Nothing Special   »   [go: up one dir, main page]

WO2020067347A1 - Rotary electric machine rotor - Google Patents

Rotary electric machine rotor Download PDF

Info

Publication number
WO2020067347A1
WO2020067347A1 PCT/JP2019/037981 JP2019037981W WO2020067347A1 WO 2020067347 A1 WO2020067347 A1 WO 2020067347A1 JP 2019037981 W JP2019037981 W JP 2019037981W WO 2020067347 A1 WO2020067347 A1 WO 2020067347A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
arc
axis
diameter side
inner diameter
Prior art date
Application number
PCT/JP2019/037981
Other languages
French (fr)
Japanese (ja)
Inventor
芳永 久保田
慎吾 相馬
達也 大図
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2020067347A1 publication Critical patent/WO2020067347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotor of a rotating electric machine mounted on an electric vehicle or the like, and particularly to a rotor of a rotating electric machine including a plurality of arc magnets.
  • a rotor used in a rotating electric machine a rotor in which a plurality of permanent magnets are arranged at predetermined intervals in a circumferential direction inside a rotor core is known.
  • an arc magnet positioned on the outer diameter side of the rotor and an arc magnet positioned on the inner diameter side of the rotor have substantially the same plate thickness and are arranged in a substantially concentric magnetic pole portion. Is disclosed.
  • a circular arc magnet can be obtained by cutting a ring-shaped magnet in the radial direction. It is known that a ring-shaped magnet is formed by molding using a hot working process.
  • Patent Literature 2 discloses an anisotropic ring-shaped magnet which is oriented in a radial direction by performing hot plastic deformation such as hot extrusion on a ring-shaped magnet material.
  • the crystal group of the ring-shaped magnet material that has been randomly oriented is radially oriented.
  • the compressive stress acts, and the crystal group of the ring-shaped magnet material is oriented in the same direction as the compressive stress direction.
  • an anisotropic ring-shaped magnet oriented in the radial direction is obtained.
  • the stress acting on the crystal group of the ring-shaped magnet material be uniform over the entire region.
  • the stress acting on the crystal group of the ring-shaped magnet material becomes non-uniform, and the degree of orientation of the ring-shaped magnet decreases. I will.
  • the thickness of the ring-shaped magnet material is not uniform, the stress acting on the crystals of the ring-shaped magnet material becomes uneven, and the degree of orientation of the ring-shaped magnet is reduced.
  • the value of (thickness of the ring-shaped magnet material) / (ring radius of the ring-shaped magnet material) must be within a predetermined range. Need to be.
  • the arc radius of the arc magnets may be changed according to the plate thickness. Also need to be larger. For this reason, when the arc magnet positioned on the outer diameter side of the rotor and the arc magnet positioned on the inner diameter side of the rotor are arranged substantially concentrically, the circumferential length of the magnetic pole portion increases, and the rotor becomes larger. I will.
  • the present invention provides a rotor for a rotating electric machine that can use a circular arc magnet having high-performance magnetization characteristics while suppressing an increase in the size of a circular arc magnet in a magnetic pole part.
  • the present invention A rotor core, A plurality of magnetic pole portions arranged along the circumferential direction; And a plurality of arc magnets constituting the magnetic pole portion, Each magnetic pole part It has at least two layers of magnet parts along the radial direction,
  • the magnet unit is An outer-diameter-side magnet unit including at least one arc-shaped magnet arranged to be convex inward in the radial direction, An inner diameter side magnet portion configured by at least a pair of the arc magnets arranged to be convex inward in the radial direction,
  • Each arc magnet, the inner peripheral surface and the outer peripheral surface have the same arc center,
  • the plate thickness of the arc magnet, the inner diameter side magnet portion is larger than the outer diameter side magnet portion,
  • the radius of the arc magnet, the inner diameter side magnet portion is larger than the outer diameter side magnet portion,
  • an arc magnet having high-performance magnetization characteristics while suppressing an increase in the size of the arc magnet in the magnetic pole portion while suppressing an increase in size.
  • FIG. 2 is a front view of the rotor of the rotary electric machine according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged view around a magnetic pole portion of a rotor of the rotating electric machine in FIG. 1.
  • FIG. 6 is an enlarged view around a magnetic pole portion of a rotor of a rotating electric machine according to a second embodiment of the present invention. It is a figure showing the modification of the rotor of the rotary electric machine of a 2nd embodiment of the present invention.
  • FIG. 11 is an enlarged view around a magnetic pole portion of a rotor of a rotating electric machine according to a third embodiment of the present invention.
  • a rotor 10 of a rotary electric machine includes a rotor core 20 attached to an outer peripheral portion of a rotor shaft (not shown), and a plurality of rotor cores 20 formed inside the rotor core 20 at predetermined intervals in a circumferential direction. (In this embodiment, twelve), and is disposed on the inner peripheral side of a stator (not shown).
  • the rotor core 20 is formed by laminating a plurality of substantially annular electromagnetic steel sheets 200 having the same shape in the axial direction.
  • the rotor core 20 has a rotor shaft hole 21 that is concentric with the center of the circular ring C. Further, the center axis of each magnetic pole part 30 connecting the center of the circular ring C and the center of each magnetic pole part 30 is d-axis (d-axis in the figure), and the axis separated by 90 ° in electrical angle from the d-axis is q-axis.
  • the rotor core 20 has an outer diameter side magnet insertion hole 410 formed across the d axis on the outer diameter side of the rotor core 20 so as to correspond to each magnetic pole portion 30;
  • a pair of inner magnet-side magnet insertion holes 421 and 422 formed in a substantially C-shape extending radially outward across the d-axis on the inner-diameter side of the outer-magnet-side magnet insertion hole 410, and an inner-magnet-side magnet insertion hole 421. , 422, each having a pair of ribs 510, 520 extending in the radial direction, and a gap 60 formed between the pair of ribs 510, 520.
  • Each of the outer-diameter magnet insertion holes 410 and the inner-diameter magnet insertion holes 421 and 422 has an arc shape that is convex inward in the radial direction.
  • Each magnetic pole part 30 has a magnet part 300 including an outer diameter side magnet part 310 and an inner diameter side magnet part 320.
  • the outer-diameter magnet portion 310 is inserted into the outer-diameter magnet insertion hole 410, and includes an outer-diameter arc magnet 810 that is arranged so as to protrude radially inward.
  • the inner diameter side magnet section 320 is inserted into a pair of inner diameter side magnet insertion holes 421 and 422, respectively, and is constituted by a pair of inner diameter side arc magnets 821 and 822 arranged so as to protrude radially inward.
  • the outer diameter side arc magnet 810 and the pair of inner diameter side arc magnets 821 and 822 are magnetized in the radial direction. Further, the outer diameter side arc magnet 810 and the pair of inner diameter side arc magnets 821 and 822 have different magnetization directions from the adjacent magnetic pole portions 30 and are arranged such that the magnetic pole portions 30 alternately have different magnetization directions in the circumferential direction. .
  • the pair of inner-diameter-side magnet insertion holes 421 and 422 are located on the left side with respect to the d axis.
  • the inner diameter side magnet insertion hole 421, the second inner diameter side magnet insertion hole 422 is disposed on the right side, and the pair of ribs 510 and 520 are arranged with the first rib 510 on the left side and the second rib 520 on the right side with the d axis interposed therebetween.
  • the pair of inner diameter side arc magnets 821 and 822 have a first inner diameter side arc magnet 821 on the left side with respect to the d-axis and a second inner diameter side arc magnet 822 on the right side.
  • the annular center C is defined as lower, and the outer diameter side in the d-axis direction is defined as upper. 2 to 5, the upper part of the rotor 10 is indicated by U, the lower part by D, the left side by L, and the right side by R.
  • the outer diameter side arc magnet 810 has an inner peripheral surface 810N and an outer peripheral surface 810F having the same arc center C10, a left end surface 810L, and a right end surface 810R.
  • the first inner diameter side arc magnet 821 has an inner peripheral surface 821N and an outer peripheral surface 821F having the same arc center C21, a q-axis end surface 821Q, and a d-axis end surface 821D.
  • the arc center C21 of the first inner radius arc magnet 821 is located on the right side opposite to the first inner radius arc magnet 821 with respect to the d axis.
  • the second inner radius side arc magnet 822 has an inner peripheral surface 822N and an outer peripheral surface 822F having the same arc center C22, a q-axis end surface 822Q, and a d-axis end surface 822D.
  • the arc center C22 of the second inner diameter side arc magnet 822 is located on the left side opposite to the second inner diameter side arc magnet 822 with respect to the d axis.
  • the outer diameter side arc magnet 810, the first inner diameter side arc magnet 821, and the second inner diameter side arc magnet 822 are, for example, radially cut ring-shaped magnets formed by molding using a hot working process. Can be used.
  • the plate thickness d21 of the first inner diameter side arc magnet 821 and the plate thickness d22 of the second inner diameter side arc magnet 822 are larger than the plate thickness d10 of the outer diameter side arc magnet 810. Thereby, the magnet amount of the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822 can be increased, and the magnet torque of the rotating electric machine can be increased, so that the output performance of the rotating electric machine can be improved.
  • the arc radius r21 and the second inner diameter of the inner peripheral surface 821N of the first inner diameter side arc magnet 821 are increased.
  • the arc radius r22 of the inner peripheral surface 822N of the side arc magnet 822 is larger than the arc radius r10 of the inner peripheral surface 810N of the outer diameter arc magnet 810. Accordingly, the outer diameter side arc magnet 810, the first inner diameter side arc magnet 821, and the second inner diameter side arc magnet 822 having high-performance magnetization characteristics can be used, so that the output performance of the rotating electric machine can be improved.
  • d10 / r10 which is a ratio of the arc radius r10 of the inner peripheral surface 810N of the outer diameter side arc magnet 810 to the plate thickness d10 of the outer diameter side arc magnet 810, and the inner circumference of the first inner diameter side arc magnet 821.
  • D21 / r21 which is the ratio of the arc radius r21 of the surface 821N to the plate thickness d21 of the first inner diameter arc magnet 821, the arc radius r22 of the inner peripheral surface 822N of the second inner diameter arc magnet 822, and the second inner diameter It is preferable that d22 / r22, which is a ratio with the plate thickness d22 of the side arc magnet 822, have substantially the same value in a predetermined range.
  • the arc radius r21 of the inner peripheral surface 821N of the first inner diameter side arc magnet 821 and the arc radius r22 of the inner peripheral surface 822N of the second inner diameter side arc magnet 822 are the same, and the first inner diameter side arc magnet 821 is used. Is the same as the thickness d22 of the second inner diameter side arc magnet 822, and the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822 have the same shape.
  • the distance D11 between the first inner diameter side arc magnet 821 and the outer diameter side arc magnet 810 and the distance D12 between the second inner diameter side arc magnet 822 and the outer diameter side arc magnet 810 are both from the q axis to the d axis. It gets longer as you get closer.
  • the rotor 10 can be prevented from increasing in size. Accordingly, when increasing the magnet amounts of the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822, the rotor 10 is capable of suppressing the increase in size and also having the outer diameter side arc magnet 810 having high-performance magnetizing characteristics.
  • the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822 can be used.
  • a magnetic path along the q-axis (hereinafter, also referred to as a q-axis magnetic path) in the rotor 10 can be widened and the reluctance torque of the rotating electric machine can be increased, so that the output performance of the rotating electric machine can be improved.
  • the magnetic flux generated by the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822 and the outer diameter side arc magnet 810 is easily concentrated on the d-axis, and the magnet torque of the rotating electric machine can be used efficiently, The output performance of the rotating electric machine can be improved.
  • the angle ⁇ 10 between the imaginary line L3 connecting the central portion 810C of the outer diameter side arc magnet 810, the center C10 of the outer diameter side arc magnet 810, and the d axis is 0 °. That is, the virtual line L3 coincides with the d-axis.
  • the outer diameter side magnet part 310 can be constituted by one arc magnet, and furthermore, the outer diameter side magnet part 310 can be formed symmetrically with respect to the d axis. Can be obtained.
  • the angle ⁇ 21 between the imaginary line L1 connecting the center portion 821C of the first inner diameter side arc magnet 821 and the arc center C21 of the first inner diameter side arc magnet 821 and the d axis is the second inner diameter side arc magnet 822.
  • the angle ⁇ 22 between the imaginary line L2 connecting the center portion 822C of the second inner diameter side and the arc center C22 of the second inner diameter side arc magnet 822 and the d axis is equal.
  • the inner diameter side magnet portion 320 can be formed symmetrically with respect to the d axis, so that an efficient arrangement for obtaining reluctance torque can be achieved.
  • the outer diameter side magnet insertion hole 410 has an inner peripheral wall surface 410N and an outer peripheral wall surface 410F formed along the inner peripheral surface 810N and the outer peripheral surface 810F of the outer diameter side arc magnet 810, a left wall surface 410L, a right wall surface 410R, Having.
  • the first inner diameter side magnet insertion hole 421 includes an inner peripheral wall surface 421N and an outer peripheral wall surface 421F formed along the inner peripheral surface 821N and the outer peripheral surface 821F of the first inner diameter side arc magnet 821, a q-axis side wall surface 421Q, and d. And a shaft side wall surface 421D.
  • the second inner diameter side magnet insertion hole 422 includes an inner peripheral wall surface 422N and an outer peripheral wall surface 422F formed along the inner peripheral surface 822N and the outer peripheral surface 822F of the second inner diameter side arc magnet 822, a q-axis side wall surface 422Q, and d. And a shaft side wall surface 422D.
  • a first rib 510 extending in the radial direction is formed between the d-axis side end surface 821D of the first inner diameter side arc magnet 821 and the d axis, and is connected to the d axis side end surface 822D of the second inner diameter side arc magnet 822.
  • a second rib 520 extending in the radial direction is formed between the second rib 520 and the d-axis. Further, a gap 60 is provided between the first rib 510 and the second rib 520. Therefore, the gap 60 is provided so as to overlap the d-axis.
  • the first rib 510 includes the d-axis side wall surface 421 ⁇ / b> D of the first inner diameter side magnet insertion hole 421 and the left wall surface 61 of the gap 60.
  • the second rib 520 is configured by the d-axis side wall surface 422D of the second inner diameter side magnet insertion hole 422 and the right wall surface 62 of the gap 60.
  • the centrifugal load by the first inner diameter side arc magnet 821 is received by the first rib 510
  • the centrifugal load by the second inner diameter side arc magnet 822 is received by the second rib 520. That is, the first rib 510 and the second rib 520 receive the centrifugal load by the first inner diameter side arc magnet 821 and the centrifugal load by the second inner diameter side arc magnet 822, respectively. Accordingly, it is possible to reduce the bending stress generated in the rotor core 20 due to the weight variation between the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822.
  • first ribs 510 and the second ribs 520 are provided in a substantially C-shape in which the distance D5 between the first ribs 510 and the second ribs 520 increases radially inward.
  • the radius R of the radially outer end 511 and the radially inner end 512 of the first rib 510 and the radially outer end 521 and the radially inner end 522 of the second rib 520 are both increased. Therefore, the concentration of stress on both ends in the radial direction of the first rib 510 and the second rib 520 can be reduced.
  • the gap 60 may be supplied with a refrigerant.
  • the refrigerant can be supplied to the vicinity of the outer diameter side arc magnet 810, the first inner diameter side arc magnet 821, and the second inner diameter side arc magnet 822, so that the outer diameter side arc magnet 810, the first inner diameter side arc The magnet 821 and the second inner diameter side arc magnet 822 can be cooled more effectively.
  • the outer-diameter magnet portion 310 is configured by the outer-diameter arc magnet 810 that is disposed so as to protrude radially inward.
  • the outer-diameter-side magnet portion 310 has a first outer-diameter-side arc magnet 811 disposed so as to protrude radially inward on the left side across the d-axis, and radially inward on the right side. And a second outer diameter side arc magnet 812 arranged so as to be convex.
  • the rotor core 20 of the first embodiment has an arc-shaped outer diameter side magnet insertion hole 410 formed on the outer diameter side of the rotor core 20 and protruding radially inward
  • the rotor core 20A of the second embodiment has A first outer diameter side magnet insertion hole 411 disposed on the outer diameter side of the rotor core 20A so as to project radially inward on the left side with respect to the d axis, and a radially inward projection on the right side.
  • a second outer-diameter-side magnet insertion hole 412 disposed at the second position.
  • the first outer diameter side arc magnet 811 has an inner peripheral surface 811N and an outer peripheral surface 811F having the same arc center C11, a q-axis end surface 811Q, and a d-axis end surface 811D.
  • the second outer diameter side arc magnet 812 has an inner peripheral surface 812N and an outer peripheral surface 812F having the same arc center C12, a q-axis side end surface 812Q, and a d-axis side end surface 812D.
  • the thickness d21 of the first inner diameter arc magnet 821 and the thickness d22 of the second inner diameter arc magnet 822 are the thickness d11 of the first outer diameter arc magnet 811 and the thickness d12 of the second outer diameter arc magnet 812. Is bigger than.
  • the arc radius r21 and the second inner diameter of the inner peripheral surface 821N of the first inner diameter side arc magnet 821 are increased.
  • the arc radius r22 of the inner peripheral surface 822N of the side arc magnet 822 is the arc radius r11 of the inner peripheral surface 811N of the first outer radius arc magnet 811 and the arc radius r12 of the inner peripheral surface 812N of the second outer radius arc magnet 812. Is bigger than.
  • d11 / r11 which is the ratio of the arc radius r11 of the inner peripheral surface 811N of the first outer-diameter arc magnet 811 to the plate thickness d11 of the first outer-diameter arc magnet 811
  • the second outer-diameter arc magnet D12 / r12 which is the ratio of the arc radius r12 of the inner peripheral surface 812N of the inner peripheral surface 812 to the plate thickness d12 of the second outer diameter side arc magnet 812, is preferably substantially the same value within a predetermined range.
  • the arc radius r11 of the inner peripheral surface 811N of the first outer diameter side arc magnet 811 and the arc radius r12 of the inner peripheral surface 812N of the second outer diameter side arc magnet 812 are the same, and the first outer diameter side
  • the plate thickness d11 of the arc magnet 811 and the plate thickness d12 of the second outer diameter side arc magnet 812 are the same, and the first outer diameter side arc magnet 811 and the second outer diameter side arc magnet 812 have the same shape. .
  • the distance D11 between the first inner diameter side arc magnet 821 and the first outer diameter side arc magnet 811 and the distance D12 between the second inner diameter side arc magnet 822 and the second outer diameter side arc magnet 812 are all q-axis. And is arranged so as to be longer as approaching the d-axis.
  • the angle ⁇ 11 between the imaginary line L31 connecting the central portion 811C of the first outer diameter side arc magnet 811 and the arc center C11 of the first outer diameter side arc magnet 811 and the d axis is the first inner diameter side arc.
  • An angle ⁇ 21 formed between an imaginary line L1 connecting the central portion 821C of the magnet 821 and the arc center C21 of the first inner diameter side arc magnet 821 with the d axis is smaller. That is, ⁇ 11 ⁇ 21 is satisfied.
  • the angle ⁇ 12 between the imaginary line L32 connecting the central portion 812C of the second outer diameter side arc magnet 812, the arc center C12 of the second outer diameter side arc magnet 812, and the d axis is the second inner diameter.
  • the angle ⁇ 22 between the center line 822C of the side arc magnet 822 and the arc center C22 of the second inner diameter side arc magnet 822 and the d-axis is smaller than the angle ⁇ 22. That is, ⁇ 12 ⁇ 22 is satisfied.
  • the first outer diameter side magnet insertion hole 411 includes an inner peripheral wall surface 411N and an outer peripheral wall surface 411F formed along the inner peripheral surface 811N and the outer peripheral surface 811F of the first outer diameter side arc magnet 811, and a q-axis side wall surface 411Q.
  • a d-axis side wall surface 411D, and the second outer diameter side magnet insertion hole 412 is formed along the inner peripheral surface 812N and the outer peripheral surface 812F of the second outer diameter side arc magnet 812.
  • an outer peripheral wall surface 412F, a q-axis side wall surface 412Q, and a d-axis side wall surface 412D is an outer peripheral wall surface 412F, a q-axis side wall surface 412Q, and a d-axis side wall surface 412D.
  • a pair of the first outer diameter side arc magnet 811 and the second outer diameter side is used in the outer diameter side magnet portion 310 instead of the long outer diameter side arc magnet 810. Since the arc magnet 812 can be used, the degree of freedom in magnet arrangement is improved.
  • the arc center C21 of the first inner diameter side arc magnet 821 and the arc center C22 of the second inner diameter side arc magnet 822 are at the same position on the d axis.
  • the arc center C21 and the arc center C22 of the second inner diameter side arc magnet 822 may be at different positions.
  • the arc center C21 of the first inner diameter side arc magnet 821 is located on the right side opposite to the first inner diameter side arc magnet 821 with respect to the d axis, and the second inner diameter side arc is formed.
  • the arc center C22 of the magnet 822 may be located on the left side of the d-axis opposite to the second inner radius side arc magnet 822.
  • the distance D11 between the first inner diameter side arc magnet 821 and the first outer diameter side arc magnet 811 and the second inner diameter side arc magnet 822 and the second outer diameter side can be increased from the q axis to the d axis.
  • the magnet unit 300 has two layers in the radial direction of the outer diameter side magnet unit 310 and the inner diameter side magnet unit 320.
  • the rotating electric machine according to the third embodiment is the same components as those of the rotor 10 of the rotary electric machine according to the first embodiment.
  • the magnet unit 300 has three layers in the radial direction of the outer diameter magnet unit 310, the inner diameter magnet unit 320, and the innermost magnet unit 330 provided on the inner diameter side of the inner magnet unit 320. It has become.
  • the rotor core 20B of the third embodiment further includes an outer diameter side magnet insertion hole 410, a first inner diameter side magnet insertion hole 421, and a second inner diameter side magnet insertion hole 422 of the rotor core 20 of the first embodiment.
  • a first innermost-diameter magnet insertion hole 431 disposed on the inner diameter side of the first inner-diameter magnet insertion hole 421 so as to protrude radially inward to the left with the d-axis interposed therebetween;
  • the innermost magnet section 330 includes a first innermost circular arc magnet 831 disposed so as to protrude radially inward on the left side with respect to the d axis, and a radially inner side magnet magnet on the right side. And the second innermost-diameter arc magnet 832 arranged so as to be convex.
  • the first innermost-side arc magnet 831 has an inner peripheral surface 831N and an outer peripheral surface 831F having the same arc center C31, a q-axis end surface 831Q, and a d-axis end surface 831D.
  • the second innermost arc magnet 832 has an inner peripheral surface 832N and an outer peripheral surface 832F having the same arc center C32, a q-axis end surface 832Q, and a d-axis end surface 832D.
  • the thickness d31 of the first innermost arc magnet 831 and the thickness d32 of the second innermost arc magnet 832 are the thickness d21 of the first inner diameter arc magnet 821 and the thickness d22 of the second inner diameter arc magnet 822. Is bigger than.
  • the arc radius r31 of the inner peripheral surface 831N of the first innermost-side arc magnet 831 and The arc radius r32 of the inner peripheral surface 832N of the second innermost circular arc magnet 832 is the arc radius r21 of the inner peripheral surface 821N of the first inner radial arc magnet 821 and the arc of the inner peripheral surface 822N of the second innermost circular arc magnet 822. It is larger than the radius r22.
  • d31 / r31 which is the ratio of the arc radius r31 of the inner peripheral surface 831N of the first innermost-side arc magnet 831 to the plate thickness d31 of the first innermost-side arc magnet 831
  • the ratio d32 / r32 which is the ratio of the arc radius r32 of the inner peripheral surface 832N of the magnet 832 to the plate thickness d32 of the second innermost-diameter arc magnet 832, is d10 / r10, d21 / r21, d22 / r22. , Are preferably substantially the same in a predetermined range.
  • the arc radius r31 of the inner peripheral surface 831N of the first innermost circular arc magnet 831 and the arc radius r32 of the inner peripheral surface 832N of the second innermost circular magnet 832 are the same, and The thickness d31 of the arc-shaped magnet 831 and the thickness d32 of the second innermost-diameter arc magnet 832 are the same, and the first innermost-diameter arc magnet 831 and the second innermost-diameter arc magnet 832 have the same shape. .
  • the distance D21 between the first innermost-side arc magnet 831 and the first innermost-side arc magnet 821 and the distance D22 between the second innermost-side circular magnet 832 and the second innermost-side arc magnet 822 are both q-axis. And is arranged so as to be longer as approaching the d-axis.
  • the amount of magnet of the magnetic pole part 30 can be further increased while suppressing the circumferential length of the magnetic pole part 30 from being increased.
  • the first innermost-side magnet insertion hole 431 includes an inner peripheral wall 431N and an outer peripheral wall 431F formed along the inner peripheral surface 831N and the outer peripheral surface 831F of the first innermost circular arc magnet 831; , And a d-axis side wall surface 431D, and the second innermost-diameter magnet insertion hole 432 is formed along the inner peripheral surface 832N and the outer peripheral surface 832F of the second innermost-diameter arc magnet 832. And an outer peripheral wall surface 432F, a q-axis side wall surface 432Q, and a d-axis side wall surface 432D.
  • a third rib 530 extending in the radial direction is formed between the d-axis side end surface 831D of the first innermost-side arc magnet 831 and the d-axis, and is connected to the d-axis side end surface 832D of the second innermost-side arc magnet 832.
  • a fourth rib 540 extending in the radial direction is formed between the fourth rib 540 and the d-axis. Further, a second gap 600 is provided between the third rib 530 and the fourth rib 540. Therefore, the second gap 600 is provided so as to overlap with the d-axis.
  • the third rib 530 is configured by the d-axis side wall surface 431D of the first innermost magnet insertion hole 431 and the left wall surface 610 of the second gap 600.
  • the fourth rib 540 is configured by the d-axis side wall surface 432D of the second innermost-diameter-side magnet insertion hole 432 and the right wall surface 620 of the second gap portion 600.
  • the third rib 530 and the fourth rib 540 are provided in a substantially C-shape in which the distance D50 between the third rib 530 and the fourth rib 540 increases toward the inside in the radial direction.
  • a rotor core (rotor core 20); A plurality of magnetic pole portions (magnetic pole portions 30) arranged along the circumferential direction;
  • a rotor (rotor 10) of a rotating electrical machine including a plurality of arc magnets (outer diameter side arc magnets 810, inner diameter side arc magnets 821 and 822) constituting the magnetic pole portion, Each magnetic pole part It has at least two layers of magnet parts (magnet parts 300) along the radial direction,
  • the magnet unit is An outer magnet section (outer magnet section 310) including at least one arc magnet (outer arc magnet 810) arranged to be radially inwardly convex;
  • An inner diameter magnet portion (inner diameter magnet portion 320) composed of at least a pair of the arc magnets (inner diameter side arc magnets 821 and 822) arranged so as to be convex inward in the radial direction;
  • Each arc magnet has the same arc center (arc center C10, C21, C22) on
  • the plate thickness and the arc radius of the arc magnet are larger in the inner diameter magnet portion than in the outer diameter magnet portion. That is, the arc radius of the arc magnet can be increased by an amount corresponding to an increase in the thickness of the arc magnet of the inner diameter side magnet portion than the thickness of the arc magnet of the outer diameter side magnet portion. Therefore, when increasing the magnet amount in each magnetic pole portion, it is possible to use a circular arc magnet having high-performance magnetization characteristics, and it is possible to improve the output performance of the rotating electric machine. In addition, the distance between the arc magnet of the inner diameter side magnet portion and the arc magnet of the outer diameter side magnet portion increases from the q axis to the d axis.
  • the angle (the angle ⁇ 21) is defined by a second virtual line (virtual line L2) connecting the center of the second arc magnet (central portion 822C) and the center of the arc of the second arc magnet, and the d-axis.
  • a rotor of a rotary electric machine having an angle equal to an angle (an angle ⁇ 22).
  • the arc center of the first arc magnet and the arc center of the second arc magnet are both located on the opposite side of the d-axis in the circumferential direction from the first arc magnet and the second arc magnet, and An angle between the first imaginary line connecting the center of the arc magnet and the center of the arc of the first arc magnet and the d-axis connects the center of the second arc magnet and the center of the arc of the second arc magnet. Since the angle formed by the second virtual line and the d-axis is equal, the inner diameter side magnet portion can be formed symmetrically with respect to the d-axis, and an efficient arrangement for obtaining reluctance torque can be achieved.
  • the third imaginary line connecting the center of at least one arc magnet of the outer diameter magnet portion and the arc center of at least one arc magnet of the outer diameter magnet portion is formed by the d axis. Since the angle ⁇ 1 and the angle ⁇ 2 between the first virtual line and the second virtual line and the d axis satisfy ⁇ 1 ⁇ 2, the distance between the first arc magnet and the outer diameter side arc magnet and the second arc magnet In each case, the distance between the outer diameter side arc magnet and the outer diameter side arc magnet can be increased from the q axis to the d axis.
  • the outer-diameter magnet portion is formed of one arc magnet, and ⁇ 1 is zero, so that the outer-diameter magnet portion is formed symmetrically with respect to the d-axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A rotary electric machine rotor (10) that comprises a rotor core (20) and a magnetic pole part (30). The magnetic pole part (30) has a magnet part (300) that has at least two radial-direction layers and includes: an outer-diameter-side magnet part (310) that is configured from an outer-diameter-side arc magnet (810); and an inner-diameter-side magnet part (320) that is configured from a pair of inner-diameter-side arc magnets (821, 822). The arc centers of an inner circumferential surface and an outer circumferential surface of each arc magnet are the same. The plate thickness of the arc magnets of the inner-diameter-side magnet part (320) is greater than the plate thickness of the arc magnet of the outer-diameter-side magnet part (310), and the arc radius of the arc magnets of the inner-diameter-side magnet part (320) is greater than the arc radius of the arc magnet of the outer-diameter-side magnet part (310). The distances (D11, D12) between the inner-diameter-side arc magnets (821, 822) and the outer-diameter-side arc magnet (810) increase from q-axes toward a d-axis.

Description

回転電機のロータRotating electric machine rotor
 本発明は、電動車両等に搭載される回転電機のロータに関し、特に、複数の円弧磁石を備える回転電機のロータに関する。 The present invention relates to a rotor of a rotating electric machine mounted on an electric vehicle or the like, and particularly to a rotor of a rotating electric machine including a plurality of arc magnets.
 従来から、回転電機に使用されるロータとして、ロータコアの内部に周方向に所定の間隔で複数個の永久磁石を配置したロータが知られている。このような回転電機のロータにおいて、ロータの外径側に位置する円弧磁石と、ロータの内径側に位置する円弧磁石とが、間隔を置いて2層に配置された磁極部を有するものがある。例えば、特許文献1には、ロータの外径側に位置する円弧磁石と、ロータの内径側に位置する円弧磁石とが、略同一の板厚を有し、略同心円状に配置された磁極部を有する回転電機のロータが開示されている。特許文献1の回転電機のロータでは、円弧磁石が径方向で2層に配置されているので、円弧磁石が1層のみに配置されたロータに比べて磁石量が増え、マグネットトルクを大きくすることができる。 Conventionally, as a rotor used in a rotating electric machine, a rotor in which a plurality of permanent magnets are arranged at predetermined intervals in a circumferential direction inside a rotor core is known. Among the rotors of such a rotating electrical machine, there is a rotor having an arc magnet located on the outer diameter side of the rotor and an arc magnet located on the inner diameter side of the rotor having magnetic pole portions arranged in two layers at intervals. . For example, in Patent Literature 1, an arc magnet positioned on the outer diameter side of the rotor and an arc magnet positioned on the inner diameter side of the rotor have substantially the same plate thickness and are arranged in a substantially concentric magnetic pole portion. Is disclosed. In the rotor of the rotating electrical machine disclosed in Patent Document 1, since the arc magnets are arranged in two layers in the radial direction, the amount of magnets is increased and the magnet torque is increased as compared with a rotor in which the arc magnets are arranged only in one layer. Can be.
 円弧磁石は、リング状磁石を径方向に切断することで得ることができる。また、リング状磁石は、熱間加工プロセスを用いた成形により形成されることが知られている。例えば、特許文献2には、リング状磁石素材に対して熱間押出し成形等の熱間での塑性変形を行うことによって径方向に配向した異方性リング状磁石が開示されている。 A circular arc magnet can be obtained by cutting a ring-shaped magnet in the radial direction. It is known that a ring-shaped magnet is formed by molding using a hot working process. For example, Patent Literature 2 discloses an anisotropic ring-shaped magnet which is oriented in a radial direction by performing hot plastic deformation such as hot extrusion on a ring-shaped magnet material.
日本国特開平09-233744号公報Japanese Patent Application Laid-Open No. 09-233744 日本国特開平02-276210号公報Japanese Patent Application Laid-Open No. 02-276210
 一般に、熱間押出し成形等の熱間加工プロセスを用いた成形によりリング状磁石を形成する場合、熱間押出し成形することにより、ランダムに配向していたリング状磁石素材の結晶群に径方向の圧縮応力が作用し、リング状磁石素材の結晶群は、圧縮応力方向と同方向に配向する。その結果、径方向に配向した異方性リング状磁石が得られる。 In general, when forming a ring-shaped magnet by molding using a hot working process such as hot extrusion, by hot extrusion, the crystal group of the ring-shaped magnet material that has been randomly oriented is radially oriented. The compressive stress acts, and the crystal group of the ring-shaped magnet material is oriented in the same direction as the compressive stress direction. As a result, an anisotropic ring-shaped magnet oriented in the radial direction is obtained.
 したがって、高性能な磁化特性を持ったリング状磁石を得るためには、リング状磁石素材の結晶群に作用する応力が全域で均一となることが望ましい。しかし、リング状磁石素材のリング半径が小さく、リング状磁石素材の肉厚が大きい場合は、リング状磁石素材の結晶群に作用する応力が不均一となり、リング状磁石の配向度が低下してしまう。また、リング状磁石素材の肉厚が不均一の場合も、リング状磁石素材の結晶群に作用する応力が不均一となり、リング状磁石の配向度が低下してしまう。よって、リング状磁石素材の結晶群に作用する応力が全域で均一となるためには、(リング状磁石素材の肉厚)/(リング状磁石素材のリング半径)の値が、所定範囲内にある必要がある。 Therefore, in order to obtain a ring-shaped magnet having high-performance magnetization characteristics, it is desirable that the stress acting on the crystal group of the ring-shaped magnet material be uniform over the entire region. However, when the ring radius of the ring-shaped magnet material is small and the wall thickness of the ring-shaped magnet material is large, the stress acting on the crystal group of the ring-shaped magnet material becomes non-uniform, and the degree of orientation of the ring-shaped magnet decreases. I will. Also, when the thickness of the ring-shaped magnet material is not uniform, the stress acting on the crystals of the ring-shaped magnet material becomes uneven, and the degree of orientation of the ring-shaped magnet is reduced. Therefore, in order for the stress acting on the crystal group of the ring-shaped magnet material to be uniform over the entire region, the value of (thickness of the ring-shaped magnet material) / (ring radius of the ring-shaped magnet material) must be within a predetermined range. Need to be.
 しかしながら、特許文献1の回転電機のロータにおいて、円弧磁石の磁石量を増やすに際し、高性能な磁化特性を持った円弧磁石を複数層に配置するには、板厚に応じて円弧磁石の円弧半径も大きくする必要がある。このため、ロータの外径側に位置する円弧磁石と、ロータの内径側に位置する円弧磁石とを、略同心円状に配置すると、磁極部の周方向長さが大きくなり、ロータが大型化してしまう。 However, in the rotor of the rotating electric machine disclosed in Patent Document 1, in order to increase the amount of the arc magnets in order to arrange the arc magnets having high-performance magnetization characteristics in a plurality of layers, the arc radius of the arc magnets may be changed according to the plate thickness. Also need to be larger. For this reason, when the arc magnet positioned on the outer diameter side of the rotor and the arc magnet positioned on the inner diameter side of the rotor are arranged substantially concentrically, the circumferential length of the magnetic pole portion increases, and the rotor becomes larger. I will.
 本発明は、磁極部における円弧磁石の磁石量を増やすに際し、大型化を抑制しつつ、高性能な磁化特性を持った円弧磁石を用いることが可能な回転電機のロータを提供する。 (4) The present invention provides a rotor for a rotating electric machine that can use a circular arc magnet having high-performance magnetization characteristics while suppressing an increase in the size of a circular arc magnet in a magnetic pole part.
 本発明は、
 ロータコアと、
 周方向に沿って配置される複数の磁極部と、
 該磁極部を構成する複数の円弧磁石と、を備える回転電機のロータであって、
 各磁極部は、
 径方向に沿って少なくとも二層の磁石部を有し、
 前記磁石部は、
 径方向内側に凸となるように配置される少なくとも一つの前記円弧磁石から構成される外径側磁石部と、
 前記径方向内側に凸となるように配置される少なくとも一対の前記円弧磁石から構成される内径側磁石部と、を含み、
 各円弧磁石は、内周面と外周面とが同じ円弧中心を有し、
 前記円弧磁石の板厚は、前記内径側磁石部の方が前記外径側磁石部よりも大きく、
 前記円弧磁石の半径は、前記内径側磁石部の方が前記外径側磁石部よりも大きく、
 各磁極部の中心軸をd軸、該d軸に対し電気角で90°隔てた軸をq軸とした場合、前記内径側磁石部の前記円弧磁石と前記外径側磁石部の前記円弧磁石との距離は、前記q軸から前記d軸に近づくに従って広くなる。
The present invention
A rotor core,
A plurality of magnetic pole portions arranged along the circumferential direction;
And a plurality of arc magnets constituting the magnetic pole portion,
Each magnetic pole part
It has at least two layers of magnet parts along the radial direction,
The magnet unit is
An outer-diameter-side magnet unit including at least one arc-shaped magnet arranged to be convex inward in the radial direction,
An inner diameter side magnet portion configured by at least a pair of the arc magnets arranged to be convex inward in the radial direction,
Each arc magnet, the inner peripheral surface and the outer peripheral surface have the same arc center,
The plate thickness of the arc magnet, the inner diameter side magnet portion is larger than the outer diameter side magnet portion,
The radius of the arc magnet, the inner diameter side magnet portion is larger than the outer diameter side magnet portion,
When the center axis of each magnetic pole portion is a d-axis and the axis separated by an electrical angle of 90 ° with respect to the d-axis is a q-axis, the arc magnet of the inner diameter side magnet portion and the arc magnet of the outer diameter side magnet portion are provided. The distance increases from the q axis to the d axis.
 本発明によれば、磁極部における円弧磁石の磁石量を増やすに際し、大型化を抑制しつつ、高性能な磁化特性を持った円弧磁石を用いることが可能となる。 According to the present invention, it is possible to use an arc magnet having high-performance magnetization characteristics while suppressing an increase in the size of the arc magnet in the magnetic pole portion while suppressing an increase in size.
本発明の第1実施形態の回転電機のロータの正面図である。FIG. 2 is a front view of the rotor of the rotary electric machine according to the first embodiment of the present invention. 図1の回転電機のロータの磁極部周辺の拡大図である。FIG. 2 is an enlarged view around a magnetic pole portion of a rotor of the rotating electric machine in FIG. 1. 本発明の第2実施形態の回転電機のロータの磁極部周辺の拡大図である。FIG. 6 is an enlarged view around a magnetic pole portion of a rotor of a rotating electric machine according to a second embodiment of the present invention. 本発明の第2実施形態の回転電機のロータの変形例を示す図である。It is a figure showing the modification of the rotor of the rotary electric machine of a 2nd embodiment of the present invention. 本発明の第3実施形態の回転電機のロータの磁極部周辺の拡大図である。FIG. 11 is an enlarged view around a magnetic pole portion of a rotor of a rotating electric machine according to a third embodiment of the present invention.
 以下、本発明の回転電機のロータ各実施形態を、添付図面に基づいて説明する。 Hereinafter, embodiments of the rotor of the rotating electric machine according to the present invention will be described with reference to the accompanying drawings.
[第1実施形態]
 先ず、本発明の第1実施形態の回転電機のロータについて図1~図2を参照しながら説明する。
[First Embodiment]
First, a rotor of a rotary electric machine according to a first embodiment of the present invention will be described with reference to FIGS.
 図1に示すように、一実施形態の回転電機のロータ10は、ロータシャフト(不図示)の外周部に取り付けられるロータコア20と、ロータコア20の内部に周方向に所定の間隔で形成された複数の磁極部30(本実施形態では12個)と、を備え、ステータ(不図示)の内周側に配置されている。 As shown in FIG. 1, a rotor 10 of a rotary electric machine according to one embodiment includes a rotor core 20 attached to an outer peripheral portion of a rotor shaft (not shown), and a plurality of rotor cores 20 formed inside the rotor core 20 at predetermined intervals in a circumferential direction. (In this embodiment, twelve), and is disposed on the inner peripheral side of a stator (not shown).
 ロータコア20は、同一形状の略円環状の電磁鋼板200が軸方向に複数積層されて形成されている。ロータコア20は、円環中心Cと同中心のロータシャフト孔21を有する。さらに、円環中心Cと各磁極部30の中心とを結ぶ、各磁極部30の中心軸をd軸(図中d-axis)、d軸に対し電気角で90°隔てた軸をq軸(図中q-axis)とした場合、ロータコア20は、各磁極部30に対応するように、ロータコア20の外径側にd軸を横切るように形成された外径側磁石挿入孔410と、外径側磁石挿入孔410の内径側にd軸を挟んで径方向外側に向かって広がる略ハの字状に形成された一対の内径側磁石挿入孔421、422と、内径側磁石挿入孔421、422のd軸側端部に形成され、それぞれ径方向に延びる一対のリブ510、520と、一対のリブ510、520間に形成された空隙部60と、を有する。外径側磁石挿入孔410及び内径側磁石挿入孔421、422は、いずれも径方向内側に凸となる円弧形状を有する。 The rotor core 20 is formed by laminating a plurality of substantially annular electromagnetic steel sheets 200 having the same shape in the axial direction. The rotor core 20 has a rotor shaft hole 21 that is concentric with the center of the circular ring C. Further, the center axis of each magnetic pole part 30 connecting the center of the circular ring C and the center of each magnetic pole part 30 is d-axis (d-axis in the figure), and the axis separated by 90 ° in electrical angle from the d-axis is q-axis. In the case of (q-axis in the drawing), the rotor core 20 has an outer diameter side magnet insertion hole 410 formed across the d axis on the outer diameter side of the rotor core 20 so as to correspond to each magnetic pole portion 30; A pair of inner magnet-side magnet insertion holes 421 and 422 formed in a substantially C-shape extending radially outward across the d-axis on the inner-diameter side of the outer-magnet-side magnet insertion hole 410, and an inner-magnet-side magnet insertion hole 421. , 422, each having a pair of ribs 510, 520 extending in the radial direction, and a gap 60 formed between the pair of ribs 510, 520. Each of the outer-diameter magnet insertion holes 410 and the inner-diameter magnet insertion holes 421 and 422 has an arc shape that is convex inward in the radial direction.
 各磁極部30は、外径側磁石部310及び内径側磁石部320を含む磁石部300を有する。外径側磁石部310は、外径側磁石挿入孔410に挿入され、径方向内側に凸となるように配置された外径側円弧磁石810から構成される。内径側磁石部320は、一対の内径側磁石挿入孔421、422にそれぞれ挿入され、径方向内側に凸となるように配置された一対の内径側円弧磁石821、822から構成される。 Each magnetic pole part 30 has a magnet part 300 including an outer diameter side magnet part 310 and an inner diameter side magnet part 320. The outer-diameter magnet portion 310 is inserted into the outer-diameter magnet insertion hole 410, and includes an outer-diameter arc magnet 810 that is arranged so as to protrude radially inward. The inner diameter side magnet section 320 is inserted into a pair of inner diameter side magnet insertion holes 421 and 422, respectively, and is constituted by a pair of inner diameter side arc magnets 821 and 822 arranged so as to protrude radially inward.
 外径側円弧磁石810及び一対の内径側円弧磁石821、822は、径方向に磁化されている。また、外径側円弧磁石810及び一対の内径側円弧磁石821、822は、隣り合う磁極部30と磁化方向が異なり、磁極部30が周方向で交互に磁化方向が異なるように配置されている。 The outer diameter side arc magnet 810 and the pair of inner diameter side arc magnets 821 and 822 are magnetized in the radial direction. Further, the outer diameter side arc magnet 810 and the pair of inner diameter side arc magnets 821 and 822 have different magnetization directions from the adjacent magnetic pole portions 30 and are arranged such that the magnetic pole portions 30 alternately have different magnetization directions in the circumferential direction. .
 ここで、ロータ10の正面視において、円環中心Cを下方、d軸方向外径側を上方として見て、一対の内径側磁石挿入孔421、422は、d軸に対して左側に第1内径側磁石挿入孔421、右側に第2内径側磁石挿入孔422が配置され、一対のリブ510、520は、d軸を挟んで左側に第1リブ510、右側に第2リブ520が配置され、一対の内径側円弧磁石821、822は、d軸を挟んで左側に第1内径側円弧磁石821、右側に第2内径側円弧磁石822が配置されている。 Here, in the front view of the rotor 10, when the annular center C is viewed downward and the outer diameter side in the d-axis direction is viewed upward, the pair of inner-diameter-side magnet insertion holes 421 and 422 are located on the left side with respect to the d axis. The inner diameter side magnet insertion hole 421, the second inner diameter side magnet insertion hole 422 is disposed on the right side, and the pair of ribs 510 and 520 are arranged with the first rib 510 on the left side and the second rib 520 on the right side with the d axis interposed therebetween. The pair of inner diameter side arc magnets 821 and 822 have a first inner diameter side arc magnet 821 on the left side with respect to the d-axis and a second inner diameter side arc magnet 822 on the right side.
 以降、本明細書等では説明を簡単且つ明確にするために、ロータ10の正面視において、円環中心Cを下方、d軸方向外径側を上方と定義して説明する。図2~5には、ロータ10の上方をU、下方をD、左側をL、右側をR、として示す。 Hereinafter, in the present specification and the like, for simplicity and clarity of description, in the front view of the rotor 10, the annular center C is defined as lower, and the outer diameter side in the d-axis direction is defined as upper. 2 to 5, the upper part of the rotor 10 is indicated by U, the lower part by D, the left side by L, and the right side by R.
 図2に示すように、外径側円弧磁石810は、同じ円弧中心C10を有する内周面810N及び外周面810Fと、左側端面810Lと、右側端面810Rと、を有する。第1内径側円弧磁石821は、同じ円弧中心C21を有する内周面821N及び外周面821Fと、q軸側端面821Qと、d軸側端面821Dと、を有する。第1内径側円弧磁石821の円弧中心C21は、d軸に対して第1内径側円弧磁石821と反対側の右側に位置している。第2内径側円弧磁石822は、同じ円弧中心C22を有する内周面822N及び外周面822Fと、q軸側端面822Qと、d軸側端面822Dと、を有する。第2内径側円弧磁石822の円弧中心C22は、d軸に対して第2内径側円弧磁石822と反対側の左側に位置している。 外 As shown in FIG. 2, the outer diameter side arc magnet 810 has an inner peripheral surface 810N and an outer peripheral surface 810F having the same arc center C10, a left end surface 810L, and a right end surface 810R. The first inner diameter side arc magnet 821 has an inner peripheral surface 821N and an outer peripheral surface 821F having the same arc center C21, a q-axis end surface 821Q, and a d-axis end surface 821D. The arc center C21 of the first inner radius arc magnet 821 is located on the right side opposite to the first inner radius arc magnet 821 with respect to the d axis. The second inner radius side arc magnet 822 has an inner peripheral surface 822N and an outer peripheral surface 822F having the same arc center C22, a q-axis end surface 822Q, and a d-axis end surface 822D. The arc center C22 of the second inner diameter side arc magnet 822 is located on the left side opposite to the second inner diameter side arc magnet 822 with respect to the d axis.
 外径側円弧磁石810、第1内径側円弧磁石821、及び第2内径側円弧磁石822は、例えば、熱間加工プロセスを用いた成形により形成されたリング状磁石を径方向に切断した円弧磁石を用いることができる。 The outer diameter side arc magnet 810, the first inner diameter side arc magnet 821, and the second inner diameter side arc magnet 822 are, for example, radially cut ring-shaped magnets formed by molding using a hot working process. Can be used.
 第1内径側円弧磁石821の板厚d21及び第2内径側円弧磁石822の板厚d22は、外径側円弧磁石810の板厚d10よりも大きくなっている。これにより、第1内径側円弧磁石821及び第2内径側円弧磁石822の磁石量を増やすことができ、回転電機のマグネットトルクを大きくできるので、回転電機の出力性能を向上できる。 The plate thickness d21 of the first inner diameter side arc magnet 821 and the plate thickness d22 of the second inner diameter side arc magnet 822 are larger than the plate thickness d10 of the outer diameter side arc magnet 810. Thereby, the magnet amount of the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822 can be increased, and the magnet torque of the rotating electric machine can be increased, so that the output performance of the rotating electric machine can be improved.
 また、第1内径側円弧磁石821の板厚d21及び第2内径側円弧磁石822の板厚d22を大きくした分、第1内径側円弧磁石821の内周面821Nの円弧半径r21及び第2内径側円弧磁石822の内周面822Nの円弧半径r22は、外径側円弧磁石810の内周面810Nの円弧半径r10よりも大きくなっている。これにより、高性能な磁化特性を持つ外径側円弧磁石810、第1内径側円弧磁石821、及び第2内径側円弧磁石822を用いることができるので、回転電機の出力性能を向上できる。 In addition, as the thickness d21 of the first inner diameter side arc magnet 821 and the thickness d22 of the second inner diameter side arc magnet 822 are increased, the arc radius r21 and the second inner diameter of the inner peripheral surface 821N of the first inner diameter side arc magnet 821 are increased. The arc radius r22 of the inner peripheral surface 822N of the side arc magnet 822 is larger than the arc radius r10 of the inner peripheral surface 810N of the outer diameter arc magnet 810. Accordingly, the outer diameter side arc magnet 810, the first inner diameter side arc magnet 821, and the second inner diameter side arc magnet 822 having high-performance magnetization characteristics can be used, so that the output performance of the rotating electric machine can be improved.
 ここで、外径側円弧磁石810の内周面810Nの円弧半径r10と、外径側円弧磁石810の板厚d10との比であるd10/r10と、第1内径側円弧磁石821の内周面821Nの円弧半径r21と、第1内径側円弧磁石821の板厚d21との比であるd21/r21と、第2内径側円弧磁石822の内周面822Nの円弧半径r22と、第2内径側円弧磁石822の板厚d22との比であるd22/r22とは、所定範囲で略同一の値であることが好ましい。より好ましくは、第1内径側円弧磁石821の内周面821Nの円弧半径r21と第2内径側円弧磁石822の内周面822Nの円弧半径r22とが同一、かつ、第1内径側円弧磁石821の板厚d21と第2内径側円弧磁石822の板厚d22が同一であり、第1内径側円弧磁石821と第2内径側円弧磁石822とが同一形状となっている。 Here, d10 / r10, which is a ratio of the arc radius r10 of the inner peripheral surface 810N of the outer diameter side arc magnet 810 to the plate thickness d10 of the outer diameter side arc magnet 810, and the inner circumference of the first inner diameter side arc magnet 821. D21 / r21, which is the ratio of the arc radius r21 of the surface 821N to the plate thickness d21 of the first inner diameter arc magnet 821, the arc radius r22 of the inner peripheral surface 822N of the second inner diameter arc magnet 822, and the second inner diameter It is preferable that d22 / r22, which is a ratio with the plate thickness d22 of the side arc magnet 822, have substantially the same value in a predetermined range. More preferably, the arc radius r21 of the inner peripheral surface 821N of the first inner diameter side arc magnet 821 and the arc radius r22 of the inner peripheral surface 822N of the second inner diameter side arc magnet 822 are the same, and the first inner diameter side arc magnet 821 is used. Is the same as the thickness d22 of the second inner diameter side arc magnet 822, and the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822 have the same shape.
 さらに、第1内径側円弧磁石821と外径側円弧磁石810との距離D11及び第2内径側円弧磁石822と外径側円弧磁石810との距離D12は、いずれも、q軸からd軸に近づくに従って長くなっている。 Further, the distance D11 between the first inner diameter side arc magnet 821 and the outer diameter side arc magnet 810 and the distance D12 between the second inner diameter side arc magnet 822 and the outer diameter side arc magnet 810 are both from the q axis to the d axis. It gets longer as you get closer.
 これにより、磁極部30の周方向長さが大きくなることを抑制できるので、ロータ10が大型化するのを抑制できる。したがって、ロータ10は、第1内径側円弧磁石821及び第2内径側円弧磁石822の磁石量を増やすに際し、大型化を抑制しつつ、高性能な磁化特性を持つ外径側円弧磁石810、第1内径側円弧磁石821、及び第2内径側円弧磁石822を用いることが可能となる。また、ロータ10におけるq軸に沿った磁路(以下、q軸磁路とも呼ぶ)を広くとることができ、回転電機のリラクタンストルクを大きくできるので、回転電機の出力性能を向上できる。さらに、第1内径側円弧磁石821及び第2内径側円弧磁石822と、外径側円弧磁石810とによるマグネット磁束がd軸に集約されやすくなり、回転電機のマグネットトルクを効率的に利用でき、回転電機の出力性能を向上できる。 (4) Since the circumferential length of the magnetic pole portion 30 can be suppressed from increasing, the rotor 10 can be prevented from increasing in size. Accordingly, when increasing the magnet amounts of the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822, the rotor 10 is capable of suppressing the increase in size and also having the outer diameter side arc magnet 810 having high-performance magnetizing characteristics. The first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822 can be used. Further, a magnetic path along the q-axis (hereinafter, also referred to as a q-axis magnetic path) in the rotor 10 can be widened and the reluctance torque of the rotating electric machine can be increased, so that the output performance of the rotating electric machine can be improved. Further, the magnetic flux generated by the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822 and the outer diameter side arc magnet 810 is easily concentrated on the d-axis, and the magnet torque of the rotating electric machine can be used efficiently, The output performance of the rotating electric machine can be improved.
 また、外径側円弧磁石810の中央部810Cと、外径側円弧磁石810の円弧中心C10とを結ぶ仮想線L3と、d軸とのなす角θ10は0°となっている。すなわち仮想線L3はd軸と一致している。これにより、外径側磁石部310を一つの円弧磁石で構成でき、さらに、外径側磁石部310をd軸に対して対称に形成することができるので、シンプルな構造で効率的にマグネットトルクを得ることができる。 角 The angle θ10 between the imaginary line L3 connecting the central portion 810C of the outer diameter side arc magnet 810, the center C10 of the outer diameter side arc magnet 810, and the d axis is 0 °. That is, the virtual line L3 coincides with the d-axis. Thereby, the outer diameter side magnet part 310 can be constituted by one arc magnet, and furthermore, the outer diameter side magnet part 310 can be formed symmetrically with respect to the d axis. Can be obtained.
 さらに、第1内径側円弧磁石821の中央部821Cと、第1内径側円弧磁石821の円弧中心C21とを結ぶ仮想線L1と、d軸とのなす角θ21は、第2内径側円弧磁石822の中央部822Cと、第2内径側円弧磁石822の円弧中心C22とを結ぶ仮想線L2と、d軸とのなす角θ22と等しくなっている。これにより、内径側磁石部320をd軸に対して対称に形成することができるので、リラクタンストルクを得るための効率的な配置とすることができる。 Further, the angle θ21 between the imaginary line L1 connecting the center portion 821C of the first inner diameter side arc magnet 821 and the arc center C21 of the first inner diameter side arc magnet 821 and the d axis is the second inner diameter side arc magnet 822. The angle θ22 between the imaginary line L2 connecting the center portion 822C of the second inner diameter side and the arc center C22 of the second inner diameter side arc magnet 822 and the d axis is equal. Thus, the inner diameter side magnet portion 320 can be formed symmetrically with respect to the d axis, so that an efficient arrangement for obtaining reluctance torque can be achieved.
 外径側磁石挿入孔410は、外径側円弧磁石810の内周面810N及び外周面810Fに沿って形成された内周壁面410N及び外周壁面410Fと、左側壁面410Lと、右側壁面410Rと、を有する。第1内径側磁石挿入孔421は、第1内径側円弧磁石821の内周面821N及び外周面821Fに沿って形成された内周壁面421N及び外周壁面421Fと、q軸側壁面421Qと、d軸側壁面421Dと、を有する。第2内径側磁石挿入孔422は、第2内径側円弧磁石822の内周面822N及び外周面822Fに沿って形成された内周壁面422N及び外周壁面422Fと、q軸側壁面422Qと、d軸側壁面422Dと、を有する。 The outer diameter side magnet insertion hole 410 has an inner peripheral wall surface 410N and an outer peripheral wall surface 410F formed along the inner peripheral surface 810N and the outer peripheral surface 810F of the outer diameter side arc magnet 810, a left wall surface 410L, a right wall surface 410R, Having. The first inner diameter side magnet insertion hole 421 includes an inner peripheral wall surface 421N and an outer peripheral wall surface 421F formed along the inner peripheral surface 821N and the outer peripheral surface 821F of the first inner diameter side arc magnet 821, a q-axis side wall surface 421Q, and d. And a shaft side wall surface 421D. The second inner diameter side magnet insertion hole 422 includes an inner peripheral wall surface 422N and an outer peripheral wall surface 422F formed along the inner peripheral surface 822N and the outer peripheral surface 822F of the second inner diameter side arc magnet 822, a q-axis side wall surface 422Q, and d. And a shaft side wall surface 422D.
 また、第1内径側円弧磁石821のd軸側端面821Dとd軸との間には、径方向に延びる第1リブ510が形成され、第2内径側円弧磁石822のd軸側端面822Dとd軸との間には、径方向に延びる第2リブ520が形成されている。さらに、第1リブ510と第2リブ520の間は、空隙部60となっている。よって、空隙部60は、d軸と重なるように設けられている。 A first rib 510 extending in the radial direction is formed between the d-axis side end surface 821D of the first inner diameter side arc magnet 821 and the d axis, and is connected to the d axis side end surface 822D of the second inner diameter side arc magnet 822. A second rib 520 extending in the radial direction is formed between the second rib 520 and the d-axis. Further, a gap 60 is provided between the first rib 510 and the second rib 520. Therefore, the gap 60 is provided so as to overlap the d-axis.
 これにより、内径側磁石部320において、d軸上が空隙となるため、d軸インダクタンスを低減することができる。よって、d軸インダクタンスとq軸インダクタンスとの差を大きくすることができるので、リラクタンストルクを有効に利用することが可能となり、回転電機の出力性能を向上できる。 In this way, in the inner diameter side magnet section 320, a gap is formed on the d-axis, so that d-axis inductance can be reduced. Therefore, the difference between the d-axis inductance and the q-axis inductance can be increased, so that the reluctance torque can be effectively used, and the output performance of the rotating electric machine can be improved.
 第1リブ510は、第1内径側磁石挿入孔421のd軸側壁面421Dと、空隙部60の左側壁面61によって構成されている。第2リブ520は、第2内径側磁石挿入孔422のd軸側壁面422Dと、空隙部60の右側壁面62によって構成されている。 The first rib 510 includes the d-axis side wall surface 421 </ b> D of the first inner diameter side magnet insertion hole 421 and the left wall surface 61 of the gap 60. The second rib 520 is configured by the d-axis side wall surface 422D of the second inner diameter side magnet insertion hole 422 and the right wall surface 62 of the gap 60.
 したがって、第1内径側円弧磁石821による遠心荷重は第1リブ510が受け、第2内径側円弧磁石822による遠心荷重は、第2リブ520が受けることとなる。すなわち、第1リブ510と第2リブ520は、第1内径側円弧磁石821による遠心荷重と第2内径側円弧磁石822による遠心荷重とを、それぞれ別個に受けることとなる。これにより、第1内径側円弧磁石821と第2内径側円弧磁石822の重量バラツキに起因してロータコア20に発生する曲げ応力を低減することができる。 Therefore, the centrifugal load by the first inner diameter side arc magnet 821 is received by the first rib 510, and the centrifugal load by the second inner diameter side arc magnet 822 is received by the second rib 520. That is, the first rib 510 and the second rib 520 receive the centrifugal load by the first inner diameter side arc magnet 821 and the centrifugal load by the second inner diameter side arc magnet 822, respectively. Accordingly, it is possible to reduce the bending stress generated in the rotor core 20 due to the weight variation between the first inner diameter side arc magnet 821 and the second inner diameter side arc magnet 822.
 さらに、第1リブ510と第2リブ520は、径方向内側に向かって第1リブ510と第2リブ520との距離D5が長くなる略ハの字状に設けられている。これにより、第1リブ510の径方向外側端部511及び径方向内側端部512と、第2リブ520の径方向外側端部521及び径方向内側端部522のいずれも、角Rを大きくすることができるので、第1リブ510及び第2リブ520の径方向両端部への応力集中を緩和することができる。 Furthermore, the first ribs 510 and the second ribs 520 are provided in a substantially C-shape in which the distance D5 between the first ribs 510 and the second ribs 520 increases radially inward. Thus, the radius R of the radially outer end 511 and the radially inner end 512 of the first rib 510 and the radially outer end 521 and the radially inner end 522 of the second rib 520 are both increased. Therefore, the concentration of stress on both ends in the radial direction of the first rib 510 and the second rib 520 can be reduced.
 ここで、空隙部60には、冷媒が供給されていてもよい。これにより、外径側円弧磁石810、第1内径側円弧磁石821、及び第2内径側円弧磁石822の近傍に冷媒を供給することができるので、外径側円弧磁石810、第1内径側円弧磁石821、及び第2内径側円弧磁石822をより効果的に冷却することができる。 冷媒 Here, the gap 60 may be supplied with a refrigerant. Thereby, the refrigerant can be supplied to the vicinity of the outer diameter side arc magnet 810, the first inner diameter side arc magnet 821, and the second inner diameter side arc magnet 822, so that the outer diameter side arc magnet 810, the first inner diameter side arc The magnet 821 and the second inner diameter side arc magnet 822 can be cooled more effectively.
[第2実施形態]
 続いて、本発明の第2実施形態の回転電機のロータ10Aについて図3~図4を参照しながら説明する。なお、以下の説明において、第1実施形態の回転電機のロータ10と同一の構成要素については同一の符号を付して説明を省略又は簡略化する。第1実施形態の回転電機のロータ10では、外径側磁石部310は、径方向内側に凸となるように配置された外径側円弧磁石810から構成されるが、第2実施形態の回転電機のロータ10Aでは、外径側磁石部310は、d軸を挟んで、左側に径方向内側に凸となるように配置された第1外径側円弧磁石811と、右側に径方向内側に凸となるように配置された配置された第2外径側円弧磁石812と、から構成される。
[Second embodiment]
Next, a rotor 10A of the rotary electric machine according to the second embodiment of the present invention will be described with reference to FIGS. In the following description, the same components as those of the rotor 10 of the rotary electric machine according to the first embodiment are denoted by the same reference numerals, and the description is omitted or simplified. In the rotor 10 of the rotary electric machine according to the first embodiment, the outer-diameter magnet portion 310 is configured by the outer-diameter arc magnet 810 that is disposed so as to protrude radially inward. In the rotor 10A of the electric machine, the outer-diameter-side magnet portion 310 has a first outer-diameter-side arc magnet 811 disposed so as to protrude radially inward on the left side across the d-axis, and radially inward on the right side. And a second outer diameter side arc magnet 812 arranged so as to be convex.
 また、第1実施形態のロータコア20は、ロータコア20の外径側に形成された径方向内側に凸となる円弧形状の外径側磁石挿入孔410を有するが、第2実施形態のロータコア20Aは、ロータコア20Aの外径側に、d軸を挟んで、左側に径方向内側に凸となるように配置された第1外径側磁石挿入孔411と、右側に径方向内側に凸となるように配置された第2外径側磁石挿入孔412と、を有する。 Further, the rotor core 20 of the first embodiment has an arc-shaped outer diameter side magnet insertion hole 410 formed on the outer diameter side of the rotor core 20 and protruding radially inward, but the rotor core 20A of the second embodiment has A first outer diameter side magnet insertion hole 411 disposed on the outer diameter side of the rotor core 20A so as to project radially inward on the left side with respect to the d axis, and a radially inward projection on the right side. And a second outer-diameter-side magnet insertion hole 412 disposed at the second position.
 図3に示すように、第1外径側円弧磁石811は、同じ円弧中心C11を有する内周面811N及び外周面811Fと、q軸側端面811Qと、d軸側端面811Dと、を有する。第2外径側円弧磁石812は、同じ円弧中心C12を有する内周面812N及び外周面812Fと、q軸側端面812Qと、d軸側端面812Dと、を有する。 As shown in FIG. 3, the first outer diameter side arc magnet 811 has an inner peripheral surface 811N and an outer peripheral surface 811F having the same arc center C11, a q-axis end surface 811Q, and a d-axis end surface 811D. The second outer diameter side arc magnet 812 has an inner peripheral surface 812N and an outer peripheral surface 812F having the same arc center C12, a q-axis side end surface 812Q, and a d-axis side end surface 812D.
 第1内径側円弧磁石821の板厚d21及び第2内径側円弧磁石822の板厚d22は、第1外径側円弧磁石811の板厚d11及び第2外径側円弧磁石812の板厚d12よりも大きくなっている。 The thickness d21 of the first inner diameter arc magnet 821 and the thickness d22 of the second inner diameter arc magnet 822 are the thickness d11 of the first outer diameter arc magnet 811 and the thickness d12 of the second outer diameter arc magnet 812. Is bigger than.
 また、第1内径側円弧磁石821の板厚d21及び第2内径側円弧磁石822の板厚d22を大きくした分、第1内径側円弧磁石821の内周面821Nの円弧半径r21及び第2内径側円弧磁石822の内周面822Nの円弧半径r22は、第1外径側円弧磁石811の内周面811Nの円弧半径r11及び第2外径側円弧磁石812の内周面812Nの円弧半径r12よりも大きくなっている。 In addition, as the thickness d21 of the first inner diameter side arc magnet 821 and the thickness d22 of the second inner diameter side arc magnet 822 are increased, the arc radius r21 and the second inner diameter of the inner peripheral surface 821N of the first inner diameter side arc magnet 821 are increased. The arc radius r22 of the inner peripheral surface 822N of the side arc magnet 822 is the arc radius r11 of the inner peripheral surface 811N of the first outer radius arc magnet 811 and the arc radius r12 of the inner peripheral surface 812N of the second outer radius arc magnet 812. Is bigger than.
 ここで、第1外径側円弧磁石811の内周面811Nの円弧半径r11と、第1外径側円弧磁石811の板厚d11との比であるd11/r11及び第2外径側円弧磁石812の内周面812Nの円弧半径r12と、第2外径側円弧磁石812の板厚d12との比であるd12/r12とは、所定範囲で略同一の値であることが好ましい。より好ましくは、第1外径側円弧磁石811の内周面811Nの円弧半径r11と第2外径側円弧磁石812の内周面812Nの円弧半径r12とが同一、かつ、第1外径側円弧磁石811の板厚d11と第2外径側円弧磁石812の板厚d12が同一であり、第1外径側円弧磁石811と第2外径側円弧磁石812とが同一形状となっている。 Here, d11 / r11, which is the ratio of the arc radius r11 of the inner peripheral surface 811N of the first outer-diameter arc magnet 811 to the plate thickness d11 of the first outer-diameter arc magnet 811, and the second outer-diameter arc magnet D12 / r12, which is the ratio of the arc radius r12 of the inner peripheral surface 812N of the inner peripheral surface 812 to the plate thickness d12 of the second outer diameter side arc magnet 812, is preferably substantially the same value within a predetermined range. More preferably, the arc radius r11 of the inner peripheral surface 811N of the first outer diameter side arc magnet 811 and the arc radius r12 of the inner peripheral surface 812N of the second outer diameter side arc magnet 812 are the same, and the first outer diameter side The plate thickness d11 of the arc magnet 811 and the plate thickness d12 of the second outer diameter side arc magnet 812 are the same, and the first outer diameter side arc magnet 811 and the second outer diameter side arc magnet 812 have the same shape. .
 また、第1内径側円弧磁石821と第1外径側円弧磁石811との距離D11及び第2内径側円弧磁石822と第2外径側円弧磁石812との距離D12は、いずれも、q軸からd軸に近づくに従って長くなるように配置されている。 The distance D11 between the first inner diameter side arc magnet 821 and the first outer diameter side arc magnet 811 and the distance D12 between the second inner diameter side arc magnet 822 and the second outer diameter side arc magnet 812 are all q-axis. And is arranged so as to be longer as approaching the d-axis.
 また、第1外径側円弧磁石811の中央部811Cと、第1外径側円弧磁石811の円弧中心C11とを結ぶ仮想線L31と、d軸とのなす角θ11は、第1内径側円弧磁石821の中央部821Cと、第1内径側円弧磁石821の円弧中心C21とを結ぶ仮想線L1と、d軸とのなす角θ21よりも小さくなっている。すなわち、θ11<θ21を満たしている。同様に、及び第2外径側円弧磁石812の中央部812Cと、第2外径側円弧磁石812の円弧中心C12とを結ぶ仮想線L32と、d軸とのなす角θ12は、第2内径側円弧磁石822の中央部822Cと、第2内径側円弧磁石822の円弧中心C22とを結ぶ仮想線L2と、d軸とのなす角θ22よりも小さくなっている。すなわち、θ12<θ22を満たしている。 The angle θ11 between the imaginary line L31 connecting the central portion 811C of the first outer diameter side arc magnet 811 and the arc center C11 of the first outer diameter side arc magnet 811 and the d axis is the first inner diameter side arc. An angle θ21 formed between an imaginary line L1 connecting the central portion 821C of the magnet 821 and the arc center C21 of the first inner diameter side arc magnet 821 with the d axis is smaller. That is, θ11 <θ21 is satisfied. Similarly, the angle θ12 between the imaginary line L32 connecting the central portion 812C of the second outer diameter side arc magnet 812, the arc center C12 of the second outer diameter side arc magnet 812, and the d axis is the second inner diameter. The angle θ22 between the center line 822C of the side arc magnet 822 and the arc center C22 of the second inner diameter side arc magnet 822 and the d-axis is smaller than the angle θ22. That is, θ12 <θ22 is satisfied.
 第1外径側磁石挿入孔411は、第1外径側円弧磁石811の内周面811N及び外周面811Fに沿って形成された内周壁面411N及び外周壁面411Fと、q軸側壁面411Qと、d軸側壁面411Dと、を有し、第2外径側磁石挿入孔412は、第2外径側円弧磁石812の内周面812N及び外周面812Fに沿って形成された内周壁面412N及び外周壁面412Fと、q軸側壁面412Qと、d軸側壁面412Dと、を有する。 The first outer diameter side magnet insertion hole 411 includes an inner peripheral wall surface 411N and an outer peripheral wall surface 411F formed along the inner peripheral surface 811N and the outer peripheral surface 811F of the first outer diameter side arc magnet 811, and a q-axis side wall surface 411Q. , A d-axis side wall surface 411D, and the second outer diameter side magnet insertion hole 412 is formed along the inner peripheral surface 812N and the outer peripheral surface 812F of the second outer diameter side arc magnet 812. And an outer peripheral wall surface 412F, a q-axis side wall surface 412Q, and a d-axis side wall surface 412D.
 これにより、第1実施形態と同様の効果に加えて、外径側磁石部310において長尺の外径側円弧磁石810の代わりに一対の第1外径側円弧磁石811及び第2外径側円弧磁石812を使用できるので、磁石配置の自由度が向上する。本実施形態では、第1内径側円弧磁石821の円弧中心C21と第2内径側円弧磁石822の円弧中心C22は、d軸上の同一位置となっているが、第1内径側円弧磁石821の円弧中心C21と第2内径側円弧磁石822の円弧中心C22は、異なる位置となっていてもよい。 Accordingly, in addition to the same effect as in the first embodiment, a pair of the first outer diameter side arc magnet 811 and the second outer diameter side is used in the outer diameter side magnet portion 310 instead of the long outer diameter side arc magnet 810. Since the arc magnet 812 can be used, the degree of freedom in magnet arrangement is improved. In the present embodiment, the arc center C21 of the first inner diameter side arc magnet 821 and the arc center C22 of the second inner diameter side arc magnet 822 are at the same position on the d axis. The arc center C21 and the arc center C22 of the second inner diameter side arc magnet 822 may be at different positions.
 例えば、図4に示すように、第1内径側円弧磁石821の円弧中心C21は、d軸に対して第1内径側円弧磁石821と反対側の右側に位置しており、第2内径側円弧磁石822の円弧中心C22は、d軸に対して第2内径側円弧磁石822と反対側の左側に位置していてもよい。この場合も、θ11<θ21及びθ12<θ22を満たすことで、第1内径側円弧磁石821と第1外径側円弧磁石811との距離D11及び第2内径側円弧磁石822と第2外径側円弧磁石810との距離D12を、いずれも、q軸からd軸に近づくに従って長くすることができる。 For example, as shown in FIG. 4, the arc center C21 of the first inner diameter side arc magnet 821 is located on the right side opposite to the first inner diameter side arc magnet 821 with respect to the d axis, and the second inner diameter side arc is formed. The arc center C22 of the magnet 822 may be located on the left side of the d-axis opposite to the second inner radius side arc magnet 822. Also in this case, by satisfying θ11 <θ21 and θ12 <θ22, the distance D11 between the first inner diameter side arc magnet 821 and the first outer diameter side arc magnet 811 and the second inner diameter side arc magnet 822 and the second outer diameter side The distance D12 from the arc magnet 810 can be increased from the q axis to the d axis.
[第3実施形態]
 続いて、本発明の第3実施形態の回転電機のロータ10Bについて図5を参照しながら説明する。なお、以下の説明において、第1実施形態の回転電機のロータ10と同一の構成要素については同一の符号を付して説明を省略又は簡略化する。第1実施形態の回転電機のロータ10では、磁石部300は、外径側磁石部310と、内径側磁石部320との径方向に2層となっているが、第3実施形態の回転電機のロータ10Bでは、磁石部300は、外径側磁石部310と、内径側磁石部320と、内径側磁石部320の内径側に設けられた最内径側磁石部330との径方向に3層となっている。
[Third embodiment]
Next, a rotor 10B of the rotary electric machine according to the third embodiment of the present invention will be described with reference to FIG. In the following description, the same components as those of the rotor 10 of the rotary electric machine according to the first embodiment are denoted by the same reference numerals, and the description is omitted or simplified. In the rotor 10 of the rotating electric machine according to the first embodiment, the magnet unit 300 has two layers in the radial direction of the outer diameter side magnet unit 310 and the inner diameter side magnet unit 320. However, the rotating electric machine according to the third embodiment. In the rotor 10B, the magnet unit 300 has three layers in the radial direction of the outer diameter magnet unit 310, the inner diameter magnet unit 320, and the innermost magnet unit 330 provided on the inner diameter side of the inner magnet unit 320. It has become.
 また、第3実施形態のロータコア20Bは、第1実施形態のロータコア20の外径側磁石挿入孔410、第1内径側磁石挿入孔421、及び第2内径側磁石挿入孔422に加えて、さらに、第1内径側磁石挿入孔421の内径側に、d軸を挟んで、左側に径方向内側に凸となるように配置された第1最内径側磁石挿入孔431と、第2内径側磁石挿入孔422の内径側に、d軸を挟んで、左側に径方向内側に凸となるように配置された第2最内径側磁石挿入孔432と、を有する。 Further, the rotor core 20B of the third embodiment further includes an outer diameter side magnet insertion hole 410, a first inner diameter side magnet insertion hole 421, and a second inner diameter side magnet insertion hole 422 of the rotor core 20 of the first embodiment. A first innermost-diameter magnet insertion hole 431 disposed on the inner diameter side of the first inner-diameter magnet insertion hole 421 so as to protrude radially inward to the left with the d-axis interposed therebetween; On the inner diameter side of the insertion hole 422, there is a second innermost-diameter-side magnet insertion hole 432 disposed so as to protrude radially inward on the left side with the d-axis interposed therebetween.
 図5に示すように、最内径側磁石部330は、d軸を挟んで、左側に径方向内側に凸となるように配置された第1最内径側円弧磁石831と、右側に径方向内側に凸となるように配置された配置された第2最内径側円弧磁石832とから構成される。 As shown in FIG. 5, the innermost magnet section 330 includes a first innermost circular arc magnet 831 disposed so as to protrude radially inward on the left side with respect to the d axis, and a radially inner side magnet magnet on the right side. And the second innermost-diameter arc magnet 832 arranged so as to be convex.
 第1最内径側円弧磁石831は、同じ円弧中心C31を有する内周面831N及び外周面831Fと、q軸側端面831Qと、d軸側端面831Dと、を有する。第2最内径側円弧磁石832は、同じ円弧中心C32を有する内周面832N及び外周面832Fと、q軸側端面832Qと、d軸側端面832Dと、を有する。 The first innermost-side arc magnet 831 has an inner peripheral surface 831N and an outer peripheral surface 831F having the same arc center C31, a q-axis end surface 831Q, and a d-axis end surface 831D. The second innermost arc magnet 832 has an inner peripheral surface 832N and an outer peripheral surface 832F having the same arc center C32, a q-axis end surface 832Q, and a d-axis end surface 832D.
 第1最内径側円弧磁石831の板厚d31及び第2最内径側円弧磁石832の板厚d32は、第1内径側円弧磁石821の板厚d21及び第2内径側円弧磁石822の板厚d22よりも大きくなっている。 The thickness d31 of the first innermost arc magnet 831 and the thickness d32 of the second innermost arc magnet 832 are the thickness d21 of the first inner diameter arc magnet 821 and the thickness d22 of the second inner diameter arc magnet 822. Is bigger than.
 また、第1最内径側円弧磁石831の板厚d31及び第2最内径側円弧磁石832の板厚d32を大きくした分、第1最内径側円弧磁石831の内周面831Nの円弧半径r31及び第2最内径側円弧磁石832の内周面832Nの円弧半径r32は、第1内径側円弧磁石821の内周面821Nの円弧半径r21及び第2内径側円弧磁石822の内周面822Nの円弧半径r22よりも大きくなっている。 In addition, as the plate thickness d31 of the first innermost-side arc magnet 831 and the plate thickness d32 of the second innermost-side arc magnet 832 are increased, the arc radius r31 of the inner peripheral surface 831N of the first innermost-side arc magnet 831 and The arc radius r32 of the inner peripheral surface 832N of the second innermost circular arc magnet 832 is the arc radius r21 of the inner peripheral surface 821N of the first inner radial arc magnet 821 and the arc of the inner peripheral surface 822N of the second innermost circular arc magnet 822. It is larger than the radius r22.
 ここで、第1最内径側円弧磁石831の内周面831Nの円弧半径r31と、第1最内径側円弧磁石831の板厚d31との比であるd31/r31と、第2最内径側円弧磁石832の内周面832Nの円弧半径r32と、第2最内径側円弧磁石832の板厚d32との比であるd32/r32とは、d10/r10と、d21/r21と、d22/r22と、所定範囲で略同一の値であることが好ましい。より好ましくは、第1最内径側円弧磁石831の内周面831Nの円弧半径r31と第2最内径側円弧磁石832の内周面832Nの円弧半径r32とが同一、かつ、第1最内径側円弧磁石831の板厚d31と第2最内径側円弧磁石832の板厚d32が同一であり、第1最内径側円弧磁石831と第2最内径側円弧磁石832とが同一形状となっている。 Here, d31 / r31, which is the ratio of the arc radius r31 of the inner peripheral surface 831N of the first innermost-side arc magnet 831 to the plate thickness d31 of the first innermost-side arc magnet 831, and the second innermost-side arc The ratio d32 / r32, which is the ratio of the arc radius r32 of the inner peripheral surface 832N of the magnet 832 to the plate thickness d32 of the second innermost-diameter arc magnet 832, is d10 / r10, d21 / r21, d22 / r22. , Are preferably substantially the same in a predetermined range. More preferably, the arc radius r31 of the inner peripheral surface 831N of the first innermost circular arc magnet 831 and the arc radius r32 of the inner peripheral surface 832N of the second innermost circular magnet 832 are the same, and The thickness d31 of the arc-shaped magnet 831 and the thickness d32 of the second innermost-diameter arc magnet 832 are the same, and the first innermost-diameter arc magnet 831 and the second innermost-diameter arc magnet 832 have the same shape. .
 また、第1最内径側円弧磁石831と第1内径側円弧磁石821との距離D21及び第2最内径側円弧磁石832と第2内径側円弧磁石822との距離D22は、いずれも、q軸からd軸に近づくに従って長くなるように配置されている。 The distance D21 between the first innermost-side arc magnet 831 and the first innermost-side arc magnet 821 and the distance D22 between the second innermost-side circular magnet 832 and the second innermost-side arc magnet 822 are both q-axis. And is arranged so as to be longer as approaching the d-axis.
 これにより、第1実施形態と同様の効果に加えて、磁極部30の周方向長さが大きくなることを抑制しつつ、磁極部30の磁石量をさらに増やすことができる。 Accordingly, in addition to the same effect as in the first embodiment, the amount of magnet of the magnetic pole part 30 can be further increased while suppressing the circumferential length of the magnetic pole part 30 from being increased.
 第1最内径側磁石挿入孔431は、第1最内径側円弧磁石831の内周面831N及び外周面831Fに沿って形成された内周壁面431N及び外周壁面431Fと、q軸側壁面431Qと、d軸側壁面431Dと、を有し、第2最内径側磁石挿入孔432は、第2最内径側円弧磁石832の内周面832N及び外周面832Fに沿って形成された内周壁面432N及び外周壁面432Fと、q軸側壁面432Qと、d軸側壁面432Dと、を有する。 The first innermost-side magnet insertion hole 431 includes an inner peripheral wall 431N and an outer peripheral wall 431F formed along the inner peripheral surface 831N and the outer peripheral surface 831F of the first innermost circular arc magnet 831; , And a d-axis side wall surface 431D, and the second innermost-diameter magnet insertion hole 432 is formed along the inner peripheral surface 832N and the outer peripheral surface 832F of the second innermost-diameter arc magnet 832. And an outer peripheral wall surface 432F, a q-axis side wall surface 432Q, and a d-axis side wall surface 432D.
 第1最内径側円弧磁石831のd軸側端面831Dとd軸との間には、径方向に延びる第3リブ530が形成され、第2最内径側円弧磁石832のd軸側端面832Dとd軸との間には、径方向に延びる第4リブ540が形成されている。さらに、第3リブ530と第4リブ540の間は、第2空隙部600となっている。よって、第2空隙部600は、d軸と重なるように設けられている。 A third rib 530 extending in the radial direction is formed between the d-axis side end surface 831D of the first innermost-side arc magnet 831 and the d-axis, and is connected to the d-axis side end surface 832D of the second innermost-side arc magnet 832. A fourth rib 540 extending in the radial direction is formed between the fourth rib 540 and the d-axis. Further, a second gap 600 is provided between the third rib 530 and the fourth rib 540. Therefore, the second gap 600 is provided so as to overlap with the d-axis.
 第3リブ530は、第1最内径側磁石挿入孔431のd軸側壁面431Dと、第2空隙部600の左側壁面610によって構成されている。第4リブ540は、第2最内径側磁石挿入孔432のd軸側壁面432Dと、第2空隙部600の右側壁面620によって構成されている。 The third rib 530 is configured by the d-axis side wall surface 431D of the first innermost magnet insertion hole 431 and the left wall surface 610 of the second gap 600. The fourth rib 540 is configured by the d-axis side wall surface 432D of the second innermost-diameter-side magnet insertion hole 432 and the right wall surface 620 of the second gap portion 600.
 さらに、第3リブ530と第4リブ540は、径方向内側に向かって第3リブ530と第4リブ540との距離D50が長くなる略ハの字状に設けられている。 Furthermore, the third rib 530 and the fourth rib 540 are provided in a substantially C-shape in which the distance D50 between the third rib 530 and the fourth rib 540 increases toward the inside in the radial direction.
 なお、前述した実施形態は、適宜、変形、改良、等が可能である。 The above-described embodiment can be appropriately modified, improved, and the like.
 また、本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。 少 な く と も In addition, at least the following matters are described in this specification. In addition, although the corresponding components in the above-described embodiment are shown in parentheses, the present invention is not limited to this.
 (1) ロータコア(ロータコア20)と、
 周方向に沿って配置される複数の磁極部(磁極部30)と、
 該磁極部を構成する複数の円弧磁石(外径側円弧磁石810、内径側円弧磁石821、822)と、を備える回転電機のロータ(ロータ10)であって、
 各磁極部は、
 径方向に沿って少なくとも二層の磁石部(磁石部300)を有し、
 前記磁石部は、
 径方向内側に凸となるように配置される少なくとも一つの前記円弧磁石(外径側円弧磁石810)から構成される外径側磁石部(外径側磁石部310)と、
 前記径方向内側に凸となるように配置される少なくとも一対の前記円弧磁石(内径側円弧磁石821、822)から構成される内径側磁石部(内径側磁石部320)と、を含み、
 各円弧磁石は、内周面と外周面とが同じ円弧中心(円弧中心C10、C21、C22)を有し、
 前記円弧磁石の板厚(板厚d10、d21、d22)は、前記内径側磁石部の方が前記外径側磁石部よりも大きく、
 前記円弧磁石の円弧半径(円弧半径r10、r21、r22)は、前記内径側磁石部の方が前記外径側磁石部よりも大きく、
 各磁極部の中心軸をd軸、該d軸に対し電気角で90°隔てた軸をq軸とした場合、前記内径側磁石部の前記円弧磁石と前記外径側磁石部の前記円弧磁石との距離(距離D11、D12)は、前記q軸から前記d軸に近づくに従って広くなる、回転電機のロータ。
(1) a rotor core (rotor core 20);
A plurality of magnetic pole portions (magnetic pole portions 30) arranged along the circumferential direction;
A rotor (rotor 10) of a rotating electrical machine including a plurality of arc magnets (outer diameter side arc magnets 810, inner diameter side arc magnets 821 and 822) constituting the magnetic pole portion,
Each magnetic pole part
It has at least two layers of magnet parts (magnet parts 300) along the radial direction,
The magnet unit is
An outer magnet section (outer magnet section 310) including at least one arc magnet (outer arc magnet 810) arranged to be radially inwardly convex;
An inner diameter magnet portion (inner diameter magnet portion 320) composed of at least a pair of the arc magnets (inner diameter side arc magnets 821 and 822) arranged so as to be convex inward in the radial direction;
Each arc magnet has the same arc center (arc center C10, C21, C22) on the inner and outer peripheral surfaces,
The thickness of the arc-shaped magnet (plate thickness d10, d21, d22) is larger at the inner diameter side magnet part than at the outer diameter side magnet part,
The arc radius (arc radius r10, r21, r22) of the arc magnet is larger in the inner diameter side magnet part than in the outer diameter side magnet part,
When the center axis of each magnetic pole portion is a d-axis and the axis separated by an electrical angle of 90 ° with respect to the d-axis is a q-axis, the arc magnet of the inner diameter side magnet portion and the arc magnet of the outer diameter side magnet portion are provided. (Distances D11 and D12) increase from the q-axis toward the d-axis.
 (1)によれば、円弧磁石の板厚及び円弧半径は、内径側磁石部の方が外径側磁石部よりも大きい。即ち、内径側磁石部の円弧磁石の板厚を外径側磁石部の円弧磁石の板厚よりも増やした分、円弧磁石の円弧半径を大きくすることができる。したがって、各磁極部における磁石量を増やすに際し、高性能な磁化特性を持った円弧磁石を用いることが可能となり、回転電機の出力性能を向上できる。
 また、内径側磁石部の円弧磁石と外径側磁石部の円弧磁石との距離は、q軸からd軸に近づくに従って広くなっている。これにより、磁極部の周方向長さが大きくなることを抑制できるので、ロータが大型化するのを抑制できる。また、q軸磁路を広くとることができるので、回転電機のリラクタンストルクを大きくできる。さらに、内径側磁石部の円弧磁石と外径側磁石部の円弧磁石とによるマグネット磁束がd軸に集約されやすくなるので、回転電機のマグネットトルクを効率的に利用できる。
According to (1), the plate thickness and the arc radius of the arc magnet are larger in the inner diameter magnet portion than in the outer diameter magnet portion. That is, the arc radius of the arc magnet can be increased by an amount corresponding to an increase in the thickness of the arc magnet of the inner diameter side magnet portion than the thickness of the arc magnet of the outer diameter side magnet portion. Therefore, when increasing the magnet amount in each magnetic pole portion, it is possible to use a circular arc magnet having high-performance magnetization characteristics, and it is possible to improve the output performance of the rotating electric machine.
In addition, the distance between the arc magnet of the inner diameter side magnet portion and the arc magnet of the outer diameter side magnet portion increases from the q axis to the d axis. This can suppress an increase in the circumferential length of the magnetic pole portion, thereby suppressing an increase in the size of the rotor. Further, since the q-axis magnetic path can be widened, the reluctance torque of the rotating electric machine can be increased. Furthermore, since the magnet magnetic flux generated by the arc magnet of the inner diameter side magnet portion and the arc magnet of the outer diameter side magnet portion is easily concentrated on the d axis, the magnet torque of the rotating electric machine can be used efficiently.
 (2) (1)に記載の回転電機のロータであって、
 前記内径側磁石部の前記一対の円弧磁石は、
 前記d軸に対し前記周方向で一方側に位置する第1円弧磁石(第1内径側円弧磁石821)と、
 前記d軸に対し前記周方向で他方側に位置する第2円弧磁石(第2内径側円弧磁石822)と、を備え、
 前記第1円弧磁石の円弧中心(円弧中心C21)が、前記d軸に対し前記周方向で他方側に位置し、
 前記第2円弧磁石の円弧中心(円弧中心C22)が、前記d軸に対し前記周方向で一方側に位置し、
 前記ロータコアの正面視で、前記第1円弧磁石の中央部(中央部821C)と該第1円弧磁石の前記円弧中心とを結ぶ第1仮想線(仮想線L1)と、前記d軸とのなす角(なす角θ21)は、前記第2円弧磁石の中央部(中央部822C)と該第2円弧磁石の前記円弧中心とを結ぶ第2仮想線(仮想線L2)と、前記d軸とのなす角(なす角θ22)と等しい、回転電機のロータ。
(2) The rotor of the rotary electric machine according to (1),
The pair of arc magnets of the inner diameter side magnet portion,
A first arc magnet (a first inner diameter side arc magnet 821) located on one side in the circumferential direction with respect to the d axis;
A second arc magnet (a second inner radius arc magnet 822) located on the other side in the circumferential direction with respect to the d-axis,
An arc center (arc center C21) of the first arc magnet is located on the other side in the circumferential direction with respect to the d-axis;
An arc center (arc center C22) of the second arc magnet is located on one side in the circumferential direction with respect to the d-axis;
When viewed from the front of the rotor core, a first virtual line (virtual line L1) connecting a central portion (central portion 821C) of the first circular magnet and the circular center of the first circular magnet is formed with the d-axis. The angle (the angle θ21) is defined by a second virtual line (virtual line L2) connecting the center of the second arc magnet (central portion 822C) and the center of the arc of the second arc magnet, and the d-axis. A rotor of a rotary electric machine having an angle equal to an angle (an angle θ22).
 (2)によれば、第1円弧磁石の円弧中心及び第2円弧磁石の円弧中心が、ともにd軸に対し周方向で第1円弧磁石及び第2円弧磁石の反対側に位置し、第1円弧磁石の中央部と該第1円弧磁石の円弧中心とを結ぶ第1仮想線と、d軸とのなす角は、第2円弧磁石の中央部と該第2円弧磁石の円弧中心とを結ぶ第2仮想線と、d軸とのなす角と等しいので、内径側磁石部をd軸に対して対称に形成することができ、リラクタンストルクを得るための効率的な配置とすることができる。 According to (2), the arc center of the first arc magnet and the arc center of the second arc magnet are both located on the opposite side of the d-axis in the circumferential direction from the first arc magnet and the second arc magnet, and An angle between the first imaginary line connecting the center of the arc magnet and the center of the arc of the first arc magnet and the d-axis connects the center of the second arc magnet and the center of the arc of the second arc magnet. Since the angle formed by the second virtual line and the d-axis is equal, the inner diameter side magnet portion can be formed symmetrically with respect to the d-axis, and an efficient arrangement for obtaining reluctance torque can be achieved.
 (3) (2)に記載の回転電機のロータであって、
 前記ロータコアの正面視で、前記外径側磁石部の前記少なくとも一つの円弧磁石の中央部(中央部810C)と前記外径側磁石部の前記少なくとも一つの円弧磁石の円弧中心(円弧中心C10)とを結ぶ第3仮想線(仮想線L3)と、前記d軸とのなす角(なす角θ10)をθ1、
 前記第1仮想線及び前記第2仮想線と、前記d軸とのなす角(なす角θ21、θ22)をθ2とした場合、
 θ1<θ2を満たす、回転電機のロータ。
(3) The rotor of the rotary electric machine according to (2),
As viewed from the front of the rotor core, a center (central portion 810C) of the at least one arc magnet of the outer diameter magnet portion and an arc center (arc center C10) of the at least one arc magnet of the outer diameter magnet portion. Is the angle (angle θ10) between the third virtual line (virtual line L3) and the d axis, θ1,
When the angle between the first imaginary line and the second imaginary line and the d axis (the angle θ21, θ22) is θ2,
A rotor of a rotating electric machine that satisfies θ1 <θ2.
 (3)によれば、外径側磁石部の少なくとも一つの円弧磁石の中央部と外径側磁石部の少なくとも一つの円弧磁石の円弧中心とを結ぶ第3仮想線と、d軸とのなす角θ1と、第1仮想線及び第2仮想線と、d軸とのなす角θ2とは、θ1<θ2を満たすので、第1円弧磁石と外径側円弧磁石との距離及び第2円弧磁石と外径側円弧磁石との距離を、いずれも、q軸からd軸に近づくに従って長くすることができる。 According to (3), the third imaginary line connecting the center of at least one arc magnet of the outer diameter magnet portion and the arc center of at least one arc magnet of the outer diameter magnet portion is formed by the d axis. Since the angle θ1 and the angle θ2 between the first virtual line and the second virtual line and the d axis satisfy θ1 <θ2, the distance between the first arc magnet and the outer diameter side arc magnet and the second arc magnet In each case, the distance between the outer diameter side arc magnet and the outer diameter side arc magnet can be increased from the q axis to the d axis.
 (4) (3)に記載の回転電機のロータであって、
 前記外径側磁石部の前記少なくとも一つの円弧磁石は、一つの円弧磁石(外径側円弧磁石810)から構成され、
 前記θ1は零である、回転電機のロータ。
(4) The rotor of the rotary electric machine according to (3),
The at least one arc magnet of the outer diameter magnet portion is configured by one arc magnet (outer diameter arc magnet 810),
The rotor of the rotating electric machine, wherein θ1 is zero.
 (4)によれば、外径側磁石部は一つの円弧磁石で構成され、さらに、θ1は零であるので、外径側磁石部はd軸に対して対称に形成される。これにより、シンプルな構造で効率的にマグネットトルクを得ることができる。 According to (4), the outer-diameter magnet portion is formed of one arc magnet, and θ1 is zero, so that the outer-diameter magnet portion is formed symmetrically with respect to the d-axis. Thereby, a magnet torque can be efficiently obtained with a simple structure.
 なお、本出願は、2018年9月28日出願の日本特許出願(特願2018-185520)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on Sep. 28, 2018 (Japanese Patent Application No. 2018-185520), the contents of which are incorporated herein by reference.
10 ロータ
20 ロータコア
30 磁極部
300 磁石部
310 外径側磁石部
320 内径側磁石部
810 外径側円弧磁石
810C 中央部
821 第1内径側円弧磁石(内径側円弧磁石)
821C 中央部
822 第2内径側円弧磁石(内径側円弧磁石)
822C 中央部
C10、C21、C22 円弧中心
r10、r21、r22 円弧半径
d10、d21、d22 板厚
L1 仮想線(第1仮想線)
L2 仮想線(第2仮想線)
L3 仮想線(第3仮想線)
θ10 なす角(θ1)
θ21、θ22 なす角(θ2) 
Reference Signs List 10 rotor 20 rotor core 30 magnetic pole part 300 magnet part 310 outer diameter side magnet part 320 inner diameter side magnet part 810 outer diameter side arc magnet 810C central part 821 first inner diameter side arc magnet (inner diameter side arc magnet)
821C Central part 822 2nd inner diameter side arc magnet (inner diameter side arc magnet)
822C Center part C10, C21, C22 Arc centers r10, r21, r22 Arc radii d10, d21, d22 Plate thickness L1 Virtual line (first virtual line)
L2 virtual line (second virtual line)
L3 virtual line (third virtual line)
θ10 Angle formed (θ1)
Angle formed by θ21 and θ22 (θ2)

Claims (4)

  1.  ロータコアと、
     周方向に沿って配置される複数の磁極部と、
     該磁極部を構成する複数の円弧磁石と、を備える回転電機のロータであって、
     各磁極部は、
     径方向に沿って少なくとも二層の磁石部を有し、
     前記磁石部は、
     径方向内側に凸となるように配置される少なくとも一つの前記円弧磁石から構成される外径側磁石部と、
     前記径方向内側に凸となるように配置される少なくとも一対の前記円弧磁石から構成される内径側磁石部と、を含み、
     各円弧磁石は、内周面と外周面とが同じ円弧中心を有し、
     前記円弧磁石の板厚は、前記内径側磁石部の方が前記外径側磁石部よりも大きく、
     前記円弧磁石の円弧半径は、前記内径側磁石部の方が前記外径側磁石部よりも大きく、 各磁極部の中心軸をd軸、該d軸に対し電気角で90°隔てた軸をq軸とした場合、前記内径側磁石部の前記円弧磁石と前記外径側磁石部の前記円弧磁石との距離は、前記q軸から前記d軸に近づくに従って広くなる、回転電機のロータ。
    A rotor core,
    A plurality of magnetic pole portions arranged along the circumferential direction;
    And a plurality of arc magnets constituting the magnetic pole portion,
    Each magnetic pole part
    It has at least two layers of magnet parts along the radial direction,
    The magnet unit is
    An outer-diameter-side magnet unit including at least one arc-shaped magnet arranged to be convex inward in the radial direction,
    An inner diameter side magnet portion configured by at least a pair of the arc magnets arranged to be convex inward in the radial direction,
    Each arc magnet, the inner peripheral surface and the outer peripheral surface have the same arc center,
    The plate thickness of the arc magnet, the inner diameter side magnet portion is larger than the outer diameter side magnet portion,
    The arc radius of the arc magnet is larger in the inner diameter side magnet part than in the outer diameter side magnet part. The center axis of each magnetic pole part is d axis, and the axis separated by 90 ° in electrical angle with respect to the d axis. In the case of the q-axis, the distance between the arc-shaped magnet of the inner diameter-side magnet portion and the arc-shaped magnet of the outer diameter-side magnet portion increases as the distance from the q-axis to the d-axis increases.
  2.  請求項1に記載の回転電機のロータであって、
     前記内径側磁石部の前記一対の円弧磁石は、
     前記d軸に対し前記周方向で一方側に位置する第1円弧磁石と、
     前記d軸に対し前記周方向で他方側に位置する第2円弧磁石と、を備え、
     前記第1円弧磁石の円弧中心が、前記d軸に対し前記周方向で他方側に位置し、
     前記第2円弧磁石の円弧中心が、前記d軸に対し前記周方向で一方側に位置し、
     前記ロータコアの正面視で、前記第1円弧磁石の中央部と該第1円弧磁石の前記円弧中心とを結ぶ第1仮想線と、前記d軸とのなす角は、前記第2円弧磁石の中央部と該第2円弧磁石の前記円弧中心とを結ぶ第2仮想線と、前記d軸とのなす角と等しい、回転電機のロータ。
    It is a rotor of the rotary electric machine according to claim 1, wherein
    The pair of arc magnets of the inner diameter side magnet portion,
    A first arc magnet located on one side in the circumferential direction with respect to the d axis;
    A second arc magnet located on the other side in the circumferential direction with respect to the d-axis,
    The arc center of the first arc magnet is located on the other side in the circumferential direction with respect to the d-axis,
    The arc center of the second arc magnet is located on one side in the circumferential direction with respect to the d axis,
    When viewed from the front of the rotor core, the angle between the first imaginary line connecting the center of the first arc magnet and the arc center of the first arc magnet and the d-axis is the center of the second arc magnet. A rotor of the rotating electric machine, wherein the angle is equal to the angle between the second virtual line connecting the portion and the arc center of the second arc magnet with the d-axis.
  3.  請求項2に記載の回転電機のロータであって、
     前記ロータコアの正面視で、前記外径側磁石部の前記少なくとも一つの円弧磁石の中央部と前記外径側磁石部の前記少なくとも一つの円弧磁石の円弧中心とを結ぶ第3仮想線と、前記d軸とのなす角をθ1、
     前記第1仮想線及び前記第2仮想線と、前記d軸とのなす角をθ2とした場合、
     θ1<θ2を満たす、回転電機のロータ。
    It is a rotor of the rotary electric machine according to claim 2,
    A third imaginary line connecting a central portion of the at least one arc magnet of the outer diameter side magnet portion and an arc center of the at least one arc magnet of the outer diameter side magnet portion in a front view of the rotor core; The angle formed with the d axis is θ1,
    When the angle between the first virtual line and the second virtual line and the d-axis is θ2,
    A rotor of a rotating electric machine that satisfies θ1 <θ2.
  4.  請求項3に記載の回転電機のロータであって、
     前記外径側磁石部の前記少なくとも一つの円弧磁石は、一つの円弧磁石から構成され、
     前記θ1は零である、回転電機のロータ。 
    The rotor of the rotating electric machine according to claim 3, wherein
    The at least one arc magnet of the outer diameter side magnet portion is configured by one arc magnet,
    The rotor of the rotating electric machine, wherein θ1 is zero.
PCT/JP2019/037981 2018-09-28 2019-09-26 Rotary electric machine rotor WO2020067347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185520 2018-09-28
JP2018185520 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067347A1 true WO2020067347A1 (en) 2020-04-02

Family

ID=69951876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037981 WO2020067347A1 (en) 2018-09-28 2019-09-26 Rotary electric machine rotor

Country Status (1)

Country Link
WO (1) WO2020067347A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243973A (en) * 2021-12-21 2022-03-25 中车株洲电机有限公司 Permanent magnet traction motor and electric wheel vehicle
US20220140676A1 (en) * 2020-11-02 2022-05-05 Honda Motor Co., Ltd. Rotor for rotary electric machine
FR3121294A1 (en) * 2021-03-29 2022-09-30 Nidec Psa Emotors Rotating electric machine rotor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044893A (en) * 2007-08-09 2009-02-26 Toyota Industries Corp Rotor and rotary electric machine
JP2010022147A (en) * 2008-07-11 2010-01-28 Hitachi Ltd Sintered magnet motor
US8760025B2 (en) * 2012-08-09 2014-06-24 GM Global Technologies Operations LLC Interior permanent magnet machine having off axis centered arc geometry
JP2015126646A (en) * 2013-12-27 2015-07-06 日立オートモティブシステムズ株式会社 Rotator, permanent magnet type rotary electric machine using the same, electrical drive system, and electric vehicle
WO2015104956A1 (en) * 2014-01-08 2015-07-16 三菱電機株式会社 Rotary electric machine
US20170317540A1 (en) * 2016-04-28 2017-11-02 Faraday&Future Inc. Ipm machine with specialized rotor for automotive electric vechicles
JP2018153047A (en) * 2017-03-14 2018-09-27 本田技研工業株式会社 Rotor of dynamo-electric machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044893A (en) * 2007-08-09 2009-02-26 Toyota Industries Corp Rotor and rotary electric machine
JP2010022147A (en) * 2008-07-11 2010-01-28 Hitachi Ltd Sintered magnet motor
US8760025B2 (en) * 2012-08-09 2014-06-24 GM Global Technologies Operations LLC Interior permanent magnet machine having off axis centered arc geometry
JP2015126646A (en) * 2013-12-27 2015-07-06 日立オートモティブシステムズ株式会社 Rotator, permanent magnet type rotary electric machine using the same, electrical drive system, and electric vehicle
WO2015104956A1 (en) * 2014-01-08 2015-07-16 三菱電機株式会社 Rotary electric machine
US20170317540A1 (en) * 2016-04-28 2017-11-02 Faraday&Future Inc. Ipm machine with specialized rotor for automotive electric vechicles
JP2018153047A (en) * 2017-03-14 2018-09-27 本田技研工業株式会社 Rotor of dynamo-electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220140676A1 (en) * 2020-11-02 2022-05-05 Honda Motor Co., Ltd. Rotor for rotary electric machine
US11699932B2 (en) * 2020-11-02 2023-07-11 Honda Motor Co., Ltd. Rotor for rotary electric machine
FR3121294A1 (en) * 2021-03-29 2022-09-30 Nidec Psa Emotors Rotating electric machine rotor
WO2022207985A1 (en) * 2021-03-29 2022-10-06 Nidec Psa Emotors Rotor for a rotary electric machine
CN114243973A (en) * 2021-12-21 2022-03-25 中车株洲电机有限公司 Permanent magnet traction motor and electric wheel vehicle

Similar Documents

Publication Publication Date Title
US8487495B2 (en) Rotor for motor
US10084354B2 (en) Electric motor with a permanent magnet embedded rotor with curved magnets and magnet accommodation holes of varying radiuses
WO2020067347A1 (en) Rotary electric machine rotor
US11233432B2 (en) Rotor
WO2015156353A1 (en) Synchronous reluctance rotating electric machine
US11303172B2 (en) Rotor for rotating electrical machine and rotor core support structure for rotating electrical machine
JP7390203B2 (en) Rotor and arc magnet manufacturing method for rotating electric machine
BR102016003073B1 (en) ELECTRIC MOTOR ROTOR AND ELECTRIC MOTOR
US20200185990A1 (en) Rotor and manufacturing method of arc magnet for rotor
CN111162616B (en) Rotor of rotating electric machine
JP6117608B2 (en) Rotating electrical machine laminated iron core
WO2020067348A1 (en) Rotary electric machine rotor
JP7335831B2 (en) ROTOR AND ARC MAGNET MANUFACTURING METHOD FOR ROTATING ELECTRIC MACHINE
WO2020067350A1 (en) Rotor of electric rotary machine
CN113224876B (en) Rotor of rotating electrical machine
JP6664890B2 (en) Rotor of field winding type drive motor
CN113437813B (en) Stator punching sheet, stator with same, motor and air conditioner fan
JP2021125971A (en) Rotor for rotary electric machine
WO2023089667A1 (en) Dynamo-electric machine rotor
WO2016084602A1 (en) Rotor for rotating electric device, and rotating electric device using the rotor
WO2020067349A1 (en) Rotor of electric rotary machine
JP2013070579A (en) End plate for rotary electric machine and rotary electric machine
JP6438815B2 (en) Motor core and axial gap type motor
JP2023535422A (en) Rotor Laminates, Rotor Laminated Cores, Rotors, Electrical Machines and Vehicles
JP6135315B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP