxalic acid.
- phenol resin a modified one may be used, and for example, it may be modified with an oil such as rosin oil, tall oil, cashew oil, linoleic acid, oleic acid, linoleic acid.
- 1 type can be used individually and 2 or more types can also be mixed and used.
- the content of the phenol resin is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and 10 parts by mass or less with respect to 100 parts by mass of the rubber component. It is preferably 7 parts by mass or less.
- the above 50% modulus value (M50) is improved by including a methylene donor as a curing agent for the phenol resin. It is possible to improve the reinforcing property of the rubber composition while maintaining excellent low loss property.
- the methylene donor is not particularly limited and can be appropriately selected depending on the required performance.
- these methylene donors from the group consisting of hexamethylenetetramine, hexamethoxymethylmelamine, hexamethoxymethylolmelamine and paraformaldehyde. Is-option, is preferably at least one. In addition, these methylene donors may be used alone, in combination can also be used.
- the ratio of the content of the phenol resin to the content of the methylene donor is preferably 0.6 or more and 7 or less from the viewpoint of achieving both low loss property and crack growth resistance at a higher level. More preferably, it is 5 or less.
- the rubber composition suitable as the elastomer 3 used for the elastomer-metal cord composite 10 of the present invention contains the above-mentioned rubber component, carbon black, phenol resin, and methylene donor, and other components, and the effects of the present invention can be obtained. It can be included to the extent that it is not damaged.
- examples of other components include fillers other than the above carbon black, antioxidants, crosslinking accelerators, crosslinking agents, crosslinking accelerators, silane coupling agents, stearic acid, ozone deterioration inhibitors, and surfactants.
- the additives commonly used in the rubber industry can be mentioned.
- Examples of the above-mentioned filler include silica and other inorganic fillers, and among them, it is preferable to contain silica because excellent low loss property and crack growth resistance can be obtained.
- silica examples include wet silica, colloidal silica, calcium silicate, aluminum silicate and the like. Among these, wet silica is preferably used, and precipitated silica is more preferably used. This is because these silicas have high dispersibility and can further improve the low loss property and abrasion resistance of the rubber composition. Precipitated silica is obtained by allowing the reaction solution to proceed at a relatively high temperature in a neutral to alkaline pH range at the early stage of production to grow silica primary particles, and then to control the acid to the acidic side. It refers to silica obtained as a result of aggregation.
- the content of silica is not particularly limited, but from the viewpoint of realizing an excellent low loss property, it is preferably 1 part by mass or more, and 3 parts by mass or more with respect to 100 parts by mass of the rubber component. It is more preferable that the amount is 15 parts by mass or less, and it is more preferable that the amount is 10 parts by mass or less.
- an inorganic compound represented by the following formula (I) can be used as the inorganic filler.
- M is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, oxides or hydroxides of these metals, and hydrates thereof, and carbonates of these metals.
- n, x, y, and z are an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10, respectively.
- alumina such as ⁇ -alumina and ⁇ -alumina
- alumina monohydrate such as boehmite and diaspore
- gibbsite Aluminum hydroxide [Al (OH) 3 ] such as bayerite; aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3 ).
- talc (3MgO ⁇ 4SiO 2 ⁇ H 2 O), attapulgite (5MgO ⁇ 8SiO 2 ⁇ 9H 2 O), titanium white (TiO 2), titanium black (TiO 2n-1), calcium oxide (CaO), hydroxide calcium [Ca (OH) 2], magnesium aluminum oxide (MgO ⁇ Al 2 O 3) , clay (Al 2 O 3 ⁇ 2S O 2), kaolin (Al 2 O 3 ⁇ 2SiO 2 ⁇ 2H 2 O), pyrophyllite (Al 2 O 3 ⁇ 4SiO 2 ⁇ H 2 O), bentonite (Al 2 O 3 ⁇ 4SiO 2 ⁇ 2H 2 O) , Magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), aluminum aluminum silicate (Al 2 O 3 .CaO.2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (Ca
- antiaging agent known ones can be used and are not particularly limited.
- a phenol anti-aging agent an imidazole anti-aging agent, an amine anti-aging agent, etc. can be mentioned.
- These antioxidants can be used alone or in combination of two or more.
- cross-linking accelerator known ones can be used and are not particularly limited.
- thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazylsulfenamide, etc.
- Sulfenamide-based vulcanization accelerator Sulfenamide-based vulcanization accelerator; guanidine-based vulcanization accelerator such as diphenylguanidine; tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetradodecylthiuram disulfide, tetraoctylthiuram disulfide, tetrabenzylthiuram disulfide, di Examples include thiuram-based vulcanization accelerators such as pentamethylene thiuram tetrasulfide; dithiocarbamate-based vulcanization accelerators such as zinc dimethyldithiocarbamate; zinc dialkyldithiophosphate. .
- the cross-linking agent is also not particularly limited, and examples thereof include sulfur and bismaleimide compounds.
- the bismaleimide compound include N, N'-o-phenylene bismaleimide, N, N'-m-phenylene bismaleimide, N, N'-p-phenylene bismaleimide, N, N '-(4,4 Examples include'-diphenylmethane) bismaleimide, 2,2-bis- [4- (4-maleimidophenoxy) phenyl] propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane and the like.
- N, N'-m-phenylene bismaleimide and N, N '-(4,4'-diphenylmethane) bismaleimide can be preferably used.
- the crosslinking accelerator examples include zinc white (ZnO) and fatty acids.
- the fatty acid may be saturated or unsaturated, linear or branched fatty acid, and the number of carbon atoms of the fatty acid is not particularly limited.
- fatty acid having 1 to 30 carbon atoms, preferably 15 to 30 carbon atoms.
- cyclohexanoic acid cyclohexanecarboxylic acid
- naphthenic acid such as alkylcyclopentane having a side chain
- hexanoic acid, octanoic acid decanoic acid (including branched carboxylic acid such as neodecanoic acid), dodecanoic acid
- Saturated fatty acids such as tetradecanoic acid, hexadecanoic acid and octadecanoic acid (stearic acid); unsaturated fatty acids such as methacrylic acid, oleic acid, linoleic acid and linolenic acid; resin acids such as rosin, tall oil acid and abietic acid .
- zinc white and stearic acid can be preferably used.
- the rubber composition suitable as the elastomer 3 used for the elastomer-metal cord composite 10 of the present invention contains silica as the above-mentioned filler, it is preferable to further contain a silane coupling agent. This is because the effect of silica for reinforcement and low loss can be further improved.
- Known silane coupling agents can be used as appropriate.
- the preferred content of the silane coupling agent varies depending on the type of the silane coupling agent and the like, but is preferably 2% by mass or more, and particularly preferably 5% by mass or more, based on silica. It is preferably 25% by mass or less, more preferably 20% by mass or less, and particularly preferably 18% by mass or less.
- the content of the silane coupling agent is 2% by mass or more, the effect as the coupling agent can be sufficiently exerted, and when it is 25% by mass or less, gelation of the rubber component is prevented. it can.
- the rubber composition suitable as the elastomer 3 used in the elastomer-metal cord composite 10 of the present invention is not particularly limited, and a rubber component as each component of the rubber composition, carbon black, a phenol resin, a methylene donor, and It can be prepared by blending other components and kneading. At this time, each of the above components may be kneaded at the same time, or any of the components may be kneaded in advance and then the remaining components may be kneaded. These conditions can be appropriately changed depending on the performance required of the rubber composition.
- Phenolic resin has a strong interaction with carbon black, so if it is added at the same time, the reaction between the rubber component and carbon black may decrease. Therefore, by mixing and kneading the rubber component and carbon black prior to kneading with the phenol resin, the dispersibility and reinforcing properties of the carbon black are improved, and low loss and crack growth resistance can be further improved. Becomes
- the elastomer-metal cord composite of the present invention can be manufactured by a known method.
- a steel cord as a metal cord composed of a bundle of a plurality of metal filaments which are not twisted and twisted can be produced by coating in parallel with a rubber at a predetermined interval, and a sample for evaluation is then prepared. It can be produced by vulcanizing under general conditions.
- the metal filament can be molded by a conventional molding machine according to a conventional method.
- FIG. 6 shows a schematic one-side sectional view of a tire according to a preferred embodiment of the present invention.
- the tire 100 of the present invention is formed by using the elastomer-metal cord composite 10 of the present invention, whereby the low loss property, the steering stability and the crack growth resistance can be improved.
- the illustrated tire 100 includes a tread portion 101 forming a ground contact portion, a pair of sidewall portions 102 continuously extending inward in the tire radial direction on both side portions of the tread portion 101, and an inner circumference of each sidewall portion 102.
- the pneumatic tire is provided with a bead portion 103 that is continuous on the side. Examples of the tire 100 of the present invention include tires for passenger cars and tires for trucks and buses.
- the tread portion 101, the sidewall portion 102, and the bead portion 103 are reinforced by a carcass 104 formed of one carcass layer extending in a toroidal shape from one bead portion 103 to the other bead portion 103.
- the tread portion 101 is reinforced by a belt 105 including at least two layers, which are two layers in the illustrated example, a first belt layer 105a and a second belt layer 105b, which are arranged outside the crown region of the carcass 104 in the tire radial direction. Has been done.
- the carcass 104 may have a plurality of carcass layers, and an organic fiber cord extending in a direction substantially orthogonal to the tire circumferential direction, for example, an angle of 70 ° or more and 90 ° or less can be preferably used.
- the elastomer-metal cord composite 10 of the present invention can be used for the first belt layer 105a and the second belt layer 105b.
- the thickness of the first belt layer 105a and the second belt layer 105b can be reduced, and the weight of the tire can be reduced.
- the elastomer-metal cord composite 10 of the present invention for a cord for a belt it is possible to simultaneously improve the durability, low loss, steering stability and crack growth resistance of the belt.
- the cord angle of the belt 105 can be 30 ° or less with respect to the tire circumferential direction.
- the tire 100 of the present invention may be any tire as long as it uses the elastomer-metal cord composite 10 of the present invention, and other specific tire structures are not particularly limited. Further, the application location of the elastomer-metal cord composite 10 of the present invention is not limited to the belt 105. For example, it may be used as a belt reinforcing layer arranged on the outer side in the tire radial direction of the belt 105, or as other reinforcing members. As the gas with which the tire 100 is filled, in addition to normal air or air whose oxygen partial pressure is adjusted, an inert gas such as nitrogen, argon, or helium can be used.
- an inert gas such as nitrogen, argon, or helium
- Rubber compositions A and B were prepared by compounding and kneading according to a conventional method according to the compounds shown in the following table. The kneading of each component was performed using a Banbury mixer with a capacity of 3.0 L. Regarding the rubber composition B, the rubber component and carbon black were kneaded prior to the kneading with the phenol resin. The 50% modulus value (M50) and the 200% modulus value (M200) of each rubber composition are measured according to JIS K 6251 (2010) after vulcanizing each rubber composition at 145 ° C. for 40 minutes to obtain a vulcanized rubber. ).
- Steel cords as metal cords according to the conditions shown in the following table are covered from both upper and lower sides with a sheet made of the rubber composition shown in the following table and having a thickness of about 0.5 mm, and the elastomer of each example and the conventional example. -Metal cord composite was made.
- the molding amount is 0 mm and the molding pitch is ⁇ mm, the steel filament is substantially straight.
- the elastomer coverage is the steel that constitutes the steel cord by coating the steel cord with rubber, vulcanizing at 160 ° C. for 10 to 15 minutes, and then pulling out the steel cord from the obtained rubber-steel cord composite.
- the length of the side surface of the steel filament in the width direction of the metal cord, which is covered with the rubber that has penetrated into the gap between the filaments, is measured, and the average of the values calculated based on the following formula is calculated.
- the formula for calculating the elastomer coverage is as follows.
- Elastomer coverage (rubber coating length / sample length) x 100 (%)
- the rubber coating length is the length of the region where the steel filament surface is completely covered with rubber when the pulled-out steel cord is observed from the direction orthogonal to the cord longitudinal direction. The higher the number, the higher the adhesive strength and the better the performance.
- the in-plane rigidity is evaluated using the crossed belt layer sample prepared by using the obtained rubber-steel cord composite, and is used as an index of steering stability.
- Jigs are placed at the lower two points and the upper one point of the cross belt layer sample, and the load when the jig is pushed in from the upper one point is evaluated as the in-plane rigidity.
- the results are evaluated by using the conventional example 1 as a reference, inferior as x, equivalent as ⁇ , excellent as o, and very excellent as o.
- Each rubber composition A, B was vulcanized at 145 ° C. for 40 minutes to obtain a vulcanized rubber.
- the loss tangent (tan ⁇ ) of the obtained vulcanized rubber was measured using a spectrometer (manufactured by Kamijima Seisakusho Co., Ltd.) under the conditions of a temperature of 24 ° C., a strain of 1% and a frequency of 52 Hz.
- the evaluation is indicated by an index when the tan ⁇ of the rubber composition A sample is 100, and the smaller the index value, the better the low heat buildup.
- Each rubber composition A, B was vulcanized at 145 ° C. for 40 minutes to obtain a vulcanized rubber.
- a sheet of 2 mm ⁇ 50 mm ⁇ 6 mm was prepared from the obtained vulcanized rubber, and a small hole was made in the center thereof to form an initial crack. Thereafter, this sheet was repeatedly stressed in the long side direction under the conditions of 2.0 MPa, frequency of 6 Hz, and ambient temperature of 80 ° C. Then, after the repeated stress was applied to each sample until the test piece was broken, the common logarithm of the repeated number was calculated. The measurement test until breakage was carried out four times for each sample to calculate the common logarithm, and the average thereof was taken as the average common logarithm. The evaluation is shown as an index when the average common logarithm of the rubber composition A is 100, and the larger the average common logarithm of the sample, the better the crack growth resistance.
- Example 1 was also excellent in separation resistance when the elastomer-metal cord composite of Conventional Example 1 was used as a reference.
- the composition of the bundle of metal filaments is prescribed, and by using an elastomer that satisfies the prescribed physical properties, steering stability, crack growth resistance, low loss, etc. It is possible to obtain an elastomer-metal cord composite and a tire that are compatible with various tire performances.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Ropes Or Cables (AREA)
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention provides: an elastomer-metal cord composite body which is capable of improving various properties of a tire such as steering stability, crack growth resistance and low loss characteristics; and a tire which uses this elastomer-metal cord composite body. One embodiment of the present invention is an elastomer-metal cord composite body 10 which is obtained by covering, with an elastomer 3, a metal cord 2 that is composed of a bundle of a plurality of metal filaments that are arranged in a row without being twisted. At least one pair of adjacent metal filaments that are different from each other in at least one of patterning amount and patterning pitch is present in the metal cord; and the ratio of the 200% modulus value (M200) to the 50% modulus value (M50) of the elastomer, namely M200/M50 is 5.0 or less.
Description
本発明は、エラストマー-金属コード複合体およびこれを用いたタイヤに関し、詳しくは、金属フィラメントを撚り合わせずに引き揃えた束からなる金属コードをエラストマーで被覆してなるエラストマー-金属コード複合体、および、これを用いたタイヤに関する。
TECHNICAL FIELD The present invention relates to an elastomer-metal cord composite and a tire using the same, and more specifically, an elastomer-metal cord composite obtained by coating a metal cord composed of a bundle of metal filaments aligned without twisting with an elastomer, And a tire using the same.
一般に、強度が必要とされるタイヤの内部には、リング状のタイヤ本体の子午線方向に沿って埋設された補強コードを含むカーカスが配置され、カーカスのタイヤ半径方向外側には、ベルト層が配置される。このベルト層は通常、スチール等の金属コードをエラストマーで被覆してなるエラストマー-金属コード複合体を用いて形成され、タイヤに耐荷重性、耐牽引性等を付与している。
Generally, inside the tire where strength is required, a carcass including reinforcing cords embedded along the meridian direction of the ring-shaped tire body is arranged, and a belt layer is arranged on the tire radial outside of the carcass. To be done. This belt layer is usually formed by using an elastomer-metal cord composite obtained by coating a metal cord such as steel with an elastomer, and imparts load resistance, traction resistance and the like to the tire.
近年、自動車の燃費を向上させるために、タイヤを軽量化する要求が高まっており、タイヤの軽量化の手段として、ベルト補強用の金属コードが注目され、金属フィラメントを撚らずにベルト用コードとして使用する技術が多数公開されている。例えば、特許文献1には、軽量性と耐久性とを改善するにあたって、高い引張り強度で細径の金属フィラメントを、撚らずに並列に引き揃えて金属フィラメント束とし、これを被覆ゴム中に幅方向に配列させた少なくとも2枚のベルトプライでベルト層を形成したタイヤが提案されている。
In recent years, there has been an increasing demand for reducing the weight of tires in order to improve the fuel efficiency of automobiles. As a means of reducing the weight of tires, metal cords for belt reinforcement have attracted attention, and cords for belts have not been twisted with metal filaments. Many technologies used as are published. For example, in Patent Document 1, in order to improve lightness and durability, thin metal filaments having high tensile strength are aligned in parallel without twisting to form a metal filament bundle, which is placed in a coated rubber. A tire has been proposed in which a belt layer is formed by at least two belt plies arranged in the width direction.
このように金属のモノフィラメントを束にしてエラストマーで被覆してコードを形成することで、ベルトの薄ゲージ化による軽量化と、モノフィラメント束間の距離の確保による耐ベルトエッジセパレーション(BES)性の向上とを両立することができる。しかし、このようなコードにおいては、隣接する金属フィラメントの側面部分に長手方向に連続するエラストマーの非浸透領域(非エラストマー被覆領域)が生じてしまい、タイヤ転動時に金属フィラメント同士が相互にずれて、面内剛性(タイヤ接地面内の剛性)が低下することにより、操縦安定性の向上が得られない。
In this way, by forming bundles of metal monofilaments and coating them with an elastomer to form cords, the weight of the belt is reduced by gauge, and the belt edge separation (BES) resistance is improved by ensuring the distance between the monofilament bundles. Can be compatible with both. However, in such a cord, a non-penetrating region (non-elastomer coating region) of the elastomer continuous in the longitudinal direction is generated on the side surface portion of the adjacent metal filaments, and the metal filaments are displaced from each other during rolling of the tire. However, since the in-plane rigidity (rigidity in the tire ground contact surface) is reduced, improvement in steering stability cannot be obtained.
また、自動車の燃費を向上するためには、タイヤの転がり抵抗の低減も効果的であり、このような観点から、ベルト層の被覆用エラストマーの低ロス性向上の要求が高まっている。一方で、ベルト層の被覆用エラストマーについては、高い耐久性、中でも特に、高い耐亀裂進展性も要求される。
Also, in order to improve the fuel efficiency of automobiles, it is effective to reduce the rolling resistance of tires, and from this viewpoint, there is an increasing demand for improving the low loss property of the elastomer for coating the belt layer. On the other hand, the elastomer for coating the belt layer is required to have high durability, especially high crack growth resistance.
しかしながら、特許文献1では、耐BES性については検討されているものの、操縦安定性や低ロス性、耐亀裂進展性については検討がなされていない。よって、これらの要求性能を満足できる補強材の実現が求められていた。
However, in Patent Document 1, although BES resistance is examined, steering stability, low loss, and crack growth resistance are not examined. Therefore, it has been required to realize a reinforcing material that can satisfy these required performances.
そこで、本発明の目的は、複数本の金属フィラメントを撚り合わせずに引き揃えた束からなる金属コードがエラストマーで被覆されてなり、操縦安定性や耐亀裂進展性、低ロス性等のタイヤの諸性能を改善し得るエラストマー-金属コード複合体、および、これを用いたタイヤを提供することにある。
Therefore, an object of the present invention is to coat a plurality of metal filaments without twisting the metal cords made of a bundle of metal cords covered with an elastomer, steering stability and crack growth resistance, low loss of tire and the like. An object of the present invention is to provide an elastomer-metal cord composite capable of improving various performances, and a tire using the same.
本発明者らは鋭意検討した結果、金属フィラメントの束の構成を下記のとおりとするとともに、エラストマーとして下記所定の物性を満足するものを用いることにより、上記課題を解決できることを見出して、本発明を完成するに至った。
As a result of intensive studies, the present inventors have found that the above problems can be solved by using a bundle of metal filaments having the following structure and using an elastomer that satisfies the following predetermined physical properties. Has been completed.
すなわち、本発明のエラストマー-金属コード複合体は、複数本の金属フィラメントが撚り合わされずに一列に引き揃えられた束からなる金属コードが、エラストマーにより被覆されたエラストマー-金属コード複合体において、
前記金属コード中に、型付け量および型付けピッチの少なくとも一方が異なっている、隣り合う金属フィラメント同士の対が少なくとも1つ存在し、かつ、前記エラストマーの、50%モジュラス値(M50)に対する200%モジュラス値(M200)の比M200/M50が、5.0以下であることを特徴とするものである。 That is, the elastomer-metal cord composite of the present invention is an elastomer-metal cord composite in which a metal cord composed of a bundle in which a plurality of metal filaments are not twisted and aligned in a row is coated with an elastomer.
In the metal cord, there is at least one pair of adjacent metal filaments having different at least one of a molding amount and a molding pitch, and a 200% modulus with respect to a 50% modulus value (M50) of the elastomer. The ratio M200 / M50 of the value (M200) is 5.0 or less.
前記金属コード中に、型付け量および型付けピッチの少なくとも一方が異なっている、隣り合う金属フィラメント同士の対が少なくとも1つ存在し、かつ、前記エラストマーの、50%モジュラス値(M50)に対する200%モジュラス値(M200)の比M200/M50が、5.0以下であることを特徴とするものである。 That is, the elastomer-metal cord composite of the present invention is an elastomer-metal cord composite in which a metal cord composed of a bundle in which a plurality of metal filaments are not twisted and aligned in a row is coated with an elastomer.
In the metal cord, there is at least one pair of adjacent metal filaments having different at least one of a molding amount and a molding pitch, and a 200% modulus with respect to a 50% modulus value (M50) of the elastomer. The ratio M200 / M50 of the value (M200) is 5.0 or less.
ここで、図1は、金属フィラメントの型付け量hおよび型付けピッチpの定義を示す金属フィラメントの説明図であり、型付け量hとは金属フィラメント1の線径を含まない変動の幅をいう。なお、金属フィラメント1の型付け量hは、型付け後の金属フィラメント1を投影機にて投影し、金属フィラメントの投影像をスクリーン等に映して計測する。
Here, FIG. 1 is an explanatory diagram of the metal filament showing the definition of the metal filament forming amount h and the forming pitch p, and the forming amount h refers to the width of fluctuation that does not include the wire diameter of the metal filament 1. The amount h of the metal filament 1 to be imprinted is measured by projecting the metal filament 1 after imprinting with a projector and projecting a projected image of the metal filament on a screen or the like.
また、上記50%モジュラスとは、エラストマーの伸び50%時における引張応力のことであり、上記200%モジュラスとは、エラストマーの伸び200%時における引張応力のことである。これらの値については、上記エラストマーがゴム組成物の場合はゴム組成物を加硫し、加硫ゴムとした後、JIS K 6251(2010年)に準拠して測定することができる。なお、前記ゴム組成物を加硫する条件については、特に限定はされず、公知の加硫条件で適宜実施することができる。
Also, the 50% modulus is the tensile stress at the elongation of the elastomer of 50%, and the 200% modulus is the tensile stress of the elastomer at the elongation of 200%. These values can be measured in accordance with JIS K 6251 (2010) after the rubber composition is vulcanized into a vulcanized rubber when the elastomer is a rubber composition. The conditions for vulcanizing the rubber composition are not particularly limited, and can be appropriately performed under known vulcanization conditions.
本発明のエラストマー-金属コード複合体においては、前記金属コード中における型付けされた金属フィラメントの型付け方向は、前記金属コードの幅方向であることが好ましい。また、本発明のエラストマー-金属コード複合体においては、前記隣り合う金属フィラメントの、前記金属コードの幅方向側面におけるエラストマー被覆率が、単位長さ当たり10%以上であることが好ましい。
In the elastomer-metal cord composite of the present invention, it is preferable that the metal filament in the metal cord is imprinted in the width direction of the metal cord. Further, in the elastomer-metal cord composite of the present invention, it is preferable that the elastomer coverage of the adjacent metal filaments on the side surface in the width direction of the metal cord is 10% or more per unit length.
さらに、本発明のエラストマー-金属コード複合体においては、前記金属コード中の金属フィラメントのうち少なくとも1本は、実質的に真直の金属フィラメントであることが好ましい。さらにまた、本発明のエラストマー-金属コード複合体においては、前記真直の金属フィラメントと型付けされた金属フィラメントとが交互に配置されていることが好ましい。さらにまた、本発明のエラストマー-金属コード複合体においては、前記金属コードの両端に配置された金属フィラメントは、前記真直の金属フィラメントであることが好ましい。
Furthermore, in the elastomer-metal cord composite of the present invention, at least one of the metal filaments in the metal cord is preferably a substantially straight metal filament. Furthermore, in the elastomer-metal cord composite of the present invention, it is preferable that the straight metal filaments and the patterned metal filaments are alternately arranged. Furthermore, in the elastomer-metal cord composite of the present invention, the metal filaments arranged at both ends of the metal cord are preferably the straight metal filaments.
さらにまた、本発明のエラストマー-金属コード複合体においては、前記金属フィラメントに2次元型付けが施されており、前記金属フィラメントの型付け量が0.03mm以上0.30mm以下であって、前記金属フィラメントの型付けピッチが2mm以上30mm以下であることが好ましい。さらにまた、本発明のエラストマー-金属コード複合体においては、前記エラストマーが、ゴム成分と、DBP吸収量が50cm3/100g以上100cm3/100g以下であるカーボンブラックと、フェノール樹脂と、メチレン供与体とを含むゴム組成物からなることが好ましい。
Furthermore, in the elastomer-metal cord composite of the present invention, the metal filament is two-dimensionally shaped, and the metal filament has an amount of 0.03 mm or more and 0.30 mm or less. It is preferable that the patterning pitch of is 2 mm or more and 30 mm or less. Moreover, the elastomer of the present invention - In the metal cord composite, the elastomer is a rubber component, and carbon black DBP absorption is less than 50 cm 3/100 g or more 100 cm 3/100 g, a phenol resin, a methylene donor It is preferably composed of a rubber composition containing
ここで、本発明において、エラストマー被覆率とは、例えば、エラストマーとしてゴムを用い、金属コードとしてスチールコードを用いた場合、スチールコードをゴム被覆し、加硫した後、得られたゴム-スチールコード複合体からスチールコードを引き抜き、スチールコードを構成するスチールフィラメント同士の間隙に浸透したゴムにより被覆されている、スチールフィラメントの金属コード幅方向側面の長さを測定し、下記算出式に基づいて算出した値の平均をいう。
エラストマー被覆率=(ゴム被覆長/試料長)×100(%)
なお、エラストマーとして、ゴム以外のエラストマーを用いた場合、および、金属コードとして、スチールコード以外の金属コードを用いた場合も、同様に算出することができる。また、本発明のエラストマー-金属コード複合体において、真直の金属フィラメントとは、意図的に型付けをしておらず、実質的に型がついていない状態の金属フィラメントを指す。 Here, in the present invention, the elastomer coverage means, for example, when rubber is used as the elastomer and steel cord is used as the metal cord, the rubber cord obtained by coating the steel cord with rubber and vulcanizing is obtained. The steel cord is pulled out from the composite, and the length of the side surface of the steel filament in the width direction of the metal cord, which is covered with the rubber that has penetrated into the gap between the steel filaments that make up the steel cord, is measured and calculated based on the following formula It means the average of the values.
Elastomer coverage = (rubber coating length / sample length) x 100 (%)
The same calculation can be performed when an elastomer other than rubber is used as the elastomer and when a metal cord other than the steel cord is used as the metal cord. Further, in the elastomer-metal cord composite of the present invention, a straight metal filament refers to a metal filament that is not intentionally modeled and is substantially unmolded.
エラストマー被覆率=(ゴム被覆長/試料長)×100(%)
なお、エラストマーとして、ゴム以外のエラストマーを用いた場合、および、金属コードとして、スチールコード以外の金属コードを用いた場合も、同様に算出することができる。また、本発明のエラストマー-金属コード複合体において、真直の金属フィラメントとは、意図的に型付けをしておらず、実質的に型がついていない状態の金属フィラメントを指す。 Here, in the present invention, the elastomer coverage means, for example, when rubber is used as the elastomer and steel cord is used as the metal cord, the rubber cord obtained by coating the steel cord with rubber and vulcanizing is obtained. The steel cord is pulled out from the composite, and the length of the side surface of the steel filament in the width direction of the metal cord, which is covered with the rubber that has penetrated into the gap between the steel filaments that make up the steel cord, is measured and calculated based on the following formula It means the average of the values.
Elastomer coverage = (rubber coating length / sample length) x 100 (%)
The same calculation can be performed when an elastomer other than rubber is used as the elastomer and when a metal cord other than the steel cord is used as the metal cord. Further, in the elastomer-metal cord composite of the present invention, a straight metal filament refers to a metal filament that is not intentionally modeled and is substantially unmolded.
本発明のタイヤは、本発明のエラストマー-金属コード複合体が用いられてなることを特徴とするものである。
The tire of the present invention is characterized by using the elastomer-metal cord composite of the present invention.
本発明によれば、複数本の金属フィラメントを撚り合わせずに引き揃えた束からなる金属コードがエラストマーで被覆されてなり、操縦安定性や耐亀裂進展性、低ロス性等のタイヤの諸性能を改善し得るエラストマー-金属コード複合体、および、これを用いたタイヤを提供することができた。
According to the present invention, a metal cord made of a bundle in which a plurality of metal filaments are aligned without being twisted is coated with an elastomer, and various tire performances such as steering stability, crack growth resistance, and low loss property are provided. It was possible to provide an elastomer-metal cord composite capable of improving the above, and a tire using the same.
以下、本発明のエラストマー-金属コード複合体について、図面を用いて詳細に説明する。図2は、本発明の一好適な実施の形態に係るエラストマー-金属コード複合体の幅方向における部分断面図であり、図3は、本発明の一好適な実施の形態のエラストマー-金属コード複合体に係る金属コードの概略平面図であり、図4は、本発明の一好適な実施の形態のエラストマー-金属コード複合体に係る金属コードの幅方向概略断面図である。
Hereinafter, the elastomer-metal cord composite of the present invention will be described in detail with reference to the drawings. FIG. 2 is a partial cross-sectional view in the width direction of an elastomer-metal cord composite according to a preferred embodiment of the present invention, and FIG. 3 is an elastomer-metal cord composite of a preferred embodiment of the present invention. FIG. 4 is a schematic plan view of the metal cord relating to the body, and FIG. 4 is a schematic cross-sectional view in the width direction of the metal cord relating to the elastomer-metal cord composite of the preferred embodiment of the present invention.
本発明のエラストマー-金属コード複合体10は、複数本の金属フィラメント1が、撚り合わされずに一列に引き揃えられた束からなる金属コード2が、エラストマー3により被覆されたものである。金属フィラメント1は、好適には2本以上、より好適には5本以上であって、好適には20本以下、より好適には18本以下、さらに好適には15本以下、特に好適には12本以下の束で金属コード2を構成する。図示例においては、5本の金属フィラメント1が、撚り合わされずに引き揃えられて、金属コード2を形成している。
The elastomer-metal cord composite 10 of the present invention has a plurality of metal filaments 1 covered with an elastomer 3 on a metal cord 2 formed of a bundle in which the metal filaments 1 are not twisted and aligned in a line. The number of the metal filaments 1 is preferably 2 or more, more preferably 5 or more, preferably 20 or less, more preferably 18 or less, further preferably 15 or less, particularly preferably The metal cord 2 is composed of a bundle of 12 or less. In the illustrated example, five metal filaments 1 are aligned without being twisted to form a metal cord 2.
本発明のエラストマー-金属コード複合体10においては、金属コード2中に、型付け量および型付けピッチの少なくとも一方が異なっている、隣り合う金属フィラメント1同士の対が少なくとも1つ存在する。このように、本発明のエラストマー-金属コード複合体10では、型付け量または型付けピッチが異なる金属フィラメント1を隣接させることで、両者の位相が合致することがなくなるので、金属フィラメント間における連続した非エラストマー被覆領域が解消され、隣り合う金属フィラメント1間にエラストマーを十分に浸透させることが可能となる。その結果、圧縮入力時にスチールコードが面外変形でき、スチールコード折れを抑止することができる。また、タイヤに損傷が生じた際の浸水時における水分の通水経路がなくなるので、耐腐食進展性が大幅に改善される。さらに、隣り合う金属フィラメント1同士がエラストマーにより拘束されるので、本発明のエラストマー-金属コード複合体10をタイヤのベルト用コードとして用いることで、タイヤ転動時においても隣り合う金属フィラメントが相互にずれてしまうことがなく、結果としてベルトの面内剛性を向上させることができ、操縦安定性を改善することができる。
In the elastomer-metal cord composite 10 of the present invention, the metal cord 2 has at least one pair of adjacent metal filaments 1 having different at least one of the molding amount and the molding pitch. As described above, in the elastomer-metal cord composite 10 of the present invention, by adjoining the metal filaments 1 having different imprinting amounts or imposing pitches, the phases of the two do not match each other. The elastomer coating region is eliminated, and the elastomer can be sufficiently permeated between the adjacent metal filaments 1. As a result, the steel cord can be out-of-plane deformed at the time of compression input, and the steel cord can be prevented from being broken. In addition, since there is no water passage for water when the tire is damaged when it is inundated, the corrosion resistance is greatly improved. Further, since the adjacent metal filaments 1 are constrained by the elastomer, by using the elastomer-metal cord composite 10 of the present invention as a cord for a belt of a tire, the adjacent metal filaments can be mutually protected even when the tire is rolling. As a result, the in-plane rigidity of the belt can be improved and steering stability can be improved.
また、本発明者らは、低ロス性と耐亀裂進展性との両立について鋭意検討を行った結果、金属コード2を被覆するエラストマー3の、50%モジュラス値(M50)に対する200%モジュラス値(M200)の比M200/M50が、耐亀裂進展性と関連性が高いことに着目した。本発明者らは、さらに検討を行った結果、比M200/M50を特定の値以下とすることによって、従来技術よりも高いレベルで、低ロス性と耐亀裂進展性との両立が可能となることを見出した。すなわち、本発明のエラストマー-金属コード複合体10においては、金属コード2を被覆するエラストマー3の、50%モジュラス値に対する200%モジュラス値の比M200/M50が、5.0以下である。
In addition, the inventors of the present invention have conducted extensive studies on compatibility between low loss property and crack growth resistance property, and as a result, 200% modulus value (50% modulus value (M50)) of the elastomer 3 covering the metal cord 2 ( It was noted that the ratio M200 / M50 of M200) is highly related to the crack growth resistance. As a result of further study, the present inventors have made it possible to achieve both low loss property and crack propagation resistance at a higher level than in the prior art by setting the ratio M200 / M50 to a specific value or less. I found that. That is, in the elastomer-metal cord composite 10 of the present invention, the ratio M200 / M50 of the 200% modulus value to the 50% modulus value of the elastomer 3 covering the metal cord 2 is 5.0 or less.
よって、本発明のエラストマー-金属コード複合体10においては、上記所定の金属フィラメント1同士の対を含む金属コード2と、上記所定の物性値を有するエラストマー3とを組み合わせて用いることで、タイヤに適用した際に、操縦安定性に加えて、耐亀裂進展性や低ロス性についても向上することができるものである。
Therefore, in the elastomer-metal cord composite 10 of the present invention, by using the metal cord 2 including the pair of the predetermined metal filaments 1 and the elastomer 3 having the predetermined physical property values in combination, a tire is obtained. When applied, it is possible to improve not only steering stability but also crack propagation resistance and low loss property.
まず、本発明のエラストマー-金属コード複合体10に係る金属コード2について説明する。
First, the metal cord 2 according to the elastomer-metal cord composite 10 of the present invention will be described.
本発明に係る金属コード2は、型付け量および型付けピッチ、特には、金属フィラメント1の延在方向に対して垂直な方向における型付け量および型付けピッチの少なくとも一方が異なっている、隣り合う金属フィラメント1同士の対を少なくとも1つ含む。特には、金属フィラメント1同士の対の50%以上において、隣り合う金属フィラメント1同士の、金属フィラメント1の延在方向に対して垂直な方向における型付け量および型付けピッチの少なくとも一方が異なっていることが好ましい。図示例においては、型付けされた金属フィラメント1aと型付けされていない金属フィラメント1b(型付け量0mm、型付けピッチ∞mm)とが交互に配置されているが、異なる型付け量の金属フィラメントを交互に配置してもよいし、異なる型付けピッチの金属フィラメントを交互に配置してもよい。好適には、束を構成する金属フィラメントの配置は、両側部は型付けがされていない真直な金属フィラメントであることが好ましい。
In the metal cord 2 according to the present invention, adjacent metal filaments 1 are different from each other in at least one of the molding amount and the molding pitch, particularly the molding amount and the molding pitch in the direction perpendicular to the extending direction of the metal filament 1. At least one pair of each other is included. In particular, at least 50% or more of the pair of metal filaments 1 are different from each other in at least one of the amount and pitch of the metal filaments 1 adjacent to each other in the direction perpendicular to the extending direction of the metal filaments 1. Is preferred. In the illustrated example, the typed metal filaments 1a and the non-typed metal filaments 1b (typed amount 0 mm, type pitch ∞ mm) are alternately arranged, but different typed metal filaments are alternately arranged. Alternatively, metal filaments having different embossing pitches may be alternately arranged. Preferably, the arrangement of the metal filaments that make up the bundle is a straight metal filament with both sides unshaped.
本発明において、隣り合う金属フィラメント間における連続する非エラストマー被覆領域の存在を解消して、耐腐食進展性を確保するとともに、ベルトの面内剛性を向上させ、操縦安定性を改善する効果を良好に得るためには、隣り合う金属フィラメント1の、金属コード2の幅方向側面におけるエラストマー被覆率は、単位長さ当たり10%以上であることが好ましく、より好ましくは20%以上である。さらに好ましくは50%以上被覆されており、80%以上被覆されていることが特に好ましい。もっとも好ましくは、90%以上被覆されている状態である。
In the present invention, the existence of continuous non-elastomeric coating regions between adjacent metal filaments is eliminated, corrosion resistance is ensured, and the in-plane rigidity of the belt is improved and the steering stability is improved. In order to obtain the above, the elastomer coverage on the side surface in the width direction of the metal cord 2 of the adjacent metal filaments 1 is preferably 10% or more per unit length, more preferably 20% or more. The coating is more preferably 50% or more, and particularly preferably 80% or more. Most preferably, it is in a state of being covered by 90% or more.
本発明のエラストマー-金属コード複合体10において、金属フィラメント1の型付けは、図示するようなジグザグ状または波状の2次元型付けであっても、螺旋状の3次元型付けであってもよい。但し、軽量化の観点から、金属コード2の厚み方向に、金属フィラメント1同士が重ならないことが好ましい。
In the elastomer-metal cord composite 10 of the present invention, the metal filament 1 may be shaped in a zigzag shape or a wavy two-dimensional shape as illustrated, or in a spiral three-dimensional shape. However, from the viewpoint of weight reduction, it is preferable that the metal filaments 1 do not overlap each other in the thickness direction of the metal cord 2.
本発明のエラストマー-金属コード複合体10においては、金属フィラメント1の型付け量が大きすぎると、エラストマー-金属コード複合体10中の金属コード2間の距離wが短くなり、本発明のエラストマー-金属コード複合体10をベルトとして用いた場合、ベルトの強度低下の原因となる。そのため、金属フィラメント1の型付け量は、2次元型付けの場合、0.03mm以上0.30mm以下が好ましい。型付け量を0.30mm以下とすることで、エラストマー-金属コード複合体の強力を確保でき、本発明の効果を十分に得られるものとなる。特に、金属コード2間の距離wおよび、金属フィラメント1の強力の観点から、金属フィラメント1に2次元型付けを施すにあたっては、型付け量は0.03mm以上0.30mm以下が好ましく、より好ましくは0.03mm以上0.25mm以下であり、もっとも好ましくは0.03mm以上0.20mm以下である。また、2次元型付けの場合、金属フィラメント1の型付けピッチは2mm以上30mm以下であることが好ましく、より好ましくは2mm以上20mm以下であり、もっとも好ましくは3mm以上15mm以下である。金属フィラメント1の型付けピッチを2mm以上とすることで、フィラメント強度の低下やコード重量の増加を抑制することができる。
In the elastomer-metal cord composite 10 of the present invention, if the amount of the metal filament 1 imprinted is too large, the distance w between the metal cords 2 in the elastomer-metal cord composite 10 becomes short, and the elastomer-metal of the present invention When the cord composite body 10 is used as a belt, the strength of the belt is reduced. Therefore, in the case of two-dimensional patterning, the mold amount of the metal filament 1 is preferably 0.03 mm or more and 0.30 mm or less. When the imprinting amount is 0.30 mm or less, the strength of the elastomer-metal cord composite can be secured, and the effects of the present invention can be sufficiently obtained. In particular, from the viewpoint of the distance w between the metal cords 2 and the strength of the metal filament 1, when the metal filament 1 is two-dimensionally molded, the molding amount is preferably 0.03 mm or more and 0.30 mm or less, and more preferably 0. It is 0.03 mm or more and 0.25 mm or less, and most preferably 0.03 mm or more and 0.20 mm or less. Further, in the case of two-dimensional molding, the molding pitch of the metal filament 1 is preferably 2 mm or more and 30 mm or less, more preferably 2 mm or more and 20 mm or less, and most preferably 3 mm or more and 15 mm or less. By setting the mold pitch of the metal filaments 1 to 2 mm or more, it is possible to suppress a decrease in filament strength and an increase in cord weight.
また、3次元型付けの場合、金属フィラメント1の型付け量は、0.10mm以上0.50mm以下が好ましく、より好ましくは0.20mm以上0.30mm以下である。型付け量を0.50mm以下とすることで、エラストマー-金属コード複合体の強力の低下を抑制して、本発明の効果を十分に得ることができる。3次元型付けの場合、金属フィラメント1の型付けピッチは5mm以上であることが好ましく、より好ましくは8mm以上20mm以下である。
In the case of three-dimensional molding, the molding amount of the metal filament 1 is preferably 0.10 mm or more and 0.50 mm or less, more preferably 0.20 mm or more and 0.30 mm or less. By setting the mold amount to 0.50 mm or less, it is possible to suppress the decrease in the strength of the elastomer-metal cord composite and obtain the effects of the present invention sufficiently. In the case of three-dimensional molding, the molding pitch of the metal filament 1 is preferably 5 mm or more, more preferably 8 mm or more and 20 mm or less.
なお、図3,図4に示す金属コード2においては、型付けされている金属フィラメント1aは、金属コード2の幅方向に型付けされているが、本発明のエラストマー-金属コード複合体10においては、金属フィラメント1の型付け方向は金属コード2の幅方向に対して傾いていてもよい。図5は、本発明の他の好適な実施の形態のエラストマー-金属コード複合体に係る金属コードの幅方向概略断面図である。このような構造であっても、隣り合う金属フィラメント1間にゴムを十分に浸透させることが可能であり、本発明の効果を得ることができる。しかしながら、本発明のエラストマー-金属コード複合体10においては、軽量性の観点からは、隣り合う金属フィラメント1同士の型付け方向が金属コード2の幅方向であるほうが、エラストマー-金属コード複合体を薄くできるため好ましい。
In addition, in the metal cord 2 shown in FIGS. 3 and 4, the metal filament 1a that is shaped is shaped in the width direction of the metal cord 2, but in the elastomer-metal cord composite 10 of the present invention, The molding direction of the metal filament 1 may be inclined with respect to the width direction of the metal cord 2. FIG. 5 is a schematic cross-sectional view in the width direction of the metal cord according to the elastomer-metal cord composite of another preferred embodiment of the present invention. Even with such a structure, rubber can be sufficiently permeated between the adjacent metal filaments 1, and the effect of the present invention can be obtained. However, in the elastomer-metal cord composite 10 of the present invention, from the viewpoint of lightness, it is possible to make the elastomer-metal cord composite thinner when the molding directions of the adjacent metal filaments 1 are in the width direction of the metal cord 2. It is preferable because it is possible.
また、本発明のエラストマー-金属コード複合体10においては、金属コード2中の金属フィラメント1のうち少なくとも1本が、実質的に真直の金属フィラメントであることが好ましい。図3,図4に示すように、型付けされていない真直な金属フィラメント1bと型付けされた金属フィラメント1aとが隣接している場合、両者の位相が合致することがないので、両者は点接触となる。よって、両金属フィラメント1a,1b間に浸入するエラストマーの量が多くなるため、隣り合う金属フィラメント1a,1bの、金属コード2の幅方向側面におけるエラストマー被覆率が高くなり、非エラストマー被覆領域のバラつきも最小限に抑制することができ、本発明の効果を良好に得ることができる。
Further, in the elastomer-metal cord composite 10 of the present invention, it is preferable that at least one of the metal filaments 1 in the metal cord 2 is a substantially straight metal filament. As shown in FIGS. 3 and 4, when the unmolded straight metal filament 1b and the molded metal filament 1a are adjacent to each other, the phases of the two do not match, so that they are not in point contact with each other. Become. Therefore, since the amount of the elastomer penetrating between the metal filaments 1a and 1b is large, the elastomer coverage of the adjacent metal filaments 1a and 1b on the side surface in the width direction of the metal cord 2 is high, and the non-elastomer coating region varies. Can be suppressed to a minimum, and the effects of the present invention can be satisfactorily obtained.
さらに、本発明のエラストマー-金属コード複合体10においては、金属コード2の両端に配置された金属フィラメント1を、真直の金属フィラメントとすることで、エラストマー中で隣り合う金属コード2間の距離wを広くすることができるため、耐久性を向上させることができる。より好ましくは、図3等に示すように、型付けされていない真直の金属フィラメント1bと型付けされた金属フィラメント1aが交互に配置されているものとする。
Further, in the elastomer-metal cord composite 10 of the present invention, the metal filaments 1 arranged at both ends of the metal cord 2 are straight metal filaments, whereby the distance w between the adjacent metal cords 2 in the elastomer is increased. Since it can be widened, the durability can be improved. More preferably, as shown in FIG. 3 and the like, straight metal filaments 1b that are not shaped and metal filaments 1a that are shaped are alternately arranged.
本発明のエラストマー-金属コード複合体10においては、金属フィラメント1は、一般に、鋼、すなわち、鉄を主成分(金属フィラメントの全質量に対する鉄の質量が50質量%を超える)とする線状の金属をいい、鉄のみで構成されていてもよいし、鉄以外の、例えば、亜鉛、銅、アルミニウム、スズ等の金属を含んでいてもよい。
In the elastomer-metal cord composite 10 of the present invention, the metal filament 1 is generally a steel, that is, a linear wire containing iron as a main component (the mass of iron is more than 50 mass% based on the total mass of the metal filament). It means a metal, and may be composed only of iron, or may contain a metal other than iron, such as zinc, copper, aluminum or tin.
また、本発明のエラストマー-金属コード複合体10において、金属フィラメント1の表面状態については特に制限されないが、例えば、下記の形態をとることができる。すなわち、金属フィラメント1としては、表面のN原子が2原子%以上60原子%以下であって、かつ、表面のCu/Zn比が1以上4以下であることが挙げられる。また、金属フィラメント1としては、フィラメント表面からフィラメント半径方向内方に5nmまでのフィラメント最表層に酸化物として含まれるリンの量が、C量を除いた全体量の割合で、7.0原子%以下である場合が挙げられる。
Further, in the elastomer-metal cord composite 10 of the present invention, the surface state of the metal filament 1 is not particularly limited, but for example, the following forms can be adopted. That is, as the metal filament 1, the N atom on the surface is 2 atom% or more and 60 atom% or less, and the Cu / Zn ratio on the surface is 1 or more and 4 or less. In addition, as the metal filament 1, the amount of phosphorus contained as an oxide in the outermost layer of the filament up to 5 nm inward in the radial direction of the filament from the filament surface is 7.0 atom% in the ratio of the total amount excluding the amount of C. The following cases may be mentioned.
さらに、本発明のエラストマー-金属コード複合体10において、金属フィラメント1の表面には、めっきが施されていてもよい。めっきの種類としては、特に制限されず、例えば、亜鉛(Zn)めっき、銅(Cu)めっき、スズ(Sn)めっき、ブラス(銅-亜鉛(Cu-Zn))めっき、ブロンズ(銅-スズ(Cu-Sn))めっき等の他、銅-亜鉛-スズ(Cu-Zn-Sn)めっきや銅-亜鉛-コバルト(Cu-Zn-Co)めっき等の三元めっきなどが挙げられる。これらの中でもブラスめっきや銅-亜鉛-コバルトめっきが好ましい。ブラスめっきを有する金属フィラメントは、ゴムとの接着性が優れているからである。なお、ブラスめっきは、通常、銅と亜鉛との割合(銅:亜鉛)が、質量基準で60~70:30~40、銅-亜鉛-コバルトめっきは、通常、銅が60~75質量%、コバルトが0.5~10質量%である。また、めっき層の層厚は、一般に100nm以上300nm以下である。
Furthermore, in the elastomer-metal cord composite 10 of the present invention, the surface of the metal filament 1 may be plated. The type of plating is not particularly limited, and examples thereof include zinc (Zn) plating, copper (Cu) plating, tin (Sn) plating, brass (copper-zinc (Cu-Zn)) plating, and bronze (copper-tin ( In addition to Cu-Sn)) plating and the like, there are ternary plating such as copper-zinc-tin (Cu-Zn-Sn) plating and copper-zinc-cobalt (Cu-Zn-Co) plating. Among these, brass plating and copper-zinc-cobalt plating are preferable. This is because the brass-plated metal filament has excellent adhesion to rubber. In brass plating, the ratio of copper and zinc (copper: zinc) is usually 60 to 70:30 to 40 on a mass basis, and in copper-zinc-cobalt plating, copper is usually 60 to 75 mass%, Cobalt is 0.5 to 10 mass%. The thickness of the plating layer is generally 100 nm or more and 300 nm or less.
さらに、本発明のエラストマー-金属コード複合体10においては、金属フィラメント1の線径や抗張力、断面形状については、特に制限はない。例えば、金属フィラメント1の線径は、0.15mm以上0.40mm以下とすることができる。また、金属フィラメント1としては、抗張力が2500MPa(250kg/mm2)以上のものを用いることができる。さらに、金属フィラメント1の幅方向の断面形状も特に制限されず、楕円状や矩形状、三角形状、多角形状等であってもよいが、円状が好ましい。なお、本発明のエラストマー-金属コード複合体10においては、金属コード2を構成する金属フィラメント1の束を拘束する必要がある場合には、ラッピングフィラメント(スパイラルフィラメント)を使用してもよい。
Further, in the elastomer-metal cord composite 10 of the present invention, the wire diameter, tensile strength, and cross-sectional shape of the metal filament 1 are not particularly limited. For example, the wire diameter of the metal filament 1 can be 0.15 mm or more and 0.40 mm or less. As the metal filament 1, one having a tensile strength of 2500 MPa (250 kg / mm 2 ) or more can be used. Furthermore, the cross-sectional shape of the metal filament 1 in the width direction is not particularly limited, and may be an elliptical shape, a rectangular shape, a triangular shape, a polygonal shape, or the like, but a circular shape is preferable. In the elastomer-metal cord composite 10 of the present invention, a wrapping filament (spiral filament) may be used when the bundle of the metal filaments 1 forming the metal cord 2 needs to be constrained.
次に、本発明のエラストマー-金属コード複合体10において、金属コード2を被覆するエラストマー3について説明する。
Next, the elastomer 3 covering the metal cord 2 in the elastomer-metal cord composite 10 of the present invention will be described.
本発明のエラストマー-金属コード複合体10に用いるエラストマー3としては、上述した50%モジュラス値(M50)に対する200%モジュラス値(M200)の比M200/M50が、5.0以下であるものであれば特に制限はなく、従来、金属コードを被覆するために用いていたゴム組成物等を用いることができる。
The elastomer 3 used in the elastomer-metal cord composite 10 of the present invention may be one having a ratio M200 / M50 of 200% modulus value (M200) to 50% modulus value (M50) of 5.0 or less. There is no particular limitation, and a rubber composition or the like conventionally used for coating a metal cord can be used.
上記M50は、エラストマーの低歪域での弾性に関連するパラメータである。そのため、M50については、タイヤのベルト部の変形を抑制するために、できるだけ高い値にする必要がある。このためには、例えばゴム組成物においては、後述するカーボンブラックの種類や含有量を調整しつつ、後述するフェノール樹脂やメチレン供与体を含有させることが考えられる。一方、上記M200は、エラストマーの高歪域での弾性に関連するパラメータである。そのため、M200については、亀裂進展を抑える観点からは、亀裂先端の応力の集中を緩和させるべく、低い値にする必要がある。このためには、例えばゴム組成物においては、後述するカーボンブラックの種類や含有量を調整することなどが考えられる。そして、上記M50の大きさに対する上記M200の大きさの比を、5.0以下に設定する(M200/M50≦5.0)ことによって、優れた低ロス性および耐亀裂進展性を発揮できるエラストマーを実現できる。また、同様の観点から、比M200/M50は、4.8以下であることが好ましく、4.5以下であることがより好ましい。
The above M50 is a parameter related to the elasticity of the elastomer in the low strain region. Therefore, M50 needs to be as high as possible in order to suppress the deformation of the belt portion of the tire. For this purpose, for example, in the rubber composition, it is considered that the phenol resin and the methylene donor described later are contained while adjusting the type and the content of carbon black described below. On the other hand, the M200 is a parameter related to the elasticity of the elastomer in the high strain range. Therefore, from the viewpoint of suppressing crack growth, M200 needs to have a low value in order to reduce the concentration of stress at the crack tip. For this purpose, for example, in a rubber composition, it is possible to adjust the kind and content of carbon black described later. Then, by setting the ratio of the size of the M200 to the size of the M50 to 5.0 or less (M200 / M50 ≦ 5.0), an elastomer capable of exhibiting excellent low loss property and crack growth resistance. Can be realized. From the same viewpoint, the ratio M200 / M50 is preferably 4.8 or less, and more preferably 4.5 or less.
エラストマー3の上記M50および上記M200の具体的な数値範囲については、特に限定はされないが、より高いレベルで低ロス性および耐亀裂進展性を実現する観点からは、M50が1.6MPa以上、M200が10.5MPa以下であることが好ましく、M50が1.8MPa以上、M200が9.0MPa以下であることがより好ましい。
The specific numerical range of M50 and M200 of the elastomer 3 is not particularly limited, but from the viewpoint of realizing low loss property and crack growth resistance at a higher level, M50 is 1.6 MPa or more and M200 is M200. Is preferably 10.5 MPa or less, more preferably M50 is 1.8 MPa or more and M200 is 9.0 MPa or less.
エラストマー3としては、具体的には、従来、金属コードを被覆するために用いていたゴム組成物等を用いることができる。エラストマー3の主成分としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、エポキシ化天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR、高シスBRおよび低シスBR)、ニトリルゴム(NBR)、水素化NBR、水素化SBR等のジエン系ゴムおよびその水添物、エチレンプロピレンゴム(EPDM、EPM)、マレイン酸変性エチレンプロピレンゴム(M-EPM)、ブチルゴム(IIR)、イソブチレンと芳香族ビニルまたはジエン系モノマー共重合体、アクリルゴム(ACM)、アイオノマー等のオレフィン系ゴム、Br-IIR、CI-IIR、イソブチレンパラメチルスチレン共重合体の臭素化物(Br-IPMS)、クロロプレンゴム(CR)、ヒドリンゴム(CHR)、クロロスルホン化ポリエチレンゴム(CSM)、塩素化ポリエチレンゴム(CM)、マレイン酸変性塩素化ポリエチレンゴム(M-CM)等の含ハロゲンゴム、メチルビニルシリコンゴム、ジメチルシリコンゴム、メチルフェニルビニルシリコンゴム等のシリコンゴム、ポリスルフィドゴム等の含イオウゴム、ビニリデンフルオライド系ゴム、含フッ素ビニルエーテル系ゴム、テトラフルオロエチレン-プロピレン系ゴム、含フッ素シリコン系ゴム、含フッ素ホスファゼン系ゴム等のフッ素ゴム、スチレン系エラストマー、オレフィン系エラストマー、エステル系エラストマー、ウレタン系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマーを好ましく使用することができる。これらは1種単独で用いてもよく、2種以上を混合して用いてもよい。また、エラストマー3には、上記主成分に加えて、硫黄、加硫促進剤、カーボンブラックの他に、タイヤやコンベアベルト等のゴム製品で通常使用される老化防止剤、酸化亜鉛、ステアリン酸等を適宜配合することができる。
As the elastomer 3, specifically, a rubber composition or the like which has been conventionally used for coating a metal cord can be used. Examples of the main component of the elastomer 3 include natural rubber (NR), isoprene rubber (IR), epoxidized natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR, high cis BR and low cis BR), nitrile rubber. (NBR), hydrogenated NBR, hydrogenated SBR and other diene rubbers and hydrogenated products thereof, ethylene propylene rubber (EPDM, EPM), maleic acid-modified ethylene propylene rubber (M-EPM), butyl rubber (IIR), isobutylene Aromatic vinyl or diene monomer copolymer, acrylic rubber (ACM), olefin rubber such as ionomer, Br-IIR, CI-IIR, bromide of isobutylene paramethylstyrene copolymer (Br-IPMS), chloroprene rubber (CR), hydrin rubber (CHR), chlorosulfone Halogen-containing rubber such as polyethylene rubber (CSM), chlorinated polyethylene rubber (CM), maleic acid modified chlorinated polyethylene rubber (M-CM), silicone rubber such as methyl vinyl silicone rubber, dimethyl silicone rubber and methylphenyl vinyl silicone rubber. , Sulfur-containing rubber such as polysulfide rubber, vinylidene fluoride rubber, fluorine-containing vinyl ether rubber, tetrafluoroethylene-propylene rubber, fluorine-containing silicon rubber, fluorine-containing phosphazene rubber and other fluorine rubber, styrene-based elastomer, olefin-based rubber Thermoplastic elastomers such as elastomers, ester elastomers, urethane elastomers and polyamide elastomers can be preferably used. These may be used alone or in combination of two or more. In addition to the above main components, the elastomer 3 contains, in addition to the above main components, sulfur, vulcanization accelerators, carbon black, antioxidants, zinc oxide, stearic acid, etc. which are commonly used in rubber products such as tires and conveyor belts. Can be appropriately mixed.
本発明のエラストマー-金属コード複合体10に用いるエラストマー3としては、特には、ゴム成分と、DBP吸収量が50cm3/100g以上100cm3/100g以下であるカーボンブラックと、フェノール樹脂と、メチレン供与体とを含むゴム組成物を用いることが好ましい。このような組成とすることにより、上記所定のモジュラス比M200/M50を実現することが容易となる。このようなゴム組成物について、以下に説明する。
Elastomers of the present invention - as the elastomer 3 used for the metal cord composite 10, in particular, a rubber component, and carbon black DBP absorption is less than 50 cm 3/100 g or more 100 cm 3/100 g, a phenol resin, a methylene donor It is preferable to use a rubber composition containing the body. With such a composition, it becomes easy to realize the predetermined modulus ratio M200 / M50. Such a rubber composition will be described below.
(ゴム成分)
ゴム成分については、優れた耐亀裂進展性や耐摩耗性を得ることができる観点からは、天然ゴム若しくはジエン系合成ゴムを単独で、または、天然ゴムおよびジエン系合成ゴムを併用した形で、含有することができる。また、ゴム成分は、上記ジエン系ゴムのみから構成することもできるが、本発明の目的を損なわない範囲であれば、ジエン系以外のゴムを含有することもできる。なお、優れた耐亀裂進展性を得ることができる観点から、ゴム成分におけるジエン系ゴムの含有量は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。 (Rubber component)
Regarding the rubber component, from the viewpoint that excellent crack growth resistance and abrasion resistance can be obtained, natural rubber or a diene-based synthetic rubber is used alone, or a combination of a natural rubber and a diene-based synthetic rubber is used. Can be included. Further, the rubber component may be composed of only the above-mentioned diene rubber, but may also contain a rubber other than the diene rubber as long as the object of the present invention is not impaired. The content of the diene rubber in the rubber component is preferably 30% by mass or more, more preferably 40% by mass or more, and 50% by mass from the viewpoint that excellent crack growth resistance can be obtained. % Or more is more preferable.
ゴム成分については、優れた耐亀裂進展性や耐摩耗性を得ることができる観点からは、天然ゴム若しくはジエン系合成ゴムを単独で、または、天然ゴムおよびジエン系合成ゴムを併用した形で、含有することができる。また、ゴム成分は、上記ジエン系ゴムのみから構成することもできるが、本発明の目的を損なわない範囲であれば、ジエン系以外のゴムを含有することもできる。なお、優れた耐亀裂進展性を得ることができる観点から、ゴム成分におけるジエン系ゴムの含有量は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。 (Rubber component)
Regarding the rubber component, from the viewpoint that excellent crack growth resistance and abrasion resistance can be obtained, natural rubber or a diene-based synthetic rubber is used alone, or a combination of a natural rubber and a diene-based synthetic rubber is used. Can be included. Further, the rubber component may be composed of only the above-mentioned diene rubber, but may also contain a rubber other than the diene rubber as long as the object of the present invention is not impaired. The content of the diene rubber in the rubber component is preferably 30% by mass or more, more preferably 40% by mass or more, and 50% by mass from the viewpoint that excellent crack growth resistance can be obtained. % Or more is more preferable.
ここで、上記のうちジエン系合成ゴムとしては、ポリブタジエンゴム(BR)、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等が挙げられる。また、非ジエン系ゴムとしては、エチレンプロピレンジエンゴム(EPDM)、エチレンプロピレンゴム(EPM)、ブチルゴム(IIR)等が挙げられる。なお、これらのゴム成分については、1種単独で用いてもよいし、2種以上のブレンドとして用いてもよい。また、これらのゴムは変性基で変性されたものでもよい。
Here, among the above, as the diene synthetic rubber, polybutadiene rubber (BR), isoprene rubber (IR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), acrylonitrile butadiene rubber ( NBR) and the like. Further, examples of the non-diene rubber include ethylene propylene diene rubber (EPDM), ethylene propylene rubber (EPM), butyl rubber (IIR) and the like. In addition, about these rubber components, you may use individually by 1 type and may be used as a blend of 2 or more types. Further, these rubbers may be modified with a modifying group.
(カーボンブラック)
カーボンブラックについては、DBP(ジブチルフタレート)吸収量が50cm3/100g以上100cm3/100g以下のものを用いることができる。DBP吸収量が上記範囲内であって、ストラクチャの低いカーボンブラックを用いることで、ゴム組成物の補強性と適度な柔軟性とを両立することができ、優れた耐亀裂進展性を得ることができる。上記DBP吸収量を100cm3/100g以下とすることで、上記ストラクチャを低くして、ゴム組成物の補強性を適度に抑え、柔軟性を確保して、十分な耐亀裂進展性を得ることができる。カーボンブラックのDBP吸収量は、90cm3/100g以下であることが好ましく、80cm3/100g以下であることがより好ましい。 (Carbon black)
For carbon black, DBP (dibutyl phthalate) absorption amount can be used are as follows 50 cm 3/100 g or more 100 cm 3/100 g. By using carbon black having a DBP absorption amount within the above range and a low structure, it is possible to achieve both the reinforcing property of the rubber composition and appropriate flexibility, and to obtain excellent crack growth resistance. it can. The DBP absorption is set to be lower than or equal 100 cm 3/100 g, by reducing the structure, moderately suppressed reinforcement of the rubber composition, to ensure flexibility, to obtain a sufficient resistance to crack growth resistance it can. DBP absorption of carbon black is preferably90cm 3/100 g or less, more preferably 80 cm 3/100 g or less.
カーボンブラックについては、DBP(ジブチルフタレート)吸収量が50cm3/100g以上100cm3/100g以下のものを用いることができる。DBP吸収量が上記範囲内であって、ストラクチャの低いカーボンブラックを用いることで、ゴム組成物の補強性と適度な柔軟性とを両立することができ、優れた耐亀裂進展性を得ることができる。上記DBP吸収量を100cm3/100g以下とすることで、上記ストラクチャを低くして、ゴム組成物の補強性を適度に抑え、柔軟性を確保して、十分な耐亀裂進展性を得ることができる。カーボンブラックのDBP吸収量は、90cm3/100g以下であることが好ましく、80cm3/100g以下であることがより好ましい。 (Carbon black)
For carbon black, DBP (dibutyl phthalate) absorption amount can be used are as follows 50 cm 3/100 g or more 100 cm 3/100 g. By using carbon black having a DBP absorption amount within the above range and a low structure, it is possible to achieve both the reinforcing property of the rubber composition and appropriate flexibility, and to obtain excellent crack growth resistance. it can. The DBP absorption is set to be lower than or equal 100 cm 3/100 g, by reducing the structure, moderately suppressed reinforcement of the rubber composition, to ensure flexibility, to obtain a sufficient resistance to crack growth resistance it can. DBP absorption of carbon black is preferably
なお、カーボンブラックのストラクチャとは、球状のカーボンブラック粒子がそれぞれ融着し、繋がった結果、形成された構造体(カーボンブラック粒子の凝集体)の大きさのことである。また、カーボンブラックのDBP吸収量とは、カーボンブラック100gが吸収するDBP(ジブチルフタレート)の量のことであり、JIS K 6217-4(2008年)に準拠して測定することができる。
Note that the structure of carbon black is the size of the structure (aggregate of carbon black particles) formed as a result of fusion and connection of spherical carbon black particles. Also, the DBP absorption amount of carbon black is the amount of DBP (dibutyl phthalate) absorbed by 100 g of carbon black, and can be measured in accordance with JIS K 6217-4 (2008).
また、上記カーボンブラックについては、窒素吸着比表面積(N2SA)が70m2/g以上90m2/g以下であることが好ましく、75m2/g以上85m2/g以下であることがより好ましい。これにより、カーボンブラックのストラクチャについてさらに適正化を図ることができるため、低ロス性および耐亀裂進展性のさらなる改善が可能となる。なお、上記窒素吸着比表面積は、ISO 4652-1に準拠して単点法にて測定することができ、例えば、脱気したカーボンブラックを液体窒素に浸漬させた後、平衡時においてカーボンブラック表面に吸着した窒素量を測定し、測定値から比表面積(m2/g)を算出することができる。
The carbon black has a nitrogen adsorption specific surface area (N 2 SA) of preferably 70 m 2 / g or more and 90 m 2 / g or less, more preferably 75 m 2 / g or more and 85 m 2 / g or less. . As a result, the structure of carbon black can be further optimized, and thus low loss and crack growth resistance can be further improved. The nitrogen adsorption specific surface area can be measured by a single point method according to ISO 4652-1. For example, after degassed carbon black is immersed in liquid nitrogen, the surface of carbon black is equilibrated. The specific surface area (m 2 / g) can be calculated from the measured value by measuring the amount of nitrogen adsorbed on.
さらに、上記カーボンブラックの種類については、上述したDBP吸収量を有すること以外は、特に限定はされない。例えば、オイルファーネス法により製造された任意のハードカーボンを用いることができる。これらの中でも、より優れた低ロス性および耐亀裂進展性を実現する観点からは、HAFグレードのカーボンブラックを用いることが好ましい。
Further, the kind of the carbon black is not particularly limited except that it has the above DBP absorption amount. For example, any hard carbon manufactured by the oil furnace method can be used. Among these, it is preferable to use HAF grade carbon black from the viewpoint of realizing more excellent low loss property and crack growth resistance.
カーボンブラックの含有量については、上記ゴム成分100質量部に対して、35質量部以上45質量部以下であることが好ましい。カーボンブラックの含有量を、上記ゴム成分100質量部に対して、35質量部以上とすることで、高い補強性および耐亀裂進展性を得ることができ、45質量部以下とすることで、低ロス性のさらなる改善を図ることができる。
The content of carbon black is preferably 35 parts by mass or more and 45 parts by mass or less with respect to 100 parts by mass of the rubber component. When the content of carbon black is 35 parts by mass or more with respect to 100 parts by mass of the rubber component, high reinforcing property and crack growth resistance can be obtained, and when it is 45 parts by mass or less, low content can be obtained. It is possible to further improve the loss property.
(フェノール樹脂)
本発明のエラストマー-金属コード複合体10に用いるエラストマー3として好適なゴム組成物においては、フェノール樹脂を、後述するメチレン供与体とともに含むことにより、50%モジュラス値(M50)を向上させることができ、優れた低ロス性を維持しつつ、ゴム組成物の補強性を向上して、優れた耐亀裂進展性を実現できる。 (Phenolic resin)
In the rubber composition suitable as theelastomer 3 used for the elastomer-metal cord composite 10 of the present invention, the 50% modulus value (M50) can be improved by including the phenol resin together with the methylene donor described later. While maintaining the excellent low loss property, the reinforcing property of the rubber composition can be improved and the excellent crack propagation resistance can be realized.
本発明のエラストマー-金属コード複合体10に用いるエラストマー3として好適なゴム組成物においては、フェノール樹脂を、後述するメチレン供与体とともに含むことにより、50%モジュラス値(M50)を向上させることができ、優れた低ロス性を維持しつつ、ゴム組成物の補強性を向上して、優れた耐亀裂進展性を実現できる。 (Phenolic resin)
In the rubber composition suitable as the
ここで、フェノール樹脂としては、特に限定はされず、要求される性能に応じて適宜選択することができる。例えば、フェノール、クレゾール、レゾルシン、tert-ブチルフェノール等のフェノール類またはこれらの混合物とホルムアルデヒドとを、塩酸、蓚酸等の酸触媒の存在下において縮合反応させることによって製造したものが挙げられる。また、フェノール樹脂については、変性したものを用いることもでき、例えば、ロジン油、トール油、カシュー油、リノール酸、オレイン酸、リノレイン酸等の油によって変性することができる。なお、上述したフェノール樹脂については、一種を単独で用いることもでき、複数種を混合して用いることもできる。
Here, the phenol resin is not particularly limited, and can be appropriately selected according to the required performance. Examples thereof include those produced by subjecting phenols such as phenol, cresol, resorcin, tert-butylphenol or a mixture thereof to formaldehyde and condensation reaction in the presence of an acid catalyst such as hydrochloric acid or oxalic acid. As the phenol resin, a modified one may be used, and for example, it may be modified with an oil such as rosin oil, tall oil, cashew oil, linoleic acid, oleic acid, linoleic acid. In addition, about the phenol resin mentioned above, 1 type can be used individually and 2 or more types can also be mixed and used.
また、フェノール樹脂の含有量は、上記ゴム成分100質量部に対して、2質量部以上であることが好ましく、3質量部以上であることがより好ましく、また、10質量部以下であることが好ましく、7質量部以下であることがより好ましい。フェノール樹脂の含有量を、上記ゴム成分100質量部に対して2質量部以上とすることで、耐亀裂進展性をさらに改善でき、10質量部以下とすることで、低ロス性の悪化を抑制できる。
Further, the content of the phenol resin is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and 10 parts by mass or less with respect to 100 parts by mass of the rubber component. It is preferably 7 parts by mass or less. By setting the content of the phenol resin to 2 parts by mass or more with respect to 100 parts by mass of the rubber component, the crack propagation resistance can be further improved, and by setting it to 10 parts by mass or less, deterioration of low loss property can be suppressed. it can.
(メチレン供与体)
本発明のエラストマー-金属コード複合体10に用いるエラストマー3として好適なゴム組成物においては、メチレン供与体を、フェノール樹脂の硬化剤として含むことによって、上記50%モジュラス値(M50)を向上させることができ、優れた低ロス性を維持しつつ、ゴム組成物の補強性を向上できる。 (Methylene donor)
In the rubber composition suitable as theelastomer 3 used for the elastomer-metal cord composite 10 of the present invention, the above 50% modulus value (M50) is improved by including a methylene donor as a curing agent for the phenol resin. It is possible to improve the reinforcing property of the rubber composition while maintaining excellent low loss property.
本発明のエラストマー-金属コード複合体10に用いるエラストマー3として好適なゴム組成物においては、メチレン供与体を、フェノール樹脂の硬化剤として含むことによって、上記50%モジュラス値(M50)を向上させることができ、優れた低ロス性を維持しつつ、ゴム組成物の補強性を向上できる。 (Methylene donor)
In the rubber composition suitable as the
メチレン供与体としては、特に限定はされず、要求される性能に応じて適宜選択することができる。例えば、ヘキサメチレンテトラミン、ヘキサメトキシメチロールメラミン、ペンタメトキシメチロールメラミン、ヘキサメトキシメチルメラミン、ペンタメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサキス-(メトキシメチル)メラミン、N,N’,N”-トリメチル-N,N’,N”-トリメチロールメラミン、N,N’,N”-トリメチロールメラミン、N-メチロールメラミン、N,N’-(メトキシメチル)メラミン、N,N’,N”-トリブチル-N,N’,N”-トリメチロールメラミン、パラホルムアルデヒド等が挙げられる。これらのメチレン供与体の中でも、ヘキサメチレンテトラミン、ヘキサメトキシメチルメラミン、ヘキサメトキシメチロールメラミンおよびパラホルムアルデヒドからなる群より選択される、少なくとも一種であることが好ましい。なお、これらのメチレン供与体は、単独で用いてもよく、組み合わせて使用することもできる。
The methylene donor is not particularly limited and can be appropriately selected depending on the required performance. For example, hexamethylenetetramine, hexamethoxymethylolmelamine, pentamethoxymethylolmelamine, hexamethoxymethylmelamine, pentamethoxymethylmelamine, hexaethoxymethylmelamine, hexakis- (methoxymethyl) melamine, N, N ′, N ″ -trimethyl-N , N ', N "-trimethylolmelamine, N, N', N" -trimethylolmelamine, N-methylolmelamine, N, N '-(methoxymethyl) melamine, N, N', N "-tributyl-N , N ′, N ″ -trimethylolmelamine, paraformaldehyde, etc. Among these methylene donors, from the group consisting of hexamethylenetetramine, hexamethoxymethylmelamine, hexamethoxymethylolmelamine and paraformaldehyde. Is-option, is preferably at least one. In addition, these methylene donors may be used alone, in combination can also be used.
また、メチレン供与体の含有量に対するフェノール樹脂の含有量の割合は、低ロス性および耐亀裂進展性のより高いレベルでの両立の観点から、0.6以上7以下であることが好ましく、1以上5以下であることがより好ましい。メチレン供与体の含有量に対するフェノール樹脂の含有量の割合を0.6以上とすることで、M50を十分に向上して、耐亀裂進展性を十分に改善することができ、一方、上記割合を7以下とすることで、低ロス性を良好に保持することができる。
Further, the ratio of the content of the phenol resin to the content of the methylene donor is preferably 0.6 or more and 7 or less from the viewpoint of achieving both low loss property and crack growth resistance at a higher level. More preferably, it is 5 or less. By setting the ratio of the content of the phenol resin to the content of the methylene donor to be 0.6 or more, M50 can be sufficiently improved and the crack propagation resistance can be sufficiently improved, while the above ratio is When it is 7 or less, the low loss property can be favorably maintained.
(その他の成分)
本発明のエラストマー-金属コード複合体10に用いるエラストマー3として好適なゴム組成物は、上述したゴム成分、カーボンブラック、フェノール樹脂およびメチレン供与体の他にも、その他の成分を、発明の効果を損なわない程度に含むことができる。その他の成分としては、例えば、上記カーボンブラック以外の充填材や老化防止剤、架橋促進剤、架橋剤、架橋促進助剤、シランカップリング剤、ステアリン酸、オゾン劣化防止剤、界面活性剤等のゴム工業で通常使用されている添加剤を挙げることができる。 (Other ingredients)
The rubber composition suitable as theelastomer 3 used for the elastomer-metal cord composite 10 of the present invention contains the above-mentioned rubber component, carbon black, phenol resin, and methylene donor, and other components, and the effects of the present invention can be obtained. It can be included to the extent that it is not damaged. Examples of other components include fillers other than the above carbon black, antioxidants, crosslinking accelerators, crosslinking agents, crosslinking accelerators, silane coupling agents, stearic acid, ozone deterioration inhibitors, and surfactants. The additives commonly used in the rubber industry can be mentioned.
本発明のエラストマー-金属コード複合体10に用いるエラストマー3として好適なゴム組成物は、上述したゴム成分、カーボンブラック、フェノール樹脂およびメチレン供与体の他にも、その他の成分を、発明の効果を損なわない程度に含むことができる。その他の成分としては、例えば、上記カーボンブラック以外の充填材や老化防止剤、架橋促進剤、架橋剤、架橋促進助剤、シランカップリング剤、ステアリン酸、オゾン劣化防止剤、界面活性剤等のゴム工業で通常使用されている添加剤を挙げることができる。 (Other ingredients)
The rubber composition suitable as the
上記充填材としては、例えば、シリカ、その他の無機充填材等を挙げることができ、中でも、より優れた低ロス性と耐亀裂進展性が得られることから、シリカを含むことが好ましい。
Examples of the above-mentioned filler include silica and other inorganic fillers, and among them, it is preferable to contain silica because excellent low loss property and crack growth resistance can be obtained.
シリカとしては、例えば、湿式シリカ、コロイダルシリカ、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらの中でも、湿式シリカを用いることが好ましく、沈降シリカを用いることがより好ましい。これらのシリカは、分散性が高く、ゴム組成物の低ロス性および耐摩耗性をより向上できるためである。なお、沈降シリカとは、製造初期に、反応溶液を比較的高温、中性~アルカリ性のpH領域で反応を進めてシリカ一次粒子を成長させ、その後に酸性側へ制御することで、一次粒子を凝集させた結果として得られるシリカのことである。
Examples of silica include wet silica, colloidal silica, calcium silicate, aluminum silicate and the like. Among these, wet silica is preferably used, and precipitated silica is more preferably used. This is because these silicas have high dispersibility and can further improve the low loss property and abrasion resistance of the rubber composition. Precipitated silica is obtained by allowing the reaction solution to proceed at a relatively high temperature in a neutral to alkaline pH range at the early stage of production to grow silica primary particles, and then to control the acid to the acidic side. It refers to silica obtained as a result of aggregation.
シリカの含有量については、特に限定はされないが、優れた低ロス性を実現する観点からは、上記ゴム成分100質量部に対して、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、また、15質量部以下であることが好ましく、10質量部以下であることがより好ましい。
The content of silica is not particularly limited, but from the viewpoint of realizing an excellent low loss property, it is preferably 1 part by mass or more, and 3 parts by mass or more with respect to 100 parts by mass of the rubber component. It is more preferable that the amount is 15 parts by mass or less, and it is more preferable that the amount is 10 parts by mass or less.
また、上記無機充填材としては、例えば、下記式(I)で表される無機化合物を用いることも可能である。
nM・xSiOy・zH2O・・・(I)
(式中、Mは、アルミニウム、マグネシウム、チタン、カルシウムおよびジルコニウムからなる群から選ばれる金属、これらの金属の酸化物または水酸化物、およびそれらの水和物、並びに、これらの金属の炭酸塩のうちから選ばれる少なくとも一種であり;n、x、yおよびzは、それぞれ1~5の整数、0~10の整数、2~5の整数および0~10の整数である。) As the inorganic filler, for example, an inorganic compound represented by the following formula (I) can be used.
nM · xSiO y · zH 2 O ... (I)
(In the formula, M is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, oxides or hydroxides of these metals, and hydrates thereof, and carbonates of these metals. And n, x, y, and z are an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10, respectively.)
nM・xSiOy・zH2O・・・(I)
(式中、Mは、アルミニウム、マグネシウム、チタン、カルシウムおよびジルコニウムからなる群から選ばれる金属、これらの金属の酸化物または水酸化物、およびそれらの水和物、並びに、これらの金属の炭酸塩のうちから選ばれる少なくとも一種であり;n、x、yおよびzは、それぞれ1~5の整数、0~10の整数、2~5の整数および0~10の整数である。) As the inorganic filler, for example, an inorganic compound represented by the following formula (I) can be used.
nM · xSiO y · zH 2 O ... (I)
(In the formula, M is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, oxides or hydroxides of these metals, and hydrates thereof, and carbonates of these metals. And n, x, y, and z are an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10, respectively.)
上記式(I)の無機化合物としては、γ-アルミナ、α-アルミナ等のアルミナ(Al2O3);ベーマイト、ダイアスポア等のアルミナ一水和物(Al2O3・H2O);ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)3];炭酸アルミニウム[Al2(CO3)3]、水酸化マグネシウム[Mg(OH)2]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO3)、タルク(3MgO・4SiO2・H2O)、アタパルジャイト(5MgO・8SiO2・9H2O)、チタン白(TiO2)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)2]、酸化アルミニウムマグネシウム(MgO・Al2O3)、クレー(Al2O3・2SiO2)、カオリン(Al2O3・2SiO2・2H2O)、パイロフィライト(Al2O3・4SiO2・H2O)、ベントナイト(Al2O3・4SiO2・2H2O)、ケイ酸マグネシウム(Mg2SiO4、MgSiO3等)、ケイ酸アルミニウムカルシウム(Al2O3・CaO・2SiO2等)、ケイ酸マグネシウムカルシウム(CaMgSiO4)、炭酸カルシウム(CaCO3)、酸化ジルコニウム(ZrO2)、水酸化ジルコニウム[ZrO(OH)2・nH2O]、炭酸ジルコニウム[Zr(CO3)2]、各種ゼオライトのように電荷を補正する水素、アルカリ金属またはアルカリ土類金属を含む結晶性アルミノケイ酸塩等を挙げることができる。
As the inorganic compound of the above formula (I), alumina (Al 2 O 3 ) such as γ-alumina and α-alumina; alumina monohydrate (Al 2 O 3 · H 2 O) such as boehmite and diaspore; gibbsite , Aluminum hydroxide [Al (OH) 3 ] such as bayerite; aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3 ). ), talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2), titanium black (TiO 2n-1), calcium oxide (CaO), hydroxide calcium [Ca (OH) 2], magnesium aluminum oxide (MgO · Al 2 O 3) , clay (Al 2 O 3 · 2S O 2), kaolin (Al 2 O 3 · 2SiO 2 · 2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O) , Magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), aluminum aluminum silicate (Al 2 O 3 .CaO.2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO (OH) 2 · nH 2 O], zirconium carbonate [Zr (CO 3 ) 2 ] and hydrogen, an alkali metal or an alkaline earth metal for correcting electric charges such as various zeolites. Examples thereof include crystalline aluminosilicates and the like.
老化防止剤としては、公知のものを用いることができ、特に制限されない。例えば、フェノール系老化防止剤、イミダゾール系老化防止剤、アミン系老化防止剤等を挙げることができる。これら老化防止剤は、1種または2種以上を併用することができる。
As the antiaging agent, known ones can be used and are not particularly limited. For example, a phenol anti-aging agent, an imidazole anti-aging agent, an amine anti-aging agent, etc. can be mentioned. These antioxidants can be used alone or in combination of two or more.
架橋促進剤としては、公知のものを用いることができ、特に制限されるものではない。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド等のチアゾール系加硫促進剤;N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-t-ブチル-2-ベンゾチアジルスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン等のグアニジン系加硫促進剤;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラドデシルチウラムジスルフィド、テトラオクチルチウラムジスルフィド、テトラベンジルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド等のチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛等のジチオカルバミン酸塩系加硫促進剤;ジアルキルジチオリン酸亜鉛等が挙げられる。
As the cross-linking accelerator, known ones can be used and are not particularly limited. For example, thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazylsulfenamide, etc. Sulfenamide-based vulcanization accelerator; guanidine-based vulcanization accelerator such as diphenylguanidine; tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetradodecylthiuram disulfide, tetraoctylthiuram disulfide, tetrabenzylthiuram disulfide, di Examples include thiuram-based vulcanization accelerators such as pentamethylene thiuram tetrasulfide; dithiocarbamate-based vulcanization accelerators such as zinc dimethyldithiocarbamate; zinc dialkyldithiophosphate. .
架橋剤についても、特に制限はされず、例えば、硫黄、ビスマレイミド化合物等が挙げられる。ビスマレイミド化合物としては、例えば、N,N’-o-フェニレンビスマレイミド、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、2,2-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタンなどを例示することができる。本発明においては、N,N’-m-フェニレンビスマレイミドおよびN,N’-(4,4’-ジフェニルメタン)ビスマレイミド等を好適に用いることができる。
The cross-linking agent is also not particularly limited, and examples thereof include sulfur and bismaleimide compounds. Examples of the bismaleimide compound include N, N'-o-phenylene bismaleimide, N, N'-m-phenylene bismaleimide, N, N'-p-phenylene bismaleimide, N, N '-(4,4 Examples include'-diphenylmethane) bismaleimide, 2,2-bis- [4- (4-maleimidophenoxy) phenyl] propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane and the like. In the present invention, N, N'-m-phenylene bismaleimide and N, N '-(4,4'-diphenylmethane) bismaleimide can be preferably used.
架橋促進助剤については、例えば、亜鉛華(ZnO)や脂肪酸等が挙げられる。脂肪酸としては、飽和若しくは不飽和、直鎖状若しくは分岐状のいずれの脂肪酸であってもよく、脂肪酸の炭素数も特に制限されないが、例えば、炭素数1~30、好ましくは15~30の脂肪酸、より具体的にはシクロヘキサン酸(シクロヘキサンカルボン酸)、側鎖を有するアルキルシクロペンタン等のナフテン酸;ヘキサン酸、オクタン酸、デカン酸(ネオデカン酸等の分岐状カルボン酸を含む)、ドデカン酸、テトラデカン酸、ヘキサデカン酸、オクタデカン酸(ステアリン酸)等の飽和脂肪酸;メタクリル酸、オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸;ロジン、トール油酸、アビエチン酸等の樹脂酸などが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。本発明においては、亜鉛華およびステアリン酸を好適に用いることができる。
Examples of the crosslinking accelerator include zinc white (ZnO) and fatty acids. The fatty acid may be saturated or unsaturated, linear or branched fatty acid, and the number of carbon atoms of the fatty acid is not particularly limited. For example, fatty acid having 1 to 30 carbon atoms, preferably 15 to 30 carbon atoms. , More specifically, cyclohexanoic acid (cyclohexanecarboxylic acid), naphthenic acid such as alkylcyclopentane having a side chain; hexanoic acid, octanoic acid, decanoic acid (including branched carboxylic acid such as neodecanoic acid), dodecanoic acid, Saturated fatty acids such as tetradecanoic acid, hexadecanoic acid and octadecanoic acid (stearic acid); unsaturated fatty acids such as methacrylic acid, oleic acid, linoleic acid and linolenic acid; resin acids such as rosin, tall oil acid and abietic acid . These may be used alone or in combination of two or more. In the present invention, zinc white and stearic acid can be preferably used.
なお、本発明のエラストマー-金属コード複合体10に用いるエラストマー3として好適なゴム組成物が、上記充填材としてシリカを含む場合には、さらに、シランカップリング剤を含有させることが好ましい。シリカによる補強性および低ロス性の効果をさらに向上させることができるからである。なお、シランカップリング剤は、公知のものを適宜使用することができる。好ましいシランカップリング剤の含有量については、シランカップリング剤の種類などにより異なるが、シリカに対して、2質量%以上であることが好ましく、5質量%以上であることが特に好ましく、また、25質量%以下であることが好ましく、20質量%以下であることがより好ましく、18質量%以下であることが特に好ましい。シランカップリング剤の含有量を、2質量%以上とすることでカップリング剤としての効果を充分に発揮させることができ、また、25質量%以下とすることで、ゴム成分のゲル化を防止できる。
When the rubber composition suitable as the elastomer 3 used for the elastomer-metal cord composite 10 of the present invention contains silica as the above-mentioned filler, it is preferable to further contain a silane coupling agent. This is because the effect of silica for reinforcement and low loss can be further improved. Known silane coupling agents can be used as appropriate. The preferred content of the silane coupling agent varies depending on the type of the silane coupling agent and the like, but is preferably 2% by mass or more, and particularly preferably 5% by mass or more, based on silica. It is preferably 25% by mass or less, more preferably 20% by mass or less, and particularly preferably 18% by mass or less. When the content of the silane coupling agent is 2% by mass or more, the effect as the coupling agent can be sufficiently exerted, and when it is 25% by mass or less, gelation of the rubber component is prevented. it can.
本発明のエラストマー-金属コード複合体10に用いるエラストマー3として好適なゴム組成物は、特に限定されず、ゴム組成物を構成する各成分としてのゴム成分、カーボンブラック、フェノール樹脂、メチレン供与体およびその他の成分を、配合し、混練することにより、調製することができる。この際、上記各成分は、同時に混練することもできるし、いずれかの成分をあらかじめ混練した上で、残りの成分を混練することも可能である。これらの条件については、ゴム組成物が要求される性能に応じて適宜変更することができる。
The rubber composition suitable as the elastomer 3 used in the elastomer-metal cord composite 10 of the present invention is not particularly limited, and a rubber component as each component of the rubber composition, carbon black, a phenol resin, a methylene donor, and It can be prepared by blending other components and kneading. At this time, each of the above components may be kneaded at the same time, or any of the components may be kneaded in advance and then the remaining components may be kneaded. These conditions can be appropriately changed depending on the performance required of the rubber composition.
例えば、より優れた低ロス性および耐亀裂進展性を実現する観点からは、フェノール樹脂との混練に先立って、ゴム成分とカーボンブラックとを配合し、混練することが好ましい。フェノール樹脂は、カーボンブラックとの相互作用が強いため、同時投入すると、ゴム成分とカーボンブラックとの反応が低下するおそれがある。そのため、フェノール樹脂との混練に先立って、ゴム成分とカーボンブラックを配合し、混練することで、カーボンブラックの分散性および補強性が向上し、低ロス性および耐亀裂進展性のさらなる改善が可能となる。
For example, from the viewpoint of achieving better low loss and crack growth resistance, it is preferable to mix and knead the rubber component and carbon black prior to kneading with the phenol resin. Phenolic resin has a strong interaction with carbon black, so if it is added at the same time, the reaction between the rubber component and carbon black may decrease. Therefore, by mixing and kneading the rubber component and carbon black prior to kneading with the phenol resin, the dispersibility and reinforcing properties of the carbon black are improved, and low loss and crack growth resistance can be further improved. Becomes
本発明のエラストマー-金属コード複合体は、既知の方法にて製造することができる。例えば、複数本の金属フィラメントを撚り合わせずに引き揃えた束からなる金属コードとしてのスチールコードを、所定の間隔で平行に並べてゴムで被覆して製造することができ、評価用サンプルは、その後、一般的な条件で加硫することにより、製造することができる。また、金属フィラメントの型付けについても、通常の型付け機を用いて、従来の手法に従い、行うことができる。
The elastomer-metal cord composite of the present invention can be manufactured by a known method. For example, a steel cord as a metal cord composed of a bundle of a plurality of metal filaments which are not twisted and twisted, can be produced by coating in parallel with a rubber at a predetermined interval, and a sample for evaluation is then prepared. It can be produced by vulcanizing under general conditions. Also, the metal filament can be molded by a conventional molding machine according to a conventional method.
次に、本発明のタイヤについて説明する。
図6に、本発明の一好適な実施の形態に係るタイヤの概略片側断面図を示す。本発明のタイヤ100は、本発明のエラストマー-金属コード複合体10を用いてなるものであり、これにより、低ロス性、操縦安定性および耐亀裂進展性を向上することができる。図示するタイヤ100は、接地部を形成するトレッド部101と、このトレッド部101の両側部に連続してタイヤ半径方向内方へ延びる一対のサイドウォール部102と、各サイドウォール部102の内周側に連続するビード部103とを備えた空気入りタイヤである。本発明のタイヤ100としては、例えば、乗用車用タイヤやトラック・バス用タイヤを挙げることができる。 Next, the tire of the present invention will be described.
FIG. 6 shows a schematic one-side sectional view of a tire according to a preferred embodiment of the present invention. Thetire 100 of the present invention is formed by using the elastomer-metal cord composite 10 of the present invention, whereby the low loss property, the steering stability and the crack growth resistance can be improved. The illustrated tire 100 includes a tread portion 101 forming a ground contact portion, a pair of sidewall portions 102 continuously extending inward in the tire radial direction on both side portions of the tread portion 101, and an inner circumference of each sidewall portion 102. The pneumatic tire is provided with a bead portion 103 that is continuous on the side. Examples of the tire 100 of the present invention include tires for passenger cars and tires for trucks and buses.
図6に、本発明の一好適な実施の形態に係るタイヤの概略片側断面図を示す。本発明のタイヤ100は、本発明のエラストマー-金属コード複合体10を用いてなるものであり、これにより、低ロス性、操縦安定性および耐亀裂進展性を向上することができる。図示するタイヤ100は、接地部を形成するトレッド部101と、このトレッド部101の両側部に連続してタイヤ半径方向内方へ延びる一対のサイドウォール部102と、各サイドウォール部102の内周側に連続するビード部103とを備えた空気入りタイヤである。本発明のタイヤ100としては、例えば、乗用車用タイヤやトラック・バス用タイヤを挙げることができる。 Next, the tire of the present invention will be described.
FIG. 6 shows a schematic one-side sectional view of a tire according to a preferred embodiment of the present invention. The
図示するタイヤ100において、トレッド部101、サイドウォール部102およびビード部103は、一方のビード部103から他方のビード部103にわたってトロイド状に延びる一枚のカーカス層からなるカーカス104により補強されている。また、トレッド部101は、カーカス104のクラウン領域のタイヤ径方向外側に配設した少なくとも2層、図示する例では2層の第1ベルト層105aと第2ベルト層105bとからなるベルト105により補強されている。ここで、カーカス104のカーカス層は複数枚としてもよく、タイヤ周方向に対してほぼ直交する方向、例えば、70°以上90°以下の角度で延びる有機繊維コードを好適に用いることができる。
In the illustrated tire 100, the tread portion 101, the sidewall portion 102, and the bead portion 103 are reinforced by a carcass 104 formed of one carcass layer extending in a toroidal shape from one bead portion 103 to the other bead portion 103. . Further, the tread portion 101 is reinforced by a belt 105 including at least two layers, which are two layers in the illustrated example, a first belt layer 105a and a second belt layer 105b, which are arranged outside the crown region of the carcass 104 in the tire radial direction. Has been done. Here, the carcass 104 may have a plurality of carcass layers, and an organic fiber cord extending in a direction substantially orthogonal to the tire circumferential direction, for example, an angle of 70 ° or more and 90 ° or less can be preferably used.
本発明のタイヤ100においては、第1ベルト層105aおよび第2ベルト層105bに、上記本発明のエラストマー-金属コード複合体10を用いることができる。本発明のエラストマー-金属コード複合体10を用いることにより、第1ベルト層105aおよび第2ベルト層105bの厚みを薄くすることができ、タイヤの軽量化を図ることができる。また、本発明のエラストマー-金属コード複合体10をベルト用コードに用いることで、ベルトの耐久性、低ロス性、操縦安定性および耐亀裂進展性を同時に向上させることができる。ベルト105におけるコード角度は、タイヤ周方向に対し30°以下とすることができる。
In the tire 100 of the present invention, the elastomer-metal cord composite 10 of the present invention can be used for the first belt layer 105a and the second belt layer 105b. By using the elastomer-metal cord composite 10 of the present invention, the thickness of the first belt layer 105a and the second belt layer 105b can be reduced, and the weight of the tire can be reduced. Further, by using the elastomer-metal cord composite 10 of the present invention for a cord for a belt, it is possible to simultaneously improve the durability, low loss, steering stability and crack growth resistance of the belt. The cord angle of the belt 105 can be 30 ° or less with respect to the tire circumferential direction.
本発明のタイヤ100は、本発明のエラストマー-金属コード複合体10を用いてなるものであればよく、それ以外の具体的なタイヤ構造については、特に制限されるものではない。また、本発明のエラストマー-金属コード複合体10の適用箇所はベルト105に限られるものではない。例えば、ベルト105のタイヤ径方向外側に配置されたベルト補強層や、その他の補強部材としても用いてもよい。なお、タイヤ100に充填する気体としては、通常のまたは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
The tire 100 of the present invention may be any tire as long as it uses the elastomer-metal cord composite 10 of the present invention, and other specific tire structures are not particularly limited. Further, the application location of the elastomer-metal cord composite 10 of the present invention is not limited to the belt 105. For example, it may be used as a belt reinforcing layer arranged on the outer side in the tire radial direction of the belt 105, or as other reinforcing members. As the gas with which the tire 100 is filled, in addition to normal air or air whose oxygen partial pressure is adjusted, an inert gas such as nitrogen, argon, or helium can be used.
以下、本発明を、実施例を用いてより詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.
(ゴム組成物の調製)
下記表中に示す配合に従って、常法に従い配合・混練することで、ゴム組成物A,Bを調製した。各成分の混練については、容量3.0Lのバンバリーミキサーを用いて行った。なお、ゴム組成物Bについては、フェノール樹脂との混錬に先立って、ゴム成分およびカーボンブラックを混練した。各ゴム組成物の50%モジュラス値(M50)および200%モジュラス値(M200)は、各ゴム組成物を、145℃で40分間加硫して加硫ゴムとした後、JIS K 6251(2010年)に準拠して測定した。 (Preparation of rubber composition)
Rubber compositions A and B were prepared by compounding and kneading according to a conventional method according to the compounds shown in the following table. The kneading of each component was performed using a Banbury mixer with a capacity of 3.0 L. Regarding the rubber composition B, the rubber component and carbon black were kneaded prior to the kneading with the phenol resin. The 50% modulus value (M50) and the 200% modulus value (M200) of each rubber composition are measured according to JIS K 6251 (2010) after vulcanizing each rubber composition at 145 ° C. for 40 minutes to obtain a vulcanized rubber. ).
下記表中に示す配合に従って、常法に従い配合・混練することで、ゴム組成物A,Bを調製した。各成分の混練については、容量3.0Lのバンバリーミキサーを用いて行った。なお、ゴム組成物Bについては、フェノール樹脂との混錬に先立って、ゴム成分およびカーボンブラックを混練した。各ゴム組成物の50%モジュラス値(M50)および200%モジュラス値(M200)は、各ゴム組成物を、145℃で40分間加硫して加硫ゴムとした後、JIS K 6251(2010年)に準拠して測定した。 (Preparation of rubber composition)
Rubber compositions A and B were prepared by compounding and kneading according to a conventional method according to the compounds shown in the following table. The kneading of each component was performed using a Banbury mixer with a capacity of 3.0 L. Regarding the rubber composition B, the rubber component and carbon black were kneaded prior to the kneading with the phenol resin. The 50% modulus value (M50) and the 200% modulus value (M200) of each rubber composition are measured according to JIS K 6251 (2010) after vulcanizing each rubber composition at 145 ° C. for 40 minutes to obtain a vulcanized rubber. ).
*1)HAF級カーボンブラック、旭カーボン(株)製「旭#70L」、DBP吸収量:75cm3/100g、窒素吸着比表面積:81m2/g
*2)住友ベークライト(株)製「スミライトレジンPR-50235」
*3)ALLNEX製「CYREZ 964」
*4)東ソー・シリカ(株)製「ニップシールAQ」、窒素吸着比表面積=210m2/g
*5)大内新興化学工業(株)製「ノクラックNS-6」、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)
*6)大内新興化学工業(株)製「ノクラック6C」、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
*7)不溶性硫黄(商品名:クリステックスHS OT-20、フレキシス社製)
*8)大内新興化学工業(株)製「ノクセラーDZ」、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
*9)OMG製「マノボンドC」、有機酸のコバルト塩中の有機酸の一部をホウ酸で置き換えた複合塩、コバルト含有量:22.0質量%
*10)大和化成工業(株)製「BMI-RB」 * 1) HAF grade carbon black, Asahi Carbon Co., Ltd. "Asahi # 70L", DBP absorption amount: 75cm 3 / 100g, nitrogen adsorption specific surface area: 81m 2 / g
* 2) “Sumilite Resin PR-50235” manufactured by Sumitomo Bakelite Co., Ltd.
* 3) "CYREZ 964" made by ALLNEX
* 4) "Nipseal AQ" manufactured by Tosoh Silica Co., Ltd., nitrogen adsorption specific surface area = 210 m 2 / g
* 5) "Nocrac NS-6", 2,2'-methylenebis (4-methyl-6-tert-butylphenol) manufactured by Ouchi Shinko Chemical Co., Ltd.
* 6) "Nocrac 6C" manufactured by Ouchi Shinko Chemical Co., Ltd., N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine * 7) Insoluble sulfur (trade name: Christex HS OT -20, manufactured by Flexis)
* 8) "NOXCELLER DZ" manufactured by Ouchi Shinko Chemical Co., Ltd., N, N-dicyclohexyl-2-benzothiazolylsulfenamide * 9) "MANOBOND C" manufactured by OMG, organic acid in cobalt salt of organic acid Salt with boric acid partially replaced, cobalt content: 22.0 mass%
* 10) "BMI-RB" manufactured by Daiwa Chemical Industry Co., Ltd.
*2)住友ベークライト(株)製「スミライトレジンPR-50235」
*3)ALLNEX製「CYREZ 964」
*4)東ソー・シリカ(株)製「ニップシールAQ」、窒素吸着比表面積=210m2/g
*5)大内新興化学工業(株)製「ノクラックNS-6」、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)
*6)大内新興化学工業(株)製「ノクラック6C」、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
*7)不溶性硫黄(商品名:クリステックスHS OT-20、フレキシス社製)
*8)大内新興化学工業(株)製「ノクセラーDZ」、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
*9)OMG製「マノボンドC」、有機酸のコバルト塩中の有機酸の一部をホウ酸で置き換えた複合塩、コバルト含有量:22.0質量%
*10)大和化成工業(株)製「BMI-RB」 * 1) HAF grade carbon black, Asahi Carbon Co., Ltd. "Asahi # 70L", DBP absorption amount: 75cm 3 / 100g, nitrogen adsorption specific surface area: 81m 2 / g
* 2) “Sumilite Resin PR-50235” manufactured by Sumitomo Bakelite Co., Ltd.
* 3) "CYREZ 964" made by ALLNEX
* 4) "Nipseal AQ" manufactured by Tosoh Silica Co., Ltd., nitrogen adsorption specific surface area = 210 m 2 / g
* 5) "Nocrac NS-6", 2,2'-methylenebis (4-methyl-6-tert-butylphenol) manufactured by Ouchi Shinko Chemical Co., Ltd.
* 6) "Nocrac 6C" manufactured by Ouchi Shinko Chemical Co., Ltd., N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine * 7) Insoluble sulfur (trade name: Christex HS OT -20, manufactured by Flexis)
* 8) "NOXCELLER DZ" manufactured by Ouchi Shinko Chemical Co., Ltd., N, N-dicyclohexyl-2-benzothiazolylsulfenamide * 9) "MANOBOND C" manufactured by OMG, organic acid in cobalt salt of organic acid Salt with boric acid partially replaced, cobalt content: 22.0 mass%
* 10) "BMI-RB" manufactured by Daiwa Chemical Industry Co., Ltd.
下記表中に示す条件に従う金属コードとしてのスチールコードを、上下両側から、下記表中に示すゴム組成物よりなる厚さ0.5mm程度のシートにより被覆して、各実施例および従来例のエラストマー-金属コード複合体を作製した。なお、型付け量0mm、型付けピッチ∞mmの場合、実質的に真直のスチールフィラメントとなる。
Steel cords as metal cords according to the conditions shown in the following table are covered from both upper and lower sides with a sheet made of the rubber composition shown in the following table and having a thickness of about 0.5 mm, and the elastomer of each example and the conventional example. -Metal cord composite was made. In addition, when the molding amount is 0 mm and the molding pitch is ∞ mm, the steel filament is substantially straight.
得られた各エラストマー-金属コード複合体につき、エラストマー被覆率、操縦安定性、低ロス性および耐亀裂進展性について、評価を行う。なお、エラストマー被覆率は、以下の手順で算出する。得られた結果を下記の表中に併記する。
For each elastomer-metal cord composite obtained, evaluate the elastomer coverage, steering stability, low loss, and crack growth resistance. The elastomer coverage is calculated by the following procedure. The results obtained are also shown in the table below.
<エラストマー被覆率(%)>
エラストマー被覆率は、スチールコードをゴム被覆し、160℃、10~15分の加硫条件で加硫した後、得られたゴム-スチールコード複合体からスチールコードを引き抜き、スチールコードを構成するスチールフィラメント同士の間隙に浸透したゴムにより被覆されている、スチールフィラメントの金属コード幅方向側面の長さを測定し、下記算出式に基づいて算出した値の平均とする。エラストマー被覆率の算出式は以下のとおりである。
エラストマー被覆率=(ゴム被覆長/試料長)×100(%)
なお、ゴム被覆長は引き抜いたスチールコードをコード長手方向に直交する方向から観察した際にスチールフィラメント表面がゴムで完全に被覆されている領域の長さである。数字が大きいほど接着力が高く、性能がよいことを示す。 <Elastomer coverage (%)>
The elastomer coverage is the steel that constitutes the steel cord by coating the steel cord with rubber, vulcanizing at 160 ° C. for 10 to 15 minutes, and then pulling out the steel cord from the obtained rubber-steel cord composite. The length of the side surface of the steel filament in the width direction of the metal cord, which is covered with the rubber that has penetrated into the gap between the filaments, is measured, and the average of the values calculated based on the following formula is calculated. The formula for calculating the elastomer coverage is as follows.
Elastomer coverage = (rubber coating length / sample length) x 100 (%)
The rubber coating length is the length of the region where the steel filament surface is completely covered with rubber when the pulled-out steel cord is observed from the direction orthogonal to the cord longitudinal direction. The higher the number, the higher the adhesive strength and the better the performance.
エラストマー被覆率は、スチールコードをゴム被覆し、160℃、10~15分の加硫条件で加硫した後、得られたゴム-スチールコード複合体からスチールコードを引き抜き、スチールコードを構成するスチールフィラメント同士の間隙に浸透したゴムにより被覆されている、スチールフィラメントの金属コード幅方向側面の長さを測定し、下記算出式に基づいて算出した値の平均とする。エラストマー被覆率の算出式は以下のとおりである。
エラストマー被覆率=(ゴム被覆長/試料長)×100(%)
なお、ゴム被覆長は引き抜いたスチールコードをコード長手方向に直交する方向から観察した際にスチールフィラメント表面がゴムで完全に被覆されている領域の長さである。数字が大きいほど接着力が高く、性能がよいことを示す。 <Elastomer coverage (%)>
The elastomer coverage is the steel that constitutes the steel cord by coating the steel cord with rubber, vulcanizing at 160 ° C. for 10 to 15 minutes, and then pulling out the steel cord from the obtained rubber-steel cord composite. The length of the side surface of the steel filament in the width direction of the metal cord, which is covered with the rubber that has penetrated into the gap between the filaments, is measured, and the average of the values calculated based on the following formula is calculated. The formula for calculating the elastomer coverage is as follows.
Elastomer coverage = (rubber coating length / sample length) x 100 (%)
The rubber coating length is the length of the region where the steel filament surface is completely covered with rubber when the pulled-out steel cord is observed from the direction orthogonal to the cord longitudinal direction. The higher the number, the higher the adhesive strength and the better the performance.
<操縦安定性>
得られたゴム-スチールコード複合体を用いて作製した交錯ベルト層サンプルを用いて面内剛性の評価を行い、操縦安定性の指標とする。交錯ベルト層サンプルの下2点、上1点に冶具を配置し、上1点から押し込んだ時の荷重を面内剛性とし評価する。結果は従来例1を基準の△として、劣っている場合を×、同等である場合を△、優れている場合を○、非常に優れている場合を◎として評価する。 <Steering stability>
The in-plane rigidity is evaluated using the crossed belt layer sample prepared by using the obtained rubber-steel cord composite, and is used as an index of steering stability. Jigs are placed at the lower two points and the upper one point of the cross belt layer sample, and the load when the jig is pushed in from the upper one point is evaluated as the in-plane rigidity. The results are evaluated by using the conventional example 1 as a reference, inferior as x, equivalent as Δ, excellent as o, and very excellent as o.
得られたゴム-スチールコード複合体を用いて作製した交錯ベルト層サンプルを用いて面内剛性の評価を行い、操縦安定性の指標とする。交錯ベルト層サンプルの下2点、上1点に冶具を配置し、上1点から押し込んだ時の荷重を面内剛性とし評価する。結果は従来例1を基準の△として、劣っている場合を×、同等である場合を△、優れている場合を○、非常に優れている場合を◎として評価する。 <Steering stability>
The in-plane rigidity is evaluated using the crossed belt layer sample prepared by using the obtained rubber-steel cord composite, and is used as an index of steering stability. Jigs are placed at the lower two points and the upper one point of the cross belt layer sample, and the load when the jig is pushed in from the upper one point is evaluated as the in-plane rigidity. The results are evaluated by using the conventional example 1 as a reference, inferior as x, equivalent as Δ, excellent as o, and very excellent as o.
<低ロス性>
各ゴム組成物A,Bを、145℃で40分間加硫して加硫ゴムを得た。得られた加硫ゴムについて、スぺクトロメーター(株式会社上島製作所製)を用い、温度24℃、歪1%、周波数52Hzの条件で、損失正接(tanδ)を測定した。評価については、ゴム組成物Aのサンプルのtanδを100としたときの指数で示し、指数値が小さい程、低発熱性に優れることを示す。 <Low loss>
Each rubber composition A, B was vulcanized at 145 ° C. for 40 minutes to obtain a vulcanized rubber. The loss tangent (tan δ) of the obtained vulcanized rubber was measured using a spectrometer (manufactured by Kamijima Seisakusho Co., Ltd.) under the conditions of a temperature of 24 ° C., a strain of 1% and a frequency of 52 Hz. The evaluation is indicated by an index when the tan δ of the rubber composition A sample is 100, and the smaller the index value, the better the low heat buildup.
各ゴム組成物A,Bを、145℃で40分間加硫して加硫ゴムを得た。得られた加硫ゴムについて、スぺクトロメーター(株式会社上島製作所製)を用い、温度24℃、歪1%、周波数52Hzの条件で、損失正接(tanδ)を測定した。評価については、ゴム組成物Aのサンプルのtanδを100としたときの指数で示し、指数値が小さい程、低発熱性に優れることを示す。 <Low loss>
Each rubber composition A, B was vulcanized at 145 ° C. for 40 minutes to obtain a vulcanized rubber. The loss tangent (tan δ) of the obtained vulcanized rubber was measured using a spectrometer (manufactured by Kamijima Seisakusho Co., Ltd.) under the conditions of a temperature of 24 ° C., a strain of 1% and a frequency of 52 Hz. The evaluation is indicated by an index when the tan δ of the rubber composition A sample is 100, and the smaller the index value, the better the low heat buildup.
<耐亀裂進展性>
各ゴム組成物A,Bを、145℃で40分間加硫して加硫ゴムを得た。得られた加硫ゴムから、2mm×50mm×6mmのシートを作製し、その中心部に微小な穴を空けて初期亀裂とした。その後、このシートに対して、2.0MPa、周波数は6Hz、雰囲気温度80℃の条件で、長辺方向に繰り返し応力を加えた。そして、サンプルごとに、繰り返し応力を加えてから、試験片が破断するまでの繰り返し回数を測定した後、その繰り返し回数の常用対数を算出した。破断までの測定試験は、サンプルごとに4度実施して常用対数を算出し、それらの平均を平均常用対数とした。評価については、ゴム組成物Aの平均常用対数を100とした場合の指数として示し、サンプルの平均常用対数が大きい程、耐亀裂成長性に優れることを示す。 <Crack growth resistance>
Each rubber composition A, B was vulcanized at 145 ° C. for 40 minutes to obtain a vulcanized rubber. A sheet of 2 mm × 50 mm × 6 mm was prepared from the obtained vulcanized rubber, and a small hole was made in the center thereof to form an initial crack. Thereafter, this sheet was repeatedly stressed in the long side direction under the conditions of 2.0 MPa, frequency of 6 Hz, and ambient temperature of 80 ° C. Then, after the repeated stress was applied to each sample until the test piece was broken, the common logarithm of the repeated number was calculated. The measurement test until breakage was carried out four times for each sample to calculate the common logarithm, and the average thereof was taken as the average common logarithm. The evaluation is shown as an index when the average common logarithm of the rubber composition A is 100, and the larger the average common logarithm of the sample, the better the crack growth resistance.
各ゴム組成物A,Bを、145℃で40分間加硫して加硫ゴムを得た。得られた加硫ゴムから、2mm×50mm×6mmのシートを作製し、その中心部に微小な穴を空けて初期亀裂とした。その後、このシートに対して、2.0MPa、周波数は6Hz、雰囲気温度80℃の条件で、長辺方向に繰り返し応力を加えた。そして、サンプルごとに、繰り返し応力を加えてから、試験片が破断するまでの繰り返し回数を測定した後、その繰り返し回数の常用対数を算出した。破断までの測定試験は、サンプルごとに4度実施して常用対数を算出し、それらの平均を平均常用対数とした。評価については、ゴム組成物Aの平均常用対数を100とした場合の指数として示し、サンプルの平均常用対数が大きい程、耐亀裂成長性に優れることを示す。 <Crack growth resistance>
Each rubber composition A, B was vulcanized at 145 ° C. for 40 minutes to obtain a vulcanized rubber. A sheet of 2 mm × 50 mm × 6 mm was prepared from the obtained vulcanized rubber, and a small hole was made in the center thereof to form an initial crack. Thereafter, this sheet was repeatedly stressed in the long side direction under the conditions of 2.0 MPa, frequency of 6 Hz, and ambient temperature of 80 ° C. Then, after the repeated stress was applied to each sample until the test piece was broken, the common logarithm of the repeated number was calculated. The measurement test until breakage was carried out four times for each sample to calculate the common logarithm, and the average thereof was taken as the average common logarithm. The evaluation is shown as an index when the average common logarithm of the rubber composition A is 100, and the larger the average common logarithm of the sample, the better the crack growth resistance.
*11)型付け量x1mm、型付けピッチy1mmのスチールフィラメントの4本と、型付け量x2mm、型付けピッチy2mmのスチールフィラメントの3本とが、交互に配置されて一列に引き揃えられた束を構成しているコード構造である。
*12)2次元型付け:金属コード中における型付けされた金属フィラメントの型付け方向が金属コードの幅方向であって、ジグザグ状に型付けされている場合を意味する。
*13)A:ゴム組成物A,B:ゴム組成物B
*14)各実施例および従来例のベルト層における金属コード上に存在するゴムの厚みである。
*15)各実施例および従来例のベルト層における金属コード間に存在するゴムの、金属コードの長手方向に直交する方向に測った厚みである。 * 11) Four bundles of steel filaments having a molding amount x1 mm and a molding pitch y1 mm and three steel filaments having a molding amount x2 mm and a molding pitch y2 mm are alternately arranged to form a bundle aligned in a row. Is the code structure.
* 12) Two-dimensional embedding: This means that the embedding direction of the embossed metal filament in the metal cord is the width direction of the metal cord, and the metal filament is imprinted in a zigzag shape.
* 13) A: Rubber composition A, B: Rubber composition B
* 14) This is the thickness of the rubber present on the metal cord in the belt layer of each example and the conventional example.
* 15) This is the thickness of the rubber existing between the metal cords in the belt layers of the examples and the conventional example, measured in the direction orthogonal to the longitudinal direction of the metal cord.
*12)2次元型付け:金属コード中における型付けされた金属フィラメントの型付け方向が金属コードの幅方向であって、ジグザグ状に型付けされている場合を意味する。
*13)A:ゴム組成物A,B:ゴム組成物B
*14)各実施例および従来例のベルト層における金属コード上に存在するゴムの厚みである。
*15)各実施例および従来例のベルト層における金属コード間に存在するゴムの、金属コードの長手方向に直交する方向に測った厚みである。 * 11) Four bundles of steel filaments having a molding amount x1 mm and a molding pitch y1 mm and three steel filaments having a molding amount x2 mm and a molding pitch y2 mm are alternately arranged to form a bundle aligned in a row. Is the code structure.
* 12) Two-dimensional embedding: This means that the embedding direction of the embossed metal filament in the metal cord is the width direction of the metal cord, and the metal filament is imprinted in a zigzag shape.
* 13) A: Rubber composition A, B: Rubber composition B
* 14) This is the thickness of the rubber present on the metal cord in the belt layer of each example and the conventional example.
* 15) This is the thickness of the rubber existing between the metal cords in the belt layers of the examples and the conventional example, measured in the direction orthogonal to the longitudinal direction of the metal cord.
また、実施例1のエラストマー-金属コード複合体は、従来例1のエラストマー-金属コード複合体を基準としたとき、耐セパレーション性においても優れるものであった。
Further, the elastomer-metal cord composite of Example 1 was also excellent in separation resistance when the elastomer-metal cord composite of Conventional Example 1 was used as a reference.
上記表中に示すように、金属フィラメントの束の構成を所定に規定するとともに、エラストマーとして所定の物性を満足するものを用いたことにより、操縦安定性や耐亀裂進展性、低ロス性等のタイヤの諸性能を両立し得るエラストマー-金属コード複合体およびタイヤが得られる。
As shown in the above table, the composition of the bundle of metal filaments is prescribed, and by using an elastomer that satisfies the prescribed physical properties, steering stability, crack growth resistance, low loss, etc. It is possible to obtain an elastomer-metal cord composite and a tire that are compatible with various tire performances.
1,1a,1b 金属フィラメント
2 金属コード
3 エラストマー
10 エラストマー-金属コード複合体
100 タイヤ(空気入りタイヤ)
101 トレッド部
102 サイドウォール部
103 ビード部
104 カーカス
105 ベルト
105a 第1ベルト層
105b 第2ベルト層 1, 1a,1b Metal filament 2 Metal cord 3 Elastomer 10 Elastomer-metal cord composite 100 Tire (pneumatic tire)
101tread portion 102 sidewall portion 103 bead portion 104 carcass 105 belt 105a first belt layer 105b second belt layer
2 金属コード
3 エラストマー
10 エラストマー-金属コード複合体
100 タイヤ(空気入りタイヤ)
101 トレッド部
102 サイドウォール部
103 ビード部
104 カーカス
105 ベルト
105a 第1ベルト層
105b 第2ベルト層 1, 1a,
101
Claims (9)
- 複数本の金属フィラメントが撚り合わされずに一列に引き揃えられた束からなる金属コードが、エラストマーにより被覆されたエラストマー-金属コード複合体において、
前記金属コード中に、型付け量および型付けピッチの少なくとも一方が異なっている、隣り合う金属フィラメント同士の対が少なくとも1つ存在し、かつ、前記エラストマーの、50%モジュラス値(M50)に対する200%モジュラス値(M200)の比M200/M50が、5.0以下であることを特徴とするエラストマー-金属コード複合体。 In an elastomer-metal cord composite in which a metal cord composed of a bundle in which a plurality of metal filaments are not twisted and aligned in a row is coated with an elastomer,
In the metal cord, there is at least one pair of adjacent metal filaments having different at least one of a molding amount and a molding pitch, and a 200% modulus with respect to a 50% modulus value (M50) of the elastomer. The ratio M200 / M50 of the value (M200) is 5.0 or less, the elastomer-metal cord composite. - 前記金属コード中における型付けされた金属フィラメントの型付け方向が、前記金属コードの幅方向である請求項1記載のエラストマー-金属コード複合体。 The elastomer-metal cord composite according to claim 1, wherein a molding direction of the molded metal filament in the metal cord is a width direction of the metal cord.
- 前記隣り合う金属フィラメントの、前記金属コードの幅方向側面におけるエラストマー被覆率が、単位長さ当たり10%以上である請求項1または2記載のエラストマー-金属コード複合体。 The elastomer-metal cord composite according to claim 1 or 2, wherein an elastomer coverage of the adjacent metal filaments on a side surface in the width direction of the metal cord is 10% or more per unit length.
- 前記金属コード中の金属フィラメントのうち少なくとも1本が、実質的に真直の金属フィラメントである請求項1~3のうちいずれか一項記載のエラストマー-金属コード複合体。 The elastomer-metal cord composite according to any one of claims 1 to 3, wherein at least one of the metal filaments in the metal cord is a substantially straight metal filament.
- 前記真直の金属フィラメントと型付けされた金属フィラメントとが交互に配置されている請求項4記載のエラストマー-金属コード複合体。 The elastomer-metal cord composite according to claim 4, wherein the straight metal filaments and the shaped metal filaments are alternately arranged.
- 前記金属コードの両端に配置された金属フィラメントが、前記真直の金属フィラメントである請求項4または5記載のエラストマー-金属コード複合体。 The elastomer-metal cord composite according to claim 4 or 5, wherein the metal filaments arranged at both ends of the metal cord are the straight metal filaments.
- 前記金属フィラメントに2次元型付けが施されており、前記金属フィラメントの型付け量が0.03mm以上0.30mm以下であって、前記金属フィラメントの型付けピッチが2mm以上30mm以下である請求項1~6のうちいずれか一項記載のエラストマー-金属コード複合体。 7. The two-dimensional embossing is applied to the metal filament, the embossing amount of the metal filament is 0.03 mm or more and 0.30 mm or less, and the embossing pitch of the metal filament is 2 mm or more and 30 mm or less. The elastomer-metal cord composite according to any one of the above.
- 前記エラストマーが、ゴム成分と、DBP吸収量が50cm3/100g以上100cm3/100g以下であるカーボンブラックと、フェノール樹脂と、メチレン供与体とを含むゴム組成物からなる請求項1~7のうちいずれか一項記載のエラストマー-金属コード複合体。 Wherein the elastomer comprises a rubber component, and carbon black DBP absorption is less than 50 cm 3/100 g or more 100 cm 3/100 g, and the phenol resin, of claims 1 to 7, comprising a rubber composition containing a methylene donor The elastomer-metal cord composite according to any one of claims.
- 請求項1~8のうちいずれか一項記載のエラストマー-金属コード複合体が用いられてなることを特徴とするタイヤ。 A tire comprising the elastomer-metal cord composite according to any one of claims 1 to 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020553264A JPWO2020080442A1 (en) | 2018-10-17 | 2019-10-16 | Elastomer-metal cord complex and tires using it |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018196209 | 2018-10-17 | ||
JP2018-196209 | 2018-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020080442A1 true WO2020080442A1 (en) | 2020-04-23 |
Family
ID=70283285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/040763 WO2020080442A1 (en) | 2018-10-17 | 2019-10-16 | Elastomer-metal cord composite body and tire using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2020080442A1 (en) |
WO (1) | WO2020080442A1 (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49134783A (en) * | 1973-04-26 | 1974-12-25 | ||
JPH06235179A (en) * | 1993-02-09 | 1994-08-23 | Kokoku Kousensaku Kk | Steel cord and composite rubber material using the steel cord |
JPH07145578A (en) * | 1993-11-22 | 1995-06-06 | Tokyo Seiko Co Ltd | Patterned strand-bound cord and vehicle tire |
JPH07157986A (en) * | 1993-12-02 | 1995-06-20 | Tokyo Seiko Co Ltd | Boarded wire-assembled cord and vehicle tire |
JPH0913288A (en) * | 1995-06-22 | 1997-01-14 | Bridgestone Corp | Steel cord for reinforcing rubber article and pneumatic radial tire |
JP2000129583A (en) * | 1998-10-16 | 2000-05-09 | Yokohama Rubber Co Ltd:The | Steel cord and pneumatic tire using the same |
JP2000190707A (en) * | 1998-12-25 | 2000-07-11 | Yokohama Rubber Co Ltd:The | Pneumatic radial tire for passenger car |
JP2000198311A (en) * | 1999-01-06 | 2000-07-18 | Toyo Tire & Rubber Co Ltd | Tire reinforcing material and pneumatic tire |
JP2008156418A (en) * | 2006-12-21 | 2008-07-10 | Sumitomo Rubber Ind Ltd | Rubber composition for coating steel cord and tire having belt or breaker obtained by covering steel cord with the same |
JP2009057535A (en) * | 2007-08-03 | 2009-03-19 | Bridgestone Corp | Pneumatic tire |
JP2010070747A (en) * | 2008-08-19 | 2010-04-02 | Bridgestone Corp | Rubber composition |
JP2015205970A (en) * | 2014-04-18 | 2015-11-19 | 横浜ゴム株式会社 | Rubber composition for coating tire metal cord and pneumatic tire using the same |
WO2016052449A1 (en) * | 2014-10-01 | 2016-04-07 | 株式会社ブリヂストン | Metal cord-rubber composite body |
WO2018190308A1 (en) * | 2017-04-11 | 2018-10-18 | 株式会社ブリヂストン | Elastomer-metal cord composite and tire using same |
-
2019
- 2019-10-16 WO PCT/JP2019/040763 patent/WO2020080442A1/en active Application Filing
- 2019-10-16 JP JP2020553264A patent/JPWO2020080442A1/en active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49134783A (en) * | 1973-04-26 | 1974-12-25 | ||
JPH06235179A (en) * | 1993-02-09 | 1994-08-23 | Kokoku Kousensaku Kk | Steel cord and composite rubber material using the steel cord |
JPH07145578A (en) * | 1993-11-22 | 1995-06-06 | Tokyo Seiko Co Ltd | Patterned strand-bound cord and vehicle tire |
JPH07157986A (en) * | 1993-12-02 | 1995-06-20 | Tokyo Seiko Co Ltd | Boarded wire-assembled cord and vehicle tire |
JPH0913288A (en) * | 1995-06-22 | 1997-01-14 | Bridgestone Corp | Steel cord for reinforcing rubber article and pneumatic radial tire |
JP2000129583A (en) * | 1998-10-16 | 2000-05-09 | Yokohama Rubber Co Ltd:The | Steel cord and pneumatic tire using the same |
JP2000190707A (en) * | 1998-12-25 | 2000-07-11 | Yokohama Rubber Co Ltd:The | Pneumatic radial tire for passenger car |
JP2000198311A (en) * | 1999-01-06 | 2000-07-18 | Toyo Tire & Rubber Co Ltd | Tire reinforcing material and pneumatic tire |
JP2008156418A (en) * | 2006-12-21 | 2008-07-10 | Sumitomo Rubber Ind Ltd | Rubber composition for coating steel cord and tire having belt or breaker obtained by covering steel cord with the same |
JP2009057535A (en) * | 2007-08-03 | 2009-03-19 | Bridgestone Corp | Pneumatic tire |
JP2010070747A (en) * | 2008-08-19 | 2010-04-02 | Bridgestone Corp | Rubber composition |
JP2015205970A (en) * | 2014-04-18 | 2015-11-19 | 横浜ゴム株式会社 | Rubber composition for coating tire metal cord and pneumatic tire using the same |
WO2016052449A1 (en) * | 2014-10-01 | 2016-04-07 | 株式会社ブリヂストン | Metal cord-rubber composite body |
WO2018190308A1 (en) * | 2017-04-11 | 2018-10-18 | 株式会社ブリヂストン | Elastomer-metal cord composite and tire using same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020080442A1 (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080110544A1 (en) | Rubber composition for side wall and pneumatic tire | |
US20110269871A1 (en) | Rubber composition and pneumatic tire using the same | |
JP2008143485A (en) | Pneumatic tire | |
JP2009024134A (en) | Rubber composition for tire and pneumatic tire | |
JP6999667B2 (en) | Rubber composition, belt coated rubber and tires | |
JP2000071725A (en) | Pneumatic tire | |
JP5168458B2 (en) | Rubber composition and pneumatic tire | |
CN114786962B (en) | Tire with a tire body | |
EP3263363B1 (en) | Pneumatic radial tire | |
JP2000079807A (en) | Steel code reinforced-pneumatic tire | |
WO2020080444A1 (en) | Elastomer-metal cord composite body and tire using same | |
JP7446103B2 (en) | Elastomer-metal cord composite and tires using the same | |
JP2004099804A (en) | Rubber composition for tire and pneumatic tire using the same | |
JP4334300B2 (en) | tire | |
WO2020080442A1 (en) | Elastomer-metal cord composite body and tire using same | |
EP3722360B1 (en) | Tire rubber composition and tire | |
JP2004284453A (en) | Pneumatic tire | |
JP7006069B2 (en) | Pneumatic tires for heavy loads | |
US20170291451A1 (en) | Resin Composition and Pneumatic Tire Using Same | |
AU2017356879B2 (en) | Stabilizer ply as an impact break deflector in tires | |
JP7280003B2 (en) | Rubber composition, vulcanized rubber, belt coating rubber and tire | |
JP2019104849A (en) | Ply coating rubber composition for run flat tire, ply coating rubber for run flat tire, and run flat tire | |
JP2020063368A (en) | Rubber composition for metal coating and tire | |
WO2013121778A1 (en) | Rubber composition for pneumatic-tire sidewalls, and pneumatic tire | |
JP2023077089A (en) | Retreaded tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19874162 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020553264 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19874162 Country of ref document: EP Kind code of ref document: A1 |