Nothing Special   »   [go: up one dir, main page]

WO2020059024A1 - 発光素子、及び発光素子の製造方法 - Google Patents

発光素子、及び発光素子の製造方法 Download PDF

Info

Publication number
WO2020059024A1
WO2020059024A1 PCT/JP2018/034484 JP2018034484W WO2020059024A1 WO 2020059024 A1 WO2020059024 A1 WO 2020059024A1 JP 2018034484 W JP2018034484 W JP 2018034484W WO 2020059024 A1 WO2020059024 A1 WO 2020059024A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
layer
transport layer
quantum dot
Prior art date
Application number
PCT/JP2018/034484
Other languages
English (en)
French (fr)
Inventor
久幸 内海
仲西 洋平
昌行 兼弘
翔太 岡本
弘毅 今林
達也 両輪
加奈子 中田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US17/277,269 priority Critical patent/US11778843B2/en
Priority to PCT/JP2018/034484 priority patent/WO2020059024A1/ja
Publication of WO2020059024A1 publication Critical patent/WO2020059024A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to a light emitting device including a quantum dot light emitting layer, an electron transport layer, and a cathode in this order, and a method for manufacturing the light emitting device.
  • the electron transport layer 105 (between the quantum dot (QD) light emitting layer 104 and the cathode (cathode electrode) 107.
  • ETL Electron @ Transport @ Layer.
  • ZnO NP zinc oxide nanoparticles
  • the electron transport layer 105 is formed by spinner coating using such a solution, the dispersibility of ZnO NP in the electron transport layer 105 is low, and accordingly, the flatness of the electron transport layer 105 deteriorates. As a result, the electron transfer of the electron transport layer 105 is biased, and there is a high possibility that uniform light emission will not occur. In addition, since the electron transport layer 105 becomes non-uniform, when the material of the cathode (cathode electrode) 107 as the upper layer is applied, the quantum dot light emitting layer 104 as the lower layer may be thermally damaged.
  • the organic electroluminescence device disclosed in Patent Document 1 has an inorganic functional layer between the transparent resin substrate and the light emitting layer, and has metal oxide nanoparticles between the transparent resin substrate and the inorganic functional layer. Is dispersed in an actinic radiation-curable resin.
  • the metal oxide nanoparticle-containing layer of the organic electroluminescence device disclosed in the above-mentioned conventional Patent Document 1 is a layer provided between the gas barrier layer as the inorganic functional layer and the transparent resin substrate, and the metal oxide The purpose is to ensure sufficient adhesion between the material nanoparticle-containing layer and the transparent resin substrate, and between the metal oxide nanoparticle-containing layer and the inorganic functional layer, and the bending resistance of the organic electroluminescent device. Things.
  • the electron transport layer it is not preferable that the electron transport efficiency of the electron transport layer is reduced.
  • the electron transport layer flatness of the electron transport layer and uniform transportability of electrons are required.
  • the present invention has been made in view of the conventional problems, and an object of the present invention is to improve the flatness of the electron transport layer and the uniform transportability of electrons without lowering the electron transport efficiency in the electron transport layer.
  • An object of the present invention is to provide a light emitting device to be obtained and a method for manufacturing the light emitting device.
  • a light-emitting element including an anode, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer, and a cathode in this order.
  • a method for manufacturing a light-emitting element according to one embodiment of the present invention is a method for manufacturing a light-emitting element for manufacturing the light-emitting element, wherein the quantum-dot emission layer is cured after the quantum-dot emission layer is cured. It is characterized in that an electron transport layer is laminated on the layer.
  • a light-emitting element capable of improving the flatness of an electron transport layer and the uniform transport property of electrons without reducing the electron transport ability of the electron transport layer, and a method for manufacturing the light-emitting element are provided. It has the effect of doing.
  • FIG. 1A is a cross-sectional view illustrating a configuration of a quantum dot light-emitting device according to Embodiment 1 of the present invention
  • FIG. 2B is a cross-sectional view illustrating a detailed structure of a light-emitting layer and an electron transport layer of the quantum dot light-emitting device.
  • It is sectional drawing which shows the structure of the modification of the quantum dot light emitting element in this invention. It is a figure showing an example of the above-mentioned quantum dot light emitting element.
  • (A) is a cross-sectional view showing a configuration of a conventional quantum dot light-emitting device
  • (b) is a cross-sectional view showing a detailed structure of a light-emitting layer and an electron transport layer of the quantum dot light-emitting device.
  • the light emitting element of this embodiment is applied to a quantum dot light emitting element including a quantum dot light emitting diode (QLED). Consequently, the present invention is applied to a light emitting device including the quantum dot light emitting element of the present embodiment and an array substrate.
  • QLED quantum dot light emitting diode
  • FIG. 1A is a cross-sectional view illustrating a configuration of a quantum dot light emitting device 1A according to the present embodiment.
  • FIG. 1B is a cross-sectional view showing a detailed structure of the quantum dot light emitting layer 4 and the electron transport layer 5 of the quantum dot light emitting device 1A.
  • a quantum dot light emitting element 1A in the present embodiment has a hole transport layer (HTL: Hole Transport Layer) 3 and a quantum dot light emitting layer on an anode (anode electrode) 2. 4, an electron transport layer (ETL: Electron Transport Layer) 5, and a cathode (cathode electrode) 6 in this order.
  • the anode 2 of the quantum dot light emitting element 1A formed on the upper layer of the array substrate (not shown) is electrically connected to the TFT of the array substrate.
  • each of the anode 2, the hole transport layer 3, and the quantum dot light emitting layer 4 is separated into, for example, a red sub-pixel, a green sub-pixel, and a blue sub-pixel by an insulating layer (not shown).
  • an insulating layer not shown.
  • the electron transport layer 5 and the cathode 7 are not separated by the insulating layer but are formed in common. Note that the invention is not necessarily limited thereto, and the electron transport layer 5 and the cathode 7 may be separated for each sub-pixel.
  • the anode 2 and the cathode 7 include a conductive material, and are electrically connected to the hole transport layer 3 and the electron transport layer 5, respectively.
  • One of the anode 2 and the cathode 7 is a transparent electrode.
  • the cathode 7 is a transparent electrode, for example, ITO, IZO, AZO, GZO or the like is used.
  • the cathode 7 can be formed by, for example, a sputtering method.
  • Either the anode 2 or the cathode 7 may include a metal material in one embodiment of the present invention.
  • anode 2 contains a metal material.
  • As the metal material Al, Cu, Au, Ag, or the like having high visible light reflectance is preferable.
  • the quantum dot light emitting element 1A can extract light from the electrode side provided with the transparent electrode. Therefore, in the present embodiment, the quantum dot light emitting device 1A can extract light from the cathode 7 side.
  • the hole transport layer 3 transports holes from the anode 2 to the quantum dot light emitting layer 4.
  • the hole transport layer 3 is made of an inorganic material, for example, NiO.
  • the hole transport layer 3 may be formed by a sputtering method.
  • the electron transport layer 5 transports electrons from the cathode 7 to the quantum dot light emitting layer 4.
  • the electron transport layer 5 includes, for example, particles of a metal oxide such as ZnO, TiO 2 , MgZnO, Ta 2 O 3 , or SrTiO 3 . However, a plurality of these materials may be included.
  • the electron transport layer 5 includes metal oxide particles common to the red, green, and blue sub-pixels. However, the present invention is not limited to this, and the electron transport layer 5 may include different types of metal oxide particles for each sub-pixel.
  • the electron transport layer 5 is formed by applying colloid particles made of the above-described electron transport layer material. The details of the electron transport layer 5 will be described later.
  • the quantum dot light emitting layer 4 emits light due to recombination of holes transported from the anode 2 and electrons transported from the cathode 7.
  • quantum dots QD: semiconductor nanoparticles
  • the quantum dot light emitting layer 4 includes a red subpixel with a red quantum dot, a green subpixel with a green quantum dot, and a blue subpixel with a blue quantum dot. That is, the quantum dot light emitting layer 4 includes a plurality of types of quantum dots, and the same sub-pixel includes the same type of quantum dots.
  • the quantum dot light emitting layer 4 can emit red light, green light, and blue light.
  • the red light is light having a light emission center wavelength in a wavelength band of more than 600 nm and not more than 780 nm.
  • the green light is light having a light emission center wavelength in a wavelength band of more than 500 nm and not more than 600 nm.
  • the blue light is light having a light emission center wavelength in a wavelength band of 400 nm or more and 500 nm or less.
  • the plurality of types of quantum dots are a combination of a red quantum dot, a green quantum dot, and a blue quantum dot, but need not necessarily be this combination.
  • Red quantum dots, green quantum dots, and blue quantum dots are, for example, Cd, S, Te, Se, Zn, In, N, P, As, Sb, Al, Ga, Pb, Si, Ge, Mg, and these. It may include one or more semiconductor materials selected from the group including compounds.
  • the quantum dot light-emitting layer 4 is separately applied to each sub-pixel by a spin coating method, an inkjet method, or the like using a dispersion liquid in which the quantum dots are dispersed in a solvent such as hexane, toluene, octadecane, cyclododecene, or phenylcyclohexane. Is performed, a film can be formed.
  • the dispersion may be mixed with a dispersion material such as thiol or amine.
  • the electron transport layer 5 is made of a non-uniform metal oxide composed of nanoparticles, when the upper layer cathode 7 is applied, the lower layer quantum dot light emitting layer 4 may be thermally damaged.
  • the electron transport layer 5 is a metal oxide nanoparticle 5a and a binder for dispersing the metal oxide nanoparticle 5a.
  • a conductive resin 5b the conductivity means a property of conducting electricity. This is mainly performed by the movement of electrons. As a result, whether a property of a certain substance is easy to conduct electricity (conductive) or difficult to conduct electricity (non-conductive) is determined by whether electrons easily move through a certain substance.
  • one of the indexes of the conductive resin 5b is a volume solid resistance value, and it is preferable that the value is 1.0 [ ⁇ cm] or less. This is because electrons can sufficiently flow when the resistance is 1.0 [ ⁇ cm] or less.
  • the electron transport layer 5 of the present embodiment contains a resin in which the metal oxide nanoparticles 5a are dispersed. Therefore, when forming the electron transport layer 5, for example, first, a dissolved resin is dispersed in a solvent. Next, the metal oxide nanoparticles 5a are dispersed in the solvent in which the resin is dispersed, and if necessary, a solvent is added in accordance with the viscosity and the solid content concentration to form a solution. Thereby, the dispersibility of the metal oxide nanoparticles 5a can be improved.
  • the flatness of the electron transport layer 5 can be improved by, for example, applying a spinner using a solution composed of the metal oxide nanoparticles 5a, a resin, and a solvent.
  • the dispersibility is high, the distance between the metal oxide nanoparticles 5a becomes uniform, and the resin enters between the metal oxide nanoparticles 5a, so that the electron transport layer 5 becomes dense and the thermal barrier The effect is higher.
  • the resin reduces the thermal damage to the quantum dot light emitting layer 4 existing below the electron transport layer 5. . Therefore, the quantum dot light emitting layer 4 is hardly damaged by heat.
  • the resin is made of the conductive resin 5b.
  • the electrical compatibility of the interface between the quantum dot light emitting layer 4 and the electron transport layer 5 is improved. That is, the conductive resin 5b electrically bridges the movement of electrons from the cathode 7 to the quantum dot light emitting layer 4 via the electron transport layer 5. That is, in the present embodiment, since electrons are supplemented from the conductive resin 5b, the electron transport efficiency of the electron transport layer 5 does not decrease. Further, since the flatness of the electron transport layer 5 is enhanced, the uniform transportability of electrons is enhanced.
  • the conductive resin 5b of the present embodiment has a light transmitting property. Thus, when light is emitted from the quantum dot light emitting layer 4 to the cathode 7 side, the light is not blocked by the conductive resin 5b.
  • the conductive resin 5b is made of Poly [(9,9-bis (3 ′-(N, N-dimethylamino) propyl) -2,7-fluorene) -alt-2,7- (9,9-dioctylfluorene)].
  • the conductive resin 5b having conductivity and translucency can be suitably provided.
  • the conductive resin 5b is not necessarily limited to this, and for example, Poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene], Poly [2-methoxy-5- (3 ′, 7 '-Dimethyloctyloxy) -1,4-phenylenevinylene], Poly (3-hexylthiophene-2,5-diyl), Poly [bis (3-dodecyl-2-thienyl) -2,2'-dithiophene -5,5'- diyl], Poly [2,5-bis (3-dodecylthiophen-2-yl) thieno [3,2-b] thiophene], Poly [2,5-bis (3-tetradecylthiophen-2-yl) thieno [3, 2-b] thiophene], Poly [2,5-bis (3-hexadecylthiophen-2-yl) thieno [3,2-b] thi
  • zinc oxide (ZnO) is used as the metal oxide.
  • Zinc oxide (ZnO) is inexpensive and easily available as a metal oxide.
  • the volume ratio (zinc oxide / conductive resin) between zinc oxide (ZnO) and conductive resin 5b is 60/40 or more and 95/5 or less. This makes it possible to prevent the electron transporting layer 5 from becoming too thick without lowering the electron transporting efficiency of the electron transporting layer 5 as shown in the examples described later.
  • the electron mobility of the metal oxide nanoparticles 5a is larger than that of the conductive resin 5b.
  • the electron transport efficiency of the electron transport layer 5 can be controlled by the metal oxide nanoparticles 5a that are the main substance.
  • the solvent used when mixing the metal oxide nanoparticles 5a and the conductive resin 5b is toluene, chlorobenzene, phenylcyclohexane, ethylene glycol monophenyl ether, isopropyl It is at least one selected from biphenyl and 1,1-bis (3,4-dimethylphenyl) ethane.
  • the metal oxide nanoparticles 5a and the conductive resin 5b can be diluted with the solvent, the metal oxide nanoparticles 5a and the conductive resin 5b can be efficiently dispersed and mixed.
  • the use of a solution facilitates coating.
  • these solvents are volatile and volatilize at room temperature or volatilize by heating on a hot plate, so that a solid film of the electron transport layer 5 can be easily formed.
  • the quantum dot light emitting layer 4 can emit red light, green light, and blue light. This makes it possible to emit so-called three primary colors.
  • the electron transport layer 5 for the quantum dot light emitting layers 4 for red light, green light, and blue light.
  • the electron transport layer 5 uses a common material regardless of the type of the sub-pixel. I have. Therefore, the configuration of the quantum dot light emitting element 1A can be simplified.
  • the electron transport layer 5 is a common layer. Thereby, the configuration of the electron transport layer 5 can be simplified.
  • the conductive resin 5b has a volume solid resistance of 1.0 [ ⁇ cm] or less. This allows electrons to flow sufficiently in the electron transport layer 5.
  • the electron transport layer 5 is a common layer. Thereby, the configuration of the electron transport layer 5 can be simplified.
  • the electron transport layer 5 is laminated on the quantum dot light emitting layer 4. Thereby, the material of the quantum dot light emitting layer 4 and the material of the electron transport layer 5 do not mix.
  • the quantum dot light emitting layer 4 is formed at 150 ° C. or lower. This prevents the material of the quantum dot light emitting layer 4 from being thermally damaged.
  • the electron transport layer 5 is coated by inkjet, whereby the inkjet coating can be applied over a narrower area with higher accuracy than spin coating or the like. Can be. Therefore, it is possible to form the electron transport layer 5 having high quality with respect to the film thickness and the like.
  • the present invention is not limited to the above embodiment, and various changes can be made within the scope of the present invention.
  • the electron injection layer is not provided.
  • the present invention is not limited to this, and an electron injection layer can be provided.
  • FIG. 2 is a cross-sectional view showing a configuration of a quantum dot light emitting device 1B including an electron injection layer.
  • an electron injection layer (EIL :: Electron @ Injection @ Layer) 6 can be included between the cathode 7 and the electron transport layer 5.
  • EIL Electron @ Injection @ Layer
  • the electron injection layer 6 can include the conductive resin 5b.
  • the electron transport layer 5 include the conductive resin 5b, but also the electron injection layer 6 includes the conductive resin 5b, so that the electron injection layer 6 can be formed without lowering the electron transport efficiency. 6 can provide a quantum dot light emitting device 1B capable of improving the flatness and uniform electron transportability.
  • the conductive resin 5b included in the electron injection layer 6 can be made of the same material as the conductive resin 5b included in the electron transport layer 5, but is not necessarily limited thereto, and different materials may be used. .
  • FIG. 3 is a diagram illustrating an example of the quantum dot light emitting device 1A.
  • zinc oxide (ZnO) nanoparticles were used as metal oxide nanoparticles
  • Poly [(9,9-bis (3 ′-(N, N-dimethylamino) propyl)-) was used as the conductive resin 5b.
  • Chlorobenzene was used as a solvent.
  • the volume ratio of zinc oxide (ZnO) to the conductive resin 5b was 80/20 (Example 1) and 90/10 (Example 2). , 95/5 (Example 3) and 70/30 (Example 4), it was confirmed how the film thickness and the external quantum efficiency change. In addition, qualitative judgment was made on film thickness controllability.
  • the film thickness was 60.8 mm and the external quantum efficiency was 5.2%, whereas In the case of Examples 1 to 4 in which the ratio (zinc oxide / conductive resin) is 60/40 or more and 95/5 or less, the external quantum efficiency is 5.4% to 6.8%, The external quantum efficiency was improved from 5.2% in the conventional example. Also, the film thickness was 60.1 mm to 62.0 mm, which was not much different from the target film thickness, and the film thickness controllability was good.
  • the volume ratio (zinc oxide / conductive resin) between zinc oxide (ZnO) and conductive resin 5b in the electron transport layer 5 is 60/40 or more. , And 95/5 or less.
  • the light-emitting device is a light-emitting device including an anode, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer, and a cathode in this order, wherein the electron transport layer includes a particulate metal oxide; And a conductive resin that disperses the metal oxide.
  • the conductive resin may have a light-transmitting property.
  • the conductive resin is Poly [(9,9-bis (3 ′-(N, N-dimethylamino) propyl) -2,7-fluorene) -alt-2,7 -(9,9-dioctylfluorene)].
  • the metal oxide is zinc oxide
  • the volume ratio between the zinc oxide and the conductive resin is 60/40 or more, and 95 / 5 or less.
  • the electron mobility of the metal oxide may be higher than the electron mobility of the conductive resin.
  • the solvent used when mixing the metal oxide and the conductive resin is toluene, chlorobenzene, phenylcyclohexane, ethylene glycol monophenyl ether, isopropyl biphenyl, 1,1-bis It can be at least one selected from (3,4-dimethylphenyl) ethane.
  • the light emitting device may include an electron injection layer between the electron transport layer and the cathode.
  • the electron injection layer may include the conductive resin.
  • the quantum dot light emitting layer may include a quantum dot light emitting layer for each color that emits red light, green light and blue light.
  • the electron transport layer may be made of a common material for the red, green, and blue light quantum dot light emitting layers.
  • the electron transport layer may be a common layer.
  • the conductive resin may have a volume solid resistance of 1.0 [ ⁇ cm] or less.
  • the method for manufacturing a light emitting device according to aspect 13 of the present invention is a method for manufacturing a light emitting device for manufacturing the light emitting device, wherein after the quantum dot light emitting layer is cured, an electron transport layer is formed on the quantum dot light emitting layer. It is characterized by being laminated.
  • the quantum dot light emitting layer may be formed at 150 ° C. or lower.
  • the electron transport layer may be coated by inkjet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

電子輸送層における電子の輸送能力を低下させることなく、電子輸送層の平坦性及び電子の均一輸送性を向上し得る発光素子、及び発光素子の製造方法を提供する。量子ドット発光素子(1A)は、陽極(2)と正孔輸送層(3)と量子ドット発光層(4)と電子輸送層(5)と陰極(7)とをこの順に備える。電子輸送層(5)は、酸化金属ナノ粒子(5a)と、酸化金属ナノ粒子5aを分散する導電性樹脂(5b)とを含んでいる。

Description

発光素子、及び発光素子の製造方法
 本発明は、量子ドット発光層と電子輸送層と陰極とをこの順に備えた発光素子及び発光素子の製造方法に関するものである。
 量子ドット発光ダイオード(QLED)を備えた発光素子100では、図4の(a)に示すように、量子ドット(QD)発光層104と陰極(カソード電極)107との間に電子輸送層105(ETL:Electron Transport Layer)を備えている。この電子輸送層105は、図4の(b)に示すように、構成材料である酸化亜鉛(ZnO)ナノ粒子(以下、「ZnO NP」ともいう。)を溶媒に分散した溶液を、スピナー塗布により形成している。
 しかしながら、電子輸送層105をこのような溶液を用いてスピナー塗布により形成すると、電子輸送層105中のZnO NPの分散性が低く、それに伴い、電子輸送層105の平坦性が悪くなる。その結果、電子輸送層105の電子移動に偏りが見られ、均一発光しない可能性が高い。また、電子輸送層105が不均一となるため、上層である陰極(カソード電極)107の材料を塗布したときに、下層である量子ドット発光層104に熱的ダメージを与える可能性がある。
 そこで、例えば特許文献1に開示された有機エレクトロルミネッセンス素子では、透明樹脂基板と発光層との間に無機機能層を有すると共に、透明樹脂基板と無機機能層との間に、金属酸化物ナノ粒子を活性線硬化樹脂に分散させた金属酸化物ナノ粒子含有層を有している。
 この構成により、金属酸化物ナノ粒子含有層と透明樹脂基板との間、及び金属酸化物ナノ粒子含有層と無機機能層との間に十分な密着性が得られるとしている。
日本国公開特許公報「特開2015-099804号」
 しかしながら、上記従来の特許文献1に開示された有機エレクトロルミネッセンス素子の金属酸化物ナノ粒子含有層は、無機機能層としてのガスバリア層と透明樹脂基板との間に設けられた層であり、金属酸化物ナノ粒子含有層と透明樹脂基板との間、及び金属酸化物ナノ粒子含有層と無機機能層との間に十分な密着性、及び有機エレクトロルミネッセンス素子の折り曲げ耐性を確保することを目的とするものである。
 このため、量子ドット発光ダイオード(QLED)を備えた発光素子の電子輸送層に、前記金属酸化物ナノ粒子と樹脂との組み合わせを適用できるとは限らないという問題を有している。
 すなわち、電子輸送層の場合には、電子輸送層の電子輸送効率を低下させるものであっては好ましくない。また、電子輸送層の場合には、電子輸送層の平坦性及び電子の均一輸送性が求められる。
 本発明は、前記従来の問題点に鑑みなされたものであって、その目的は、電子輸送層における電子輸送効率を低下させることなく、電子輸送層の平坦性及び電子の均一輸送性を向上し得る発光素子、及び発光素子の製造方法を提供することにある。
 本発明の一態様における発光素子は、前記の課題を解決するために、陽極と正孔輸送層と量子ドット発光層と電子輸送層と陰極とをこの順に備えた発光素子において、前記電子輸送層は、粒子状の酸化金属と、該酸化金属を分散する導電性樹脂とを含んでいることを特徴としている。
 本発明の一態様における発光素子の製造方法は、前記の課題を解決するために、前記発光素子を製造する発光素子の製造方法であって、量子ドット発光層が硬化した後、該量子ドット発光層の上に電子輸送層を積層することを特徴としている。
 本発明の一態様によれば、電子輸送層における電子の輸送能力を低下させることなく、電子輸送層の平坦性及び電子の均一輸送性を向上し得る発光素子、及び発光素子の製造方法を提供するという効果を奏する。
(a)は本発明の実施形態1における量子ドット発光素子の構成を示す断面図であり、(b)は前記量子ドット発光素子の発光層及び電子輸送層の詳細構造を示す断面図である。 本発明における量子ドット発光素子の変形例の構成を示す断面図である。 前記量子ドット発光素子の実施例を示す図である。 (a)は従来における量子ドット発光素子の構成を示す断面図であり、(b)は前記量子ドット発光素子の発光層及び電子輸送層の詳細構造を示す断面図である。
 本発明の一実施形態について図1~図3に基づいて説明すれば、以下のとおりである。
 本実施の形態の発光素子は、量子ドット発光ダイオード(QLED)を含む量子ドット発光素子について適用される。延いては、本実施の形態の量子ドット発光素子とアレイ基板とを備えた発光デバイスに適用される。
 (量子ドット発光素子の構成)
 最初に、本発明の実施の形態における量子ドット発光ダイオード(QLED)を含む量子ドット発光素子1Aの構成について、図1の(a)(b)に基づいて説明する。図1の(a)は、本実施の形態における量子ドット発光素子1Aの構成を示す断面図である。図1の(b)は、量子ドット発光素子1Aの量子ドット発光層4及び電子輸送層5の詳細構造を示す断面図である。
 本実施の形態における量子ドット発光素子1Aは、図1の(a)に示すように、陽極(アノード電極)2上に、正孔輸送層(HTL:Hole Transport Layer)3と、量子ドット発光層4と、電子輸送層(ETL:Electron Transport Layer)5と、陰極(カソード電極)6とをこの順に備えている。図示しないアレイ基板の上層に形成された量子ドット発光素子1Aの陽極2は、アレイ基板のTFTと電気的に接続されている。
 ここで、本実施の形態においては、陽極2、正孔輸送層3及び量子ドット発光層4のそれぞれは、図示しない絶縁層によって、例えば赤色サブ画素、緑色サブ画素及び青色サブ画素に分離されている。ただし、電子輸送層5と陰極7とは、絶縁層によっては分離されず、共通して形成されている。尚、必ずしもこれに限らず、電子輸送層5及び陰極7においても、サブ画素毎に分離されていてもよい。
 陽極2及び陰極7は導電性材料を含み、それぞれ、正孔輸送層3及び電子輸送層5と電気的に接続されている。陽極2と陰極7とのいずれか一方は、透明電極である。本実施の形態においては、陰極7が透明電極であり、例えば、ITO、IZO、AZO又はGZO等が用いられている。陰極7は、例えばスパッタ法等によって成膜することも可能である。陽極2又は陰極7のいずれか一方は、本発明の一態様においては、金属材料を含んでいてもよい。本実施の形態においては、陽極2は金属材料を含む。金属材料としては、可視光の反射率の高いAl、Cu、Au、又はAg等が好ましい。量子ドット発光素子1Aは、透明電極を備えた電極側から、光を取り出すことが可能である。したがって、本実施の形態において、量子ドット発光素子1Aは、陰極7側から光を取り出すことが可能である。
 正孔輸送層3は、陽極2からの正孔を量子ドット発光層4へと輸送する。正孔輸送層3は、無機材料からなり、例えばNiOからなっている。正孔輸送層3は、スパッタ法によって、成膜されていてもよい。
 電子輸送層5は、陰極7からの電子を量子ドット発光層4へと輸送する。電子輸送層5は、例えば、ZnO、TiO、MgZnO、Ta、又はSrTiO等の酸化金属の粒子を含んでいる。ただし、これらの内の複数の材料を含んでいてもよい。また、本実施の形態では、前述したように、電子輸送層5は、赤色サブ画素、緑色サブ画素及び青色サブ画素において、共通の酸化金属の粒子を含んでいる。ただし、必ずしもこれに限らず、電子輸送層5は、サブ画素毎に互いに種類の異なる酸化金属の粒子を含んでいてもよい。
 また、電子輸送層5は、前記電子輸送層材料からなるコロイド粒子を塗布することによって、成膜されている。電子輸送層5の詳細については、後述する。
 量子ドット発光層4は、陽極2から輸送された正孔と、陰極7から輸送された電子との再結合が発生することにより光を発する。本実施の形態においては、発光材料として、各色の量子ドット(QD:半導体ナノ粒子)を、各サブ画素に備えている。具体的には、量子ドット発光層4は、赤色サブ画素に赤色量子ドットを備え、緑色サブ画素に緑色量子ドットを備え、さらに、青色サブ画素に青色量子ドットを備えている。すなわち、量子ドット発光層4は、複数種の量子ドットを備え、同一のサブ画素においては、同種の量子ドットを備えている。
 これにより、本実施の形態の量子ドット発光素子1Aでは、量子ドット発光層4は、赤色光、緑色光及び青色光を発光するとすることができる。ここで、赤色光とは、600nmを越え780nm以下の波長帯域に発光中心波長を有する光のことである。また、緑色光とは、500nmを越え600nm以下の波長帯域に発光中心波長を有する光のことである。さらに、青色光とは、400nm以上500nm以下の波長帯域に発光中心波長を有する光である。尚、本実施の形態では、複数種の量子ドットは、赤色量子ドット・緑色量子ドット・青色量子ドットの組み合わせであるが、必ずしもこの組み合わせでなくてもよい。
 赤色量子ドット・緑色量子ドット・青色量子ドットは、例えば、Cd、S、Te、Se、Zn、In、N、P、As、Sb、Al、Ga、Pb、Si、Ge、Mg、及びこれらの化合物を含む群から選択される1又は複数の半導体材料を含んでもよい。
 量子ドット発光層4は、ヘキサン、トルエン、オクタデカン、シクロドデセン、又は、フェニルシクロヘキサン等の溶媒に量子ドットを分散させた分散液を用いて、スピンコート法又はインクジェット法等によって、サブ画素毎の塗り分けを行うことにより、成膜することができる。分散液にはチオール又はアミン等の分散材料を混合してもよい。
 (電子輸送層の詳細構成)
 前記構成の量子ドット発光素子1Aの電子輸送層5を形成する場合に、従来では、構成材料であるナノ粒子からなる例えば酸化亜鉛(ZnO)等の酸化金属を溶媒に分散した溶液を、スピナー塗布により酸化亜鉛(ZnO)ナノ粒子の層を形成していた。しかしながら、このような溶液及び手順で電子輸送層5を形成すると、電子輸送層5のナノ粒子からなる例えば酸化亜鉛(ZnO)等の酸化金属の分散性が低い。この結果、電子輸送層5の平坦性が低いため、電子輸送層5の電子移動に偏りが見られ、均一発光しない可能性が高い。また、電子輸送層5がナノ粒子からなる酸化金属が不均一のため、上層の陰極7を塗布したときに、下層である量子ドット発光層4に熱的ダメージを与える可能性がある。
 この原因は、例えば酸化亜鉛(ZnO)等の酸化金属の粒子が小さく、また、それに適した溶媒が見つけ難く、この結果、分散性が低いためである。また、ナノ粒子からなる酸化亜鉛(ZnO)溶液を用いてスピナー塗布するため、電子輸送層5の成膜が安定せず、平坦性が低いことにもよっている。さらに、塗布状態によっては、ナノ粒子からなる酸化亜鉛(ZnO)同士の間隔が広がる。この結果、熱的バリア効果が低く、陰極7の形成時に、電子輸送層5の下層の量子ドット発光層4に熱的ダメージを与えている可能性がある。
 そこで、本実施の形態の量子ドット発光素子1Aでは、図1の(b)に示すように、電子輸送層5は、酸化金属ナノ粒子5aと、この酸化金属ナノ粒子5aを分散するバインダーである導電性樹脂5bとを含んでいる。こで、導電性とは、電気を通す性質のことをいい。主に電子が移動することによって行われる。この結果、ある物質の性質が電気を通し易いか(導電性)又は電気を通し難いか(非導電性)は、ある物質中を電子が移動し易いか否かによって決定される。導電性樹脂5bの指標の一つとして、特には、体積固体抵抗値があり、その値が1.0[Ωcm]以下であることが好ましい。1.0[Ωcm]以下であれば、十分に電子を流すことができるためである。
 前述したように、本実施の形態の電子輸送層5は、酸化金属ナノ粒子5aを分散する樹脂を含んでいる。このため、電子輸送層5を形成する場合には、例えば、まず、溶媒に、溶解した樹脂を分散させる。次いで、樹脂を分散した溶媒に、酸化金属ナノ粒子5aを分散させ、さらに、必要であれば、粘度や固形分濃度に合わせて溶媒を追加して、溶液とする。これにより、酸化金属ナノ粒子5aの分散性を向上することができる。
 そして、酸化金属ナノ粒子5a、樹脂及び溶媒で構成する溶液を用いて、例えばスピナー塗布することによって、電子輸送層5の平坦性を向上させることができる。
 さらに、分散性が高いことから、酸化金属ナノ粒子5a同士の距離が均一になると供に、酸化金属ナノ粒子5aの間に樹脂が入り込むことにより、電子輸送層5が密になり、熱的バリア効果が高くなる。この結果、電子輸送層5上に陰極7をスパッタ又は蒸着等の手法にて積層する場合、電子輸送層5の下層に存在する量子ドット発光層4に対して、熱によるダメージを樹脂が緩和する。したがって、量子ドット発光層4は熱によるダメージを受け難くなる。
 ここで、本実施の形態の量子ドット発光素子1Aにおいては、樹脂は導電性樹脂5bからなっている。このため、量子ドット発光層4と電子輸送層5との界面の電気的な相性がよくなる。すなわち、導電性樹脂5bが、陰極7から電子輸送層5を介した量子ドット発光層4への電子の移動の電気的な橋渡しをする。つまり、本実施の形態においては、導電性樹脂5bから電子が補われるので、電子輸送層5の電子輸送効率を低下させることがない。また、電子輸送層5の平坦性が高まるので、電子の均一輸送性が高まる。
 したがって、本実施の形態では、電子輸送層5における電子輸送効率を低下させることなく、電子輸送層5の平坦性及び電子の均一輸送性を向上し得る量子ドット発光素子1Aを提供することができる。
 また、本実施の形態の導電性樹脂5bは、透光性を有している。これにより、量子ドット発光層4から陰極7側へ光を出射する場合に、導電性樹脂5bによって光が遮られるということがない。
 ここで、本実施の形態では、導電性樹脂5bは、Poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]であるとすることが可能である。これにより、導電性を有し、かつ透光性を有する導電性樹脂5bを好適に提供することができる。尚、導電性樹脂5bは、必ずしもこれに限らず、例えば、Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]、Poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene]、Poly(3-hexylthiophene-2,5-diyl)、Poly[bis(3-dodecyl-2-thienyl)-2,2'-dithiophene -5,5'-diyl]、Poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene]、Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene]、Poly[2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene]等を用いることができる。
 また、本実施の形態の量子ドット発光素子1Aでは、酸化金属として、酸化亜鉛(ZnO)を用いている。酸化亜鉛(ZnO)は、酸化金属として、安価でかつ容易に入手できる。また、本実施の形態では、酸化亜鉛(ZnO)と導電性樹脂5bとの体積比(酸化亜鉛/導電性樹脂)は、60/40以上、かつ95/5以下としている。これにより、後述する実施例に示すように、電子輸送層5の電子輸送効率を低下させることなく、かつ電子輸送層5の膜厚があまり厚くならないようにすることができる。
 また、本実施の形態における量子ドット発光素子1Aでは、酸化金属ナノ粒子5aの電子移動度は、導電性樹脂5bの電子移動度よりも大きい。これにより、電子輸送層5の電子輸送効率を、主要物質である酸化金属ナノ粒子5aにて制御することが可能となる。
 また、本実施の形態における量子ドット発光素子1Aでは、酸化金属ナノ粒子5aと導電性樹脂5bとを混合するときに使用される溶剤は、トルエン、クロロベンゼン、フェニルシクロヘキサン、エチレングリコールモノフェニルエーテル、イソプロピルビフェニル、1,1-ビス(3,4-ジメチルフェニル)エタンから選ばれる少なくとも一つである。これにより、酸化金属ナノ粒子5a及び導電性樹脂5bを溶剤で希釈することができるので、酸化金属ナノ粒子5aと導電性樹脂5bとを効率よく分散させて混合することができる。また、溶液とすることによって、塗装が容易となる。また、これらの溶剤は、揮発性であり、常温で揮発したり、ホットプレート加熱により揮発したりするため、電子輸送層5の固体膜を容易に形成することができる。
 また、本実施の形態における量子ドット発光素子1Aでは、量子ドット発光層4は、赤色光、緑色光及び青色光を発光するとすることができる。これにより、所謂、色の3原色を発光することが可能となる。
 また、本実施の形態における量子ドット発光素子1Aでは、赤色光、緑色光及び青色光の各色量子ドット発光層4に対して、電子輸送層5は共通の材料が用いられている。これにより、量子ドット発光層4が、サブ画素毎の赤色光、緑色光及び青色光を発光する場合においても、電子輸送層5は、サブ画素の種類を問わず、共通の材料が用いられている。このため、量子ドット発光素子1Aの構成を簡略化することができる。
 また、本実施の形態における量子ドット発光素子1Aでは、電子輸送層5は、共通層である。これにより、電子輸送層5の構成を簡略化することができる。
 また、本実施の形態における量子ドット発光素子1Aでは、導電性樹脂5bの体積固体抵抗値は、1.0[Ωcm]以下である。これにより、電子輸送層5において、十分に電子を流すことができる。
 また、本実施の形態における量子ドット発光素子1Aでは、電子輸送層5は、共通層である。これにより、電子輸送層5の構成を簡略化することができる。
 また、本実施の形態における量子ドット発光素子1Aの製造方法は、量子ドット発光層4が硬化した後、量子ドット発光層4の上に電子輸送層5を積層する。これにより、量子ドット発光層4の材料と電子輸送層5の材料とが混じり合うことがなくなる。
 また、本実施の形態における量子ドット発光素子1Aの製造方法では、量子ドット発光層4を150℃以下で形成する。これにより、量子ドット発光層4の材料が、熱的にダメージを受けることがなくなる。
 また、本実施の形態における量子ドット発光素子1Aの製造方法では、電子輸送層5をインクジェットで塗装する、これにより、インクジェット塗装は、スピンコート塗装等に比べて、狭い範囲を精度良く塗装することができる。このため、膜厚等に関して品質の高い電子輸送層5を形成することができる。
 尚、本発明は、上記の実施の形態に限定されるものではなく、本発明の範囲内で種々の変更が可能である。例えば、上記実施の形態では、電子注入層を設けていないが、特にこれに限定するものではなく、電子注入層を設けることも可能である。
 図2は、電子注入層を備えた量子ドット発光素子1Bの構成を示す断面図である。図2に示すように、陰極7と電子輸送層5との間に、電子注入層(EIL::Electron Injection Layer)6を含んでいるとすることができる。これにより、陰極7から電子輸送層5を介して量子ドット発光層4に電子を輸送する場合に、陰極7から電子輸送層5に対して電子注入層6を介して電子が移動される。このため、電子が移動し易くなる。
 ここで、電子注入層6を備えた量子ドット発光素子1Bにおいても、電子注入層6は、導電性樹脂5bを含むとすることができる。このように、電子輸送層5において導電性樹脂5bを含むだけでなく、電子注入層6も導電性樹脂5bを含むことにより、電子注入層6における電子輸送効率を低下させることなく、電子注入層6の平坦性及び電子の均一輸送性を向上し得る量子ドット発光素子1Bを提供することができる。
 尚、電子注入層6に含まれる導電性樹脂5bは、電子輸送層5に含まれる導電性樹脂5bと同じ材料を用いることができるが、必ずしもこれに限らず、互いに異なる材料を用いてもよい。
 本実施の形態の量子ドット発光素子1Aについて、電子輸送層5が酸化金属ナノ粒子5aと導電性樹脂5bとを含む場合の効果の把握のため、実証実験を行ったので、図3に基づいて、以下に説明する。図3は、量子ドット発光素子1Aの実施例を示す図である。
 実証実験においては、酸化金属ナノ粒子として、酸化亜鉛(ZnO)のナノ粒子を用いると共に、導電性樹脂5bとしてPoly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]を使用した。また、溶剤として、クロロベンゼンを使用した。
 そして、図3に示すように、酸化亜鉛(ZnO)と導電性樹脂5bとの体積比(酸化亜鉛/導電性樹脂)を、80/20(実施例1)、90/10(実施例2)、95/5(実施例3)、70/30(実施例4)とした場合に、膜厚、外部量子効率がどのように変化するかを確認した。また、膜厚制御性について、定性判断を行った。
 その結果、図3に示すように、従来例である酸化亜鉛(ZnO)単独の場合は、膜厚が60.8mmであり、外部量子効率が5.2%であったのに対して、体積比(酸化亜鉛/導電性樹脂)が60/40以上、かつ95/5以下である場合の実施例1~4の場合には、外部量子効率が5.4%~6.8%であり、従来例の外部量子効率5.2%よりも向上した。また、膜厚についても60.1mm~62.0mmであり、狙いの膜厚に対して大差なく、膜厚制御性は良好であった。
 一方、体積比(酸化亜鉛/導電性樹脂)が50/50(比較例1)では、外部量子効率が4.7%であり、40/60(比較例2)では、外部量子効率が4.4%であった。この結果、比較例1、2では、外部量子効率は、従来例の外部量子効率5.2%よりも低下した。また、膜厚についても67.0mm(比較例1)、69.2mm(比較例2)であり、狙いの膜厚よりも大きくなり、好ましくないことが判明した。このように、酸化亜鉛に比べて導電性樹脂5bの体積比が50/50以下になると、狙った膜厚(60nm)よりも厚くなり、膜厚制御性が低くなると予測される。
 この結果、本実施の形態の量子ドット発光素子1A・1Bでは、電子輸送層5における酸化亜鉛(ZnO)と導電性樹脂5bとの体積比(酸化亜鉛/導電性樹脂)は、60/40以上、かつ95/5以下であるとすることが好ましいことが分かった。
 〔まとめ〕
 本発明の態様1における発光素子は、陽極と正孔輸送層と量子ドット発光層と電子輸送層と陰極とをこの順に備えた発光素子において、前記電子輸送層は、粒子状の酸化金属と、該酸化金属を分散する導電性樹脂とを含んでいることを特徴としている。
 本発明の態様2における発光素子では、前記導電性樹脂は、透光性を有しているとすることができる。
 本発明の態様3における発光素子では、前記導電性樹脂は、Poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]であるとすることができる。
 本発明の態様4における発光素子では、前記酸化金属は、酸化亜鉛であり、かつ前記酸化亜鉛と前記導電性樹脂との体積比(酸化亜鉛/導電性樹脂)は、60/40以上、かつ95/5以下であるとすることができる。
 本発明の態様5における発光素子では、前記酸化金属の電子移動度は、導電性樹脂の電子移動度よりも大きいとすることができる。
 本発明の態様6における発光素子では、前記酸化金属と導電性樹脂とを混合するときに使用される溶剤は、トルエン、クロロベンゼン、フェニルシクロヘキサン、エチレングリコールモノフェニルエーテル、イソプロピルビフェニル、1,1-ビス(3,4-ジメチルフェニル)エタンから選ばれる少なくとも一つであるとすることができる。
 本発明の態様7における発光素子では、前記電子輸送層と前記陰極との間に、電子注入層を含むとすることができる。
 本発明の態様8における発光素子では、前記電子注入層は、前記導電性樹脂を含むとすることができる。
 本発明の態様9における発光素子では、前記量子ドット発光層は、赤色光、緑色光及び青色光を発光する各色量子ドット発光層を含むとすることができる。
 本発明の態様10における発光素子では、前記赤色光、緑色光及び青色光の各色量子ドット発光層に対して、前記電子輸送層は共通の材料が用いられているとすることができる。
 本発明の態様11における発光素子では、前記電子輸送層は、共通層であるとすることができる。
 本発明の態様12における発光素子では、前記導電性樹脂の体積固体抵抗値は、1.0[Ωcm]以下であるとすることができる。
 本発明の態様13における発光素子の製造方法は、前記発光素子を製造する発光素子の製造方法であって、前記量子ドット発光層が硬化した後、該量子ドット発光層の上に電子輸送層を積層することを特徴としている。
 本発明の態様14における発光素子の製造方法では、前記量子ドット発光層を150℃以下で形成するとすることができる。
 本発明の態様15における発光素子の製造方法では、前記電子輸送層をインクジェットで塗装するとすることができる。
 尚、本発明の一態様は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の一態様における技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1    量子ドット発光素子
 2    陽極
 3    正孔輸送層
 4    量子ドット発光層
 5    電子輸送層
 5a   酸化金属ナノ粒子(粒子状の酸化金属)
 5b   導電性樹脂
 6    電子注入層
 7    陰極

Claims (15)

  1.  陽極と正孔輸送層と量子ドット発光層と電子輸送層と陰極とをこの順に備えた発光素子において、
     前記電子輸送層は、粒子状の酸化金属と、該酸化金属を分散する導電性樹脂とを含んでいることを特徴とする発光素子。
  2.  前記導電性樹脂は、透光性を有していることを特徴とする請求項1に記載の発光素子。
  3.  前記導電性樹脂は、Poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]であることを特徴とする請求項1又は2に記載の発光素子。
  4.  前記酸化金属は、酸化亜鉛であり、かつ前記酸化亜鉛と前記導電性樹脂との体積比(酸化亜鉛/導電性樹脂)は、60/40以上、かつ95/5以下であることを特徴とする請求項1~3のいずれか1項に記載の発光素子。
  5.  前記酸化金属の電子移動度は、導電性樹脂の電子移動度よりも大きいことを特徴とする請求項1~4のいずれか1項に記載の発光素子。
  6.  前記酸化金属と導電性樹脂とを混合するときに使用される溶剤は、トルエン、クロロベンゼン、フェニルシクロヘキサン、エチレングリコールモノフェニルエーテル、イソプロピルビフェニル、1,1-ビス(3,4-ジメチルフェニル)エタンから選ばれる少なくとも一つであることを特徴とする請求項1~5のいずれか1項に記載の発光素子。
  7.  前記電子輸送層と前記陰極との間に、電子注入層を含むことを特徴とする請求項1~6のいずれか1項に記載の発光素子。
  8.  前記電子注入層は、前記導電性樹脂を含むことを特徴とする請求項7に記載の発光素子。
  9.  前記量子ドット発光層は、赤色光、緑色光及び青色光を発光する各色量子ドット発光層を含むことを特徴とする請求項1~8のいずれか1項に記載の発光素子。
  10.  前記赤色光、緑色光及び青色光の各色量子ドット発光層に対して、前記電子輸送層は共通の材料が用いられていることを特徴とする請求項9に記載の発光素子。
  11.  前記電子輸送層は、共通層であることを特徴とする請求項10に記載の発光素子。
  12.  前記導電性樹脂の体積固体抵抗値は、1.0[Ωcm]以下であることを特徴とする請求項1~11のいずれか1項に記載の発光素子。
  13.  請求項1~12のいずれか1項に記載の発光素子を製造する発光素子の製造方法であって、
     量子ドット発光層が硬化した後、該量子ドット発光層の上に電子輸送層を積層することを特徴とする発光素子の製造方法。
  14.  前記量子ドット発光層を150℃以下で形成することを特徴とする請求項13に記載の発光素子の製造方法。
  15.  前記電子輸送層をインクジェットで塗装することを特徴とする請求項13又は14に記載の発光素子の製造方法。
PCT/JP2018/034484 2018-09-18 2018-09-18 発光素子、及び発光素子の製造方法 WO2020059024A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/277,269 US11778843B2 (en) 2018-09-18 2018-09-18 Light-emitting device and manufacturing method of light-emitting device
PCT/JP2018/034484 WO2020059024A1 (ja) 2018-09-18 2018-09-18 発光素子、及び発光素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/034484 WO2020059024A1 (ja) 2018-09-18 2018-09-18 発光素子、及び発光素子の製造方法

Publications (1)

Publication Number Publication Date
WO2020059024A1 true WO2020059024A1 (ja) 2020-03-26

Family

ID=69886936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034484 WO2020059024A1 (ja) 2018-09-18 2018-09-18 発光素子、及び発光素子の製造方法

Country Status (2)

Country Link
US (1) US11778843B2 (ja)
WO (1) WO2020059024A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111384307B (zh) * 2018-12-29 2021-04-09 Tcl科技集团股份有限公司 量子点发光二极管的制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055900A (ja) * 2008-08-27 2010-03-11 Sharp Corp エレクトロルミネセンス素子
US20110291071A1 (en) * 2010-05-25 2011-12-01 Young-Mi Kim Quantum dot light emitting diode device and display device therewith
CN102427113A (zh) * 2011-12-02 2012-04-25 华南理工大学 一种有机电致发光点阵显示屏基板结构及其制备方法
WO2012160714A1 (ja) * 2011-05-20 2012-11-29 国立大学法人山形大学 有機電子デバイス及びその製造方法
WO2012161179A1 (ja) * 2011-05-26 2012-11-29 株式会社 村田製作所 発光デバイス
JP2013056412A (ja) * 2011-09-06 2013-03-28 Samsung Electronics Co Ltd 量子ドット層製造方法及び量子ドット層を含む量子ドット光電子素子
KR20150107249A (ko) * 2014-03-13 2015-09-23 한국과학기술연구원 고분자 표면 개질층을 이용한 양자점 단일층 발광 다이오드
CN105140411A (zh) * 2015-08-17 2015-12-09 Tcl集团股份有限公司 不含ito的qled及其制备方法
CN105322098A (zh) * 2015-11-03 2016-02-10 Tcl集团股份有限公司 一种可提高电荷注入平衡的量子点发光二极管及制备方法
CN105355799A (zh) * 2015-10-12 2016-02-24 Tcl集团股份有限公司 一种量子点发光场效应晶体管及其制备方法
JP2016076484A (ja) * 2014-10-02 2016-05-12 三星電子株式会社Samsung Electronics Co.,Ltd. ストレッチャブル/フォールダブル光電子素子及びその製造方法、並びに該光電子素子を含む装置
JP2016534544A (ja) * 2013-05-27 2016-11-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 有機電子デバイスの電子注入層における使用のための改善された電子移動組成物
CN106129263A (zh) * 2016-07-22 2016-11-16 深圳市华星光电技术有限公司 Oled显示器件及其制作方法
KR20180060441A (ko) * 2016-11-29 2018-06-07 울산과학기술원 양자점 발광 다이오드, 및 상기 양자점 발광 다이오드의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994884B2 (ja) 2015-03-03 2016-09-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子および照明装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055900A (ja) * 2008-08-27 2010-03-11 Sharp Corp エレクトロルミネセンス素子
US20110291071A1 (en) * 2010-05-25 2011-12-01 Young-Mi Kim Quantum dot light emitting diode device and display device therewith
WO2012160714A1 (ja) * 2011-05-20 2012-11-29 国立大学法人山形大学 有機電子デバイス及びその製造方法
WO2012161179A1 (ja) * 2011-05-26 2012-11-29 株式会社 村田製作所 発光デバイス
JP2013056412A (ja) * 2011-09-06 2013-03-28 Samsung Electronics Co Ltd 量子ドット層製造方法及び量子ドット層を含む量子ドット光電子素子
CN102427113A (zh) * 2011-12-02 2012-04-25 华南理工大学 一种有机电致发光点阵显示屏基板结构及其制备方法
JP2016534544A (ja) * 2013-05-27 2016-11-04 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 有機電子デバイスの電子注入層における使用のための改善された電子移動組成物
KR20150107249A (ko) * 2014-03-13 2015-09-23 한국과학기술연구원 고분자 표면 개질층을 이용한 양자점 단일층 발광 다이오드
JP2016076484A (ja) * 2014-10-02 2016-05-12 三星電子株式会社Samsung Electronics Co.,Ltd. ストレッチャブル/フォールダブル光電子素子及びその製造方法、並びに該光電子素子を含む装置
CN105140411A (zh) * 2015-08-17 2015-12-09 Tcl集团股份有限公司 不含ito的qled及其制备方法
CN105355799A (zh) * 2015-10-12 2016-02-24 Tcl集团股份有限公司 一种量子点发光场效应晶体管及其制备方法
CN105322098A (zh) * 2015-11-03 2016-02-10 Tcl集团股份有限公司 一种可提高电荷注入平衡的量子点发光二极管及制备方法
CN106129263A (zh) * 2016-07-22 2016-11-16 深圳市华星光电技术有限公司 Oled显示器件及其制作方法
KR20180060441A (ko) * 2016-11-29 2018-06-07 울산과학기술원 양자점 발광 다이오드, 및 상기 양자점 발광 다이오드의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUN, JINYOUNG ET AL.: "Controlling charge balance using non-conjugated polymer interlayer in quantum dot light-emitting diodes", ORGANIC ELECTRONICS, vol. 50, 19 July 2017 (2017-07-19), pages 82 - 86, XP085198657, DOI: 10.1016/j.orgel.2017.07.028 *

Also Published As

Publication number Publication date
US20220037604A1 (en) 2022-02-03
US11778843B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
US8043793B2 (en) Method for manufacturing electroluminescence element
US11349094B2 (en) Organic light emitting diode and organic light emitting diode display device including the same
US20200058889A1 (en) Quantum dot light-emitting diode and preparation method therefor, and light-emitting module and display apparatus
US20160155970A1 (en) Vertical organic light-emitting transistor and organic led illumination apparatus having the same
CN102364716A (zh) 有机电致发光元件及其制造方法、光发射装置
JP2018129265A (ja) 有機el表示パネル、及び有機el表示パネルの製造方法
CN109935711A (zh) 发光二极管及其制备方法、显示面板
CN111903189B (zh) 发光元件以及发光元件的制造方法
JP5910496B2 (ja) 有機エレクトロルミネッセンス素子
CN102113412A (zh) 有机电致发光元件的制造方法、发光装置及显示装置
CN109244262B (zh) 使用有机发光器件的照明装置和用于制造照明装置的方法
WO2009084273A1 (ja) 有機エレクトロルミネッセンス素子
WO2021152791A1 (ja) 発光素子および表示装置
JP2005294072A (ja) 有機半導体素子
CN111564564A (zh) 一种电致发光器件及其制备方法、显示装置及照明装置
WO2020059024A1 (ja) 発光素子、及び発光素子の製造方法
CN113243054B (zh) 显示装置及其制造方法
CN109378409B (zh) 一种电致发光器件及其制造方法
JP6111707B2 (ja) 有機elデバイス
US20220359845A1 (en) Light-emitting element, light-emitting device, and method for manufacturing light-emitting element
US20240357848A1 (en) Quantum dot material, light-emitting device, display apparatus, and manufacturing method
WO2015029202A1 (ja) 有機発光素子
CN114039002A (zh) 电子传输墨水、电子传输薄膜、电致发光二极管及显示器件
WO2022239107A1 (ja) 発光素子、発光装置、および発光素子の製造方法
CN114430934A (zh) 发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP