Nothing Special   »   [go: up one dir, main page]

WO2020054131A1 - 位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法 - Google Patents

位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法 Download PDF

Info

Publication number
WO2020054131A1
WO2020054131A1 PCT/JP2019/019862 JP2019019862W WO2020054131A1 WO 2020054131 A1 WO2020054131 A1 WO 2020054131A1 JP 2019019862 W JP2019019862 W JP 2019019862W WO 2020054131 A1 WO2020054131 A1 WO 2020054131A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
shift mask
shift layer
substrate
layer
Prior art date
Application number
PCT/JP2019/019862
Other languages
English (en)
French (fr)
Inventor
隆仁 小澤
庸平 寳田
賢利 林
高史 八神
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020217006617A priority Critical patent/KR102582203B1/ko
Priority to JP2020546687A priority patent/JP7151774B2/ja
Priority to CN201980059790.1A priority patent/CN112689796A/zh
Publication of WO2020054131A1 publication Critical patent/WO2020054131A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials

Definitions

  • the present invention relates to a phase shift mask blank, a phase shift mask, an exposure method, and a device manufacturing method.
  • Patent Document 1 A phase shift mask in which a phase shift layer made of chromium oxynitride is formed on a transparent substrate is known (Patent Document 1). Conventionally, it has been desired to improve the quality of a phase shift mask.
  • a phase shift mask blank is a phase shift mask blank having a substrate and a phase shift layer formed on the substrate, wherein the phase shift layer comprises chromium and oxygen. And the value of the arithmetic average height of the surface of the phase shift layer is 0.38 nm or more.
  • a phase shift mask blank is a phase shift mask blank having a substrate and a phase shift layer formed on the substrate, wherein the phase shift layer comprises chromium and oxygen.
  • the value of the arithmetic average height of the surface of the phase shift layer is 0.04 nm or more larger than the value of the arithmetic average height of the surface of the substrate.
  • a phase shift mask is a phase shift mask of the phase shift mask blank according to the first or second aspect, wherein the phase shift layer is formed in a predetermined pattern.
  • an exposure method exposes a photosensitive substrate coated with a photoresist through a phase shift mask according to the third aspect.
  • a device manufacturing method includes: an exposing step of exposing the photosensitive substrate by the exposing method according to the fourth aspect; and a developing step of developing the exposed photosensitive substrate. Have.
  • FIG. 3 is a diagram illustrating a configuration example of a phase shift mask blank according to the embodiment. It is a schematic diagram which shows an example of the manufacturing apparatus used for manufacturing a phase shift mask blank. 9 is a table showing measurement results for phase shift mask blanks according to examples and comparative examples.
  • FIG. 4 is a schematic diagram illustrating a cross section of a mask pattern formed using the phase shift mask blanks according to the example.
  • FIG. 4 is a conceptual diagram illustrating a state in which a photosensitive substrate is exposed through a phase shift mask.
  • FIG. 9 is a diagram illustrating a configuration example of a phase shift mask blank according to a comparative example.
  • FIG. 9 is a schematic diagram illustrating a cross section of a mask pattern formed using a phase shift mask blank according to a comparative example.
  • FIG. 1 is a diagram illustrating a configuration example of a phase shift mask blank 10 according to the present embodiment.
  • the phase shift mask blank 10 includes a substrate 11 and a phase shift layer 12.
  • the phase shift layer 12 is formed on the surface of the substrate 11 by sputtering.
  • the oxygen content (oxygen atom concentration) in the phase shift layer 12 according to the sputtering conditions, the surface of the phase shift layer 12 has a predetermined level (a predetermined arithmetic average height) as shown in FIG. ) Is formed.
  • the phase shift mask blanks 10 according to the present embodiment will be described in more detail.
  • the substrate 11 for example, synthetic quartz glass is used.
  • the material of the substrate 11 is not limited to synthetic quartz glass.
  • the phase shift mask is used when manufacturing a display device such as an FPD (Flat Panel Display) or a semiconductor device such as an LSI (Large Scale Integration).
  • the substrate 11 may be any substrate that can sufficiently transmit exposure light in an exposure step of exposing a substrate to be exposed such as a wafer using a phase shift mask.
  • the phase shift layer 12 is formed on the surface of the substrate 11 as a film made of a material containing chromium (Cr) and oxygen (O).
  • the phase shift layer 12 according to the present embodiment is composed of a film made of CrOCN.
  • a desired pattern is formed on the phase shift layer 12 to form a phase shift mask. This pattern functions as a phase shifter that locally changes the phase of exposure light emitted in the exposure step.
  • phase shift layer 12 When exposing a device substrate with exposure light via a phase shift mask having a phase shift layer 12 formed in a desired thickness and a desired pattern, light transmitted through a portion where the phase shift layer 12 exists and phase shift layer 12 A phase difference (a phase shift amount) of approximately 180 ° is generated with light transmitted through a portion where no exists. Thereby, the intensity of the exposure light irradiated to the area other than the exposure pattern area is suppressed to be low, and the contrast of the exposure pattern is improved. As a result, the defective rate in the exposure step can be reduced.
  • the thickness (film thickness) of the phase shift layer 12 is set so that a phase shift amount of approximately 180 ° occurs in the phase of the exposure light.
  • the phase shift amount of the exposure light is not limited to 180 ° as long as the desired contrast is obtained in the exposure step.
  • the phase shift layer 12 may be formed of a single film, or may be formed by stacking a plurality of films.
  • Phase shift mask A phase shift mask formed by forming a desired pattern on the phase shift layer 12 of the blank 10 is prepared, for example, by the procedure described below.
  • a photoresist is applied on the surface of the phase shift layer 12 to form a photoresist layer.
  • a pattern is drawn by irradiating the formed photoresist layer with an energy beam such as a laser beam, an electron beam, or an ion beam.
  • an energy beam such as a laser beam, an electron beam, or an ion beam.
  • the phase shift layer 12 is wet-etched using the patterned photoresist layer as a mask. By this wet etching, a shape corresponding to the pattern formed on the photoresist layer is formed (transferred) on the phase shift layer 12.
  • the phase shift mask is completed by removing the photoresist layer.
  • the present inventors examined the correlation between the arithmetic average height of the surface of the phase shift layer 12 and the oxygen atom concentration of the phase shift layer 12, and further patterned the photoresist layer formed on the phase shift layer 12. The state of the interface between the phase shift layer 12 and the photoresist layer at that time was examined. As a result, the following findings were obtained.
  • the arithmetic mean height in this specification is defined in ISO25178. (1)
  • the present inventors use such a phase shift mask blank to perform phase shift. In the step of forming the pattern of the layer 12, it has been found that the etchant does not permeate at the interface between the phase shift layer 12 and the photoresist layer.
  • the arithmetic average height of the surface of the phase shift layer 12 is larger than a predetermined value, the infiltration of the etching solution at the interface between the phase shift layer 12 and the photoresist layer can be suppressed by It is estimated that moderate roughness (irregularity) is formed, and due to this roughness, the adhesion between the photoresist layer and the phase shift layer 12 becomes high enough to suppress the penetration of the etching solution. it can.
  • phase shift mask blank When the difference between the arithmetic average height of the surface of the phase shift layer 12 and the arithmetic average height of the surface of the substrate 11 is larger than a predetermined value, for example, 0.04 nm or more, such a phase shift mask blank is used. It has been found that in the step of forming a pattern of the phase shift layer 12 by using the same, the etchant does not permeate at the interface between the phase shift layer 12 and the photoresist layer.
  • a predetermined value for example 0.04 nm or more
  • the present inventors provide an interface between the phase shift layer 12 and the photoresist layer. It was found that the etchant did not seep into the substrate.
  • the arithmetic mean height of the surface is the predetermined value (for example, 0.38 nm). ), And thus have an appropriate roughness (irregularities).
  • the adhesion between the phase shift layer 12 and the photoresist layer is high, so that the phase shift layer 12 and the photoresist layer are not wetted during wet etching. It is considered that the etchant does not seep into the interface of the substrate.
  • the phase shift layer 12 and the photoresist layer It was found that the etchant did not penetrate into the interface of.
  • the oxygen atom number concentration inside the phase shift layer 12 decreases in the depth direction from the surface of the phase shift layer 12 for example, the oxygen atom number concentration at a position 85 nm deep from the surface of the phase shift layer 12 is exemplified.
  • the ratio of the oxygen atom number concentration at a position at a depth of 1.25 nm from the surface of the phase shift layer 12 to 1.59 is 1.59 or more.
  • FIG. 2 is a schematic diagram illustrating an example of a manufacturing apparatus used to form the phase shift layer 12 when manufacturing the phase shift mask blank 10 according to the present embodiment.
  • FIG. 2A is a schematic diagram when the inside of the manufacturing apparatus 100 is viewed from above
  • FIG. 2B is a schematic diagram when the inside of the manufacturing apparatus 100 is viewed from the side.
  • the manufacturing apparatus 100 shown in FIG. 2 is an in-line type sputtering apparatus, in which a chamber 20 for loading a substrate 11 for forming a phase shift layer 12, a sputtering chamber 21, and a phase shift layer 12 are formed. And a chamber 22 for carrying out the substrate 11. In the sputtering chamber 21, a target 41 for forming the phase shift layer 12 is arranged.
  • the substrate tray 30 is a frame-shaped tray on which the substrate 11 for forming the phase shift layer 12 can be placed, and the outer edge portion of the substrate 11 is supported and placed.
  • the substrate 11 is placed on the substrate tray 30 such that the surface of the substrate 11 is polished and cleaned, and the surface on which the phase shift layer 12 is formed faces downward (downward).
  • the sputtering apparatus 100 as described later, while maintaining the state where the surface of the substrate 11 faces the target 41, while moving the substrate tray 30 on which the substrate 11 is placed in the direction indicated by the dotted arrow 25 in FIG.
  • the phase shift layer 12 is formed on the surface of the substrate 11.
  • a gate valve (not shown) is provided between each of the carry-in chamber 20, the sputtering chamber 21, and the carry-out chamber 22, and the respective chambers are communicated and shut off by opening and closing the gate valve.
  • the carry-in chamber 20, the sputtering chamber 21, and the carry-out chamber 22 are each connected to an exhaust device (not shown), and the inside of each chamber is exhausted.
  • a sufficient space for holding the substrate tray 30 before and after film formation or a separate waiting chamber is provided (not shown).
  • the target 41 is provided inside the sputtering chamber 21.
  • the target 41 is a sputtering target for forming the phase shift layer 12, and is formed of a material containing chromium (Cr).
  • the material of the target 41 is selected from at least one of chromium, chromium oxide, chromium nitride, chromium carbide, and the like.
  • chromium is selected for the target 41.
  • Power is supplied to the target 41 of the sputtering chamber 21 from a DC power supply (not shown).
  • the sputtering chamber 21 is provided with a first gas inlet 31 and a second gas inlet 32 for introducing a gas for sputtering into the sputtering chamber 21.
  • the first gas inlet 31 is arranged on the side close to the loading chamber 20, that is, on the upstream side (upstream side) with respect to the traveling direction of the substrate tray 30 indicated by the dotted arrow 25.
  • the second gas inlet 32 is disposed on the side closer to the unloading chamber 22, that is, on the downstream side (downstream side) with respect to the traveling direction of the substrate tray 30.
  • a CrOCN film is formed as the phase shift layer 12.
  • a gas containing carbon such as nitrogen gas and carbon dioxide and an inert gas (in this embodiment, argon gas is used) are supplied to the sputtering chamber 21 through the first gas inlet 31.
  • a mixed gas is introduced.
  • oxygen gas is introduced through the second gas inlet 32.
  • the substrate 11 is transferred from the loading chamber 20 to the sputtering chamber 21 and sputtering is started.
  • nitrogen gas, carbon-containing gas, and inert gas are introduced from the first gas inlet 31, and therefore, the side closer to the first gas inlet 31 in the sputtering chamber 21, that is, On the side where sputtering of the substrate 11 is started, the concentrations of these gases are relatively high.
  • the oxygen gas is introduced from the second gas inlet 32, the oxygen concentration on the side close to the second gas inlet 32 in the sputtering chamber 21, that is, on the side where the sputtering of the substrate 11 is finished. Is relatively high.
  • the oxygen atom number concentration increases.
  • the side closer to the surface of the phase shift layer 12 (the last deposited side) contains a relatively large amount of oxygen, while the side closer to the substrate (the initially deposited side) contains less oxygen. Less.
  • a roughness (concavity and convexity) having a predetermined arithmetic average height is formed on the surface of the phase shift layer 12 thus formed.
  • the surface roughness (arithmetic mean height) of the phase shift layer 12 can be controlled by adjusting the flow rate of each gas introduced from the first gas inlet 31 and the second gas inlet 32.
  • phase shift layer 12 is formed on the surface of the substrate 11, and the phase shift mask blanks 10 are manufactured.
  • the material of the target 41 and the type of gas introduced from the first gas inlet 31 and the second gas inlet 32, respectively, are appropriately selected according to the material and composition of the phase shift layer 12. Good. Further, as a sputtering method, any method such as DC sputtering and RF sputtering may be used.
  • the flow rate (particularly, the oxygen flow rate) of each gas introduced into the sputtering chamber 21 is adjusted.
  • the number of oxygen atoms contained in the phase shift layer 12 is adjusted, and the roughness (arithmetic average height) of the surface of the phase shift layer 12 is adjusted.
  • the adhesion between the photoresist layer and the phase shift layer 12 can be sufficiently increased, and the infiltration of the etching solution into the interface between the phase shift layer 12 and the photoresist layer can be prevented.
  • a phase shift mask using the phase shift mask blanks 10 of the present embodiment a pattern can be formed with high accuracy. Therefore, the production yield of the phase shift mask can be improved.
  • phase shift mask blanks 10 of the present embodiment If pattern exposure is performed on a substrate to be exposed such as a wafer using a phase shift mask manufactured from the phase shift mask blanks 10 of the present embodiment, circuit pattern defects in the exposure step can be reduced, and high integration can be achieved. The yield in the device manufacturing process can be improved.
  • the phase shift mask blank 10 has a substrate 11 and a phase shift layer 12 formed on the substrate.
  • the phase shift layer 12 contains chromium and oxygen, and arithmetically operates on the surface of the phase shift layer 12.
  • the value of the average height is 0.38 nm or more.
  • the oxygen atom number concentration inside the phase shift layer 12 (at a predetermined depth) is larger than a predetermined value.
  • the oxygen atom number concentration at a depth of 1.25 nm (described later) from the surface of the phase shift layer 12 is 42.6% or more.
  • the etchant does not soak into the phase shift layer 12 at the edge of the pattern. That is, an inclined surface is not generated in the phase shift layer 12 due to such a penetration of the etching solution. For this reason, since the pattern accuracy of the phase shift mask manufactured using the phase shift mask blanks 10 of the present embodiment can be improved, the yield of the phase shift mask manufacturing process can be improved. Conventionally, an inclined surface may be formed at the edge of the pattern due to the penetration of the etching solution, which has caused a decrease in yield.
  • Example 1 A substrate 11 made of synthetic quartz glass was prepared.
  • the phase shift layer 12 was formed on the surface of the glass substrate 11 using the in-line type sputtering apparatus 100 shown in FIG.
  • a method for manufacturing the phase shift layer 12 will be described in more detail.
  • Argon (Ar), carbon dioxide (CO 2 ), and nitrogen (N 2 ) are introduced into the sputtering chamber 21 from the first gas inlet 31 and oxygen (O 2 ) is introduced from the second gas inlet 32.
  • the flow rates of each gas of Ar, CO 2 , N 2 , and O 2 are 240 sccm, 42 sccm, 135 sccm, and 1.5 sccm, respectively, and the flow rate of each gas is set so that the pressure in the sputtering chamber 21 is maintained at 0.3 Pa. And the displacement was controlled.
  • the power of the DC power supply of the sputtering chamber 21 is set to 9 kW (constant power control), and the sputtering is performed while moving the substrate 11 in the direction of the dotted arrow 25. Then, a phase shift mask blank 10 was produced.
  • the arithmetic mean height Sa of the surface of the phase shift layer 12 was measured within a range of 220 ⁇ m ⁇ 220 ⁇ m by using a coherence scanning interferometer (NewView8000 manufactured by Zygo).
  • the distribution of the oxygen atom number concentration in the depth direction of the phase shift layer 12 was measured by an X-ray photoelectron spectrometer (Quanta II manufactured by PHI).
  • the measurement of the distribution of the oxygen atom number concentration in the depth direction of the phase shift layer 12 by the X-ray photoelectron spectrometer was performed in the following procedure.
  • a reference substrate in which an SiO 2 film was formed on the surface of a synthetic quartz glass substrate similar to the substrate 11 by sputtering was prepared.
  • the reference substrate is set in an X-ray photoelectron spectroscopy analyzer, and the SiO 2 film is sputtered by a sputter ion gun provided in the X-ray photoelectron spectroscopy analyzer to perform etching.
  • the relationship between the etching time of the SiO 2 film and the etching amount (etching depth) is obtained.
  • the phase shift mask blank 10 produced in Example 1 is set in an X-ray photoelectron spectrometer, and the oxygen atom concentration is measured while sputtering the phase shift layer 12 with a sputter ion gun.
  • the relationship between the etching time and the etching depth of the phase shift layer 12 is regarded as the same as the relationship between the etching time and the etching amount (etching depth) of the SiO 2 film. That is, it is assumed that the etching depth for a certain etching time is the same for the SiO 2 film and the phase shift layer 12. Based on this procedure, the oxygen atom number concentration distribution in the depth direction of the phase shift layer 12 is obtained.
  • the measurement of the oxygen atom number concentration by the X-ray photoelectron spectrometer is performed while etching the phase shift layer 12 by the sputter ion gun.
  • the range to be etched by the sputter ion gun extends over a range of several hundred micrometers in diameter, and the value of the oxygen atom number concentration by the X-ray photoelectron spectroscopy analyzer outputs an average value in the same range.
  • fine irregularities are formed on the surface of the phase shift layer 12, the measured oxygen atom number concentration indicates that the phase shift layer 12 in a range that includes many such fine irregularities on the surface can be removed by a sputter ion gun.
  • the etching is performed for a predetermined time, and the average value of the oxygen atom number concentration in the range is measured.
  • the present inventors measured the various physical quantities described above for the comparative example in which the flow rate of oxygen in the step of forming the phase shift layer was zero, Example 1 in which 1.5 sccm was used, and Example 2 in which 3 sccm was used. . Since the outermost surface of the phase shift layer 12 is highly likely to be contaminated by adsorption of atmospheric gas or the like, when actually performing a composition analysis on the phase shift layer 12, the degree of surface roughness is taken into consideration. It is preferable to remove a certain amount of the outermost phase shift layer.
  • the atomic concentration at the position etched from the outermost surface to a depth of 1.25 nm is defined as the surface atomic concentration of the phase shift layer 12, but the etching depth for obtaining the surface composition is set to this value. It is not limited to.
  • the arithmetic average height of the surface of the phase shift layer 12 manufactured in Example 1 is 0.402 nm.
  • the arithmetic mean height of the surface of the phase shift layer 12 is larger than the arithmetic mean height of the surface of the substrate 11 by 0.04 nm.
  • the oxygen atom number concentration at a depth of 1.25 nm from the surface is 42.6%, and the oxygen atom number concentration at a depth of 85 nm from the surface is 26.8%.
  • the ratio of the oxygen atom number concentration at a depth of 1.25 nm from the surface to the oxygen atom number concentration at a depth of 85 nm from the surface of the phase shift layer 12 is 1.59.
  • the prepared phase shift mask blanks 10 are subjected to UV cleaning for 10 minutes, then spin cleaning (megasonic cleaning, alkali cleaning, brush cleaning, rinsing, and spin drying) for 15 minutes, and a photoresist (Nagase ChemteX Corporation) using a spin coater.
  • a company (GRX-M237) was applied on the surface of the phase shift layer 12 to form a photoresist layer. After exposing in a line and space pattern of 2 ⁇ m pitch using a mask aligner, development was performed to partially remove the photoresist layer to form a resist pattern.
  • the phase shift mask blank 10 on which the resist pattern has been formed is immersed in an etchant (Pure Etch CR101 manufactured by Hayashi Junyaku Kogyo Co., Ltd.) and wet-etched to form a pattern on the phase shift layer 12. Was formed.
  • an etchant Pure Etch CR101 manufactured by Hayashi Junyaku Kogyo Co., Ltd.
  • the pattern is cleaved and the cross-sectional shape of the pattern is observed with a scanning electron microscope (SEM) to determine whether or not the etchant seeps into the interface between the photoresist layer and the phase shift layer 12.
  • SEM scanning electron microscope
  • Example 2 A substrate 11 made of the same synthetic quartz glass as the substrate 11 used in Example 1 was prepared.
  • the flow rate of oxygen (O 2 ) introduced into the sputtering chamber 21 was 1.5 sccm, but in this example, the flow rate of oxygen (O 2 ) was 3 sccm. Otherwise, the phase shift layer 12 was formed under the same conditions as in Example 1. The same items as in Example 1 were measured. The measurement results are shown in the table of FIG.
  • the value of the arithmetic average height of the surface of the phase shift layer 12 manufactured in Example 2 is 0.417 nm.
  • the arithmetic mean height of the surface of the phase shift layer 12 is larger than the arithmetic mean height of the surface of the substrate 11 by 0.05 nm.
  • the oxygen atom concentration at a depth of 1.25 nm from the surface is 43.5%
  • the oxygen atom concentration at a depth of 85 nm from the surface is 27.2%
  • the ratio of the oxygen atom number concentration at a depth of 1.25 nm from the surface to the oxygen atom number concentration at a depth of 85 nm from the surface of the phase shift layer 12 is 1.60.
  • FIG. 4 shows a pattern formed by wet etching after exposing a photoresist layer 15 formed on the phase shift mask blanks 10 manufactured according to the first and second embodiments, and cutting the pattern. It is a figure which shows the mode observed by the microscope (SEM) typically. This indicates that the etchant does not permeate the interface between the photoresist layer 15 and the phase shift layer 12.
  • FIG. 6 is a schematic diagram illustrating a configuration of the phase shift mask blank 50 manufactured in Comparative Example 1.
  • the surface of the phase shift layer 52 of the phase shift mask blank 50 manufactured in Comparative Example 1 has no surface roughness of a predetermined arithmetic average height. In the phase shift mask blanks 50 according to Comparative Example 1, the same items as in Example 1 were measured for the phase shift layer 52 formed on the surface of the substrate 51.
  • the value of the arithmetic average height of the surface of the phase shift layer 52 manufactured in Comparative Example 1 is 0.359 nm.
  • the oxygen atom concentration at a depth of 1.25 nm from the surface is 42.1%, and the oxygen atom concentration at a depth of 85 nm from the surface is 31.8%.
  • the ratio of the oxygen atom number concentration at a depth of 1.25 nm from the surface to the oxygen atom number concentration at a depth of 85 nm from the surface of the phase shift layer 52 is 1.32.
  • phase shift mask blank 50 in which a photoresist layer is formed on the phase shift layer 52 manufactured in Comparative Example 1 when the pattern is formed on the phase shift layer 52 by wet etching, It was confirmed that the etchant permeated the interface.
  • FIG. 7 shows a pattern formed by wet etching after exposing a photoresist layer 55 formed on the phase shift mask blanks 50 manufactured according to Comparative Example 1, cutting the pattern, and cross-sectioning the pattern with a scanning electron microscope ( It is a figure which shows the mode observed by SEM) typically. This indicates that an inclined surface formed by the infiltration of the etching solution at the interface between the photoresist layer 55 and the phase shift layer 52 is formed in the phase shift layer 52.
  • the arithmetic surface roughness of the phase shift layer 12 is 0.38 nm or more.
  • the oxygen atom concentration at a depth of 1.25 nm from the surface of the phase shift layer 12 is preferably 42.6% or more.
  • the oxygen atom concentration at a depth of 1.25 nm from the surface of the phase shift layer 12 is preferably higher than the oxygen atom concentration at a depth of 85 nm, and the ratio is preferably higher than 1.59.
  • the phase shift mask blank of the present embodiment having such an aspect has a tendency that the etchant does not easily permeate between the photoresist and the phase shift layer at the time of wet etching, and the pattern of exposure light at the time of photoresist exposure is Thus, an accurate mask pattern can be formed.
  • the arithmetic average height of the surface of the phase shift layer 12 is not particularly limited as long as the desired contrast performance is obtained. However, if the arithmetic average height of the surface of the phase shift layer 12 is too large, the scattering of the exposure light on the surface of the phase shift layer 12 increases, and the sharpness at the edge of the exposure pattern decreases.
  • the upper limit value of Sa is preferably set to 1.0 nm.
  • the surface of the substrate 11 of the phase shift mask blank 10 is finished by polishing.
  • the phase shift layer 12 is formed by sputtering. Therefore, the arithmetic average height of the surface of the phase shift layer 12 is usually larger than the arithmetic average height of the surface of the substrate 11, but the arithmetic average height of the surface of the phase shift layer 12 is set to be a predetermined value higher than the arithmetic average height of the substrate 11. By increasing the size, the adhesiveness of the photoresist pattern formed on such a phase shift mask blank can be improved.
  • such an effect can be obtained by making the arithmetic average height of the surface of the phase shift layer 12 larger than the arithmetic average height of the surface of the substrate 11 by 0.04 nm or more.
  • the upper limit of the difference between the arithmetic average height of the surface of the phase shift layer 12 and the arithmetic average height of the surface of the substrate 11 is preferably 1.0 nm.
  • Modification 1 when forming the phase shift layer 12 by sputtering, the flow rate of oxygen introduced into the sputtering chamber is adjusted so that the arithmetic average height of the surface of the phase shift layer 12 is within a predetermined range.
  • the surface thereof instead of adjusting the flow rate of oxygen introduced into the sputtering chamber, after forming the phase shift layer 12, the surface thereof may be dry-etched or wet-etched to form surface irregularities at a predetermined arithmetic average height. Good. Thereby, the adhesion between the photoresist layer formed on the surface of the phase shift layer 12 and the phase shift layer 12 can be improved.
  • phase shift mask blanks 10 described in the above embodiments and modifications can be applied as phase shift mask blanks for manufacturing phase shift masks for manufacturing display devices, manufacturing semiconductors, and manufacturing printed circuit boards.
  • a substrate having a size of 520 mm ⁇ 800 mm or more can be used as the substrate 11.
  • the thickness of the substrate 11 may be 8 to 21 mm.
  • phase shift mask manufactured by using the phase shift mask blanks 10 manufactured according to the first and second embodiments
  • a photolithography process for manufacturing a semiconductor or a liquid crystal panel will be described with reference to FIG. .
  • a phase shift mask 513 manufactured using the phase shift mask blanks 10 manufactured in the first and second embodiments is arranged.
  • a photosensitive substrate 515 coated with a photoresist is set in the exposure apparatus 500.
  • the exposure apparatus 500 includes a light source LS, an illumination optical system 502, a mask support table 503 for holding a phase shift mask 513, a projection optical system 504, and an exposure object support for holding a photosensitive substrate 515 as an exposure object.
  • a table 505 and a drive mechanism 506 for moving the exposure object support table 505 in a horizontal plane are provided. Exposure light emitted from the light source LS of the exposure apparatus 500 enters the illumination optical system 502, is adjusted to a predetermined light flux, and is emitted to the phase shift mask 513 held on the mask support 503.
  • the light that has passed through the phase shift mask 513 has an image of the device pattern drawn on the phase shift mask 513, and this light is transferred to the photosensitive substrate held on the exposure object support table 505 via the projection optical system 504.
  • a predetermined position 515 is irradiated.
  • the image of the device pattern of the phase shift mask 513 is imagewise exposed on the photosensitive substrate 515 such as a semiconductor wafer or a liquid crystal panel at a predetermined magnification.
  • phase shift mask blanks 11: substrate, 12: phase shift layer, 100: manufacturing apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

位相シフトマスクブランクスは、基板と、前記基板上に形成された位相シフト層を有する位相シフトマスクブランクスであって、前記位相シフト層は、クロムと酸素とを含有し、前記位相シフト層の表面の算術平均高さの値が0.38nm以上である。

Description

位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法
 本発明は、位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法に関する。
 透明基板上に、酸化窒化クロムからなる位相シフト層が形成された位相シフトマスクが知られている(特許文献1)。従来から位相シフトマスクの品質の向上が望まれている。
日本国特開2011-013283号公報
 本発明の第1の態様によると、位相シフトマスクブランクスは、基板と、前記基板上に形成された位相シフト層を有する位相シフトマスクブランクスであって、前記位相シフト層は、クロムと酸素とを含有し、前記位相シフト層の表面の算術平均高さの値が0.38nm以上である。
 本発明の第2の態様によると、位相シフトマスクブランクスは、基板と、前記基板上に形成された位相シフト層を有する位相シフトマスクブランクスであって、前記位相シフト層は、クロムと酸素とを含有し、前記位相シフト層の表面の算術平均高さの値は、前記基板の表面の算術平均高さの値に比べて、0.04nm以上大きい。
 本発明の第3の態様によると、位相シフトマスクは、第1または第2の態様による位相シフトマスクブランクスの、前記位相シフト層を所定のパターン状に形成した位相シフトマスクである。
 本発明の第4の態様によると、露光方法は、第3の態様による位相シフトマスクを介して、フォトレジストが塗布された感光性基板を露光する。
 本発明の第5の態様によると、デバイスの製造方法は、第4の態様による露光方法によって前記感光性基板を露光する露光工程と、前記露光された感光性基板を現像する現像工程と、を有する。
実施の形態に係る位相シフトマスクブランクスの構成例を示す図である。 位相シフトマスクブランクスを製造するために使用する製造装置の一例を示す模式図である。 実施例および比較例に係る位相シフトマスクブランクスについての測定結果を示す表である。 実施例に係る位相シフトマスクブランクスを用いて形成したマスクパターンの断面を説明する模式図である。 位相シフトマスクを介して感光性基板を露光する様子を示す概念図である。 比較例に係る位相シフトマスクブランクスの構成例を示す図である。 比較例に係る位相シフトマスクブランクスを用いて形成したマスクパターンの断面を説明する模式図である。
(実施の形態)
 図1は、本実施の形態の位相シフトマスクブランクス10の構成例を示す図である。位相シフトマスクブランクス10は、基板11と位相シフト層12とを備える。本実施の形態においては、スパッタリングにより基板11の表面に位相シフト層12を形成する。その際、スパッタリングの条件により位相シフト層12における酸素含有量(酸素原子数濃度)を設定することにより、図1に示すように、位相シフト層12の表面に所定レベル(所定の算術平均高さ)の微細な凹凸(凹凸部12a)が形成される。
 以下、本実施の形態に係る位相シフトマスクブランクス10について、より詳しく説明する。
 基板11の材料としては、例えば合成石英ガラスが用いられる。なお、基板11の材料は、合成石英ガラスに限定されない。位相シフトマスクは、FPD(Flat Panel Display)等の表示用デバイスやLSI(Large Scale Integration)等の半導体デバイスを製造する際に用いられる。基板11は、位相シフトマスクを用いてウエハなどの露光対象基材を露光する露光工程において、露光光を充分に透過するものであればよい。
 位相シフト層12は、基板11の表面に、クロム(Cr)と酸素(O)とを含む材料による膜として形成される。本実施の形態に係る位相シフト層12は、CrOCNを材料とする膜で構成される。位相シフト層12には、所望のパターンが形成され、位相シフトマスクとなる。このパターンは、露光工程において照射される露光光の位相を局所的に変化させる位相シフタとして機能する。
 所望の厚さと所望パターンに形成された位相シフト層12を有する位相シフトマスクを介してデバイス用基板を露光光により露光する際、位相シフト層12が存在する部分を透過する光と位相シフト層12が存在しない部分を透過する光とには、略180°の位相差(位相シフト量)が生じる。これにより、露光パターン領域以外に照射される露光光の強度を低く抑え、露光パターンのコントラストを向上させる。その結果、露光工程における不良率を低減することができる。
 上記では、露光光の位相に略180°の位相シフト量が生じるように、位相シフト層12の厚さ(膜厚)が設定される旨記載した。しかし、露光工程において所望のコントラストが得られる範囲内であれば、露光光の位相シフト量は180°に限定されない。なお、位相シフト層12は、単一の膜で構成してもよいし、複数の膜を積層して構成してもよい。
 位相シフトマスクブランクス10の位相シフト層12に所望パターンを形成して成る位相シフトマスクは、例えば、次に説明する手順により作成される。
 位相シフト層12の表面にフォトレジストを塗布してフォトレジスト層を形成する。形成されたフォトレジスト層に、レーザー光、電子線、あるいはイオンビーム等のエネルギー線を照射してパターンを描画する。パターンが描画されたフォトレジスト層を現像することで、描画部分または非描画部分が除去されてフォトレジスト層にパターンが形成される。パターンが形成されたフォトレジスト層をマスクとして、位相シフト層12をウェットエッチングする。このウェットエッチングにより、フォトレジスト層に形成されたパターンに対応した形状が、位相シフト層12に形成(転写)される。フォトレジスト層を除去して位相シフトマスクが完成する。
 本発明者らは、位相シフト層12表面の算術平均高さと、位相シフト層12の酸素原子数濃度との相関関係を調べ、さらに、位相シフト層12に形成されたフォトレジスト層をパターン化した際の位相シフト層12とフォトレジスト層との界面の様子について調べた。その結果、以下の知見を得た。なお、本明細書における算術平均高さは、ISO25178に規定されたものである。
 (1)本発明者らは、位相シフト層12の表面の算術平均高さが所定の値より大きい場合、例えば、0.38nm以上である場合、このような位相シフトマスクブランクスを用いて位相シフト層12のパターンを形成する工程においては、位相シフト層12とフォトレジスト層との界面におけるエッチング液のしみ込みが発生しないことを見出した。
 位相シフト層12の表面の算術平均高さが所定の値より大きい場合に、位相シフト層12とフォトレジスト層との界面におけるエッチング液のしみ込みを抑制できるのは、位相シフト層12の表面に適度な粗さ(凹凸)が形成され、この粗さに起因して、フォトレジスト層と位相シフト層12との密着性がエッチング液のしみ込みを抑制するほどに高くなるためと推定することができる。
 (2)位相シフト層12の表面の算術平均高さと基板11の表面の算術平均高さとの差が所定の値より大きい場合、例えば、0.04nm以上大きい場合、このような位相シフトマスクブランクスを用いて位相シフト層12のパターンを形成する工程において、位相シフト層12とフォトレジスト層との界面におけるエッチング液のしみ込みが発生しないことを見出した。
 (3)位相シフト層12の表面に次のようにして所定の算術平均高さの粗さ(凹凸)を生成することができることを見出した。スパッタリングにより位相シフト層12を形成する際に、スパッタリングチャンバー内に導入する酸素の流量を調整して、位相シフト層12内に所定量以上の酸素を含むようにすると、所定の算術平均高さの表面を有する位相シフト層12が形成されることがわかった。すなわち、本発明者らは、位相シフト層12の表面の凹凸パターンの算術平均高さと、位相シフト層12の表面近傍における酸素原子数濃度ないし濃度分布との間には相関があることを見出した。
 (4)本発明者らは、位相シフトマスクブランクス10に形成された位相シフト層12の表面における酸素原子数濃度が所定の値よりも大きい場合に、位相シフト層12とフォトレジスト層との界面へのエッチング液のしみ込みが発生しないことを見出した。
 上記(3)の知見のように、位相シフト層12の表面における酸素原子数濃度が所定の値よりも大きい位相シフト層12は、その表面の算術平均高さが上記所定値(例えば0.38nm)以上であり、したがって、適度な粗さ(凹凸)を有する。そのような位相シフト層12の表面にフォトレジスト層を形成した場合、位相シフト層12とフォトレジスト層との密着性が高く、このため、ウェットエッチングの際に位相シフト層12とフォトレジスト層との界面へのエッチング液のしみ込みが発生しないと考えられる。
 (5)位相シフトマスクブランクス10に形成された位相シフト層12の内部における酸素原子数濃度が、位相シフト層12の表面から深さ方向に減少する場合に、位相シフト層12とフォトレジスト層との界面へのエッチング液のしみ込みが発生しないことがわかった。位相シフト層12の内部における酸素原子数濃度が、位相シフト層12の表面から深さ方向に減少する一例をあげると、例えば、位相シフト層12の表面から深さ85nmの位置における酸素原子数濃度に対する、位相シフト層12の表面から深さ1.25nmの位置における酸素原子数濃度の比が、1.59以上である場合である。
 以下、本実施の形態に係る位相シフトマスクブランクス10の製造方法の一例について説明する。
 (位相シフトマスクブランクス製造方法)
 図2は、本実施の形態に係る位相シフトマスクブランクス10の製造に際して、位相シフト層12を形成するために使用する製造装置の一例を示す模式図である。図2(a)は、製造装置100の内部を上面から見た場合の模式図、図2(b)は、製造装置100の内部を側面から見た場合の模式図である。図2に示す製造装置100は、インライン型のスパッタリング装置であり、位相シフト層12を形成するための基板11を搬入するためのチャンバー20と、スパッタリングチャンバー21と、位相シフト層12を形成された基板11を搬出するためのチャンバー22とを備える。スパッタリングチャンバー21には、位相シフト層12を形成するためのターゲット41が配置される。
 基板トレイ30は、位相シフト層12を形成するための基板11を載置可能な枠状のトレイであり、基板11の外縁部分が支持されて載置される。基板11は、表面が研磨および洗浄され、位相シフト層12が形成される表面が下側(下向き)となるように、基板トレイ30に載置される。スパッタリング装置100では、後述するように、基板11の表面をターゲット41に対向させた状態を維持し、図2の点線矢印25で示す方向に基板11を載置した基板トレイ30を移動させながら、基板11の表面に位相シフト層12を形成する。
 搬入用のチャンバー20、スパッタリングチャンバー21、および搬出用のチャンバー22のそれぞれの間には、不図示のゲートバルブが設けられ、各チャンバーはゲートバルブの開閉により連通、遮断される。搬入用のチャンバー20、スパッタリングチャンバー21、および搬出用のチャンバー22は、それぞれ不図示の排気装置に接続され、各チャンバー内部が排気される。
 また、各ゲートバルブとターゲット41との間には、成膜前後の基板トレイ30を待機させるに十分なスペースないし別個の待機室が設けられる(不図示)。
 上記の通り、スパッタリングチャンバー21の内部にはターゲット41が設けられている。ターゲット41は、位相シフト層12を形成するためのスパッタリングターゲットであり、クロム(Cr)を含む材料により形成されている。具体的には、ターゲット41の材料は、クロム、クロムの酸化物、クロムの窒化物、クロムの炭化物等のうち、少なくとも1種類から選択される。本実施の形態においては、ターゲット41はクロムを選択した。スパッタリングチャンバー21のターゲット41には、不図示のDC電源から電力が供給される。
 スパッタリングチャンバー21には、スパッタリングチャンバー21内にスパッタリング用のガスを導入する第1のガス流入口31および第2のガス流入口32が設けられる。第1のガス流入口31は、搬入用のチャンバー20に近い側、すなわち、点線矢印25で表される基板トレイ30の進行方向に対して川上側(上流側)に配置される。一方、第2のガス流入口32は、搬出用のチャンバー22に近い側、すなわち、基板トレイ30の進行方向に対して川下側(下流側)に配置される。
 本実施の形態においては、位相シフト層12としてCrOCN膜を形成する。そのために、スパッタリングチャンバー21には、第1のガス流入口31を介して、窒素ガス、二酸化炭素等の炭素を含有するガス、および不活性ガス(本実施の形態においてはアルゴンガスを使用)の混合ガスを導入する。また、第2のガス流入口32を介して、酸素ガスを導入する。
 基板11が搬入用のチャンバー20からスパッタリングチャンバー21に搬送されて、スパッタリングが開始される。その際、第1のガス流入口31からは、窒素ガス、炭素を含有するガス、および不活性ガスが導入されるので、スパッタリングチャンバー21内の第1のガス流入口31に近い側、すなわち、基板11に対するスパッタリングが開始される側では、これらの気体の濃度が相対的に高い。一方、第2のガス流入口32からは酸素ガスが導入されるので、スパッタリングチャンバー21内の第2のガス流入口32に近い側、すなわち、基板11に対するスパッタリングが終了する側では、酸素の濃度が相対的に高い。このため、形成されるCrOCN膜においては、基板11が右に移動しスパッタリングが進行するに従って、すなわち膜厚が厚くなるに従って、酸素原子数濃度が高くなる。その結果、位相シフト層12の表面に近い側(最後に堆積した側)では相対的に酸素が多く含有され、一方、基板に近い側(初期に堆積した側)においては、含有される酸素が少なくなる。このように形成された位相シフト層12の表面には、所定の算術平均高さの粗さ(凹凸)が形成される。位相シフト層12の表面の粗さ(算術平均高さ)は、第1のガス流入口31および第2のガス流入口32から導入する各気体の流量を調整することによって制御することができる。
 位相シフト層12が形成された基板11は、搬出用のチャンバー22に搬送される。このようにして、基板11の表面に位相シフト層12が形成され、位相シフトマスクブランクス10が作製される。
 なお、ターゲット41の材料と、第1のガス流入口31および第2のガス流入口32からそれぞれ導入する気体の種類とは、位相シフト層12を構成する材料や組成に応じて適宜選択してよい。また、スパッタリングの方式は、DCスパッタリング、RFスパッタリング等のいずれの方式を用いてもよい。
 上述したように、本実施の形態では、位相シフト層12をスパッタリングにより形成する際に、スパッタリングチャンバー21内に導入する各気体の流量(特に酸素の流量)が調整される。これにより、位相シフト層12に含有される酸素原子数を調整し、位相シフト層12表面の粗さ(算術平均高さ)を調整する。これにより、フォトレジスト層と位相シフト層12との密着性を充分に高くでき、位相シフト層12とフォトレジスト層の界面へのエッチング液のしみ込みを防ぐことができる。また、本実施の形態の位相シフトマスクブランクス10を用いて位相シフトマスクを製造することにより、パターンを精度よく形成することができる。このため、位相シフトマスクの製造の歩留まりを向上させることができる。
 本実施の形態の位相シフトマスクブランクス10から製造した位相シフトマスクを用いてウエハなどの露光対象基材にパターン露光を行えば、露光工程における回路パターン不良を低減することができ、集積度の高いデバイス製造工程における歩留まりを向上させることができる。
 上述した実施の形態によれば、次の作用効果が得られる。
(1)位相シフトマスクブランクス10は、基板11と、基板上に形成された位相シフト層12を有し、位相シフト層12は、クロムと酸素とを含有し、位相シフト層12の表面の算術平均高さの値が0.38nm以上である。このような位相シフトマスクブランクス10に塗布したフォトレジストをパターン露光後にウェットエッチングする際、エッチング液が位相シフト層12とフォトレジスト層との界面にしみ込む現象が発生しない。
(2)位相シフト層12の内部(所定の深さ)における酸素原子数濃度は、所定の値よりも大きい。例えば、位相シフト層12の表面から1.25nmの深さ(後述)における酸素原子数濃度は42.6%以上である。このような位相シフトマスクブランクス10に塗布したフォトレジストをパターン露光後にウェットエッチングする際、エッチング液が位相シフト層12とフォトレジスト層との界面にしみ込む現象が発生しない。
(3)本実施の形態の位相シフトマスクブランクス10を用いて位相シフトマスクを製造する工程において、パターンのエッジ部の位相シフト層12にエッチング液のしみ込み現象が発生しない。すなわち、このようなエッチング液のしみ込みにより位相シフト層12に傾斜面が生成されることがない。このため、本実施の形態の位相シフトマスクブランクス10を用いて製造された位相シフトマスクのパターン精度を向上することができるので、位相シフトマスクの製造工程の歩留まりを向上させることができる。従来は、エッチング液のしみ込みによってパターンのエッジに傾斜面が形成されてしまうことがあり、歩留まりの低下の原因であった。本実施の形態の位相シフトマスクブランクス10から製造した位相シフトマスクを用いて露光工程を行うことにより、集積度の高いデバイスを高い歩留まりで製造することが可能となる。
(実施例1)
 合成石英ガラスからなる基板11を用意した。図2に示すインライン型のスパッタリング装置100を使用し、このガラス基板11の表面に、位相シフト層12を形成した。以下、位相シフト層12の製造方法について、より詳しく説明する。
 スパッタリングチャンバー21に対して、第1のガス流入口31から、アルゴン(Ar)、二酸化炭素(CO)、窒素(N)を導入し、第2のガス流入口32から酸素(O)を導入した。Ar、CO、N、Oの各ガスの流量は、それぞれ、240sccm、42sccm、135sccm、1.5sccmとし、スパッタリングチャンバー21内の圧力は0.3Paを維持するように、各気体の流量と排気量を制御した。スパッタリングチャンバー21のDC電源の電力を9kWに設定(電力一定制御)して基板11を点線矢印25の方向に移動させながらスパッタリングを行い、基板11上にCrOCNからなる位相シフト層12を170nmの厚さで形成し、位相シフトマスクブランクス10を作製した。
 上記の手順で作製した位相シフトマスクブランクス10において、位相シフト層12の表面の算術平均高さSaを、220μm×220μmの範囲内において、コヒーレンス走査型干渉計(Zygo社製 NewView8000)によって測定した。また、位相シフト層12の深さ方向の酸素原子数濃度の分布を、X線光電子分光分析装置(PHI社製 Quantera II)によって測定した。
 X線光電子分光分析装置による位相シフト層12の深さ方向の酸素原子数濃度の分布の測定は、次の手順で行った。基板11と同様の合成石英ガラス基板の表面にSiO膜をスパッタリングにより形成した参照用基板を用意した。この参照用基板をX線光電子分光分析装置にセットし、X線光電子分光分析装置に装備されたスパッタイオン銃でSiO膜をスパッタリングしてエッチングを行う。その際、SiO膜のエッチング時間とエッチング量(エッチング深さ)との関係を求める。次に、実施例1において作製した位相シフトマスクブランクス10をX線光電子分光分析装置にセットし、スパッタイオン銃で位相シフト層12をスパッタリングしながら酸素原子数濃度を測定する。この時、位相シフト層12のエッチング時間とエッチング深さの関係は、SiO膜のエッチング時間とエッチング量(エッチング深さ)との関係と同一とみなす。すなわち、あるエッチング時間によるエッチング深さは、SiO膜と位相シフト層12とで同一であるとみなす。この手順に基づいて、位相シフト層12の深さ方向の酸素原子数濃度分布を得る。
 X線光電子分光分析装置による酸素原子数濃度の測定は、上記の通り、スパッタイオン銃により位相シフト層12をエッチングしながら行う。スパッタイオン銃によりエッチングされる範囲は直径数100μmの範囲に及び、また、X線光電子分光分析装置による酸素原子数濃度の値は、同様の範囲の平均値が出力される。位相シフト層12の表面には微細な凹凸が形成されているが、測定された酸素原子数濃度は、このような表面の微細な凹凸が多数含まれる範囲の位相シフト層12を、スパッタイオン銃により所定時間エッチングし、その範囲における酸素原子数濃度の平均値が測定されると考えられる。本発明者らは、位相シフト層の形成工程における酸素の流量をゼロとした比較例と、1.5sccmとした実施例1と、3sccmとした実施例2について、上述した種々の物理量を測定した。
 なお、位相シフト層12の最表面は雰囲気ガスの吸着等により汚染されている可能性が高いため、実際に位相シフト層12における組成分析を行うにあたっては、表面粗さの程度を考慮して、最表面の位相シフト層を一定程度除去することが好ましい。このため、本願実施例においては最表面から1.25nmの深さまでエッチングした位置の原子数濃度を位相シフト層12の表面原子数濃度としたが、表面組成を得るためのエッチング深さはこの値に制限されるものではない。
 その測定結果を図3の表に示す。図3によれば、実施例1において作製された位相シフト層12の表面の算術平均高さは0.402nmである。また、位相シフト層12の表面の算術平均高さは、基板11の表面の算術平均高さよりも0.04nm大きい。さらに、この位相シフト層12においては、表面から1.25nmの深さにおける酸素原子数濃度は42.6%であり、表面から85nmの深さ位置における酸素原子数濃度は26.8%であり、また、表面から1.25nmの深さにおける酸素原子数濃度の、位相シフト層12の表面から85nmの深さにおける酸素原子数濃度に対する比は1.59である。
 作製された位相シフトマスクブランクス10を、10分間UV洗浄した後、15分間スピン洗浄(メガソニック洗浄、アルカリ洗浄、ブラシ洗浄、リンス、スピン乾燥)し、スピンコーターにてフォトレジスト(ナガセケムテックス株式会社製 GRX-M237)を位相シフト層12の表面に塗布し、フォトレジスト層を形成した。マスクアライナーを使用して、2μmピッチのラインアンドスペースのパターンで露光した後、現像を行ってフォトレジスト層を部分的に除去し、レジストパターンを形成した。このレジストパターンをマスクとして、レジストパターンが形成された位相シフトマスクブランクス10をエッチング液(林純薬工業株式会社製 Pure Etch CR101)に浸漬してウェットエッチングを行うことにより、位相シフト層12にパターンを形成した。
 パターンを形成した後、これを割断し、走査型電子顕微鏡(SEM)でパターンの断面形状を観察し、フォトレジスト層と位相シフト層12の界面部分にエッチング液のしみ込みが発生したか否かを、パターンの断面形状にて確認した。実施例1において作製された位相シフトマスクブランクス10に形成されたフォトレジスト層を露光した後、ウェットエッチングにより位相シフト層12にパターンを形成した場合、フォトレジスト層と位相シフト層12の界面部分にエッチング液のしみ込みが発生していないことが確認された。
(実施例2)
 実施例1に用いた基板11と同様の合成石英ガラスからなる基板11を用意した。位相シフト層12を形成する際、実施例1においては、スパッタリングチャンバー21に導入する酸素(O)の流量を1.5sccmとしたが、本実施例では、酸素(O)の流量を3sccmとし、それ以外は、実施例1と同様の条件で位相シフト層12を形成した。実施例1と同様の項目について測定を行った。その測定結果を、図3の表に示す。
 図3によれば、実施例2において作製された位相シフト層12の表面の算術平均高さの値は0.417nmである。また、位相シフト層12の表面の算術平均高さは、基板11の表面の算術平均高さよりも0.05nm大きい。この位相シフト層12においては、表面から1.25nmの深さにおける酸素原子数濃度は43.5%であり、表面から85nmの深さ位置における酸素原子数濃度は27.2%であり、また、表面から1.25nmの深さにおける酸素原子数濃度の、位相シフト層12の表面から85nmの深さにおける酸素原子数濃度に対する比は1.60である。
 実施例2において作製されたシフトマスクブランクス10にフォトレジスト層を形成した後、ウェットエッチングにより位相シフト層12にパターンを形成した場合、フォトレジスト層と位相シフト層12の界面部分にエッチング液のしみ込み現象が発生しないことが確認された。
 図4は、実施例1、2により作製された位相シフトマスクブランクス10に形成されたフォトレジスト層15を露光した後、ウェットエッチングによりパターン形成し、これを割断して、パターン断面を走査型電子顕微鏡(SEM)により観察した様子を模式的に示す図である。フォトレジスト層15と位相シフト層12の界面にエッチング液のしみ込みが発生していないことを示している。
(比較例1)
 実施例1に用いた基板11と同様の合成石英ガラスからなる基板51を用意した。位相シフト層を形成する際にスパッタリングチャンバー21には酸素を導入せず、すなわち、酸素(O)の導入量を0sccmとし、それ以外は、実施例1と同様の条件で位相シフト層を形成した。すなわち、比較例1においては、位相シフト層を形成する際にスパッタリングチャンバー21には酸素を導入しなかった。図6は、比較例1において作製された位相シフトマスクブランクス50の構成を示す模式図である。比較例1において作製された位相シフトマスクブランクス50の位相シフト層52の表面には、所定の算術平均高さの表面粗さが形成されていない。比較例1に係る位相シフトマスクブランクス50では、基板51の表面に形成された位相シフト層52について、実施例1と同様の項目について測定を行った。
 測定結果を、図3の表に示す。図3によれば、比較例1において作製された位相シフト層52の表面の算術平均高さの値は0.359nmである。また、この位相シフト層52においては、表面から1.25nmの深さにおける酸素原子数濃度は42.1%であり、表面から85nmの深さ位置における酸素原子数濃度は31.8%であり、表面から1.25nmの深さにおける酸素原子数濃度の、位相シフト層52の表面から85nmの深さにおける酸素原子数濃度に対する比は1.32である。また、比較例1において作製された位相シフト層52にフォトレジスト層を形成した位相シフトマスクブランクス50は、ウェットエッチングにより位相シフト層52にパターンを形成した場合、フォトレジスト層と位相シフト層52の界面部分にエッチング液のしみ込みが発生することが確認された。
 図7は、比較例1により作製された位相シフトマスクブランクス50に形成されたフォトレジスト層55を露光した後、ウェットエッチングによりパターン形成し、これを割断して、パターン断面を走査型電子顕微鏡(SEM)により観察した様子を模式的に示す図である。フォトレジスト層55と位相シフト層52との界面にエッチング液のしみ込みが発生したことによる傾斜面が、位相シフト層52に形成されていることを示している。
 このような傾斜面が生成された位相シフトマスクは、傾斜面が生成されたことにより本来の膜厚を有する位相シフト層の面積が小さくなるため、露光光の位相シフトの機能は低下する。その結果、このような位相シフトマスクを用いてデバイス用基板に回路パターンを形成すると、回路パターンの精度は低下する。従って、このような位相シフトマスクは、デバイスの製造に適さない。
 以上の実験結果より、位相シフト層12の算術表面粗さは0.38nm以上であることが好ましい。また、位相シフト層12の表面から1.25nmの深さにおける酸素原子濃度は42.6%以上であることが好ましい。また、位相シフト層12の表面から1.25nmの深さにおける酸素原子濃度は、85nmの深さにおける酸素原子濃度よりも大きいことが好ましく、その比率は1.59よりも大きいことが好ましい。
 かかる態様を有する本実施形態の位相シフトマスクブランクスは、ウェットエッチングの際にフォトレジストと位相シフト層との間にエッチング液がしみ込み難い傾向にあり、フォトレジスト露光時の露光光のパターンに対して、正確なマスクパターンを形成することができる。
 所望のコントラスト性能が得られる範囲内であれば、位相シフト層12の表面の算術平均高さは特に制限されない。しかし、位相シフト層12の表面の算術平均高さが大きくなり過ぎると、位相シフト層12の表面における露光光の散乱が大きくなり、露光パターンのエッジにおけるシャープネスが低下するので、表面の算術平均高さSaの上限値は1.0nmとすることが好ましい。
 X線光電子分光分析装置による原子数濃度の測定結果から、本実施の形態において形成されたCrOCN膜による位相シフト層12において、酸素は化学量論比よりも多い。これにより、フォトレジスト層と位相シフト層12との密着性を向上させ、エッチング液のしみ込みを抑制できる。例えば、本実施の形態における位相シフト層12は、CrOCN(Cr:O:C:N=51:27:5:18 原子%比)による膜で形成してもよい。なお本明細書においてCrOCN膜の組成が化学量論比であるとは、原子数比がCr:O:C:N=1:1:1:1であることをいう。
 位相シフトマスクブランクス10の基板11の表面は、研磨加工により仕上げられている。一方、位相シフト層12はスパッタリングによって形成される。従って、通常、位相シフト層12表面の算術平均高さは、基板11表面の算術平均高さよりも大きいが、位相シフト層12表面の算術平均高さを基板11の算術平均高さより所定の値だけ大きくすることで、このような位相シフトマスクブランクスに形成されたフォトレジストパターンの密着性を良好にすることができる。例えば、位相シフト層12表面の算術平均高さを基板11表面の算術平均高さより0.04nm以上大きくすることでこのような効果が得られる。位相シフト層12の表面における露光光の散乱の観点から、位相シフト層12の表面の算術平均高さと基板11の表面の算術平均高さとの差の上限値は1.0nmとすることが好ましい。
 次のような変形例も本発明の範囲内であり、変形例の一つもしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)
 上述した実施の形態では、位相シフト層12をスパッタリングにより形成する際に、スパッタリングチャンバー内に導入する酸素の流量を調整して、位相シフト層12表面の算術平均高さを所定の範囲とした。しかし、スパッタリングチャンバー内に導入する酸素流量の調整に代えて、位相シフト層12を形成後、その表面をドライエッチングまたはウェットエッチングすることによって、表面凹凸を所定の算術平均高さに形成してもよい。それにより、そのような位相シフト層12の表面に形成されるフォトレジスト層と位相シフト層12との密着性を向上させることが可能となる。
(変形例2)
 上述の実施の形態および変形例で説明した位相シフトマスクブランクス10は、表示装置製造用、半導体製造用、プリント基板製造用の位相シフトマスクを作製するための位相シフトマスクブランクスとして適用され得る。なお、表示装置製造用の位相シフトマスクを作製するための位相シフトマスクブランクスの場合には、基板11として520mm×800mm以上のサイズの基板を用いることができる。また、基板11の厚さは、8~21mmであってよい。
(露光装置)
 次に、実施例1、2により作製された位相シフトマスクブランクス10を用いて作製した位相シフトマスクの適用例として、半導体製造や液晶パネル製造のフォトリソグラフィ工程について、図5を参照して説明する。露光装置500には、実施例1、2により作製された位相シフトマスクブランクス10を用いて作製した位相シフトマスク513が配置される。また、露光装置500には、フォトレジストが塗布された感光性基板515がセットされる。
 露光装置500は、光源LSと、照明光学系502と、位相シフトマスク513を保持するマスク支持台503と、投影光学系504と、露光対象物である感光性基板515を保持する露光対象物支持テーブル505と、露光対象物支持テーブル505を水平面内で移動させる駆動機構506とを備える。露光装置500の光源LSから出射された露光光は、照明光学系502に入射して所定光束に調整され、マスク支持台503に保持された位相シフトマスク513に照射される。位相シフトマスク513を通過した光は位相シフトマスク513に描かれたデバイスパターンの像を有しており、この光が投影光学系504を介して露光対象物支持テーブル505に保持された感光性基板515の所定位置に照射される。これにより、位相シフトマスク513のデバイスパターンの像が、半導体ウェハや液晶パネル等の感光性基板515に所定倍率で結像露光される。
 実施の形態の位相シフトマスクを用いることにより、露光工程におけるパターン不良を低減することができ、露光工程における歩留まりを向上させることができる。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2018年第172898号(2018年9月14日出願)
10…位相シフトマスクブランクス、11…基板、12…位相シフト層、100…製造装置

Claims (12)

  1.  基板と、前記基板上に形成された位相シフト層を有する位相シフトマスクブランクスであって、
     前記位相シフト層は、クロムと酸素とを含有し、
     前記位相シフト層の表面の算術平均高さの値が0.38nm以上である、位相シフトマスクブランクス。
  2.  請求項1に記載の位相シフトマスクブランクスにおいて、
     前記位相シフト層の表面の算術平均高さの値は、前記基板の表面の算術平均高さの値に比べて、0.04nm以上大きい、位相シフトマスクブランクス。
  3.  基板と、前記基板上に形成された位相シフト層を有する位相シフトマスクブランクスであって、
     前記位相シフト層は、クロムと酸素とを含有し、
     前記位相シフト層の表面の算術平均高さの値は、前記基板の表面の算術平均高さの値に比べて、0.04nm以上大きい、位相シフトマスクブランクス。
  4.  請求項1から請求項3までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
     前記位相シフト層は、CrOCNまたはCrOCNにおける酸素が化学量論比よりも多い材料からなる、位相シフトマスクブランクス。
  5.  請求項1から請求項4までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
     前記位相シフト層の表面から1.25nmの深さにおける酸素原子数濃度が42.6%以上である、位相シフトマスクブランクス。
  6.  請求項1から請求項5までのいずれか一項に記載の位相シフトマスクブランクスにおいて、前記位相シフト層の表面側の酸素原子数濃度が、基板側の酸素原子数濃度よりも大きい、位相シフトマスクブランクス。
  7.  請求項1から請求項6までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
     前記位相シフト層の表面から1.25nmの深さにおける酸素原子数濃度の、前記位相シフト層の表面から85nmの深さにおける酸素原子数濃度に対する比は、1.59以上である、位相シフトマスクブランクス。
  8.  請求項1から請求項7までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
     前記位相シフト層の表面は、ウェットエッチングまたはドライエッチングされた、位相シフトマスクブランクス。
  9.  請求項1から請求項8までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
     前記基板の大きさは、520mm×800mm以上である、位相シフトマスクブランクス。
  10.  請求項1から請求項9までのいずれか一項に記載の位相シフトマスクブランクスの、前記位相シフト層を所定のパターン状に形成した、位相シフトマスク。
  11.  請求項10に記載の位相シフトマスクを介して、フォトレジストが塗布された感光性基板を露光する、露光方法。
  12.  請求項11に記載の露光方法によって前記感光性基板を露光する露光工程と、
     前記露光された感光性基板を現像する現像工程と、
    を有する、デバイスの製造方法。
PCT/JP2019/019862 2018-09-14 2019-05-20 位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法 WO2020054131A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217006617A KR102582203B1 (ko) 2018-09-14 2019-05-20 위상 시프트 마스크 블랭크스, 위상 시프트 마스크, 노광 방법, 및 디바이스의 제조 방법
JP2020546687A JP7151774B2 (ja) 2018-09-14 2019-05-20 位相シフトマスクブランクス、位相シフトマスク、露光方法、デバイスの製造方法、位相シフトマスクブランクスの製造方法、位相シフトマスクの製造方法、露光方法、及び、デバイスの製造方法
CN201980059790.1A CN112689796A (zh) 2018-09-14 2019-05-20 相移掩模坯料、相移掩模、曝光方法以及器件制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172898 2018-09-14
JP2018-172898 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054131A1 true WO2020054131A1 (ja) 2020-03-19

Family

ID=69777713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019862 WO2020054131A1 (ja) 2018-09-14 2019-05-20 位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法

Country Status (5)

Country Link
JP (1) JP7151774B2 (ja)
KR (1) KR102582203B1 (ja)
CN (1) CN112689796A (ja)
TW (1) TWI818992B (ja)
WO (1) WO2020054131A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279214A (ja) * 2006-04-04 2007-10-25 Shin Etsu Chem Co Ltd フォトマスクブランク及びその製造方法、並びにフォトマスク及びその製造方法
JP2016153889A (ja) * 2015-02-16 2016-08-25 大日本印刷株式会社 フォトマスク、フォトマスクブランクス、およびフォトマスクの製造方法
JP2017033004A (ja) * 2016-09-21 2017-02-09 Hoya株式会社 表示装置製造用フォトマスク、該フォトマスクの製造方法、パターン転写方法及び表示装置の製造方法
JP2017181545A (ja) * 2016-03-28 2017-10-05 Hoya株式会社 表示装置製造用フォトマスクの製造方法
JP2018091889A (ja) * 2016-11-30 2018-06-14 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体デバイスの製造方法
JP2018116263A (ja) * 2017-01-16 2018-07-26 Hoya株式会社 位相シフトマスクブランクおよびこれを用いた位相シフトマスクの製造方法、並びに表示装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5588633B2 (ja) 2009-06-30 2014-09-10 アルバック成膜株式会社 位相シフトマスクの製造方法、フラットパネルディスプレイの製造方法及び位相シフトマスク
JP6101646B2 (ja) * 2013-02-26 2017-03-22 Hoya株式会社 位相シフトマスクブランク及びその製造方法、位相シフトマスク及びその製造方法、並びに表示装置の製造方法
JP6324756B2 (ja) * 2013-03-19 2018-05-16 Hoya株式会社 位相シフトマスクブランク及びその製造方法、位相シフトマスクの製造方法、並びに表示装置の製造方法
JP6502143B2 (ja) * 2015-03-27 2019-04-17 Hoya株式会社 マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP6558326B2 (ja) * 2016-08-23 2019-08-14 信越化学工業株式会社 ハーフトーン位相シフトマスクブランクの製造方法、ハーフトーン位相シフトマスクブランク、ハーフトーン位相シフトマスク及びフォトマスクブランク用薄膜形成装置
JP6632950B2 (ja) * 2016-09-21 2020-01-22 Hoya株式会社 フォトマスクブランク、フォトマスクブランクの製造方法、及びそれらを用いたフォトマスクの製造方法、並びに表示装置の製造方法
JP6733464B2 (ja) * 2016-09-28 2020-07-29 信越化学工業株式会社 ハーフトーン位相シフトマスクブランク及びハーフトーン位相シフトマスク

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279214A (ja) * 2006-04-04 2007-10-25 Shin Etsu Chem Co Ltd フォトマスクブランク及びその製造方法、並びにフォトマスク及びその製造方法
JP2016153889A (ja) * 2015-02-16 2016-08-25 大日本印刷株式会社 フォトマスク、フォトマスクブランクス、およびフォトマスクの製造方法
JP2017181545A (ja) * 2016-03-28 2017-10-05 Hoya株式会社 表示装置製造用フォトマスクの製造方法
JP2017033004A (ja) * 2016-09-21 2017-02-09 Hoya株式会社 表示装置製造用フォトマスク、該フォトマスクの製造方法、パターン転写方法及び表示装置の製造方法
JP2018091889A (ja) * 2016-11-30 2018-06-14 Hoya株式会社 マスクブランク、転写用マスクの製造方法及び半導体デバイスの製造方法
JP2018116263A (ja) * 2017-01-16 2018-07-26 Hoya株式会社 位相シフトマスクブランクおよびこれを用いた位相シフトマスクの製造方法、並びに表示装置の製造方法

Also Published As

Publication number Publication date
CN112689796A (zh) 2021-04-20
JP7151774B2 (ja) 2022-10-12
JPWO2020054131A1 (ja) 2021-08-30
TW202011108A (zh) 2020-03-16
KR20210032534A (ko) 2021-03-24
TWI818992B (zh) 2023-10-21
KR102582203B1 (ko) 2023-09-22

Similar Documents

Publication Publication Date Title
TWI711876B (zh) 光罩基底、光罩基底之製造方法、及使用其等之光罩之製造方法、以及顯示裝置之製造方法
TWI676078B (zh) 光罩基底及使用其之光罩之製造方法、以及顯示裝置之製造方法
TWI829153B (zh) 空白遮罩、使用其的光罩以及半導體元件的製造方法
JP2002169265A (ja) フォトマスクブランクス及びフォトマスクブランクスの製造方法
KR20070095262A (ko) 하프톤형 위상반전 블랭크 마스크, 하프톤형 위상반전포토마스크 및 그의 제조방법
JP7340057B2 (ja) フォトマスクブランク及びそれを用いたフォトマスク
JP7297692B2 (ja) フォトマスクブランク、フォトマスクの製造方法、および表示装置の製造方法
WO2020054131A1 (ja) 位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法
JP7514897B2 (ja) ブランクマスク及びそれを用いたフォトマスク
JP7167922B2 (ja) フォトマスクブランクス、フォトマスク、露光方法、及び、デバイスの製造方法
JP2022189860A (ja) フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法
JP2023037572A (ja) ブランクマスク及びそれを用いたフォトマスク
JP7479536B2 (ja) ブランクマスク及びそれを用いたフォトマスク
JP7539525B2 (ja) ブランクマスク及びそれを用いたフォトマスク
JP7482187B2 (ja) ブランクマスク及びそれを用いたフォトマスク
CN111624848B (zh) 光掩模坯料、光掩模的制造方法、及显示装置的制造方法
JP7254470B2 (ja) 位相シフトマスクブランク、位相シフトマスクの製造方法、及び表示装置の製造方法
TW202347011A (zh) 相位移遮罩底板、相位移遮罩、及其等之製造方法
JP2023108598A (ja) マスクブランク、転写用マスク、転写用マスクの製造方法、及び表示装置の製造方法
JP2023088855A (ja) ブランクマスク及びそれを用いたフォトマスク
TW202303260A (zh) 相位移光罩坯料、相位移光罩、曝光方法、以及元件製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217006617

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020546687

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860326

Country of ref document: EP

Kind code of ref document: A1