WO2020078876A1 - Dynamisches windkraftwerk - Google Patents
Dynamisches windkraftwerk Download PDFInfo
- Publication number
- WO2020078876A1 WO2020078876A1 PCT/EP2019/077731 EP2019077731W WO2020078876A1 WO 2020078876 A1 WO2020078876 A1 WO 2020078876A1 EP 2019077731 W EP2019077731 W EP 2019077731W WO 2020078876 A1 WO2020078876 A1 WO 2020078876A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wind
- network
- power plant
- control
- wind power
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 37
- 230000003068 static effect Effects 0.000 claims description 4
- 230000001052 transient effect Effects 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 description 9
- 238000009434 installation Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 101150014691 PPARA gene Proteins 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009474 immediate action Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
- F03D7/048—Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/028—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
- F03D7/0284—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
- F03D9/255—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
- F03D9/257—Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/004—Generation forecast, e.g. methods or systems for forecasting future energy generation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/70—Application in combination with
- F05B2220/706—Application in combination with an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/82—Forecasts
- F05B2260/821—Parameter estimation or prediction
- F05B2260/8211—Parameter estimation or prediction of the weather
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/103—Purpose of the control system to affect the output of the engine
- F05B2270/1033—Power (if explicitly mentioned)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/107—Purpose of the control system to cope with emergencies
- F05B2270/1071—Purpose of the control system to cope with emergencies in particular sudden load loss
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/335—Output power or torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/30—Control parameters, e.g. input parameters
- F05B2270/337—Electrical grid status parameters, e.g. voltage, frequency or power demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/10—The dispersed energy generation being of fossil origin, e.g. diesel generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a method for controlling an electrical distribution network, in particular by means of a large number of wind farms, and to such wind farms.
- Electrical distribution networks such as the German transmission network or the European interconnection network, usually have a large number of producers and consumers. In order to be able to better regulate the load flow between the producers and the consumers, the electrical distribution networks are therefore often geographically divided into control zones and assigned to individual operators, the so-called network operators.
- each control zone is rigidly defined by itself and in particular has a rigid producer-consumer structure.
- the actual regulation of these control zones or these sections of the electrical distribution network then takes place by means of a so-called network control center, which is essentially set up to control the generators of the control zone.
- the object of the present invention is therefore to address one of the above-mentioned problems, to improve the general state of the art or to provide an alternative to the previously known.
- improved controllability of an electrical distribution network by means of wind farms is to be achieved.
- a method for controlling an electrical distribution network with a nominal network voltage, in particular in a critical network situation comprising the steps: querying the available services of the wind farms, in particular depending on a weather forecast; Establishing a control node within the control area, in particular depending on the services available, preferably by the network operator; Combining a number of wind farms at the calculated control node to form a wind power plant; Control of the wind power plant, in particular by the network control center by means of a wind power plant control unit, so that a required voltage quality and / or frequency stability and / or uninterrupted availability is provided in the control area.
- the electrical distribution network can also be referred to as a power network or can be part of a power network.
- the electrical distribution network comprises at least a large number of producers and consumers, which are connected together via a network of electrical power lines.
- the electrical distribution network also has a nominal network voltage and is preferably controlled or regulated by a network operator using at least one control area and a network control center.
- the electrical distribution network is a control area which is regulated by the operator of the electrical distribution network by means of a network control center.
- the control area itself has a large number of locally separated wind farms.
- the wind farms in turn comprise a large number of wind energy plants which generate electrical power and feed this into the electrical distribution network or the control area by means of a common wind farm network.
- an available power is first called up from the wind farms. This can be done, for example, by the network operator using the network control center, which is connected, for example, to the wind farm control units of the wind farm.
- the wind farms preferably provide a forecast of future performance, taking into account a weather forecast.
- the grid operator therefore asks all the wind farms in its control area how much electrical power they can provide in the next few hours, taking into account the weather.
- the network operator determines or calculates a control node, for example. I.e. the network operator carries out, for example, a load flow calculation for his control area, taking into account the available power, and uses this to find an operationally optimal control node for his control area.
- a suitable number of wind farms in particular taking into account the control node, is then selected and combined to form a wind power plant.
- the wind farms are combined dynamically, i.e. that various wind farms work together to train the wind power plant for a certain time while the electrical supply network is in operation.
- the control area has at least one control node on which the wind power plant is working.
- the wind farms of the wind power plant therefore preferably regulate on these control nodes, a specific network point within the control area.
- the wind farms of the wind power plant form a virtual power plant, namely the wind power plant.
- the wind power plant can therefore also be understood as a virtual power plant in the sense of a functional unit.
- This wind power plant is then regulated in particular by the network operator or the network control center of the network operator by means of a wind power plant control unit.
- This wind power plant control unit can, for example, be a control unit which is part of the network control center and is connected to the wind farm control units of the wind farms.
- the wind power plant is preferably controlled by means of the wind power plant control unit in such a way that a required voltage quality and / or frequency stability and / or uninterrupted availability is provided in the control area.
- the method according to the invention is not aimed at operating two adjacent wind farms together rigidly, but rather to combine wind farms that are operationally independent of one another in a grid-critical situation to form a virtual wind power plant that relates to a specific point in the Control area, the control node, regulates.
- the wind power plant is therefore, in particular, a virtual and dynamically changing wind power plant, comprising a large number of locally separated wind farms, which is activated in particular for critical grid situations.
- a critical network situation also includes that any markets, such as the market for balancing power, are deactivated or switched off, i.e. in particular that any electricity trading no longer has any influence on power generation and power control within the electrical distribution network or control area.
- the wind power plant comprises at least three wind farms, at least two of which are spaced apart with a line length of at least 10 km.
- the electrical supply network is a medium-voltage network or a high-voltage network, in particular with a nominal network voltage of greater than 10 kV, preferably 20 kV, particularly preferably 50 kV.
- the number of wind farms is preferably combined as a function of a predetermined minimum power with a minimum availability, preferably the predetermined minimum power depending on a size of the control area.
- a minimum output for example 50 MW, is specified for the wind power plant, which must be provided by the wind farms, taking into account, for example, 95 percent availability, which are combined to form a wind power plant at a control node .
- the minimum output is preferably predetermined taking into account the size of the control area, for example 5 GW.
- the size of the control area can also be changed as a function of the situation, in particular as a function of the state of the electrical distribution network or the control area.
- the network operator can define one or more wind power plants in an early phase of network reconstruction, for example with a smaller network area under voltage, which provide a secured output of 20 MW, for example.
- the grid operator can then combine wind farms with a guaranteed output of, for example, 100 MW to form a wind power plant.
- the control node is preferably determined and, in addition or alternatively, the number of wind farms at the calculated control node is combined dynamically to form the wind power plant. It is thus proposed in particular that the method described above or below is carried out continuously and / or iteratively, preferably in such a way that the agitation of the wind farms to the wind power station takes place dynamically.
- the control area has four wind farms, of which the first and the second wind farm are combined to form the wind power plant. After an indefinite period of time, however, it can be more advantageous if, for example, the second and third wind farms form the wind power plant. The method according to the invention takes this into account.
- a critical network situation is preferably a situation in the list below, comprising: voltage drop, voltage failure, transient process, system split, underfrequency, overfrequency.
- the method according to the invention is suitable for all network states of the electrical distribution network, for example the secure network state, it is proposed in particular to use the method in critical network states or network situations, i.e. those in which there is a high risk of occurrence for extensive power failures and immediate actions such as the separation of the electrical distribution network into individual subnetworks are necessary, for example the so-called system split. Examples of this are the voltage drop, i.e. if the mains voltage of the electrical distribution network is less than 0.9 pu of the nominal network voltage, the voltage failure, i.e.
- the transient process i.e. an unsteady state or unstable network process
- the underfrequency in particular if the network frequency is below 0.98 pu of the network nominal frequency
- the overfrequency in particular if the network frequency is above 1.02 pu of the network nominal frequency.
- a critical network situation also includes that any markets, such as the market for balancing power, are deactivated or switched off, i.e. in particular that any electricity trading no longer has any influence on power generation and power control within the electrical distribution network or control area.
- a critical condition has occurred or is to be expected. For example, this can be caused by weather conditions, failed lines, failed power plants or overloaded operating resources.
- the electrical distribution network is preferably controlled in order to generate a stable voltage in the control zone which is between 90 and 1 10 percent or 0.9 and 1, 1 p.u. the nominal network voltage.
- the wind power plant preferably has at least a nominal output of 100 MW, preferably 200 MW, more preferably 400 MW, and / or the wind power plant has at least a predicted actual output of 40 MW, preferably 80 MW, more preferably 160 MW, on. It is therefore proposed in particular that the wind farms be combined in such a way that the wind power plant has a certain size.
- the method according to the invention in particular has a greater influence on the system behavior of the electrical distribution network or of the control area.
- a wind farm of the wind power station is preferably at most 100 km of line length from another wind farm of the wind power station, the wind farms here being preferably galvanically connected to one another or located in the same control area or connected to the same higher-level network level. It is therefore proposed in particular to limit the wind power plant regionally.
- the electrical distribution network is larger than, for example, 100 km of line length, it is also proposed to control the electrical distribution network with several control areas, as described above or below.
- the available services are preferably calculated as a function of at least one weather forecast, in particular using a risk factor less than 1, preferably using a probability distribution.
- the available services are determined as a function of a weather forecast and preferably a risk factor, for example 0.95, or using a probability distribution.
- a probability distribution of the weather forecast can be used, for example, or a fixed probability funnel can be assumed.
- a risk factor is also used.
- the wind farms create an available power for a predetermined period, for example 50 percent of the nominal wind farm power for the next 2 hours.
- a risk factor is then added to this value, in this case 50 times 0.95. Accordingly, 47.5 percent of the nominal wind farm output for the next 2 hours is reported to the network operator, i.e. 4.75 MW for a 10 MW wind farm for the next 2 hours.
- the combination or the corresponding selection of the wind farms for the wind power plant is preferably carried out at least as a function of a control area state and / or a control area size and / or a current control area load and / or a location of the control node. It is therefore proposed in particular that the wind farms are combined to form the wind power station not only as a function of the available power, but also that properties of the control area and / or the location of the control node are taken into account.
- the number of wind farms which are combined to form the wind power plant is also preferably based on a control area state and / or a control area size and / or a current control area load and / or a location of the control node and as a function of a rated wind power plant output.
- the number of wind farms that form the wind power plant depends on the properties of the control area. For example, it can be advantageous in some cases that, for example, two 50 MW wind farms are combined to form the wind power plant and in other cases that four 25 MW wind farms are combined.
- Setpoints are preferably specified for controlling the wind power plant, in particular by the network operator, comprising an active power and / or a reactive power and / or a setpoint frequency and / or an active power frequency statics and / or a setpoint voltage and / or a reactive power voltage Statics.
- the wind power plant is controlled by setpoints described above or below, in particular by the network operator, for example by means of a network control center which is connected to a wind power plant controller.
- a wind farm with a wind farm control unit is also proposed, which is set up to participate in a method for controlling an electrical distribution network described above or below.
- FIG. 1 shows a schematic view of a wind energy installation according to the invention of a wind farm according to the invention in one embodiment
- FIG. 2 shows a schematic structure of a wind farm according to the invention in one embodiment
- FIG. 3 shows a schematic sequence of a method according to the invention in one embodiment
- 4B shows a structure of the wind power plant in an electrical distribution network, in particular a query of the available services of the wind farms,
- FIG. 4C shows a structure of the wind power plant in an electrical distribution network, in particular the establishment of a control node
- 4D shows a structure of the wind power plant in an electrical distribution network, in particular a combination of wind farms to form a wind power plant and subsequent control.
- FIG. 1 shows a wind turbine 100 of a wind farm according to the invention.
- the wind energy installation 100 has a tower 102 and a nacelle 104.
- An aerodynamic rotor 106 with three rotor blades 108 and a spinner 110 is arranged on the nacelle 104.
- the rotor 106 is set into a rotary movement by the wind and thereby drives a generator in the nacelle 104.
- the generator generates a current, which is fed by means of a full converter to a wind turbine transformer which is connected to a wind farm network.
- FIG. 2 shows a schematic structure of a wind farm 1000 according to the invention in one embodiment.
- the wind farm 1000 comprises a multiplicity of wind energy plants 1100, as shown for example in FIG. 1, which are connected to one another via a common wind farm network 1200.
- the wind farm network 1200 is connected to an electrical distribution network 2000 by means of a wind farm transformer 1300 in order to feed in an electrical wind farm power Ppar k , which is composed of a sum of the individual electrical wind power plant powers P wea.
- the wind farm 1000 has a wind farm control unit 1400 for controlling the wind farm 1000.
- the wind farm control unit 1400 includes a wind power plant interface 1410, a network operator interface parts 1420 and a wind turbine interface 1430.
- the wind power plant interface 1410 is at least set up to receive setpoints SWPP from a wind power plant control unit 3000.
- the network operator interface 1420 is at least set up to receive target values SGO from a network control center 4000, in particular the network operator, and to transmit an available output Pavaii to the network control center 4000, in particular depending on a weather forecast.
- the wind power plant interface 1430 is set up to transmit wind power plants 1 100 of the wind farm 1000 setpoints SWF, for example active power setpoints, in order to control the wind farm 1000 and in particular the electrical wind farm power Ppar k .
- the wind turbines 1100 each have at least one wind turbine control unit 1 180, which receive the target values SWF of the wind farm control unit 1400 and are set up to be operated with at least one set of operating parameters.
- the wind farm control unit 1400 also has a network monitor 1440, which is set up to record at least one network variable, such as the network voltage Ugrid.
- a network monitor 1440 which is set up to record at least one network variable, such as the network voltage Ugrid.
- 3 shows a schematic sequence of a method 5000 according to the invention for controlling an electrical distribution network, in particular as shown below in FIGS. 4A to 4D.
- the network control center queries the available Pavaii services of the wind farms.
- a control node SLACK is determined within the control area, in particular by the network operator, as a function of the requested services Pavaii.
- a number of wind farms are then combined at the calculated control node SLACK to form a wind power plant WPP.
- both the control node SLACK and the power of the wind power station WPP are carried out by the network operator.
- the wind power station WPP is then controlled by means of a wind power station control unit in such a way that a required voltage quality and / or frequency stability and / or uninterrupted availability in the control area is provided.
- the wind power plant control unit thus turns the combined wind farms into a wind power plant, in particular by means of a wind power plant controller.
- test and feedback instances are preferably provided within the wind power plant regulation, which indicate whether the wind power plant can be operated properly at all with the required information.
- the test and feedback instances are particularly preferably carried out online.
- the control area 6000 comprises a large number of consumers Zi, Z 2 , Z3, Z 4 , generators G1, G2 and wind farms WF1, WF2, WF3, WF4, which are connected to one another via power lines Ci, C2, C3, C4, Cs.
- the control area 6000 is therefore part of the electrical distribution network or can also be the entire electrical distribution network. If the control area is only part of the electrical distribution network, the control area has, for example, further power lines C6, C7, Cs to other parts of the electrical distribution network.
- the generators G1, G2 are, for example, conventional power plants, such as coal-fired power plants.
- the consumers Z 1 , Z 2 , Z3, Z 4 are, for example, industrial buildings, residential buildings and the like.
- the wind farms WF 1 , WF 2 , WF3, WF 4 are preferably wind farms, as shown, for example, in FIG. 2, the wind farms WF 1 , WF 2 , WF3, WF 4 being spatially separated from one another.
- the network control center with the generators i.e. the generators G 1 , G 2 and the wind farms WF 1 , WF 2 , WF3, WF 4 , is signal-conducting through the signal lines Li, L2, L3 , L 4 , Ls, L6 connected, in particular to exchange target values and available powers.
- the network control center 6100 further comprises a wind power plant control unit 6200 which is connected to the wind farms WF1, WF2, WF3, WF 4 of the control area by means of the signal lines Li, L2, L3, L 4 .
- FIG. 4B shows a structure of the wind power plant in an electrical distribution network, as shown in particular in FIG. 4A, in particular a query of available services of the wind farms, in particular as shown in FIG. 3 with method step 5100.
- a fault F on the power line C 4 which causes a critical network situation in the electrical distribution network.
- the network control center 6100 then activates the wind power plant control unit 6200, which in the wind farms WF 1 , WF 2 , WF3, WF 4 of the control area 6000 queries the available power Pavaii via the signal lines Li, L2, L3, L 4 .
- the wind farms WF 1 , WF 2 , WF3, WF 4 then report their available power via the signal lines Li, L 2 , L3, L 4 to the wind power control unit 6200.
- FIG. 4C shows a structure of the wind power plant in an electrical distribution network, as shown in particular in FIG. 4A, in particular the setting of a control node SLACK, in particular as shown in FIG. 3 with method step 5200.
- the wind power plant control unit 6200 After the wind power plant control unit 6200 has received the available services Pavaii of the wind farms WFi, WF 2 , WF3, WF 4 , the wind power plant control unit 6200 calculates a control node SLACK depending on the available services.
- FIG. 4D shows a construction of the wind power plant in an electrical distribution network, as shown in particular in FIG. 4A, in particular a combination of wind farms WF1, WF2, WF4 to form a wind power plant WPP and subsequent control of the wind power plant WPP by target values Sw PP , in particular as in FIG 3 shown with process steps 5300 and 5400.
- the wind farms WF 1 , WF 2 , WF 4 are dynamically combined to form a functional unit and controlled by the wind power plant control unit 6200.
- the wind farms WF 1 , WF 2 , WF 4 , the wind power plant control unit 6200 and the control node thus form the, in particular a virtual, wind power plant in relation to the control area.
- wind power plant WPP is dynamic, ie in the course of the method according to the invention further wind farms WF 4 can be added to the wind power plant or wind farms WF 1 , WF 2 , WF 4 of the wind power plant can leave the wind power plant WPP.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zum Steuern eines elektrischen Verteilnetzes mit einer Netznennspannung, insbesondere in einer kritischen Netzsituation, wobei eine Netzleitstelle zum Steuern des elektrischen Verteilnetzes vorgesehen ist und das elektrische Verteilnetz wenigstens ein Regelgebiet aufweist, welches mehrere voneinander örtlich getrennte Windparks umfasst, umfassend die Schritte: Abfragen verfügbarer Leistungen der Windparks, insbesondere in Abhängigkeit einer Wetterprognose; Festlegen eines Regelknotens innerhalb des Regelgebietes, insbesondere in Abhängigkeit der abgefragten verfügbaren Leistungen, bevorzugt durch den Netzbetreiber; Zusammenfassen einer Anzahl von Windparks an dem berechneten Regelknoten zu einem Windkraftwerk in Abhängigkeit der abgefragten verfügbaren Leistungen und/ oder einer Wahrscheinlichkeitsverteilung der verfügbaren Leistung; Steuern des Windkraftwerks, insbesondere durch die Netzleitstelle, mittels einer Windkraftwerkssteuereinheit, so, dass eine benötigte Spannungsqualität und/oder eine Frequenzstabilität und/oder eine unterbrechungsfreie Verfügbarkeit im Regelgebiet bereitgestellt wird.
Description
Dynamisches Windkraftwerk
Die vorliegende Erfindung betrifft ein Verfahren zum Steuern eines elektrisches Verteilnetzes, insbesondere mittels einer Vielzahl von Windparks, sowie solche Windparks.
Elektrische Verteilnetze, wie bspw. das deutsche Übertragungsnetz oder das europäische Verbundnetz, weisen üblicherweise eine Vielzahl von Erzeugern und Verbrauchern auf. Um den Lastfluss zwischen den Erzeugern und den Verbrauchern besser regeln zu können, werden die elektrischen Verteilnetze daher häufig geographisch in Regelzonen unterteilt und einzelnen Betreibern, den sogenannten Netzbetreibern, zugeordnet.
Dies hat insbesondere zur Folge, dass jede Regelzone für sich genommen starr festgelegt ist und insbesondere eine starre Erzeuger-Verbraucher-Struktur aufweist. Die eigentliche Regelung dieser Regelzonen bzw. dieser Abschnitte des elektrischen Verteilnetzes erfolgt dann mittels einer sogenannten Netzleitstelle, die im Wesentlichen dazu eingerichtet ist, die Erzeuger der Regelzone zu steuern.
Nachteilig hierbei ist insbesondere die starre Struktur, die, insbesondere in Hinsicht auf erneuerbare Energie, nicht das volle Potential des elektrischen Verteilnetzes ausschöpft.
Das Deutsche Patent- und Markenamt hat in der Prioritätsanmeldung zu vorliegender Anmeldung folgenden Stand der Technik recherchiert: WO 2016/120240 A1 , DE 10 2013 222 277 A1 , DE 10 2015 102 430 A1 und US 2015/0039 45 A1.
Aufgabe der vorliegenden Erfindung ist es daher, eines der oben genannten Probleme zu adressieren, den allgemeinen Stand der Technik zu verbessern oder eine Alternative zu bisher Bekanntem bereitzustellen. Insbesondere soll eine verbesserte Steuerbarkeit eines elektrischen Verteilnetzes mittels Windparks erreicht werden.
Erfindungsgemäß wird somit ein Verfahren zum Steuern eines elektrischen Verteilnetzes mit einer Netznennspannung, insbesondere in einer kritischen Netzsituation, vorgeschla- gen, wobei eine Netzleitstelle zum Steuern des elektrischen Verteilnetzes vorgesehen ist und das elektrische Verteilnetz wenigstens ein Regelgebiet aufweist, welches mehrere voneinander örtlich getrennte Windparks umfasst, umfassend die Schritte: Abfragen verfügbarer Leistungen der Windparks, insbesondere in Abhängigkeit einer Wetterprognose; Festlegen eines Regelknotens innerhalb des Regelgebietes, insbesondere in Abhängigkeit der abgefragten verfügbaren Leistungen, bevorzugt durch den Netzbetreiber; Zusammenfassen einer Anzahl von Windparks an dem berechneten Regelknoten zu einem Windkraftwerk; Steuern des Windkraftwerks, insbesondere durch die Netzleitstelle mittels einer Windkraftwerkssteuereinheit, so, dass eine benötigte Spannungsqualität und/oder eine Frequenzstabilität und/oder eine unterbrechungsfreie Verfügbarkeit im Regelgebiet bereit- gestellt wird.
Es wird somit insbesondere ein Verfahren zum Steuern eines elektrisches Verteilnetzes vorgeschlagen. Das elektrische Verteilnetz kann auch als Stromnetz bezeichnet werden oder ein Teil eines Stromnetzes sein. Insbesondere umfasst das elektrische Verteilnetz aber wenigstens eine Vielzahl von Erzeugern und Verbrauchern, die gemeinsam über ein Netz aus elektrischen Stromleitungen verbunden sind. Das elektrische Verteilnetz weist zudem eine Netznennspannung auf und wird bevorzugt durch einen Netzbetreiber mittels wenigstens eines Regelgebietes und einer Netzleitstelle gesteuert bzw. geregelt. Bspw. ist das elektrische Verteilnetz ein Regelgebiet, welches vom Betreiber des elektrischen Verteilnetzes mittels einer Netzleitstelle geregelt wird. Das Regelgebiet selbst wiederum weist eine Vielzahl von örtlich getrennten Windparks auf. Die Windparks wiederum umfassen eine Vielzahl von Windenergieanlagen, welche eine elektrische Leistung erzeugen und diese mittels eines gemeinsamen Windparknetzes in das elektrische Verteilnetz bzw. das Regelgebiet einspeisen.
In einem ersten Schritt des erfindungsgemäßen Verfahrens wird zunächst eine verfügbare Leistung bei den Windparks abgerufen. Dies kann bspw. durch den Netzbetreiber mittels der Netzleitstelle erfolgen, die bspw. mit den Windparksteuereinheiten der Windparks verbunden ist. Bevorzugt stellen die Windparks hierfür eine Prognose über eine zukünftig ver- fügbare Leistung unter Berücksichtigung einer Wetterprognose zur Verfügung. Der Netzbetreiber fragt also bei sämtlichen Windparks seines Regelgebietes an, wieviel elektrische Leistung sie in den nächstens Stunden unter Berücksichtigung des Wetters zur Verfügung stellen können.
In Abhängigkeit dieser abgefragten verfügbaren Leistung legt der Netzbetreiber dann bspw. einen Regelknoten fest bzw. berechnet diesen. D.h. der Netzbetreiber führt bspw. eine Lastflussberechnung für sein Regelgebiet unter Berücksichtigung der verfügbaren Leistung durch und sucht sich anhand dessen einen betriebsoptimalen Regelknoten für sein Regelgebiet.
Anschließend wird eine geeignete Anzahl von Windparks, insbesondere unter Berücksich- tigung des Regelknotens, ausgewählt und zu einem Windkraftwerk zusammengefasst. Das Zusammenfassen der Windparks erfolgt dabei insbesondere dynamisch, d.h. das im laufenden Betrieb des elektrischen Versorgungsnetzes verschiedene Windparks gemeinsam das Windkraftwerk für eine gewisse Zeit ausbilden. Dies bedeutet insbesondere auch, dass das Regelgebiet wenigstens einen Regelknoten aufweist, an dem das Windkraftwerk ar- beitet. Bevorzugt regeln die Windparks des Windkraftwerks also auf diesen Regelknoten, einen spezifischen Netzpunkt innerhalb des Regelgebietes. Vereinfacht ausgedrückt bilden die Windparks des Windkraftwerkes ein virtuelles Kraftwerk aus, nämlich das Windkraftwerk. Das Windkraftwerk kann daher auch als virtuelles Kraftwerk in Sinne einer funktionalen Einheit verstanden werden. Anschließend wird dieses Windkraftwerk insbesondere durch den Netzbetreiber bzw. die Netzleitstelle des Netzbetreibers mittels einer Windkraftwerkssteuereinheit geregelt. Diese Windkraftwerkssteuereinheit kann bspw. eine Steuereinheit sein, die Bestandteil der Netzleitstelle ist und mit den Windparksteuereinheiten der Windparks verbunden ist.
Das Steuern des Windkraftwerks erfolgt dabei bevorzugt mittels der Windkraftwerkssteu- ereinheit so, dass eine benötigte Spannungsqualität und/oder eine Frequenzstabilität und/oder eine unterbrechungsfreie Verfügbarkeit im Regelgebiet bereitgestellt wird.
Insbesondere ist hierbei wichtig, zu verstehen, dass das erfindungsgemäße Verfahren nicht darauf gerichtet ist, zwei benachbarte Windparks gemeinsam starr miteinander zu betreiben, sondern operativ voneinander unabhängige Windparks in einer netzkritischen Situation zu einem virtuellen Windkraftwerk zusammenzufassen, welches auf einen be- stimmten Punkt in der Regelzone, dem Regelknoten, regelt.
Es handelt sich also bei dem Windkraftwerk insbesondere um ein virtuelles und sich dynamisch veränderndes Windkraftwerk, umfassend eine Vielzahl von örtlich getrennten Windparks, welches insbesondere für kritische Netzsituationen aktiviert wird.
Insbesondere umfasst eine kritische Netzsituation auch, dass etwaige Märkte, wie bspw. der Markt für Regelleistung, deaktiviert bzw. ausgeschaltet sind, d.h. insbesondere das etwaiger Stromhandel keinen Einfluss mehr auf die Leistungserzeugung und die Leistungssteuerung innerhalb des elektrischen Verteilnetzes bzw. der Regelzone hat.
In einer bevorzugten Ausführungsform umfasst das Windkraftwerk wenigstens drei Windparks, von denen wenigstens zwei Windparks mit einer Leitungslänge von wenigstens 10 km beabstandet sind.
In einer bevorzugten Ausführungsform ist das elektrische Versorgungsnetz ein Mittelspan- nugsnetz oder ein Hochspannungsnetz, insbesondere mit einer Netznennspannung von größer 10kV, bevorzugt 20kV, besonders bevorzugt 50kV.
Vorzugsweise erfolgt das Zusammenfassen der Anzahl von Windparks in Abhängigkeit einer vorgegebenen Mindestleistung mit einer Mindestverfügbarkeit, bevorzugt wobei die vorgegebene Mindestleistung von einer Größe des Regelgebietes abhängt.
Es wird somit insbesondere vorgeschlagen, dass für das Windkraftwerk eine Mindestleistung, von bspw. 50 MW, vorgegeben wird, die unter einer Berücksichtigung von bspw. 95 Prozent Verfügbarkeit durch die Windparks bereitgestellt werden muss, die zu einem Wind- kraftwerk an einem Regelknoten zusammengefasst werden.
Bevorzugt wird die Mindestleistung dabei unter Berücksichtigung der Größe des Regelgebietes, von bspw. 5 GW, vorgegeben.
Es wird somit insbesondere auch vorgeschlagen, die Größe des Regelgebietes bei der Größe des Windkraftwerkes zu berücksichtigen.
Auch kann situationsabhängig, insbesondere in Abhängigkeit des Zustandes des elektrisches Verteilnetzes bzw. des Regelgebietes, die Größe des Windkraftwerks verändert werden. So kann bspw. der Netzbetreiber in einer frühen Phase des Netzwiederaufbaus, also bspw. mit einem kleineren Netzgebiet unter Spannung, ein oder mehrere Windkraftwerke definieren, welche bspw. eine gesicherte Leistung von 20 MW bereitstellen. In einer späteren Phase, also mit einem größeren Netzgebiet unter Spannung, kann der Netzbetreiber dann Windparks mit einer gesicherten Leistung von bspw. 100 MW zu einem Windkraftwerk zusammenfassen.
Darüber hinaus wird insbesondere auch vorgeschlagen, dass ab einer bestimmten Größe des elektrischen Verteilnetzes, bspw. 20 GW, mehrere Regelzonen und/oder mehrere Windkraftwerke und optional außerdem mehrere Regelknoten verwendet werden.
Vorzugsweise erfolgt das Festlegen des Regelknotens und außerdem oder alternativ das Zusammenfassen der Anzahl von Windparks an dem berechneten Regelknoten zu dem Windkraftwerk dynamisch. Es wird somit insbesondere vorgeschlagen, dass das vorstehend oder nachstehend beschriebene Verfahren ständig und/oder iterativ ausgeführt wird, und zwar bevorzugt so, dass die Agitation der Windparks zu dem Windkraftwerk dynamisch erfolgt. Bspw. weist das Regelgebiet vier Windparks auf, von denen der erste und der zweite Windpark zu dem Windkraftwerk zusammengefasst werden. Nach einer unbestimmten Zeit kann es aber vor- teilhafter sein, wenn bspw. der zweite und der dritte Windpark das Windkraftwerk ausbilden. Dies berücksichtigt das erfindungsgemäße Verfahren.
Vorzugsweise ist eine kritische Netzsituation eine Situation der nachfolgenden Liste, umfassend: Spannungseinbruch, Spannungsausfall, transienter Vorgang, System Split, Un- terfrequenz, Überfrequenz. Gleichwohl das erfindungsgemäße Verfahren für sämtliche Netzzustände des elektrischen Verteilnetzes geeignet ist, also bspw. dem sicheren Netzzustand, wird insbesondere vorgeschlagen, das Verfahren bei kritischen Netzzuständen bzw. Netzsituationen zu verwenden, also jene, bei denen ein hohes Eintrittsrisiko für weitreichende Stromausfälle besteht und unmittelbar Handlungen, wie beispielsweise das Trennen des elektrischen Verteilnet- zes in einzelne Teilnetze, nötig sind, bspw. dem sogenannten System Split.
Beispiele hierfür sind der Spannungseinbruch, also wenn die Netzspannung des elektrischen Verteilnetzes weniger als 0,9 p.u. der Netznennspannung beträgt, der Spannungsausfall, also wenn die Netzspannung des elektrischen Verteilnetzes weniger als 0, 1 p.u. der Netzspannung beträgt, der transiente Vorgang, also ein instationärer bzw. instabiler Netzvorgang, die Unterfrequenz, also insbesondere, wenn die Netzfrequenz unterhalb von 0,98 p.u. der Netznennfrequenz liegt, oder die Überfrequenz, also insbesondere, wenn die Netzfrequenz oberhalb von 1 ,02 p.u. der Netznennfrequenz liegt.
Insbesondere umfasst eine kritische Netzsituation auch, dass etwaige Märkte, wie bspw. der Markt für Regelleistung, deaktiviert bzw. ausgeschaltet sind, d.h. insbesondere das etwaiger Stromhandel keinen Einfluss mehr auf die Leistungserzeugung und die Leistungssteuerung innerhalb des elektrischen Verteilnetzes bzw. der Regelzone hat.
Auch denkbar ist, dass andere Kriterien Anwendung finden, bzw. die Netzleitstelle entscheidet, dass ein kritischer Zustand eingetreten ist oder auch zu erwarten ist. Beispielsweise kann dies durch Wetterlagen, ausgefallene Leitungen, ausgefallene Kraftwerke oder auch überlastete Betriebsmittel ausgelöst werden.
Vorzugsweise erfolgt das Steuern des elektrischen Verteilnetzes, um eine stabile Spannung in der Regelzone zu erzeugen, die zwischen 90 und 1 10 Prozent bzw. 0,9 und 1 , 1 p.u. der Netznennspannung liegt.
Es wird somit ferner insbesondere vorgeschlagen, das Windkraftwerk so zu steuern, dass das elektrische Verteilnetz bzw. das Regelgibt eine stabile Spannung aufweist.
Vorzugsweise weist das Windkraftwerk wenigstens eine Nennleistung von 100 MW, bevorzugt von 200 MW, weiter bevorzugt von 400 MW, auf und/oder das Windkraftwerk weist wenigstens eine prognostizierte Ist-Leistung von 40 MW, bevorzugt von 80 MW, weiter bevorzugt von 160 MW, auf. Es wird somit insbesondere vorgeschlagen, dass die Windparks so zusammengefasst werden, dass das Windkraftwerk eine gewisse Größe aufweist.
Hierdurch hat das erfindungsgemäße Verfahren insbesondere einen größeren Einfluss auf das Systemverhalten des elektrischen Verteilnetzes bzw. des Regelgebietes.
Vorzugsweise ist ein Windpark des Windkraftwerks von einem anderen Windpark des Windkraftwerks höchstens 100 km Leitungslänge entfernt, wobei die Windparks hierbei bevorzugt galvanisch miteinander verbunden sind, bzw. sich im gleichen Regelgebiet befinden, bzw. an die gleiche übergeordnete Netzebene angeschlossen sind. Es wird somit insbesondere vorgeschlagen, das Windkraftwerk regional zu begrenzen.
Hierdurch haben etwaige Verluste zwischen den einzelnen Windkraftwerken einen geringeren Einfluss auf die Steuerbarkeit des Windkraftwerks.
Sofern das elektrische Verteilnetz größere Ausmaße aufweist, als bspw. 100 km Leitungslänge, wird ferner vorgeschlagen, das elektrische Verteilnetz mit mehreren Regelgebieten, wie vorstehend oder nachstehend beschrieben, zu steuern.
Vorzugsweise werden die verfügbaren Leistungen in Abhängigkeit wenigstens einer Wetterprognose berechnet, insbesondere unter Verwendung eines Risikofaktors kleiner als 1 , bevorzugt unter Verwendung einer Wahrscheinlichkeitsverteilung.
Es wird somit insbesondere vorgeschlagen, dass die verfügbaren Leistungen in Abhängig- keit einer Wetterprognose und bevorzugt eines Risikofaktors, von bspw. 0,95, oder unter Verwendung einer Wahrscheinlichkeitsverteilung bestimmt werden. Dazu kann bspw. eine Wahrscheinlichkeitsverteilung der Wetterprognose verwendet oder ein fester Wahrscheinlichkeitstrichter angenommen werden.
Es wird also insbesondere vorgeschlagen, eine Leistung aus einer Prognose und der Wahrscheinlichkeitsverteilung zu berechnen, die zu 95 % über einen Zeitraum von z.B. 15 Minuten zur Verfügung steht.
Außerdem oder alternativ wird zudem ein Risikofaktor verwendet. Die Windparks erstellen also bspw. in Abhängigkeit einer Wetterprognose eine verfügbare Leistung für einen vorbestimmten Zeitraum, bspw. 50 Prozent der Windparknennleistung für die nächsten 2 Stunden. Anschließend wird dieser Wert mit einem Risikofaktor beaufschlagt, also in diesem Falle 50 mal 0,95. Demnach wird dem Netzbetreiber 47,5 Prozent der Windparknennleistung für die nächsten 2 Stunden gemeldet, also bei einem 10 MW Windpark 4,75 MW für die nächsten 2 Stunden.
Vorzugsweise erfolgt das Zusammenfassen bzw. die entsprechende Auswahl der Windparks zu dem Windkraftwerk wenigstens in Abhängigkeit eines Regelgebietszustandes und/oder einer Regelgebietsgröße und/oder einer aktuellen Regelgebietslast und/oder einem Ort des Regelknotens. Es wird somit insbesondere vorgeschlagen, dass das Zusammenfassen der Windparks zu dem Windkraftwerk nicht nur in Abhängigkeit der verfügbaren Leistung erfolgt, sondern dass auch Eigenschaften des Regelgebietes und/oder der Ort des Regelknotens berücksichtigt werden.
Vorzugsweise richtet sich auch die Anzahl der Windparks, die zu dem Windkraftwerk zu- sammengefasst werden, nach einem Regelgebietszustand und/oder einer Regelgebietsgröße und/oder einer aktuellen Regelgebietslast und/oder einem Ort des Regelknotens und in Abhängigkeit einer Windkraftwerksnennleistung.
Es wird somit insbesondere auch vorgeschlagen, dass die Anzahl der Windparks, die das Windkraftwerk ausbilden, sich nach den Eigenschaften des Regelgebietes richtet. So kann es bspw. in einigen Fällen vorteilhaft sein, dass bspw. zwei 50 MW Windparks zu dem Windkraftwerk zusammengefasst werden und in anderen Fällen, dass vier 25 MW Windparks zusammengefasst werden.
Vorzugsweise werden zum Steuern des Windkraftwerks Sollwerte vorgeben, insbesondere durch den Netzbetreiber, umfassend eine Wirkleistung und/oder eine Blindleistung und/0- der eine Sollfrequenz und/oder eine Wirkleistungs-Frequenz-Statik und/oder eine Sollspannung und/oder einer Blindleistungs-Spannungs-Statik.
Es wird somit insbesondere vorgeschlagen, dass das Windkraftwerk durch vorstehend o- der nachstehend beschriebene Sollwerte gesteuert wird, insbesondere durch den Netzbetreiber, bspw. mittels einer Netzleitstelle, die mit einem Windkraftwerksregler verbunden ist.
Erfindungsgemäß wird ferner ein Windpark mit einer Windparksteuereinheit vorgeschlagen, die dazu eingerichtet ist, an einem vorstehend oder nachstehend beschriebenen Verfahren zum Steuern eines elektrischen Verteilnetzes teilzunehmen.
Erfindungsgemäß wird zudem eine Windenergieanlage eines solchen Windparks vorge- schlagen.
Die vorliegende Erfindung wird nun nachfolgend exemplarisch und anhand von Ausführungsbeispielen unter Bezugnahme auf die begleitenden Figuren näher erläutert, wobei für ähnliche oder funktionsgleiche Komponenten dieselben Bezugszeichen verwendet werden. Fig. 1 zeigt eine schematische Ansicht einer erfindungsgemäßen Windenergieanlage eines erfindungsgemäßen Windparks in einer Ausführungsform,
Fig. 2 zeigt einen schematischen Aufbau eines erfindungsgemäßen Windparks in einer Ausführungsform,
Fig. 3 zeigt einen schematischen Ablauf eines erfindungsgemäßen Verfahrens in einer Ausführungsform,
Fig. 4A zeigt schematisch ein Regelgebiet eines elektrischen Verteilnetzes,
Fig. 4B zeigt einen Aufbau des Windkraftwerks in einem elektrischen Verteilnetz, insbesondere ein Abfragen verfügbarer Leistungen der Windparks,
Fig. 4C zeigt einen Aufbau des Windkraftwerks in einem elektrischen Verteilnetz, insbesondere ein Festlegen eines Regelknotens, und
Fig. 4D zeigt einen Aufbau des Windkraftwerks in einem elektrischen Verteilnetz, insbesondere ein Zusammenfassen von Windparks zu einem Windkraftwerk und anschließendes Steuern.
Fig. 1 zeigt eine Windenergieanlage 100 eines erfindungsgemäßen Windparks. Die Windenergieanlage 100 weist hierzu einen Turm 102 und eine Gondel 104 auf. An der Gondel 104 ist aerodynamischer Rotor 106 mit drei Rotorblättern 108 und einem Spinner 1 10 angeordnet. Der Rotor 106 wird im Betrieb durch den Wind in eine Drehbewegung versetzt und treibt dadurch einen Generator in der Gondel 104 an. Der Generator erzeugt hierdurch einen Strom, der mittels eines Vollumrichters auf einen Windenergieanlagen- transformator gegeben wird, der mit einem Windparknetz verbunden ist.
Fig. 2 zeigt einen schematischen Aufbau eines erfindungsgemäßen Windparks 1000 in einer Ausführungsform.
Der Windpark 1000 umfasst eine Vielzahl von Windenergieanlagen 1100, wie bspw. in Fig. 1 gezeigt, die über ein gemeinsames Windparknetz 1200 miteinander verbunden sind.
Das Windparknetz 1200 ist mittels eines Windparktransformators 1300 an ein elektrisches Verteilnetz 2000 angeschlossen, um eine elektrische Windparkleistung Ppark einzuspeisen, welche sich aus einer Summe der einzelnen elektrischen Windenergieanlagenleistungen P wea zusammensetzt.
Ferner weist der Windpark 1000 eine Windparksteuereinheit 1400 zum Steuern des Windparks 1000 auf.
Die Windparksteuereinheit 1400 umfasst eine Windkraftwerksschnittstelle 1410, eine Netz- betreiberschnittsteile 1420 und eine Windenergieanlagenschnittstelle 1430.
Die Windkraftwerksschnittstelle 1410 ist wenigstens dazu eingerichtet, Sollwerte SWPP von einer Windkraftwerkssteuereinheit 3000 zu empfangen.
Die Netzbetreiberschnittstelle 1420 ist wenigstens dazu eingerichtet, Sollwerte SGO von einer Netzleitstelle 4000, insbesondere des Netzbetreibers, zu empfangen und eine ver- fügbare Leistung Pavaii , insbesondere in Abhängigkeit einer Wetterprognose, an die Netzleitstelle 4000 zu übergeben.
Die Windenergieanlagenschnittstelle 1430 ist dazu eingerichtet, den Windenergieanlagen 1 100 des Windparks 1000 Sollwerte SWF ZU übermitteln, bspw. Wirkleistungssollwerte, um den Windpark 1000 und insbesondere die elektrische Windparkleistung Ppark zu steuern. Hierfür weisen die Windenergieanlagen 1100 jeweils wenigstens eine Windenergieanlagensteuereinheit 1 180 auf, die die Sollwerte SWF der Windparksteuereinheit 1400 empfangen und dazu eingerichtet sind, wenigstens mit einem Betriebsparametersatz betrieben zu werden.
Bevorzugt weist die Windparksteuereinheit 1400 zudem eine Netzüberwachung 1440 auf, die dazu eingerichtet ist, wenigstens eine Netzgröße, wie bspw. die Netzspannung Ugrid, zu erfassen.
Fig. 3 zeigt einen schematischen Ablauf eines erfindungsgemäßen Verfahrens 5000 zum Steuern eines elektrischen Verteilnetzes, insbesondere wie nachstehend in den Figuren 4A bis 4D gezeigt.
In einem ersten Schritt 5100 fragt die Netzleitstelle die verfügbaren Leistungen Pavaii der Windparks ab.
Anschließend wird in einem nächsten Schritt 5100 in Abhängigkeit der abgefragten verfügbaren Leistungen Pavaii ein Regelknoten SLACK innerhalb des Regelgebietes, insbesondere vom Netzbetreiber, festgelegt.
In einem weiteren Schritt 5200 wird dann eine Anzahl von Windparks an dem berechneten Regelknoten SLACK zu einem Windkraftwerk WPP zusammengefasst.
Es wird also insbesondere vorgeschlagen, dass sowohl der Regelknoten SLACK als auch die Leistung des Windkraftwerks WPP durch den Netzbetreiber erfolgt.
Anschließend wird das Windkraftwerk WPP mittels einer Windkraftwerkssteuereinheit so gesteuert, dass eine benötigte Spannungsqualität und/oder eine Frequenzstabilität und/o- der eine unterbrechungsfreie Verfügbarkeit im Regelgebiet bereitgestellt wird.
Die Windkraftwerkssteuereinheit macht also aus den zusammengefassten Windparks ein Windkraftwerk, insbesondere mittels eines Windkraftwerksreglers. Bevorzugt sind hierfür Prüf- und Rückmeldeinstanzen innerhalb der Windkraftwerksregelung vorgesehen, die angeben, ob das Windkraftwerk mit den geforderten Angaben überhaupt ordnungsgemäß betreibbar ist. Besonders bevorzugt sind die Prüf- und Rückmeldeinstanzen onlinebasiert ausgeführt.
Fig. 4A zeigt schematisch ein Regelgebiet 6000 eines elektrischen Verteilnetzes, wobei das elektrische Verteilnetz eine Netzleitstelle 6100 zum Steuern des elektrischen Verteilnetzes aufweist. Das Regelgebiet 6000 umfasst eine Vielzahl von Verbrauchern Zi , Z2, Z3, Z4, Erzeugern G1 , G2 und Windparks WF1 , WF2, WF3, WF4, die über Stromleitungen Ci , C2, C3, C4, Cs miteinander verbunden sind.
Das Regelgebiet 6000 ist somit ein Teil des elektrischen Verteilnetzes bzw. kann auch das gesamte elektrische Verteilnetz sein. Sofern das Regelgebiet nur ein Teil des elektrischen Verteilnetzes ist, weist das Regelgebiet bspw. weitere Stromleitungen C6, C7, Cs zu anderen Teilen des elektrischen Verteilnetzes auf. Die Erzeuger G1 , G2 sind bspw. konventionelle Kraftwerke, wie bspw. Kohlekraftwerke.
Die Verbraucher Z1 , Z2, Z3, Z4 sind bspw. Industriegebäude, Wohnhäuser und dergleichen.
Die Windparks WF1, WF2, WF3, WF4 sind bevorzugt Windparks, wie bspw. in Fig. 2 gezeigt, wobei die Windparks WF1, WF2, WF3, WF4 örtlich voneinander getrennt sind.
Um den Lastfluss im bzw. das elektrische Verteilnetz zu steuern, ist die Netzleitstelle mit den Erzeugern, also den Erzeugern G1 , G2 und den Windparks WF1 , WF2, WF3, WF4, signalleitend durch die Signalleitungen Li , L2, L3, L4, Ls, L6 verbunden, insbesondere, um Sollwerte und verfügbare Leistungen auszutauschen.
Um das vorstehend oder nachstehend beschriebene Verfahren auszuführen, umfasst die Netzleitstelle 6100 ferner eine Windkraftwerkssteuereinheit 6200, die mittels der Signallei- tungen Li , L2, L3, L4 mit den Windparks WF1 , WF2, WF3, WF4 des Regelgebietes verbunden ist.
Fig. 4B zeigt einen Aufbau des Windkraftwerks in einem elektrischen Verteilnetz, wie insbesondere in Fig. 4A gezeigt, insbesondere ein Abfragen verfügbarer Leistungen der Windparks, insbesondere wie in Fig.3 mit Verfahrensschritt 5100 gezeigt. In dem Regelgebiet liegt exemplarisch eine Störung F auf der Stromleitung C4 vor, die eine kritische Netzsituation im elektrischen Verteilnetz hervorruft.
Hieraufhin aktiviert die Netzleitstelle 6100 die Windkraftwerkssteuereinheit 6200, die bei den Windparks WF1 , WF2, WF3, WF4 des Regelgebiets 6000 über die Signalleitungen Li , L2, L3, L4 die verfügbare Leistung Pavaii abfragt. Die Windparks WF1 , WF2, WF3, WF4 melden daraufhin ihre verfügbare Leistung über die Signalleitungen Li , L2, L3, L4 an die Windkraftwerkssteuereinheit 6200.
Fig. 4C zeigt einen Aufbau des Windkraftwerks in einem elektrischen Verteilnetz, wie insbesondere in Fig. 4A gezeigt, insbesondere ein Festlegen eines Regelknotens SLACK, insbesondere wie in Fig. 3 mit Verfahrensschritt 5200 gezeigt.
Nachdem die Windkraftwerkssteuereinheit 6200 die verfügbaren Leistungen Pavaii der Windparks WFi , WF2, WF3, WF4 erhalten hat, berechnet die Windkraftwerksteuereinheit 6200 in Abhängigkeit der verfügbaren Leistungen einen Regelknoten SLACK.
Fig. 4D zeigt einen Aufbau des Windkraftwerks in einem elektrischen Verteilnetz, wie insbesondere in Fig. 4A gezeigt, insbesondere ein Zusammenfassen von Windparks WF1, WF2, WF4 zu einem Windkraftwerk WPP und anschließendes Steuern des Windkraftwerks WPP durch Sollwerte SwPP, insbesondere wie in Fig. 3 mit Verfahrensschritten 5300 und 5400 gezeigt.
Nachdem die Windkraftwerkssteuereinheit 6200 den Regelknoten SLACK berechnet und festgelegt hat, werden die Windparks WF1 , WF2, WF4 zu einer funktionalen Einheit dynamisch zusammengefasst und durch die Windkraftwerkssteuereinheit 6200 gesteuert. Die Windparks WF1 , WF2, WF4, die Windkraftwerkssteuereinheit 6200 und der Regelknoten bilden somit in Bezug auf das Regelgebiet das, insbesondere ein virtuelles, Windkraftwerk aus.
Die Struktur dieses Windkraftwerks WPP ist dabei dynamisch, d.h. im Laufe des erfindungsgemäßen Verfahrens können weitere Windparks WF4 zum Windkraftwerk hinzukom- men oder Windparks WF1 , WF2, WF4 des Windkraftwerkes aus dem Windkraftwerk WPP ausscheiden.
Claims
1. Verfahren zum Steuern eines elektrischen Verteilnetzes mit einer Netznennspannung, insbesondere in einer kritischen Netzsituation, wobei
eine Netzleitstelle zum Steuern des elektrischen Verteilnetzes vorgesehen ist und
das elektrische Verteilnetz wenigstens ein Regelgebiet aufweist, welches mehrere voneinander örtlich getrennte Windparks umfasst,
umfassend die Schritte:
Abfragen verfügbarer Leistungen der Windparks, insbesondere in Abhängig- keit einer Wetterprognose;
Festlegen eines Regelknotens innerhalb des Regelgebietes, insbesondere in Abhängigkeit der abgefragten verfügbaren Leistungen, bevorzugt durch den Netzbetreiber;
Zusammenfassen, insbesondere dynamisches Zusammenfassen, einer Anzahl von Windparks an dem berechneten Regelknoten zu einem Windkraftwerk in Abhängigkeit der abgefragten verfügbaren Leistungen und/ oder einer Wahrscheinlichkeitsverteilung der verfügbaren Leistung;
Steuern des Windkraftwerks, insbesondere durch die Netzleitstelle, mittels einer Windkraftwerkssteuereinheit, so, dass eine benötigte Spannungsqualität und/oder eine Frequenzstabilität und/oder eine unterbrechungsfreie Verfügbarkeit im Regelgebiet bereitgestellt wird.
2. Verfahren nach Anspruch 1 , wobei
das Zusammenfassen der Anzahl von Windparks in Abhängigkeit einer vorgegebenen Mindestleistung mit einer Mindestverfügbarkeit erfolgt, bevorzugt wobei die vorgegebene Mindestleistung von einer Größe des Regelgebietes abhängt.
3. Verfahren nach Anspruch 1 oder 2, wobei
das Festlegen des Regelknotens und außerdem oder alternativ das Zusammenfassen der Anzahl von Windparks an dem berechneten Regelknoten zu dem Windkraftwerk dynamisch erfolgt.
4. Verfahren nach einem der vorstehenden Ansprüche, wobei eine kritische Netzsituation eine Situation der nachfolgenden Liste ist, umfassend:
a) Spannungseinbruch,
b) Spannungsausfall,
c) transienter Vorgang,
d) System Split,
e) Unterfrequenz,
f) Überfrequenz.
g) Festlegung durch Personal in der Netzleitstelle
5. Verfahren nach einem der vorstehenden Ansprüche, wobei
das Steuern des elektrischen Verteilnetzes erfolgt, um eine stabile Spannung in der Regelzone zu erzeugen, die zwischen 90 und 1 10 Prozent der Netz- nennspannung liegt.
6. Verfahren nach einem der vorstehenden Ansprüche, wobei
das Windkraftwerk wenigstens eine Nennleistung von 250 MW, bevorzugt von 500 MW, weiter bevorzugt von 1000 MW, aufweist und/oder
das Windkraftwerk wenigstens eine prognostizierte Ist-Leistung von 100 MW, bevorzugt von 200 MW, weiter bevorzugt von 500 MW, aufweist.
7. Verfahren nach einem der vorstehenden Ansprüche, wobei
ein Windpark des Windkraftwerks von einem anderen Windpark des Windkraftwerks höchstens 100 km Leitungslänge entfernt ist.
8. Verfahren nach einem der vorstehenden Ansprüche, wobei
das Abfragen der verfügbaren Leistung an den Windparks erfolgt.
9. Verfahren nach einem der vorstehenden Ansprüche, wobei
die verfügbaren Leistungen in Abhängigkeit wenigstens einer Wetterprognose berechnet werden, insbesondere unter Verwendung eines Risikofaktors kleiner als 1 , bevorzugt unter Verwendung einer Wahrscheinlichkeitsverteilung.
10. Verfahren nach einem der vorstehenden Ansprüche, wobei
das Zusammenfassen bzw. die entsprechende Auswahl der Windparks zu dem Windkraftwerk wenigstens in Abhängigkeit eines der nachfolgenden Liste erfolgt, umfassend:
a) eines Regelgebietszustandes,
b) einer Regelgebietsgröße,
c) einer aktuellen Regelgebietslast,
d) einem Ort des Regelknotens.
11. Verfahren nach einem der vorstehenden Ansprüche, wobei
die Anzahl der Windparks wenigstens in Abhängigkeit eines der nachfolgenden Liste erfolgt, umfassend:
a) eines Regelgebietszustandes,
b) einer Regelgebietsgröße,
c) einer aktuellen Regelgebietslast,
d) einem Ort des Regelknotens.
und in Abhängigkeit einer Windkraftwerksnennleistung.
12. Verfahren nach einem der vorstehenden Ansprüche, wobei
zum Steuern des Windkraftwerks Sollwerte vorgeben werden, wenigstens einer der nachfolgenden Liste umfassend:
a) Wirkleistung,
b) Blindleistung,
c) Sollfrequenz,
d) eine Wirkleistungs-Frequenz-Statik,
e) Sollspannung,
f) eine Blindleistungs-Spannungs-Statik.
13. Windpark mit einer Steuereinheit, die dazu eingerichtet ist, Sollwerte zu empfangen, um an einem Verfahren nach einem der Ansprüche 1 bis 12 teilzunehmen.
14. Windenergieanlage eines Windparks nach Anspruch 13.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3113388A CA3113388C (en) | 2018-10-15 | 2019-10-14 | Dynamic wind-energy plant |
EP19787239.3A EP3867989A1 (de) | 2018-10-15 | 2019-10-14 | Dynamisches windkraftwerk |
US17/285,296 US20210301786A1 (en) | 2018-10-15 | 2019-10-14 | Dynamic wind-energy plant |
CN201980067755.4A CN112889196A (zh) | 2018-10-15 | 2019-10-14 | 动态风力发电站 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018125529.2 | 2018-10-15 | ||
DE102018125529.2A DE102018125529A1 (de) | 2018-10-15 | 2018-10-15 | Dynamisches Windkraftwerk |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020078876A1 true WO2020078876A1 (de) | 2020-04-23 |
Family
ID=68242694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/077731 WO2020078876A1 (de) | 2018-10-15 | 2019-10-14 | Dynamisches windkraftwerk |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210301786A1 (de) |
EP (1) | EP3867989A1 (de) |
CN (1) | CN112889196A (de) |
CA (1) | CA3113388C (de) |
DE (1) | DE102018125529A1 (de) |
WO (1) | WO2020078876A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4007111A1 (de) * | 2020-11-30 | 2022-06-01 | Wobben Properties GmbH | Verfahren zum dynamischen clustern von elektrischen anlagen, insbesondere zur erbringung von systemdienstleistungen |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003030329A1 (de) * | 2001-09-28 | 2003-04-10 | Aloys Wobben | Verfahren zum betrieb eines windparks |
DE102012210613A1 (de) * | 2012-06-22 | 2013-12-24 | Repower Systems Se | Windpark mit mehreren Netzeinspeisepunkten |
DE102013222277A1 (de) | 2013-03-15 | 2014-09-18 | Cbb Software Gmbh | Steuerung von dezentralen Energieerzeugern und/oder Verbrauchern in einem elektrischen Verbundnetz |
US20150003945A1 (en) | 2013-06-27 | 2015-01-01 | Denso Wave Incorporated | Industrial robot provided with horizontal multistage telescopic device |
WO2016120240A1 (de) | 2015-01-29 | 2016-08-04 | Siemens Aktiengesellschaft | Verfahren zur verbesserung der auslastung eines niederspannungsnetzes |
DE102015102430A1 (de) | 2015-02-20 | 2016-08-25 | Alpiq Intec Ag | Autonom und kooperativ gesteuertes Energieeinspeisen in einem virtuellen Kraftwerk |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020084655A1 (en) * | 2000-12-29 | 2002-07-04 | Abb Research Ltd. | System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility |
BRPI0717267A2 (pt) * | 2006-10-02 | 2015-02-03 | Vestas Wind Sys As | Método para operar uma turbina eólica conectada a uma rede de distribuição de energia elétrica durante uma perturbação na rede de distribuição de energia elétrica, turbina eólica conectada a uma rede de distribuição de energia elétrica durante uma perturbação da rede de distribuição de energia elétrica, e parque de turbinas eólicas |
DE102008039429A1 (de) * | 2008-08-23 | 2010-02-25 | DeWind, Inc. (n.d.Ges.d. Staates Nevada), Irvine | Verfahren zur Regelung eines Windparks |
DE102013208474A1 (de) * | 2013-05-08 | 2014-11-13 | Wobben Properties Gmbh | Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz |
US9733623B2 (en) * | 2013-07-31 | 2017-08-15 | Abb Research Ltd. | Microgrid energy management system and method for controlling operation of a microgrid |
EP2940824B1 (de) * | 2014-04-29 | 2022-11-23 | General Electric Technology GmbH | Verbesserungen an oder im zusammenhang mit zwischenkreisumrichtern |
DE102016105662A1 (de) * | 2016-03-29 | 2017-10-05 | Wobben Properties Gmbh | Verfahren zum Einspeisen elektrischer Leistung in ein elektrisches Versorgungsnetz mit einem Windpark sowie Windpark |
CN107332241B (zh) * | 2017-08-30 | 2020-02-18 | 国家电网公司 | 用于评估含分布式新能源配电网可靠性的方法及系统 |
-
2018
- 2018-10-15 DE DE102018125529.2A patent/DE102018125529A1/de active Pending
-
2019
- 2019-10-14 WO PCT/EP2019/077731 patent/WO2020078876A1/de unknown
- 2019-10-14 EP EP19787239.3A patent/EP3867989A1/de active Pending
- 2019-10-14 US US17/285,296 patent/US20210301786A1/en active Pending
- 2019-10-14 CA CA3113388A patent/CA3113388C/en active Active
- 2019-10-14 CN CN201980067755.4A patent/CN112889196A/zh not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003030329A1 (de) * | 2001-09-28 | 2003-04-10 | Aloys Wobben | Verfahren zum betrieb eines windparks |
DE102012210613A1 (de) * | 2012-06-22 | 2013-12-24 | Repower Systems Se | Windpark mit mehreren Netzeinspeisepunkten |
DE102013222277A1 (de) | 2013-03-15 | 2014-09-18 | Cbb Software Gmbh | Steuerung von dezentralen Energieerzeugern und/oder Verbrauchern in einem elektrischen Verbundnetz |
US20150003945A1 (en) | 2013-06-27 | 2015-01-01 | Denso Wave Incorporated | Industrial robot provided with horizontal multistage telescopic device |
WO2016120240A1 (de) | 2015-01-29 | 2016-08-04 | Siemens Aktiengesellschaft | Verfahren zur verbesserung der auslastung eines niederspannungsnetzes |
DE102015102430A1 (de) | 2015-02-20 | 2016-08-25 | Alpiq Intec Ag | Autonom und kooperativ gesteuertes Energieeinspeisen in einem virtuellen Kraftwerk |
Also Published As
Publication number | Publication date |
---|---|
CN112889196A (zh) | 2021-06-01 |
CA3113388C (en) | 2023-07-18 |
DE102018125529A1 (de) | 2020-04-16 |
EP3867989A1 (de) | 2021-08-25 |
CA3113388A1 (en) | 2020-04-23 |
US20210301786A1 (en) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2826121B1 (de) | Verfahren zum steuern einer anordnung zum einspeisen elektrischen stroms in ein versorgungsnetz | |
EP3639338A1 (de) | Windenergieanlage oder windpark zum einspeisen elektrischer leistung | |
EP3008334B1 (de) | Verfahren zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz | |
EP3563462B1 (de) | Verfahren zum steuern eines elektrischen verteilnetzes | |
WO2014009223A2 (de) | Verfahren zum steuern eines elektrischen erzeugers | |
EP3280021B1 (de) | Verfahren zum regeln der blindleistungsabgabe eines windparks sowie ein entsprechender windpark | |
DE102017112491A1 (de) | Verfahren zum Betreiben eines Windparks | |
DE102017106338A1 (de) | Verfahren zum Starten eines Energieerzeugungsnetzes | |
DE102017112936A1 (de) | Verfahren zum Einspeisen elektrischer Leistung mittels einer umrichtergeführten Erzeugungseinheit, insbesondere Windenergieanlage | |
EP3872947A1 (de) | Verfahren zum einspeisen elektrischer leistung mittels eines windenergiesystems | |
WO2012037989A2 (de) | Verfahren zur rechnergestützten regelung der elektrischen energieverteilung in einem dezentralen energienetz | |
EP3754178B1 (de) | Verfahren zum betreiben eines windparks | |
EP3867988A1 (de) | Störfallregelung für einen windpark mit prioritisierung der externen sollwertvorgaben | |
EP3867989A1 (de) | Dynamisches windkraftwerk | |
EP4024646A1 (de) | Verfahren zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz | |
EP4037134A1 (de) | Untererregungsschutz für nahegelegene, konventionelle kraftwerke durch windenergieanlagen | |
EP3984111A1 (de) | Verfahren zum stabilisieren eines elektrischen versorgungsnetzes | |
EP4022734A1 (de) | Verfahren zur regelung von elektrischen leistungsflüssen | |
DE102019116277A1 (de) | Dual Purpose Converter | |
EP4022731B1 (de) | Verfahren zum betreiben einer elektrischen speicherstation | |
EP3829017A1 (de) | Verfahren zum bereitstellen einer angeforderten wirkleistung | |
EP4002632A1 (de) | Verfahren zur bereitstellung von blindleistung | |
EP4007111A1 (de) | Verfahren zum dynamischen clustern von elektrischen anlagen, insbesondere zur erbringung von systemdienstleistungen | |
EP4024647A1 (de) | Verfahren zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz | |
EP4007105A1 (de) | Verfahren zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19787239 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3113388 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019787239 Country of ref document: EP Effective date: 20210517 |