WO2020055293A1 - Pacas9 nuclease - Google Patents
Pacas9 nuclease Download PDFInfo
- Publication number
- WO2020055293A1 WO2020055293A1 PCT/RU2019/050154 RU2019050154W WO2020055293A1 WO 2020055293 A1 WO2020055293 A1 WO 2020055293A1 RU 2019050154 W RU2019050154 W RU 2019050154W WO 2020055293 A1 WO2020055293 A1 WO 2020055293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nuclease
- pacas9
- nucleic acid
- sequence
- sequences
- Prior art date
Links
- 101710163270 Nuclease Proteins 0.000 title claims abstract description 79
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 48
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 47
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 47
- 239000013598 vector Substances 0.000 claims abstract description 33
- 239000013604 expression vector Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000003814 drug Substances 0.000 claims abstract description 13
- 230000002068 genetic effect Effects 0.000 claims abstract description 8
- 239000002773 nucleotide Substances 0.000 claims description 18
- 125000003729 nucleotide group Chemical group 0.000 claims description 17
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 11
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 10
- 229940124597 therapeutic agent Drugs 0.000 claims description 10
- 239000001963 growth medium Substances 0.000 claims description 4
- 230000001131 transforming effect Effects 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 2
- 239000002502 liposome Substances 0.000 abstract description 18
- 102000004190 Enzymes Human genes 0.000 abstract description 8
- 108090000790 Enzymes Proteins 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 69
- 108090000623 proteins and genes Proteins 0.000 description 36
- 108020004414 DNA Proteins 0.000 description 31
- 230000014509 gene expression Effects 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 21
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 9
- 239000003550 marker Substances 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 108091033409 CRISPR Proteins 0.000 description 7
- 108091028113 Trans-activating crRNA Proteins 0.000 description 7
- 239000003623 enhancer Substances 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 241000701022 Cytomegalovirus Species 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 210000000349 chromosome Anatomy 0.000 description 6
- 210000004962 mammalian cell Anatomy 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 208000009869 Neu-Laxova syndrome Diseases 0.000 description 5
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 108091033319 polynucleotide Proteins 0.000 description 5
- 102000040430 polynucleotide Human genes 0.000 description 5
- 239000002157 polynucleotide Substances 0.000 description 5
- 238000003259 recombinant expression Methods 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 230000014616 translation Effects 0.000 description 5
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 108091032955 Bacterial small RNA Proteins 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 241000203069 Archaea Species 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 102000014450 RNA Polymerase III Human genes 0.000 description 2
- 108010078067 RNA Polymerase III Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 210000005006 adaptive immune system Anatomy 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 210000003292 kidney cell Anatomy 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000002331 protein detection Methods 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000002195 soluble material Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000867607 Chlorocebus sabaeus Species 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 244000207740 Lemna minor Species 0.000 description 1
- 235000006439 Lemna minor Nutrition 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 101000800755 Naja oxiana Alpha-elapitoxin-Nno2a Proteins 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 241000208125 Nicotiana Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 235000001855 Portulaca oleracea Nutrition 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 102000005396 glutamine synthetase Human genes 0.000 description 1
- 108020002326 glutamine synthetase Proteins 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000030648 nucleus localization Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000014723 transformation of host cell by virus Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/007—Vectors comprising a special translation-regulating system cell or tissue specific
Definitions
- the present invention relates to the field of biotechnology, molecular biology and medicine, namely to a nuclease enzyme and the use of this nuclease enzyme. More specifically, the present invention relates to the PaCas9 nuclease enzyme.
- the invention also relates to a nucleic acid encoding a given nuclease, a genetic construct, an expression vector, a delivery vector that include a given nucleic acid, a liposome comprising a given nuclease or nucleic acid encoding a given nuclease, a method for producing a nuclease, delivery methods, and also a host cell that includes a nucleic acid encoding a given nuclease.
- CRISPR-Cas was first demonstrated that the adaptive immune system in many bacteria and most archaea (Barrangou et al., 2007, Science 315: 17091712, Brouns et al., 2008, Science 321: 960-964). So far, three types of CRISPR-Cas systems have been characterized based on functional and structural criteria, most of which use small RNA molecules as hydro-RNAs to direct DNA targets to complementary sequences (Makarova et al., 2011, Nat Rev Microbiol 9 : 467-477, Van der Oost et al., 2014, Nat Rev Microbiol 12: 479-492).
- Cas9 was used to edit the genomes of a number of eukaryotic cells (e.g., fish, plants, humans) (Charpentier and Doudna, 2013, Nature 495: 50-51).
- eukaryotic cells e.g., fish, plants, humans
- Cas9 was used to improve homologous recombination yields in bacteria by selecting targeted recombination events (Jiang et al., 2013, Nature Biotechnol 31: 233–239).
- a toxic fragment (directing construct) is subjected to joint transfection with a rescue fragment bearing the desired change (editing construct carrying a point mutation or deletion).
- the guide construct consists of Cas 9 in combination with the constructed CRISPR and antibiotic resistance marker, determining the site of the desired recombination on host chromosome; in the presence of an appropriate antibiotic, the integration of the guide construct into the host chromosome is selected.
- CRISPR-Cas mediated genome editing has been found to be a useful tool for genetic engineering. It has been established that CRISPR prokaryotic systems serve their hosts as adaptive immune systems (Jinek et al., 20T2, Science 337: 816-821) and can be used for fast and efficient genetic engineering (e.g., Mali et al., 2013, Nat Methods 10: 957-963), requiring only modification of the guide sequence to direct to sequences of interest.
- the present invention relates to PaCas9 nuclease with the amino acid sequence of SEQ ID NO: 2.
- the present invention relates to an isolated nucleic acid molecule that encodes PaCas9 nuclease, with the nucleotide sequence of SEQ ID NO: 1.
- the present invention relates to an expression vector comprising a nucleic acid with the nucleotide sequence of SEQ ID NO: 1.
- the expression vector is the genetic construct shown in FIG. 1, PpCas9-T2A-GFP-sgRNAl-MCS-sgRNA2-MCS.
- the present invention relates to a vector for delivering a therapeutic agent comprising a nucleic acid of the nucleotide sequence of SEQ ID NO: 1.
- the vector delivers a therapeutic agent to target cells or target tissues.
- the present invention relates to a liposome for delivering a therapeutic agent comprising PaCas9 nuclease with the amino acid sequence of SEQ ID NO: 2 or a nucleic acid with the nucleotide sequence of SEQ ID NO: 1.
- the liposome delivers a therapeutic agent to target cells or target tissues.
- the present invention relates to a method for delivering a therapeutic agent to a target cell or target tissue using the above vector or the above liposome.
- the above vector or the above liposome is introduced into the body of a mammal.
- the present invention relates to a method for producing a host cell for producing PaCas9 nuclease with the amino acid sequence of SEQ ID NO: 2, which comprises transforming a cell with any of the above vectors.
- the present invention relates to a method for producing PaCas9 nuclease, comprising culturing the aforementioned host cell in a culture medium under the conditions necessary to obtain said PaCas9 nuclease, optionally, followed by isolation and purification of the obtained PaCas9 nuclease.
- FIG. 1 The ring diagram of the plasmid PpCas9-T2A-GFP-sgRNAl-MCS-sgRNA2-MCS, designed to generate PpCas9 nuclease in mammalian cells.
- AmpR - beta-lactamase gene that provides resistance to ampicillin
- NLS signals for nuclear localization NLS
- FI ori is the origin of replication, which allows the plasmid to be packaged into phage particles during co-transformation with helper phages,
- each cassette contains a U6 promoter and an RNA polymerase III transcription terminator.
- FIG. 2 Amino acid sequence of PaCas9 nuclease with domain distribution.
- the terms in the singular include the terms in the plural, and the terms in the plural include the terms in the singular.
- the classification and methods used for cell cultivation, molecular biology, immunology, microbiology, genetics, analytical chemistry, chemistry of organic synthesis, medical and pharmaceutical chemistry, as well as hybridization and chemistry of protein and nucleic acids described in this document are well known to specialists and widely used in this field. Enzymatic reactions and purification methods are carried out in accordance with the manufacturer's instructions, as is usually done in the art, or as described herein.
- mammal any animal classified as a mammal, including primates, humans, rodents, canine, feline, cattle, small cattle, horses, pigs, etc. d.
- Nucleases are a large group of enzymes that hydrolyze a phosphodiester bond between nucleic acid subunits.
- nucleases There are several types of nucleases depending on their specificity and activity: exonuclease and endonuclease, ribonuclease and deoxyribonuclease, restrictase and some others. Restriction enzymes occupy an important position in applied molecular biology.
- PaCas9 nuclease is a deoxyribonuclease type.
- PaCas9 nuclease is capable of cleaving DNA, including the target nucleic acid sequence, by binding to at least one RNA molecule that recognizes the target sequence.
- PaCas9 nuclease contains two endonuclease domains that introduce single-stranded breaks one at a time and, acting together, a double-stranded break.
- PaCas9 nuclease is an effector enzyme of type II CRISPR-Cas system (second type nuclease). PaCas9 nuclease is capable of creating a double-stranded DNA gap with a highly specific recognition site (16-20 letters).
- PaCas9 nuclease DNA is presented in SEQ ID N0: 1.
- the figure 2 shows the amino acid sequence of PaCas9 nuclease with domain distribution.
- PaCas9 nuclease is associated with an isolated cluster of regularly arranged groups of short palindromic repeats (CRISPR), as well as other components of the CRISPR-Cas system adjacent to it: crRNA and tracrRNA sequences.
- CRISPR short palindromic repeats
- nucleotide sequence encoding tracrRNA is presented in SEQ ID NO: 3.
- nucleotide sequence encoding a direct repeat of DR presented in SEQ ID NO: 4.
- crRNA consists of the variable part, depending on the target, and the sequence of direct repeat DR, presented in SEQ ID NO: 4.
- therapeutic agent in this invention is meant a PaCas9 nuclease with the amino acid sequence of SEQ ID NO: 2 or an isolated nucleic acid molecule that encodes PaCas9 nuclease with the nucleotide sequence of SEQ ID NO: 1.
- tracrRNA (trans-activating crRNA) is a small transcoded RNA.
- CRISPR from the English Clustered Regularly Interspaced Short Palindromic Repeats; short palindromic repeats regularly arranged in groups
- CRISPR are special loci of bacteria and archaea, consisting of direct repeating sequences that are separated by unique sequences (spacers).
- nucleic acid means a clear sequence of nucleotides, modified or not modified defining a fragment or region of a nucleic acid containing or not containing unnatural nucleotides and being either double-stranded DNA or RNA, or a single-chain stranded DNA or RNA or the transcription product of said DNA.
- nucleotide sequences in their natural chromosome environment i.e. in a natural state.
- the sequences of this invention were isolated and / or purified, i.e. were taken directly or indirectly, for example, by copying, while their environment was at least partially modified. So also this should include isolated nucleic acids obtained by genetic recombination, for example, using host cells (host cells), or obtained by chemical synthesis.
- An “isolated” nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one impurity nucleic acid molecule with which it is usually associated in a natural source of a nuclease nucleic acid.
- An isolated nucleic acid molecule differs from the form or kit in which it is found in vivo. Thus, the isolated nucleic acid molecule is different from the nucleic acid molecule that exists in cells in vivo.
- the isolated nucleic acid molecule includes a nucleic acid molecule located in cells in which nuclease expression normally occurs, for example, if the nucleic acid molecule has a localization in the chromosome that is different from its localization in cells in vivo.
- nucleotide sequence covers its compliment, unless otherwise indicated.
- a nucleic acid having a specific sequence should be understood as encompassing its complementary chain with its complementary sequence.
- control sequences refers to DNA sequences necessary for the expression of a functionally linked coding sequence in a particular host organism.
- Suitable control sequences for prokaryotes are, for example, a promoter, optionally an operator and a ribosome binding site.
- promoters, polyadenylation signals, and enhancers are present in eukaryotic cells.
- a nucleic acid is “operably linked” if it is in functional association with another nucleotide sequence.
- DNA of a presequence or secretory leader sequence is operably linked to the DNA of a polypeptide if it is expressed as a preprotein that is involved in the secretion of the polypeptide;
- a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence;
- the ribosome binding site is operably linked to the coding sequence, if located so that it can facilitate translation.
- “operably linked” means that the linked DNA sequences are contiguous, and in the case of a secretory leader sequence, are contiguous and are in the reading phase. However, enhancers do not have to be contiguous.
- vectors eg, non-episomal mammalian vectors
- vectors can be integrated into the genome of the host cell when introduced into the host cell, and thus replicate together with the host gene.
- some vectors are capable of directing the expression of the genes with which they are functionally linked. Such vectors are referred to herein as “recombinant expression vectors” (or simply
- the present invention relates to a vector suitable for expression of any of the nucleotide sequences described herein.
- the present invention relates to vectors containing nucleic acid molecules that encode RaCaz9 nuclease.
- the PaCas9 nuclease of the invention is expressed by inserting DNA into expression vectors, such that the genes are operably linked to desired expression control sequences, such as transcriptional and translational control sequences.
- Expression vectors include plasmids, retroviruses, adenoviruses, adeno-associated viruses (AAV), plant viruses such as cauliflower mosaic virus, tobacco mosaic viruses, cosmids, YAC, EBV derived episomas and the like.
- DNA molecules can be ligated into a vector so that sequences that control transcription and translation in the vector fulfill the intended function of regulating the transcription and translation of DNA.
- the expression vector and expression control sequences may be selected so as to be compatible with the expression host cell used.
- DNA molecules can be introduced into the expression vector by standard methods (for example, by ligation of complementary restriction sites on a fragment of the PaCas9 nuclease gene and vector or by ligation of blunt ends if there are no restriction sites).
- recombinant expression of the vectors of this invention may carry regulatory sequences, which control the expression of the PaCas9 nuclease gene in the host cell.
- regulatory sequences which control the expression of the PaCas9 nuclease gene in the host cell.
- the design of the expression vector including the choice of regulatory sequences, may depend on factors such as selection of the host cell for transformation, expression level of the desired protein, etc.
- Preferred regulatory sequences for an expressing mammalian host cell include viral elements providing a high level of protein expression in mammalian cells, such as promoters and / or enhancers derived from retroviral LTR, cytomegalovirus (CMV) (e.g.
- CMV promoter / enhancer monkey virus 40 (SV40) (e.g. SV40 promoter / enhancer), adenovirus, (e.g. Late Adenovirus late promoter (AdMLP)), polyoma virus, as well as strong mammalian promoters such as the native promoter x immunoglobulins or actin promoter.
- SV40 monkey virus 40
- AdMLP Late Adenovirus late promoter
- polyoma virus as well as strong mammalian promoters such as the native promoter x immunoglobulins or actin promoter.
- the recombinant expression vectors of the invention may carry additional sequences, such as sequences that regulate vector replication in host cells (eg, replication origin) and selectable marker genes.
- the selectable marker gene facilitates the selection of host cells into which the vector has been introduced (see, for example, US patents 4,399,216, 4,634,665 and 5,179,017).
- a selectable marker gene confers resistance to drugs, such as G418, hygromycin or methotrexate, to the host cell into which the vector is introduced.
- breeding marker genes include the dihydrofolate reductase gene (DHFR) (for use in dhfr host cells for the selection / amplification of methotrexate), the neo gene (for G418 selection), and the glutamate synthetase gene.
- DHFR dihydrofolate reductase gene
- neo for G418 selection
- glutamate synthetase gene for use in dhfr host cells for the selection / amplification of methotrexate
- glutamate synthetase gene glutamate synthetase gene
- expression control sequence means polynucleotide sequences that are necessary to affect the expression and processing of the coding sequences to which they are ligated.
- Expression control sequences include corresponding transcription, termination, promoter and enhancer initiation sequences; effective RNA processing signals, such as splicing and polyadenylation signals; sequences that stabilize the cytoplasmic mRNA; sequences that increase translation efficiency (i.e., Kozak consensus sequence); sequences that enhance protein stability; and, if desired, sequences that enhance protein secretion.
- control sequences vary depending on the host organism; in prokaryotes, such control sequences typically include a promoter, a ribosome binding site, and transcription termination sequences; in eukaryotes, typically, such control sequences include promoters and transcription termination sequences.
- control sequences includes at least all components whose presence is important for expression and processing, and may also include additional components whose presence is useful, for example, leading sequences and sequences of fused cells.
- recombinant host cell means a cell into which a recombinant expression vector has been introduced.
- the present invention relates to host cells, which may include, for example, a vector in accordance with the present invention described above. It should be understood that “recombinant host cell” and “host cell” mean not only the specific cell claimed, but also the progeny of such a cell. Since modifications can occur in subsequent generations due to mutations or environmental influences, such offspring may not, in fact, be identical to the parent cell, but such cells are still included in the scope of the term “host cell” as used herein.
- Nucleic acid molecules encoding the PaCas9 nuclease of the invention and vectors containing these nucleic acid molecules can be used to transfect a suitable mammal or its cell, plant or its cell, bacterial or yeast host cell.
- the conversion can occur by any known method for introducing polynucleotides into a host cell.
- Methods for introducing heterologous polynucleotides into mammalian cells are well known in the art and include dextran-mediated transfection, transfection with a complex of nucleic acid and a positively charged polymer, transfection with nucleic acid and calcium phosphate precipitate, polybrin-mediated transfection, protoplast fusion and lipid transfection direct microinjection of DNA into the nucleus.
- nucleic acid molecules can be introduced into mammalian cells by viral vectors.
- Cell transfection methods are well known in the art. See, for example, U.S. Patents 4,399,216, 4,912,040, 4,740,461 and 4,959,455.
- Methods for transforming plant cells are well known in the art, including, for example, Agrobacterium-mediated transformation, biolistic transformation, direct injection, electroporation and viral transformation.
- Methods for transforming bacterial and yeast cells are also well known in the art.
- Mammalian cell lines used as hosts for transformation are well known in the art and include many immoralized available cell lines. These include, for example, Chinese hamster ovary cells (CHO), NS0 cells, SP2 cells, HEK-293T cells, 293 Freestyle cells (Invitrogen), NIH-3T3 cells, HeLa cells, hamster kidney cells (BHK), African kidney cells green monkeys (COS), human hepatocellular carcinoma cells (e.g., Hep G2), A549 cells, and a number of other cell lines. Cell lines are selected by determining which cell lines have high levels of expression and provide the necessary characteristics of the protein produced. Other cell lines that can be used are insect cell lines, such as Sf9 or Sf21 cells.
- PaCas9 nuclease When recombinant expression vectors encoding PaCas9 nuclease are introduced into mammalian host cells, PaCas9 nuclease is produced by culturing the host cells for a sufficient time to express PaCas9 nuclease in the host cells or, preferably, isolating PaCas9 nuclease into a culture medium in which host cells are grown. PaCas9 nuclease can be isolated from the culture medium using standard protein purification methods. Plant host cells, for example, include Nicotiana, Arabidopsis, duckweed, corn, wheat, potatoes, etc. Host bacteria cells include Escherichia and Streptomyces species. Yeast host cells include Schizosaccharomyces pombe, Saccharomyces cerevisiae and Pichia pastoris.
- the level of production of PaCas9 nuclease of the invention from a producing cell line can be enhanced using a number of known methods.
- the glutamine synthetase gene expression system (GS system) is common enough to enhance expression under certain conditions.
- the GS system is discussed in whole or in part in connection with patents EP 0216846, 0256055, 0323997 and 0338841.
- PaCas9 nuclease obtained from different cell lines or transgenic animals, will differ from each other by a glycosylation profile.
- PaCas9 nuclease encoded by the nucleic acid molecules described herein is part of this invention, regardless of the state of glycosylation and in general, regardless of the presence or absence of post-translational modifications.
- the present invention relates to liposomes in which PaCas9 nuclease is encapsulated with the amino acid sequence of SEQ ID NO: 2 or isolated a nucleic acid molecule that encodes a PaCas9 nuclease with the nucleotide sequence of SEQ ID NO: 1.
- Liposomes are microscopic closed vesicles that have an internal phase surrounded by one or more lipid bilayers and are capable of retaining water-soluble material in the internal phase, and oil-soluble material in a phospholipid bilayer.
- important tasks are the highly efficient capture of the active compound into the liposome and ensuring stable retention of the active compound by the liposome.
- a liposome is a particle with a predominant size from several tens of nanometers up to tenths of microns, inside the shell of which are molecules of another substance (s).
- the liposome membrane is “semi-permeable” to water molecules and ions.
- Liposomes are characterized by the ability to incorporate and retain substances of various nature.
- the range of substances included in liposomes is quite wide - from inorganic ions and low molecular weight organic compounds to large proteins and nucleic acids.
- Liposomes provide a sustained release of a substance enclosed in a carrier.
- Liposomes can be made from phospholipid, in particular from phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, sphingophospholipid, egg phospholipids or soybeans or mixtures thereof.
- the desired gene segments were obtained from oligonucleotides created by chemical synthesis. Gene segments from 300 to 4000 kbp in length, which are flanked by unique restriction sites, were collected by annealing and ligation of oligonucleotides, including PCR amplification and subsequent cloning through these restriction sites. The DNA sequences of the subcloned gene fragments were confirmed by DNA sequencing.
- DNA sequences were determined by Sanger sequencing.
- PaCas9 nuclease For expression of PaCas9 nuclease, variants of expression plasmids intended for expression in prokaryotic cells (E. coli), short-term expression in eukaryotic cells (for example, in CHO cells) were used.
- the vectors contained: a replication initiation site that replicates the plasmid to E. coli, genes that confer resistance in E. coli to various antibiotics (e.g., ampicillin and / or kanamycin).
- samples of Homoeodictya palmata sponges were collected from sites of the White Sea, the material was fractionated by centrifugation, after which total DNA was extracted and subsequently sequenced.
- Bioinformatics methods revealed an open reading frame of the PaCas9 protein in metagenomic sequences, as well as the neighboring components of the CRISPR Cas system: the CRISPR cassette, as well as the crRNA and tracrRNA sequences.
- PaCas9 nuclease DNA is presented in SEQ ID N0: 1.
- the amino acid sequence of PaCas9 nuclease is presented in SEQ ID NO: 2.
- the nucleotide sequence encoding tracrRNA is presented in SEQ ID NO: 3.
- nucleotide sequence encoding a direct repeat of DR presented in SEQ ID NO: 4.
- the PaCas9 nuclease gene sequence was obtained by bioinformatic search. The sequence was codon-optimized to ensure optimal expression in mammalian cells, and then assembled de novo from chemically synthesized oligonucleotides according to the Gibson method. The synthesized PaCas9 gene was cloned into the genetic construct at the 3 'end of the CMV promoter. Kozak sequences and nuclear localization signals (NLS) were added from the 5 'end of the gene, and the FLAG epitope sequence for protein detection was added from the 3' end. After the sequence of PaCas9 and related elements listed above, T2A elements and an open reading frame of green fluorescent protein (EGFP) are placed in the design in the same reading frame as an expression marker.
- EGFP green fluorescent protein
- the polyA sequence of the thymidine kinase signal is placed to increase the stability of the mRNA.
- the polyA sequence of the thymidine kinase signal is placed to increase the stability of the mRNA.
- the polyA sequence of the thymidine kinase signal is placed to increase the stability of the mRNA.
- the construction map is shown in FIG. 1.
- RaCaz9 protein which is transported to the nucleus due to NLS
- RNA molecules directing it RNA directing
- the reaction products are applied to gel electrophoresis. Uncut pieces are extracted from the gel and sequenced on an Illumina platform. Comparison of the PAM sequences contained in the uncut products of the PaCas9 reaction and the control reaction will determine the PAM of the protein under study.
- an in vitro nuclease activity assessment is performed.
- the protein in complex with RNA guides is incubated with a DNA fragment carrying the protospacer sequence and detected by RAM.
- the optimal ratio of RNA-protein complex to cut DNA was determined.
- Assessment of nuclease activity was determined based on the amount of PaCas9 protein required for 50% cutting of 200 ng of target DNA with a length of about 400 nucleotide pairs containing optimal RAM.
- PaCas9 nuclease has enzymatic activity and creates a double-stranded gap in DNA.
- PaCas9 nuclease is capable of creating a double-stranded gap in DNA with a highly specific recognition site (16-20 letters).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Dispersion Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicinal Preparation (AREA)
- Enzymes And Modification Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MA53045A MA53045B1 (en) | 2018-09-14 | 2019-09-13 | Nuclease p?Cas9 |
KR1020217011069A KR20210062040A (en) | 2018-09-14 | 2019-09-13 | PaCas9 nuclease |
PE2021000323A PE20211111A1 (en) | 2018-09-14 | 2019-09-13 | NUCLEASA PACAS9 |
MX2021002933A MX2021002933A (en) | 2018-09-14 | 2019-09-13 | Pacas9 nuclease. |
US17/276,016 US20220064612A1 (en) | 2018-09-14 | 2019-09-13 | PaCas9 nuclease |
JP2021513998A JP2022500044A (en) | 2018-09-14 | 2019-09-13 | PaCas9 nuclease |
EA202190676A EA202190676A1 (en) | 2018-09-14 | 2019-09-13 | NUCLEASE PaCas9 |
CN201980075402.9A CN113272425B (en) | 2018-09-14 | 2019-09-13 | PaCas9 nuclease |
EP19858873.3A EP3851522A4 (en) | 2018-09-14 | 2019-09-13 | Pacas9 nuclease |
BR112021004746-8A BR112021004746A2 (en) | 2018-09-14 | 2019-09-13 | pacas9 nuclease |
CA3113215A CA3113215A1 (en) | 2018-09-14 | 2019-09-13 | Pacas9 nuclease |
AU2019341014A AU2019341014A1 (en) | 2018-09-14 | 2019-09-13 | PaCas9 nuclease |
ZA2021/01681A ZA202101681B (en) | 2018-09-14 | 2021-03-12 | Pacas9 nuclease |
CONC2021/0003285A CO2021003285A2 (en) | 2018-09-14 | 2021-03-12 | Nuclease pacas9 |
PH12021550563A PH12021550563A1 (en) | 2018-09-14 | 2021-03-15 | Pacas9 nuclease |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018132816A RU2706298C1 (en) | 2018-09-14 | 2018-09-14 | PaCas9 NUCLEASE |
RU2018132816 | 2018-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020055293A1 true WO2020055293A1 (en) | 2020-03-19 |
Family
ID=68580023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2019/050154 WO2020055293A1 (en) | 2018-09-14 | 2019-09-13 | Pacas9 nuclease |
Country Status (20)
Country | Link |
---|---|
US (1) | US20220064612A1 (en) |
EP (1) | EP3851522A4 (en) |
JP (1) | JP2022500044A (en) |
KR (1) | KR20210062040A (en) |
CN (1) | CN113272425B (en) |
AR (1) | AR116403A1 (en) |
AU (1) | AU2019341014A1 (en) |
BR (1) | BR112021004746A2 (en) |
CA (1) | CA3113215A1 (en) |
CL (1) | CL2021000610A1 (en) |
CO (1) | CO2021003285A2 (en) |
EA (1) | EA202190676A1 (en) |
MA (1) | MA53045B1 (en) |
MX (1) | MX2021002933A (en) |
PE (1) | PE20211111A1 (en) |
PH (1) | PH12021550563A1 (en) |
RU (1) | RU2706298C1 (en) |
TW (1) | TWI843749B (en) |
WO (1) | WO2020055293A1 (en) |
ZA (1) | ZA202101681B (en) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4399216A (en) | 1980-02-25 | 1983-08-16 | The Trustees Of Columbia University | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US4510245A (en) | 1982-11-18 | 1985-04-09 | Chiron Corporation | Adenovirus promoter system |
US4634665A (en) | 1980-02-25 | 1987-01-06 | The Trustees Of Columbia University In The City Of New York | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
EP0216846A1 (en) | 1985-04-01 | 1987-04-08 | Celltech Ltd | Transformed myeloma cell-line and a process for the expression of a gene coding for a eukaryotic polypeptide employing same. |
EP0256055A1 (en) | 1986-01-23 | 1988-02-24 | Celltech Ltd | Recombinant dna sequences, vectors containing them and method for the use thereof. |
US4740461A (en) | 1983-12-27 | 1988-04-26 | Genetics Institute, Inc. | Vectors and methods for transformation of eucaryotic cells |
EP0323997A1 (en) | 1987-07-23 | 1989-07-19 | Celltech Limited | Recombinant dna expression vectors |
EP0338841A1 (en) | 1988-04-18 | 1989-10-25 | Celltech Limited | Recombinant DNA methods, vectors and host cells |
US4912040A (en) | 1986-11-14 | 1990-03-27 | Genetics Institute, Inc. | Eucaryotic expression system |
US4959455A (en) | 1986-07-14 | 1990-09-25 | Genetics Institute, Inc. | Primate hematopoietic growth factors IL-3 and pharmaceutical compositions |
US4968615A (en) | 1985-12-18 | 1990-11-06 | Ciba-Geigy Corporation | Deoxyribonucleic acid segment from a virus |
US5168062A (en) | 1985-01-30 | 1992-12-01 | University Of Iowa Research Foundation | Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence |
US5179017A (en) | 1980-02-25 | 1993-01-12 | The Trustees Of Columbia University In The City Of New York | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
WO2017048969A1 (en) * | 2015-09-17 | 2017-03-23 | The Regents Of The University Of California | Variant cas9 polypeptides comprising internal insertions |
RU2634395C1 (en) * | 2015-12-01 | 2017-10-26 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Балтийский Федеральный Университет имени Иммануила Канта" (БФУ им. И. Канта) | GENETIC CONSTRUCT BASED ON CRISPR/Cas9 GENOME SYSTEM EDITING, CODING Cas9 NUCLEASE, SPECIFICALLY IMPORTED IN HUMAN CELLS MITOCHONDRIA |
RU2650819C2 (en) * | 2012-05-07 | 2018-04-17 | Сангамо Терапьютикс, Инк. | Methods and compositions for nuclease-mediated targeting of transgenes |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9410134B2 (en) * | 2011-06-07 | 2016-08-09 | Helmholtz Zentrum München—Deutsches Forschungszentrum für Gesundheit und Umwelt | Protein having nuclease activity, fusion proteins and uses thereof |
ES2636902T3 (en) * | 2012-05-25 | 2017-10-10 | The Regents Of The University Of California | Methods and compositions for RNA-directed target DNA modification and for RNA-directed transcription modulation |
WO2014001509A1 (en) * | 2012-06-29 | 2014-01-03 | Consejo Superior De Investigaciones Científicas (Csic) | Functionalized liposomes useful for the delivery of bioactive compounds |
EP3481856A1 (en) * | 2016-07-06 | 2019-05-15 | Crispr Therapeutics AG | Materials and methods for treatment of pain related disorders |
KR20190133699A (en) * | 2017-03-24 | 2019-12-03 | 큐어백 아게 | Nucleic acid encoding CRISPR-associated protein and uses thereof |
-
2018
- 2018-09-14 RU RU2018132816A patent/RU2706298C1/en active
-
2019
- 2019-09-12 TW TW108133034A patent/TWI843749B/en active
- 2019-09-13 KR KR1020217011069A patent/KR20210062040A/en active Search and Examination
- 2019-09-13 WO PCT/RU2019/050154 patent/WO2020055293A1/en active Application Filing
- 2019-09-13 JP JP2021513998A patent/JP2022500044A/en active Pending
- 2019-09-13 US US17/276,016 patent/US20220064612A1/en active Pending
- 2019-09-13 PE PE2021000323A patent/PE20211111A1/en unknown
- 2019-09-13 CA CA3113215A patent/CA3113215A1/en active Pending
- 2019-09-13 EA EA202190676A patent/EA202190676A1/en unknown
- 2019-09-13 BR BR112021004746-8A patent/BR112021004746A2/en unknown
- 2019-09-13 MX MX2021002933A patent/MX2021002933A/en unknown
- 2019-09-13 CN CN201980075402.9A patent/CN113272425B/en active Active
- 2019-09-13 AU AU2019341014A patent/AU2019341014A1/en active Pending
- 2019-09-13 AR ARP190102604A patent/AR116403A1/en unknown
- 2019-09-13 MA MA53045A patent/MA53045B1/en unknown
- 2019-09-13 EP EP19858873.3A patent/EP3851522A4/en active Pending
-
2021
- 2021-03-12 ZA ZA2021/01681A patent/ZA202101681B/en unknown
- 2021-03-12 CL CL2021000610A patent/CL2021000610A1/en unknown
- 2021-03-12 CO CONC2021/0003285A patent/CO2021003285A2/en unknown
- 2021-03-15 PH PH12021550563A patent/PH12021550563A1/en unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4634665A (en) | 1980-02-25 | 1987-01-06 | The Trustees Of Columbia University In The City Of New York | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US4399216A (en) | 1980-02-25 | 1983-08-16 | The Trustees Of Columbia University | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US5179017A (en) | 1980-02-25 | 1993-01-12 | The Trustees Of Columbia University In The City Of New York | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US4510245A (en) | 1982-11-18 | 1985-04-09 | Chiron Corporation | Adenovirus promoter system |
US4740461A (en) | 1983-12-27 | 1988-04-26 | Genetics Institute, Inc. | Vectors and methods for transformation of eucaryotic cells |
US5168062A (en) | 1985-01-30 | 1992-12-01 | University Of Iowa Research Foundation | Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence |
EP0216846A1 (en) | 1985-04-01 | 1987-04-08 | Celltech Ltd | Transformed myeloma cell-line and a process for the expression of a gene coding for a eukaryotic polypeptide employing same. |
US4968615A (en) | 1985-12-18 | 1990-11-06 | Ciba-Geigy Corporation | Deoxyribonucleic acid segment from a virus |
EP0256055A1 (en) | 1986-01-23 | 1988-02-24 | Celltech Ltd | Recombinant dna sequences, vectors containing them and method for the use thereof. |
US4959455A (en) | 1986-07-14 | 1990-09-25 | Genetics Institute, Inc. | Primate hematopoietic growth factors IL-3 and pharmaceutical compositions |
US4912040A (en) | 1986-11-14 | 1990-03-27 | Genetics Institute, Inc. | Eucaryotic expression system |
EP0323997A1 (en) | 1987-07-23 | 1989-07-19 | Celltech Limited | Recombinant dna expression vectors |
EP0338841A1 (en) | 1988-04-18 | 1989-10-25 | Celltech Limited | Recombinant DNA methods, vectors and host cells |
RU2650819C2 (en) * | 2012-05-07 | 2018-04-17 | Сангамо Терапьютикс, Инк. | Methods and compositions for nuclease-mediated targeting of transgenes |
WO2017048969A1 (en) * | 2015-09-17 | 2017-03-23 | The Regents Of The University Of California | Variant cas9 polypeptides comprising internal insertions |
RU2634395C1 (en) * | 2015-12-01 | 2017-10-26 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Балтийский Федеральный Университет имени Иммануила Канта" (БФУ им. И. Канта) | GENETIC CONSTRUCT BASED ON CRISPR/Cas9 GENOME SYSTEM EDITING, CODING Cas9 NUCLEASE, SPECIFICALLY IMPORTED IN HUMAN CELLS MITOCHONDRIA |
Non-Patent Citations (10)
Title |
---|
BARRANGOU ET AL., SCIENCE, vol. 315, 2007, pages 17091712 |
BROUNS ET AL., SCIENCE, vol. 321, 2008, pages 960 - 964 |
CHARPENTIERDOUDNA, NATURE, vol. 495, 2013, pages 50 - 51 |
JIANG ET AL., NATURE BIOTECHNOL, vol. 31, 2013, pages 233 - 239 |
JINEK ET AL., SCIENCE, vol. 337, 2012, pages 816 - 821 |
MAKAROVA ET AL., NAT REV MICROBIOL, vol. 9, 2011, pages 467 - 477 |
MALI ET AL., NAT METHODS, vol. 10, 2013, pages 957 - 963 |
SAMBROOK, J. ET AL.: "Molecular cloning: A laboratory manual", 1989, COLD SPRING HARBOR LABORATORY PRESS |
See also references of EP3851522A4 |
VAN DER OOST ET AL., NAT REV MICROBIOL, vol. 12, 2014, pages 479 - 492 |
Also Published As
Publication number | Publication date |
---|---|
RU2706298C1 (en) | 2019-11-15 |
AU2019341014A1 (en) | 2021-05-13 |
MA53045B1 (en) | 2022-08-31 |
US20220064612A1 (en) | 2022-03-03 |
PE20211111A1 (en) | 2021-06-21 |
CA3113215A1 (en) | 2020-03-19 |
CN113272425A (en) | 2021-08-17 |
EA202190676A1 (en) | 2021-06-08 |
JP2022500044A (en) | 2022-01-04 |
MX2021002933A (en) | 2021-06-15 |
CO2021003285A2 (en) | 2021-06-10 |
EP3851522A4 (en) | 2022-06-01 |
MA53045A1 (en) | 2022-02-28 |
KR20210062040A (en) | 2021-05-28 |
TWI843749B (en) | 2024-06-01 |
CL2021000610A1 (en) | 2021-09-24 |
BR112021004746A2 (en) | 2021-06-08 |
AR116403A1 (en) | 2021-05-05 |
EP3851522A1 (en) | 2021-07-21 |
CN113272425B (en) | 2024-09-13 |
ZA202101681B (en) | 2022-06-29 |
TW202016130A (en) | 2020-05-01 |
PH12021550563A1 (en) | 2022-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3152312B1 (en) | Methods and compositions for modifying a targeted locus | |
CN107109422B (en) | Genome editing using split Cas9 expressed from two vectors | |
EP4025691B1 (en) | Novel, non-naturally occurring crispr-cas nucleases for genome editing | |
WO2019099943A1 (en) | Compositions and methods for improving the efficacy of cas9-based knock-in strategies | |
JP2016523084A (en) | Target integration | |
US20230113805A1 (en) | CRISPR-Cas NUCLEASES FROM CPR-ENRICHED METAGENOME | |
CA3164931A1 (en) | Targeted integration in mammalian sequences enhancing gene expression | |
RU2706298C1 (en) | PaCas9 NUCLEASE | |
JP2024509139A (en) | Novel CRISPR-CAS nuclease derived from metagenomics | |
EA043898B1 (en) | NUCLEASE PaCas9 | |
JP2024501892A (en) | Novel nucleic acid-guided nuclease | |
OA20101A (en) | Pacas9 nuclease. | |
CN113795588A (en) | Methods for scar-free introduction of targeted modifications in targeting vectors | |
KR102302827B1 (en) | Compositon for inhibiting gene expression using CRISPRi | |
WO2023177424A1 (en) | Integration of large nucleic acids into genomes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19858873 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3113215 Country of ref document: CA Ref document number: 2021513998 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: NC2021/0003285 Country of ref document: CO |
|
ENP | Entry into the national phase |
Ref document number: 3113215 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021004746 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20217011069 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019858873 Country of ref document: EP Effective date: 20210414 |
|
ENP | Entry into the national phase |
Ref document number: 2019341014 Country of ref document: AU Date of ref document: 20190913 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112021004746 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210312 |