Nothing Special   »   [go: up one dir, main page]

WO2020071035A1 - ステータ及びそれを用いたモータ - Google Patents

ステータ及びそれを用いたモータ

Info

Publication number
WO2020071035A1
WO2020071035A1 PCT/JP2019/034631 JP2019034631W WO2020071035A1 WO 2020071035 A1 WO2020071035 A1 WO 2020071035A1 JP 2019034631 W JP2019034631 W JP 2019034631W WO 2020071035 A1 WO2020071035 A1 WO 2020071035A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
stator
teeth
height
turns
Prior art date
Application number
PCT/JP2019/034631
Other languages
English (en)
French (fr)
Inventor
慶一郎 額田
俊幸 玉村
裕也 前田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP19869430.9A priority Critical patent/EP3863154A4/en
Priority to US17/273,223 priority patent/US12095325B2/en
Priority to CN201980064314.9A priority patent/CN112771764B/zh
Priority to JP2020550217A priority patent/JP7523095B2/ja
Publication of WO2020071035A1 publication Critical patent/WO2020071035A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator and a motor using the stator.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a stator having a reduced coil end height and a motor using the same.
  • a stator is a stator including at least an annular yoke, teeth connected to the yoke, and a plate-shaped conductive wire, and a coil attached to the teeth.
  • the coil has a first terminal portion, a winding portion electrically connected to the first terminal portion, and a second terminal portion electrically connected to the winding portion.
  • the winding portion is wound around the teeth by n turns (n is an integer of 2 or more), and along the axial end surface of the teeth at the k-th turn (k is an integer 1 ⁇ k ⁇ n) of the coil.
  • Ak is the height of the first portion in the axial direction
  • Bk is the circumferential width of the second portion extending from the end of the first portion and extending along the circumferential end surface of the tooth. Is satisfied.
  • the axial height of the first portion corresponding to the coil end can be reduced, and the size of the stator can be reduced. Further, the heat radiation from the coil is not reduced, and the heat radiation performance of the stator can be maintained.
  • the motor according to the present invention is characterized by including at least the stator and a rotor provided at a predetermined distance from the stator.
  • the height of the stator can be reduced, and the size of the motor can be reduced.
  • the height of the coil end can be reduced, and the size of the stator can be reduced. Further, the heat radiation performance of the stator can be maintained. According to the motor of the present invention, the height of the stator can be reduced, and the size of the motor can be reduced.
  • FIG. 1 is a sectional view of the motor according to the first embodiment of the present invention.
  • FIG. 2 is a schematic view of the k-th turn of the coil viewed from the radial direction.
  • FIG. 3A is a perspective view of a coil wound around a tooth.
  • FIG. 3B is a sectional view taken along line IIIB-IIIB in FIG. 3A.
  • FIG. 3C is a sectional view taken along line IIIC-IIIC in FIG. 3A.
  • FIG. 4A is a perspective view of a coil wound around a tooth according to Embodiment 2 of the present invention.
  • FIG. 4B is a cross-sectional view taken along line IVB-IVB of FIG. 4A.
  • FIG. 4C is a cross-sectional view taken along line IVC-IVC of FIG. 4A.
  • FIG. 5 is a schematic cross-sectional view of a coil end according to a modification.
  • FIG. 1 is a sectional view of a motor according to the present embodiment.
  • the radial direction of the motor 1000 is referred to as “radial direction”
  • the outer peripheral direction is referred to as “peripheral direction”
  • the direction in which the output shaft 210 of the motor 1000 extends (the direction perpendicular to the plane of FIG. It may be called "direction”.
  • the center side of the motor 1000 may be referred to as a radially inner side
  • the outer peripheral side may be referred to as a radially outer side.
  • the motor 1000 has the stator 100 and the rotor 200. Although the motor 1000 has other components, for example, components such as a motor case and a bearing that supports the output shaft, illustration and description thereof are omitted for convenience of description.
  • the stator 100 is provided between an annular yoke 20, a plurality of teeth 10 connected to the inner circumference of the yoke 20 and provided at equal intervals along the inner circumference, and teeth 10 adjacent to each other in the circumferential direction. It has a slot 30 provided therein and a coil 40 housed in the slot 30, and is disposed radially outside of the rotor 200 with a certain distance from the rotor 200.
  • the teeth 10 and the yoke 20 are each formed by, for example, punching out an electromagnetic steel sheet containing silicon or the like after lamination.
  • the coil 40 is a component formed by winding a plate-shaped conductive wire made of copper or the like having a rectangular cross section into n turns (n is an integer of 2 or more), and attached to each of the plurality of teeth 10 with an insulator (not shown) interposed therebetween. And stored in the slot 30.
  • the coils may be referred to as coils U1 to U4, V1 to V4, and W1 to W4, respectively, according to the phase of the current flowing through the coil 40.
  • the coil 40 is wound around the teeth 10 in a concentrated manner.
  • the rotor 200 has an output shaft 210 arranged at the axis, and magnets facing the stator 100 and having N poles and S poles alternately arranged along the outer circumferential direction of the output shaft 210. Note that the material, shape, and material of the magnet can be appropriately changed according to the output of the motor 1000 and the like.
  • the coils U1 to U4, V1 to V4, and W1 to W4 are respectively connected in series, and three-phase currents of U, V, and W phases having a phase difference of 120 ° in electrical angle are applied to the coils U1 to U4, respectively.
  • V1 to V4 and W1 to W4 are supplied to and excited to generate a rotating magnetic field in the stator 100.
  • the rotating magnetic field interacts with the magnetic field generated by the magnet 220 provided on the rotor 200 to generate torque on the rotor 200, and the output shaft 210 rotates while being supported by a bearing (not shown).
  • FIG. 2 is a schematic diagram illustrating the k-th turn of the coil according to the present embodiment as viewed from the radial direction.
  • 3A is a perspective view of a coil wound around a tooth
  • FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB of FIG. 3A
  • FIG. 3C is a cross-sectional view taken along the line IIIC-IIIC of FIG. 3A.
  • the coil 40 is a component formed by winding a plate-shaped conductor wire n turns (n is an integer of 2 or more), and the first terminal portion 41 and the second terminal portion 42 And a winding part 43.
  • an insulating coating (not shown) is provided on the surface of the coil 40.
  • a portion of the winding portion 43 extending along the axial end surface of the tooth 10 corresponds to the coil end 44.
  • the first terminal portion 41 is located on the proximal end side of the tooth 10, and the second terminal portion 42 is located on the distal end side of the tooth 10, that is, the first terminal portion 41. It is located near the tip of the tooth 10.
  • the winding portion 43 is connected to the first terminal portion 41 at a first connection portion 41a, and is connected to the second terminal portion 42 at a second connection portion 42a. That is, the winding part 43 is electrically connected to the first terminal part 41 and the second terminal part 42.
  • the winding part 43 is wound around the teeth 10 by n turns from the first connection part 41a to the second connection part 42a.
  • the first terminal portion 41 and the second terminal portion 42 are respectively connected to a terminal portion of another coil 40 via an external power supply line (not shown), a neutral line, or a crossover line or a bus bar.
  • an external power supply line not shown
  • the first and second terminal portions 41 and 42 correspond to portions where both ends of the winding portion 43 are extended.
  • the first and second terminal portions 41 and 42 may be attached to both ends of the winding portion 43, in this case, by welding or the like, respectively, to the first connection portion 41a and the second connection portion 42a.
  • the k-th turn (k is an integer of 1 ⁇ k ⁇ n) of the coil 40 corresponds to the first portion k1 disposed along the axial end surface of the tooth 10.
  • a second portion located next to the first portion k1 from the first terminal portion 41 toward the second terminal portion 42, extending from an end of the first portion k1 and disposed along a circumferential end surface of the tooth.
  • k2 and the first portion k1 corresponds to a part of the coil end 44.
  • the first portion k1 is located in a region facing the teeth 10 in the axial direction
  • the second portion k2 is located at least in a region facing the teeth 10 in the direction perpendicular to the axial direction.
  • the relationship between the height Ak and the width Bk is Ak ⁇ Bk.
  • the coil 40 is configured to satisfy the following. Also, as shown in FIG. 3B, the coil 40 is configured such that the heights A1 to An have the same value in the first to nth turns, that is, A in this case. On the other hand, in the first to n-th turns, as shown in FIG. 3C, the widths B1 to Bn of the coil 40 become smaller radially inward, that is, closer to the distal end side of the teeth 10.
  • the widths B1 to Bn are distances from the surface of the insulator to the outer circumferential surface of the second portion k2.
  • the stator 100 includes at least an annular yoke 20, a tooth 10 connected to the yoke 20, and a coil 40 formed of a plate-like conductive wire and attached to the tooth 10.
  • the coil 40 is located closer to the distal end of the tooth 10 than the first terminal 41, the winding 43 electrically connected to the first terminal 41, and the winding 43.
  • a second terminal portion 42 electrically connected thereto, and the winding portion 43 is wound n turns (n is an integer of 2 or more) around the teeth.
  • the winding part 43 sets the axial height of the first portion k ⁇ b> 1 along the axial end surface of the tooth 10 to Ak,
  • the circumferential width of the second portion k2 along the circumferential end surface of the tooth 10 extending from the end of the first portion k1 and adjacent to the first portion k1 from the terminal portion 41 toward the second terminal portion 42 is reduced.
  • the height Ak of the first portion k1 corresponding to the coil end 44 can be reduced, and the size of the stator 100 can be reduced.
  • the first portion k1 is located in a region facing the teeth 10 in the axial direction
  • the second portion k2 is located at least in a region facing the teeth 10 in the direction perpendicular to the axial direction.
  • the space factor of the coil 40 accommodated in the slot 30 can be increased.
  • the size of the coil 40 can be reduced without greatly reducing the heat radiation performance of the coil 40. This will be further described.
  • the heat generated by the coil 40 accommodated in the slot 30 mainly propagates to the teeth 10, and further propagates to the yoke 20 via the teeth 10. Further, the heat is radiated from the motor housing (not shown) or the like to the air or to a separately provided heat radiation member.
  • the volume of the coil end 44 can be reduced and the amount of heat accumulated in the coil end 44 can be reduced.
  • the distance between the upper surface of the first portion k1 and the teeth 10 can be reduced, and the amount of heat transmitted from the coil end 44 to the teeth 10 and the yoke 20 can be increased.
  • the motor 1000 includes at least the stator 100 and the rotor 200 provided at a predetermined interval from the stator 100.
  • the height of the coil 40 and thus the height of the stator 100 can be reduced, and the size of the motor 1000 can be reduced. Further, the heat radiation performance of the motor 1000 equivalent to the conventional configuration can be realized.
  • FIG. 4A is a perspective view of a coil wound around a tooth according to the present embodiment
  • FIG. 4B is a cross-sectional view taken along line IVB-IVB of FIG. 4A
  • FIG. 4C is a cross-sectional view taken along line IVC-IVC of FIG. 4A.
  • the cross-sectional views of FIG. 4A to 4C, the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the coil 40 is configured such that the heights A1 to An of the first portion decrease as going from the first turn to the nth turn.
  • the rate of change of the cross-sectional area in other words, the rate of change of the current density, can be reduced in each turn.
  • the rate of change of the cross-sectional area in other words, the rate of change of the current density
  • the rate of change of the cross-sectional area in other words, the rate of change of the current density, is made constant in each turn.
  • the coil end 44 can be sufficiently lowered while securing the current density of the current flowing through the coil 40.
  • the coil 40 is configured so that the heights A1 to An of the first portion become lower as going from the first turn to the nth turn, and that the relationship of Amax ⁇ Bmin is not satisfied at the same time. Good. By satisfying any one of the relationships, an effect corresponding to each relationship can be obtained.
  • FIG. 5 is a schematic cross-sectional view of a coil end according to the present modification.
  • FIG. 5 corresponds to the cross section of the first portion k1 located on the upper side in the axial direction among the cross sections shown in FIGS. 3B and 4B.
  • the same parts as those in the first and second embodiments are denoted by the same reference numerals, and detailed description is omitted.
  • the configuration shown in the present modified example is different from the configuration shown in the first embodiment in that the height of the coil end 44 changes in the first to n-th turns.
  • the heights A1 to An may change, for example, as shown in FIG. 5A, or as shown in FIG. It may change. Alternatively, it may change as shown in FIG.
  • the shape of the coil end 44 located on the lower side in the axial direction may be as shown in FIG. Note that the heights A1 to An may change in the first to nth turns other than those shown in FIG.
  • the height Ak is higher than any one of the axial heights A1 to Ak-1 of the first portion in the first to (k-1) th turns and the (k + 1) to nth turns It is sufficient that the height of the coil end 44 is changed so as to be higher than any one of the axial heights Ak + 1 to An of the first portion in the above.
  • the height of the coil end 44 is set such that the height Ak is lower than any one of the heights A1 to Ak-1 and lower than any one of the heights Ak + 1 to An. It only has to change.
  • the concave portion and / or the convex portion are formed on the axial end surface of the coil end 44, that is, at least one of the upper surface and the lower surface.
  • the cooling efficiency of the stator 100 including the coil 40 can be improved, and the efficiency of the motor 1000 can be improved.
  • a liquid such as oil or water can be used as the refrigerant.
  • the minimum value Amin of the axial heights A1 to An of the first portion in the first to nth turns is a predetermined value such that the coil 40 is not disconnected due to Joule heat and the reliability is not reduced. It is preferable to make the height higher.
  • the configuration in which the plurality of teeth 10 are connected to the annular yoke 20 has been described as an example.
  • the present invention is not particularly limited to this, and one is provided for each of the divided yokes divided in the circumferential direction.
  • the teeth 100 may be connected to each other, and the stator 100 may be configured by connecting a plurality of divided yokes in the circumferential direction in this state.
  • the cross-sectional shape of the conductor forming the coil 40 may be trapezoidal, rectangular, or square, and may be n-sided (n is an integer of 4 or more).
  • the coil 40 is connected to the teeth 10 such that the first terminal 41 is located at the base end of the tooth 10 and the second terminal 42 is located at the tip of the tooth 10.
  • the positions of the first terminal portion 41 and the second terminal portion 42 are not particularly limited thereto.
  • the first terminal portion 41 may be located on the base end side of the tooth 10.
  • the second connection portion 42a is located on the tip side of the tooth 10.
  • the relationship between the height of the first portion k1 of the k-th turn and the width of the second portion k2 in the coil ends 44 located on the upper side and the lower side in the axial direction is Ak ⁇ Bk.
  • this relationship does not necessarily need to be satisfied by the coil ends 44 on both sides in the axial direction, and it is sufficient that at least one of the coil ends 44 satisfies the relationship Ak ⁇ Bk.
  • the stator of the present invention is useful when applied to a motor that requires miniaturization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

ステータ100は、ヨーク20と、ヨーク20と接続するティース10と、板状の導線からなり、ティース10に装着されたコイル40と、を備えている。コイル40は、巻線部43と第1端子部41及び第2端子部42とを有している。巻線部43はティース10にnターン(nは2以上の整数)巻回されている。巻線部43はコイル40の第kターン(kは整数で1≦k≦n)において、ティース10の軸方向端面に沿った第1部分k1の軸方向の高さをAkとし、第1部分k1の端部から延びてティース10の周方向端面に沿った第2部分k2の周方向の幅をBkとした場合、Ak<Bkの関係を満たしている。

Description

ステータ及びそれを用いたモータ
 本発明は、ステータ及びそれを用いたモータに関する。
 近年、産業、車載用途でモータの需要は高まっている。その中で、モータの小型化、効率向上が要望されている。
 モータの体積増加を抑制しつつ効率を向上させる手法の一つとして、ステータのスロット内に配置されるコイルの占積率を向上させることが知られている。コイルの占積率を向上させることで、モータの駆動時に、コイルに流れる電流に起因する損失を抑制できる。
 コイルの占積率を向上させる手法として、銅材を用いた鋳造コイルをスロット内に配置する構成が提案されている(例えば特許文献1参照)。また、この構成では、占積率を向上させるため、コイルの断面を四角形とし、かつその線径を太くしている。
独国特許出願公開第102012212637号明細書
 ところで、近年、車両や産業機器等に使用されるモータの個数が増大しており、個々のモータにおいてさらなる小型化が要求されている。
 しかし、特許文献1に示された従来の構成では、コイルの占積率を向上させるため、コイルの線径を太くしている。このため、コイルの軸方向端部、具体的には、スロットからモータの出力軸方向にはみ出た部分(以下、コイルエンドという)の高さも高くなってしまい、コイル、ひいてはモータを十分に小型化することは難しかった。
 本発明はかかる点に鑑みてなされたもので、その目的は、コイルエンドの高さを低減したステータ及びそれを用いたモータを提供することにある。
 上記目的を達成するために、本発明に係るステータは、環状のヨークと、該ヨークと接続するティースと、板状の導線からなり、前記ティースに装着されたコイルと、を少なくとも備えたステータであって、該コイルは、第1端子部と、前記第1端子部と電気的に接続する巻線部と、前記巻線部と電気的に接続する第2端子部と、を有し、前記巻線部は前記ティースにnターン(nは2以上の整数)巻回されており、前記コイルの第kターン(kは整数で1≦k≦n)において、前記ティースの軸方向端面に沿った第1部分の軸方向の高さをAkとし、前記第1部分の端部から延びて前記ティースの周方向端面に沿った第2部分の周方向の幅をBkとした場合、Ak<Bkの関係を満たすことを特徴とする。
 この構成によれば、コイルエンドに相当する第1部分の軸方向の高さを低くすることができ、ステータを小型化することができる。また、コイルからの放熱量が低減せず、ステータの放熱性能を維持できる。
 本発明に係るモータは、前記ステータと、前記ステータと所定の間隔をあけて設けられたロータと、を少なくとも備えたことを特徴とする。
 この構成によれば、ステータの高さを低減でき、モータの小型化が図れる。
 本発明のステータによれば、コイルエンドの高さを低くでき、ステータの小型化が図れる。また、ステータの放熱性能を維持できる。本発明のモータによれば、ステータの高さを低減でき、モータの小型化が図れる。
図1は、本発明の実施形態1に係るモータの断面図である。 図2は、コイルの第kターンを径方向から見た模式図である。 図3Aは、ティースに巻回されたコイルの斜視図である。 図3Bは、図3AのIIIB-IIIB線での断面図である。 図3Cは、図3AのIIIC-IIIC線での断面図である。 図4Aは、本発明の実施形態2に係るティースに巻回されたコイルの斜視図である。 図4Bは、図4AのIVB-IVB線での断面図である。 図4Cは、図4AのIVC-IVC線での断面図である。 図5は、変形例に係るコイルエンドの断面模式図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。
 (実施形態1)
 [モータの構成]
 図1は、本実施形態に係るモータの断面図を示す。なお、以降の説明において、モータ1000の半径方向を「径方向」と、外周方向を「周方向」と、モータ1000の出力軸210の延びる方向(図1における紙面と垂直な方向)を「軸方向」とそれぞれ呼ぶことがある。また、径方向において、モータ1000の中心側を径方向内側と、外周側を径方向外側と呼ぶことがある。
 モータ1000は、ステータ100とロータ200とを有している。なお、モータ1000は、これら以外の構成部品、例えば、モータケースや出力軸を軸支する軸受等の部品を有しているが、説明の便宜上、その図示及び説明を省略する。
 ステータ100は、円環状のヨーク20と、ヨーク20の内周に接続され、当該内周に沿って等間隔に設けられた複数のティース10と、周方向に隣り合うティース10の間にそれぞれ設けられたスロット30と、スロット30内に収容されたコイル40とを有しており、ロータ200の径方向外側に、ロータ200と一定の間隔をあけて配置されている。
 ティース10とヨーク20は、それぞれ、例えば、ケイ素等を含有した電磁鋼板を積層後に打ち抜き加工して形成される。コイル40は、断面が四角形の銅等からなる板状の導線がnターン(nは2以上の整数)巻回されてなる部品であり、図示しないインシュレータを挟んで複数のティース10のそれぞれに装着されて、スロット30内に収容されている。なお、本実施形態では、コイル40に流れる電流の位相に応じて、コイルをコイルU1~U4,V1~V4,W1~W4とそれぞれ呼ぶことがある。また、コイル40はティース10に対して集中巻きされている。
 ロータ200は、軸心に配置された出力軸210と、ステータ100に対向してN極、S極が出力軸210の外周方向に沿って交互に配置された磁石とを有している。なお、磁石の材料や形状や材質については、モータ1000の出力等に応じて適宜変更しうる。
 コイルU1~U4,V1~V4,W1~W4はそれぞれ直列に接続されており、互いに電気角で120°の位相差を有するU,V,W相の3相の電流がそれぞれコイルU1~U4,V1~V4,W1~W4に供給されて励磁され、ステータ100に回転磁界が発生する。この回転磁界と、ロータ200に設けられた磁石220が発生する磁界とが相互作用して、ロータ200にトルクが発生し、出力軸210が図示しない軸受に支持されて回転する。
 [コイルの構成]
 図2は、本実施形態に係るコイルの第kターンを径方向から見た模式図を示す。また、図3Aは、ティースに巻回されたコイルの斜視図を、図3Bは、図3AのIIIB-IIIB線での断面図を、図3Cは、図3AのIIIC-IIIC線での断面図をそれぞれ示す。
 図3A~図3Cに示すように、コイル40は、板状の導線がnターン(nは2以上の整数)巻回されてなる部品であり、第1端子部41と第2端子部42と巻線部43とを有している。また、コイル40の表面には絶縁被膜(図示せず)が設けられている。また、巻線部43のうち、ティース10の軸方向端面に沿って延びる部分がコイルエンド44に相当する。
 コイル40がティース10に装着されたとき、第1端子部41はティース10の基端側に位置しており、第2端子部42はティース10の先端側、つまり、第1端子部41よりもティース10の先端の近くに位置している。また、巻線部43は第1接続部位41aで第1端子部41に接続され、第2接続部位42aで第2端子部42に接続されている。つまり、巻線部43は第1端子部41及び第2端子部42と電気的に接続されている。また、巻線部43は、第1接続部位41aから第2接続部位42aにかけてティース10にnターン巻回されている。
 第1端子部41及び第2端子部42は、それぞれ図示しない外部からの電源線か、または中性線か、あるいは渡し線やバスバー等を介して他のコイル40の端子部に接続されている。なお、コイル40が1本の導線を巻回してなる場合は、第1及び第2端子部41,42は、巻線部43の両端がそれぞれ延長された部分に相当する。ただし、第1及び第2端子部41,42を巻線部43の両端、この場合は第1接続部位41a及び第2接続部位42aにそれぞれ溶接等して取付けるようにしてもよい。
 また、図2及び図3A~図3Cに示すように、コイル40の第kターン(kは整数で1≦k≦n)は、ティース10の軸方向端面に沿って配置された第1部分k1と、第1端子部41から第2端子部42に向かって第1部分k1の隣に位置し、第1部分k1の端部から延びてティースの周方向端面に沿って配置された第2部分k2とを有しており、第1部分k1がコイルエンド44の一部に相当する。また、第1部分k1は、ティース10と軸方向で向かい合う領域に位置し、第2部分k2は、ティース10と軸方向に直交する方向で向かい合う領域に少なくとも位置している。
 第1部分k1におけるティース10の軸方向の高さをAkとし、第2部分k2におけるティース10の周方向の幅をBkとそれぞれしたとき、高さAkと幅Bkとが、Ak<Bkの関係を満たすようにコイル40は構成されている。また、図3Bに示すように、第1~第nターンにおいて、高さA1~Anがそれぞれ同じ値、この場合はAとなるようにコイル40が構成されている。一方、第1~第nターンにおいて、コイル40の幅B1~Bnは、図3Cに示すように、径方向内側、つまり、ティース10の先端側に位置するにつれて狭くなっている。
 なお、実際には、図示しないインシュレータを挟んでティース10にコイル40が装着されているため、高さA1~An(=A)はインシュレータの表面から第1部分k1の軸方向端面までの距離であり、幅B1~Bnはインシュレータの表面から第2部分k2の周方向外側面までの距離である。
 [効果等]
 本実施形態に係るステータ100は、環状のヨーク20と、ヨーク20と接続するティース10と、板状の導線からなり、ティース10に装着されたコイル40と、を少なくとも備えている。コイル40は、第1端子部41と、第1端子部41と電気的に接続する巻線部43と、第1端子部41よりもティース10の先端の近くに位置し、巻線部43と電気的に接続する第2端子部42と、を有し、巻線部43はティースにnターン(nは2以上の整数)巻回されている。
 巻線部43は、コイル40の第kターン(kは整数で1≦k≦n)において、ティース10の軸方向端面に沿った第1部分k1の軸方向の高さをAkとし、第1端子部41から第2端子部42に向かって第1部分k1の隣に位置し第1部分k1の端部から延びてティース10の周方向端面に沿った第2部分k2の周方向の幅をBkとした場合、Ak<Bkの関係を満たしている。
 コイル40をこのように構成することで、コイルエンド44に相当する第1部分k1の高さAkを低くでき、ステータ100を小型化することができる。なお、第1部分k1は、ティース10と軸方向で向かい合う領域に位置し、第2部分k2は、ティース10と軸方向に直交する方向で向かい合う領域に少なくとも位置している。
 また、第1~第nターンにおいて、ティース10の先端側に位置するにつれて幅B1~Bnが狭くなるようにすることで、スロット30内に収容されるコイル40の占積率を高めることができる。
 また、本実施形態によれば、コイル40の放熱性能を大きく低減させずにコイル40を小型化することができる。このことについてさらに説明する。スロット30内に収容されたコイル40で発生した熱は、主としてティース10に伝搬し、また、ティース10を介してヨーク20に伝搬する。さらに、図示しないモータのハウジング等から大気中あるいは別途設けられた放熱部材に放熱される。
 一方、スロット30からはみ出た部分であるコイルエンド44では、ティース10やヨーク20への熱伝搬が起こりにくく、大気中に直接、熱が放散される。しかし、大気は、ティース10やヨーク20を構成する電磁鋼板や、ティース10に装着され、樹脂からなる図示しないインシュレータ等と比べて熱伝導率が小さいため、コイルエンド44には熱が溜まりやすい。
 一方、本実施形態によれば、第1部分k1の高さAkを第2部分の幅Bkよりも小さくすることで、コイルエンド44の体積を低減して、コイルエンド44に溜まる熱量を小さくできる。また、第1部分k1の上面とティース10との距離を短くして、コイルエンド44からティース10やヨーク20への熱伝搬量を大きくすることができる。
 また、スロット30内に収容され、放熱に寄与する部分、つまり、第2部分k2において、コイル40の占積率を所定以上とするように周方向の幅Bkを確保することで、例えば、特許文献1に開示される従来の構成と同等のコイル40の放熱性能を実現できる。
 また、本実施形態に係るモータ1000は、ステータ100と、ステータ100と所定の間隔をあけて設けられたロータ200と、を少なくとも備えている。
 本実施形態によれば、コイル40、ひいてはステータ100の高さを低減でき、モータ1000の小型化が図れる。また、従来の構成と同等のモータ1000の放熱性能を実現できる。
 (実施形態2)
 図4Aは、本実施形態に係るティースに巻回されたコイルの斜視図を、図4Bは、図4AのIVB-IVB線での断面図を、図4Cは、図4AのIVC-IVC線での断面図をそれぞれ示す。なお、図4A~4Cにおいて、実施形態1と同様の箇所については同一の符号を付し詳細な説明を省略する。
 本実施形態に示す構成と実施形態1に示す構成とでは、以下の点で異なる。まず、第1ターン~第nターンに向かうにつれて第1部分の高さA1~Anが低くなるようにコイル40が構成されている。
 コイル40をこのように構成することで、各ターンにおいて断面積の変化率、言い換えると電流密度の変化率を小さくすることができる。このようにすることで、異なるターンで発熱のばらつきを生じるのを抑制でき、コイル40の信頼性を高められるとともにモータ1000の効率を向上できる。
 特に、第1~第nターンのそれぞれにおいて、高さAkと幅Bkとの比が一定となるようにすると、各ターンにおいて断面積の変化率、言い換えると電流密度の変化率を一定にすることができ、コイル40内での発熱ばらつきを抑制でき、コイル40の信頼性及びモータ1000の効率をさらに高められる。
 次に、第1~第nターンでの高さA1~Anのうちの最大値をAmaxとし、幅B1~Bnのうち第1~第nターンでの最小値をBminとしたとき、Amax<Bminの関係を満たすようにコイル40が構成されている点で異なる。
 コイル40をこのように構成することで、コイル40に流れる電流の電流密度を確保しつつコイルエンド44を十分に低くできる。
 なお、第1ターン~第nターンに向かうにつれて第1部分の高さA1~Anが低くなるようにコイル40を構成することと、Amax<Bminの関係を満たすこととを同時に満足しなくてもよい。いずれか一方の関係を満たすことで、それぞれの関係に対応した効果を奏することができる。
 <変形例>
 図5は、本変形例に係るコイルエンドの断面模式図を示す。なお、図5は、図3B,4Bに示す断面のうち軸方向上側に位置する第1部分k1の断面にそれぞれ対応している。なお、図5において、実施形態1,2と同様の箇所については同一の符号を付し詳細な説明を省略する。
 本変形例に示す構成と、実施形態1に示す構成とでは、第1~第nターンにおいてコイルエンド44の高さが変化している点で異なる。また、実施形態2に示すような単調な変化ではなく、高さA1~Anは、例えば、図5の(a)図に示すように変化してもよいし、(b)図に示すように変化してもよい。あるいは、(c)図に示すように変化してもよい。また、図示しないが、軸方向下側に位置するコイルエンド44の形状を図5に示すようにしてもよい。なお、高さA1~Anは第1~第nターンの中で図5に示す以外の変化をしてもよい。高さAkが、第1~第(k-1)ターンにおける第1部分の軸方向の高さA1~Ak-1のうちのいずれか1つよりも高く、かつ第(k+1)~第nターンにおける第1部分の軸方向の高さAk+1~Anのうちのいずれか1つよりも高くなるように、コイルエンド44の高さが変化すればよい。あるいは、高さAkが、高さA1~Ak-1のうちのいずれか1つよりも低く、かつ高さAk+1~Anのうちのいずれか1つよりも低くなるように、コイルエンド44の高さが変化すればよい。
 前述したように、コイルエンド44では主として、大気中に熱が放散される。一方、本変形例によれば、コイルエンド44の高さが上記のように変化しているため、コイルエンド44の表面積を、例えば、実施形態1,2に示す場合に比べて大きくすることができ、コイルエンド44から大気中への熱放散量を大きくすることができる。
 また、本変形例によれば、コイルエンド44の軸方向端面、つまり、上面または下面のうち少なくとも一方に凹部または凸部あるいはその両方が形成されるため、凸部の両側または凹部をステータ100内に流れる冷媒の流路とすることができる。このことにより、コイル40を含むステータ100の冷却効率を高められるとともにモータ1000の効率を向上できる。なお、冷媒として、油や水等の液体を用いることができる。
 なお、第1~第nターンにおける第1部分の軸方向の高さA1~Anのうちの最小値Aminは、ジュール発熱によってコイル40が断線したり、信頼性が低下したりしないように所定値以上に高くすることが好ましい。
 (その他の実施形態)
 なお、実施形態1では、円環状のヨーク20に複数のティース10が接続される構成を例に取って説明したが、特にこれに限定されず、周方向に分割された分割ヨークにそれぞれ1つずつティース10を接続し、この状態で複数の分割ヨークを周方向に接続することでステータ100を構成するようにしてもよい。
 また、コイル40を構成する導線の断面形状は台形でも長方形でも正方形でもよく、n角形(nは4以上の整数)であってもよい。
 また、図3A~図3C及び図4A~図4Cにおいて、第1端子部41がティース10の基端側に、第2端子部42がティース10の先端側に位置するようにコイル40がティース10に装着されていたが、第1端子部41及び第2端子部42の位置は特にこれに限定されず、例えば、第2端子部42が径方向外側に引き回されて、第1端子部41及び第2端子部42がともにティース10の基端側に位置するようにしてもよい。なお、この場合も、第2接続部位42aはティース10の先端側に位置している。
 また、実施形態1,2において、軸方向上側及び下側に位置するコイルエンド44において、第kターンの第1部分k1の高さと第2部分k2の幅との関係が、Ak<Bkの関係を満たす例を示したが、必ずしも軸方向両側のコイルエンド44でこの関係を満たす必要はなく、少なくとも一方のコイルエンド44において、Ak<Bkの関係を満たせばよい。
 本発明のステータは、コイルエンドの高さを低くできるため、小型化が必要とされるモータに適用する上で有用である。
10   ティース
20   ヨーク
30   スロット
40   コイル
41   第1端子部
42   第2端子部
43   巻線部
44   コイルエンド
100  ステータ
200  ロータ
210  出力軸
220  磁石
1000 モータ
k1   コイル40の第kターンの第1部分
k2   コイル40の第kターンの第2部分
Ak   第1部分k1の軸方向の高さ
Bk   第2部分Bkの周方向の幅

Claims (7)

  1.  環状のヨークと、該ヨークと接続するティースと、板状の導線からなり、前記ティースに装着されたコイルと、を少なくとも備えたステータであって、
     該コイルは、
      第1端子部と、
      前記第1端子部と電気的に接続する巻線部と、
      前記第1端子部よりも前記ティースの先端の近くに位置し、前記巻線部と電気的に接続する第2端子部と、
     を有し、
     前記巻線部は前記ティースにnターン(nは2以上の整数)巻回されており、
     前記巻線部は、前記コイルの第kターン(kは整数で1≦k≦n)において、前記ティースの軸方向端面に沿った第1部分の軸方向の高さをAkとし、前記第1端子部から前記第2端子部に向かって前記第1部分の隣に位置し前記第1部分の端部から延びて前記ティースの周方向端面に沿った第2部分の周方向の幅をBkとした場合、Ak<Bkの関係を満たすことを特徴とするステータ。
  2.  請求項1に記載のステータにおいて、
     第1~第nターンはそれぞれ前記第1部分の軸方向の高さが等しいことを特徴とするステータ。
  3.  請求項1に記載のステータにおいて、
     前記第1部分の軸方向の高さは、第1ターンから第nターンに向かうにつれて低くなることを特徴とするステータ。
  4.  請求項3に記載のステータにおいて、
     第1~第nターンにおける前記第1部分の軸方向の高さのうち最大値をAmaxとし、第1~第nターンにおける前記第2部分の周方向の幅のうち最小値をBminとしたとき、Amax<Bminの関係を満たすことを特徴とするステータ。
  5.  請求項1に記載のステータにおいて、
     前記高さAkは、
     第1~第(k-1)ターンにおける前記第1部分の軸方向の高さA1~Ak-1のうちのいずれか1つよりも高く、かつ第(k+1)ターン~第nターンにおける前記第1部分の軸方向の高さAk+1~Anのうちのいずれか1つよりも高いか、または、
     前記高さA1~Ak-1のうちのいずれか1つよりも低く、かつ前記高さAk+1~Anのうちのいずれか1つよりも低いことを特徴とするステータ。
  6.  請求項1ないし5のいずれか1項に記載のステータにおいて、
     前記第1部分は、前記ティースと前記軸方向で向かい合う領域に位置し、
     前記第2部分は、前記ティースと前記軸方向に直交する方向で向かい合う領域に少なくとも位置することを特徴とするステータ。
  7.  請求項1ないし6のいずれか1項に記載のステータと、
     前記ステータと所定の間隔をあけて設けられたロータと、を少なくとも備えたことを特徴とするモータ。
PCT/JP2019/034631 2018-10-02 2019-09-03 ステータ及びそれを用いたモータ WO2020071035A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19869430.9A EP3863154A4 (en) 2018-10-02 2019-09-03 STATOR AND MOTOR USING IT
US17/273,223 US12095325B2 (en) 2018-10-02 2019-09-03 Stator and motor using same
CN201980064314.9A CN112771764B (zh) 2018-10-02 2019-09-03 电动机
JP2020550217A JP7523095B2 (ja) 2018-10-02 2019-09-03 ステータ及びそれを用いたモータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018187195 2018-10-02
JP2018-187195 2018-10-02

Publications (1)

Publication Number Publication Date
WO2020071035A1 true WO2020071035A1 (ja) 2020-04-09

Family

ID=70055515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034631 WO2020071035A1 (ja) 2018-10-02 2019-09-03 ステータ及びそれを用いたモータ

Country Status (5)

Country Link
US (1) US12095325B2 (ja)
EP (1) EP3863154A4 (ja)
JP (1) JP7523095B2 (ja)
CN (1) CN112771764B (ja)
WO (1) WO2020071035A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020215610A1 (de) 2020-12-10 2022-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen einer Spulenbaugruppe sowie elektrische Maschine mit einer Spulenbaugruppe hergestellt nach diesem Verfahren

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869673A4 (en) * 2018-10-18 2021-12-08 Panasonic Intellectual Property Management Co., Ltd. REEL DEVICE
EP4383525A1 (en) * 2022-12-09 2024-06-12 Fukuta Electric & Machinery Co., Ltd. Motor coil and motor stator
DE102023203365B3 (de) * 2023-04-13 2024-07-25 Zf Friedrichshafen Ag Wicklung für einen zylinderförmigen Rotor, insbesondere einen Schenkelpolrotor, Rotor mit der Wicklung sowie eine elektrische Maschine mit dem Rotor und mit der Wicklung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136317A (ja) * 2006-11-29 2008-06-12 Toyota Motor Corp モータの固定子製造方法、及びモータの固定子
DE102012212637A1 (de) 2012-07-18 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gießtechnisch hergestellte elektrische Spule
JP2016165208A (ja) * 2015-02-26 2016-09-08 日本電産コパル株式会社 セグメントコンダクタ、ステータ、回転電機、車両

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150899A (ja) * 1997-11-18 1999-06-02 Nishishiba Electric Co Ltd 突極形回転子
JP2005019618A (ja) * 2003-06-25 2005-01-20 Sawafuji Electric Co Ltd 縦巻きコイルおよびその製造方法
JP2005160143A (ja) * 2003-11-20 2005-06-16 Toyota Motor Corp 回転電機の固定子
WO2007125838A1 (ja) 2006-04-28 2007-11-08 Mitsubishi Cable Industries, Ltd. 線状部材及びステータ構造
JP2010279226A (ja) * 2009-06-01 2010-12-09 Toyota Motor Corp コイルの冷却構造、ステータおよび回転電機ならびに車両
JP5720591B2 (ja) 2012-01-31 2015-05-20 トヨタ自動車株式会社 回転電機のステータ
WO2013187501A1 (ja) * 2012-06-15 2013-12-19 HONGO Takenobu コイル状部材及びコイル装置
JP2014011937A (ja) * 2012-07-03 2014-01-20 Aisin Aw Co Ltd ステータ
JP6065805B2 (ja) * 2013-10-18 2017-01-25 トヨタ自動車株式会社 電動機
JP2016149930A (ja) * 2015-02-09 2016-08-18 住友精化株式会社 回転電機、コイル及びコイル装置
US20160254718A1 (en) 2015-02-26 2016-09-01 Nidec Copal Corporation Segment conductors, stator, rotating electrical machine, and vehicle and method of manufacturing the segment conductors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008136317A (ja) * 2006-11-29 2008-06-12 Toyota Motor Corp モータの固定子製造方法、及びモータの固定子
DE102012212637A1 (de) 2012-07-18 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gießtechnisch hergestellte elektrische Spule
JP2016165208A (ja) * 2015-02-26 2016-09-08 日本電産コパル株式会社 セグメントコンダクタ、ステータ、回転電機、車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3863154A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020215610A1 (de) 2020-12-10 2022-06-15 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen einer Spulenbaugruppe sowie elektrische Maschine mit einer Spulenbaugruppe hergestellt nach diesem Verfahren

Also Published As

Publication number Publication date
EP3863154A4 (en) 2021-11-24
CN112771764B (zh) 2024-07-30
US12095325B2 (en) 2024-09-17
US20210359566A1 (en) 2021-11-18
CN112771764A (zh) 2021-05-07
JPWO2020071035A1 (ja) 2021-09-02
EP3863154A1 (en) 2021-08-11
JP7523095B2 (ja) 2024-07-26

Similar Documents

Publication Publication Date Title
JP7136272B2 (ja) 回転電機
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
WO2020071035A1 (ja) ステータ及びそれを用いたモータ
US9553496B2 (en) Low-inertia direct drive having high power density
JP4559872B2 (ja) 単相電動機及び密閉形圧縮機
US20210234415A1 (en) Rotating electric machine
US7714474B2 (en) Electrical machine having a flattened stator with inclined teeth
WO2018180721A1 (ja) 電動モータ
CN110832747B (zh) 旋转电机及直线电动机
JP2007159400A (ja) ユニバーサルモータ及びその固定子用ラミネーション
WO2018147392A1 (ja) 回転電機
CN102422510B (zh) 同步电机
JPWO2019203076A1 (ja) コイル及びそれを用いたモータ
JP2006060952A (ja) 永久磁石埋込み型電動機
JP2014155373A (ja) マルチギャップ型回転電機
JP6589721B2 (ja) 回転電機
CN112470369B (zh) 旋转电机的定子
JP2016129447A (ja) 回転電機
WO2018216304A1 (ja) 回転電機
JP5011719B2 (ja) 回転電機及びその制御方法、圧縮機、送風機、並びに空気調和機
CN112272913B (zh) 电动机及用于该电动机的线圈
JP2010081670A (ja) 交流発電機
JP2021535718A (ja) リングコイル及び蛇行コイルを有するクローポールモータ
JP2007166796A (ja) 回転電機及びその制御方法、圧縮機、送風機、並びに空気調和機
CN111742466A (zh) 永磁体型电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019869430

Country of ref document: EP

Effective date: 20210503