WO2020059408A1 - Knocking determination device and knocking control device - Google Patents
Knocking determination device and knocking control device Download PDFInfo
- Publication number
- WO2020059408A1 WO2020059408A1 PCT/JP2019/032832 JP2019032832W WO2020059408A1 WO 2020059408 A1 WO2020059408 A1 WO 2020059408A1 JP 2019032832 W JP2019032832 W JP 2019032832W WO 2020059408 A1 WO2020059408 A1 WO 2020059408A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- knock
- point
- determination
- intensity
- time
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
Definitions
- the present disclosure relates to a knock determination device that performs knock determination for determining occurrence of knock in an internal combustion engine, and a knock control device that performs knock control for suppressing occurrence of knock based on the knock determination.
- knock determination is performed as follows. First, vibration generated in the internal combustion engine is detected. Next, the detection signal is separated into a plurality of knock frequency components and a plurality of other noise frequency components by a plurality of bandpass filters. Next, a knock waveform is obtained by integrating only the knock frequency components among them.
- the knock waveform is compared with an ideal knock waveform. Then, the knock intensity is corrected according to the degree of deviation of the knock waveform from the ideal knock waveform. A knock determination is made based on the corrected knock intensity. Knock control is performed based on the knock determination.
- the processing load is large in performing the knock determination.
- the present disclosure has been made in view of the above circumstances, and has as its object to reduce the processing load in performing knock determination.
- the knock determination device includes a detection unit that detects vibration generated in the internal combustion engine, and performs a knock determination that determines the occurrence of knock based on a detection result by the detection unit.
- the knock determination device includes a specification unit, a calculation unit, and a determination unit.
- the identification unit is a waveform obtained based on the detection result, wherein the intensity is a vibration waveform representing a time change of the intensity with the intensity of the vibration or an absolute value of the intensity of the vibration as the intensity. From the absolute value waveform representing the time change of the second point, among the plurality of maximum points where the intensity is maximum, the second point which is the maximum point where the intensity is maximum within a predetermined period, and the second point which is the maximum point within the predetermined period.
- the calculation unit calculates a predetermined feature using at least the three maximum points.
- the determination unit performs the knock determination based on the feature amount.
- the present disclosure has been made by finding the following points.
- the shape of the vibration waveform has a predetermined difference between a case where the vibration is caused by knocking and a case where the vibration is caused by knocking. Therefore, knock determination can be performed based on the shape of the vibration waveform.
- the shape of the vibration waveform can be estimated on the basis of the feature amount. Therefore, knock determination can be performed based on the feature amount.
- the processing described in Patent Literature 1 becomes unnecessary. Specifically, first, it becomes unnecessary to separate the detection signal into a plurality of knock frequency components and a plurality of noise frequency components by using a plurality of bandpass filters. Further, a process of integrating a plurality of knock frequency components separated by the process becomes unnecessary. Further, a process of comparing the knock waveform obtained by the process with an ideal knock waveform and correcting the knock intensity based on the comparison becomes unnecessary. Therefore, according to the present disclosure, it is possible to reduce the processing load in performing the knock determination.
- FIG. 1 is a schematic diagram showing the internal combustion engine of the first embodiment
- FIG. 2 is a flowchart showing control by the knock control device
- FIG. 3 is a graph showing a vibration waveform obtained based on the detection signal
- FIG. 4 is a graph showing another vibration waveform different from FIG.
- FIG. 5 is a graph showing a shape pattern of a vibration waveform
- FIG. 6 is a flowchart showing the shape determination of the vibration waveform
- FIG. 7 is a graph showing the distribution of the shape pattern determined from the first time and the second time
- FIG. 8 is a flowchart showing the shape determination in the second embodiment
- FIG. 9 is a graph showing the distribution of the shape pattern determined from the increase rate and the attenuation rate
- FIG. 10 is a graph showing a relationship between a tilt ratio and a knock component in the third embodiment.
- FIG. 11 is a flowchart showing the shape determination.
- FIG. 12 is a graph showing an absolute value waveform in another embodiment
- FIG. 13 is a graph showing an absolute value waveform different from that of FIG.
- FIG. 1 is a schematic diagram showing an internal combustion engine 10 of the present embodiment.
- the internal combustion engine 10 has an engine block 11, a piston 12, an intake valve 13, an exhaust valve 14, and the like.
- an accelerator pedal sensor 21, a knock sensor 29, an ECU 30, an electronic throttle 41, an injector 42, an ignition coil 43, and the like are provided.
- the ECU 30 inputs a request (acceleration request) from the driver via the accelerator pedal sensor 21. Based on the input, the air amount, the fuel amount, the ignition timing and the like are controlled. Specifically, the ECU 30 controls the air amount by controlling the electronic throttle 41, controls the fuel amount by controlling the injector 42, and controls the ignition timing by controlling the ignition coil 43.
- the knock sensor 29 detects vibration generated in the internal combustion engine 10.
- the ECU 30 receives a detection signal from the knock sensor 29 during a gate open period in which the gate is open.
- knock sensor 29 corresponds to a “detection unit” according to the present disclosure.
- each one gate open period corresponds to a “predetermined period” in the present disclosure.
- FIG. 2 is a flowchart showing knock determination by ECU 30 and knock control based on the knock determination.
- the ECU 30 includes a digital conversion unit 31 that performs AD conversion (S100), a filter unit 32 that performs BPF processing (S200), a specification unit 33 that specifies three points (S300), and a calculation that performs feature amount calculation (S400). It has a unit 34, a shape determination unit 35 that performs shape determination (S500), a knock determination unit 36 that performs knock determination (S600), and a control unit 37 that performs knock control (S700).
- the knock sensor 29, the digital conversion unit 31, the filter unit 32, the identification unit 33, the calculation unit 34, the shape determination unit 35, and the knock determination unit 36 constitute a knock determination device (29, 31 to 36).
- the knock determination device (29, 31 to 36) and the control unit 37 constitute a knock control device (29, 31 to 37).
- the shape determining unit 35 and the knock determining unit 36 are collectively referred to as “determining units 35 and 36”.
- the ECU 30 first converts (A / D converts) the detection signal received from the knock sensor 29 from an analog signal to a digital signal by the digital conversion unit 31 (S100).
- the filter unit 32 filters the detection signal using only one type of bandpass filter (S200).
- the specifying unit 33 specifies three points, a first point p1, a second point p2, and a third point p3, which will be described later (S300).
- the calculation unit 34 calculates the characteristic amount of the vibration waveform (S400).
- the shape determination unit 35 performs a shape determination for determining a shape pattern to which the vibration waveform belongs (S500).
- knock determination is performed by knock determination section 36 to determine the occurrence of knock (S600).
- knock control for suppressing knock is performed by the control unit 37 (S700).
- FIGS. 3 and 4 are graphs showing examples of vibration waveforms after performing the BPF process (S200).
- the horizontal axis indicates time
- the vertical axis indicates the intensity of vibration (detected voltage value). That is, the vibration waveform indicates a temporal change of the vibration intensity.
- the strength of the vibration here is defined such that the strength in one direction (when the detected voltage value is positive) is positive, and the strength in the opposite direction (when the detected voltage value is negative) is negative. I have.
- a plurality of points at which the intensity of the vibration waveform becomes maximum are each referred to as a “maximum point p”.
- the maximum point p that first exceeds the predetermined value Vc within each gate open period is referred to as a “first point p1”.
- the maximum point p at which the intensity is maximum within each gate open period is referred to as a “second point p2”.
- the point that last exceeds the predetermined value Vc within each gate open period is referred to as “third point p3”.
- first time t1 The time from the first point p1 to the second point p2 is referred to as “first time t1”.
- second time t2 The time from the second point p2 to the third point p3 is referred to as “second time t2”.
- peak interval t3 the time from one of the two maximum points p adjacent to each other among the plurality of maximum points p having the intensity exceeding the predetermined value Vc within each gate open period to one other.
- the calculation unit 34 calculates a first time t1, a second time t2, and a peak interval t3 as feature amounts (S400).
- FIG. 5 is a graph showing each shape pattern of the vibration waveform. More specifically, FIG. 5A shows an attenuated shape pattern in which the intensity rapidly increases and then gradually attenuates.
- FIG. 5A shows an attenuated shape pattern in which the intensity rapidly increases and then gradually attenuates.
- FIG. 5B shows a diamond-shaped pattern in which the intensity gradually increases and then gradually decreases.
- the vibration waveform belongs to a rhombic shape pattern, the possibility of vibration due to knocking is moderate. While the shape of the latter half part becomes a vibration waveform similar to the knock waveform (damping type), the vibration (noise) due to the piston slap gradually converges after the vibration gradually strengthens. This is because vibration (noise) may occur due to vibration.
- FIG. 5 (c) shows an increasing shape pattern in which the intensity gradually increases and then rapidly attenuates.
- the vibration waveform belongs to the increasing shape pattern, it is unlikely that the vibration is caused by knocking. This is because a vibration portion has a shape portion similar to the knock waveform (attenuation type) and has a small vibration waveform. That is, it is exactly the opposite of the knock waveform in which the vibration suddenly occurs and then gradually attenuates as the piston descends.
- FIG. 5D shows a rectangular shape pattern in which the intensity sharply increases and then rapidly attenuates.
- the vibration waveform belongs to a rectangular shape pattern, it is unlikely that the vibration is a vibration due to knocking. This is because the rectangular shape pattern rapidly attenuates, and there are few shapes similar to the knock waveform (attenuation type) as a whole.
- the vibration (noise) generated in a pulse is instantaneously settled after the vibration starts instantaneously, it is highly possible that the vibration waveform is the pulse-shaped vibration (noise).
- FIG. 5E shows a shape pattern of a double attenuation type in which two attenuation types are arranged.
- the vibration waveform belongs to the shape pattern of the double attenuation type, it is unlikely that the vibration is caused by knocking. This is because the shape pattern of the double attenuation type repeats the increase and decrease of the intensity twice, so that there are few shape portions similar to the knock waveform (attenuation type) as a whole.
- the knock waveform gradually attenuates as the piston descends, it does not occur twice in a short period of time.
- FIG. 6 is a flowchart showing details of the shape determination (S500) by the shape determination unit 35.
- First it is determined whether the first time t1 is smaller than a predetermined first threshold T1 (S511). When it is larger than the first threshold value T1 (S511: NO), it is determined whether the second time t2 is larger than a predetermined second threshold value T2 (S514). When it is smaller than the second threshold value T2 (S514: NO), it is determined that the vibration waveform belongs to the increasing shape pattern, and the shape determination (S500) ends. On the other hand, when the second time t2 is greater than the second threshold value T2 (S514: YES), it is determined that the vibration waveform belongs to the rhombic shape pattern, and the shape determination (S500) is completed.
- the second time t2 is larger than the second threshold T2 (S512: YES)
- the second threshold T2 S512: YES
- T3 a predetermined interval threshold T3
- Knock determination section 36 performs knock determination (S600) based on the result of shape determination (S500) by shape determination section 35. More specifically, the more the vibration waveform is determined to be a shape pattern closer to the knock waveform in the shape determination (S500), the larger the correction term is set, and the more the shape pattern is determined to be different from the knock waveform. , The correction term is set smaller.
- knock determining section 36 determines that knock has occurred, and sets the correction term to “1”. To ".”
- the knock determining unit 36 determines that the possibility that knock has occurred is medium, and sets the correction term to “ 0.5 ".
- the knock determining unit 36 determines that the possibility of knocking is low. , The correction term is set to “0.1”.
- the knock determination unit 36 determines that no knock has occurred. Then, the correction term is set to “0”.
- the control unit 37 performs knock control (S700). Specifically, the ignition angle, which is the crank angle for igniting the internal combustion engine 10, is retarded from a predetermined ignition reference angle by a predetermined ignition retard amount.
- the ignition retard amount is a value obtained by multiplying a predetermined basic ignition retard amount by a correction term.
- ignition retard control when the correction term changes from “0” to “1”, the ignition angle is retarded by increasing the ignition retard amount.
- ignition retard control when the correction term changes from “1” to “0”, the ignition angle is advanced and returns to the ignition reference angle by reducing the ignition retard amount.
- the control for advancing the ignition angle in this manner is referred to as “advance angle return control”, and the ignition retard amount reduced by the advance angle return control is referred to as “advance angle return amount”. Excessive ignition retard control can be suppressed by performing the advance return control.
- FIG. 7 is a graph showing a distribution of a shape pattern to which a vibration waveform is determined to belong from the first time t1 and the second time t2.
- the first time t1 is larger than the first threshold value T1 (upper) and the second time t2 is larger than the second time t2 (right) (upper right)
- the vibration waveform belongs to the rhombic shape pattern.
- the first time t1 is larger than the first threshold T1 (upper) and the second time t2 is smaller than the second threshold T2 (left) (upper left)
- the vibration waveform belongs to the increasing shape pattern. Is determined.
- the vibration waveform has an attenuation type or a double attenuation type. It is determined that it belongs to the shape pattern.
- the first time t1 is smaller than the first threshold T1 (lower) and the second time t2 is smaller than the second threshold T2 (left) (lower left)
- the vibration waveform belongs to a rectangular shape pattern. Is done.
- the feature amount (t1 to t3) is calculated using the above three points (p1 to p3), the shape pattern to which the vibration waveform belongs is determined based on the feature amount, and knock determination and knock control are performed based on the shape pattern. Therefore, the processing as described in Patent Document 1 becomes unnecessary. Therefore, in performing knock determination and knock control, the processing load can be reduced.
- the first maximum point p whose intensity exceeds the predetermined value Vc for the first time in each gate open period is set as the first point p1.
- the time t1 becomes as long as possible.
- the maximum value p at which the intensity finally exceeds the predetermined value Vc within each gate open period is set as the third point p3, and thus the second calculation is performed in the feature value calculation (S400).
- the time t2 also becomes as long as possible. Therefore, the shape of the vibration waveform can be captured as wide as possible. This makes it easier to grasp the entire shape of the vibration waveform. Therefore, the knock determination (S600) and the knock control (S700), which are performed based on the vibration waveform, can be easily performed with high accuracy.
- the vibration waveform may be of an attenuated type (high possibility of knocking).
- the knock determination (S600) it is easier to largely determine the possibility that knock has occurred, and in knock control (S700), it is easier to increase the ignition retard amount.
- it is easy to determine the possibility of occurrence of knock by a simple process whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
- the vibration waveform may be of an attenuated type (high possibility of knocking).
- the knock determination (S600) it is easier to largely determine the possibility that knock has occurred, and in knock control (S700), it is easier to increase the ignition retard amount.
- it is easy to determine the possibility of occurrence of knock by a simple process whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
- the vibration waveform has the shape of a double attenuation type (the possibility of noise is large). It is likely to belong to the pattern. Therefore, in the knock determination (S600), the possibility that knock has occurred is easily determined to be low, and in the knock control (S700), the ignition retard amount is easily reduced. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
- the ignition retard amount is determined based on the characteristic amount (t1 to t3), the ignition retard amount can be adjusted according to the possibility of knock occurrence.
- the advance angle return amount is determined based on the feature amount (t1 to t3), the advance angle return amount can be adjusted according to the possibility of knocking.
- a value obtained by subtracting the intensity at the first point p1 from the intensity at the second point p2 is referred to as an increase amount v1.
- a value (v1 / t1) obtained by dividing the increase amount v1 by the first time t1 is defined as an increase rate g1.
- a value obtained by subtracting the intensity at the third point p3 from the intensity at the second point p2 is defined as an attenuation amount v2.
- a value (v2 / t2) obtained by dividing the attenuation amount v2 by the second time t2 is defined as an attenuation rate g2.
- the calculation unit 34 calculates an increase rate g1 and an attenuation rate g2 as a feature amount in addition to the peak interval t3.
- FIG. 8 is a flowchart showing the shape determination (S500) by the shape determination unit 35 of the present embodiment.
- the increase rate g1 is larger than a predetermined increase threshold G1 (S521).
- the increase threshold G1 S521: NO
- it is larger than the attenuation threshold value G2 S524: NO
- the attenuation rate g2 is smaller than the attenuation threshold G2 (S522: YES)
- the knock determination (S500) ends.
- FIG. 9 is a graph summarizing the distribution of shape patterns determined from the increase rate g1 and the attenuation rate g2.
- the increase rate g1 is larger than the increase threshold G1 (upper) and the attenuation rate g2 is larger than the attenuation threshold G2 (right) (upper right)
- the vibration waveform belongs to the rectangular shape pattern.
- the increase rate g1 is larger than the increase threshold value G1 (upper) and the attenuation rate g2 is smaller than the attenuation threshold value G2 (left) (upper left)
- the vibration waveform belongs to the attenuation type or the double attenuation type shape pattern. Is determined.
- the shape of the front portion of the vibration waveform is captured using the increase amount v1 in addition to the first time t1. Therefore, the shape of the front portion of the vibration waveform can be more easily captured.
- the attenuation rate g2 is used, the shape of the rear part of the vibration waveform is captured using the attenuation amount v2 in addition to the second time t2. Therefore, the shape of the rear part of the vibration waveform can be more easily captured.
- the vibration waveform may belong to the damping type (high knock possibility) shape pattern.
- the knock determination (S600) the possibility that knock has occurred is easily determined to be high
- the knock control (S700) the ignition retard amount is easily increased. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
- the vibration waveform may belong to the damping type (high knock possibility) shape pattern.
- the knock determination (S600) the possibility that knock has occurred is easily determined to be high
- the knock control (S700) the ignition retard amount is easily increased. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
- FIG. 10 is a graph for explaining the concept of shape determination (S500) and knock determination (S600) in the present embodiment.
- the calculation unit 34 calculates, as a feature amount, the slope ratio r, which is a value obtained by dividing the increase rate g1 by the attenuation rate g2, in addition to the peak interval t3 (S400).
- the determination units 35 and 36 determine that the greater the slope ratio r, the more the waveform component (knock component) closer to the knock waveform, and the smaller the slope ratio r, the more the waveform component (noise component) far from the knock waveform. I do. The details are as shown below.
- FIG. 11 is a flowchart showing the shape determination (S500) by the shape determination unit 35 of the present embodiment.
- S531 it is determined whether any of the peak intervals t3 is greater than the interval threshold T3 (S531). If any one of the peak intervals t3 is larger than the interval threshold T3 (S531: YES), it is determined that the vibration waveform belongs to the bi-attenuated shape pattern, and the shape determination (S500) ends.
- any of the peak intervals t3 is smaller than the interval threshold T3 (S531: NO)
- the second point p2 when the second point p2 is not the head of the array, whether the second point p2 and the third point p3 are the same maximum point p, that is, the second point p2 having the maximum intensity is determined to have the predetermined intensity It is determined whether or not the end of the sequence at the maximum point p exceeding the value Vc (S533). If the second point p2 is at the end of the sequence (S533: YES), it is determined that the vibration waveform belongs to the increasing shape pattern, and the shape determination (S500) ends.
- the condition that the slope ratio r is larger than the predetermined lower slope ratio threshold R1 and smaller than the predetermined upper slope ratio threshold R2. It is determined whether or not the condition is satisfied (S534). If the inclination ratio r satisfies the condition (S534: YES), it is determined that the vibration waveform belongs to the rhombic shape pattern, and the shape determination (S500) is completed.
- the inclination ratio r does not satisfy the condition (S534: NO)
- the slope ratio r is larger than the upper slope ratio threshold R2 (S535: YES)
- the shape determination (S500) ends.
- the slope ratio r is smaller than the upper slope ratio threshold R2 (S535: NO)
- the result at S534 is smaller than the lower slope ratio threshold R1, and the vibration waveform has an increasing shape pattern. And the shape determination (S500) ends.
- the vibration waveform in the shape determination (S500), when the inclination ratio r shown in FIG. 10 is larger than the inclination ratio threshold value R2, the vibration waveform can belong to an attenuation type (high knock possibility) shape pattern. High in nature. Therefore, in the knock determination (S600), the possibility that knock has occurred is easily determined to be high, and in the knock control (S700), the ignition retard amount is easily increased. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
- This embodiment can be implemented with the following modifications.
- the first point p1 to the third point p3 can be specified from the absolute value waveform indicating the time change of the intensity, with the intensity being the absolute value of the voltage value). That is, in this case, in the absolute value waveform, the maximum point at which the intensity first exceeds the predetermined value Vc is the first point p1, the maximum point at which the intensity is the maximum is the second point p2, and the intensity is finally the predetermined value Vc.
- the maximum point exceeding Vc is the third point p3.
- the shape of the vibration waveform since the shape of the vibration waveform is grasped not only on the plus side but also on the minus side of the strength of the vibration waveform, the shape of the vibration waveform can be grasped more accurately. At this time, instead of determining the shape pattern to which the vibration waveform belongs, it is also possible to determine the shape pattern to which the absolute value waveform belongs.
- the BPF process (S200) by the filter unit 32 may be omitted to perform the process.
- the three-point specification (S300) three points are specified from a part of the gate open period, that is, the part of the period is set to a “predetermined period” in the present disclosure. It can also be implemented.
- the first point p1 may be changed to any one of the other maximum points p existing before the second point p2, and the embodiment may be performed.
- the third point p3 may be changed to any one of the maximum points p existing after the second point p2, and the present invention may be implemented.
- knock determination unit 36 can be implemented as follows. When the shape determining unit 35 determines that the vibration waveform belongs to the attenuation type shape pattern, the knock determining unit 36 determines that knock has occurred, and sets the correction term to “1”. On the other hand, when the shape determining unit 35 determines that the vibration waveform belongs to a shape pattern other than the damping type, the knock determining unit 36 determines that no knock has occurred, and sets the correction term to “0”. I do.
- the shape determination unit 35 may be omitted, and the knock determination unit 36 may directly perform knock determination based on the feature amount.
- the second embodiment can be implemented as follows. When the increase rate g1 is greater than a predetermined upper threshold, knock determination section 36 determines that knock has occurred, and sets the correction term to "1". When the increase rate g1 is smaller than the above upper threshold value and larger than the predetermined lower threshold value, it is determined that the possibility that knock has occurred is moderate, and the correction term is set to “0”. .5 ". If the increase rate g1 is smaller than the lower threshold value, it is determined that the possibility that knock has occurred is low, and the correction term is set to “0.1”.
- the timing for driving the intake valve 13 is changed to lower the effective compression ratio, thereby performing control to suppress knock.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
According to the present invention, a knocking determination device: has a determination part that detects vibration that occurs at an internal combustion engine; and performs knocking determination on the basis of a detection signal from the detection part. Specifically, from a waveform obtained on the basis of the detection signal, the knocking determination device specifies, from among a plurality of maximum points (p) at which intensity is at a maximum, at least the following three maximum points (p): a second point (p2) that is the maximum point (p) at which intensity is greatest; a first point (p1) that is a maximum point (p) that is before the second point (p2); and a third point (p3) that is a maximum point (p) that is after the second point (p2). The knocking determination device uses the three maximum points (p) to calculate prescribed feature quantities. The knocking determination device performs knocking determination on the basis of the feature quantities.
Description
本出願は、2018年9月19日に出願された日本出願番号2018-175429号に基づくもので、ここにその記載内容を援用する。
This application is based on Japanese Patent Application No. 2018-175429 filed on September 19, 2018, the contents of which are incorporated herein by reference.
本開示は、内燃機関において、ノックの発生を判定するノック判定を行うノック判定装置、及びそのノック判定に基づき、ノックの発生を抑えるためのノック制御を行うノック制御装置に関する。
The present disclosure relates to a knock determination device that performs knock determination for determining occurrence of knock in an internal combustion engine, and a knock control device that performs knock control for suppressing occurrence of knock based on the knock determination.
特許文献1では、ノック判定を次のように行う。まず、内燃機関で発生した振動を検出する。次に、その検出信号を、複数のバンドパスフィルタにより、複数のノック周波数成分とそれ以外の複数のノイズ周波数成分とにそれぞれ分離する。次に、それらのうちのノック周波数成分のみを積算することにより、ノック波形を得る。
で は In Patent Document 1, knock determination is performed as follows. First, vibration generated in the internal combustion engine is detected. Next, the detection signal is separated into a plurality of knock frequency components and a plurality of other noise frequency components by a plurality of bandpass filters. Next, a knock waveform is obtained by integrating only the knock frequency components among them.
次に、そのノック波形を、理想ノック波形と比較する。そして、ノック波形の理想ノック波形からのはずれ度合いに応じて、ノック強度を補正する。その補正後のノック強度に基づいて、ノック判定を行う。そのノック判定に基づいて、ノック制御を行う。
Next, the knock waveform is compared with an ideal knock waveform. Then, the knock intensity is corrected according to the degree of deviation of the knock waveform from the ideal knock waveform. A knock determination is made based on the corrected knock intensity. Knock control is performed based on the knock determination.
引用文献1では、検出信号を複数のバンドパスフィルタによって、複数のノック周波数成分とノイズ周波数成分とにそれぞれ分離する必要がある。さらに、それにより分離された複数のノック周波数成分を積算する必要もある。さらに、それにより得られたノック波形を理想ノック波形と比較して、その比較に基づいてノック強度を補正する必要もある。そのため、引用文献1では、ノック判定を行うに当たって、処理負荷が大きい。
In the cited document 1, it is necessary to separate the detection signal into a plurality of knock frequency components and a plurality of noise frequency components by a plurality of bandpass filters. Further, it is necessary to integrate a plurality of knock frequency components separated thereby. Further, it is necessary to compare the knock waveform obtained thereby with an ideal knock waveform and correct the knock intensity based on the comparison. Therefore, in the cited document 1, the processing load is large in performing the knock determination.
本開示は、上記事情に鑑みてなされたものであり、ノック判定を行うに当たって、処理負荷を軽減することを目的とする。
The present disclosure has been made in view of the above circumstances, and has as its object to reduce the processing load in performing knock determination.
本開示のノック判定装置は、内燃機関に発生する振動を検出する検出部を有し、前記検出部による検出結果に基づいて、ノックの発生を判定するノック判定を行う。前記ノック判定装置は、特定部と算出部と判定部とを有する。前記特定部は、前記検出結果に基づいて得られた波形であって、前記振動の強さを強度として前記強度の時間変化を表す振動波形又は前記振動の強さの絶対値を強度として前記強度の時間変化を表す絶対値波形から、前記強度が極大となる複数の極大点のうち、所定期間内において前記強度が最大となる前記極大点である第2点、前記所定期間内において前記第2点よりも前に存在する前記極大点の1つである第1点、及び前記所定期間内において前記第2点よりも後に存在する前記極大点の1つである第3点の少なくとも3つの前記極大点を特定する。算出部は、少なくとも前記3つの極大点を用いて所定の特徴量を算出する。前記判定部は、前記特徴量に基づいて前記ノック判定を行う。
The knock determination device according to the present disclosure includes a detection unit that detects vibration generated in the internal combustion engine, and performs a knock determination that determines the occurrence of knock based on a detection result by the detection unit. The knock determination device includes a specification unit, a calculation unit, and a determination unit. The identification unit is a waveform obtained based on the detection result, wherein the intensity is a vibration waveform representing a time change of the intensity with the intensity of the vibration or an absolute value of the intensity of the vibration as the intensity. From the absolute value waveform representing the time change of the second point, among the plurality of maximum points where the intensity is maximum, the second point which is the maximum point where the intensity is maximum within a predetermined period, and the second point which is the maximum point within the predetermined period. At least three of a first point that is one of the maximum points existing before a point and a third point that is one of the maximum points existing after the second point within the predetermined period. Identify the maximum point. The calculation unit calculates a predetermined feature using at least the three maximum points. The determination unit performs the knock determination based on the feature amount.
本開示は、次の点を見出すことによりなされたものである。振動波形の形状は、その振動がノックによる場合とノック以外による場合とで、所定の差異が生じる。よって、振動波形の形状によって、ノック判定を行うことができる。その振動波形の形状は、上記特徴量に基づいて推測できる。そのため、上記特徴量に基づいてノック判定を行うことができる。
The present disclosure has been made by finding the following points. The shape of the vibration waveform has a predetermined difference between a case where the vibration is caused by knocking and a case where the vibration is caused by knocking. Therefore, knock determination can be performed based on the shape of the vibration waveform. The shape of the vibration waveform can be estimated on the basis of the feature amount. Therefore, knock determination can be performed based on the feature amount.
本開示によれば、上記3点を用いて算出された上記特徴量に基づいてノック判定を行うため、特許文献1に記載のような処理が不要になる。具体的には、まず、検出信号を、複数のバンドパスフィルタにより、複数のノック周波数成分と複数のノイズ周波数成分とにそれぞれ分離する処理が不要になる。さらに、その処理により分離された複数のノック周波数成分を積算する処理も不要になる。さらに、その処理により得られるノック波形を理想ノック波形と比較して、その比較に基づいてノック強度を補正する処理も不要になる。よって、本開示によれば、ノック判定を行うに当たって、処理負荷を軽減できる。
According to the present disclosure, since knock determination is performed based on the feature amount calculated using the three points, the processing described in Patent Literature 1 becomes unnecessary. Specifically, first, it becomes unnecessary to separate the detection signal into a plurality of knock frequency components and a plurality of noise frequency components by using a plurality of bandpass filters. Further, a process of integrating a plurality of knock frequency components separated by the process becomes unnecessary. Further, a process of comparing the knock waveform obtained by the process with an ideal knock waveform and correcting the knock intensity based on the comparison becomes unnecessary. Therefore, according to the present disclosure, it is possible to reduce the processing load in performing the knock determination.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の内燃機関を示す概略図であり、
図2は、ノック制御装置による制御を示すフローチャートであり、
図3は、検出信号に基づいて得られた振動波形を示すグラフであり、
図4は、図3とは別の振動波形を示すグラフであり、
図5は、振動波形の形状パターンを示すグラフであり、
図6は、振動波形の形状判定を示すフローチャートであり、
図7は、第1時間及び第2時間から判定される形状パターンの分布を示すグラフであり、
図8は、第2実施形態における形状判定を示すフローチャートであり、
図9は、増加率及び減衰率から判定される形状パターンの分布を示すグラフであり、
図10は、第3実施形態において、傾斜比とノック成分との関係を示すグラフであり、
図11は、形状判定を示すフローチャートであり、
図12は、他の実施形態における絶対値波形を示すグラフであり、
図13は、図12とは別の絶対値波形を示すグラフである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic diagram showing the internal combustion engine of the first embodiment, FIG. 2 is a flowchart showing control by the knock control device, FIG. 3 is a graph showing a vibration waveform obtained based on the detection signal, FIG. 4 is a graph showing another vibration waveform different from FIG. FIG. 5 is a graph showing a shape pattern of a vibration waveform, FIG. 6 is a flowchart showing the shape determination of the vibration waveform, FIG. 7 is a graph showing the distribution of the shape pattern determined from the first time and the second time, FIG. 8 is a flowchart showing the shape determination in the second embodiment, FIG. 9 is a graph showing the distribution of the shape pattern determined from the increase rate and the attenuation rate, FIG. 10 is a graph showing a relationship between a tilt ratio and a knock component in the third embodiment. FIG. 11 is a flowchart showing the shape determination. FIG. 12 is a graph showing an absolute value waveform in another embodiment, FIG. 13 is a graph showing an absolute value waveform different from that of FIG.
次に本開示の実施形態を図面を参照しつつ説明する。但し、本開示は、実施形態に限定されるものではなく、開示の趣旨を逸脱しない範囲で適宜変更して実施できる。
Next, an embodiment of the present disclosure will be described with reference to the drawings. However, the present disclosure is not limited to the embodiments, and can be implemented with appropriate modifications without departing from the spirit of the disclosure.
[第1実施形態]
図1は、本実施形態の内燃機関10を示す概略図である。内燃機関10は、エンジンブロック11、ピストン12、吸気バルブ13、排気バルブ14等を有する。内燃機関10に対しては、アクセルペダルセンサ21、ノックセンサ29、ECU30、電子スロットル41、インジェクタ42、点火コイル43等が設置されている。 [First Embodiment]
FIG. 1 is a schematic diagram showing aninternal combustion engine 10 of the present embodiment. The internal combustion engine 10 has an engine block 11, a piston 12, an intake valve 13, an exhaust valve 14, and the like. For the internal combustion engine 10, an accelerator pedal sensor 21, a knock sensor 29, an ECU 30, an electronic throttle 41, an injector 42, an ignition coil 43, and the like are provided.
図1は、本実施形態の内燃機関10を示す概略図である。内燃機関10は、エンジンブロック11、ピストン12、吸気バルブ13、排気バルブ14等を有する。内燃機関10に対しては、アクセルペダルセンサ21、ノックセンサ29、ECU30、電子スロットル41、インジェクタ42、点火コイル43等が設置されている。 [First Embodiment]
FIG. 1 is a schematic diagram showing an
ECU30は、運転者からの要求(加速要求)を、アクセルペダルセンサ21を介して入力する。その入力に基づいて、空気量、燃料量、点火タイミング等を制御する。具体的には、ECU30は、電子スロットル41を制御することにより空気量を制御し、インジェクタ42を制御することにより燃料量を制御し、点火コイル43を制御することにより点火タイミングを制御する。
(4) The ECU 30 inputs a request (acceleration request) from the driver via the accelerator pedal sensor 21. Based on the input, the air amount, the fuel amount, the ignition timing and the like are controlled. Specifically, the ECU 30 controls the air amount by controlling the electronic throttle 41, controls the fuel amount by controlling the injector 42, and controls the ignition timing by controlling the ignition coil 43.
ノックセンサ29は、内燃機関10に発生する振動を検出する。ECU30は、ゲートが開いている期間であるゲートオープン期間に、ノックセンサ29からの検出信号を受信する。本実施形態では、ノックセンサ29が、本開示でいう「検出部」に該当する。また、各1回のゲートオープン期間が、本開示でいう「所定期間」に該当する。
The knock sensor 29 detects vibration generated in the internal combustion engine 10. The ECU 30 receives a detection signal from the knock sensor 29 during a gate open period in which the gate is open. In the present embodiment, knock sensor 29 corresponds to a “detection unit” according to the present disclosure. Further, each one gate open period corresponds to a “predetermined period” in the present disclosure.
図2は、ECU30によるノック判定及びそれに基づくノック制御を示すフローチャートである。ECU30は、AD変換(S100)を行うデジタル変換部31と、BPF処理(S200)を行うフィルタ部32と、3点特定(S300)を行う特定部33と、特徴量算出(S400)を行う算出部34と、形状判定(S500)を行う形状判定部35と、ノック判定(S600)を行うノック判定部36と、ノック制御(S700)を行う制御部37とを有する。
FIG. 2 is a flowchart showing knock determination by ECU 30 and knock control based on the knock determination. The ECU 30 includes a digital conversion unit 31 that performs AD conversion (S100), a filter unit 32 that performs BPF processing (S200), a specification unit 33 that specifies three points (S300), and a calculation that performs feature amount calculation (S400). It has a unit 34, a shape determination unit 35 that performs shape determination (S500), a knock determination unit 36 that performs knock determination (S600), and a control unit 37 that performs knock control (S700).
そして、ノックセンサ29とデジタル変換部31とフィルタ部32と特定部33と算出部34と形状判定部35とノック判定部36とが、ノック判定装置(29,31~36)を構成している。そのノック判定装置(29,31~36)と制御部37とが、ノック制御装置(29,31~37)を構成している。形状判定部35とノック判定部36とは、まとめて「判定部35,36」という。
The knock sensor 29, the digital conversion unit 31, the filter unit 32, the identification unit 33, the calculation unit 34, the shape determination unit 35, and the knock determination unit 36 constitute a knock determination device (29, 31 to 36). . The knock determination device (29, 31 to 36) and the control unit 37 constitute a knock control device (29, 31 to 37). The shape determining unit 35 and the knock determining unit 36 are collectively referred to as “determining units 35 and 36”.
詳しくは、ECU30は、まず、デジタル変換部31により、ノックセンサ29から受信した検出信号を、アナログ信号からデジタル信号に変換(A/D変換)する(S100)。次に、フィルタ部32が、その検出信号を1種類のみのバンドパスフィルタによりフィルタ処理する(S200)。
Specifically, the ECU 30 first converts (A / D converts) the detection signal received from the knock sensor 29 from an analog signal to a digital signal by the digital conversion unit 31 (S100). Next, the filter unit 32 filters the detection signal using only one type of bandpass filter (S200).
次に、そのフィルタ処理(S200)後の振動波形から、特定部33により、後述する第1点p1、第2点p2,第3点p3の3点を特定する(S300)。次に、その3点に基づいて、算出部34により、振動波形の特徴量を算出する(S400)。次に、その特徴量に基づいて、形状判定部35により、振動波形の属する形状パターンを判定する形状判定を行う(S500)。次に、その形状判定に基づいて、ノック判定部36により、ノックの発生を判定するノック判定を行う(S600)。次に、そのノック判定に基づいて、制御部37により、ノックを抑えるノック制御を行う(S700)。
Next, from the vibration waveform after the filtering process (S200), the specifying unit 33 specifies three points, a first point p1, a second point p2, and a third point p3, which will be described later (S300). Next, based on the three points, the calculation unit 34 calculates the characteristic amount of the vibration waveform (S400). Next, based on the characteristic amount, the shape determination unit 35 performs a shape determination for determining a shape pattern to which the vibration waveform belongs (S500). Next, based on the shape determination, knock determination is performed by knock determination section 36 to determine the occurrence of knock (S600). Next, based on the knock determination, knock control for suppressing knock is performed by the control unit 37 (S700).
図3,図4は、BPF処理(S200)を行ったのちの振動波形の例を示すグラフである。この振動波形は、横軸に時間を示し、縦軸に振動の強度(検出電圧値)を示している。すなわち、この振動波形は、振動の強度の時間変化を示している。なお、ここでの振動の強度は、一方向側への強さ(検出電圧値が正のとき)を正とし、その反対方向側への強さ(検出電圧値が負のとき)を負としている。
FIGS. 3 and 4 are graphs showing examples of vibration waveforms after performing the BPF process (S200). In this vibration waveform, the horizontal axis indicates time, and the vertical axis indicates the intensity of vibration (detected voltage value). That is, the vibration waveform indicates a temporal change of the vibration intensity. The strength of the vibration here is defined such that the strength in one direction (when the detected voltage value is positive) is positive, and the strength in the opposite direction (when the detected voltage value is negative) is negative. I have.
以下では、振動波形の強度が極大となる複数の点を、それぞれ「極大点p」とする。また、各ゲートオープン期間内において最初に所定値Vcを越えた極大点pを「第1点p1」とする。また、各ゲートオープン期間内において強度が最大となる極大点pを「第2点p2」とする。また、各ゲートオープン期間内において最後に所定値Vcを越えた点を「第3点p3」とする。
In the following, a plurality of points at which the intensity of the vibration waveform becomes maximum are each referred to as a “maximum point p”. The maximum point p that first exceeds the predetermined value Vc within each gate open period is referred to as a “first point p1”. In addition, the maximum point p at which the intensity is maximum within each gate open period is referred to as a “second point p2”. Further, the point that last exceeds the predetermined value Vc within each gate open period is referred to as “third point p3”.
また、第1点p1から第2点p2にまで至る時間を「第1時間t1」とする。また、第2点p2から第3点p3に至るまでの時間を「第2時間t2」とする。また、各ゲートオープン期間内において強度が所定値Vcを越えた複数の極大点pのうちの隣り合う2つの極大点pの、一方から他方に至るまでの時間を「ピーク間隔t3」とする。
時間 The time from the first point p1 to the second point p2 is referred to as “first time t1”. The time from the second point p2 to the third point p3 is referred to as “second time t2”. Further, the time from one of the two maximum points p adjacent to each other among the plurality of maximum points p having the intensity exceeding the predetermined value Vc within each gate open period to one other is referred to as “peak interval t3”.
本実施形態では、算出部34は、特徴量として、第1時間t1、第2時間t2、ピーク間隔t3を算出する(S400)。
In the present embodiment, the calculation unit 34 calculates a first time t1, a second time t2, and a peak interval t3 as feature amounts (S400).
図5は、振動波形の各形状パターンを示すグラフである。詳しくは、図5(a)は、強度が急激に増加したのち緩やかに減衰する減衰形の形状パターンを示している。振動波形は、減衰形の形状パターンに属する場合、ノックによる振動である可能性が高い。ノック波形は、振動が急激に増加したのちピストン下降に伴い緩やかに減衰するからである。
FIG. 5 is a graph showing each shape pattern of the vibration waveform. More specifically, FIG. 5A shows an attenuated shape pattern in which the intensity rapidly increases and then gradually attenuates. When the vibration waveform belongs to a damped shape pattern, there is a high possibility that the vibration waveform is caused by knocking. This is because the knock waveform gradually attenuates as the piston descends after the vibration rapidly increases.
図5(b)は、強度が緩やかに増加したのち緩やかに減衰する菱形の形状パターンを示している。振動波形は、菱形の形状パターンに属する場合、ノックによる振動である可能性は中程度である。後半部分の形状がノック波形(減衰形)と類似した振動波形になる一方、ピストンスラップによる振動(ノイズ)は、振動が緩やかに強まったのち緩やかに収束することから、振動波形は、このピストンスラップによる振動(ノイズ)である可能性もあるからである。
FIG. 5B shows a diamond-shaped pattern in which the intensity gradually increases and then gradually decreases. When the vibration waveform belongs to a rhombic shape pattern, the possibility of vibration due to knocking is moderate. While the shape of the latter half part becomes a vibration waveform similar to the knock waveform (damping type), the vibration (noise) due to the piston slap gradually converges after the vibration gradually strengthens. This is because vibration (noise) may occur due to vibration.
図5(c)は、強度が緩やかに増加したのち急激に減衰する増加形の形状パターンを示している。振動波形は、増加形の形状パターンに属する場合、ノックによる振動である可能性は低い。ノック波形(減衰形)と類似した形状部分が少ない振動波形になるからである。すなわち、振動が急激に生じたのちピストン下降に伴い緩やかに減衰するノック波形とは、正反対であるからである。
FIG. 5 (c) shows an increasing shape pattern in which the intensity gradually increases and then rapidly attenuates. When the vibration waveform belongs to the increasing shape pattern, it is unlikely that the vibration is caused by knocking. This is because a vibration portion has a shape portion similar to the knock waveform (attenuation type) and has a small vibration waveform. That is, it is exactly the opposite of the knock waveform in which the vibration suddenly occurs and then gradually attenuates as the piston descends.
図5(d)は、強度が急激に増加したのち急激に減衰する矩形の形状パターンを示している。振動波形は、矩形の形状パターンに属する場合、ノックによる振動である可能性は低い。矩形の形状パターンは急激に減衰するため、全体的にノック波形(減衰形)と類似した形状部分が少ないからである。また、パルス的に生じる振動(ノイズ)は、振動が瞬時に始まったのち瞬時に収まることから、振動波形は、このパルス的振動(ノイズ)である可能性が高いからである。
FIG. 5D shows a rectangular shape pattern in which the intensity sharply increases and then rapidly attenuates. When the vibration waveform belongs to a rectangular shape pattern, it is unlikely that the vibration is a vibration due to knocking. This is because the rectangular shape pattern rapidly attenuates, and there are few shapes similar to the knock waveform (attenuation type) as a whole. In addition, since the vibration (noise) generated in a pulse is instantaneously settled after the vibration starts instantaneously, it is highly possible that the vibration waveform is the pulse-shaped vibration (noise).
図5(e)は、減衰形が2つ並んだ形の双減衰形の形状パターンを示している。振動波形は、双減衰形の形状パターンに属する場合、ノックによる振動である可能性は低い。双減衰形の形状パターンは、強度の増減を2回繰り返すことから、全体的にノック波形(減衰形)と類似した形状部分が少ないからである。また、ノック波形は、ピストン下降に伴い緩やかに減衰することから、このような短期間に2回続けて発生することはないからである。
FIG. 5E shows a shape pattern of a double attenuation type in which two attenuation types are arranged. When the vibration waveform belongs to the shape pattern of the double attenuation type, it is unlikely that the vibration is caused by knocking. This is because the shape pattern of the double attenuation type repeats the increase and decrease of the intensity twice, so that there are few shape portions similar to the knock waveform (attenuation type) as a whole. In addition, since the knock waveform gradually attenuates as the piston descends, it does not occur twice in a short period of time.
図6は、形状判定部35による形状判定(S500)の詳細を示すフローチャートである。まず、第1時間t1が所定の第1閾値T1よりも小さいか否か判定する(S511)。第1閾値T1よりも大きい場合(S511:NO)、第2時間t2が所定の第2閾値T2よりも大きいか否か判定する(S514)。第2閾値T2よりも小さい場合(S514:NO)、振動波形は増加形の形状パターンに属すると判定して形状判定(S500)を終了する。他方、第2時間t2が第2閾値T2よりも大きい場合(S514:YES)は、振動波形は菱形の形状パターンに属すると判定して形状判定(S500)を終了する。
FIG. 6 is a flowchart showing details of the shape determination (S500) by the shape determination unit 35. First, it is determined whether the first time t1 is smaller than a predetermined first threshold T1 (S511). When it is larger than the first threshold value T1 (S511: NO), it is determined whether the second time t2 is larger than a predetermined second threshold value T2 (S514). When it is smaller than the second threshold value T2 (S514: NO), it is determined that the vibration waveform belongs to the increasing shape pattern, and the shape determination (S500) ends. On the other hand, when the second time t2 is greater than the second threshold value T2 (S514: YES), it is determined that the vibration waveform belongs to the rhombic shape pattern, and the shape determination (S500) is completed.
他方、S511で、第1時間t1が第1閾値T1よりも小さいと判定された場合(S511:YES)、第2時間t2が第2閾値T2よりも大きいか否か判定する(S512)。第2閾値T2よりも小さい場合(S512:NO)、振動波形は矩形の形状パターンに属すると判定して形状判定(S500)を終了する。
On the other hand, when it is determined in S511 that the first time t1 is smaller than the first threshold T1 (S511: YES), it is determined whether the second time t2 is larger than the second threshold T2 (S512). When it is smaller than the second threshold value T2 (S512: NO), it is determined that the vibration waveform belongs to the rectangular shape pattern, and the shape determination (S500) ends.
他方、第2時間t2が第2閾値T2よりも大きい場合(S512:YES)、いずれのピーク間隔t3も所定の間隔閾値T3よりも小さいか否か判定する(S513)。いずれかのピーク間隔t3が、間隔閾値T3よりも大きい場合(S513:NO)、振動波形は双減衰形の形状パターンに属すると判定して形状判定(S500)を終了する。他方、いずれのピーク間隔t3も、間隔閾値T3よりも小さい場合(S513:YES)、振動波形は減衰形の形状パターンに属すると判定して形状判定(S500)を終了する。
On the other hand, when the second time t2 is larger than the second threshold T2 (S512: YES), it is determined whether or not any of the peak intervals t3 is smaller than a predetermined interval threshold T3 (S513). If any of the peak intervals t3 is larger than the interval threshold value T3 (S513: NO), it is determined that the vibration waveform belongs to the bi-attenuated shape pattern, and the shape determination (S500) ends. On the other hand, when any of the peak intervals t3 is smaller than the interval threshold T3 (S513: YES), it is determined that the vibration waveform belongs to the attenuation type shape pattern, and the shape determination (S500) ends.
再び図2に基づいて説明する。ノック判定部36は、形状判定部35による形状判定(S500)の結果に基づいてノック判定(S600)を行う。具体的には、振動波形が、形状判定(S500)において、よりノック波形に近い形状パターンに判定されるほど、補正項をより大きく設定し、よりノック波形とは異なる形状パターンに判定されるほど、補正項をより小さく設定する。
The description will be made again with reference to FIG. Knock determination section 36 performs knock determination (S600) based on the result of shape determination (S500) by shape determination section 35. More specifically, the more the vibration waveform is determined to be a shape pattern closer to the knock waveform in the shape determination (S500), the larger the correction term is set, and the more the shape pattern is determined to be different from the knock waveform. , The correction term is set smaller.
より具体的には、形状判定部35により、振動波形が減衰形の形状パターンに属すると判定された場合、ノック判定部36は、ノックが発生していると判定して、補正項を「1」に設定する。また、形状判定部35により、振動波形が菱形の形状パターンに属すると判定された場合、ノック判定部36は、ノックが発生している可能性が中程度である判定して、補正項を「0.5」に設定する。また、形状判定部35により、振動波形が増加形、矩形又は双減衰形の形状パターンに属すると判定された場合、ノック判定部36は、ノックが発生している可能性が低いと判定して、補正項を「0.1」に設定する。また、特定部33により、第1点p1~第3点p3、すなわち、強度が所定値Vcを越える3つの極大点pが検出されない場合は、ノック判定部36は、ノックが発生していないと判定して、補正項を「0」に設定する。
More specifically, when shape determining section 35 determines that the vibration waveform belongs to the damped shape pattern, knock determining section 36 determines that knock has occurred, and sets the correction term to “1”. To "." When the shape determining unit 35 determines that the vibration waveform belongs to the rhombic shape pattern, the knock determining unit 36 determines that the possibility that knock has occurred is medium, and sets the correction term to “ 0.5 ". When the shape determining unit 35 determines that the vibration waveform belongs to the increasing, rectangular, or double-attenuating shape pattern, the knock determining unit 36 determines that the possibility of knocking is low. , The correction term is set to “0.1”. When the specifying unit 33 does not detect the first point p1 to the third point p3, that is, the three maximum points p whose intensities exceed the predetermined value Vc, the knock determination unit 36 determines that no knock has occurred. Then, the correction term is set to “0”.
そのノック判定(S600)に基づいて、制御部37によりノック制御(S700)を行う。具体的には、内燃機関10に点火するクランク角である点火角を、所定の点火基準角から所定の点火遅角量だけ遅角させる。その点火遅角量は、所定の基本点火遅角量に補正項を掛けた値である。
制 御 Based on the knock determination (S600), the control unit 37 performs knock control (S700). Specifically, the ignition angle, which is the crank angle for igniting the internal combustion engine 10, is retarded from a predetermined ignition reference angle by a predetermined ignition retard amount. The ignition retard amount is a value obtained by multiplying a predetermined basic ignition retard amount by a correction term.
よって、例えば、補正項が「0」から「1」になった場合には、点火遅角量が増大することにより、点火角が遅角する。以下、このように点火角を遅角させる制御を「点火遅角制御」という。他方、例えば、補正項が「1」から「0」になった場合には、点火遅角量が減少することにより、点火角が進角して点火基準角に戻る。以下、このように点火角を進角させる制御を「進角復帰制御」といい、その進角復帰制御により減少させる点火遅角量を「進角復帰量」という。進角復帰制御を行うことにより、過剰な点火遅角制御を抑制できる。
Therefore, for example, when the correction term changes from “0” to “1”, the ignition angle is retarded by increasing the ignition retard amount. Hereinafter, such control for retarding the ignition angle is referred to as “ignition retard control”. On the other hand, for example, when the correction term changes from “1” to “0”, the ignition angle is advanced and returns to the ignition reference angle by reducing the ignition retard amount. Hereinafter, the control for advancing the ignition angle in this manner is referred to as “advance angle return control”, and the ignition retard amount reduced by the advance angle return control is referred to as “advance angle return amount”. Excessive ignition retard control can be suppressed by performing the advance return control.
図7は、第1時間t1及び第2時間t2から振動波形が属すると判定される形状パターンの分布を示すグラフである。第1時間t1が第1閾値T1よりも大きく(上)、かつ第2時間t2が第2時間t2よりも大きい(右)場合(右上)、振動波形は菱形の形状パターンに属すると判定される。また、第1時間t1が第1閾値T1よりも大きく(上)、かつ第2時間t2が第2閾値T2よりも小さい(左)場合(左上)、振動波形は増加形の形状パターンに属すると判定される。
FIG. 7 is a graph showing a distribution of a shape pattern to which a vibration waveform is determined to belong from the first time t1 and the second time t2. When the first time t1 is larger than the first threshold value T1 (upper) and the second time t2 is larger than the second time t2 (right) (upper right), it is determined that the vibration waveform belongs to the rhombic shape pattern. . When the first time t1 is larger than the first threshold T1 (upper) and the second time t2 is smaller than the second threshold T2 (left) (upper left), the vibration waveform belongs to the increasing shape pattern. Is determined.
また、第1時間t1が第1閾値T1よりも小さく(下)、かつ第2時間t2が第2閾値T2よりも大きい(右)場合(右下)、振動波形は減衰形又は双減衰形の形状パターンに属すると判定される。また、第1時間t1が第1閾値T1よりも小さく(下)、かつ第2時間t2が第2閾値T2よりも小さい(左)場合(左下)、振動波形は矩形の形状パターンに属すると判定される。
When the first time t1 is smaller than the first threshold value T1 (lower) and the second time t2 is larger than the second threshold value T2 (right) (lower right), the vibration waveform has an attenuation type or a double attenuation type. It is determined that it belongs to the shape pattern. When the first time t1 is smaller than the first threshold T1 (lower) and the second time t2 is smaller than the second threshold T2 (left) (lower left), it is determined that the vibration waveform belongs to a rectangular shape pattern. Is done.
本実施形態によれば、次の効果が得られる。上記3点(p1~p3)を用いて特徴量(t1~t3)を算出し、その特徴量に基づいて振動波形が属する形状パターンを判定し、その形状パターンに基づいてノック判定及びノック制御を行うため、特許文献1に記載のような処理が不要になる。そのため、ノック判定及びノック制御を行うに当たって、処理負荷を軽減できる。
According to the present embodiment, the following effects can be obtained. The feature amount (t1 to t3) is calculated using the above three points (p1 to p3), the shape pattern to which the vibration waveform belongs is determined based on the feature amount, and knock determination and knock control are performed based on the shape pattern. Therefore, the processing as described in Patent Document 1 becomes unnecessary. Therefore, in performing knock determination and knock control, the processing load can be reduced.
また、BPF処理(S200)では、検出信号をバンドパスフィルタによりフィルタ処理するため、振動波形からノイズの一部を除去することができる。そのため、除去しない場合に比べて、その振動波形に基づいて行われるノック判定(S600)及びノック制御(S700)の精度を向上させることができる。また、1種類のみのバンドパスフィルタによってノイズを除去するので、複数のバンドパスフィルタによる複数のフィルタ処理が不要になる。そのため、検出信号が複数の周波数成分に分離されてしまうこともないため、それら複数の周波数成分を積算する処理も不要になる。よって、処理負荷を軽減することができる。
In addition, in the BPF processing (S200), a part of noise can be removed from the vibration waveform because the detection signal is filtered by the band-pass filter. Therefore, the accuracy of the knock determination (S600) and the knock control (S700) performed based on the vibration waveform can be improved as compared with the case where the vibration is not removed. In addition, since noise is removed by only one type of bandpass filter, a plurality of filtering processes by a plurality of bandpass filters become unnecessary. Therefore, since the detection signal is not separated into a plurality of frequency components, a process of integrating the plurality of frequency components is unnecessary. Therefore, the processing load can be reduced.
また、3点特定(S300)では、各ゲートオープン期間内において最初に強度が所定値Vcを越えた極大点pを第1点p1にするため、特徴量算出(S400)で算出される第1時間t1が極力長くなる。また、3点特定(S300)では、各ゲートオープン期間内において最後に強度が所定値Vcを越えた極大点pを第3点p3にするため、特徴量算出(S400)で算出される第2時間t2も極力長くなる。よって、振動波形の形状を、極力広範囲で捉えることができる。それにより、振動波形の全体形状を捉え易くなる。そのため、その振動波形に基づき行うことになるノック判定(S600)及びノック制御(S700)を、精度良く行い易くなる。
In the three-point identification (S300), the first maximum point p whose intensity exceeds the predetermined value Vc for the first time in each gate open period is set as the first point p1. The time t1 becomes as long as possible. Further, in the three-point specification (S300), the maximum value p at which the intensity finally exceeds the predetermined value Vc within each gate open period is set as the third point p3, and thus the second calculation is performed in the feature value calculation (S400). The time t2 also becomes as long as possible. Therefore, the shape of the vibration waveform can be captured as wide as possible. This makes it easier to grasp the entire shape of the vibration waveform. Therefore, the knock determination (S600) and the knock control (S700), which are performed based on the vibration waveform, can be easily performed with high accuracy.
また、特徴量算出(S400)では、第1時間t1に基づいて、振動波形における第2点p2よりも前側の形状を捉えることができる。さらに第2時間t2に基づいて、振動波形における第2点p2よりも後側の形状を捉えることができる。よって、第1時間t1に加え第2時間t2も用いることにより、振動波形における第2点p2の前後の形状を捉えることができる。そのため、振動波形における第2点p2よりも前側又は後側の一方のみの形状を捉える場合に比べて、振動波形の全体形状を捉え易くなる。そのため、その振動波形に基づき行うことになるノック判定(S600)及びノック制御(S700)を、精度良く行い易くなる。
特 徴 In the feature value calculation (S400), it is possible to capture the shape on the front side of the second point p2 in the vibration waveform based on the first time t1. Further, based on the second time t2, the shape behind the second point p2 in the vibration waveform can be grasped. Therefore, by using the second time t2 in addition to the first time t1, the shape before and after the second point p2 in the vibration waveform can be captured. Therefore, it becomes easier to capture the entire shape of the vibration waveform than when capturing only one of the shapes on the front side or the rear side of the second point p2 in the vibration waveform. Therefore, the knock determination (S600) and the knock control (S700), which are performed based on the vibration waveform, can be easily performed with high accuracy.
また、形状判定(S500)では、振動波形が属する形状パターンを判定するため、振動波形の形状の特徴を、効率よく捉え易くなる。
In addition, in the shape determination (S500), since the shape pattern to which the vibration waveform belongs is determined, the characteristics of the shape of the vibration waveform can be easily captured efficiently.
また、形状判定(S500)において、図7の下側に示すように、第1時間t1が第1閾値T1よりも小さいときは、振動波形は、減衰形(ノックの可能性大)である可能性がある。そのため、ノック判定(S600)においては、ノックが発生している可能性を大きく判定し易くなり、ノック制御(S700)においては、点火遅角量を大きくし易くなる。このように、簡単な処理でノック発生の可能性を判定し易くなり、それにより、簡単な処理でノック判定(S600)及びノック制御(S700)を行い易くなる。
In the shape determination (S500), as shown in the lower part of FIG. 7, when the first time t1 is smaller than the first threshold value T1, the vibration waveform may be of an attenuated type (high possibility of knocking). There is. Therefore, in the knock determination (S600), it is easier to largely determine the possibility that knock has occurred, and in knock control (S700), it is easier to increase the ignition retard amount. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
また、形状判定(S500)において、図7の右側に示すように、第2時間t2が第2閾値T2よりも大きいときは、振動波形は、減衰形(ノックの可能性大)である可能性がある。そのため、ノック判定(S600)においては、ノックが発生している可能性を大きく判定し易くなり、ノック制御(S700)においては、点火遅角量を大きくし易くなる。このように、簡単な処理でノック発生の可能性を判定し易くなり、それにより、簡単な処理でノック判定(S600)及びノック制御(S700)を行い易くなる。
In the shape determination (S500), as shown on the right side of FIG. 7, when the second time t2 is larger than the second threshold value T2, the vibration waveform may be of an attenuated type (high possibility of knocking). There is. Therefore, in the knock determination (S600), it is easier to largely determine the possibility that knock has occurred, and in knock control (S700), it is easier to increase the ignition retard amount. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
また、形状判定(S500)において、図5(e)等に示すいずれかのピーク間隔t3が所定の間隔閾値T3よりも大きいときは、振動波形は双減衰形(ノイズの可能性大)の形状パターンに属する可能性が高い。そのため、ノック判定(S600)においては、ノックが発生している可能性を低く判定し易くなり、ノック制御(S700)においては、点火遅角量を小さくし易くなる。このように、簡単な処理でノック発生の可能性を判定し易くなり、それにより、簡単な処理でノック判定(S600)及びノック制御(S700)を行い易くなる。
In the shape determination (S500), when any of the peak intervals t3 shown in FIG. 5E or the like is larger than the predetermined interval threshold value T3, the vibration waveform has the shape of a double attenuation type (the possibility of noise is large). It is likely to belong to the pattern. Therefore, in the knock determination (S600), the possibility that knock has occurred is easily determined to be low, and in the knock control (S700), the ignition retard amount is easily reduced. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
また、ノック制御(S700)では、特徴量(t1~t3)に基づいて点火遅角量が定められることになるため、ノック発生の可能性に応じて点火遅角量を調節することができる。また、特徴量(t1~t3)に基づいて進角復帰量も定められることになるため、ノック発生の可能性に応じて進角復帰量も調節することができる。
In the knock control (S700), since the ignition retard amount is determined based on the characteristic amount (t1 to t3), the ignition retard amount can be adjusted according to the possibility of knock occurrence. In addition, since the advance angle return amount is determined based on the feature amount (t1 to t3), the advance angle return amount can be adjusted according to the possibility of knocking.
[第2実施形態]
次に、第2実施形態について説明する。本実施形態の説明では、第1実施形態と同一の又は対応する部材等については、同一の符号を付して、第1実施形態と異なる点のみを説明する。 [Second embodiment]
Next, a second embodiment will be described. In the description of the present embodiment, members that are the same as or correspond to those in the first embodiment are given the same reference numerals, and only differences from the first embodiment will be described.
次に、第2実施形態について説明する。本実施形態の説明では、第1実施形態と同一の又は対応する部材等については、同一の符号を付して、第1実施形態と異なる点のみを説明する。 [Second embodiment]
Next, a second embodiment will be described. In the description of the present embodiment, members that are the same as or correspond to those in the first embodiment are given the same reference numerals, and only differences from the first embodiment will be described.
まずは、図3,図4を参照しつつ本実施形態で使用するパラメータについて説明する。以下、第2点p2での強度から第1点p1での強度を引いた値を増加量v1とする。また、増加量v1を第1時間t1で割った値(v1/t1)を増加率g1とする。また、第2点p2での強度から第3点p3での強度を引いた値を減衰量v2とする。また、減衰量v2を第2時間t2で割った値(v2/t2)を減衰率g2とする。本実施形態では、算出部34は、特徴量として、ピーク間隔t3に加え、増加率g1及び減衰率g2を算出する。
First, parameters used in the present embodiment will be described with reference to FIGS. Hereinafter, a value obtained by subtracting the intensity at the first point p1 from the intensity at the second point p2 is referred to as an increase amount v1. Further, a value (v1 / t1) obtained by dividing the increase amount v1 by the first time t1 is defined as an increase rate g1. Further, a value obtained by subtracting the intensity at the third point p3 from the intensity at the second point p2 is defined as an attenuation amount v2. Further, a value (v2 / t2) obtained by dividing the attenuation amount v2 by the second time t2 is defined as an attenuation rate g2. In the present embodiment, the calculation unit 34 calculates an increase rate g1 and an attenuation rate g2 as a feature amount in addition to the peak interval t3.
図8は、本実施形態の形状判定部35による形状判定(S500)を示すフローチャートである。まず、増加率g1が所定の増加閾値G1よりも大きいか否か判断する(S521)。増加閾値G1よりも小さい場合(S521:NO)、減衰率g2が所定の減衰閾値G2よりも小さいか否か判断する(S524)。減衰閾値G2よりも大きい場合(S524:NO)は、振動波形は増加形の形状パターンに属すると判定して形状判定(S500)を終了する。他方、減衰率g2が、減衰閾値G2よりも小さい場合(S524:YES)は、振動波形は菱形の形状パターンに属すると判定して形状判定(S500)を終了する。
FIG. 8 is a flowchart showing the shape determination (S500) by the shape determination unit 35 of the present embodiment. First, it is determined whether or not the increase rate g1 is larger than a predetermined increase threshold G1 (S521). When it is smaller than the increase threshold G1 (S521: NO), it is determined whether the attenuation rate g2 is smaller than a predetermined attenuation threshold G2 (S524). When it is larger than the attenuation threshold value G2 (S524: NO), it is determined that the vibration waveform belongs to the increasing shape pattern, and the shape determination (S500) ends. On the other hand, when the attenuation rate g2 is smaller than the attenuation threshold value G2 (S524: YES), it is determined that the vibration waveform belongs to the rhombic shape pattern, and the shape determination (S500) ends.
また、S521で、増加率g1が増加閾値G1よりも大きいと判定された場合(S511:YES)、減衰率g2が減衰閾値G2よりも小さいか否か判断する(S522)。減衰率g2が、減衰閾値G2よりも大きい場合(S522:NO)、振動波形は矩形の形状パターンに属すると判定してノック判定(S500)を終了する。
In addition, when it is determined in S521 that the increase rate g1 is larger than the increase threshold value G1 (S511: YES), it is determined whether the attenuation rate g2 is smaller than the attenuation threshold value G2 (S522). When the damping rate g2 is larger than the damping threshold G2 (S522: NO), it is determined that the vibration waveform belongs to the rectangular shape pattern, and the knock determination (S500) ends.
他方、減衰率g2が、減衰閾値G2よりも小さい場合(S522:YES)、いずれのピーク間隔t3も所定の間隔閾値T3よりも小さいか否か判定する(S523)。いずれかのピーク間隔t3が間隔閾値T3よりも大きい場合(S523:NO)は、振動波形は双減衰形の形状パターンに属すると判定してノック判定(S500)を終了する。他方、いずれのピーク間隔t3も間隔閾値T3よりも小さい場合(S523:YES)は、振動波形は減衰形の形状パターンに属すると判定してノック判定(S500)を終了する。
On the other hand, when the attenuation rate g2 is smaller than the attenuation threshold G2 (S522: YES), it is determined whether or not any peak interval t3 is smaller than a predetermined interval threshold T3 (S523). If any one of the peak intervals t3 is larger than the interval threshold T3 (S523: NO), it is determined that the vibration waveform belongs to the shape of the double attenuation type, and the knock determination (S500) is ended. On the other hand, when any of the peak intervals t3 is smaller than the interval threshold T3 (S523: YES), it is determined that the vibration waveform belongs to the attenuation type shape pattern, and the knock determination (S500) ends.
図9は、増加率g1及び減衰率g2から判定される形状パターンの分布をまとめたグラフである。増加率g1が増加閾値G1よりも大きく(上)、かつ減衰率g2が減衰閾値G2よりも大きい(右)場合(右上)、振動波形は矩形の形状パターンに属すると判定される。また、増加率g1が増加閾値G1よりも大きく(上)、かつ減衰率g2が減衰閾値G2よりも小さい(左)場合(左上)、振動波形は減衰形又は双減衰形の形状パターンに属すると判定される。
FIG. 9 is a graph summarizing the distribution of shape patterns determined from the increase rate g1 and the attenuation rate g2. When the increase rate g1 is larger than the increase threshold G1 (upper) and the attenuation rate g2 is larger than the attenuation threshold G2 (right) (upper right), it is determined that the vibration waveform belongs to the rectangular shape pattern. When the increase rate g1 is larger than the increase threshold value G1 (upper) and the attenuation rate g2 is smaller than the attenuation threshold value G2 (left) (upper left), the vibration waveform belongs to the attenuation type or the double attenuation type shape pattern. Is determined.
また、増加率g1が増加閾値G1よりも小さく(下)、かつ減衰率g2が減衰閾値G2よりも大きい(右)場合(右下)、振動波形は増加形の形状パターンに属すると判定される。また、増加率g1が増加閾値G1よりも小さく(下)、かつ減衰率g2が減衰閾値G2よりも小さい(左)場合(左下)、振動波形は菱形の形状パターンに属すると判定される。
When the increase rate g1 is smaller than the increase threshold value G1 (lower) and the attenuation rate g2 is larger than the attenuation threshold value G2 (right) (lower right), it is determined that the vibration waveform belongs to the increasing shape pattern. . When the increase rate g1 is smaller than the increase threshold value G1 (lower) and the attenuation rate g2 is smaller than the attenuation threshold value G2 (left) (lower left), it is determined that the vibration waveform belongs to the rhombic shape pattern.
本実施形態によれば、形状判定(S500)では、増加率g1を用いるため、第1時間t1に加えて増加量v1も用いて、振動波形の前側部分の形状を捉えることになる。そのため、振動波形の前側部分の形状をより精度よく捉え易くなる。また、減衰率g2を用いるため、第2時間t2に加えて減衰量v2も用いて、振動波形の後側部分の形状を捉えることになる。そのため、振動波形の後側部分の形状をより精度よく捉え易くなる。
According to the present embodiment, in the shape determination (S500), since the increase rate g1 is used, the shape of the front portion of the vibration waveform is captured using the increase amount v1 in addition to the first time t1. Therefore, the shape of the front portion of the vibration waveform can be more easily captured. Further, since the attenuation rate g2 is used, the shape of the rear part of the vibration waveform is captured using the attenuation amount v2 in addition to the second time t2. Therefore, the shape of the rear part of the vibration waveform can be more easily captured.
また、形状判定(S500)において、図9の上側に示すように、増加率g1が増加閾値G1よりも大きいときは、振動波形は減衰形(ノックの可能性大)の形状パターンに属する可能性がある。そのため、ノック判定(S600)においては、ノックが発生している可能性を高く判定し易くなり、ノック制御(S700)においては、点火遅角量を大きくし易くなる。このように、簡単な処理でノック発生の可能性を判定し易くなり、それにより、簡単な処理でノック判定(S600)及びノック制御(S700)を行い易くなる。
Further, in the shape determination (S500), as shown in the upper part of FIG. 9, when the increase rate g1 is larger than the increase threshold value G1, the vibration waveform may belong to the damping type (high knock possibility) shape pattern. There is. Therefore, in the knock determination (S600), the possibility that knock has occurred is easily determined to be high, and in the knock control (S700), the ignition retard amount is easily increased. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
また、形状判定(S500)において、図9の左側に示すように、減衰率g2が減衰閾値G2よりも小さいときは、振動波形は減衰形(ノックの可能性大)の形状パターンに属する可能性がある。そのため、ノック判定(S600)においては、ノックが発生している可能性を高く判定し易くなり、ノック制御(S700)においては、点火遅角量を大きくし易くなる。このように、簡単な処理でノック発生の可能性を判定し易くなり、それにより、簡単な処理でノック判定(S600)及びノック制御(S700)を行い易くなる。
In the shape determination (S500), when the damping rate g2 is smaller than the damping threshold value G2, as shown on the left side of FIG. 9, the vibration waveform may belong to the damping type (high knock possibility) shape pattern. There is. Therefore, in the knock determination (S600), the possibility that knock has occurred is easily determined to be high, and in the knock control (S700), the ignition retard amount is easily increased. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
[第3実施形態]
次に、第3実施形態について説明する。本実施形態の説明では、第1実施形態と同一の又は対応する部材等については、同一の符号を付して、第1実施形態と異なる点のみを説明する。 [Third embodiment]
Next, a third embodiment will be described. In the description of the present embodiment, members that are the same as or correspond to those in the first embodiment are given the same reference numerals, and only differences from the first embodiment will be described.
次に、第3実施形態について説明する。本実施形態の説明では、第1実施形態と同一の又は対応する部材等については、同一の符号を付して、第1実施形態と異なる点のみを説明する。 [Third embodiment]
Next, a third embodiment will be described. In the description of the present embodiment, members that are the same as or correspond to those in the first embodiment are given the same reference numerals, and only differences from the first embodiment will be described.
図10は、本実施形態における形状判定(S500)及びノック判定(S600)の考え方を説明するためのグラフである。本実施形態では、算出部34は、特徴量として、ピーク間隔t3に加え、増加率g1を減衰率g2で割った値である傾斜比rを算出する(S400)。判定部35,36は、傾斜比rが大きいほど、ノック波形に近い波形成分(ノック成分)を多く含み、傾斜比rが小さいほど、ノック波形から遠い波形成分(ノイズ成分)を多く含むと判定する。詳しくは、以下に示す通りである。
FIG. 10 is a graph for explaining the concept of shape determination (S500) and knock determination (S600) in the present embodiment. In the present embodiment, the calculation unit 34 calculates, as a feature amount, the slope ratio r, which is a value obtained by dividing the increase rate g1 by the attenuation rate g2, in addition to the peak interval t3 (S400). The determination units 35 and 36 determine that the greater the slope ratio r, the more the waveform component (knock component) closer to the knock waveform, and the smaller the slope ratio r, the more the waveform component (noise component) far from the knock waveform. I do. The details are as shown below.
図11は、本実施形態の形状判定部35による形状判定(S500)を示すフローチャートである。まず、いずれかのピーク間隔t3が、間隔閾値T3よりも大きいか否か判定する(S531)。いずれかのピーク間隔t3が、間隔閾値T3よりも大きい場合(S531:YES)、振動波形は双減衰形の形状パターンに属すると判定して、形状判定(S500)を終了する。
FIG. 11 is a flowchart showing the shape determination (S500) by the shape determination unit 35 of the present embodiment. First, it is determined whether any of the peak intervals t3 is greater than the interval threshold T3 (S531). If any one of the peak intervals t3 is larger than the interval threshold T3 (S531: YES), it is determined that the vibration waveform belongs to the bi-attenuated shape pattern, and the shape determination (S500) ends.
他方、いずれのピーク間隔t3も間隔閾値T3よりも小さい場合(S531:NO)、第1点p1と第2点p2とが同一の極大点pであるか、すなわち、強度が最大である第2点p2が、強度が所定値Vcを越える極大点pの配列の先頭であるか否か判断する(S532)。第2点p2が当該配列の先頭である場合(S532:YES)、振動波形は減衰形の形状パターンに属すると判定して、形状判定(S500)を終了する。
On the other hand, when any of the peak intervals t3 is smaller than the interval threshold T3 (S531: NO), it is determined whether the first point p1 and the second point p2 are the same local maximum point p, that is, the second point having the maximum intensity. It is determined whether or not the point p2 is the head of the array of the maximum points p whose intensity exceeds the predetermined value Vc (S532). If the second point p2 is the head of the array (S532: YES), it is determined that the vibration waveform belongs to the damped shape pattern, and the shape determination (S500) ends.
他方、第2点p2が当該配列の先頭でない場合、第2点p2と第3点p3とが同一の極大点pであるか、すなわち、強度が最大である第2点p2が、強度が所定値Vcを越える極大点pの配列の末端であるか否か判断する(S533)。第2点p2が当該配列の末端である場合(S533:YES)、振動波形は増加形の形状パターンに属すると判定して、形状判定(S500)を終了する。
On the other hand, when the second point p2 is not the head of the array, whether the second point p2 and the third point p3 are the same maximum point p, that is, the second point p2 having the maximum intensity is determined to have the predetermined intensity It is determined whether or not the end of the sequence at the maximum point p exceeding the value Vc (S533). If the second point p2 is at the end of the sequence (S533: YES), it is determined that the vibration waveform belongs to the increasing shape pattern, and the shape determination (S500) ends.
他方、第2点p2が当該配列の末端でない場合(S533:NO)、傾斜比rが所定の下側の傾斜比閾値R1よりも大きく、かつ所定の上側の傾斜比閾値R2よりも小さいという条件を満たすか否か判断する(S534)。傾斜比rがその条件を満たす場合(S534:YES)、振動波形は菱形の形状パターンに属すると判定して、形状判定(S500)を終了する。
On the other hand, when the second point p2 is not at the end of the sequence (S533: NO), the condition that the slope ratio r is larger than the predetermined lower slope ratio threshold R1 and smaller than the predetermined upper slope ratio threshold R2. It is determined whether or not the condition is satisfied (S534). If the inclination ratio r satisfies the condition (S534: YES), it is determined that the vibration waveform belongs to the rhombic shape pattern, and the shape determination (S500) is completed.
他方、傾斜比rが当該条件を満たさない場合(S534:NO)、傾斜比rが上側の傾斜比閾値R2よりも大きいか否か判定する(S535)。傾斜比rが上側の傾斜比閾値R2よりも大きい場合(S535:YES)、振動波形は減衰形の形状パターンに属すると判定して、形状判定(S500)を終了する。他方、傾斜比rが上側の傾斜比閾値R2よりも小さい場合(S535:NO)、S534での結果から下側の傾斜比閾値R1よりも小さいことになるため、振動波形は増加形の形状パターンに属すると判定して、形状判定(S500)を終了する。
On the other hand, when the inclination ratio r does not satisfy the condition (S534: NO), it is determined whether or not the inclination ratio r is greater than the upper inclination ratio threshold R2 (S535). When the slope ratio r is larger than the upper slope ratio threshold R2 (S535: YES), it is determined that the vibration waveform belongs to the damped shape pattern, and the shape determination (S500) ends. On the other hand, when the slope ratio r is smaller than the upper slope ratio threshold R2 (S535: NO), the result at S534 is smaller than the lower slope ratio threshold R1, and the vibration waveform has an increasing shape pattern. And the shape determination (S500) ends.
本実施形態によれば、形状判定(S500)において、図10に示す傾斜比rが傾斜比閾値R2よりも大きいときは、振動波形は減衰形(ノックの可能性大)の形状パターンに属する可能性が高い。そのため、ノック判定(S600)においては、ノックが発生している可能性を高く判定し易くなり、ノック制御(S700)においては、点火遅角量を大きくし易くなる。このように、簡単な処理でノック発生の可能性を判定し易くなり、それにより、簡単な処理でノック判定(S600)及びノック制御(S700)を行い易くなる。
According to the present embodiment, in the shape determination (S500), when the inclination ratio r shown in FIG. 10 is larger than the inclination ratio threshold value R2, the vibration waveform can belong to an attenuation type (high knock possibility) shape pattern. High in nature. Therefore, in the knock determination (S600), the possibility that knock has occurred is easily determined to be high, and in the knock control (S700), the ignition retard amount is easily increased. As described above, it is easy to determine the possibility of occurrence of knock by a simple process, whereby it is easy to perform knock determination (S600) and knock control (S700) by a simple process.
[他の実施形態]
本実施形態は、次のように変更して実施することもできる。例えば、図3,図4等に示す振動波形から、第1点p1~第3点p3を特定するのに代えて、図12,図13に示すように、振動の強さの絶対値(検出電圧値の絶対値)を強度として、当該強度の時間変化を示す絶対値波形から、第1点p1~第3点p3を特定するようにして実施することもできる。すなわち、この場合、当該絶対値波形において、強度が最初に所定値Vcを越えた極大点が第1点p1となり、強度が最大となる極大点が第2点p2となり、強度が最後に所定値Vcを越えた極大点が第3点p3となる。この実施形態によれば、振動波形における強度のプラス側だけでなく、マイナス側も用いて振動波形の形状を捉えることになるので、より精度よく振動波形の形状を捉えることができる。また、このとき、振動波形の属する形状パターンを判定するのに代えて、絶対値波形の属する形状パターンを判定するようにして実施することもできる。 [Other embodiments]
This embodiment can be implemented with the following modifications. For example, instead of specifying the first point p1 to the third point p3 from the vibration waveforms shown in FIGS. 3 and 4 or the like, as shown in FIGS. The first point p1 to the third point p3 can be specified from the absolute value waveform indicating the time change of the intensity, with the intensity being the absolute value of the voltage value). That is, in this case, in the absolute value waveform, the maximum point at which the intensity first exceeds the predetermined value Vc is the first point p1, the maximum point at which the intensity is the maximum is the second point p2, and the intensity is finally the predetermined value Vc. The maximum point exceeding Vc is the third point p3. According to this embodiment, since the shape of the vibration waveform is grasped not only on the plus side but also on the minus side of the strength of the vibration waveform, the shape of the vibration waveform can be grasped more accurately. At this time, instead of determining the shape pattern to which the vibration waveform belongs, it is also possible to determine the shape pattern to which the absolute value waveform belongs.
本実施形態は、次のように変更して実施することもできる。例えば、図3,図4等に示す振動波形から、第1点p1~第3点p3を特定するのに代えて、図12,図13に示すように、振動の強さの絶対値(検出電圧値の絶対値)を強度として、当該強度の時間変化を示す絶対値波形から、第1点p1~第3点p3を特定するようにして実施することもできる。すなわち、この場合、当該絶対値波形において、強度が最初に所定値Vcを越えた極大点が第1点p1となり、強度が最大となる極大点が第2点p2となり、強度が最後に所定値Vcを越えた極大点が第3点p3となる。この実施形態によれば、振動波形における強度のプラス側だけでなく、マイナス側も用いて振動波形の形状を捉えることになるので、より精度よく振動波形の形状を捉えることができる。また、このとき、振動波形の属する形状パターンを判定するのに代えて、絶対値波形の属する形状パターンを判定するようにして実施することもできる。 [Other embodiments]
This embodiment can be implemented with the following modifications. For example, instead of specifying the first point p1 to the third point p3 from the vibration waveforms shown in FIGS. 3 and 4 or the like, as shown in FIGS. The first point p1 to the third point p3 can be specified from the absolute value waveform indicating the time change of the intensity, with the intensity being the absolute value of the voltage value). That is, in this case, in the absolute value waveform, the maximum point at which the intensity first exceeds the predetermined value Vc is the first point p1, the maximum point at which the intensity is the maximum is the second point p2, and the intensity is finally the predetermined value Vc. The maximum point exceeding Vc is the third point p3. According to this embodiment, since the shape of the vibration waveform is grasped not only on the plus side but also on the minus side of the strength of the vibration waveform, the shape of the vibration waveform can be grasped more accurately. At this time, instead of determining the shape pattern to which the vibration waveform belongs, it is also possible to determine the shape pattern to which the absolute value waveform belongs.
また例えば、フィルタ部32によるBPF処理(S200)を省いて、実施することもできる。また例えば、3点特定(S300)において、ゲートオープン期間内における一部の期間内から3点を特定するようにして、すなわち、当該一部の期間を本開示でいう「所定期間」にして、実施することもできる。
{Circle around (2)} For example, the BPF process (S200) by the filter unit 32 may be omitted to perform the process. Further, for example, in the three-point specification (S300), three points are specified from a part of the gate open period, that is, the part of the period is set to a “predetermined period” in the present disclosure. It can also be implemented.
また例えば、第1点p1を、第2点p2よりも前に存在する他の極大点pのうちのいずれか1つに変更して、実施することもできる。また例えば、第3点p3を、第2点p2よりも後に存在する極大点pのうちのいずれか1つに変更して、実施することもできる。
{Also, for example, the first point p1 may be changed to any one of the other maximum points p existing before the second point p2, and the embodiment may be performed. In addition, for example, the third point p3 may be changed to any one of the maximum points p existing after the second point p2, and the present invention may be implemented.
また例えば、ノック判定部36を次のように実施することもできる。形状判定部35により、振動波形が減衰形の形状パターンに属すると判定されたときは、ノック判定部36は、ノックが発生していると判定して、補正項を「1」にする。他方、形状判定部35により、振動波形が減衰形以外の形状パターンに属すると判定されたときは、ノック判定部36は、ノックが発生していないと判定して、補正項を「0」にする。
{Also, for example, knock determination unit 36 can be implemented as follows. When the shape determining unit 35 determines that the vibration waveform belongs to the attenuation type shape pattern, the knock determining unit 36 determines that knock has occurred, and sets the correction term to “1”. On the other hand, when the shape determining unit 35 determines that the vibration waveform belongs to a shape pattern other than the damping type, the knock determining unit 36 determines that no knock has occurred, and sets the correction term to “0”. I do.
また例えば、形状判定部35をなくして、直接ノック判定部36が特徴量に基づいてノック判定をするようにして、実施することもできる。具体的には、例えば、第2実施形態において、次のように実施することができる。ノック判定部36は、増加率g1が所定の上側閾値よりも大きい場合は、ノックが発生していると判定して、補正項を「1」にする。また、増加率g1が上記の上側閾値よりも小さく、かつ所定の下側閾値よりも大きい場合には、ノックが発生している可能性が中程度であると判定して、補正項を「0.5」にする。また、増加率g1が上記の下側閾値よりも小さい場合は、ノックが発生している可能性が低いと判定して、補正項を「0.1」にする。
Alternatively, for example, the shape determination unit 35 may be omitted, and the knock determination unit 36 may directly perform knock determination based on the feature amount. Specifically, for example, the second embodiment can be implemented as follows. When the increase rate g1 is greater than a predetermined upper threshold, knock determination section 36 determines that knock has occurred, and sets the correction term to "1". When the increase rate g1 is smaller than the above upper threshold value and larger than the predetermined lower threshold value, it is determined that the possibility that knock has occurred is moderate, and the correction term is set to “0”. .5 ". If the increase rate g1 is smaller than the lower threshold value, it is determined that the possibility that knock has occurred is low, and the correction term is set to “0.1”.
また、例えば、ノック制御(S700)において、点火遅角制御を行う代わりに、吸気バルブ13を駆動するタイミングを変化させることにより有効圧縮比を下げ、それによりノックを抑制する制御を行うようにして、実施することもできる。
Further, for example, in the knock control (S700), instead of performing the ignition retard control, the timing for driving the intake valve 13 is changed to lower the effective compression ratio, thereby performing control to suppress knock. , Can also be implemented.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also encompasses various modifications and variations within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and spirit of the present disclosure.
Claims (11)
- 内燃機関(10)に発生する振動を検出する検出部(29)を有し、前記検出部からの検出信号に基づいて、ノックの発生を判定するノック判定を行うノック判定装置(29,31~36)において、
前記検出信号に基づいて得られた波形であって、前記振動の強さを強度として前記強度の時間変化を表す振動波形又は前記振動の強さの絶対値を強度として前記強度の時間変化を表す絶対値波形から、前記強度が極大となる複数の極大点(p)のうち、所定期間内において前記強度が最大となる前記極大点である第2点(p2)、前記所定期間内において前記第2点よりも前に存在する前記極大点の1つである第1点(p1)、及び前記所定期間内において前記第2点よりも後に存在する前記極大点の1つである第3点(p3)の少なくとも3つの前記極大点を特定する特定部(33)と、
少なくとも前記3つの極大点を用いて所定の特徴量(t1~t3,g1,g2,r)を算出する算出部(34)と、
前記特徴量に基づいて前記ノック判定を行う判定部(35,36)と、
を有するノック判定装置。 A knock determination device (29, 31 to 40) having a detection unit (29) for detecting vibration generated in the internal combustion engine (10), and performing knock determination for determining occurrence of knock based on a detection signal from the detection unit. 36)
A waveform obtained based on the detection signal, wherein the intensity of the vibration is represented by a magnitude, and the magnitude of the magnitude is represented by an absolute value of the magnitude of the vibration. From the absolute value waveform, a second point (p2), which is the maximum point at which the intensity is maximum within a predetermined period, among a plurality of maximum points (p) at which the intensity is maximum, and the second point (p2) within the predetermined period. A first point (p1), which is one of the maximum points existing before two points, and a third point (one of the maximum points, which is present after the second point within the predetermined period) p3) a specifying unit (33) for specifying at least three of the maximum points;
A calculation unit (34) that calculates a predetermined feature amount (t1 to t3, g1, g2, r) using at least the three maximum points;
A determination unit (35, 36) for performing the knock determination based on the feature amount;
Knock determination device having: - 前記判定部は、前記振動波形又は前記絶対値波形の属する形状パターンを前記特徴量に基づいて判定する形状判定部(35)と、前記形状判定部による判定に基づいて前記ノック判定を行うノック判定部(36)とを有する、請求項1に記載のノック判定装置。 A shape determination unit configured to determine a shape pattern to which the vibration waveform or the absolute value waveform belongs based on the feature amount; and a knock determination that performs the knock determination based on the determination by the shape determination unit. The knock determination device according to claim 1, further comprising a unit (36).
- 前記第1点は、前記所定期間内において最初に前記強度が所定値(Vc)を越えた前記極大点であり、前記第3点は、前記所定期間内において最後に前記強度が前記所定値を越えた前記極大点である、請求項1又は2に記載のノック判定装置。 The first point is the local maximum point where the intensity first exceeds the predetermined value (Vc) within the predetermined period, and the third point is the last point where the intensity exceeds the predetermined value within the predetermined period. The knock determination device according to claim 1 or 2, wherein the maximum point is exceeded.
- 前記算出部は、前記第1点から前記第2点に至るまでの時間である第1時間(t1)を、前記特徴量として算出し、
前記判定部は、前記第1時間が所定の第1閾値(T1)よりも小さいときは、前記第1閾値よりも大きいときに比べて、前記ノック判定において、前記ノックが発生している可能性を高く判定し易くなる、請求項3に記載のノック制御装置。 The calculation unit calculates a first time (t1), which is a time from the first point to the second point, as the feature amount,
The determination unit may determine that the knock has occurred in the knock determination when the first time is smaller than a predetermined first threshold (T1) than when the first time is larger than the first threshold. The knock control device according to claim 3, wherein the knock control device is easily determined to be high. - 前記算出部は、前記第2点から前記第3点に至るまでの時間である第2時間(t2)を、前記特徴量として算出し、
前記判定部は、前記第2時間が所定の第2閾値(T2)よりも大きいときは、前記第2閾値よりも小さいときに比べて、前記ノック判定において、前記ノックが発生している可能性を高く判定し易くなる、請求項3又は4に記載のノック制御装置。 The calculation unit calculates a second time (t2), which is a time from the second point to the third point, as the feature amount,
The determination unit may determine that the knock has occurred in the knock determination when the second time is greater than a second threshold (T2) than when the second time is smaller than the second threshold. The knock control device according to claim 3, wherein the knock control device is easily determined to be high. - 前記算出部は、前記第2点での前記強度から前記第1点での前記強度を引いた値である増加量(v1)を、前記第1点から前記第2点に至るまでの時間である第1時間(t1)で割った値である増加率(g1)を、前記特徴量として算出し、
前記判定部は、前記増加率が所定の増加閾値(G1)よりも大きいときは、前記増加閾値よりも小さいときに比べて、前記ノック判定において、前記ノックが発生している可能性を高く判定し易くなる、請求項1~5のいずれか1項に記載のノック制御装置。 The calculation unit calculates an increase amount (v1), which is a value obtained by subtracting the intensity at the first point from the intensity at the second point, in a time period from the first point to the second point. An increase rate (g1), which is a value divided by a certain first time (t1), is calculated as the feature amount,
The determination unit determines a higher possibility that the knock has occurred in the knock determination when the increase rate is larger than a predetermined increase threshold value (G1) than when the increase rate is smaller than the increase threshold value. The knock control device according to any one of claims 1 to 5, which facilitates knocking. - 前記算出部は、前記第2点での前記強度から前記第3点での前記強度を引いた値である減衰量(v2)を、前記第2点から前記第3点に至るまでの時間である第2時間(t2)で割った値である減衰率(g2)を、前記特徴量として算出し、
前記判定部は、前記減衰率が所定の減衰閾値(G2)よりも小さいときは、前記減衰閾値よりも大きいときに比べて、前記ノック判定において、前記ノックが発生している可能性を高く判定し易くなる、請求項1~6のいずれか1項に記載のノック制御装置。 The calculation unit calculates an attenuation amount (v2), which is a value obtained by subtracting the intensity at the third point from the intensity at the second point, in a time from the second point to the third point. An attenuation rate (g2), which is a value obtained by dividing by a certain second time (t2), is calculated as the feature amount,
The determination unit determines that the possibility of occurrence of the knock is higher in the knock determination when the attenuation rate is smaller than a predetermined attenuation threshold value (G2) than when the attenuation rate is greater than the attenuation threshold value. The knock control device according to any one of claims 1 to 6, which facilitates knocking. - 前記第2点での前記強度から前記第1点での前記強度を引いた値である増加量(v1)を、前記第1点から前記第2点に至るまでの時間である第1時間(t1)で割った値を増加率(g1)とし、
前記第2点での前記強度から前記第3点での前記強度を引いた値である減衰量(v2)を、前記第2点から前記第3点に至るまでの時間である第2時間(t2)で割った値を減衰率(g2)として、
前記算出部は、前記増加率を前記減衰率で割った値である傾斜比(r)を、前記特徴量として算出し、
前記判定部は、前記傾斜比が所定の傾斜比閾値(R2)よりも大きいときは、前記傾斜比閾値よりも小さいときに比べて、前記ノック判定において、前記ノックが発生している可能性を高く判定し易くなる、請求項1~7のいずれか1項に記載のノック制御装置。 An increase (v1), which is a value obtained by subtracting the intensity at the first point from the intensity at the second point, is calculated as a first time (time) from the first point to the second point ( The value divided by t1) is defined as an increase rate (g1),
An attenuation (v2), which is a value obtained by subtracting the intensity at the third point from the intensity at the second point, is calculated as a second time (a time from the second point to the third point). The value divided by t2) is defined as an attenuation rate (g2).
The calculation unit calculates a slope ratio (r), which is a value obtained by dividing the increase rate by the attenuation rate, as the feature amount,
The determination unit may determine that the knock has occurred in the knock determination when the inclination ratio is larger than a predetermined inclination ratio threshold (R2), as compared to when the inclination ratio is smaller than the inclination ratio threshold. The knock control device according to any one of claims 1 to 7, wherein a high determination is easily made. - 前記算出部は、前記所定期間内において前記強度が所定値(Vc)を越えた複数の前記極大点のうちの隣り合う2つの前記極大点の、一方から他方に至るまでの時間であるピーク間隔(t3)を、前記特徴量として算出し、
前記判定部は、いずれかの前記ピーク間隔が所定の間隔閾値よりも大きいときは、いずれの前記ピーク間隔も所定の間隔閾値(T3)よりも小さいときに比べて、前記ノック判定において、前記ノックが発生している可能性を低く判定し易くなる、請求項1~8のいずれか1項に記載のノック制御装置。 The calculation unit is configured to calculate a peak interval, which is a time period from one of two adjacent maximum points of the plurality of maximum points having the intensity exceeding a predetermined value (Vc) to the other within the predetermined period. (T3) is calculated as the feature amount,
In the knock determination, the determination unit determines that the knock is greater when any one of the peak intervals is larger than a predetermined interval threshold than when any of the peak intervals is smaller than a predetermined interval threshold (T3). The knock control device according to any one of claims 1 to 8, wherein the possibility of occurrence of the knock is easily determined to be low. - 前記検出信号を1種類のみのバンドパスフィルタによりフィルタ処理して、前記振動波形を得るフィルタ部(32)を有する請求項1~9のいずれか1項に記載のノック判定装置。 The knock determination device according to any one of claims 1 to 9, further comprising: a filter unit (32) for obtaining the vibration waveform by filtering the detection signal with only one type of bandpass filter.
- 請求項1~10のいずれか1項に記載のノック判定装置と、前記ノック判定装置による前記ノック判定に基づいて、前記ノックの発生を抑えるためのノック制御を行う制御部(37)と、を有するノック制御装置。 A knock determination device according to any one of claims 1 to 10, and a control unit (37) that performs knock control for suppressing occurrence of the knock based on the knock determination by the knock determination device. Knock control device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018175429A JP7081420B2 (en) | 2018-09-19 | 2018-09-19 | Knock determination device and knock control device |
JP2018-175429 | 2018-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059408A1 true WO2020059408A1 (en) | 2020-03-26 |
Family
ID=69887243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032832 WO2020059408A1 (en) | 2018-09-19 | 2019-08-22 | Knocking determination device and knocking control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7081420B2 (en) |
WO (1) | WO2020059408A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7452089B2 (en) | 2020-02-26 | 2024-03-19 | 株式会社デンソー | Knock determination device and knock control device |
JP2023124427A (en) * | 2022-02-25 | 2023-09-06 | 三菱重工エンジン&ターボチャージャ株式会社 | Knocking determination device and method for engine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001227400A (en) * | 2000-02-15 | 2001-08-24 | Denso Corp | Knock control device for internal combustion engine |
JP2002364448A (en) * | 2001-05-31 | 2002-12-18 | Fujitsu Ten Ltd | Knocking control device for internal combustion engine |
JP2004317207A (en) * | 2003-04-14 | 2004-11-11 | Denso Corp | Knocking detector |
JP2004353531A (en) * | 2003-05-28 | 2004-12-16 | Denso Corp | Knock control device of internal combustion engine |
JP2006336604A (en) * | 2005-06-06 | 2006-12-14 | Denso Corp | Knocking controller for internal combustion engine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4096584B2 (en) * | 2002-03-14 | 2008-06-04 | トヨタ自動車株式会社 | Automatic knock detection device for internal combustion engine |
JP4390104B2 (en) * | 2004-04-16 | 2009-12-24 | 株式会社デンソー | Internal combustion engine knock determination device |
JP4397346B2 (en) * | 2005-04-26 | 2010-01-13 | トヨタ自動車株式会社 | Internal combustion engine knock determination device |
JP2009013939A (en) * | 2007-07-06 | 2009-01-22 | Denso Corp | Knocking determination device for internal combustion engine |
JP6541586B2 (en) * | 2016-01-22 | 2019-07-10 | 三菱重工業株式会社 | Knocking detection method, ignition timing control method and control system for internal combustion engine |
-
2018
- 2018-09-19 JP JP2018175429A patent/JP7081420B2/en active Active
-
2019
- 2019-08-22 WO PCT/JP2019/032832 patent/WO2020059408A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001227400A (en) * | 2000-02-15 | 2001-08-24 | Denso Corp | Knock control device for internal combustion engine |
JP2002364448A (en) * | 2001-05-31 | 2002-12-18 | Fujitsu Ten Ltd | Knocking control device for internal combustion engine |
JP2004317207A (en) * | 2003-04-14 | 2004-11-11 | Denso Corp | Knocking detector |
JP2004353531A (en) * | 2003-05-28 | 2004-12-16 | Denso Corp | Knock control device of internal combustion engine |
JP2006336604A (en) * | 2005-06-06 | 2006-12-14 | Denso Corp | Knocking controller for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP7081420B2 (en) | 2022-06-07 |
JP2020045827A (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9816446B2 (en) | Knock determination apparatus for internal combustion engine | |
JP5546595B2 (en) | Knock control device for internal combustion engine | |
US8000884B2 (en) | Device and method for controlling ignition timing of internal combustion engine | |
US8949006B2 (en) | Knock control apparatus for internal combustion engine | |
JP5641960B2 (en) | Control device for internal combustion engine | |
JP5832130B2 (en) | Control device for internal combustion engine | |
US8694229B2 (en) | Knock control apparatus for internal combustion engine | |
EP2116713A1 (en) | Internal combustion engine knock determination device and knock determination method | |
WO2020059408A1 (en) | Knocking determination device and knocking control device | |
WO2020059409A1 (en) | Knocking control device | |
JP5502176B2 (en) | Control device for internal combustion engine | |
US9164012B2 (en) | Internal combustion engine knock controlling apparatus | |
JP2015083792A (en) | Power unit and vehicle | |
US20130192343A1 (en) | Knock detection device of internal combustion engine | |
US10648411B2 (en) | Controller and control method for internal combustion engine | |
JP6769211B2 (en) | Knocking detector | |
JP4799646B2 (en) | Abnormal ignition control device for internal combustion engine | |
JP4877276B2 (en) | Ignition timing control device for internal combustion engine | |
EP4113075B1 (en) | Knocking determination device and knocking control device | |
JP7199470B2 (en) | Control device for internal combustion engine | |
JP4919939B2 (en) | Ignition timing control device and ignition timing control method for internal combustion engine | |
JP6429938B1 (en) | Control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19862191 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19862191 Country of ref document: EP Kind code of ref document: A1 |