WO2020054576A1 - Copolymerized polyester film - Google Patents
Copolymerized polyester film Download PDFInfo
- Publication number
- WO2020054576A1 WO2020054576A1 PCT/JP2019/035003 JP2019035003W WO2020054576A1 WO 2020054576 A1 WO2020054576 A1 WO 2020054576A1 JP 2019035003 W JP2019035003 W JP 2019035003W WO 2020054576 A1 WO2020054576 A1 WO 2020054576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- mol
- polyester
- copolymerized polyester
- copolyester
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/022—Mechanical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/027—Thermal properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
Definitions
- the present invention relates to a copolymerized polyester film provided with a copolymerized polyester layer containing a copolymerized polyester as a main component resin.
- PET films which are typical polyester films, especially biaxially stretched PET films are excellent in transparency, mechanical strength, heat resistance, flexibility, etc., and are therefore used as industrial materials, optical materials, electronic component materials, and batteries. It is used in various fields such as packaging materials.
- Patent Document 1 discloses a softened polyester film that exhibits softness not found in conventional polyester films and has excellent moldability at relatively low temperature and low pressure. Is less than or equal to 20 MPa at 120 ° C. and less than or equal to 5 MPa at 180 ° C., has a film haze of less than or equal to 1.0%, and contains 29 to 32 mol% of 1,4-cyclohexanedimethanol unit as a diol component.
- a softened polyester film characterized by not containing an isophthalic acid unit as a dicarboxylic acid component has been proposed.
- Patent Document 2 proposes an image receiving sheet for thermal transfer in which an image receiving layer composed of a copolymerized polyester layer having a copolymerization ratio of 5 to 30 mol% is laminated on at least one surface of a polyester film. Further, in Patent Document 3, the average particle size is 0.1 to 2.5 ⁇ m, the pore volume is 0.05 to 2.5 ml / g, the specific surface area is 50 to 600 m 2 / g, and the compression resistance is 1 to 100 MPa.
- a biaxially oriented film comprising a copolymerized polyester containing 0.05 to 5.0% by weight of a lubricant, wherein the biaxially oriented film has an intrinsic viscosity of 0.50 to 0.80 dl / g and a glass transition point of 70 ° C. or higher, a melting point of 210 ⁇ 250 ° C., also laminated metal plate, characterized in that the coarse particles having a particle size 20 ⁇ m or more of the above lubricants of the biaxially oriented film in does not contain at most 10 / mm 2
- a polyester film for forming has been proposed.
- Patent Document 4 made of copolyester containing 1 ⁇ 20 mol% of an aliphatic dicarboxylic acid component to the total acid component, an atmosphere of 0.99 ° C., at 100% elongation film strength F 100 is 0.
- Patent Document 5 discloses a laminated film in which a polyester (B) layer mainly composed of polyester (B) is laminated on at least one surface of a polyester (A) layer mainly composed of polyester (A),
- a laminated polyester film has been proposed, characterized in that the laminated film has an elastic modulus in a 23 ° C. atmosphere of 20 to 1000 MPa, an elastic modulus in a 120 ° C. atmosphere of 10 to 200 MPa, and is substantially non-oriented. I have.
- an electronic device (wearable terminal) used for a wearable computer is provided in an object around the human body such as a wristwatch (Patent Document 6).
- a flexible display that can be freely bent has attracted attention as a next-generation image display device.
- an organic electroluminescence (organic EL) display is mainly used. Since thin glass substrates and plastic substrates are used for flexible displays, the polyester film used for these image display device members needs to have the optical properties and durability required for conventional flat display panels, in addition to the required optical characteristics and durability. It is required that no bending or the like occurs even in a bending test.
- polyester films for wearable terminals and flexible displays, it is not only more flexible but also more pliable than polyester films commonly used in the past, and yet, It was necessary to develop a polyester film having elongation and strength. Further, heat resistance that does not shrink when heated is also required.
- an object of the present invention is to provide a new copolyester film that is more flexible and more pliable than conventional generally used polyester films, yet has both elongation, strength and heat resistance. To provide.
- the present invention is a copolymerized polyester film provided with a copolymerized polyester layer (I layer) containing copolymerized polyester A as a main component resin
- the copolymerized polyester A is a copolymer of terephthalic acid and “other dicarboxylic acid components”, ethylene glycol and “other alcohol components”, and “other dicarboxylic acid components” in the dicarboxylic acid component in the copolymerized polyester.
- the ratio of the “acid component” is 5 mol% or more and 20 mol% or less, and the ratio of the “other alcohol component” in the alcohol component is 1 mol% or more and less than 25 mol%,
- the present invention proposes a copolymer polyester film having a storage elastic modulus at 25 ° C of 2500 MPa or less and a storage elastic modulus at 120 ° C of 10 MPa or more.
- the present invention also relates to a copolymerized polyester film provided with a copolymerized polyester layer (I layer) containing one or more polyesters, In all the polyesters contained in the copolymerized polyester layer (I layer), the ratio of the total content of the “other dicarboxylic acid components” to the total content of the dicarboxylic acid components is 5 mol% or more and 20 mol% or less, and the alcohol component The ratio of the total content of “other alcohol components” to the total content is 1 mol% or more and less than 25 mol%,
- the present invention proposes a copolymer polyester film having a storage elastic modulus at 25 ° C of 2500 MPa or less and a storage elastic modulus at 120 ° C of 10 MPa or more.
- the copolymerized polyester film proposed by the present invention is excellent in flexibility at room temperature, is not only flexible, but also more pliable, yet has elongation and strength, and is practically sufficient High heat resistance. Therefore, the copolymerized polyester film proposed by the present invention can be suitably used as, for example, a packaging material for a battery, a member for image display, particularly a component such as a flexible display or a wearable terminal.
- the copolyester film according to an example of the embodiment of the present invention is a single layer having a copolyester layer (I layer) containing copolyester A as a main component resin. Or it is a laminated film.
- the present copolymerized polyester film may be a non-stretched film (sheet) or a stretched film. Among them, a stretched film stretched in a uniaxial direction or a biaxial direction is preferable. Among them, a biaxially stretched film is preferable in terms of excellent balance of mechanical properties and excellent flatness.
- the storage elastic modulus at 120 ° C. tends to be easily set to 10 MPa or more.
- the copolymerized polyester layer (I layer) is a layer containing copolymerized polyester A as a main component resin.
- the “main component resin” means a resin having the highest content ratio among the resins constituting the copolymerized polyester layer (I layer).
- the main component resin may account for 30% by mass or more, particularly 50% by mass or more, and especially 80% by mass or more (including 100% by mass) of the resin constituting the copolymerized polyester layer (I layer).
- the composing polyester layer (I layer) may be composed of only the copolyester A or a resin containing a resin B other than the copolyester A.
- the resin B is preferably a resin compatible with the copolyester A.
- the case where the copolymerized polyester layer (I layer) contains the copolymerized polyester A and the resin B compatible therewith will be described later.
- the copolymer polyester A is preferably a copolymer polyester which is a copolymer of terephthalic acid and other dicarboxylic acid components and ethylene glycol and other alcohol components.
- the copolyester A may be crystalline or amorphous.
- the crystalline polyester resin generally refers to a polyester resin having a crystal melting peak temperature (melting point), and more specifically, a differential resin made in accordance with JIS K7121 (1987).
- a polyester resin whose melting point is observed in scanning calorimetry (DSC) includes a so-called semi-crystalline state.
- a thermoplastic resin whose melting point is not observed in DSC is referred to as “amorphous”.
- a crystalline polyester generally refers to a polyester having a crystal melting peak temperature (melting point).
- DSC differential scanning calorimetry
- the “other dicarboxylic acid component” examples include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, aliphatic dicarboxylic acids, and polyfunctional acids. In addition, you may use together 2 or more types of "other dicarboxylic acid components.” By using two or more kinds in combination as described above, not only can the copolymerized polyester film be more effectively softened, but also the crystal structure can be maintained and heat resistance may be obtained.
- the "other dicarboxylic acid components” include aromatic dicarboxylic acids such as isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, adipic acid, and sebacine.
- aromatic dicarboxylic acids such as acids, dodecane diacids, eico acids and derivatives thereof, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, cyclooctanedicarboxylic acid, or Dimer acid is preferred.
- aliphatic dicarboxylic acids from the viewpoint of further lowering the glass transition temperature, aliphatic dicarboxylic acids having 20 to 80 carbon atoms, particularly 30 or more and 60 or less, and among them, 36 or 48 or less are particularly preferable.
- the dimer acid is preferably a dicarboxylic acid composed of a dimer of an unsaturated fatty acid, wherein the unsaturated fatty acid has 18 or more carbon atoms.
- dimer acids include oleic acid, elaidic acid, setreic acid, erucic acid, brassic acid, linoleic acid, those dimerized using different or identical unsaturated fatty acids selected from linolenic acid, and the like. Can be mentioned. Further, those obtained by hydrogenation after such dimerization can also be used.
- the dimer acid may contain an aromatic ring, an alicyclic monocyclic ring, or an alicyclic polycyclic ring.
- dimer acids having 20 to 80 carbon atoms, particularly 26 or more or 60 or less, and among them, 30 or more or 50 or less are preferable.
- the “other dicarboxylic acid component” can be arbitrarily selected. Above all, it is preferable to select one or more from aromatic dicarboxylic acids and select and use one or more from aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, and dimer acids. Among them, it is particularly preferable to include two or more of isophthalic acid, aliphatic dicarboxylic acid and dimer acid, and particularly, two or more of isophthalic acid, aliphatic dicarboxylic acid having 20 to 80 carbon atoms and dimer acid. It is particularly preferred to include When an aromatic dicarboxylic acid is used as the “other dicarboxylic acid component”, the film tends to be flexible while maintaining strength and heat resistance.
- the film when an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid, or a dimer acid is used as the “other dicarboxylic acid component”, the film can be formed at a smaller content while maintaining the elongation (elongation at break). It tends to be soft, and among them, the use of dimer acid is most effective. Therefore, a film having good strength, heat resistance, elongation, and flexibility can be obtained by combining and using "other dicarboxylic acid components" as described above.
- the proportion of the dicarboxylic acid component that is, “other dicarboxylic acid component” in the total of terephthalic acid and “other dicarboxylic acid component” is preferably 5 to 20 mol%, and more preferably 8 mol% or more. Alternatively, the content is more preferably 18 mol% or less, among which 10 mol% or more or 15 mol% or less. When two or more other “dicarboxylic acid components” are used in combination, the total amount thereof is meant. When the proportion of the “other dicarboxylic acid component” is within the above range, the copolymerized polyester film tends to be effectively softened while having good elongation, strength and heat resistance.
- the “other alcohol component (diol component)” examples include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, trimethylene glycol, neopentyl glycol, 1,4-cyclohexane dimethanol, bisphenol, and the like. Derivatives and the like can be mentioned. Among them, diethylene glycol is preferable from the viewpoint of flexibility, and 1,4-butanediol is preferable from the viewpoint of heat resistance and strength. In general, when a polyester is produced (polycondensed) using ethylene glycol as one of the raw materials, a part of the ethylene glycol is modified into diethylene glycol and introduced into the polyester skeleton.
- This diethylene glycol is referred to as by-product diethylene glycol.
- the amount of by-product varies depending on the type of polycondensation (ester exchange method, direct polycondensation) and the like, but is about 1 to 5 mol% of ethylene glycol.
- diethylene glycol by-produced from ethylene glycol as described above is also treated as a copolymer component, and is included in “other alcohol components”.
- the proportion of the alcohol component (diol component), that is, the “other alcohol component (diol component)” in the total of ethylene glycol and the “other alcohol component” is 1 mol% or more and less than 25 mol%. More preferably, it is 2 mol% or more or 20 mol% or less, and more preferably 3 mol% or more or 18 mol% or less.
- the proportion of the “other alcohol component” is within the above range, the copolymerized polyester film tends to be effectively softened while having good elongation, strength and heat resistance.
- the “other dicarboxylic acid component” and the “other alcohol component” are used in total and used in combination of three or more.
- the film tends to be softened with a smaller content ratio. If the type of the copolymer component is too large, it may be difficult to stabilize the properties of the film. Therefore, the “other dicarboxylic acid component” and the “other alcohol component” are 3 to 5 in total. It is preferably a species, and more preferably three or four species.
- copolymer polyester A terephthalic acid, isophthalic acid and aliphatic dicarboxylic acid or dimer acid, and a copolymer of ethylene glycol and diethylene glycol, isophthalic acid in the dicarboxylic acid component constituting the copolymerized polyester
- the ratio of the acid, aliphatic dicarboxylic acid or dimer acid is 5 mol% or more and 20 mol% or less, and the ratio of diethylene glycol in the alcohol component constituting the copolymer polyester is 1 mol% or more and less than 25 mol%, Aa can be mentioned.
- the crystallinity of the copolymerized polyester decreases when the proportion of the copolymer component is increased in order to decrease the elastic modulus, and becomes amorphous when the proportion is further increased.
- the copolymerized polyester Aa has a high copolymerization component ratio and can realize a low elastic modulus, it maintains the crystallinity, and thus can be heat-set by heat treatment after stretching. As a result, the copolymerized polyester Aa is flexible, and yet has good elongation and strength, and can further suppress heat shrinkage.
- the copolymerized polyester layer (I layer) may be a layer containing a copolymerized polyester A and a resin B compatible therewith.
- “compatible” means a state where two or more kinds of mixed resins are completely mixed at a molecular level. At this time, the amorphous region mixed at the molecular level can be regarded as a single phase, and micro-Brownian motion also occurs at a single temperature. Therefore, when two or more kinds of resins are compatible with each other, the mixed resin of the two or more kinds of resins has a single melting point or a single glass transition temperature, and a single main dispersion peak.
- a resin compatible with the copolyester A is defined as a resin capable of changing the melting point or the glass transition temperature of the copolyester A when mixed with the copolyester A.
- the glass transition temperature is, for example, a temperature dispersion measurement of dynamic viscoelasticity under conditions of 0.1% strain, 10 Hz frequency, and a heating rate of 3 ° C./min (dynamic viscoelasticity measurement according to JIS K7244 method). ) Is the peak temperature of the main dispersion of the loss tangent (tan ⁇ ).
- the resin B is a resin compatible with the copolyester A and has a melting point of 270 ° C. or less, or A resin which is crystalline and has a glass transition temperature of 30 to 120 ° C. is preferred.
- the glass transition temperature of the copolymerized polyester layer (I layer) can be increased, and the heat resistance can be increased.
- a polyester such as polyethylene terephthalate (PET) as the resin B, dimensional stability and heat resistance can be imparted.
- the resin B contains one or more polyesters, and the polyester (including one or more polyesters) is terephthalic acid, which is a dicarboxylic acid component.
- the polyester is terephthalic acid, which is a dicarboxylic acid component.
- another dicarboxylic acid component an alcohol component such as ethylene glycol and “another alcohol component”
- a total content of the dicarboxylic acid component when two or more polyesters are contained, the dicarboxylic acid contained in each polyester is included.
- the ratio of the total content of "other dicarboxylic acid components” to the total content of the other dicarboxylic acid components is from 5 mol% to 20 mol%, preferably from 8 mol% to 18 mol%, more preferably from 10 mol% to 15 mol%.
- the total content of alcohol components (two or more When containing tellurium, the ratio of the total content of the "other alcohol components" to the total of the alcohol components contained in each polyester is 1 mol% or more and less than 25 mol%, preferably 2 mol% or more or 20 mol% or less, more preferably Is preferably 3 mol% or more or 18 mol% or less.
- the copolyester layer (I layer) may be a layer containing a copolyester A and a resin D incompatible with the copolyester A.
- the resin D include polyolefin, polystyrene, acrylic resin, urethane resin and the like.
- the mass ratio of the copolymerized polyester A to the resin B is preferably 98: 2 to 50:50, more preferably 95: 5 to 60:40, and especially 90:10 to 65. : 35 is more preferable.
- the component ratio of the entire polyester contained in the copolymerized polyester layer (I layer) is the same as that of the copolymerized polyester A, the same effect as in the case where the copolymerized polyester A is contained as the main component resin is obtained. It is thought that it is possible. Therefore, when the copolymerized polyester layer (I layer) contains one or more polyesters, the content of the dicarboxylic acid component in the total amount of the components of all the polyesters contained in the copolymerized polyester layer (I layer) is included.
- the ratio of the total content of "other dicarboxylic acid components" to the total amount is 5 mol% to 20 mol%, and the ratio of the total content of "other alcohol components” to the total content of alcohol components is 1 mol%.
- the preferred range of the ratio of the total content of the “other dicarboxylic acid component” to the total content of the dicarboxylic acid component is the ratio of the “other dicarboxylic acid component” to the dicarboxylic acid component in the copolymerized polyester A. Is the same as the preferred range.
- the preferred range of the ratio of the total content of the “other alcohol components” to the total content of the alcohol components is the same as the preferred range of the ratio of the “other alcohol components” to the alcohol component in the copolymerized polyester A. It is.
- the present copolymerized polyester film may be a laminated film including a copolymerized polyester layer (I layer) and another layer.
- the polyester C is preferably a polyester having a melting point higher than the melting point of the copolyester A when the copolyester A is crystalline, and when the copolyester A is amorphous, It is preferable that the polyester has a melting point at a temperature higher than the glass transition point of the copolymerized polyester A.
- the storage elastic modulus at 25 ° C. of the copolymerized polyester film can be 300 to 2500 MPa, especially 500 MPa or more and 2000 MPa or less.
- the thickness of each polyester layer (II layer) is preferably 1 to 20% of the thickness of the copolymerized polyester layer (I layer). If the thickness of each polyester layer (II layer) is 1% or more of the thickness of the copolymerized polyester layer (I layer), film formation can be performed without significantly impairing productivity. This is preferable because sufficient flexibility can be ensured. From this viewpoint, the thickness of each layer of the polyester layer (II layer) is preferably 1 to 20% of the thickness of the copolymerized polyester layer (I layer), more preferably 3% or more, or 15% or less, and especially 5% or more. Alternatively, it is more preferably 12% or less. In addition, the thickness of the polyester layer (II layer) present on both sides of the copolymerized polyester layer (I layer) may be different on the front and back, or may be the same.
- Polyester C has a melting point that is 10 to 100 ° C. higher than the melting point of copolyester A, particularly 20 ° C. or higher, or 90 ° C. or lower, especially 40 ° C. or higher or 70 ° C. or lower, when copolyester A is crystalline.
- the copolyester A is preferably 120 to 260 ° C. higher than the glass transition point of the copolyester A, more preferably 140 ° C. or higher or 230 ° C. or lower. It is preferable that the polyester has a high melting point of 160 ° C. or more or 200 ° C. or less.
- the polyester C which is a main component of the polyester layer (II layer) existing on both sides of the copolymerized polyester layer (I layer) may be different on the front and back or may be the same.
- the melting points of the front and back polyesters C do not greatly differ.
- the difference between the melting points of the polyester layers (II layers) present on both the front and back sides is preferably 80 ° C or less, more preferably 60 ° C or less, and particularly preferably 40 ° C or less. If the polyester C in the polyester layer (II layer) present on both the front and back sides of the copolymer polyester layer A is the same, coextrusion molding of two or three layers becomes possible, so this embodiment is also preferable.
- polyester C for example, a homopolyester or a copolyester containing terephthalic acid as a dicarboxylic acid component and ethylene glycol as an alcohol component can be suitably used. However, it is not limited to this.
- the dicarboxylic acid component other than terephthalic acid examples include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, aliphatic dicarboxylic acids, and polyfunctional acids.
- the ratio of the “dicarboxylic acid component other than terephthalic acid” to the dicarboxylic acid component is preferably 1 to 30 mol%, more preferably 5 mol% or more or 25 mol% or less, among which 10 mol% or more or 20 mol% or less. Is more preferred.
- alcohol components other than ethylene glycol include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, trimethylene glycol, neopentyl glycol, and 1,4-cyclohexane. Examples include dimethanol, bisphenol and derivatives thereof.
- the ratio of the “alcohol component other than ethylene glycol” to the alcohol component is preferably 1 to 100 mol%, more preferably 5 mol% or more, or 95 mol% or less, among which 10 mol% or more, or 90 mol% or less. Is more preferred.
- the thickness of the present copolymerized polyester film is not particularly limited, and an appropriate thickness can be selected depending on the use. Above all, it is preferable that the total thickness of the film exceeds 20 ⁇ m from the viewpoint of exhibiting the characteristics of the present copolymerized polyester film more. It is said that the stiffness of the film is proportional to the cube of the thickness. However, even if the present copolymerized polyester film has a thickness of more than 20 ⁇ m, it has the characteristic of being weak and flexible, and can further enjoy the benefits of the present invention.
- the total thickness of the present copolyester film is preferably more than 20 ⁇ m, more preferably 23 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
- the upper limit of the total thickness of the present copolymerized polyester film is not particularly limited. The thickness is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, particularly 250 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
- the copolymer polyester film preferably has a storage elastic modulus at 25 ° C. of 2500 MPa or less.
- the storage elastic modulus at 25 ° C. that is, at room temperature
- is 2500 MPa or less for example, when the wearable terminal is worn, it can sufficiently follow the skin.
- the present copolymerized polyester film preferably has a storage modulus at 25 ° C. of 2500 MPa or less, more preferably 2000 MPa or less, and even more preferably 1200 MPa or less.
- the storage elastic modulus at 25 ° C. is a value obtained by a measurement method described in Examples described later.
- the storage elastic modulus at 25 ° C. can be set in the above range, for example, by adjusting the type and content of the copolymerized component of the copolymerized polyester A.
- a laminated film having a configuration in which a polyester layer (II layer) containing polyester C as a main component resin is laminated on both sides of the copolymerized polyester layer (I layer). Can be adjusted. Furthermore, it can also be adjusted by the stretching conditions when producing the copolymerized polyester film of the present invention and the subsequent heat setting conditions. However, it is not limited to these methods.
- the copolymer polyester film preferably has a storage elastic modulus at 120 ° C. of 10 MPa or more.
- the storage elastic modulus at a high temperature is 10 MPa or more, sufficient heat resistance can be obtained, and generation of wrinkles during processing can be suppressed.
- the present copolymerized polyester film preferably has a storage elastic modulus at 120 ° C. of 10 MPa or more, more preferably 30 MPa or more, and particularly preferably 50 MPa or more.
- the copolymer polyester film preferably has a storage elastic modulus at 120 ° C. of 500 MPa or less, more preferably 400 MPa or less, and particularly preferably 300 MPa or less, from the viewpoint of suppressing the amount of heat required during processing.
- the storage elastic modulus at 120 ° C. is a value obtained by a measurement method described in Examples described later.
- the method for adjusting the storage elastic modulus at 120 ° C. to the above range may be the same as the method described above as the method for adjusting the storage elastic modulus at 25 ° C.
- the method of adjusting the stretching conditions and the subsequent heat setting conditions is particularly effective. However, it is not limited to this method.
- This copolymerized polyester film preferably has a loss tangent (tan ⁇ ) at 25 ° C. of 0.02 or more.
- the loss tangent at 25 ° C. that is, at room temperature
- the present copolyester film preferably has a loss tangent at 25 ° C. of 0.05 or more, more preferably 0.08 or more, and even more preferably 0.10 or more.
- the loss tangent (tan ⁇ ) at 25 ° C. is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.5 or less, from the viewpoint of handling properties in the process.
- the method for adjusting the loss tangent at 25 ° C. to the above range may be the same as the above-mentioned method for adjusting the storage elastic modulus at 25 ° C.
- a method of adjusting the type and content of the copolymer component of the copolymer polyester A is particularly effective. However, it is not limited to this method.
- the copolymer polyester film When the copolymer polyester A is crystalline, the copolymer polyester film preferably has a crystal melting enthalpy ⁇ Hm of 3.0 J / g or more, more preferably 5.0 J / g or more, and among them, 7.0 J / g or more. Is more preferred.
- ⁇ Hm is an index of crystallinity, and when it is 3.0 J / g or more, sufficient heat resistance can be obtained and heat shrinkage can be suppressed.
- This copolymerized polyester film has a “flexibility” (strength) measured by a deflection measurement method described in Examples described later, that is, a length lowered vertically (a) and a length protruded horizontally.
- the value of the ratio of (a) to (b) ((a) / (b)) is preferably 0.3 or more, more preferably 0.5 or more, and more preferably 1 or more. More preferably, it is not less than 0.0.
- the ratio (a) / (b) is 0.3 or more, it is suggested that the film has sufficient flexibility.
- the upper limit of (a) / (b) is not particularly limited, but is preferably 15.0 or less, more preferably 10.0 or less, and especially 6.0 or less, from the viewpoint of handling properties in the process. Is more preferred.
- the copolymer component of the copolymer polyester A is preferably such that the “other dicarboxylic acid component” is an aliphatic dicarboxylic acid or a dimer acid, and the content thereof is 5 mol% or more and 20 mol% or less.
- the “other alcohol component” is preferably diethylene glycol, and its content is preferably 1 mol% or more and less than 25 mol%.
- a raw material for example, a polyester chip is supplied to a melt extruder, heated to a temperature equal to or higher than the melting point of each polymer, and extruded from a die. It is sufficient to solidify by cooling to obtain a non-oriented sheet in a substantially amorphous state.
- the unoriented sheet is stretched in one direction by a roll or tenter type stretching machine. At this time, the stretching temperature is usually 25 to 120 ° C., preferably 35 to 100 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 2.8 to 6 times.
- the film is stretched in a direction orthogonal to the stretching direction of the first step.
- the stretching temperature is usually 50 to 140 ° C.
- the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times.
- heat-setting is performed at a temperature of 130 to 270 ° C. under tension or relaxation within 30% to obtain the present copolymerized polyester film as a biaxially oriented film.
- a method in which stretching in one direction is performed in two or more stages may be adopted.
- heat treatment is a single layer of the copolyester layer (I layer), it is preferably performed at a temperature lower by 10 to 70 ° C. than the melting point of copolyester A.
- the copolyester layer (I layer) and the polyester layer (II layer) are co-extruded, As described above, stretching and heat setting may be performed as an integral film.
- the heat setting is preferably performed by heating to a temperature lower than the melting point of the polyester C.
- the copolyester A is crystalline, it is preferable to perform a heat-setting treatment at a temperature higher than the melting point of the copolyester A.
- the present copolymerized polyester film is excellent in flexibility at normal temperature, and is not only flexible, but also characterized by having almost no stiffness, but still having sufficient heat resistance for practical use. Can be demonstrated. Therefore, it can be suitably used, for example, as a constituent member of a battery packaging material, a surface protection film, an image display member, particularly a flexible display, a wearable terminal, or the like.
- the application of the present copolymerized polyester film is not limited to the above, and for example, it can be used for various packaging materials, building materials, stationery, automobile members, and other structural members.
- the term “film” includes a “sheet”, and the term “sheet” includes a “film”. Further, when expressed as a "panel” such as an image display panel or a protection panel, it includes a plate, a sheet, and a film.
- E ⁇ / ⁇ (In the above equation, E is Young's modulus (GPa), ⁇ is a stress difference (GPa) due to the original average cross-sectional area between two points of a straight line, and ⁇ is a strain difference / initial length between the same two points.)
- Heat shrinkage rate The copolymerized polyester films (samples) obtained in Examples and Comparative Examples were allowed to stand for 5 minutes in an oven maintained at 120 ° C. under no tension, and the lengths of the samples before and after the measurement were measured.
- the heat shrinkage in each of the longitudinal direction (MD) and the width direction (TD) of the film was calculated by the following equation.
- Heat shrinkage (%) ⁇ (L0 ⁇ L1) / L0 ⁇ ⁇ 100 (In the above formula, L0 is the sample length before the heat treatment, and L1 is the sample length after the heat treatment.) Five points were measured in the longitudinal direction (MD) and in the width direction (TD) of the film, and an average value was obtained for each of the five points.
- Copolyester 1 (“CoPS1"): the acid component is composed of 88 mol% of terephthalic acid, 7 mol% of hydrogenated dimer acid having 36 carbon atoms and 5 mol% of isophthalic acid, and the diol component is composed of 90 mol% of ethylene glycol and diethylene glycol. A crystalline copolyester consisting of 10 mol%. Melting point 208 ° C, intrinsic viscosity 0.68 dl / g.
- Copolyester 2 (“co-PS2"): the acid component is composed of 88 mol% of terephthalic acid and 12 mol% of hydrogenated dimer acid having 36 carbon atoms, and the diol components are 67 mol% of ethylene glycol and 1,4-butanediol 33. A crystalline copolyester composed of mol% (by-product diethylene glycol of less than 0.1 mol%). Melting point 200 ° C, intrinsic viscosity 0.72 dl / g.
- Copolyester 3 (“CoPS3”): a crystalline copolyester in which the acid component is composed of 78 mol% of terephthalic acid and 22 mol% of isophthalic acid, and the diol component is composed of 98 mol% of ethylene glycol and 2 mol% of by-product diethylene glycol. Melting point 198 ° C, intrinsic viscosity 0.70 dl / g.
- Polyester polyethylene terephthalate (by-product diethylene glycol: 2 mol%). Melting point 250 ° C, intrinsic viscosity 0.64 dl / g.
- Example 1 As a surface layer and an intermediate layer, chips of copolymerized polyester 1 (co-PS1) are fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and subjected to an electrostatic application contact method. The mixture was quenched and solidified on a cooling roll having a surface temperature set to 30 ° C. to obtain an unstretched sheet. Next, after stretching the obtained unstretched sheet 3.3 times at 50 ° C. in the longitudinal direction (MD), it is guided to a tenter, and then stretched 4.2 times at 80 ° C. in the width direction (TD). A heat treatment was performed at 200 ° C. for 10 seconds, and the film was relaxed by 10% in the width direction (TD) to obtain a 25 ⁇ m-thick biaxially stretched copolyester film (sample) substantially consisting of a single layer.
- co-PS1 copolymerized polyester 1
- Example 2 As an intermediate layer, a copolyester 1 (co-PS1) chip was fed into a main vented twin-screw extruder set at 280 ° C. As the surface layer, polyester (PET) chips were fed into a sub-vented twin-screw extruder set at 280 ° C. Through a gear pump and a filter, co-extrude in two and three layers (surface layer / intermediate layer / surface layer) so that the polymer from the main extruder becomes the middle layer and the polymer from the sub-extruder becomes the surface layer. The sheet was extruded and quenched and solidified on a cooling roll having a surface temperature set to 30 ° C.
- the obtained unstretched sheet is stretched 3.2 times at 80 ° C. in the longitudinal direction (MD), guided to a tenter, and then stretched 4.0 times at 100 ° C. in the width direction (TD).
- a film (sample) was obtained.
- Example 3 A biaxially stretched copolyester film (sample) was obtained in the same manner as in Example 2 except that the conditions were changed as shown in Table 1.
- a polyester (PET) chip is fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and cooled at a surface temperature set at 30 ° C. using an electrostatic application contact method. It was quenched and solidified on a roll to obtain an unstretched sheet. Next, the obtained unstretched sheet is stretched 3.5 times at 86 ° C. in the longitudinal direction (MD), guided to a tenter, and then stretched 4.3 times at 110 ° C. in the width direction (TD). A heat treatment was performed at 235 ° C. for 10 seconds, and the film was relaxed by 10% in the width direction (TD) to obtain a biaxially stretched copolymerized polyester film (sample) having a thickness of 50 ⁇ m.
- PET polyester
- copolyester 2 (co-PS2) chips are fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and the surface temperature is set to 30 ° C. using an electrostatic application contact method. Quenched and solidified on a cooling roll set as described above to obtain an unstretched copolymerized polyester film (sample) having a thickness of 200 ⁇ m.
- a copolymer polyester film having a copolymer polyester layer (I layer) containing the copolymer polyester A as a main component resin When the storage elastic modulus is 2500 MPa or less, it is excellent in flexibility at ordinary temperature, and is not only flexible but also more pliable, and can have elongation and strength. In addition, it was found that when the storage elastic modulus at 120 ° C. is 10 MPa or more, practically sufficient heat resistance can be obtained.
- the polyester as the main component resin of the surface layer is a polyester having a melting point higher than the melting point of the copolymer polyester. If so, it was confirmed that the heat treatment (heat setting) temperature after stretching can be further increased and the heat shrinkage can be further suppressed as compared with the case of a single layer consisting of only the intermediate layer.
- the polyester as the main component resin of the surface layer is a polyester having a melting point higher than the glass transition point of the copolymerized polyester, It is considered that the heat treatment (thermal fixation) temperature after stretching can be higher than in the case of a single layer consisting of only the intermediate layer, so that the heat shrinkability can be further suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
As a novel copolymerized polyester film that is softer and more flexible, while having adequate elongation, strength and heat resistance at the same time, the present invention proposes a copolymerized polyester film which is provided with a copolymerized polyester layer (layer I) that contains a copolymerized polyester A as a main component resin, and which is characterized in that: the copolymerized polyester A is a copolymer of terephthalic acid and "another dicarboxylic acid component" and ethylene glycol and "another alcohol component"; the ratio of the "another dicarboxylic acid component" in the dicarboxylic acid components in the copolymerized polyester is from 5 mol% to 20 mol% (inclusive); the ratio of the "another alcohol component" in the alcohol components in the copolymerized polyester is 1 mol% or more but less than 25 mol%; the storage elastic modulus at 25°C is 2,500 MPa or less; and the storage elastic modulus at 120°C is 10 MPa or more.
Description
本発明は、共重合ポリエステルを主成分樹脂として含有する共重合ポリエステル層を備えた共重合ポリエステルフィルムに関する。
The present invention relates to a copolymerized polyester film provided with a copolymerized polyester layer containing a copolymerized polyester as a main component resin.
ポリエステルフィルムとして代表的なポリエチレンテレフタレート(PET)フィルム、特に2軸延伸PETフィルムは、透明性、機械強度、耐熱性、柔軟性などに優れているため、工業材料、光学材料、電子部品材料、電池用包装材など様々な分野に使用されている。
Polyethylene terephthalate (PET) films, which are typical polyester films, especially biaxially stretched PET films are excellent in transparency, mechanical strength, heat resistance, flexibility, etc., and are therefore used as industrial materials, optical materials, electronic component materials, and batteries. It is used in various fields such as packaging materials.
この種のポリエステルフィルムに関しては、例えば特許文献1において、従来のポリエステルフィルムにない軟質性を発現し、比較的低温度および低圧力下で成型性に優れる軟質化ポリエステルフィルムとして、フィルムの弾性率E’が120℃において20MPa以下であり、かつ180℃において5MPa以下であり、フィルムヘーズが1.0%以下であり、ジオール構成成分として1,4-シクロヘキサンジメタノール単位を29~32モル%含有し、ジカルボン酸構成成分としてイソフタル酸単位を含まないことを特徴とする軟質化ポリエステルフィルムが提案されている。
With respect to this type of polyester film, for example, Patent Document 1 discloses a softened polyester film that exhibits softness not found in conventional polyester films and has excellent moldability at relatively low temperature and low pressure. Is less than or equal to 20 MPa at 120 ° C. and less than or equal to 5 MPa at 180 ° C., has a film haze of less than or equal to 1.0%, and contains 29 to 32 mol% of 1,4-cyclohexanedimethanol unit as a diol component. A softened polyester film characterized by not containing an isophthalic acid unit as a dicarboxylic acid component has been proposed.
また、特許文献2において、ポリエステルフィルムの少なくとも片面に、共重合率が5~30モル%である共重合ポリエステル層から成る受像層を積層して成る感熱転写用受像シートが提案されている。
さらに、特許文献3において、平均粒径0.1~2.5μm、細孔容積が0.05~2.5ml/g、比表面積50~600m2/gおよび耐圧縮力が1~100MPaである滑剤を0.05~5.0重量%含有する共重合ポリエステルからなる二軸配向フィルムであって、該二軸配向フィルムが、固有粘度が0.50~0.80dl/g、ガラス転移点が70℃以上、融点が210~250℃であり、また該二軸配向フィルム中の粒径20μm以上の上記滑剤の粗大粒子が高々10個/mm2しか含有しないことを特徴とする金属板貼合せ成形加工用ポリエステルフィルムが提案されている。 Patent Document 2 proposes an image receiving sheet for thermal transfer in which an image receiving layer composed of a copolymerized polyester layer having a copolymerization ratio of 5 to 30 mol% is laminated on at least one surface of a polyester film.
Further, in Patent Document 3, the average particle size is 0.1 to 2.5 μm, the pore volume is 0.05 to 2.5 ml / g, the specific surface area is 50 to 600 m 2 / g, and the compression resistance is 1 to 100 MPa. A biaxially oriented film comprising a copolymerized polyester containing 0.05 to 5.0% by weight of a lubricant, wherein the biaxially oriented film has an intrinsic viscosity of 0.50 to 0.80 dl / g and a glass transition point of 70 ° C. or higher, a melting point of 210 ~ 250 ° C., also laminated metal plate, characterized in that the coarse particles having a particle size 20μm or more of the above lubricants of the biaxially oriented film in does not contain at most 10 / mm 2 A polyester film for forming has been proposed.
さらに、特許文献3において、平均粒径0.1~2.5μm、細孔容積が0.05~2.5ml/g、比表面積50~600m2/gおよび耐圧縮力が1~100MPaである滑剤を0.05~5.0重量%含有する共重合ポリエステルからなる二軸配向フィルムであって、該二軸配向フィルムが、固有粘度が0.50~0.80dl/g、ガラス転移点が70℃以上、融点が210~250℃であり、また該二軸配向フィルム中の粒径20μm以上の上記滑剤の粗大粒子が高々10個/mm2しか含有しないことを特徴とする金属板貼合せ成形加工用ポリエステルフィルムが提案されている。 Patent Document 2 proposes an image receiving sheet for thermal transfer in which an image receiving layer composed of a copolymerized polyester layer having a copolymerization ratio of 5 to 30 mol% is laminated on at least one surface of a polyester film.
Further, in Patent Document 3, the average particle size is 0.1 to 2.5 μm, the pore volume is 0.05 to 2.5 ml / g, the specific surface area is 50 to 600 m 2 / g, and the compression resistance is 1 to 100 MPa. A biaxially oriented film comprising a copolymerized polyester containing 0.05 to 5.0% by weight of a lubricant, wherein the biaxially oriented film has an intrinsic viscosity of 0.50 to 0.80 dl / g and a glass transition point of 70 ° C. or higher, a melting point of 210 ~ 250 ° C., also laminated metal plate, characterized in that the coarse particles having a particle size 20μm or more of the above lubricants of the biaxially oriented film in does not contain at most 10 / mm 2 A polyester film for forming has been proposed.
加えて、特許文献4においては、脂肪族ジカルボン酸成分を全酸成分に対し1~20mol%含有する共重合ポリエステルよりなり、150℃の雰囲気下、100%伸長時のフィルム強度F100が0.5~5kg/mm2であり、且つ該フィルムの厚さ斑が40%以下であることを特徴とする成形用二軸延伸ポリエステルフィルムが提案されている。
また、特許文献5において、ポリエステル(A)を主成分とするポリエステル(A)層の少なくとも片面に、ポリエステル(B)を主成分とするポリエステル(B)層が積層された積層フィルムであって、該積層フィルムの23℃雰囲気下での弾性率が20~1000MPa、120℃雰囲気下での弾性率が10~200MPa、かつ実質的に無配向であることを特徴とする積層ポリエステルフィルムが提案されている。 In addition, in Patent Document 4, made of copolyester containing 1 ~ 20 mol% of an aliphatic dicarboxylic acid component to the total acid component, an atmosphere of 0.99 ° C., at 100% elongation film strength F 100 is 0. There has been proposed a biaxially stretched polyester film for molding, which has a thickness of 5 to 5 kg / mm 2 and a thickness unevenness of the film of 40% or less.
Patent Document 5 discloses a laminated film in which a polyester (B) layer mainly composed of polyester (B) is laminated on at least one surface of a polyester (A) layer mainly composed of polyester (A), A laminated polyester film has been proposed, characterized in that the laminated film has an elastic modulus in a 23 ° C. atmosphere of 20 to 1000 MPa, an elastic modulus in a 120 ° C. atmosphere of 10 to 200 MPa, and is substantially non-oriented. I have.
また、特許文献5において、ポリエステル(A)を主成分とするポリエステル(A)層の少なくとも片面に、ポリエステル(B)を主成分とするポリエステル(B)層が積層された積層フィルムであって、該積層フィルムの23℃雰囲気下での弾性率が20~1000MPa、120℃雰囲気下での弾性率が10~200MPa、かつ実質的に無配向であることを特徴とする積層ポリエステルフィルムが提案されている。 In addition, in Patent Document 4, made of copolyester containing 1 ~ 20 mol% of an aliphatic dicarboxylic acid component to the total acid component, an atmosphere of 0.99 ° C., at 100% elongation film strength F 100 is 0. There has been proposed a biaxially stretched polyester film for molding, which has a thickness of 5 to 5 kg / mm 2 and a thickness unevenness of the film of 40% or less.
Patent Document 5 discloses a laminated film in which a polyester (B) layer mainly composed of polyester (B) is laminated on at least one surface of a polyester (A) layer mainly composed of polyester (A), A laminated polyester film has been proposed, characterized in that the laminated film has an elastic modulus in a 23 ° C. atmosphere of 20 to 1000 MPa, an elastic modulus in a 120 ° C. atmosphere of 10 to 200 MPa, and is substantially non-oriented. I have.
近年、画像表示装置として、携帯端末の小型化及び高性能化により身体に装着可能なサイズに小型したコンピュータ(ウェアラブルコンピュータ)が注目されている。
ウェアラブルコンピュータに使われる電子デバイス(ウェアラブル端末)は、腕時計のような人体の身の回りのものに備わっていることが理想的である(特許文献6)。 2. Description of the Related Art In recent years, a computer (wearable computer) that is small enough to be worn on the body due to the miniaturization and high performance of a mobile terminal has been attracting attention as an image display device.
Ideally, an electronic device (wearable terminal) used for a wearable computer is provided in an object around the human body such as a wristwatch (Patent Document 6).
ウェアラブルコンピュータに使われる電子デバイス(ウェアラブル端末)は、腕時計のような人体の身の回りのものに備わっていることが理想的である(特許文献6)。 2. Description of the Related Art In recent years, a computer (wearable computer) that is small enough to be worn on the body due to the miniaturization and high performance of a mobile terminal has been attracting attention as an image display device.
Ideally, an electronic device (wearable terminal) used for a wearable computer is provided in an object around the human body such as a wristwatch (Patent Document 6).
ほかにも、次世代の画像表示装置として、自由自在に屈曲可能なフレキシブルディスプレイが注目を浴びている。フレキシブルディスプレイには、有機エレクトロルミネッセンス(有機EL)ディスプレイが主に使用されている。
フレキシブルディスプレイには、薄いガラス基板やプラスチック基板が用いられることから、これら画像表示装置用部材に用いられるポリエステルフィルムには、従来の平面状ディスプレイパネルで必要とされた光学特性や耐久性に加えて、屈曲試験をしても折れなどが発生しないことが要求される。 In addition, a flexible display that can be freely bent has attracted attention as a next-generation image display device. As the flexible display, an organic electroluminescence (organic EL) display is mainly used.
Since thin glass substrates and plastic substrates are used for flexible displays, the polyester film used for these image display device members needs to have the optical properties and durability required for conventional flat display panels, in addition to the required optical characteristics and durability. It is required that no bending or the like occurs even in a bending test.
フレキシブルディスプレイには、薄いガラス基板やプラスチック基板が用いられることから、これら画像表示装置用部材に用いられるポリエステルフィルムには、従来の平面状ディスプレイパネルで必要とされた光学特性や耐久性に加えて、屈曲試験をしても折れなどが発生しないことが要求される。 In addition, a flexible display that can be freely bent has attracted attention as a next-generation image display device. As the flexible display, an organic electroluminescence (organic EL) display is mainly used.
Since thin glass substrates and plastic substrates are used for flexible displays, the polyester film used for these image display device members needs to have the optical properties and durability required for conventional flat display panels, in addition to the required optical characteristics and durability. It is required that no bending or the like occurs even in a bending test.
前述のように、ウェアラブル端末やフレキシブルディスプレイなどにポリエステルフィルムを用いることを考えると、従来一般的に使用されているポリエステルフィルムに比べて、単に柔軟であるばかりでなく、よりしなやかであり、それでいて、伸度及び強度を有しているポリエステルフィルムを開発する必要があった。また、加熱された際に収縮しない耐熱性も必要であった。
As mentioned above, considering the use of polyester films for wearable terminals and flexible displays, it is not only more flexible but also more pliable than polyester films commonly used in the past, and yet, It was necessary to develop a polyester film having elongation and strength. Further, heat resistance that does not shrink when heated is also required.
そこで本発明の課題は、従来一般的に使用されているポリエステルフィルムに比べて、より柔軟であり、よりしなやかであり、それでいて、伸度、強度及び耐熱性を兼ね備えた新たな共重合ポリエステルフィルムを提供することにある。
Therefore, an object of the present invention is to provide a new copolyester film that is more flexible and more pliable than conventional generally used polyester films, yet has both elongation, strength and heat resistance. To provide.
本発明は、共重合ポリエステルAを主成分樹脂として含有する共重合ポリエステル層(I層)を備えた共重合ポリエステルフィルムであって、
前記共重合ポリエステルAは、テレフタル酸及び「その他のジカルボン酸成分」と、エチレングリコール及び「その他のアルコール成分」との共重合体であり、当該共重合ポリエステルにおいてジカルボン酸成分に占める「その他のジカルボン酸成分」の割合は5mol%以上20mol%以下であり、アルコール成分に占める「その他のアルコール成分」の割合は1mol%以上25mol%未満であり、
25℃の貯蔵弾性率が2500MPa以下であり、且つ、120℃の貯蔵弾性率が10MPa以上であることを特徴とする共重合ポリエステルフィルムを提案する。 The present invention is a copolymerized polyester film provided with a copolymerized polyester layer (I layer) containing copolymerized polyester A as a main component resin,
The copolymerized polyester A is a copolymer of terephthalic acid and “other dicarboxylic acid components”, ethylene glycol and “other alcohol components”, and “other dicarboxylic acid components” in the dicarboxylic acid component in the copolymerized polyester. The ratio of the “acid component” is 5 mol% or more and 20 mol% or less, and the ratio of the “other alcohol component” in the alcohol component is 1 mol% or more and less than 25 mol%,
The present invention proposes a copolymer polyester film having a storage elastic modulus at 25 ° C of 2500 MPa or less and a storage elastic modulus at 120 ° C of 10 MPa or more.
前記共重合ポリエステルAは、テレフタル酸及び「その他のジカルボン酸成分」と、エチレングリコール及び「その他のアルコール成分」との共重合体であり、当該共重合ポリエステルにおいてジカルボン酸成分に占める「その他のジカルボン酸成分」の割合は5mol%以上20mol%以下であり、アルコール成分に占める「その他のアルコール成分」の割合は1mol%以上25mol%未満であり、
25℃の貯蔵弾性率が2500MPa以下であり、且つ、120℃の貯蔵弾性率が10MPa以上であることを特徴とする共重合ポリエステルフィルムを提案する。 The present invention is a copolymerized polyester film provided with a copolymerized polyester layer (I layer) containing copolymerized polyester A as a main component resin,
The copolymerized polyester A is a copolymer of terephthalic acid and “other dicarboxylic acid components”, ethylene glycol and “other alcohol components”, and “other dicarboxylic acid components” in the dicarboxylic acid component in the copolymerized polyester. The ratio of the “acid component” is 5 mol% or more and 20 mol% or less, and the ratio of the “other alcohol component” in the alcohol component is 1 mol% or more and less than 25 mol%,
The present invention proposes a copolymer polyester film having a storage elastic modulus at 25 ° C of 2500 MPa or less and a storage elastic modulus at 120 ° C of 10 MPa or more.
本発明はまた、1種又は2種以上のポリエステルを含有する共重合ポリエステル層(I層)を備えた共重合ポリエステルフィルムであって、
共重合ポリエステル層(I層)に含まれる全ポリエステルにおいて、ジカルボン酸成分の含有量合計に占める「その他のジカルボン酸成分」の含有量合計の割合は5mol%以上20mol%以下であり、アルコール成分の含有量合計に占める「その他のアルコール成分」の含有量合計の割合は1mol%以上25mol%未満であり、
25℃の貯蔵弾性率が2500MPa以下であり、且つ、120℃の貯蔵弾性率が10MPa以上であることを特徴とする共重合ポリエステルフィルムを提案する。 The present invention also relates to a copolymerized polyester film provided with a copolymerized polyester layer (I layer) containing one or more polyesters,
In all the polyesters contained in the copolymerized polyester layer (I layer), the ratio of the total content of the “other dicarboxylic acid components” to the total content of the dicarboxylic acid components is 5 mol% or more and 20 mol% or less, and the alcohol component The ratio of the total content of “other alcohol components” to the total content is 1 mol% or more and less than 25 mol%,
The present invention proposes a copolymer polyester film having a storage elastic modulus at 25 ° C of 2500 MPa or less and a storage elastic modulus at 120 ° C of 10 MPa or more.
共重合ポリエステル層(I層)に含まれる全ポリエステルにおいて、ジカルボン酸成分の含有量合計に占める「その他のジカルボン酸成分」の含有量合計の割合は5mol%以上20mol%以下であり、アルコール成分の含有量合計に占める「その他のアルコール成分」の含有量合計の割合は1mol%以上25mol%未満であり、
25℃の貯蔵弾性率が2500MPa以下であり、且つ、120℃の貯蔵弾性率が10MPa以上であることを特徴とする共重合ポリエステルフィルムを提案する。 The present invention also relates to a copolymerized polyester film provided with a copolymerized polyester layer (I layer) containing one or more polyesters,
In all the polyesters contained in the copolymerized polyester layer (I layer), the ratio of the total content of the “other dicarboxylic acid components” to the total content of the dicarboxylic acid components is 5 mol% or more and 20 mol% or less, and the alcohol component The ratio of the total content of “other alcohol components” to the total content is 1 mol% or more and less than 25 mol%,
The present invention proposes a copolymer polyester film having a storage elastic modulus at 25 ° C of 2500 MPa or less and a storage elastic modulus at 120 ° C of 10 MPa or more.
本発明が提案する共重合ポリエステルフィルムは、常温で柔軟性に優れており、単に柔軟であるだけでなく、よりしなやかであり、それでいて、伸度及び強度を有しており、さらには実用上十分な耐熱性を有することができる。よって、本発明が提案する共重合ポリエステルフィルムは、例えば電池用包装材、画像表示用部材、特にフレキシブルディスプレイやウェアラブル端末などの構成部材として好適に用いることができる。
The copolymerized polyester film proposed by the present invention is excellent in flexibility at room temperature, is not only flexible, but also more pliable, yet has elongation and strength, and is practically sufficient High heat resistance. Therefore, the copolymerized polyester film proposed by the present invention can be suitably used as, for example, a packaging material for a battery, a member for image display, particularly a component such as a flexible display or a wearable terminal.
次に、本発明の実施形態の一例について説明する。但し、本発明が、次に説明する実施形態に限定されるものではない。
Next, an example of an embodiment of the present invention will be described. However, the present invention is not limited to the embodiment described below.
<本共重合ポリエステルフィルム>
本発明の実施形態の一例に係る共重合ポリエステルフィルム(「本共重合ポリエステルフィルム」と称する)は、共重合ポリエステルAを主成分樹脂として含有する共重合ポリエステル層(I層)を備えた単層又は積層のフィルムである。 <The present copolymerized polyester film>
The copolyester film according to an example of the embodiment of the present invention (referred to as “the present copolyester film”) is a single layer having a copolyester layer (I layer) containing copolyester A as a main component resin. Or it is a laminated film.
本発明の実施形態の一例に係る共重合ポリエステルフィルム(「本共重合ポリエステルフィルム」と称する)は、共重合ポリエステルAを主成分樹脂として含有する共重合ポリエステル層(I層)を備えた単層又は積層のフィルムである。 <The present copolymerized polyester film>
The copolyester film according to an example of the embodiment of the present invention (referred to as “the present copolyester film”) is a single layer having a copolyester layer (I layer) containing copolyester A as a main component resin. Or it is a laminated film.
本共重合ポリエステルフィルムは、無延伸フィルム(シート)であっても延伸フィルムであってもよい。中でも、一軸方向又は二軸方向に延伸された延伸フィルムであるのが好ましい。その中でも、力学特性のバランスや平面性に優れる点で、二軸延伸フィルムであるのが好ましい。本共重合ポリエステルフィルムが、このような延伸フィルムであれば、120℃の貯蔵弾性率を10MPa以上とすることが容易となる傾向がある。
The present copolymerized polyester film may be a non-stretched film (sheet) or a stretched film. Among them, a stretched film stretched in a uniaxial direction or a biaxial direction is preferable. Among them, a biaxially stretched film is preferable in terms of excellent balance of mechanical properties and excellent flatness. When the present copolymerized polyester film is such a stretched film, the storage elastic modulus at 120 ° C. tends to be easily set to 10 MPa or more.
<共重合ポリエステル層(I層)>
共重合ポリエステル層(I層)は、共重合ポリエステルAを主成分樹脂として含有する層である。 <Copolymerized polyester layer (I layer)>
The copolymerized polyester layer (I layer) is a layer containing copolymerized polyester A as a main component resin.
共重合ポリエステル層(I層)は、共重合ポリエステルAを主成分樹脂として含有する層である。 <Copolymerized polyester layer (I layer)>
The copolymerized polyester layer (I layer) is a layer containing copolymerized polyester A as a main component resin.
ここで、前記「主成分樹脂」とは、共重合ポリエステル層(I層)を構成する樹脂のうち最も含有割合の多い樹脂の意味である。当該主成分樹脂は、共重合ポリエステル層(I層)を構成する樹脂のうち30質量%以上、中でも50質量%以上、その中でも80質量%以上(100質量%を含む)を占める場合がある。
Here, the “main component resin” means a resin having the highest content ratio among the resins constituting the copolymerized polyester layer (I layer). The main component resin may account for 30% by mass or more, particularly 50% by mass or more, and especially 80% by mass or more (including 100% by mass) of the resin constituting the copolymerized polyester layer (I layer).
共重合ポリエステル層(I層)は、構成する樹脂が共重合ポリエステルAのみであってもよいし、共重合ポリエステルA以外の樹脂Bを含むものであってもよい。
この際、樹脂Bとしては、共重合ポリエステルAと相溶する樹脂であるのが好ましい。
共重合ポリエステル層(I層)が、共重合ポリエステルAと、これと相溶する樹脂Bとを含む場合については後述する。 The composing polyester layer (I layer) may be composed of only the copolyester A or a resin containing a resin B other than the copolyester A.
At this time, the resin B is preferably a resin compatible with the copolyester A.
The case where the copolymerized polyester layer (I layer) contains the copolymerized polyester A and the resin B compatible therewith will be described later.
この際、樹脂Bとしては、共重合ポリエステルAと相溶する樹脂であるのが好ましい。
共重合ポリエステル層(I層)が、共重合ポリエステルAと、これと相溶する樹脂Bとを含む場合については後述する。 The composing polyester layer (I layer) may be composed of only the copolyester A or a resin containing a resin B other than the copolyester A.
At this time, the resin B is preferably a resin compatible with the copolyester A.
The case where the copolymerized polyester layer (I layer) contains the copolymerized polyester A and the resin B compatible therewith will be described later.
(共重合ポリエステルA)
共重合ポリエステルAは、テレフタル酸及びその他のジカルボン酸成分と、エチレングリコール及びその他のアルコール成分との共重合体である共重合ポリエステルであるのが好ましい。 (Copolymer polyester A)
The copolymer polyester A is preferably a copolymer polyester which is a copolymer of terephthalic acid and other dicarboxylic acid components and ethylene glycol and other alcohol components.
共重合ポリエステルAは、テレフタル酸及びその他のジカルボン酸成分と、エチレングリコール及びその他のアルコール成分との共重合体である共重合ポリエステルであるのが好ましい。 (Copolymer polyester A)
The copolymer polyester A is preferably a copolymer polyester which is a copolymer of terephthalic acid and other dicarboxylic acid components and ethylene glycol and other alcohol components.
共重合ポリエステルAは、結晶性であっても、非晶性であってもよい。
なお、本発明において、なお、結晶性のポリエステル樹脂とは、一般に結晶融解ピーク温度(融点)が存在するとされるポリエステル樹脂を指し、より具体的にはJIS K7121(1987)に準拠して行う示差走査熱量測定(DSC)において融点が観測されるポリエステル樹脂であって、いわゆる半結晶性の状態のものを包含する。逆に、DSCにおいて融点が観測されない熱可塑性樹脂を「非晶性」と称する。結晶性のポリエステルとは、一般に結晶融解ピーク温度(融点)が存在するとされるポリエステルを指す。より具体的にはJIS K7121(1987)に準拠して行う示差走査熱量測定(DSC)において融点が観測されるポリエステルであって、いわゆる半結晶性の状態のものを包含する。
逆に、DSCにおいて融点が観測されない熱可塑性樹脂を「非晶性」と称する。 The copolyester A may be crystalline or amorphous.
In the present invention, the crystalline polyester resin generally refers to a polyester resin having a crystal melting peak temperature (melting point), and more specifically, a differential resin made in accordance with JIS K7121 (1987). A polyester resin whose melting point is observed in scanning calorimetry (DSC) includes a so-called semi-crystalline state. Conversely, a thermoplastic resin whose melting point is not observed in DSC is referred to as “amorphous”. A crystalline polyester generally refers to a polyester having a crystal melting peak temperature (melting point). More specifically, it includes a polyester whose melting point is observed in differential scanning calorimetry (DSC) performed according to JIS K7121 (1987), and includes a so-called semi-crystalline state.
Conversely, a thermoplastic resin whose melting point is not observed in DSC is referred to as “amorphous”.
なお、本発明において、なお、結晶性のポリエステル樹脂とは、一般に結晶融解ピーク温度(融点)が存在するとされるポリエステル樹脂を指し、より具体的にはJIS K7121(1987)に準拠して行う示差走査熱量測定(DSC)において融点が観測されるポリエステル樹脂であって、いわゆる半結晶性の状態のものを包含する。逆に、DSCにおいて融点が観測されない熱可塑性樹脂を「非晶性」と称する。結晶性のポリエステルとは、一般に結晶融解ピーク温度(融点)が存在するとされるポリエステルを指す。より具体的にはJIS K7121(1987)に準拠して行う示差走査熱量測定(DSC)において融点が観測されるポリエステルであって、いわゆる半結晶性の状態のものを包含する。
逆に、DSCにおいて融点が観測されない熱可塑性樹脂を「非晶性」と称する。 The copolyester A may be crystalline or amorphous.
In the present invention, the crystalline polyester resin generally refers to a polyester resin having a crystal melting peak temperature (melting point), and more specifically, a differential resin made in accordance with JIS K7121 (1987). A polyester resin whose melting point is observed in scanning calorimetry (DSC) includes a so-called semi-crystalline state. Conversely, a thermoplastic resin whose melting point is not observed in DSC is referred to as “amorphous”. A crystalline polyester generally refers to a polyester having a crystal melting peak temperature (melting point). More specifically, it includes a polyester whose melting point is observed in differential scanning calorimetry (DSC) performed according to JIS K7121 (1987), and includes a so-called semi-crystalline state.
Conversely, a thermoplastic resin whose melting point is not observed in DSC is referred to as “amorphous”.
前記「その他のジカルボン酸成分」としては、芳香族ジカルボン酸、脂環族ジカルボン酸、脂肪族ジカルボン酸、多官能酸などを挙げることができる。なお、「その他のジカルボン酸成分」は2種以上を併用してもよい。このように2種以上を併用することにより、共重合ポリエステルフィルムをより効果的に柔軟化できるだけでなく、結晶構造を保持させることができ、耐熱性を有する場合もある。
中でも、本共重合ポリエステルフィルムを柔軟化し易くする観点から、「その他のジカルボン酸成分」としては、イソフタル酸、2,6-ナフタレンジカルボン酸、ジフェニルジカルボン酸などの芳香族ジカルボン酸、アジピン酸、セバシン酸、ドデカン二酸、エイコ酸及びそれらの誘導体などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロペンタンジカルボン酸、シクロオクタンジカルボン酸などの脂環族ジカルボン酸、又は、ダイマー酸が好ましい。中でも、脂肪族ジカルボン酸又はダイマー酸を含むことが好ましい。
脂肪族ジカルボン酸の中でも、ガラス転移温度をより下げることができる観点から、炭素数20~80、中でも30以上或いは60以下、その中でも36以上或いは48以下の脂肪族ジカルボン酸が特に好ましい。 Examples of the “other dicarboxylic acid component” include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, aliphatic dicarboxylic acids, and polyfunctional acids. In addition, you may use together 2 or more types of "other dicarboxylic acid components." By using two or more kinds in combination as described above, not only can the copolymerized polyester film be more effectively softened, but also the crystal structure can be maintained and heat resistance may be obtained.
Among them, from the viewpoint of facilitating the softening of the copolymerized polyester film, the "other dicarboxylic acid components" include aromatic dicarboxylic acids such as isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, adipic acid, and sebacine. Aliphatic dicarboxylic acids such as acids, dodecane diacids, eico acids and derivatives thereof, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, cyclooctanedicarboxylic acid, or Dimer acid is preferred. Especially, it is preferable to contain an aliphatic dicarboxylic acid or a dimer acid.
Among aliphatic dicarboxylic acids, from the viewpoint of further lowering the glass transition temperature, aliphatic dicarboxylic acids having 20 to 80 carbon atoms, particularly 30 or more and 60 or less, and among them, 36 or 48 or less are particularly preferable.
中でも、本共重合ポリエステルフィルムを柔軟化し易くする観点から、「その他のジカルボン酸成分」としては、イソフタル酸、2,6-ナフタレンジカルボン酸、ジフェニルジカルボン酸などの芳香族ジカルボン酸、アジピン酸、セバシン酸、ドデカン二酸、エイコ酸及びそれらの誘導体などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロペンタンジカルボン酸、シクロオクタンジカルボン酸などの脂環族ジカルボン酸、又は、ダイマー酸が好ましい。中でも、脂肪族ジカルボン酸又はダイマー酸を含むことが好ましい。
脂肪族ジカルボン酸の中でも、ガラス転移温度をより下げることができる観点から、炭素数20~80、中でも30以上或いは60以下、その中でも36以上或いは48以下の脂肪族ジカルボン酸が特に好ましい。 Examples of the “other dicarboxylic acid component” include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, aliphatic dicarboxylic acids, and polyfunctional acids. In addition, you may use together 2 or more types of "other dicarboxylic acid components." By using two or more kinds in combination as described above, not only can the copolymerized polyester film be more effectively softened, but also the crystal structure can be maintained and heat resistance may be obtained.
Among them, from the viewpoint of facilitating the softening of the copolymerized polyester film, the "other dicarboxylic acid components" include aromatic dicarboxylic acids such as isophthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, adipic acid, and sebacine. Aliphatic dicarboxylic acids such as acids, dodecane diacids, eico acids and derivatives thereof, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, cyclooctanedicarboxylic acid, or Dimer acid is preferred. Especially, it is preferable to contain an aliphatic dicarboxylic acid or a dimer acid.
Among aliphatic dicarboxylic acids, from the viewpoint of further lowering the glass transition temperature, aliphatic dicarboxylic acids having 20 to 80 carbon atoms, particularly 30 or more and 60 or less, and among them, 36 or 48 or less are particularly preferable.
前記ダイマー酸としては、不飽和脂肪酸の二量体からなるジカルボン酸であって不飽和脂肪酸の炭素数が18以上のものが好ましい。そのようなダイマー酸の例として、オレイン酸、エライジン酸、セトレイン酸、エルカ酸、ブラシジン酸、リノール酸、リノレン酸等から選ばれた互いに異なる又は同一の不飽和脂肪酸を用いて二量化したものを挙げることができる。さらに、そのような二量化後に水素添加したものも使用することができる。なお、前記ダイマー酸は芳香族環や脂環族単環および脂環族多環を含むものでもよい。
このようなダイマー酸の中でも、ガラス転移温度をより下げることができる観点から、炭素数20~80、中でも26以上或いは60以下、その中でも30以上或いは50以下のダイマー酸が好ましい。 The dimer acid is preferably a dicarboxylic acid composed of a dimer of an unsaturated fatty acid, wherein the unsaturated fatty acid has 18 or more carbon atoms. Examples of such dimer acids include oleic acid, elaidic acid, setreic acid, erucic acid, brassic acid, linoleic acid, those dimerized using different or identical unsaturated fatty acids selected from linolenic acid, and the like. Can be mentioned. Further, those obtained by hydrogenation after such dimerization can also be used. The dimer acid may contain an aromatic ring, an alicyclic monocyclic ring, or an alicyclic polycyclic ring.
Among such dimer acids, from the viewpoint of further reducing the glass transition temperature, dimer acids having 20 to 80 carbon atoms, particularly 26 or more or 60 or less, and among them, 30 or more or 50 or less are preferable.
このようなダイマー酸の中でも、ガラス転移温度をより下げることができる観点から、炭素数20~80、中でも26以上或いは60以下、その中でも30以上或いは50以下のダイマー酸が好ましい。 The dimer acid is preferably a dicarboxylic acid composed of a dimer of an unsaturated fatty acid, wherein the unsaturated fatty acid has 18 or more carbon atoms. Examples of such dimer acids include oleic acid, elaidic acid, setreic acid, erucic acid, brassic acid, linoleic acid, those dimerized using different or identical unsaturated fatty acids selected from linolenic acid, and the like. Can be mentioned. Further, those obtained by hydrogenation after such dimerization can also be used. The dimer acid may contain an aromatic ring, an alicyclic monocyclic ring, or an alicyclic polycyclic ring.
Among such dimer acids, from the viewpoint of further reducing the glass transition temperature, dimer acids having 20 to 80 carbon atoms, particularly 26 or more or 60 or less, and among them, 30 or more or 50 or less are preferable.
前記の通り、「その他のジカルボン酸成分」は任意に選択することができる。中でも、芳香族ジカルボン酸から1種以上を選択し、脂肪族ジカルボン酸、脂環族ジカルボン酸、ダイマー酸から1種以上を選択して併用することが好ましい。中でも、イソフタル酸、脂肪族ジカルボン酸及びダイマー酸のうちの2種類以上を含むのが特に好ましく、とりわけ、イソフタル酸、炭素数が20~80の脂肪族ジカルボン酸及びダイマー酸のうちの2種類以上を含むのが特に好ましい。
「その他のジカルボン酸成分」として芳香族ジカルボン酸を用いると、強度及び耐熱性を維持しつつフィルムを柔軟化することが出来る傾向がある。一方、「その他のジカルボン酸成分」として脂肪族ジカルボン酸、脂環族ジカルボン酸、ダイマー酸から選択して用いると、伸度(破断伸度)を維持しつつ、より少量の含有割合でフィルムを柔軟化することが出来る傾向があり、中でも、ダイマー酸を用いることが最も効果的である。従って、「その他のジカルボン酸成分」を上記のように組み合わせて併用することにより、強度、耐熱性、伸度、柔軟性を良好に兼ね備えたフィルムとすることが可能となる。 As described above, the “other dicarboxylic acid component” can be arbitrarily selected. Above all, it is preferable to select one or more from aromatic dicarboxylic acids and select and use one or more from aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, and dimer acids. Among them, it is particularly preferable to include two or more of isophthalic acid, aliphatic dicarboxylic acid and dimer acid, and particularly, two or more of isophthalic acid, aliphatic dicarboxylic acid having 20 to 80 carbon atoms and dimer acid. It is particularly preferred to include
When an aromatic dicarboxylic acid is used as the “other dicarboxylic acid component”, the film tends to be flexible while maintaining strength and heat resistance. On the other hand, when an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid, or a dimer acid is used as the “other dicarboxylic acid component”, the film can be formed at a smaller content while maintaining the elongation (elongation at break). It tends to be soft, and among them, the use of dimer acid is most effective. Therefore, a film having good strength, heat resistance, elongation, and flexibility can be obtained by combining and using "other dicarboxylic acid components" as described above.
「その他のジカルボン酸成分」として芳香族ジカルボン酸を用いると、強度及び耐熱性を維持しつつフィルムを柔軟化することが出来る傾向がある。一方、「その他のジカルボン酸成分」として脂肪族ジカルボン酸、脂環族ジカルボン酸、ダイマー酸から選択して用いると、伸度(破断伸度)を維持しつつ、より少量の含有割合でフィルムを柔軟化することが出来る傾向があり、中でも、ダイマー酸を用いることが最も効果的である。従って、「その他のジカルボン酸成分」を上記のように組み合わせて併用することにより、強度、耐熱性、伸度、柔軟性を良好に兼ね備えたフィルムとすることが可能となる。 As described above, the “other dicarboxylic acid component” can be arbitrarily selected. Above all, it is preferable to select one or more from aromatic dicarboxylic acids and select and use one or more from aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, and dimer acids. Among them, it is particularly preferable to include two or more of isophthalic acid, aliphatic dicarboxylic acid and dimer acid, and particularly, two or more of isophthalic acid, aliphatic dicarboxylic acid having 20 to 80 carbon atoms and dimer acid. It is particularly preferred to include
When an aromatic dicarboxylic acid is used as the “other dicarboxylic acid component”, the film tends to be flexible while maintaining strength and heat resistance. On the other hand, when an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid, or a dimer acid is used as the “other dicarboxylic acid component”, the film can be formed at a smaller content while maintaining the elongation (elongation at break). It tends to be soft, and among them, the use of dimer acid is most effective. Therefore, a film having good strength, heat resistance, elongation, and flexibility can be obtained by combining and using "other dicarboxylic acid components" as described above.
共重合ポリエステルAにおいて、ジカルボン酸成分、すなわちテレフタル酸及び「その他のジカルボン酸成分」の合計に占める「その他のジカルボン酸成分」の割合は、5~20mol%であるのが好ましく、中でも8mol%以上或いは18mol%以下、その中でも10mol%以上或いは15mol%以下であるのがさらに好ましい。ここで「その他のジカルボン酸成分」を2種以上併用する場合は、それらの合計量を意味する。
「その他のジカルボン酸成分」の割合が前記範囲であると、本共重合ポリエステルフィルムが、良好な伸度、強度及び耐熱性を有しつつ、効果的に柔軟化できる傾向がある。 In the copolyester A, the proportion of the dicarboxylic acid component, that is, “other dicarboxylic acid component” in the total of terephthalic acid and “other dicarboxylic acid component” is preferably 5 to 20 mol%, and more preferably 8 mol% or more. Alternatively, the content is more preferably 18 mol% or less, among which 10 mol% or more or 15 mol% or less. When two or more other “dicarboxylic acid components” are used in combination, the total amount thereof is meant.
When the proportion of the “other dicarboxylic acid component” is within the above range, the copolymerized polyester film tends to be effectively softened while having good elongation, strength and heat resistance.
「その他のジカルボン酸成分」の割合が前記範囲であると、本共重合ポリエステルフィルムが、良好な伸度、強度及び耐熱性を有しつつ、効果的に柔軟化できる傾向がある。 In the copolyester A, the proportion of the dicarboxylic acid component, that is, “other dicarboxylic acid component” in the total of terephthalic acid and “other dicarboxylic acid component” is preferably 5 to 20 mol%, and more preferably 8 mol% or more. Alternatively, the content is more preferably 18 mol% or less, among which 10 mol% or more or 15 mol% or less. When two or more other “dicarboxylic acid components” are used in combination, the total amount thereof is meant.
When the proportion of the “other dicarboxylic acid component” is within the above range, the copolymerized polyester film tends to be effectively softened while having good elongation, strength and heat resistance.
前記「その他のアルコール成分(ジオール成分)」としては、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリメチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ビスフェノールおよびそれらの誘導体などを挙げることができる。中でも、柔軟性の観点からはジエチレングリコールが好ましく、耐熱性及び強度の観点からは1,4-ブタンジオールが好ましい。
なお、通常、エチレングリコールを原料の1つとしてポリエステルを製造(重縮合)する場合、エチレングリコールの一部は変性してジエチレングリコールとなってポリエステル骨格に導入される。このジエチレングリコールを副生ジエチレングリコールと称し、その副生量は、重縮合の様式(エステル交換法、直接重縮合)等によっても異なるが、エチレングリコールのうち1~5モル%程度である。本発明においては、このようにエチレングリコールから副生されるジエチレングリコールも共重合成分として扱い、「その他のアルコール成分」に包含するものとする。 Examples of the “other alcohol component (diol component)” include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, trimethylene glycol, neopentyl glycol, 1,4-cyclohexane dimethanol, bisphenol, and the like. Derivatives and the like can be mentioned. Among them, diethylene glycol is preferable from the viewpoint of flexibility, and 1,4-butanediol is preferable from the viewpoint of heat resistance and strength.
In general, when a polyester is produced (polycondensed) using ethylene glycol as one of the raw materials, a part of the ethylene glycol is modified into diethylene glycol and introduced into the polyester skeleton. This diethylene glycol is referred to as by-product diethylene glycol. The amount of by-product varies depending on the type of polycondensation (ester exchange method, direct polycondensation) and the like, but is about 1 to 5 mol% of ethylene glycol. In the present invention, diethylene glycol by-produced from ethylene glycol as described above is also treated as a copolymer component, and is included in “other alcohol components”.
なお、通常、エチレングリコールを原料の1つとしてポリエステルを製造(重縮合)する場合、エチレングリコールの一部は変性してジエチレングリコールとなってポリエステル骨格に導入される。このジエチレングリコールを副生ジエチレングリコールと称し、その副生量は、重縮合の様式(エステル交換法、直接重縮合)等によっても異なるが、エチレングリコールのうち1~5モル%程度である。本発明においては、このようにエチレングリコールから副生されるジエチレングリコールも共重合成分として扱い、「その他のアルコール成分」に包含するものとする。 Examples of the “other alcohol component (diol component)” include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, trimethylene glycol, neopentyl glycol, 1,4-cyclohexane dimethanol, bisphenol, and the like. Derivatives and the like can be mentioned. Among them, diethylene glycol is preferable from the viewpoint of flexibility, and 1,4-butanediol is preferable from the viewpoint of heat resistance and strength.
In general, when a polyester is produced (polycondensed) using ethylene glycol as one of the raw materials, a part of the ethylene glycol is modified into diethylene glycol and introduced into the polyester skeleton. This diethylene glycol is referred to as by-product diethylene glycol. The amount of by-product varies depending on the type of polycondensation (ester exchange method, direct polycondensation) and the like, but is about 1 to 5 mol% of ethylene glycol. In the present invention, diethylene glycol by-produced from ethylene glycol as described above is also treated as a copolymer component, and is included in “other alcohol components”.
共重合ポリエステルAにおいて、アルコール成分(ジオール成分)、すなわちエチレングリコール及び「その他のアルコール成分」の合計に占める「その他のアルコール成分(ジオール成分)」の割合は1mol%以上25mol%未満であるのが好ましく、中でも2mol%以上或いは20mol%以下、その中でも3mol%以上或いは18mol%以下であるのがさらに好ましい。ここで「その他のアルコール成分」を2種以上併用する場合は、それらの合計量を意味する。
「その他のアルコール成分」の割合が前記範囲であると、本共重合ポリエステルフィルムが、良好な伸度、強度及び耐熱性を有しつつ、効果的に柔軟化できる傾向がある。
なお、「その他のアルコール成分」は2種以上を併用してもよい。2種以上を併用することにより、共重合ポリエステルフィルムをより効果的に柔軟化できる場合がある。 In the copolyester A, the proportion of the alcohol component (diol component), that is, the “other alcohol component (diol component)” in the total of ethylene glycol and the “other alcohol component” is 1 mol% or more and less than 25 mol%. More preferably, it is 2 mol% or more or 20 mol% or less, and more preferably 3 mol% or more or 18 mol% or less. Here, when two or more “other alcohol components” are used in combination, the total amount thereof is meant.
When the proportion of the “other alcohol component” is within the above range, the copolymerized polyester film tends to be effectively softened while having good elongation, strength and heat resistance.
In addition, you may use 2 or more types of "other alcohol components" together. By using two or more kinds together, the copolyester film may be more effectively softened in some cases.
「その他のアルコール成分」の割合が前記範囲であると、本共重合ポリエステルフィルムが、良好な伸度、強度及び耐熱性を有しつつ、効果的に柔軟化できる傾向がある。
なお、「その他のアルコール成分」は2種以上を併用してもよい。2種以上を併用することにより、共重合ポリエステルフィルムをより効果的に柔軟化できる場合がある。 In the copolyester A, the proportion of the alcohol component (diol component), that is, the “other alcohol component (diol component)” in the total of ethylene glycol and the “other alcohol component” is 1 mol% or more and less than 25 mol%. More preferably, it is 2 mol% or more or 20 mol% or less, and more preferably 3 mol% or more or 18 mol% or less. Here, when two or more “other alcohol components” are used in combination, the total amount thereof is meant.
When the proportion of the “other alcohol component” is within the above range, the copolymerized polyester film tends to be effectively softened while having good elongation, strength and heat resistance.
In addition, you may use 2 or more types of "other alcohol components" together. By using two or more kinds together, the copolyester film may be more effectively softened in some cases.
また、「その他のジカルボン酸成分」と「その他のアルコール成分」とを合計して、3種以上を併用することが好ましい。共重合成分を複数併用することにより、より少量の含有割合でフィルムを柔軟化することが出来る傾向がある。なお、共重合成分の種類が多すぎると、フィルムの特性を安定化させることが困難な場合があるため、「その他のジカルボン酸成分」と「その他のアルコール成分」は、合計して3~5種であることが好ましく、中でも3種又は4種であることが好ましい。
In addition, it is preferable that the “other dicarboxylic acid component” and the “other alcohol component” are used in total and used in combination of three or more. By using a plurality of copolymer components in combination, the film tends to be softened with a smaller content ratio. If the type of the copolymer component is too large, it may be difficult to stabilize the properties of the film. Therefore, the “other dicarboxylic acid component” and the “other alcohol component” are 3 to 5 in total. It is preferably a species, and more preferably three or four species.
前記の中でも特に好ましい共重合ポリエステルAとして、テレフタル酸、イソフタル酸及び脂肪族ジカルボン酸もしくはダイマー酸と、エチレングリコール及びジエチレングリコールとの共重合体であり、共重合ポリエステルを構成するジカルボン酸成分に占めるイソフタル酸、脂肪族ジカルボン酸もしくはダイマー酸の割合が5mol%以上20mol%以下であり、共重合ポリエステルを構成するアルコール成分に占めるジエチレングリコールの割合が1mol%以上25mol%未満であり、結晶性の共重合ポリエステルAaを挙げることができる。
通常、共重合ポリエステルは、弾性率を下げるために共重合成分の比率を高めると結晶性が低下し、更にその比率を高めると非晶性となる。前記共重合ポリエステルAaは共重合成分の比率が高く、低い弾性率を実現することができるにもかかわらず、結晶性を維持しているため、延伸後の熱処理により熱固定することができる。その結果、共重合ポリエステルAaはしなやかであり、それでいて、伸度、強度が良好であり、更に、熱収縮を抑えることができる。 Among the above-mentioned particularly preferred copolymer polyester A, terephthalic acid, isophthalic acid and aliphatic dicarboxylic acid or dimer acid, and a copolymer of ethylene glycol and diethylene glycol, isophthalic acid in the dicarboxylic acid component constituting the copolymerized polyester The ratio of the acid, aliphatic dicarboxylic acid or dimer acid is 5 mol% or more and 20 mol% or less, and the ratio of diethylene glycol in the alcohol component constituting the copolymer polyester is 1 mol% or more and less than 25 mol%, Aa can be mentioned.
Usually, the crystallinity of the copolymerized polyester decreases when the proportion of the copolymer component is increased in order to decrease the elastic modulus, and becomes amorphous when the proportion is further increased. Although the copolymerized polyester Aa has a high copolymerization component ratio and can realize a low elastic modulus, it maintains the crystallinity, and thus can be heat-set by heat treatment after stretching. As a result, the copolymerized polyester Aa is flexible, and yet has good elongation and strength, and can further suppress heat shrinkage.
通常、共重合ポリエステルは、弾性率を下げるために共重合成分の比率を高めると結晶性が低下し、更にその比率を高めると非晶性となる。前記共重合ポリエステルAaは共重合成分の比率が高く、低い弾性率を実現することができるにもかかわらず、結晶性を維持しているため、延伸後の熱処理により熱固定することができる。その結果、共重合ポリエステルAaはしなやかであり、それでいて、伸度、強度が良好であり、更に、熱収縮を抑えることができる。 Among the above-mentioned particularly preferred copolymer polyester A, terephthalic acid, isophthalic acid and aliphatic dicarboxylic acid or dimer acid, and a copolymer of ethylene glycol and diethylene glycol, isophthalic acid in the dicarboxylic acid component constituting the copolymerized polyester The ratio of the acid, aliphatic dicarboxylic acid or dimer acid is 5 mol% or more and 20 mol% or less, and the ratio of diethylene glycol in the alcohol component constituting the copolymer polyester is 1 mol% or more and less than 25 mol%, Aa can be mentioned.
Usually, the crystallinity of the copolymerized polyester decreases when the proportion of the copolymer component is increased in order to decrease the elastic modulus, and becomes amorphous when the proportion is further increased. Although the copolymerized polyester Aa has a high copolymerization component ratio and can realize a low elastic modulus, it maintains the crystallinity, and thus can be heat-set by heat treatment after stretching. As a result, the copolymerized polyester Aa is flexible, and yet has good elongation and strength, and can further suppress heat shrinkage.
(樹脂B)
上述したように、共重合ポリエステル層(I層)は、共重合ポリエステルAと、これと相溶する樹脂Bとを含む層であってもよい。
なお、本発明において、「相溶」とは、混合した2種類以上の樹脂が分子レベルで完全に混ざり合う状態を意味する。この際、分子レベルで混ざり合っている非晶領域は単一の相と見なすことができ、ミクロブラウン運動も単一の温度で生じる。従って、2種類以上の樹脂が相溶する場合、当該2種類以上の樹脂の混合樹脂の融点又はガラス転移温度は単一となり、主分散のピークも単一となる。よって、逆に言えば、共重合ポリエステルAに相溶する樹脂とは、共重合ポリエステルAに混合した際、共重合ポリエステルAの融点又はガラス転移温度を変更させることができる樹脂であると定義することもできる。
なお、この際のガラス転移温度とは、例えば歪み0.1%、周波数10Hz、昇温速度3℃/分の条件にて動的粘弾性の温度分散測定(JIS K7244法の動的粘弾性測定)を行った際の、損失正接(tanδ)の主分散のピークの温度である。 (Resin B)
As described above, the copolymerized polyester layer (I layer) may be a layer containing a copolymerized polyester A and a resin B compatible therewith.
In the present invention, "compatible" means a state where two or more kinds of mixed resins are completely mixed at a molecular level. At this time, the amorphous region mixed at the molecular level can be regarded as a single phase, and micro-Brownian motion also occurs at a single temperature. Therefore, when two or more kinds of resins are compatible with each other, the mixed resin of the two or more kinds of resins has a single melting point or a single glass transition temperature, and a single main dispersion peak. Therefore, conversely, a resin compatible with the copolyester A is defined as a resin capable of changing the melting point or the glass transition temperature of the copolyester A when mixed with the copolyester A. You can also.
In this case, the glass transition temperature is, for example, a temperature dispersion measurement of dynamic viscoelasticity under conditions of 0.1% strain, 10 Hz frequency, and a heating rate of 3 ° C./min (dynamic viscoelasticity measurement according to JIS K7244 method). ) Is the peak temperature of the main dispersion of the loss tangent (tan δ).
上述したように、共重合ポリエステル層(I層)は、共重合ポリエステルAと、これと相溶する樹脂Bとを含む層であってもよい。
なお、本発明において、「相溶」とは、混合した2種類以上の樹脂が分子レベルで完全に混ざり合う状態を意味する。この際、分子レベルで混ざり合っている非晶領域は単一の相と見なすことができ、ミクロブラウン運動も単一の温度で生じる。従って、2種類以上の樹脂が相溶する場合、当該2種類以上の樹脂の混合樹脂の融点又はガラス転移温度は単一となり、主分散のピークも単一となる。よって、逆に言えば、共重合ポリエステルAに相溶する樹脂とは、共重合ポリエステルAに混合した際、共重合ポリエステルAの融点又はガラス転移温度を変更させることができる樹脂であると定義することもできる。
なお、この際のガラス転移温度とは、例えば歪み0.1%、周波数10Hz、昇温速度3℃/分の条件にて動的粘弾性の温度分散測定(JIS K7244法の動的粘弾性測定)を行った際の、損失正接(tanδ)の主分散のピークの温度である。 (Resin B)
As described above, the copolymerized polyester layer (I layer) may be a layer containing a copolymerized polyester A and a resin B compatible therewith.
In the present invention, "compatible" means a state where two or more kinds of mixed resins are completely mixed at a molecular level. At this time, the amorphous region mixed at the molecular level can be regarded as a single phase, and micro-Brownian motion also occurs at a single temperature. Therefore, when two or more kinds of resins are compatible with each other, the mixed resin of the two or more kinds of resins has a single melting point or a single glass transition temperature, and a single main dispersion peak. Therefore, conversely, a resin compatible with the copolyester A is defined as a resin capable of changing the melting point or the glass transition temperature of the copolyester A when mixed with the copolyester A. You can also.
In this case, the glass transition temperature is, for example, a temperature dispersion measurement of dynamic viscoelasticity under conditions of 0.1% strain, 10 Hz frequency, and a heating rate of 3 ° C./min (dynamic viscoelasticity measurement according to JIS K7244 method). ) Is the peak temperature of the main dispersion of the loss tangent (tan δ).
共重合ポリエステル層(I層)が、共重合ポリエステルA及び樹脂Bを含む層である場合、樹脂Bは、共重合ポリエステルAと相溶する樹脂であって、融点が270℃以下、或いは、非晶性であり、ガラス転移温度が30~120℃である樹脂が好ましい。このような樹脂Bを選択することにより、共重合ポリエステル層(I層)のガラス転移温度を高くすることができ、耐熱性を高めることができる。樹脂Bとして、例えばポリエチレンテレフタレート(PET)などのポリエステルを選択することにより、寸法安定性、耐熱性を付与することができる。
When the copolyester layer (I layer) is a layer containing the copolyester A and the resin B, the resin B is a resin compatible with the copolyester A and has a melting point of 270 ° C. or less, or A resin which is crystalline and has a glass transition temperature of 30 to 120 ° C. is preferred. By selecting such a resin B, the glass transition temperature of the copolymerized polyester layer (I layer) can be increased, and the heat resistance can be increased. By selecting a polyester such as polyethylene terephthalate (PET) as the resin B, dimensional stability and heat resistance can be imparted.
また、柔軟性と耐熱性を両立させる観点から、樹脂Bとして、1種又は2種以上のポリエステルを含み、当該ポリエステル(1種又は2種以上のポリエステル含む)は、ジカルボン酸成分であるテレフタル酸及び「その他のジカルボン酸成分」と、アルコール成分であるエチレングリコール及び「その他のアルコール成分」とを含み、ジカルボン酸成分の合計含有量(2種以上のポリエステル含む場合は、各ポリエステルに含まれるジカルボン酸成分の合計)に対する「その他のジカルボン酸成分」の合計含有量の割合が5mol%以上20mol%以下、中でも好ましくは8mol%以上或いは18mol%以下、その中でも好ましくは10mol%以上或いは15mol%以下であり、アルコール成分の合計含有量(2種以上のポリエステル含む場合は、各ポリエステルに含まれるアルコール成分の合計)に対する「その他のアルコール成分」の合計含有量の割合が1mol%以上25mol%未満、中でも好ましくは2mol%以上或いは20mol%以下、その中でも好ましくは3mol%以上或いは18mol%以下であるのが好ましい。
In addition, from the viewpoint of achieving both flexibility and heat resistance, the resin B contains one or more polyesters, and the polyester (including one or more polyesters) is terephthalic acid, which is a dicarboxylic acid component. And "another dicarboxylic acid component", an alcohol component such as ethylene glycol and "another alcohol component", and a total content of the dicarboxylic acid component (when two or more polyesters are contained, the dicarboxylic acid contained in each polyester is included). The ratio of the total content of "other dicarboxylic acid components" to the total content of the other dicarboxylic acid components is from 5 mol% to 20 mol%, preferably from 8 mol% to 18 mol%, more preferably from 10 mol% to 15 mol%. Yes, the total content of alcohol components (two or more When containing tellurium, the ratio of the total content of the "other alcohol components" to the total of the alcohol components contained in each polyester is 1 mol% or more and less than 25 mol%, preferably 2 mol% or more or 20 mol% or less, more preferably Is preferably 3 mol% or more or 18 mol% or less.
なお、共重合ポリエステル層(I層)は、共重合ポリエステルAと、これと相溶しない樹脂Dとを含む層であってもよい。樹脂Dとしては、例えば、ポリオレフィン、ポリスチレン、アクリル樹脂、ウレタン樹脂等が挙げられる。
The copolyester layer (I layer) may be a layer containing a copolyester A and a resin D incompatible with the copolyester A. Examples of the resin D include polyolefin, polystyrene, acrylic resin, urethane resin and the like.
共重合ポリエステル層(I層)において、共重合ポリエステルAと樹脂Bの質量割合は98:2~50:50であるのが好ましく、中でも95:5~60:40、その中でも90:10~65:35であるのがさらに好ましい。
In the copolymerized polyester layer (I layer), the mass ratio of the copolymerized polyester A to the resin B is preferably 98: 2 to 50:50, more preferably 95: 5 to 60:40, and especially 90:10 to 65. : 35 is more preferable.
なお、共重合ポリエステル層(I層)に含まれるポリエステル全体の成分割合が、共重合ポリエステルAと同様の成分割合であれば、共重合ポリエステルAを主成分樹脂として含む場合と同様の効果を得ることができると考えられる。
よって、共重合ポリエステル層(I層)が、1種又は2種以上のポリエステルを含有する場合において、共重合ポリエステル層(I層)に含まれる全ポリエステルの成分量合計において、ジカルボン酸成分の含有量合計に占める「その他のジカルボン酸成分」の含有量合計の割合は5mol%以上20mol%以下であり、アルコール成分の含有量合計に占める「その他のアルコール成分」の含有量合計の割合は1mol%以上25mol%未満であれば、共重合ポリエステルAを主成分樹脂として含む場合と同様の効果を得ることができる。
この際、ジカルボン酸成分の含有量合計に占める「その他のジカルボン酸成分」の含有量合計の割合の好ましい範囲は、共重合ポリエステルAにおける、ジカルボン酸成分に占める「その他のジカルボン酸成分」の割合の好ましい範囲と同様である。また、アルコール成分の含有量合計に占める「その他のアルコール成分」の含有量合計の割合の好ましい範囲は、共重合ポリエステルAにおける、アルコール成分に占める「その他のアルコール成分」の割合の好ましい範囲と同様である。 If the component ratio of the entire polyester contained in the copolymerized polyester layer (I layer) is the same as that of the copolymerized polyester A, the same effect as in the case where the copolymerized polyester A is contained as the main component resin is obtained. It is thought that it is possible.
Therefore, when the copolymerized polyester layer (I layer) contains one or more polyesters, the content of the dicarboxylic acid component in the total amount of the components of all the polyesters contained in the copolymerized polyester layer (I layer) is included. The ratio of the total content of "other dicarboxylic acid components" to the total amount is 5 mol% to 20 mol%, and the ratio of the total content of "other alcohol components" to the total content of alcohol components is 1 mol%. When the content is at least 25 mol%, the same effect as in the case where the copolyester A is contained as the main component resin can be obtained.
At this time, the preferred range of the ratio of the total content of the “other dicarboxylic acid component” to the total content of the dicarboxylic acid component is the ratio of the “other dicarboxylic acid component” to the dicarboxylic acid component in the copolymerized polyester A. Is the same as the preferred range. The preferred range of the ratio of the total content of the “other alcohol components” to the total content of the alcohol components is the same as the preferred range of the ratio of the “other alcohol components” to the alcohol component in the copolymerized polyester A. It is.
よって、共重合ポリエステル層(I層)が、1種又は2種以上のポリエステルを含有する場合において、共重合ポリエステル層(I層)に含まれる全ポリエステルの成分量合計において、ジカルボン酸成分の含有量合計に占める「その他のジカルボン酸成分」の含有量合計の割合は5mol%以上20mol%以下であり、アルコール成分の含有量合計に占める「その他のアルコール成分」の含有量合計の割合は1mol%以上25mol%未満であれば、共重合ポリエステルAを主成分樹脂として含む場合と同様の効果を得ることができる。
この際、ジカルボン酸成分の含有量合計に占める「その他のジカルボン酸成分」の含有量合計の割合の好ましい範囲は、共重合ポリエステルAにおける、ジカルボン酸成分に占める「その他のジカルボン酸成分」の割合の好ましい範囲と同様である。また、アルコール成分の含有量合計に占める「その他のアルコール成分」の含有量合計の割合の好ましい範囲は、共重合ポリエステルAにおける、アルコール成分に占める「その他のアルコール成分」の割合の好ましい範囲と同様である。 If the component ratio of the entire polyester contained in the copolymerized polyester layer (I layer) is the same as that of the copolymerized polyester A, the same effect as in the case where the copolymerized polyester A is contained as the main component resin is obtained. It is thought that it is possible.
Therefore, when the copolymerized polyester layer (I layer) contains one or more polyesters, the content of the dicarboxylic acid component in the total amount of the components of all the polyesters contained in the copolymerized polyester layer (I layer) is included. The ratio of the total content of "other dicarboxylic acid components" to the total amount is 5 mol% to 20 mol%, and the ratio of the total content of "other alcohol components" to the total content of alcohol components is 1 mol%. When the content is at least 25 mol%, the same effect as in the case where the copolyester A is contained as the main component resin can be obtained.
At this time, the preferred range of the ratio of the total content of the “other dicarboxylic acid component” to the total content of the dicarboxylic acid component is the ratio of the “other dicarboxylic acid component” to the dicarboxylic acid component in the copolymerized polyester A. Is the same as the preferred range. The preferred range of the ratio of the total content of the “other alcohol components” to the total content of the alcohol components is the same as the preferred range of the ratio of the “other alcohol components” to the alcohol component in the copolymerized polyester A. It is.
<積層構成の場合>
本共重合ポリエステルフィルムは、上述したように、共重合ポリエステル層(I層)と他の層を備えた積層フィルムであってもよい。 <In the case of a laminated structure>
As described above, the present copolymerized polyester film may be a laminated film including a copolymerized polyester layer (I layer) and another layer.
本共重合ポリエステルフィルムは、上述したように、共重合ポリエステル層(I層)と他の層を備えた積層フィルムであってもよい。 <In the case of a laminated structure>
As described above, the present copolymerized polyester film may be a laminated film including a copolymerized polyester layer (I layer) and another layer.
例えば、共重合ポリエステル層(I層)の表裏両側に、ポリエステルCを主成分樹脂として含有するポリエステル層(II層)を積層してなる構成を備えた積層フィルムを挙げることができる。
この際、当該ポリエステルCは、共重合ポリエステルAが結晶性の場合は、共重合ポリエステルAの融点よりも高い融点を有するポリエステルであるのが好ましく、共重合ポリエステルAが非晶性の場合は、共重合ポリエステルAのガラス転移点よりも高い温度の融点を有するポリエステルであるのが好ましい。 For example, a laminated film having a configuration in which a polyester layer (II layer) containing polyester C as a main component resin is laminated on both sides of the copolymerized polyester layer (I layer).
At this time, the polyester C is preferably a polyester having a melting point higher than the melting point of the copolyester A when the copolyester A is crystalline, and when the copolyester A is amorphous, It is preferable that the polyester has a melting point at a temperature higher than the glass transition point of the copolymerized polyester A.
この際、当該ポリエステルCは、共重合ポリエステルAが結晶性の場合は、共重合ポリエステルAの融点よりも高い融点を有するポリエステルであるのが好ましく、共重合ポリエステルAが非晶性の場合は、共重合ポリエステルAのガラス転移点よりも高い温度の融点を有するポリエステルであるのが好ましい。 For example, a laminated film having a configuration in which a polyester layer (II layer) containing polyester C as a main component resin is laminated on both sides of the copolymerized polyester layer (I layer).
At this time, the polyester C is preferably a polyester having a melting point higher than the melting point of the copolyester A when the copolyester A is crystalline, and when the copolyester A is amorphous, It is preferable that the polyester has a melting point at a temperature higher than the glass transition point of the copolymerized polyester A.
このようなポリエステルCを主成分樹脂として含有するポリエステル層(II層)を積層してなる構成を備えた積層フィルムであれば、ポリエステル層(II層)/共重合ポリエステル層(I層)/ポリエステル層(II層)となるように原料樹脂組成物を共押出などによって積層し、延伸した後、共重合ポリエステル層(I層)の単層からなる場合に比べて高い温度で熱固定処理することができるため、共重合ポリエステル層(I層)の単層では達成することができないレベルに柔軟化することができたり、耐熱性を上げたり、熱収縮をより一層防ぐことができたりする。
具体的には、本共重合ポリエステルフィルムの25℃での貯蔵弾性率を300~2500MPa、中でも500MPa以上或いは2000MPa以下とすることができる。 In the case of a laminated film having a configuration in which such a polyester layer (II layer) containing polyester C as a main component resin is laminated, polyester layer (II layer) / copolyester layer (I layer) / polyester Laminating the raw resin composition by co-extrusion or the like so as to form a layer (II layer), stretching, and heat-setting at a higher temperature than in the case of a single layer of a copolymerized polyester layer (I layer). Therefore, it can be softened to a level that cannot be achieved with a single layer of the copolyester layer (I layer), can increase heat resistance, and can further prevent heat shrinkage.
Specifically, the storage elastic modulus at 25 ° C. of the copolymerized polyester film can be 300 to 2500 MPa, especially 500 MPa or more and 2000 MPa or less.
具体的には、本共重合ポリエステルフィルムの25℃での貯蔵弾性率を300~2500MPa、中でも500MPa以上或いは2000MPa以下とすることができる。 In the case of a laminated film having a configuration in which such a polyester layer (II layer) containing polyester C as a main component resin is laminated, polyester layer (II layer) / copolyester layer (I layer) / polyester Laminating the raw resin composition by co-extrusion or the like so as to form a layer (II layer), stretching, and heat-setting at a higher temperature than in the case of a single layer of a copolymerized polyester layer (I layer). Therefore, it can be softened to a level that cannot be achieved with a single layer of the copolyester layer (I layer), can increase heat resistance, and can further prevent heat shrinkage.
Specifically, the storage elastic modulus at 25 ° C. of the copolymerized polyester film can be 300 to 2500 MPa, especially 500 MPa or more and 2000 MPa or less.
前記積層フィルムにおいて、ポリエステル層(II層)の各層厚みは、共重合ポリエステル層(I層)の厚みの1~20%であるのが好ましい。
ポリエステル層(II層)の各層厚みが、共重合ポリエステル層(I層)の厚みの1%以上であれば生産性を大きく損なうことなく製膜が可能であり、20%以下であれば要求される柔軟性を十分に確保できるから好ましい。
かかる観点から、ポリエステル層(II層)の各層厚みは、共重合ポリエステル層(I層)の厚みの1~20%であるのが好ましく、中でも3%以上或いは15%以下、その中でも5%以上或いは12%以下であるのがさらに好ましい。
なお、共重合ポリエステル層(I層)の表裏両側に存在するポリエステル層(II層)の厚みは、表裏で異なっていてもよいし、同一でもよい。 In the laminated film, the thickness of each polyester layer (II layer) is preferably 1 to 20% of the thickness of the copolymerized polyester layer (I layer).
If the thickness of each polyester layer (II layer) is 1% or more of the thickness of the copolymerized polyester layer (I layer), film formation can be performed without significantly impairing productivity. This is preferable because sufficient flexibility can be ensured.
From this viewpoint, the thickness of each layer of the polyester layer (II layer) is preferably 1 to 20% of the thickness of the copolymerized polyester layer (I layer), more preferably 3% or more, or 15% or less, and especially 5% or more. Alternatively, it is more preferably 12% or less.
In addition, the thickness of the polyester layer (II layer) present on both sides of the copolymerized polyester layer (I layer) may be different on the front and back, or may be the same.
ポリエステル層(II層)の各層厚みが、共重合ポリエステル層(I層)の厚みの1%以上であれば生産性を大きく損なうことなく製膜が可能であり、20%以下であれば要求される柔軟性を十分に確保できるから好ましい。
かかる観点から、ポリエステル層(II層)の各層厚みは、共重合ポリエステル層(I層)の厚みの1~20%であるのが好ましく、中でも3%以上或いは15%以下、その中でも5%以上或いは12%以下であるのがさらに好ましい。
なお、共重合ポリエステル層(I層)の表裏両側に存在するポリエステル層(II層)の厚みは、表裏で異なっていてもよいし、同一でもよい。 In the laminated film, the thickness of each polyester layer (II layer) is preferably 1 to 20% of the thickness of the copolymerized polyester layer (I layer).
If the thickness of each polyester layer (II layer) is 1% or more of the thickness of the copolymerized polyester layer (I layer), film formation can be performed without significantly impairing productivity. This is preferable because sufficient flexibility can be ensured.
From this viewpoint, the thickness of each layer of the polyester layer (II layer) is preferably 1 to 20% of the thickness of the copolymerized polyester layer (I layer), more preferably 3% or more, or 15% or less, and especially 5% or more. Alternatively, it is more preferably 12% or less.
In addition, the thickness of the polyester layer (II layer) present on both sides of the copolymerized polyester layer (I layer) may be different on the front and back, or may be the same.
ポリエステルCは、共重合ポリエステルAが結晶性の場合、共重合ポリエステルAの融点よりも10~100℃高い、中でも20℃以上或いは90℃以下高い、その中でも40℃以上或いは70℃以下高い融点を有するポリエステルであるのが好ましく、他方、共重合ポリエステルAが非晶性の場合は、共重合ポリエステルAのガラス転移点よりも120~260℃高い、中でも140℃以上或いは230℃以下高い、その中でも160℃以上或いは200℃以下高い融点を有するポリエステルであるのが好ましい。
なお、共重合ポリエステル層(I層)の表裏両側に存在するポリエステル層(II層)の主成分となるポリエステルCは、表裏で異なっていてもよいし同一でもよい。中でも、表裏のポリエステルCの融点が大きく異ならないことが好ましい。具体的には、表裏両側に存在するポリエステル層(II層)の融点の差が80℃以下、中でも60℃以下、その中でも40℃以下であることが好ましい。
共重合ポリエステル層Aの表裏両側に存在するポリエステル層(II層)中のポリエステルCが同一であると、2種3層の共押出成形が可能となるので、この態様も好ましい。 Polyester C has a melting point that is 10 to 100 ° C. higher than the melting point of copolyester A, particularly 20 ° C. or higher, or 90 ° C. or lower, especially 40 ° C. or higher or 70 ° C. or lower, when copolyester A is crystalline. In the case where the copolyester A is amorphous, the copolyester A is preferably 120 to 260 ° C. higher than the glass transition point of the copolyester A, more preferably 140 ° C. or higher or 230 ° C. or lower. It is preferable that the polyester has a high melting point of 160 ° C. or more or 200 ° C. or less.
In addition, the polyester C which is a main component of the polyester layer (II layer) existing on both sides of the copolymerized polyester layer (I layer) may be different on the front and back or may be the same. Above all, it is preferable that the melting points of the front and back polyesters C do not greatly differ. Specifically, the difference between the melting points of the polyester layers (II layers) present on both the front and back sides is preferably 80 ° C or less, more preferably 60 ° C or less, and particularly preferably 40 ° C or less.
If the polyester C in the polyester layer (II layer) present on both the front and back sides of the copolymer polyester layer A is the same, coextrusion molding of two or three layers becomes possible, so this embodiment is also preferable.
なお、共重合ポリエステル層(I層)の表裏両側に存在するポリエステル層(II層)の主成分となるポリエステルCは、表裏で異なっていてもよいし同一でもよい。中でも、表裏のポリエステルCの融点が大きく異ならないことが好ましい。具体的には、表裏両側に存在するポリエステル層(II層)の融点の差が80℃以下、中でも60℃以下、その中でも40℃以下であることが好ましい。
共重合ポリエステル層Aの表裏両側に存在するポリエステル層(II層)中のポリエステルCが同一であると、2種3層の共押出成形が可能となるので、この態様も好ましい。 Polyester C has a melting point that is 10 to 100 ° C. higher than the melting point of copolyester A, particularly 20 ° C. or higher, or 90 ° C. or lower, especially 40 ° C. or higher or 70 ° C. or lower, when copolyester A is crystalline. In the case where the copolyester A is amorphous, the copolyester A is preferably 120 to 260 ° C. higher than the glass transition point of the copolyester A, more preferably 140 ° C. or higher or 230 ° C. or lower. It is preferable that the polyester has a high melting point of 160 ° C. or more or 200 ° C. or less.
In addition, the polyester C which is a main component of the polyester layer (II layer) existing on both sides of the copolymerized polyester layer (I layer) may be different on the front and back or may be the same. Above all, it is preferable that the melting points of the front and back polyesters C do not greatly differ. Specifically, the difference between the melting points of the polyester layers (II layers) present on both the front and back sides is preferably 80 ° C or less, more preferably 60 ° C or less, and particularly preferably 40 ° C or less.
If the polyester C in the polyester layer (II layer) present on both the front and back sides of the copolymer polyester layer A is the same, coextrusion molding of two or three layers becomes possible, so this embodiment is also preferable.
ポリエステルCとしては、例えば、ジカルボン酸成分としてテレフタル酸を含み、アルコール成分としてエチレングリコールを含むホモポリエステル若しくは共重合ポリエステルを好適に用いることができる。但し、これに限定するものではない。
As the polyester C, for example, a homopolyester or a copolyester containing terephthalic acid as a dicarboxylic acid component and ethylene glycol as an alcohol component can be suitably used. However, it is not limited to this.
ポリエステルCが共重合ポリエステルである場合には、テレフタル酸以外のジカルボン酸成分としては、芳香族ジカルボン酸、脂環族ジカルボン酸、脂肪族ジカルボン酸、多官能酸などが挙げられる。
ポリエステルCにおいて、ジカルボン酸成分に占める「テレフタル酸以外のジカルボン酸成分」の割合は、1~30mol%であるのが好ましく、中でも5mol%以上或いは25mol%以下、その中でも10mol%以上或いは20mol%以下であるのがさらに好ましい。 When the polyester C is a copolymerized polyester, examples of the dicarboxylic acid component other than terephthalic acid include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, aliphatic dicarboxylic acids, and polyfunctional acids.
In the polyester C, the ratio of the “dicarboxylic acid component other than terephthalic acid” to the dicarboxylic acid component is preferably 1 to 30 mol%, more preferably 5 mol% or more or 25 mol% or less, among which 10 mol% or more or 20 mol% or less. Is more preferred.
ポリエステルCにおいて、ジカルボン酸成分に占める「テレフタル酸以外のジカルボン酸成分」の割合は、1~30mol%であるのが好ましく、中でも5mol%以上或いは25mol%以下、その中でも10mol%以上或いは20mol%以下であるのがさらに好ましい。 When the polyester C is a copolymerized polyester, examples of the dicarboxylic acid component other than terephthalic acid include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, aliphatic dicarboxylic acids, and polyfunctional acids.
In the polyester C, the ratio of the “dicarboxylic acid component other than terephthalic acid” to the dicarboxylic acid component is preferably 1 to 30 mol%, more preferably 5 mol% or more or 25 mol% or less, among which 10 mol% or more or 20 mol% or less. Is more preferred.
ポリエステルCが共重合ポリエステルである場合には、エチレングリコール以外のアルコール成分としては、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリメチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ビスフェノールおよびそれらの誘導体などを挙げることができる。
ポリエステルCにおいて、アルコール成分に占める「エチレングリコール以外のアルコール成分」の割合は、1~100mol%であるのが好ましく、中でも5mol%以上或いは95mol%以下、その中でも10mol%以上或いは90mol%以下であるのがさらに好ましい。 When the polyester C is a copolymerized polyester, alcohol components other than ethylene glycol include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, trimethylene glycol, neopentyl glycol, and 1,4-cyclohexane. Examples include dimethanol, bisphenol and derivatives thereof.
In the polyester C, the ratio of the “alcohol component other than ethylene glycol” to the alcohol component is preferably 1 to 100 mol%, more preferably 5 mol% or more, or 95 mol% or less, among which 10 mol% or more, or 90 mol% or less. Is more preferred.
ポリエステルCにおいて、アルコール成分に占める「エチレングリコール以外のアルコール成分」の割合は、1~100mol%であるのが好ましく、中でも5mol%以上或いは95mol%以下、その中でも10mol%以上或いは90mol%以下であるのがさらに好ましい。 When the polyester C is a copolymerized polyester, alcohol components other than ethylene glycol include 1,4-butanediol, 1,6-hexanediol, diethylene glycol, trimethylene glycol, neopentyl glycol, and 1,4-cyclohexane. Examples include dimethanol, bisphenol and derivatives thereof.
In the polyester C, the ratio of the “alcohol component other than ethylene glycol” to the alcohol component is preferably 1 to 100 mol%, more preferably 5 mol% or more, or 95 mol% or less, among which 10 mol% or more, or 90 mol% or less. Is more preferred.
<本共重合ポリエステルフィルムの厚み>
本共重合ポリエステルフィルムの厚みは、特に限定するものではなく、用途によって適切な厚みを選択することができる。
中でも、本共重合ポリエステルフィルムの特徴をより発揮するという観点から、フィルムの全厚みが20μmを超えるのが好ましい。
フィルムのコシの強さは厚さの三乗に比例すると言われている。しかし、本共重合ポリエステルフィルムは、20μmを超える厚みを有していても、コシが弱くてしなやかであるという特徴を有しており、本発明の利益をより一層享受することができる。
かかる観点から、本共重合ポリエステルフィルムの全厚みは20μmを超えるのが好ましく、中でも23μm以上、その中でも30μm以上であるのがさらに好ましい。
一方、本共重合ポリエステルフィルムの全厚みの上限は特に限定するものではない。1000μm以下であるのが好ましく、中でも500μm以下、その中でも250μm以下、その中でも100μm以下であるのがさらに好ましい。 <Thickness of the copolymerized polyester film>
The thickness of the present copolymerized polyester film is not particularly limited, and an appropriate thickness can be selected depending on the use.
Above all, it is preferable that the total thickness of the film exceeds 20 μm from the viewpoint of exhibiting the characteristics of the present copolymerized polyester film more.
It is said that the stiffness of the film is proportional to the cube of the thickness. However, even if the present copolymerized polyester film has a thickness of more than 20 μm, it has the characteristic of being weak and flexible, and can further enjoy the benefits of the present invention.
From such a viewpoint, the total thickness of the present copolyester film is preferably more than 20 μm, more preferably 23 μm or more, and particularly preferably 30 μm or more.
On the other hand, the upper limit of the total thickness of the present copolymerized polyester film is not particularly limited. The thickness is preferably 1000 μm or less, more preferably 500 μm or less, particularly 250 μm or less, and particularly preferably 100 μm or less.
本共重合ポリエステルフィルムの厚みは、特に限定するものではなく、用途によって適切な厚みを選択することができる。
中でも、本共重合ポリエステルフィルムの特徴をより発揮するという観点から、フィルムの全厚みが20μmを超えるのが好ましい。
フィルムのコシの強さは厚さの三乗に比例すると言われている。しかし、本共重合ポリエステルフィルムは、20μmを超える厚みを有していても、コシが弱くてしなやかであるという特徴を有しており、本発明の利益をより一層享受することができる。
かかる観点から、本共重合ポリエステルフィルムの全厚みは20μmを超えるのが好ましく、中でも23μm以上、その中でも30μm以上であるのがさらに好ましい。
一方、本共重合ポリエステルフィルムの全厚みの上限は特に限定するものではない。1000μm以下であるのが好ましく、中でも500μm以下、その中でも250μm以下、その中でも100μm以下であるのがさらに好ましい。 <Thickness of the copolymerized polyester film>
The thickness of the present copolymerized polyester film is not particularly limited, and an appropriate thickness can be selected depending on the use.
Above all, it is preferable that the total thickness of the film exceeds 20 μm from the viewpoint of exhibiting the characteristics of the present copolymerized polyester film more.
It is said that the stiffness of the film is proportional to the cube of the thickness. However, even if the present copolymerized polyester film has a thickness of more than 20 μm, it has the characteristic of being weak and flexible, and can further enjoy the benefits of the present invention.
From such a viewpoint, the total thickness of the present copolyester film is preferably more than 20 μm, more preferably 23 μm or more, and particularly preferably 30 μm or more.
On the other hand, the upper limit of the total thickness of the present copolymerized polyester film is not particularly limited. The thickness is preferably 1000 μm or less, more preferably 500 μm or less, particularly 250 μm or less, and particularly preferably 100 μm or less.
<本共重合ポリエステルフィルムの物性>
本共重合ポリエステルフィルムは、25℃の貯蔵弾性率が2500MPa以下であるのが好ましい。
25℃すなわち常温時の貯蔵弾性率が2500MPa以下であることによって、例えばウェアラブル端末を装着時において、皮膚に十分追随することができる。
かかる観点から、本共重合ポリエステルフィルムは、25℃の貯蔵弾性率が2500MPa以下であるのが好ましく、中でも2000MPa以下、その中でも1200MPa以下であるのがさらに好ましい。
当該25℃の貯蔵弾性率は、工程におけるハンドリング性の観点から、300MPa以上であるのが好ましく、中でも500MPa以上、その中でも700MPa以上であるのがさらに好ましい。
なお、25℃の貯蔵弾性率は、後述の実施例に記載された測定方法によって得られる値である。 <Physical properties of the copolymerized polyester film>
The copolymer polyester film preferably has a storage elastic modulus at 25 ° C. of 2500 MPa or less.
When the storage elastic modulus at 25 ° C., that is, at room temperature, is 2500 MPa or less, for example, when the wearable terminal is worn, it can sufficiently follow the skin.
From this viewpoint, the present copolymerized polyester film preferably has a storage modulus at 25 ° C. of 2500 MPa or less, more preferably 2000 MPa or less, and even more preferably 1200 MPa or less.
The storage elastic modulus at 25 ° C. is preferably 300 MPa or more, and more preferably 500 MPa or more, and particularly preferably 700 MPa or more, from the viewpoint of handling properties in the process.
The storage elastic modulus at 25 ° C. is a value obtained by a measurement method described in Examples described later.
本共重合ポリエステルフィルムは、25℃の貯蔵弾性率が2500MPa以下であるのが好ましい。
25℃すなわち常温時の貯蔵弾性率が2500MPa以下であることによって、例えばウェアラブル端末を装着時において、皮膚に十分追随することができる。
かかる観点から、本共重合ポリエステルフィルムは、25℃の貯蔵弾性率が2500MPa以下であるのが好ましく、中でも2000MPa以下、その中でも1200MPa以下であるのがさらに好ましい。
当該25℃の貯蔵弾性率は、工程におけるハンドリング性の観点から、300MPa以上であるのが好ましく、中でも500MPa以上、その中でも700MPa以上であるのがさらに好ましい。
なお、25℃の貯蔵弾性率は、後述の実施例に記載された測定方法によって得られる値である。 <Physical properties of the copolymerized polyester film>
The copolymer polyester film preferably has a storage elastic modulus at 25 ° C. of 2500 MPa or less.
When the storage elastic modulus at 25 ° C., that is, at room temperature, is 2500 MPa or less, for example, when the wearable terminal is worn, it can sufficiently follow the skin.
From this viewpoint, the present copolymerized polyester film preferably has a storage modulus at 25 ° C. of 2500 MPa or less, more preferably 2000 MPa or less, and even more preferably 1200 MPa or less.
The storage elastic modulus at 25 ° C. is preferably 300 MPa or more, and more preferably 500 MPa or more, and particularly preferably 700 MPa or more, from the viewpoint of handling properties in the process.
The storage elastic modulus at 25 ° C. is a value obtained by a measurement method described in Examples described later.
本共重合ポリエステルフィルムにおいて、25℃の貯蔵弾性率を前記範囲にするには、例えば、共重合ポリエステルAの共重合成分の種類と含有量を調整することによって達成することができる。
また、前記の通り、共重合ポリエステル層(I層)の表裏両側に、ポリエステルCを主成分樹脂として含有するポリエステル層(II層)を積層してなる構成を備えた積層フィルムとすることによっても、調整することができる。
更には、本発明の共重合ポリエステルフィルムを製造する際の延伸条件及びその後の熱固定条件によっても、調整することができる。
但し、これらの方法に限定するものではない。 In the present copolymerized polyester film, the storage elastic modulus at 25 ° C. can be set in the above range, for example, by adjusting the type and content of the copolymerized component of the copolymerized polyester A.
Further, as described above, a laminated film having a configuration in which a polyester layer (II layer) containing polyester C as a main component resin is laminated on both sides of the copolymerized polyester layer (I layer). , Can be adjusted.
Furthermore, it can also be adjusted by the stretching conditions when producing the copolymerized polyester film of the present invention and the subsequent heat setting conditions.
However, it is not limited to these methods.
また、前記の通り、共重合ポリエステル層(I層)の表裏両側に、ポリエステルCを主成分樹脂として含有するポリエステル層(II層)を積層してなる構成を備えた積層フィルムとすることによっても、調整することができる。
更には、本発明の共重合ポリエステルフィルムを製造する際の延伸条件及びその後の熱固定条件によっても、調整することができる。
但し、これらの方法に限定するものではない。 In the present copolymerized polyester film, the storage elastic modulus at 25 ° C. can be set in the above range, for example, by adjusting the type and content of the copolymerized component of the copolymerized polyester A.
Further, as described above, a laminated film having a configuration in which a polyester layer (II layer) containing polyester C as a main component resin is laminated on both sides of the copolymerized polyester layer (I layer). , Can be adjusted.
Furthermore, it can also be adjusted by the stretching conditions when producing the copolymerized polyester film of the present invention and the subsequent heat setting conditions.
However, it is not limited to these methods.
また、本共重合ポリエステルフィルムは、120℃の貯蔵弾性率が10MPa以上であるのが好ましい。
このように高温時の貯蔵弾性率が10MPa以上であることによって、十分な耐熱性を有し、加工時におけるシワの発生を抑制することができる。
かかる観点から、本共重合ポリエステルフィルムは、120℃の貯蔵弾性率が10MPa以上であるのが好ましく、中でも30MPa以上、その中でも50MPa以上であるのがさらに好ましい。
本共重合ポリエステルフィルムは、加工時に必要となる熱量を抑制できる観点から、120℃の貯蔵弾性率が500MPa以下であるのが好ましく、中でも400MPa以下、その中でも300MPa以下であるのがさらに好ましい。
なお、120℃の貯蔵弾性率は、後述の実施例に記載された測定方法によって得られる値である。
本共重合ポリエステルフィルムにおいて、120℃の貯蔵弾性率を前記範囲に調整するための方法は、25℃の貯蔵弾性率を調整する方法として、前記した手段と同様の方法を挙げることができる。これらの中でも特に、延伸条件及びその後の熱固定条件を調整する方法が効果的である。但し、この方法に限定するものではない。 The copolymer polyester film preferably has a storage elastic modulus at 120 ° C. of 10 MPa or more.
When the storage elastic modulus at a high temperature is 10 MPa or more, sufficient heat resistance can be obtained, and generation of wrinkles during processing can be suppressed.
From this viewpoint, the present copolymerized polyester film preferably has a storage elastic modulus at 120 ° C. of 10 MPa or more, more preferably 30 MPa or more, and particularly preferably 50 MPa or more.
The copolymer polyester film preferably has a storage elastic modulus at 120 ° C. of 500 MPa or less, more preferably 400 MPa or less, and particularly preferably 300 MPa or less, from the viewpoint of suppressing the amount of heat required during processing.
In addition, the storage elastic modulus at 120 ° C. is a value obtained by a measurement method described in Examples described later.
In the present copolymerized polyester film, the method for adjusting the storage elastic modulus at 120 ° C. to the above range may be the same as the method described above as the method for adjusting the storage elastic modulus at 25 ° C. Among these, the method of adjusting the stretching conditions and the subsequent heat setting conditions is particularly effective. However, it is not limited to this method.
このように高温時の貯蔵弾性率が10MPa以上であることによって、十分な耐熱性を有し、加工時におけるシワの発生を抑制することができる。
かかる観点から、本共重合ポリエステルフィルムは、120℃の貯蔵弾性率が10MPa以上であるのが好ましく、中でも30MPa以上、その中でも50MPa以上であるのがさらに好ましい。
本共重合ポリエステルフィルムは、加工時に必要となる熱量を抑制できる観点から、120℃の貯蔵弾性率が500MPa以下であるのが好ましく、中でも400MPa以下、その中でも300MPa以下であるのがさらに好ましい。
なお、120℃の貯蔵弾性率は、後述の実施例に記載された測定方法によって得られる値である。
本共重合ポリエステルフィルムにおいて、120℃の貯蔵弾性率を前記範囲に調整するための方法は、25℃の貯蔵弾性率を調整する方法として、前記した手段と同様の方法を挙げることができる。これらの中でも特に、延伸条件及びその後の熱固定条件を調整する方法が効果的である。但し、この方法に限定するものではない。 The copolymer polyester film preferably has a storage elastic modulus at 120 ° C. of 10 MPa or more.
When the storage elastic modulus at a high temperature is 10 MPa or more, sufficient heat resistance can be obtained, and generation of wrinkles during processing can be suppressed.
From this viewpoint, the present copolymerized polyester film preferably has a storage elastic modulus at 120 ° C. of 10 MPa or more, more preferably 30 MPa or more, and particularly preferably 50 MPa or more.
The copolymer polyester film preferably has a storage elastic modulus at 120 ° C. of 500 MPa or less, more preferably 400 MPa or less, and particularly preferably 300 MPa or less, from the viewpoint of suppressing the amount of heat required during processing.
In addition, the storage elastic modulus at 120 ° C. is a value obtained by a measurement method described in Examples described later.
In the present copolymerized polyester film, the method for adjusting the storage elastic modulus at 120 ° C. to the above range may be the same as the method described above as the method for adjusting the storage elastic modulus at 25 ° C. Among these, the method of adjusting the stretching conditions and the subsequent heat setting conditions is particularly effective. However, it is not limited to this method.
本共重合ポリエステルフィルムは、25℃の損失正接(tanδ)が0.02以上であるのが好ましい。
25℃すなわち常温時の損失正接が0.02以上であることによって、例えばウェアラブル端末を装着時において、皮膚に十分追随することができる。
かかる観点から、本共重合ポリエステルフィルムは、25℃の損失正接が0.05以上であるのが好ましく、中でも0.08以上、その中でも0.10以上であるのがさらに好ましい。
なお、当該25℃の損失正接(tanδ)は、工程におけるハンドリング性の観点から、1.5以下であるのが好ましく、中でも1.0以下、その中でも0.5以下であるのがさらに好ましい。 This copolymerized polyester film preferably has a loss tangent (tan δ) at 25 ° C. of 0.02 or more.
When the loss tangent at 25 ° C., that is, at room temperature, is 0.02 or more, for example, when the wearable terminal is worn, it can sufficiently follow the skin.
From this viewpoint, the present copolyester film preferably has a loss tangent at 25 ° C. of 0.05 or more, more preferably 0.08 or more, and even more preferably 0.10 or more.
The loss tangent (tan δ) at 25 ° C. is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.5 or less, from the viewpoint of handling properties in the process.
25℃すなわち常温時の損失正接が0.02以上であることによって、例えばウェアラブル端末を装着時において、皮膚に十分追随することができる。
かかる観点から、本共重合ポリエステルフィルムは、25℃の損失正接が0.05以上であるのが好ましく、中でも0.08以上、その中でも0.10以上であるのがさらに好ましい。
なお、当該25℃の損失正接(tanδ)は、工程におけるハンドリング性の観点から、1.5以下であるのが好ましく、中でも1.0以下、その中でも0.5以下であるのがさらに好ましい。 This copolymerized polyester film preferably has a loss tangent (tan δ) at 25 ° C. of 0.02 or more.
When the loss tangent at 25 ° C., that is, at room temperature, is 0.02 or more, for example, when the wearable terminal is worn, it can sufficiently follow the skin.
From this viewpoint, the present copolyester film preferably has a loss tangent at 25 ° C. of 0.05 or more, more preferably 0.08 or more, and even more preferably 0.10 or more.
The loss tangent (tan δ) at 25 ° C. is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.5 or less, from the viewpoint of handling properties in the process.
本共重合ポリエステルフィルムにおいて、25℃の損失正接を前記範囲に調整するための方法は、25℃の貯蔵弾性率を調整する方法として前記した手段と同様の方法を挙げることができる。これらの中でも特に、共重合ポリエステルAの共重合成分の種類と含有量を調整することによって、調整する方法が効果的である。但し、この方法に限定するものではない。
In the present copolyester film, the method for adjusting the loss tangent at 25 ° C. to the above range may be the same as the above-mentioned method for adjusting the storage elastic modulus at 25 ° C. Among them, a method of adjusting the type and content of the copolymer component of the copolymer polyester A is particularly effective. However, it is not limited to this method.
本共重合ポリエステルフィルムは、共重合ポリエステルAが結晶性の場合、結晶融解エンタルピーΔHmは3.0J/g以上であるのが好ましく、中でも5.0J/g以上、その中でも7.0J/g以上であるのがさらに好ましい。ΔHmは結晶化度の指標となるものであり、3.0J/g以上であることにより、十分な耐熱性が得られ、熱収縮性を抑えることができる。
When the copolymer polyester A is crystalline, the copolymer polyester film preferably has a crystal melting enthalpy ΔHm of 3.0 J / g or more, more preferably 5.0 J / g or more, and among them, 7.0 J / g or more. Is more preferred. ΔHm is an index of crystallinity, and when it is 3.0 J / g or more, sufficient heat resistance can be obtained and heat shrinkage can be suppressed.
本共重合ポリエステルフィルムは、後述の実施例に記載されているたわみ測定法によって測定される「しなやかさ(コシ)」すなわち、垂直方向に下がった長さを(a)、水平方向に突き出た長さを(b)とした時、(a)と(b)との比の値((a)/(b))は0.3以上であることが好ましく、中でも0.5以上、その中でも1.0以上であることがさらに好ましい。
前記(a)/(b)が0.3以上であることによって、フィルムに十分なしなやかさを有することが示唆される。
一方、前記(a)/(b)の上限は特に限定されないが、工程におけるハンドリング性の観点から、15.0以下であるのが好ましく、中でも10.0以下、その中でも6.0以下であるのがさらに好ましい。 This copolymerized polyester film has a “flexibility” (strength) measured by a deflection measurement method described in Examples described later, that is, a length lowered vertically (a) and a length protruded horizontally. When the value is (b), the value of the ratio of (a) to (b) ((a) / (b)) is preferably 0.3 or more, more preferably 0.5 or more, and more preferably 1 or more. More preferably, it is not less than 0.0.
When the ratio (a) / (b) is 0.3 or more, it is suggested that the film has sufficient flexibility.
On the other hand, the upper limit of (a) / (b) is not particularly limited, but is preferably 15.0 or less, more preferably 10.0 or less, and especially 6.0 or less, from the viewpoint of handling properties in the process. Is more preferred.
前記(a)/(b)が0.3以上であることによって、フィルムに十分なしなやかさを有することが示唆される。
一方、前記(a)/(b)の上限は特に限定されないが、工程におけるハンドリング性の観点から、15.0以下であるのが好ましく、中でも10.0以下、その中でも6.0以下であるのがさらに好ましい。 This copolymerized polyester film has a “flexibility” (strength) measured by a deflection measurement method described in Examples described later, that is, a length lowered vertically (a) and a length protruded horizontally. When the value is (b), the value of the ratio of (a) to (b) ((a) / (b)) is preferably 0.3 or more, more preferably 0.5 or more, and more preferably 1 or more. More preferably, it is not less than 0.0.
When the ratio (a) / (b) is 0.3 or more, it is suggested that the film has sufficient flexibility.
On the other hand, the upper limit of (a) / (b) is not particularly limited, but is preferably 15.0 or less, more preferably 10.0 or less, and especially 6.0 or less, from the viewpoint of handling properties in the process. Is more preferred.
本共重合ポリエステルフィルムにおいて、(a)/(b)を前記範囲に調整するには、先ずはフィルムの厚みを調整することが大切であり、次に、同一のフィルム厚みにおいては、共重合ポリエステルAの共重合成分の種類と含有量を調整することによって達成することができる。但し、この方法に限定するものではない。
かかる観点から、共重合ポリエステルAの共重合成分は、前記「その他のジカルボン酸成分」が脂肪族ジカルボン酸もしくはダイマー酸であるのが好ましく、その含有量は5mol%以上20mol%以下であるのが好ましい。他方、前記「その他のアルコール成分」がジエチレングリコールであるのが好ましく、その含有量は1mol%以上25mol%未満であるのが好ましい。 In order to adjust (a) / (b) to the above-mentioned range in the present copolymerized polyester film, it is important to first adjust the thickness of the film. It can be achieved by adjusting the type and content of the copolymerization component of A. However, it is not limited to this method.
From this viewpoint, the copolymer component of the copolymer polyester A is preferably such that the “other dicarboxylic acid component” is an aliphatic dicarboxylic acid or a dimer acid, and the content thereof is 5 mol% or more and 20 mol% or less. preferable. On the other hand, the “other alcohol component” is preferably diethylene glycol, and its content is preferably 1 mol% or more and less than 25 mol%.
かかる観点から、共重合ポリエステルAの共重合成分は、前記「その他のジカルボン酸成分」が脂肪族ジカルボン酸もしくはダイマー酸であるのが好ましく、その含有量は5mol%以上20mol%以下であるのが好ましい。他方、前記「その他のアルコール成分」がジエチレングリコールであるのが好ましく、その含有量は1mol%以上25mol%未満であるのが好ましい。 In order to adjust (a) / (b) to the above-mentioned range in the present copolymerized polyester film, it is important to first adjust the thickness of the film. It can be achieved by adjusting the type and content of the copolymerization component of A. However, it is not limited to this method.
From this viewpoint, the copolymer component of the copolymer polyester A is preferably such that the “other dicarboxylic acid component” is an aliphatic dicarboxylic acid or a dimer acid, and the content thereof is 5 mol% or more and 20 mol% or less. preferable. On the other hand, the “other alcohol component” is preferably diethylene glycol, and its content is preferably 1 mol% or more and less than 25 mol%.
<本共重合ポリエステルフィルムの製造方法>
本共重合ポリエステルフィルムの製造方法の一例として、本共重合ポリエステルフィルムが二軸延伸フィルムの場合について説明する。但し、ここで説明する製造方法に限定するものではない。 <Production method of the present copolymerized polyester film>
As an example of a method for producing the present copolymerized polyester film, a case where the present copolymerized polyester film is a biaxially stretched film will be described. However, it is not limited to the manufacturing method described here.
本共重合ポリエステルフィルムの製造方法の一例として、本共重合ポリエステルフィルムが二軸延伸フィルムの場合について説明する。但し、ここで説明する製造方法に限定するものではない。 <Production method of the present copolymerized polyester film>
As an example of a method for producing the present copolymerized polyester film, a case where the present copolymerized polyester film is a biaxially stretched film will be described. However, it is not limited to the manufacturing method described here.
先ずは、公知の方法により、原料例えばポリエステルチップを溶融押出装置に供給し、それぞれのポリマーの融点以上に加熱し、溶融ポリマーをダイから押し出し、回転冷却ドラム上でポリマーのガラス転移点以下の温度となるように冷却固化し、実質的に非晶状態の未配向シートを得るようにすればよい。
次に、当該未配向シートを、一方向にロール又はテンター方式の延伸機により延伸する。この際、延伸温度は、通常25~120℃、好ましくは35~100℃であり、延伸倍率は通常2.5~7倍、好ましくは2.8~6倍である。
次いで、一段目の延伸方向と直交する方向に延伸する。この際、延伸温度は通常50~140℃であり、延伸倍率は通常3.0~7倍、好ましくは3.5~6倍である。
そして、引き続き130~270℃の温度で緊張下または30%以内の弛緩下で熱固定処理を行い、二軸配向フィルムとしての本共重合ポリエステルフィルムを得ることができる。
なお、前記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。 First, by a known method, a raw material, for example, a polyester chip is supplied to a melt extruder, heated to a temperature equal to or higher than the melting point of each polymer, and extruded from a die. It is sufficient to solidify by cooling to obtain a non-oriented sheet in a substantially amorphous state.
Next, the unoriented sheet is stretched in one direction by a roll or tenter type stretching machine. At this time, the stretching temperature is usually 25 to 120 ° C., preferably 35 to 100 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 2.8 to 6 times.
Next, the film is stretched in a direction orthogonal to the stretching direction of the first step. At this time, the stretching temperature is usually 50 to 140 ° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times.
Subsequently, heat-setting is performed at a temperature of 130 to 270 ° C. under tension or relaxation within 30% to obtain the present copolymerized polyester film as a biaxially oriented film.
In the above-mentioned stretching, a method in which stretching in one direction is performed in two or more stages may be adopted.
次に、当該未配向シートを、一方向にロール又はテンター方式の延伸機により延伸する。この際、延伸温度は、通常25~120℃、好ましくは35~100℃であり、延伸倍率は通常2.5~7倍、好ましくは2.8~6倍である。
次いで、一段目の延伸方向と直交する方向に延伸する。この際、延伸温度は通常50~140℃であり、延伸倍率は通常3.0~7倍、好ましくは3.5~6倍である。
そして、引き続き130~270℃の温度で緊張下または30%以内の弛緩下で熱固定処理を行い、二軸配向フィルムとしての本共重合ポリエステルフィルムを得ることができる。
なお、前記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。 First, by a known method, a raw material, for example, a polyester chip is supplied to a melt extruder, heated to a temperature equal to or higher than the melting point of each polymer, and extruded from a die. It is sufficient to solidify by cooling to obtain a non-oriented sheet in a substantially amorphous state.
Next, the unoriented sheet is stretched in one direction by a roll or tenter type stretching machine. At this time, the stretching temperature is usually 25 to 120 ° C., preferably 35 to 100 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 2.8 to 6 times.
Next, the film is stretched in a direction orthogonal to the stretching direction of the first step. At this time, the stretching temperature is usually 50 to 140 ° C., and the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times.
Subsequently, heat-setting is performed at a temperature of 130 to 270 ° C. under tension or relaxation within 30% to obtain the present copolymerized polyester film as a biaxially oriented film.
In the above-mentioned stretching, a method in which stretching in one direction is performed in two or more stages may be adopted.
前記熱固定処理(「熱処理」とも称する)は、共重合ポリエステル層(I層)の単層からなる場合、共重合ポリエステルAの融点よりも10~70℃低い温度で行うのが好ましい。
(4) When the heat-setting treatment (also referred to as “heat treatment”) is a single layer of the copolyester layer (I layer), it is preferably performed at a temperature lower by 10 to 70 ° C. than the melting point of copolyester A.
本共重合ポリエステルフィルムが共重合ポリエステル層(I層)とポリエステル層(II層)との積層構成を備える場合、共重合ポリエステル層(I層)及びポリエステル層(II層)は共押出した後、上述のように、一体のフィルムとして、延伸及び熱固定処理を行えばよい。
この際の熱固定処理は、ポリエステルCの融点よりも低い温度に加熱して熱固定処理するのが好ましい。更に、共重合ポリエステルAが結晶性である場合は、共重合ポリエステルAの融点よりも高い温度で熱固定処理するのが好ましい。そのような温度で熱固定処理することにより、共重合ポリエステル層(I層)の単層では達成することができないレベルに柔軟化することができる。
これは、ポリエステルCの融点よりも低い温度で熱固定することにより、表層の延伸配向が固定されるため、伸度、強度及び耐熱性(熱収縮性)が良好となる一方、共重合ポリエステルAの融点よりも高い温度で熱固定することにより、中間層の延伸配向や歪みが緩和されるため、より一層しなやかなフィルムとすることが出来るためである。 When the present copolyester film has a laminated structure of a copolyester layer (I layer) and a polyester layer (II layer), the copolyester layer (I layer) and the polyester layer (II layer) are co-extruded, As described above, stretching and heat setting may be performed as an integral film.
In this case, the heat setting is preferably performed by heating to a temperature lower than the melting point of the polyester C. Furthermore, when the copolyester A is crystalline, it is preferable to perform a heat-setting treatment at a temperature higher than the melting point of the copolyester A. By performing the heat setting treatment at such a temperature, it is possible to soften to a level that cannot be achieved with a single layer of the copolymerized polyester layer (I layer).
This is because, by heat-setting at a temperature lower than the melting point of the polyester C, the stretch orientation of the surface layer is fixed, so that the elongation, strength and heat resistance (heat shrinkability) are improved, while the copolymer polyester A This is because, by heat-setting at a temperature higher than the melting point of the intermediate layer, stretching orientation and distortion of the intermediate layer are alleviated, so that a more flexible film can be obtained.
この際の熱固定処理は、ポリエステルCの融点よりも低い温度に加熱して熱固定処理するのが好ましい。更に、共重合ポリエステルAが結晶性である場合は、共重合ポリエステルAの融点よりも高い温度で熱固定処理するのが好ましい。そのような温度で熱固定処理することにより、共重合ポリエステル層(I層)の単層では達成することができないレベルに柔軟化することができる。
これは、ポリエステルCの融点よりも低い温度で熱固定することにより、表層の延伸配向が固定されるため、伸度、強度及び耐熱性(熱収縮性)が良好となる一方、共重合ポリエステルAの融点よりも高い温度で熱固定することにより、中間層の延伸配向や歪みが緩和されるため、より一層しなやかなフィルムとすることが出来るためである。 When the present copolyester film has a laminated structure of a copolyester layer (I layer) and a polyester layer (II layer), the copolyester layer (I layer) and the polyester layer (II layer) are co-extruded, As described above, stretching and heat setting may be performed as an integral film.
In this case, the heat setting is preferably performed by heating to a temperature lower than the melting point of the polyester C. Furthermore, when the copolyester A is crystalline, it is preferable to perform a heat-setting treatment at a temperature higher than the melting point of the copolyester A. By performing the heat setting treatment at such a temperature, it is possible to soften to a level that cannot be achieved with a single layer of the copolymerized polyester layer (I layer).
This is because, by heat-setting at a temperature lower than the melting point of the polyester C, the stretch orientation of the surface layer is fixed, so that the elongation, strength and heat resistance (heat shrinkability) are improved, while the copolymer polyester A This is because, by heat-setting at a temperature higher than the melting point of the intermediate layer, stretching orientation and distortion of the intermediate layer are alleviated, so that a more flexible film can be obtained.
<本共重合ポリエステルフィルムの用途>
本共重合ポリエステルフィルムは、上述したように、常温で柔軟性に優れており、単に柔軟であるだけでなく、コシが殆ど無いという特徴を有している一方、それでいて実用上の十分な耐熱性を発揮することができる。よって、例えば電池用包装材、表面保護フィルム、画像表示用部材、特にフレキシブルディスプレイ、ウェアラブル端末などの構成部材として好適に用いることができる。
なお、本共重合ポリエステルフィルムの用途は前記に限定されるものではなく、例えば、各種包装用材料、建材、文房具、自動車部材、その他の構造部材等に用いることができる。 <Uses of this copolymerized polyester film>
As described above, the present copolymerized polyester film is excellent in flexibility at normal temperature, and is not only flexible, but also characterized by having almost no stiffness, but still having sufficient heat resistance for practical use. Can be demonstrated. Therefore, it can be suitably used, for example, as a constituent member of a battery packaging material, a surface protection film, an image display member, particularly a flexible display, a wearable terminal, or the like.
The application of the present copolymerized polyester film is not limited to the above, and for example, it can be used for various packaging materials, building materials, stationery, automobile members, and other structural members.
本共重合ポリエステルフィルムは、上述したように、常温で柔軟性に優れており、単に柔軟であるだけでなく、コシが殆ど無いという特徴を有している一方、それでいて実用上の十分な耐熱性を発揮することができる。よって、例えば電池用包装材、表面保護フィルム、画像表示用部材、特にフレキシブルディスプレイ、ウェアラブル端末などの構成部材として好適に用いることができる。
なお、本共重合ポリエステルフィルムの用途は前記に限定されるものではなく、例えば、各種包装用材料、建材、文房具、自動車部材、その他の構造部材等に用いることができる。 <Uses of this copolymerized polyester film>
As described above, the present copolymerized polyester film is excellent in flexibility at normal temperature, and is not only flexible, but also characterized by having almost no stiffness, but still having sufficient heat resistance for practical use. Can be demonstrated. Therefore, it can be suitably used, for example, as a constituent member of a battery packaging material, a surface protection film, an image display member, particularly a flexible display, a wearable terminal, or the like.
The application of the present copolymerized polyester film is not limited to the above, and for example, it can be used for various packaging materials, building materials, stationery, automobile members, and other structural members.
<語句の説明など>
本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
また、画像表示パネル、保護パネル等のように「パネル」と表現する場合、板体、シート及びフィルムを包含するものである。 <Explanation of terms>
In the present invention, the term “film” includes a “sheet”, and the term “sheet” includes a “film”.
Further, when expressed as a "panel" such as an image display panel or a protection panel, it includes a plate, a sheet, and a film.
本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
また、画像表示パネル、保護パネル等のように「パネル」と表現する場合、板体、シート及びフィルムを包含するものである。 <Explanation of terms>
In the present invention, the term “film” includes a “sheet”, and the term “sheet” includes a “film”.
Further, when expressed as a "panel" such as an image display panel or a protection panel, it includes a plate, a sheet, and a film.
本発明において、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含するものである。
また、「X以上」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特にことわらない限り「好ましくはYより小さい」の意も包含するものである。 In the present invention, when "X to Y" (X and Y are arbitrary numbers) is described, "preferably larger than X" or "preferably Y" together with "X or more and Y or less" unless otherwise specified. The meaning of "smaller" is also included.
Further, when described as “X or more” (X is an arbitrary number), the meaning of “preferably larger than X” is included unless otherwise specified, and described as “Y or less” (Y is an arbitrary number). In this case, the meaning of “preferably smaller than Y” is also included unless otherwise specified.
また、「X以上」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特にことわらない限り「好ましくはYより小さい」の意も包含するものである。 In the present invention, when "X to Y" (X and Y are arbitrary numbers) is described, "preferably larger than X" or "preferably Y" together with "X or more and Y or less" unless otherwise specified. The meaning of "smaller" is also included.
Further, when described as “X or more” (X is an arbitrary number), the meaning of “preferably larger than X” is included unless otherwise specified, and described as “Y or less” (Y is an arbitrary number). In this case, the meaning of “preferably smaller than Y” is also included unless otherwise specified.
次に、実施例により本発明をさらに詳しく説明する。但し、本発明が、以下に説明する実施例に限定されるものではない。
Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the embodiments described below.
<評価方法>
以下において、種々の物性等の測定及び評価は次のようにして行った。 <Evaluation method>
Hereinafter, the measurement and evaluation of various physical properties and the like were performed as follows.
以下において、種々の物性等の測定及び評価は次のようにして行った。 <Evaluation method>
Hereinafter, the measurement and evaluation of various physical properties and the like were performed as follows.
(1)貯蔵弾性率E'、正接損失tanδ
JIS K 7244に基づき、アイティー計測制御(株)製動的粘弾性測定装置DVA-200を用い、共重合ポリエステルフィルム(サンプル)の幅方向(TD)について、振動周波数10Hz、歪み0.1%、昇温速度1℃/分で-100℃から200℃まで測定し、得られたデータから、25℃及び120℃での貯蔵弾性率E’と、25℃での正接損失tanδを得た。 (1) Storage modulus E ′, tangent loss tan δ
Based on JIS K 7244, using a dynamic viscoelasticity measuring device DVA-200 manufactured by IT Measurement Control Co., Ltd., in the width direction (TD) of the copolymerized polyester film (sample), vibration frequency 10 Hz, strain 0.1%. The temperature was measured from -100 ° C. to 200 ° C. at a rate of 1 ° C./min. From the obtained data, the storage elastic modulus E ′ at 25 ° C. and 120 ° C. and the tangent loss tan δ at 25 ° C. were obtained.
JIS K 7244に基づき、アイティー計測制御(株)製動的粘弾性測定装置DVA-200を用い、共重合ポリエステルフィルム(サンプル)の幅方向(TD)について、振動周波数10Hz、歪み0.1%、昇温速度1℃/分で-100℃から200℃まで測定し、得られたデータから、25℃及び120℃での貯蔵弾性率E’と、25℃での正接損失tanδを得た。 (1) Storage modulus E ′, tangent loss tan δ
Based on JIS K 7244, using a dynamic viscoelasticity measuring device DVA-200 manufactured by IT Measurement Control Co., Ltd., in the width direction (TD) of the copolymerized polyester film (sample), vibration frequency 10 Hz, strain 0.1%. The temperature was measured from -100 ° C. to 200 ° C. at a rate of 1 ° C./min. From the obtained data, the storage elastic modulus E ′ at 25 ° C. and 120 ° C. and the tangent loss tan δ at 25 ° C. were obtained.
(2)結晶融解エンタルピーΔHm
JIS K7141-2(2006年)に基づき、測定サンプルの示差走査熱量計(DSC)測定を行った。30℃から280℃まで10℃/分で昇温後、1分間保持し、次に280℃から30℃まで10℃/分で降温後、1分間保持し、更に30℃から280℃まで10℃/分で再昇温させた。このとき再昇温過程における結晶融解ピーク面積から結晶融解エンタルピー(ΔHm)を算出した。
なお、単層の場合は共重合ポリエステルフィルムを測定サンプルとし、積層の場合は中間層を測定サンプルとした。 (2) Crystal melting enthalpy ΔHm
Based on JIS K7141-2 (2006), the measurement sample was measured by a differential scanning calorimeter (DSC). The temperature is raised from 30 ° C. to 280 ° C. at 10 ° C./min, held for 1 minute, then lowered from 280 ° C. to 30 ° C. at 10 ° C./min, held for 1 minute, and further 10 ° C. from 30 ° C. to 280 ° C. / Min again. At this time, the crystal melting enthalpy (ΔHm) was calculated from the crystal melting peak area in the reheating process.
In the case of a single layer, a copolyester film was used as a measurement sample, and in the case of a lamination, an intermediate layer was used as a measurement sample.
JIS K7141-2(2006年)に基づき、測定サンプルの示差走査熱量計(DSC)測定を行った。30℃から280℃まで10℃/分で昇温後、1分間保持し、次に280℃から30℃まで10℃/分で降温後、1分間保持し、更に30℃から280℃まで10℃/分で再昇温させた。このとき再昇温過程における結晶融解ピーク面積から結晶融解エンタルピー(ΔHm)を算出した。
なお、単層の場合は共重合ポリエステルフィルムを測定サンプルとし、積層の場合は中間層を測定サンプルとした。 (2) Crystal melting enthalpy ΔHm
Based on JIS K7141-2 (2006), the measurement sample was measured by a differential scanning calorimeter (DSC). The temperature is raised from 30 ° C. to 280 ° C. at 10 ° C./min, held for 1 minute, then lowered from 280 ° C. to 30 ° C. at 10 ° C./min, held for 1 minute, and further 10 ° C. from 30 ° C. to 280 ° C. / Min again. At this time, the crystal melting enthalpy (ΔHm) was calculated from the crystal melting peak area in the reheating process.
In the case of a single layer, a copolyester film was used as a measurement sample, and in the case of a lamination, an intermediate layer was used as a measurement sample.
(3)ヤング率
実施例・比較例で得た共重合ポリエステルフィルム(サンプル)について、引張試験機((株)インテスコ製、インテスコモデル2001型)を用いて温度23℃、湿度50%RHに調節された室内において、長さ300mm、巾20mmの共重合ポリエステルフィルム(サンプル)を10%/分の歪み速度で引張り、引張応力-ひずみ曲線の初め直線部分を用いて次式によって計算した。
E=Δσ/Δε
(前記式中、Eはヤング率(GPa)、Δσは直線の2点間の元の平均断面積による応力差(GPa)、Δεは同一2点間の歪み差/初期長さである) (3) Young's modulus The copolymerized polyester film (sample) obtained in each of Examples and Comparative Examples was adjusted to a temperature of 23 ° C and a humidity of 50% RH using a tensile tester (Intesco Model 2001, manufactured by Intesco Corporation). In a conditioned room, a copolymerized polyester film (sample) having a length of 300 mm and a width of 20 mm was pulled at a strain rate of 10% / min, and was calculated by the following equation using a straight line portion at the beginning of a tensile stress-strain curve.
E = Δσ / Δε
(In the above equation, E is Young's modulus (GPa), Δσ is a stress difference (GPa) due to the original average cross-sectional area between two points of a straight line, and Δε is a strain difference / initial length between the same two points.)
実施例・比較例で得た共重合ポリエステルフィルム(サンプル)について、引張試験機((株)インテスコ製、インテスコモデル2001型)を用いて温度23℃、湿度50%RHに調節された室内において、長さ300mm、巾20mmの共重合ポリエステルフィルム(サンプル)を10%/分の歪み速度で引張り、引張応力-ひずみ曲線の初め直線部分を用いて次式によって計算した。
E=Δσ/Δε
(前記式中、Eはヤング率(GPa)、Δσは直線の2点間の元の平均断面積による応力差(GPa)、Δεは同一2点間の歪み差/初期長さである) (3) Young's modulus The copolymerized polyester film (sample) obtained in each of Examples and Comparative Examples was adjusted to a temperature of 23 ° C and a humidity of 50% RH using a tensile tester (Intesco Model 2001, manufactured by Intesco Corporation). In a conditioned room, a copolymerized polyester film (sample) having a length of 300 mm and a width of 20 mm was pulled at a strain rate of 10% / min, and was calculated by the following equation using a straight line portion at the beginning of a tensile stress-strain curve.
E = Δσ / Δε
(In the above equation, E is Young's modulus (GPa), Δσ is a stress difference (GPa) due to the original average cross-sectional area between two points of a straight line, and Δε is a strain difference / initial length between the same two points.)
(4)引張破断強度
実施例・比較例で得た共重合ポリエステルフィルム(サンプル)について、引張試験機((株)インテスコ製、インテスコモデル2001型)を用いて温度23℃、湿度50%RHに調節された室内において、幅15mmの共重合ポリエステルフィルム(サンプル)をチャック間50mmとなるように試験機にセットして、200mm/分の歪み速度で、フィルムの長手方向(MD)又は幅方向(TD)に引張り、下記式により引張破断強度を求めた。
引張破断強度(MPa)=F/A
ただし、前記式中、Fは破断時に於ける荷重(N)であり、Aは試験片の元の断面積(mm2)である。 (4) Tensile breaking strength For the copolymerized polyester film (sample) obtained in Examples and Comparative Examples, a tensile tester (manufactured by Intesco Corporation, Intesco Model 2001) was used at a temperature of 23 ° C. and a humidity of 50% RH. In a controlled room, a copolyester film (sample) having a width of 15 mm is set in a tester so that the distance between the chucks is 50 mm, and at a strain rate of 200 mm / min, a longitudinal direction (MD) or a width direction of the film is set. (TD), and the tensile breaking strength was determined by the following equation.
Tensile breaking strength (MPa) = F / A
In the above equation, F is the load (N) at the time of breaking, and A is the original cross-sectional area (mm 2 ) of the test piece.
実施例・比較例で得た共重合ポリエステルフィルム(サンプル)について、引張試験機((株)インテスコ製、インテスコモデル2001型)を用いて温度23℃、湿度50%RHに調節された室内において、幅15mmの共重合ポリエステルフィルム(サンプル)をチャック間50mmとなるように試験機にセットして、200mm/分の歪み速度で、フィルムの長手方向(MD)又は幅方向(TD)に引張り、下記式により引張破断強度を求めた。
引張破断強度(MPa)=F/A
ただし、前記式中、Fは破断時に於ける荷重(N)であり、Aは試験片の元の断面積(mm2)である。 (4) Tensile breaking strength For the copolymerized polyester film (sample) obtained in Examples and Comparative Examples, a tensile tester (manufactured by Intesco Corporation, Intesco Model 2001) was used at a temperature of 23 ° C. and a humidity of 50% RH. In a controlled room, a copolyester film (sample) having a width of 15 mm is set in a tester so that the distance between the chucks is 50 mm, and at a strain rate of 200 mm / min, a longitudinal direction (MD) or a width direction of the film is set. (TD), and the tensile breaking strength was determined by the following equation.
Tensile breaking strength (MPa) = F / A
In the above equation, F is the load (N) at the time of breaking, and A is the original cross-sectional area (mm 2 ) of the test piece.
(5)引張破断伸度
前記の引張破断強度と同様の試験を行い、実施例・比較例で得た共重合ポリエステルフィルム(サンプル)について、下記式により引張破断伸度を求めた。
引張破断伸度(%)=100×(L-L0)/L0
ただし、前記式中、Lは破断時の標点間距離(mm)であり、L0は元の標点間距離(mm)である。 (5) Tensile rupture elongation The same test as the above-described tensile rupture strength was performed, and the tensile rupture elongation was determined by the following formula for the copolymerized polyester films (samples) obtained in Examples and Comparative Examples.
Tensile elongation at break (%) = 100 × (L−L0) / L0
Here, in the above formula, L is the distance between gauge points at break (mm), and L0 is the original distance between gauge points (mm).
前記の引張破断強度と同様の試験を行い、実施例・比較例で得た共重合ポリエステルフィルム(サンプル)について、下記式により引張破断伸度を求めた。
引張破断伸度(%)=100×(L-L0)/L0
ただし、前記式中、Lは破断時の標点間距離(mm)であり、L0は元の標点間距離(mm)である。 (5) Tensile rupture elongation The same test as the above-described tensile rupture strength was performed, and the tensile rupture elongation was determined by the following formula for the copolymerized polyester films (samples) obtained in Examples and Comparative Examples.
Tensile elongation at break (%) = 100 × (L−L0) / L0
Here, in the above formula, L is the distance between gauge points at break (mm), and L0 is the original distance between gauge points (mm).
(6)加熱収縮率
実施例・比較例で得た共重合ポリエステルフィルム(サンプル)を無張力状態で120℃に保ったオーブン中で5分間静置し、その前後の試料の長さを測定して次式にて、フィルムの長手方向(MD)及び幅方向(TD)それぞれの加熱収縮率を算出した。
加熱収縮率(%)={(L0-L1)/L0}×100
(前記式中、L0は加熱処理前のサンプル長、L1は加熱処理後のサンプル長)
フィルムの長手方向(MD)と幅方向(TD)に5点ずつ測定し、それぞれについて平均値を求めた。 (6) Heat shrinkage rate The copolymerized polyester films (samples) obtained in Examples and Comparative Examples were allowed to stand for 5 minutes in an oven maintained at 120 ° C. under no tension, and the lengths of the samples before and after the measurement were measured. The heat shrinkage in each of the longitudinal direction (MD) and the width direction (TD) of the film was calculated by the following equation.
Heat shrinkage (%) = {(L0−L1) / L0} × 100
(In the above formula, L0 is the sample length before the heat treatment, and L1 is the sample length after the heat treatment.)
Five points were measured in the longitudinal direction (MD) and in the width direction (TD) of the film, and an average value was obtained for each of the five points.
実施例・比較例で得た共重合ポリエステルフィルム(サンプル)を無張力状態で120℃に保ったオーブン中で5分間静置し、その前後の試料の長さを測定して次式にて、フィルムの長手方向(MD)及び幅方向(TD)それぞれの加熱収縮率を算出した。
加熱収縮率(%)={(L0-L1)/L0}×100
(前記式中、L0は加熱処理前のサンプル長、L1は加熱処理後のサンプル長)
フィルムの長手方向(MD)と幅方向(TD)に5点ずつ測定し、それぞれについて平均値を求めた。 (6) Heat shrinkage rate The copolymerized polyester films (samples) obtained in Examples and Comparative Examples were allowed to stand for 5 minutes in an oven maintained at 120 ° C. under no tension, and the lengths of the samples before and after the measurement were measured. The heat shrinkage in each of the longitudinal direction (MD) and the width direction (TD) of the film was calculated by the following equation.
Heat shrinkage (%) = {(L0−L1) / L0} × 100
(In the above formula, L0 is the sample length before the heat treatment, and L1 is the sample length after the heat treatment.)
Five points were measured in the longitudinal direction (MD) and in the width direction (TD) of the film, and an average value was obtained for each of the five points.
(7)しなやかさ(コシ)の評価 (たわみ測定法)
試料サンプルは、実施例・比較例で得た共重合ポリエステルフィルム(サンプル)を23℃、50%RH雰囲気下で24時間静置した後に、長さ150mm、幅50mmのサイズに切り出して作製した。
図1に示すように、共重合ポリエステルフィルム(サンプル)を、23℃の環境下、机の端から長さ50mm外へ突き出すように机の上に載置する共に、机の上の共重合ポリエステルフィルム(サンプル)の上に200gの錘を置いて固定し、机の端から突き出たサンプルの先端側を自重によって下方向へ撓ませた。3分後、机の端から突き出たサンプルの先端部が垂直下方に撓んで垂れ下がった長さ(a)と、当該先端部が机の端から水平方向に突き出た長さ(b)とを測定した。
そして、水平方向に突き出た長さ(b)に対する撓んで垂れ下がった長さ(a)の比率((a)/(b))を計算し、0.30以上であれば「合格」、0.30未満であれば「不合格」と評価した。 (7) Evaluation of flexibility (stiffness) (deflection measurement method)
A sample was prepared by leaving the copolymerized polyester films (samples) obtained in the examples and comparative examples at 23 ° C. and a 50% RH atmosphere for 24 hours, and then cutting them out to a size of 150 mm in length and 50 mm in width.
As shown in FIG. 1, a copolyester film (sample) is placed on a desk in an environment of 23 ° C. so as to protrude 50 mm outside from the end of the desk, and the copolyester on the desk is placed on the desk. A 200 g weight was placed and fixed on the film (sample), and the tip side of the sample protruding from the end of the desk was bent downward by its own weight. Three minutes later, the length (a) of the tip of the sample protruding from the edge of the desk and sagging vertically and hanging down, and the length (b) of the tip protruding horizontally from the edge of the desk are measured. did.
Then, the ratio ((a) / (b)) of the length (a) flexing and hanging down to the length (b) protruding in the horizontal direction is calculated. If it was less than 30, it was evaluated as "fail".
試料サンプルは、実施例・比較例で得た共重合ポリエステルフィルム(サンプル)を23℃、50%RH雰囲気下で24時間静置した後に、長さ150mm、幅50mmのサイズに切り出して作製した。
図1に示すように、共重合ポリエステルフィルム(サンプル)を、23℃の環境下、机の端から長さ50mm外へ突き出すように机の上に載置する共に、机の上の共重合ポリエステルフィルム(サンプル)の上に200gの錘を置いて固定し、机の端から突き出たサンプルの先端側を自重によって下方向へ撓ませた。3分後、机の端から突き出たサンプルの先端部が垂直下方に撓んで垂れ下がった長さ(a)と、当該先端部が机の端から水平方向に突き出た長さ(b)とを測定した。
そして、水平方向に突き出た長さ(b)に対する撓んで垂れ下がった長さ(a)の比率((a)/(b))を計算し、0.30以上であれば「合格」、0.30未満であれば「不合格」と評価した。 (7) Evaluation of flexibility (stiffness) (deflection measurement method)
A sample was prepared by leaving the copolymerized polyester films (samples) obtained in the examples and comparative examples at 23 ° C. and a 50% RH atmosphere for 24 hours, and then cutting them out to a size of 150 mm in length and 50 mm in width.
As shown in FIG. 1, a copolyester film (sample) is placed on a desk in an environment of 23 ° C. so as to protrude 50 mm outside from the end of the desk, and the copolyester on the desk is placed on the desk. A 200 g weight was placed and fixed on the film (sample), and the tip side of the sample protruding from the end of the desk was bent downward by its own weight. Three minutes later, the length (a) of the tip of the sample protruding from the edge of the desk and sagging vertically and hanging down, and the length (b) of the tip protruding horizontally from the edge of the desk are measured. did.
Then, the ratio ((a) / (b)) of the length (a) flexing and hanging down to the length (b) protruding in the horizontal direction is calculated. If it was less than 30, it was evaluated as "fail".
(原料)
実施例及び比較例では次の原料を使用した。 (material)
The following raw materials were used in Examples and Comparative Examples.
実施例及び比較例では次の原料を使用した。 (material)
The following raw materials were used in Examples and Comparative Examples.
共重合ポリエステル1(「共PS1」):酸成分がテレフタル酸88モル%、炭素数36の水添ダイマー酸7モル%及びイソフタル酸5モル%からなり、ジオール成分がエチレングリコール90モル%及びジエチレングリコール10モル%からなる結晶性共重合ポリエステル。融点208℃、固有粘度0.68dl/g。
Copolyester 1 ("CoPS1"): the acid component is composed of 88 mol% of terephthalic acid, 7 mol% of hydrogenated dimer acid having 36 carbon atoms and 5 mol% of isophthalic acid, and the diol component is composed of 90 mol% of ethylene glycol and diethylene glycol. A crystalline copolyester consisting of 10 mol%. Melting point 208 ° C, intrinsic viscosity 0.68 dl / g.
共重合ポリエステル2(「共PS2」):酸成分がテレフタル酸88モル%及び炭素数36の水添ダイマー酸12モル%からなり、ジオール成分がエチレングリコール67モル%及び1,4-ブタンジオール33モル%(副生ジエチレングリコール0.1mol%未満)からなる結晶性共重合ポリエステル。融点200℃、固有粘度0.72dl/g。
Copolyester 2 ("co-PS2"): the acid component is composed of 88 mol% of terephthalic acid and 12 mol% of hydrogenated dimer acid having 36 carbon atoms, and the diol components are 67 mol% of ethylene glycol and 1,4-butanediol 33. A crystalline copolyester composed of mol% (by-product diethylene glycol of less than 0.1 mol%). Melting point 200 ° C, intrinsic viscosity 0.72 dl / g.
共重合ポリエステル3(「共PS3」):酸成分がテレフタル酸78モル%及びイソフタル酸22モル%からなり、ジオール成分がエチレングリコール98mol%及び副生ジエチレングリコール2mol%からなる結晶性共重合ポリエステル。融点198℃、固有粘度0.70dl/g。
Copolyester 3 (“CoPS3”): a crystalline copolyester in which the acid component is composed of 78 mol% of terephthalic acid and 22 mol% of isophthalic acid, and the diol component is composed of 98 mol% of ethylene glycol and 2 mol% of by-product diethylene glycol. Melting point 198 ° C, intrinsic viscosity 0.70 dl / g.
ポリエステル(「PET」):ポリエチレンテレフタレート(副生ジエチレングリコール:2mol%)。融点250℃、固有粘度0.64dl/g。
Polyester (“PET”): polyethylene terephthalate (by-product diethylene glycol: 2 mol%). Melting point 250 ° C, intrinsic viscosity 0.64 dl / g.
[実施例1]
表層および中間層として、共重合ポリエステル1(共PS1)のチップを280℃に設定したベント付き押出機に送り込み、ギヤポンプ、フィルターを介して、押出機の口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、未延伸シートを得た。
次いで、得られた未延伸シートを、長手方向(MD)に50℃で3.3倍延伸した後、テンターに導き、次いで幅方向(TD)に80℃で4.2倍に延伸した後、200℃で10秒間熱処理を施し、幅方向(TD)に10%弛緩して、実質的に単層からなる厚み25μmの二軸延伸共重合ポリエステルフィルム(サンプル)を得た。 [Example 1]
As a surface layer and an intermediate layer, chips of copolymerized polyester 1 (co-PS1) are fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and subjected to an electrostatic application contact method. The mixture was quenched and solidified on a cooling roll having a surface temperature set to 30 ° C. to obtain an unstretched sheet.
Next, after stretching the obtained unstretched sheet 3.3 times at 50 ° C. in the longitudinal direction (MD), it is guided to a tenter, and then stretched 4.2 times at 80 ° C. in the width direction (TD). A heat treatment was performed at 200 ° C. for 10 seconds, and the film was relaxed by 10% in the width direction (TD) to obtain a 25 μm-thick biaxially stretched copolyester film (sample) substantially consisting of a single layer.
表層および中間層として、共重合ポリエステル1(共PS1)のチップを280℃に設定したベント付き押出機に送り込み、ギヤポンプ、フィルターを介して、押出機の口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、未延伸シートを得た。
次いで、得られた未延伸シートを、長手方向(MD)に50℃で3.3倍延伸した後、テンターに導き、次いで幅方向(TD)に80℃で4.2倍に延伸した後、200℃で10秒間熱処理を施し、幅方向(TD)に10%弛緩して、実質的に単層からなる厚み25μmの二軸延伸共重合ポリエステルフィルム(サンプル)を得た。 [Example 1]
As a surface layer and an intermediate layer, chips of copolymerized polyester 1 (co-PS1) are fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and subjected to an electrostatic application contact method. The mixture was quenched and solidified on a cooling roll having a surface temperature set to 30 ° C. to obtain an unstretched sheet.
Next, after stretching the obtained unstretched sheet 3.3 times at 50 ° C. in the longitudinal direction (MD), it is guided to a tenter, and then stretched 4.2 times at 80 ° C. in the width direction (TD). A heat treatment was performed at 200 ° C. for 10 seconds, and the film was relaxed by 10% in the width direction (TD) to obtain a 25 μm-thick biaxially stretched copolyester film (sample) substantially consisting of a single layer.
[実施例2]
中間層として、共重合ポリエステル1(共PS1)のチップを280℃に設定したメインのベント付き二軸押出機に送り込んだ。
また表層として、ポリエステル(PET)のチップを280℃に設定したサブのベント付き二軸押出機に送り込んだ。
ギヤポンプ、フィルターを介して、メイン押出機からのポリマーが中間層、サブ押出機からのポリマーが表層となるように2種3層(表層/中間層/表層)の層構成で共押出して口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、未延伸シートを得た。
次いで、得られた未延伸シートを、長手方向(MD)に80℃で3.2倍延伸した後、テンターに導き、次いで幅方向(TD)に100℃で4.0倍に延伸した後、200℃で10秒間熱処理を施し、幅方向(TD)に10%弛緩して、1μm(表層)/23μm(中間層)/1μm(表層)の厚み構成からなる厚み25μmの二軸延伸共重合ポリエステルフィルム(サンプル)を得た。 [Example 2]
As an intermediate layer, a copolyester 1 (co-PS1) chip was fed into a main vented twin-screw extruder set at 280 ° C.
As the surface layer, polyester (PET) chips were fed into a sub-vented twin-screw extruder set at 280 ° C.
Through a gear pump and a filter, co-extrude in two and three layers (surface layer / intermediate layer / surface layer) so that the polymer from the main extruder becomes the middle layer and the polymer from the sub-extruder becomes the surface layer. The sheet was extruded and quenched and solidified on a cooling roll having a surface temperature set to 30 ° C. using an electrostatic contact method to obtain an unstretched sheet.
Next, the obtained unstretched sheet is stretched 3.2 times at 80 ° C. in the longitudinal direction (MD), guided to a tenter, and then stretched 4.0 times at 100 ° C. in the width direction (TD). Heat-treated at 200 ° C. for 10 seconds, relaxed by 10% in the width direction (TD), and biaxially stretched copolyester having a thickness of 1 μm (surface layer) / 23 μm (intermediate layer) / 1 μm (surface layer) and a thickness of 25 μm A film (sample) was obtained.
中間層として、共重合ポリエステル1(共PS1)のチップを280℃に設定したメインのベント付き二軸押出機に送り込んだ。
また表層として、ポリエステル(PET)のチップを280℃に設定したサブのベント付き二軸押出機に送り込んだ。
ギヤポンプ、フィルターを介して、メイン押出機からのポリマーが中間層、サブ押出機からのポリマーが表層となるように2種3層(表層/中間層/表層)の層構成で共押出して口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、未延伸シートを得た。
次いで、得られた未延伸シートを、長手方向(MD)に80℃で3.2倍延伸した後、テンターに導き、次いで幅方向(TD)に100℃で4.0倍に延伸した後、200℃で10秒間熱処理を施し、幅方向(TD)に10%弛緩して、1μm(表層)/23μm(中間層)/1μm(表層)の厚み構成からなる厚み25μmの二軸延伸共重合ポリエステルフィルム(サンプル)を得た。 [Example 2]
As an intermediate layer, a copolyester 1 (co-PS1) chip was fed into a main vented twin-screw extruder set at 280 ° C.
As the surface layer, polyester (PET) chips were fed into a sub-vented twin-screw extruder set at 280 ° C.
Through a gear pump and a filter, co-extrude in two and three layers (surface layer / intermediate layer / surface layer) so that the polymer from the main extruder becomes the middle layer and the polymer from the sub-extruder becomes the surface layer. The sheet was extruded and quenched and solidified on a cooling roll having a surface temperature set to 30 ° C. using an electrostatic contact method to obtain an unstretched sheet.
Next, the obtained unstretched sheet is stretched 3.2 times at 80 ° C. in the longitudinal direction (MD), guided to a tenter, and then stretched 4.0 times at 100 ° C. in the width direction (TD). Heat-treated at 200 ° C. for 10 seconds, relaxed by 10% in the width direction (TD), and biaxially stretched copolyester having a thickness of 1 μm (surface layer) / 23 μm (intermediate layer) / 1 μm (surface layer) and a thickness of 25 μm A film (sample) was obtained.
[実施例3~5]
表1に示すように条件を変更した以外は、実施例2と同様にして二軸延伸共重合ポリエステルフィルム(サンプル)を得た。
なお、表において、例えば実施例3の「共PS1/PET=80/20」とは、共PS1を80質量部と、PETを20質量部とを混合したという意味であり、他の実施例についても同様に質量割合を示している。 [Examples 3 to 5]
A biaxially stretched copolyester film (sample) was obtained in the same manner as in Example 2 except that the conditions were changed as shown in Table 1.
In the table, for example, “PS1 / PET = 80/20” in Example 3 means that 80 parts by weight of PS1 and 20 parts by weight of PET were mixed. Also indicates the mass ratio.
表1に示すように条件を変更した以外は、実施例2と同様にして二軸延伸共重合ポリエステルフィルム(サンプル)を得た。
なお、表において、例えば実施例3の「共PS1/PET=80/20」とは、共PS1を80質量部と、PETを20質量部とを混合したという意味であり、他の実施例についても同様に質量割合を示している。 [Examples 3 to 5]
A biaxially stretched copolyester film (sample) was obtained in the same manner as in Example 2 except that the conditions were changed as shown in Table 1.
In the table, for example, “PS1 / PET = 80/20” in Example 3 means that 80 parts by weight of PS1 and 20 parts by weight of PET were mixed. Also indicates the mass ratio.
[比較例1]
ポリエステル(PET)のチップを280℃に設定したベント付き押出機に送り込み、ギヤポンプ、フィルターを介して、押出機の口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、未延伸シートを得た。
次いで、得られた未延伸シートを、長手方向(MD)に86℃で3.5倍延伸した後、テンターに導き、次いで幅方向(TD)に110℃で4.3倍に延伸した後、235℃で10秒間熱処理を施し、幅方向(TD)に10%弛緩して、厚み50μmの二軸延伸共重合ポリエステルフィルム(サンプル)を得た。 [Comparative Example 1]
A polyester (PET) chip is fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and cooled at a surface temperature set at 30 ° C. using an electrostatic application contact method. It was quenched and solidified on a roll to obtain an unstretched sheet.
Next, the obtained unstretched sheet is stretched 3.5 times at 86 ° C. in the longitudinal direction (MD), guided to a tenter, and then stretched 4.3 times at 110 ° C. in the width direction (TD). A heat treatment was performed at 235 ° C. for 10 seconds, and the film was relaxed by 10% in the width direction (TD) to obtain a biaxially stretched copolymerized polyester film (sample) having a thickness of 50 μm.
ポリエステル(PET)のチップを280℃に設定したベント付き押出機に送り込み、ギヤポンプ、フィルターを介して、押出機の口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、未延伸シートを得た。
次いで、得られた未延伸シートを、長手方向(MD)に86℃で3.5倍延伸した後、テンターに導き、次いで幅方向(TD)に110℃で4.3倍に延伸した後、235℃で10秒間熱処理を施し、幅方向(TD)に10%弛緩して、厚み50μmの二軸延伸共重合ポリエステルフィルム(サンプル)を得た。 [Comparative Example 1]
A polyester (PET) chip is fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and cooled at a surface temperature set at 30 ° C. using an electrostatic application contact method. It was quenched and solidified on a roll to obtain an unstretched sheet.
Next, the obtained unstretched sheet is stretched 3.5 times at 86 ° C. in the longitudinal direction (MD), guided to a tenter, and then stretched 4.3 times at 110 ° C. in the width direction (TD). A heat treatment was performed at 235 ° C. for 10 seconds, and the film was relaxed by 10% in the width direction (TD) to obtain a biaxially stretched copolymerized polyester film (sample) having a thickness of 50 μm.
[比較例2]
共PS3のチップ85質量部と、PETのチップ15質量部とを混合したものを280℃に設定したベント付き押出機に送り込み、ギヤポンプ、フィルターを介して、押出機の口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、未延伸シートを得た。
次いで、得られた未延伸シートを、長手方向(MD)に80℃で3.4倍延伸した後、テンターに導き、次いで幅方向(TD)に145℃で3.9倍に延伸した後、186℃で10秒間熱処理を施し、幅方向(TD)に10%弛緩して、厚み50μmの二軸延伸共重合ポリエステルフィルム(サンプル)を得た。 [Comparative Example 2]
A mixture of 85 parts by mass of PS3 chips and 15 parts by mass of PET chips is fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and subjected to electrostatic application. Using an adhesion method, the mixture was quenched and solidified on a cooling roll having a surface temperature set at 30 ° C. to obtain an unstretched sheet.
Next, the obtained unstretched sheet is stretched 3.4 times in the longitudinal direction (MD) at 80 ° C., then guided to a tenter, and then stretched 3.9 times in the width direction (TD) at 145 ° C. Heat treatment was performed at 186 ° C. for 10 seconds, and the film was relaxed by 10% in the width direction (TD) to obtain a biaxially stretched copolymerized polyester film (sample) having a thickness of 50 μm.
共PS3のチップ85質量部と、PETのチップ15質量部とを混合したものを280℃に設定したベント付き押出機に送り込み、ギヤポンプ、フィルターを介して、押出機の口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、未延伸シートを得た。
次いで、得られた未延伸シートを、長手方向(MD)に80℃で3.4倍延伸した後、テンターに導き、次いで幅方向(TD)に145℃で3.9倍に延伸した後、186℃で10秒間熱処理を施し、幅方向(TD)に10%弛緩して、厚み50μmの二軸延伸共重合ポリエステルフィルム(サンプル)を得た。 [Comparative Example 2]
A mixture of 85 parts by mass of PS3 chips and 15 parts by mass of PET chips is fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and subjected to electrostatic application. Using an adhesion method, the mixture was quenched and solidified on a cooling roll having a surface temperature set at 30 ° C. to obtain an unstretched sheet.
Next, the obtained unstretched sheet is stretched 3.4 times in the longitudinal direction (MD) at 80 ° C., then guided to a tenter, and then stretched 3.9 times in the width direction (TD) at 145 ° C. Heat treatment was performed at 186 ° C. for 10 seconds, and the film was relaxed by 10% in the width direction (TD) to obtain a biaxially stretched copolymerized polyester film (sample) having a thickness of 50 μm.
[比較例3]
共重合ポリエステル2(共PS2)のチップを280℃に設定したベント付き押出機に送り込み、ギヤポンプ、フィルターを介して、押出機の口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、厚み200μmの未延伸共重合ポリエステルフィルム(サンプル)を得た。 [Comparative Example 3]
The copolyester 2 (co-PS2) chips are fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and the surface temperature is set to 30 ° C. using an electrostatic application contact method. Quenched and solidified on a cooling roll set as described above to obtain an unstretched copolymerized polyester film (sample) having a thickness of 200 μm.
共重合ポリエステル2(共PS2)のチップを280℃に設定したベント付き押出機に送り込み、ギヤポンプ、フィルターを介して、押出機の口金から押出し、静電印加密着法を用いて表面温度を30℃に設定した冷却ロール上で急冷固化させ、厚み200μmの未延伸共重合ポリエステルフィルム(サンプル)を得た。 [Comparative Example 3]
The copolyester 2 (co-PS2) chips are fed into a vented extruder set at 280 ° C., extruded from a die of the extruder via a gear pump and a filter, and the surface temperature is set to 30 ° C. using an electrostatic application contact method. Quenched and solidified on a cooling roll set as described above to obtain an unstretched copolymerized polyester film (sample) having a thickness of 200 μm.
前記実施例及び発明者がこれまで行ってきた試験結果より、前記共重合ポリエステルAを主成分樹脂として含有する共重合ポリエステル層(I層)を備えた共重合ポリエステルフィルムであって、25℃の貯蔵弾性率が2500MPa以下であることで、常温で柔軟性に優れており、単に柔軟であるだけでなく、よりしなやかであり、それでいて、伸度及び強度を有することができる。且つ、120℃の貯蔵弾性率が10MPa以上であることで、実用上十分な耐熱性を有することができることが分かった。
From the results of the above Examples and the tests conducted by the inventor, a copolymer polyester film having a copolymer polyester layer (I layer) containing the copolymer polyester A as a main component resin, When the storage elastic modulus is 2500 MPa or less, it is excellent in flexibility at ordinary temperature, and is not only flexible but also more pliable, and can have elongation and strength. In addition, it was found that when the storage elastic modulus at 120 ° C. is 10 MPa or more, practically sufficient heat resistance can be obtained.
実施例2~5のように、中間層の主成分樹脂が結晶性の共重合ポリエステルである場合、表層の主成分樹脂としてのポリエステルが、前記共重合ポリエステルの融点よりも高い融点を有するポリエステルであれば、前記中間層のみからなる単層の場合に比べて、延伸後の熱処理(熱固定)温度をより高くすることができ、熱収縮性をさらに抑えることができることが確かめられた。
なお、中間層の主成分樹脂が非晶性の共重合ポリエステルである場合は、表層の主成分樹脂としてのポリエステルが、前記共重合ポリエステルのガラス転移点よりも高い融点を有するポリエステルであれば、前記中間層のみからなる単層の場合に比べて、延伸後の熱処理(熱固定)温度をより高くすることができるから、熱収縮性をさらに抑えることができると考えられる。 When the main component resin of the intermediate layer is a crystalline copolymer polyester as in Examples 2 to 5, the polyester as the main component resin of the surface layer is a polyester having a melting point higher than the melting point of the copolymer polyester. If so, it was confirmed that the heat treatment (heat setting) temperature after stretching can be further increased and the heat shrinkage can be further suppressed as compared with the case of a single layer consisting of only the intermediate layer.
When the main component resin of the intermediate layer is an amorphous copolymerized polyester, if the polyester as the main component resin of the surface layer is a polyester having a melting point higher than the glass transition point of the copolymerized polyester, It is considered that the heat treatment (thermal fixation) temperature after stretching can be higher than in the case of a single layer consisting of only the intermediate layer, so that the heat shrinkability can be further suppressed.
なお、中間層の主成分樹脂が非晶性の共重合ポリエステルである場合は、表層の主成分樹脂としてのポリエステルが、前記共重合ポリエステルのガラス転移点よりも高い融点を有するポリエステルであれば、前記中間層のみからなる単層の場合に比べて、延伸後の熱処理(熱固定)温度をより高くすることができるから、熱収縮性をさらに抑えることができると考えられる。 When the main component resin of the intermediate layer is a crystalline copolymer polyester as in Examples 2 to 5, the polyester as the main component resin of the surface layer is a polyester having a melting point higher than the melting point of the copolymer polyester. If so, it was confirmed that the heat treatment (heat setting) temperature after stretching can be further increased and the heat shrinkage can be further suppressed as compared with the case of a single layer consisting of only the intermediate layer.
When the main component resin of the intermediate layer is an amorphous copolymerized polyester, if the polyester as the main component resin of the surface layer is a polyester having a melting point higher than the glass transition point of the copolymerized polyester, It is considered that the heat treatment (thermal fixation) temperature after stretching can be higher than in the case of a single layer consisting of only the intermediate layer, so that the heat shrinkability can be further suppressed.
Claims (14)
- 共重合ポリエステルAを主成分樹脂として含有する共重合ポリエステル層(I層)を備えた共重合ポリエステルフィルムであって、
前記共重合ポリエステルAは、テレフタル酸及び「その他のジカルボン酸成分」と、エチレングリコール及び「その他のアルコール成分」との共重合体であり、当該共重合ポリエステルにおいてジカルボン酸成分に占める「その他のジカルボン酸成分」の割合は5mol%以上20mol%以下であり、アルコール成分に占める「その他のアルコール成分」の割合は1mol%以上25mol%未満であり、
25℃の貯蔵弾性率が2500MPa以下であり、且つ、120℃の貯蔵弾性率が10MPa以上であることを特徴とする共重合ポリエステルフィルム。 A copolymer polyester film having a copolymer polyester layer (I layer) containing copolymer polyester A as a main component resin,
The copolymerized polyester A is a copolymer of terephthalic acid and “other dicarboxylic acid components”, ethylene glycol and “other alcohol components”, and “other dicarboxylic acid components” in the dicarboxylic acid component in the copolymerized polyester. The ratio of the “acid component” is 5 mol% or more and 20 mol% or less, and the ratio of the “other alcohol component” in the alcohol component is 1 mol% or more and less than 25 mol%,
A copolymer polyester film having a storage elastic modulus at 25 ° C. of 2500 MPa or less and a storage elastic modulus at 120 ° C. of 10 MPa or more. - 前記共重合ポリエステル層(I層)は、前記共重合ポリエステルAと、これと相溶する樹脂Bとを含む層であることを特徴とする請求項1に記載の共重合ポリエステルフィルム。 The copolyester film according to claim 1, wherein the copolyester layer (I layer) is a layer containing the copolyester A and a resin B compatible therewith.
- 前記樹脂Bとして、1種又は2種以上のポリエステルを含み、当該ポリエステルは、ジカルボン酸成分の合計含有量に対する「その他のジカルボン酸成分」の合計含有量の割合が5mol%以上20mol%以下であり、アルコール成分の合計含有量に対する「その他のアルコール成分」の合計含有量の割合が1mol%以上25mol%未満であることを特徴とする請求項1又は2に記載の共重合ポリエステルフィルム。 The resin B contains one or more polyesters, and the polyester has a ratio of a total content of “other dicarboxylic acid components” to a total content of dicarboxylic acid components of 5 mol% or more and 20 mol% or less. The copolymer polyester film according to claim 1, wherein a ratio of a total content of “other alcohol components” to a total content of alcohol components is 1 mol% or more and less than 25 mol%.
- 1種又は2種以上のポリエステルを含有する共重合ポリエステル層(I層)を備えた共重合ポリエステルフィルムであって、
共重合ポリエステル層(I層)に含まれる全ポリエステルにおいて、ジカルボン酸成分の含有量合計に占める「その他のジカルボン酸成分」の含有量合計の割合は5mol%以上20mol%以下であり、アルコール成分の含有量合計に占める「その他のアルコール成分」の含有量合計の割合は1mol%以上25mol%未満であり、
25℃の貯蔵弾性率が2500MPa以下であり、且つ、120℃の貯蔵弾性率が10MPa以上であることを特徴とする共重合ポリエステルフィルム。 A copolymerized polyester film comprising a copolymerized polyester layer (I layer) containing one or more polyesters,
In all the polyesters contained in the copolymerized polyester layer (I layer), the ratio of the total content of the “other dicarboxylic acid components” to the total content of the dicarboxylic acid components is 5 mol% or more and 20 mol% or less, and the alcohol component The ratio of the total content of “other alcohol components” to the total content is 1 mol% or more and less than 25 mol%,
A copolymer polyester film having a storage elastic modulus at 25 ° C. of 2500 MPa or less and a storage elastic modulus at 120 ° C. of 10 MPa or more. - 前記「その他のジカルボン酸成分」が、脂肪族ジカルボン酸又はダイマー酸を含むことを特徴とする請求項1~4の何れかに記載の共重合ポリエステルフィルム。 (5) The copolyester film according to any one of (1) to (4), wherein the “other dicarboxylic acid component” contains an aliphatic dicarboxylic acid or a dimer acid.
- 前記「その他のジカルボン酸成分」が、イソフタル酸、脂肪族ジカルボン酸、及び、ダイマー酸のうちの2種類以上を含むことを特徴とする請求項1~5の何れかに記載の共重合ポリエステルフィルム。 The copolyester film according to any one of claims 1 to 5, wherein the “other dicarboxylic acid component” contains two or more of isophthalic acid, aliphatic dicarboxylic acid, and dimer acid. .
- 前記「その他のジカルボン酸成分」が、イソフタル酸、炭素数が20~80の脂肪族ジカルボン酸、及び、ダイマー酸のうちの2種類以上を含むことを特徴とする請求項1~5の何れかに記載の共重合ポリエステルフィルム。 6. The method according to claim 1, wherein the “other dicarboxylic acid component” contains two or more of isophthalic acid, an aliphatic dicarboxylic acid having 20 to 80 carbon atoms, and dimer acid. The polyester film according to 1.
- 前記「その他のアルコール成分」がジエチレングリコールを含むことを特徴とする請求項1~7の何れかに記載の共重合ポリエステルフィルム。 8. The copolymerized polyester film according to claim 1, wherein the “other alcohol component” contains diethylene glycol.
- 共重合ポリエステル層(I層)の表裏両側に、ポリエステルCを主成分樹脂として含有するポリエステル層(II層)を積層してなる構成を備えており、
当該ポリエステルCは、共重合ポリエステルAが結晶性の場合は、共重合ポリエステルAの融点よりも高い融点を有するポリエステルであり、共重合ポリエステルAが非晶性の場合は、共重合ポリエステルAのガラス転移点よりも高い温度の融点を有するポリエステルであることを特徴とする請求項1~8の何れかに記載の共重合ポリエステルフィルム。 It has a configuration in which a polyester layer (II layer) containing polyester C as a main component resin is laminated on both front and back sides of the copolymerized polyester layer (I layer),
The polyester C is a polyester having a melting point higher than the melting point of the copolyester A when the copolyester A is crystalline, and a glass of the copolyester A when the copolyester A is amorphous. The copolymerized polyester film according to any one of claims 1 to 8, which is a polyester having a melting point higher than the transition point. - ポリエステル層(II層)の各層厚みは、共重合ポリエステル層(I層)の厚みの1~20%であることを特徴とする請求項9に記載の共重合ポリエステルフィルム。 10. The copolyester film according to claim 9, wherein the thickness of each polyester layer (II layer) is 1 to 20% of the thickness of the copolyester layer (I layer).
- 25℃の損失正接(tanδ)が0.02以上であることを特徴とする請求項1~10の何れかに記載の共重合ポリエステルフィルム。 The copolymerized polyester film according to any one of claims 1 to 10, wherein a loss tangent (tan δ) at 25 ° C is 0.02 or more.
- フィルムの全厚みが20μmを超えることを特徴とする請求項1~11の何れかに記載の共重合ポリエステルフィルム。 12. The copolymerized polyester film according to claim 1, wherein the total thickness of the film exceeds 20 μm.
- 請求項1~12の何れかに記載の共重合ポリエステルフィルムを用いた表面保護フィルム。 A surface protective film using the copolymerized polyester film according to any one of claims 1 to 12.
- 請求項1~12の何れかに記載の共重合ポリエステルフィルムを用いた光学部材。
An optical member using the copolymerized polyester film according to any one of claims 1 to 12.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020545971A JP7192869B2 (en) | 2018-09-13 | 2019-09-05 | Copolyester film |
KR1020217004093A KR20210057011A (en) | 2018-09-13 | 2019-09-05 | Copolyester film |
CN201980057594.0A CN112654664B (en) | 2018-09-13 | 2019-09-05 | Copolyester film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171673 | 2018-09-13 | ||
JP2018-171673 | 2018-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020054576A1 true WO2020054576A1 (en) | 2020-03-19 |
Family
ID=69776507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/035003 WO2020054576A1 (en) | 2018-09-13 | 2019-09-05 | Copolymerized polyester film |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7192869B2 (en) |
KR (1) | KR20210057011A (en) |
CN (1) | CN112654664B (en) |
TW (1) | TWI813769B (en) |
WO (1) | WO2020054576A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021152923A1 (en) * | 2020-01-30 | 2021-08-05 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05170944A (en) * | 1991-12-19 | 1993-07-09 | Kanebo Ltd | Polyester-based shrink film |
JP2004202702A (en) * | 2002-12-24 | 2004-07-22 | Mitsubishi Polyester Film Copp | Easily tearable laminated polyester film |
WO2009078304A1 (en) * | 2007-12-14 | 2009-06-25 | Toray Industries, Inc. | Multilayer polyester film |
WO2010038655A1 (en) * | 2008-09-30 | 2010-04-08 | 東レ株式会社 | Polyester film |
WO2013099608A1 (en) * | 2011-12-28 | 2013-07-04 | 東レ株式会社 | Biaxially oriented polyester film for molding |
WO2015093307A1 (en) * | 2013-12-18 | 2015-06-25 | 東レ株式会社 | Multilayer polyester film and polarizing plate using same |
WO2017164190A1 (en) * | 2016-03-22 | 2017-09-28 | 株式会社クラレ | Sealant film and production method therefor |
WO2018025663A1 (en) * | 2016-08-02 | 2018-02-08 | 東レ株式会社 | White polyester film for molding and white resin molded body |
WO2018147249A1 (en) * | 2017-02-13 | 2018-08-16 | 東洋紡株式会社 | Raw copolyester material for amorphous film, heat-shrinkable polyester-based film, heat-shrinkable label, and package |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2692284B2 (en) | 1989-08-07 | 1997-12-17 | ダイアホイルヘキスト株式会社 | Biaxially oriented polyester film for molding |
JP3117986B2 (en) | 1990-07-31 | 2000-12-18 | 三菱化学ポリエステルフィルム株式会社 | Image receiving sheet for thermal transfer |
JP2000001552A (en) | 1998-04-13 | 2000-01-07 | Teijin Ltd | Polyester film for metal sheet lamination and production thereof |
JP5763110B2 (en) | 2013-01-08 | 2015-08-12 | ビッグローブ株式会社 | Transmission / reception system, computer, transmission / reception apparatus, transmission / reception method, and program |
JP6154626B2 (en) | 2013-03-02 | 2017-06-28 | 三菱ケミカル株式会社 | Softening polyester film |
-
2019
- 2019-09-05 JP JP2020545971A patent/JP7192869B2/en active Active
- 2019-09-05 WO PCT/JP2019/035003 patent/WO2020054576A1/en active Application Filing
- 2019-09-05 KR KR1020217004093A patent/KR20210057011A/en not_active Application Discontinuation
- 2019-09-05 CN CN201980057594.0A patent/CN112654664B/en active Active
- 2019-09-12 TW TW108132958A patent/TWI813769B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05170944A (en) * | 1991-12-19 | 1993-07-09 | Kanebo Ltd | Polyester-based shrink film |
JP2004202702A (en) * | 2002-12-24 | 2004-07-22 | Mitsubishi Polyester Film Copp | Easily tearable laminated polyester film |
WO2009078304A1 (en) * | 2007-12-14 | 2009-06-25 | Toray Industries, Inc. | Multilayer polyester film |
WO2010038655A1 (en) * | 2008-09-30 | 2010-04-08 | 東レ株式会社 | Polyester film |
WO2013099608A1 (en) * | 2011-12-28 | 2013-07-04 | 東レ株式会社 | Biaxially oriented polyester film for molding |
WO2015093307A1 (en) * | 2013-12-18 | 2015-06-25 | 東レ株式会社 | Multilayer polyester film and polarizing plate using same |
WO2017164190A1 (en) * | 2016-03-22 | 2017-09-28 | 株式会社クラレ | Sealant film and production method therefor |
WO2018025663A1 (en) * | 2016-08-02 | 2018-02-08 | 東レ株式会社 | White polyester film for molding and white resin molded body |
WO2018147249A1 (en) * | 2017-02-13 | 2018-08-16 | 東洋紡株式会社 | Raw copolyester material for amorphous film, heat-shrinkable polyester-based film, heat-shrinkable label, and package |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021152923A1 (en) * | 2020-01-30 | 2021-08-05 | ||
WO2021152923A1 (en) * | 2020-01-30 | 2021-08-05 | 三菱ケミカル株式会社 | Copolymerized polyester film, multilayer film and use of these films |
CN115135701A (en) * | 2020-01-30 | 2022-09-30 | 三菱化学株式会社 | Copolyester film, laminated film and method for using same |
JP7505508B2 (en) | 2020-01-30 | 2024-06-25 | 三菱ケミカル株式会社 | Copolymer polyester film, laminated film and method of using same |
Also Published As
Publication number | Publication date |
---|---|
KR20210057011A (en) | 2021-05-20 |
CN112654664B (en) | 2023-09-05 |
JP7192869B2 (en) | 2022-12-20 |
CN112654664A (en) | 2021-04-13 |
TWI813769B (en) | 2023-09-01 |
TW202024171A (en) | 2020-07-01 |
JPWO2020054576A1 (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7211368B2 (en) | Copolyester film | |
KR101218145B1 (en) | Biaxially-oriented polyester film excellent in formability and manufacturing method thereof | |
JP4232004B2 (en) | Biaxially oriented polyester film | |
WO2020054576A1 (en) | Copolymerized polyester film | |
JP7559598B2 (en) | Biaxially oriented film | |
JP2018021168A (en) | Biaxially oriented polyester film | |
JP2022122202A (en) | Biaxially oriented film, and laminate film | |
JP2004075713A (en) | Polyester film, polyester film for molding and molding member using the same | |
JP7133601B2 (en) | Polyester film and flexible display device including the same | |
JP3960741B2 (en) | Heat-shrinkable polyester multilayer film | |
JP2021066881A (en) | Polyester film and flexible display apparatus comprising the same | |
JP4502118B2 (en) | Easy-bending biaxially stretched polyester film | |
JP7035334B2 (en) | Polyester film. | |
JP5391666B2 (en) | Biaxially stretched film | |
JP7439409B2 (en) | polyester film | |
JP4543743B2 (en) | Biaxially stretched polylactic acid film and container for molding | |
JP7248092B2 (en) | polyester film. | |
JP2015151529A (en) | Biaxially-oriented polyester film | |
JP5934049B2 (en) | Biaxially oriented polyester film | |
JP2023090081A (en) | Polyester film and method for producing polyester film | |
JP6787080B2 (en) | Laminate | |
JP2024120701A (en) | Laminated polyester film for flexible displays and method of using same | |
JP2005187565A (en) | White polyester film for molding and molded member obtained by using the same | |
JP2003221497A (en) | Polyester film for embossing | |
JP2023014732A (en) | polyester film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19860273 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020545971 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19860273 Country of ref document: EP Kind code of ref document: A1 |