WO2020054131A1 - 位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法 - Google Patents
位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法 Download PDFInfo
- Publication number
- WO2020054131A1 WO2020054131A1 PCT/JP2019/019862 JP2019019862W WO2020054131A1 WO 2020054131 A1 WO2020054131 A1 WO 2020054131A1 JP 2019019862 W JP2019019862 W JP 2019019862W WO 2020054131 A1 WO2020054131 A1 WO 2020054131A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase shift
- shift mask
- shift layer
- substrate
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/26—Phase shift masks [PSM]; PSM blanks; Preparation thereof
- G03F1/32—Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/54—Absorbers, e.g. of opaque materials
Definitions
- the present invention relates to a phase shift mask blank, a phase shift mask, an exposure method, and a device manufacturing method.
- Patent Document 1 A phase shift mask in which a phase shift layer made of chromium oxynitride is formed on a transparent substrate is known (Patent Document 1). Conventionally, it has been desired to improve the quality of a phase shift mask.
- a phase shift mask blank is a phase shift mask blank having a substrate and a phase shift layer formed on the substrate, wherein the phase shift layer comprises chromium and oxygen. And the value of the arithmetic average height of the surface of the phase shift layer is 0.38 nm or more.
- a phase shift mask blank is a phase shift mask blank having a substrate and a phase shift layer formed on the substrate, wherein the phase shift layer comprises chromium and oxygen.
- the value of the arithmetic average height of the surface of the phase shift layer is 0.04 nm or more larger than the value of the arithmetic average height of the surface of the substrate.
- a phase shift mask is a phase shift mask of the phase shift mask blank according to the first or second aspect, wherein the phase shift layer is formed in a predetermined pattern.
- an exposure method exposes a photosensitive substrate coated with a photoresist through a phase shift mask according to the third aspect.
- a device manufacturing method includes: an exposing step of exposing the photosensitive substrate by the exposing method according to the fourth aspect; and a developing step of developing the exposed photosensitive substrate. Have.
- FIG. 3 is a diagram illustrating a configuration example of a phase shift mask blank according to the embodiment. It is a schematic diagram which shows an example of the manufacturing apparatus used for manufacturing a phase shift mask blank. 9 is a table showing measurement results for phase shift mask blanks according to examples and comparative examples.
- FIG. 4 is a schematic diagram illustrating a cross section of a mask pattern formed using the phase shift mask blanks according to the example.
- FIG. 4 is a conceptual diagram illustrating a state in which a photosensitive substrate is exposed through a phase shift mask.
- FIG. 9 is a diagram illustrating a configuration example of a phase shift mask blank according to a comparative example.
- FIG. 9 is a schematic diagram illustrating a cross section of a mask pattern formed using a phase shift mask blank according to a comparative example.
- FIG. 1 is a diagram illustrating a configuration example of a phase shift mask blank 10 according to the present embodiment.
- the phase shift mask blank 10 includes a substrate 11 and a phase shift layer 12.
- the phase shift layer 12 is formed on the surface of the substrate 11 by sputtering.
- the oxygen content (oxygen atom concentration) in the phase shift layer 12 according to the sputtering conditions, the surface of the phase shift layer 12 has a predetermined level (a predetermined arithmetic average height) as shown in FIG. ) Is formed.
- the phase shift mask blanks 10 according to the present embodiment will be described in more detail.
- the substrate 11 for example, synthetic quartz glass is used.
- the material of the substrate 11 is not limited to synthetic quartz glass.
- the phase shift mask is used when manufacturing a display device such as an FPD (Flat Panel Display) or a semiconductor device such as an LSI (Large Scale Integration).
- the substrate 11 may be any substrate that can sufficiently transmit exposure light in an exposure step of exposing a substrate to be exposed such as a wafer using a phase shift mask.
- the phase shift layer 12 is formed on the surface of the substrate 11 as a film made of a material containing chromium (Cr) and oxygen (O).
- the phase shift layer 12 according to the present embodiment is composed of a film made of CrOCN.
- a desired pattern is formed on the phase shift layer 12 to form a phase shift mask. This pattern functions as a phase shifter that locally changes the phase of exposure light emitted in the exposure step.
- phase shift layer 12 When exposing a device substrate with exposure light via a phase shift mask having a phase shift layer 12 formed in a desired thickness and a desired pattern, light transmitted through a portion where the phase shift layer 12 exists and phase shift layer 12 A phase difference (a phase shift amount) of approximately 180 ° is generated with light transmitted through a portion where no exists. Thereby, the intensity of the exposure light irradiated to the area other than the exposure pattern area is suppressed to be low, and the contrast of the exposure pattern is improved. As a result, the defective rate in the exposure step can be reduced.
- the thickness (film thickness) of the phase shift layer 12 is set so that a phase shift amount of approximately 180 ° occurs in the phase of the exposure light.
- the phase shift amount of the exposure light is not limited to 180 ° as long as the desired contrast is obtained in the exposure step.
- the phase shift layer 12 may be formed of a single film, or may be formed by stacking a plurality of films.
- Phase shift mask A phase shift mask formed by forming a desired pattern on the phase shift layer 12 of the blank 10 is prepared, for example, by the procedure described below.
- a photoresist is applied on the surface of the phase shift layer 12 to form a photoresist layer.
- a pattern is drawn by irradiating the formed photoresist layer with an energy beam such as a laser beam, an electron beam, or an ion beam.
- an energy beam such as a laser beam, an electron beam, or an ion beam.
- the phase shift layer 12 is wet-etched using the patterned photoresist layer as a mask. By this wet etching, a shape corresponding to the pattern formed on the photoresist layer is formed (transferred) on the phase shift layer 12.
- the phase shift mask is completed by removing the photoresist layer.
- the present inventors examined the correlation between the arithmetic average height of the surface of the phase shift layer 12 and the oxygen atom concentration of the phase shift layer 12, and further patterned the photoresist layer formed on the phase shift layer 12. The state of the interface between the phase shift layer 12 and the photoresist layer at that time was examined. As a result, the following findings were obtained.
- the arithmetic mean height in this specification is defined in ISO25178. (1)
- the present inventors use such a phase shift mask blank to perform phase shift. In the step of forming the pattern of the layer 12, it has been found that the etchant does not permeate at the interface between the phase shift layer 12 and the photoresist layer.
- the arithmetic average height of the surface of the phase shift layer 12 is larger than a predetermined value, the infiltration of the etching solution at the interface between the phase shift layer 12 and the photoresist layer can be suppressed by It is estimated that moderate roughness (irregularity) is formed, and due to this roughness, the adhesion between the photoresist layer and the phase shift layer 12 becomes high enough to suppress the penetration of the etching solution. it can.
- phase shift mask blank When the difference between the arithmetic average height of the surface of the phase shift layer 12 and the arithmetic average height of the surface of the substrate 11 is larger than a predetermined value, for example, 0.04 nm or more, such a phase shift mask blank is used. It has been found that in the step of forming a pattern of the phase shift layer 12 by using the same, the etchant does not permeate at the interface between the phase shift layer 12 and the photoresist layer.
- a predetermined value for example 0.04 nm or more
- the present inventors provide an interface between the phase shift layer 12 and the photoresist layer. It was found that the etchant did not seep into the substrate.
- the arithmetic mean height of the surface is the predetermined value (for example, 0.38 nm). ), And thus have an appropriate roughness (irregularities).
- the adhesion between the phase shift layer 12 and the photoresist layer is high, so that the phase shift layer 12 and the photoresist layer are not wetted during wet etching. It is considered that the etchant does not seep into the interface of the substrate.
- the phase shift layer 12 and the photoresist layer It was found that the etchant did not penetrate into the interface of.
- the oxygen atom number concentration inside the phase shift layer 12 decreases in the depth direction from the surface of the phase shift layer 12 for example, the oxygen atom number concentration at a position 85 nm deep from the surface of the phase shift layer 12 is exemplified.
- the ratio of the oxygen atom number concentration at a position at a depth of 1.25 nm from the surface of the phase shift layer 12 to 1.59 is 1.59 or more.
- FIG. 2 is a schematic diagram illustrating an example of a manufacturing apparatus used to form the phase shift layer 12 when manufacturing the phase shift mask blank 10 according to the present embodiment.
- FIG. 2A is a schematic diagram when the inside of the manufacturing apparatus 100 is viewed from above
- FIG. 2B is a schematic diagram when the inside of the manufacturing apparatus 100 is viewed from the side.
- the manufacturing apparatus 100 shown in FIG. 2 is an in-line type sputtering apparatus, in which a chamber 20 for loading a substrate 11 for forming a phase shift layer 12, a sputtering chamber 21, and a phase shift layer 12 are formed. And a chamber 22 for carrying out the substrate 11. In the sputtering chamber 21, a target 41 for forming the phase shift layer 12 is arranged.
- the substrate tray 30 is a frame-shaped tray on which the substrate 11 for forming the phase shift layer 12 can be placed, and the outer edge portion of the substrate 11 is supported and placed.
- the substrate 11 is placed on the substrate tray 30 such that the surface of the substrate 11 is polished and cleaned, and the surface on which the phase shift layer 12 is formed faces downward (downward).
- the sputtering apparatus 100 as described later, while maintaining the state where the surface of the substrate 11 faces the target 41, while moving the substrate tray 30 on which the substrate 11 is placed in the direction indicated by the dotted arrow 25 in FIG.
- the phase shift layer 12 is formed on the surface of the substrate 11.
- a gate valve (not shown) is provided between each of the carry-in chamber 20, the sputtering chamber 21, and the carry-out chamber 22, and the respective chambers are communicated and shut off by opening and closing the gate valve.
- the carry-in chamber 20, the sputtering chamber 21, and the carry-out chamber 22 are each connected to an exhaust device (not shown), and the inside of each chamber is exhausted.
- a sufficient space for holding the substrate tray 30 before and after film formation or a separate waiting chamber is provided (not shown).
- the target 41 is provided inside the sputtering chamber 21.
- the target 41 is a sputtering target for forming the phase shift layer 12, and is formed of a material containing chromium (Cr).
- the material of the target 41 is selected from at least one of chromium, chromium oxide, chromium nitride, chromium carbide, and the like.
- chromium is selected for the target 41.
- Power is supplied to the target 41 of the sputtering chamber 21 from a DC power supply (not shown).
- the sputtering chamber 21 is provided with a first gas inlet 31 and a second gas inlet 32 for introducing a gas for sputtering into the sputtering chamber 21.
- the first gas inlet 31 is arranged on the side close to the loading chamber 20, that is, on the upstream side (upstream side) with respect to the traveling direction of the substrate tray 30 indicated by the dotted arrow 25.
- the second gas inlet 32 is disposed on the side closer to the unloading chamber 22, that is, on the downstream side (downstream side) with respect to the traveling direction of the substrate tray 30.
- a CrOCN film is formed as the phase shift layer 12.
- a gas containing carbon such as nitrogen gas and carbon dioxide and an inert gas (in this embodiment, argon gas is used) are supplied to the sputtering chamber 21 through the first gas inlet 31.
- a mixed gas is introduced.
- oxygen gas is introduced through the second gas inlet 32.
- the substrate 11 is transferred from the loading chamber 20 to the sputtering chamber 21 and sputtering is started.
- nitrogen gas, carbon-containing gas, and inert gas are introduced from the first gas inlet 31, and therefore, the side closer to the first gas inlet 31 in the sputtering chamber 21, that is, On the side where sputtering of the substrate 11 is started, the concentrations of these gases are relatively high.
- the oxygen gas is introduced from the second gas inlet 32, the oxygen concentration on the side close to the second gas inlet 32 in the sputtering chamber 21, that is, on the side where the sputtering of the substrate 11 is finished. Is relatively high.
- the oxygen atom number concentration increases.
- the side closer to the surface of the phase shift layer 12 (the last deposited side) contains a relatively large amount of oxygen, while the side closer to the substrate (the initially deposited side) contains less oxygen. Less.
- a roughness (concavity and convexity) having a predetermined arithmetic average height is formed on the surface of the phase shift layer 12 thus formed.
- the surface roughness (arithmetic mean height) of the phase shift layer 12 can be controlled by adjusting the flow rate of each gas introduced from the first gas inlet 31 and the second gas inlet 32.
- phase shift layer 12 is formed on the surface of the substrate 11, and the phase shift mask blanks 10 are manufactured.
- the material of the target 41 and the type of gas introduced from the first gas inlet 31 and the second gas inlet 32, respectively, are appropriately selected according to the material and composition of the phase shift layer 12. Good. Further, as a sputtering method, any method such as DC sputtering and RF sputtering may be used.
- the flow rate (particularly, the oxygen flow rate) of each gas introduced into the sputtering chamber 21 is adjusted.
- the number of oxygen atoms contained in the phase shift layer 12 is adjusted, and the roughness (arithmetic average height) of the surface of the phase shift layer 12 is adjusted.
- the adhesion between the photoresist layer and the phase shift layer 12 can be sufficiently increased, and the infiltration of the etching solution into the interface between the phase shift layer 12 and the photoresist layer can be prevented.
- a phase shift mask using the phase shift mask blanks 10 of the present embodiment a pattern can be formed with high accuracy. Therefore, the production yield of the phase shift mask can be improved.
- phase shift mask blanks 10 of the present embodiment If pattern exposure is performed on a substrate to be exposed such as a wafer using a phase shift mask manufactured from the phase shift mask blanks 10 of the present embodiment, circuit pattern defects in the exposure step can be reduced, and high integration can be achieved. The yield in the device manufacturing process can be improved.
- the phase shift mask blank 10 has a substrate 11 and a phase shift layer 12 formed on the substrate.
- the phase shift layer 12 contains chromium and oxygen, and arithmetically operates on the surface of the phase shift layer 12.
- the value of the average height is 0.38 nm or more.
- the oxygen atom number concentration inside the phase shift layer 12 (at a predetermined depth) is larger than a predetermined value.
- the oxygen atom number concentration at a depth of 1.25 nm (described later) from the surface of the phase shift layer 12 is 42.6% or more.
- the etchant does not soak into the phase shift layer 12 at the edge of the pattern. That is, an inclined surface is not generated in the phase shift layer 12 due to such a penetration of the etching solution. For this reason, since the pattern accuracy of the phase shift mask manufactured using the phase shift mask blanks 10 of the present embodiment can be improved, the yield of the phase shift mask manufacturing process can be improved. Conventionally, an inclined surface may be formed at the edge of the pattern due to the penetration of the etching solution, which has caused a decrease in yield.
- Example 1 A substrate 11 made of synthetic quartz glass was prepared.
- the phase shift layer 12 was formed on the surface of the glass substrate 11 using the in-line type sputtering apparatus 100 shown in FIG.
- a method for manufacturing the phase shift layer 12 will be described in more detail.
- Argon (Ar), carbon dioxide (CO 2 ), and nitrogen (N 2 ) are introduced into the sputtering chamber 21 from the first gas inlet 31 and oxygen (O 2 ) is introduced from the second gas inlet 32.
- the flow rates of each gas of Ar, CO 2 , N 2 , and O 2 are 240 sccm, 42 sccm, 135 sccm, and 1.5 sccm, respectively, and the flow rate of each gas is set so that the pressure in the sputtering chamber 21 is maintained at 0.3 Pa. And the displacement was controlled.
- the power of the DC power supply of the sputtering chamber 21 is set to 9 kW (constant power control), and the sputtering is performed while moving the substrate 11 in the direction of the dotted arrow 25. Then, a phase shift mask blank 10 was produced.
- the arithmetic mean height Sa of the surface of the phase shift layer 12 was measured within a range of 220 ⁇ m ⁇ 220 ⁇ m by using a coherence scanning interferometer (NewView8000 manufactured by Zygo).
- the distribution of the oxygen atom number concentration in the depth direction of the phase shift layer 12 was measured by an X-ray photoelectron spectrometer (Quanta II manufactured by PHI).
- the measurement of the distribution of the oxygen atom number concentration in the depth direction of the phase shift layer 12 by the X-ray photoelectron spectrometer was performed in the following procedure.
- a reference substrate in which an SiO 2 film was formed on the surface of a synthetic quartz glass substrate similar to the substrate 11 by sputtering was prepared.
- the reference substrate is set in an X-ray photoelectron spectroscopy analyzer, and the SiO 2 film is sputtered by a sputter ion gun provided in the X-ray photoelectron spectroscopy analyzer to perform etching.
- the relationship between the etching time of the SiO 2 film and the etching amount (etching depth) is obtained.
- the phase shift mask blank 10 produced in Example 1 is set in an X-ray photoelectron spectrometer, and the oxygen atom concentration is measured while sputtering the phase shift layer 12 with a sputter ion gun.
- the relationship between the etching time and the etching depth of the phase shift layer 12 is regarded as the same as the relationship between the etching time and the etching amount (etching depth) of the SiO 2 film. That is, it is assumed that the etching depth for a certain etching time is the same for the SiO 2 film and the phase shift layer 12. Based on this procedure, the oxygen atom number concentration distribution in the depth direction of the phase shift layer 12 is obtained.
- the measurement of the oxygen atom number concentration by the X-ray photoelectron spectrometer is performed while etching the phase shift layer 12 by the sputter ion gun.
- the range to be etched by the sputter ion gun extends over a range of several hundred micrometers in diameter, and the value of the oxygen atom number concentration by the X-ray photoelectron spectroscopy analyzer outputs an average value in the same range.
- fine irregularities are formed on the surface of the phase shift layer 12, the measured oxygen atom number concentration indicates that the phase shift layer 12 in a range that includes many such fine irregularities on the surface can be removed by a sputter ion gun.
- the etching is performed for a predetermined time, and the average value of the oxygen atom number concentration in the range is measured.
- the present inventors measured the various physical quantities described above for the comparative example in which the flow rate of oxygen in the step of forming the phase shift layer was zero, Example 1 in which 1.5 sccm was used, and Example 2 in which 3 sccm was used. . Since the outermost surface of the phase shift layer 12 is highly likely to be contaminated by adsorption of atmospheric gas or the like, when actually performing a composition analysis on the phase shift layer 12, the degree of surface roughness is taken into consideration. It is preferable to remove a certain amount of the outermost phase shift layer.
- the atomic concentration at the position etched from the outermost surface to a depth of 1.25 nm is defined as the surface atomic concentration of the phase shift layer 12, but the etching depth for obtaining the surface composition is set to this value. It is not limited to.
- the arithmetic average height of the surface of the phase shift layer 12 manufactured in Example 1 is 0.402 nm.
- the arithmetic mean height of the surface of the phase shift layer 12 is larger than the arithmetic mean height of the surface of the substrate 11 by 0.04 nm.
- the oxygen atom number concentration at a depth of 1.25 nm from the surface is 42.6%, and the oxygen atom number concentration at a depth of 85 nm from the surface is 26.8%.
- the ratio of the oxygen atom number concentration at a depth of 1.25 nm from the surface to the oxygen atom number concentration at a depth of 85 nm from the surface of the phase shift layer 12 is 1.59.
- the prepared phase shift mask blanks 10 are subjected to UV cleaning for 10 minutes, then spin cleaning (megasonic cleaning, alkali cleaning, brush cleaning, rinsing, and spin drying) for 15 minutes, and a photoresist (Nagase ChemteX Corporation) using a spin coater.
- a company (GRX-M237) was applied on the surface of the phase shift layer 12 to form a photoresist layer. After exposing in a line and space pattern of 2 ⁇ m pitch using a mask aligner, development was performed to partially remove the photoresist layer to form a resist pattern.
- the phase shift mask blank 10 on which the resist pattern has been formed is immersed in an etchant (Pure Etch CR101 manufactured by Hayashi Junyaku Kogyo Co., Ltd.) and wet-etched to form a pattern on the phase shift layer 12. Was formed.
- an etchant Pure Etch CR101 manufactured by Hayashi Junyaku Kogyo Co., Ltd.
- the pattern is cleaved and the cross-sectional shape of the pattern is observed with a scanning electron microscope (SEM) to determine whether or not the etchant seeps into the interface between the photoresist layer and the phase shift layer 12.
- SEM scanning electron microscope
- Example 2 A substrate 11 made of the same synthetic quartz glass as the substrate 11 used in Example 1 was prepared.
- the flow rate of oxygen (O 2 ) introduced into the sputtering chamber 21 was 1.5 sccm, but in this example, the flow rate of oxygen (O 2 ) was 3 sccm. Otherwise, the phase shift layer 12 was formed under the same conditions as in Example 1. The same items as in Example 1 were measured. The measurement results are shown in the table of FIG.
- the value of the arithmetic average height of the surface of the phase shift layer 12 manufactured in Example 2 is 0.417 nm.
- the arithmetic mean height of the surface of the phase shift layer 12 is larger than the arithmetic mean height of the surface of the substrate 11 by 0.05 nm.
- the oxygen atom concentration at a depth of 1.25 nm from the surface is 43.5%
- the oxygen atom concentration at a depth of 85 nm from the surface is 27.2%
- the ratio of the oxygen atom number concentration at a depth of 1.25 nm from the surface to the oxygen atom number concentration at a depth of 85 nm from the surface of the phase shift layer 12 is 1.60.
- FIG. 4 shows a pattern formed by wet etching after exposing a photoresist layer 15 formed on the phase shift mask blanks 10 manufactured according to the first and second embodiments, and cutting the pattern. It is a figure which shows the mode observed by the microscope (SEM) typically. This indicates that the etchant does not permeate the interface between the photoresist layer 15 and the phase shift layer 12.
- FIG. 6 is a schematic diagram illustrating a configuration of the phase shift mask blank 50 manufactured in Comparative Example 1.
- the surface of the phase shift layer 52 of the phase shift mask blank 50 manufactured in Comparative Example 1 has no surface roughness of a predetermined arithmetic average height. In the phase shift mask blanks 50 according to Comparative Example 1, the same items as in Example 1 were measured for the phase shift layer 52 formed on the surface of the substrate 51.
- the value of the arithmetic average height of the surface of the phase shift layer 52 manufactured in Comparative Example 1 is 0.359 nm.
- the oxygen atom concentration at a depth of 1.25 nm from the surface is 42.1%, and the oxygen atom concentration at a depth of 85 nm from the surface is 31.8%.
- the ratio of the oxygen atom number concentration at a depth of 1.25 nm from the surface to the oxygen atom number concentration at a depth of 85 nm from the surface of the phase shift layer 52 is 1.32.
- phase shift mask blank 50 in which a photoresist layer is formed on the phase shift layer 52 manufactured in Comparative Example 1 when the pattern is formed on the phase shift layer 52 by wet etching, It was confirmed that the etchant permeated the interface.
- FIG. 7 shows a pattern formed by wet etching after exposing a photoresist layer 55 formed on the phase shift mask blanks 50 manufactured according to Comparative Example 1, cutting the pattern, and cross-sectioning the pattern with a scanning electron microscope ( It is a figure which shows the mode observed by SEM) typically. This indicates that an inclined surface formed by the infiltration of the etching solution at the interface between the photoresist layer 55 and the phase shift layer 52 is formed in the phase shift layer 52.
- the arithmetic surface roughness of the phase shift layer 12 is 0.38 nm or more.
- the oxygen atom concentration at a depth of 1.25 nm from the surface of the phase shift layer 12 is preferably 42.6% or more.
- the oxygen atom concentration at a depth of 1.25 nm from the surface of the phase shift layer 12 is preferably higher than the oxygen atom concentration at a depth of 85 nm, and the ratio is preferably higher than 1.59.
- the phase shift mask blank of the present embodiment having such an aspect has a tendency that the etchant does not easily permeate between the photoresist and the phase shift layer at the time of wet etching, and the pattern of exposure light at the time of photoresist exposure is Thus, an accurate mask pattern can be formed.
- the arithmetic average height of the surface of the phase shift layer 12 is not particularly limited as long as the desired contrast performance is obtained. However, if the arithmetic average height of the surface of the phase shift layer 12 is too large, the scattering of the exposure light on the surface of the phase shift layer 12 increases, and the sharpness at the edge of the exposure pattern decreases.
- the upper limit value of Sa is preferably set to 1.0 nm.
- the surface of the substrate 11 of the phase shift mask blank 10 is finished by polishing.
- the phase shift layer 12 is formed by sputtering. Therefore, the arithmetic average height of the surface of the phase shift layer 12 is usually larger than the arithmetic average height of the surface of the substrate 11, but the arithmetic average height of the surface of the phase shift layer 12 is set to be a predetermined value higher than the arithmetic average height of the substrate 11. By increasing the size, the adhesiveness of the photoresist pattern formed on such a phase shift mask blank can be improved.
- such an effect can be obtained by making the arithmetic average height of the surface of the phase shift layer 12 larger than the arithmetic average height of the surface of the substrate 11 by 0.04 nm or more.
- the upper limit of the difference between the arithmetic average height of the surface of the phase shift layer 12 and the arithmetic average height of the surface of the substrate 11 is preferably 1.0 nm.
- Modification 1 when forming the phase shift layer 12 by sputtering, the flow rate of oxygen introduced into the sputtering chamber is adjusted so that the arithmetic average height of the surface of the phase shift layer 12 is within a predetermined range.
- the surface thereof instead of adjusting the flow rate of oxygen introduced into the sputtering chamber, after forming the phase shift layer 12, the surface thereof may be dry-etched or wet-etched to form surface irregularities at a predetermined arithmetic average height. Good. Thereby, the adhesion between the photoresist layer formed on the surface of the phase shift layer 12 and the phase shift layer 12 can be improved.
- phase shift mask blanks 10 described in the above embodiments and modifications can be applied as phase shift mask blanks for manufacturing phase shift masks for manufacturing display devices, manufacturing semiconductors, and manufacturing printed circuit boards.
- a substrate having a size of 520 mm ⁇ 800 mm or more can be used as the substrate 11.
- the thickness of the substrate 11 may be 8 to 21 mm.
- phase shift mask manufactured by using the phase shift mask blanks 10 manufactured according to the first and second embodiments
- a photolithography process for manufacturing a semiconductor or a liquid crystal panel will be described with reference to FIG. .
- a phase shift mask 513 manufactured using the phase shift mask blanks 10 manufactured in the first and second embodiments is arranged.
- a photosensitive substrate 515 coated with a photoresist is set in the exposure apparatus 500.
- the exposure apparatus 500 includes a light source LS, an illumination optical system 502, a mask support table 503 for holding a phase shift mask 513, a projection optical system 504, and an exposure object support for holding a photosensitive substrate 515 as an exposure object.
- a table 505 and a drive mechanism 506 for moving the exposure object support table 505 in a horizontal plane are provided. Exposure light emitted from the light source LS of the exposure apparatus 500 enters the illumination optical system 502, is adjusted to a predetermined light flux, and is emitted to the phase shift mask 513 held on the mask support 503.
- the light that has passed through the phase shift mask 513 has an image of the device pattern drawn on the phase shift mask 513, and this light is transferred to the photosensitive substrate held on the exposure object support table 505 via the projection optical system 504.
- a predetermined position 515 is irradiated.
- the image of the device pattern of the phase shift mask 513 is imagewise exposed on the photosensitive substrate 515 such as a semiconductor wafer or a liquid crystal panel at a predetermined magnification.
- phase shift mask blanks 11: substrate, 12: phase shift layer, 100: manufacturing apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
本発明の第2の態様によると、位相シフトマスクブランクスは、基板と、前記基板上に形成された位相シフト層を有する位相シフトマスクブランクスであって、前記位相シフト層は、クロムと酸素とを含有し、前記位相シフト層の表面の算術平均高さの値は、前記基板の表面の算術平均高さの値に比べて、0.04nm以上大きい。
本発明の第3の態様によると、位相シフトマスクは、第1または第2の態様による位相シフトマスクブランクスの、前記位相シフト層を所定のパターン状に形成した位相シフトマスクである。
本発明の第4の態様によると、露光方法は、第3の態様による位相シフトマスクを介して、フォトレジストが塗布された感光性基板を露光する。
本発明の第5の態様によると、デバイスの製造方法は、第4の態様による露光方法によって前記感光性基板を露光する露光工程と、前記露光された感光性基板を現像する現像工程と、を有する。
図1は、本実施の形態の位相シフトマスクブランクス10の構成例を示す図である。位相シフトマスクブランクス10は、基板11と位相シフト層12とを備える。本実施の形態においては、スパッタリングにより基板11の表面に位相シフト層12を形成する。その際、スパッタリングの条件により位相シフト層12における酸素含有量(酸素原子数濃度)を設定することにより、図1に示すように、位相シフト層12の表面に所定レベル(所定の算術平均高さ)の微細な凹凸(凹凸部12a)が形成される。
以下、本実施の形態に係る位相シフトマスクブランクス10について、より詳しく説明する。
(1)本発明者らは、位相シフト層12の表面の算術平均高さが所定の値より大きい場合、例えば、0.38nm以上である場合、このような位相シフトマスクブランクスを用いて位相シフト層12のパターンを形成する工程においては、位相シフト層12とフォトレジスト層との界面におけるエッチング液のしみ込みが発生しないことを見出した。
以下、本実施の形態に係る位相シフトマスクブランクス10の製造方法の一例について説明する。
図2は、本実施の形態に係る位相シフトマスクブランクス10の製造に際して、位相シフト層12を形成するために使用する製造装置の一例を示す模式図である。図2(a)は、製造装置100の内部を上面から見た場合の模式図、図2(b)は、製造装置100の内部を側面から見た場合の模式図である。図2に示す製造装置100は、インライン型のスパッタリング装置であり、位相シフト層12を形成するための基板11を搬入するためのチャンバー20と、スパッタリングチャンバー21と、位相シフト層12を形成された基板11を搬出するためのチャンバー22とを備える。スパッタリングチャンバー21には、位相シフト層12を形成するためのターゲット41が配置される。
また、各ゲートバルブとターゲット41との間には、成膜前後の基板トレイ30を待機させるに十分なスペースないし別個の待機室が設けられる(不図示)。
(1)位相シフトマスクブランクス10は、基板11と、基板上に形成された位相シフト層12を有し、位相シフト層12は、クロムと酸素とを含有し、位相シフト層12の表面の算術平均高さの値が0.38nm以上である。このような位相シフトマスクブランクス10に塗布したフォトレジストをパターン露光後にウェットエッチングする際、エッチング液が位相シフト層12とフォトレジスト層との界面にしみ込む現象が発生しない。
合成石英ガラスからなる基板11を用意した。図2に示すインライン型のスパッタリング装置100を使用し、このガラス基板11の表面に、位相シフト層12を形成した。以下、位相シフト層12の製造方法について、より詳しく説明する。
なお、位相シフト層12の最表面は雰囲気ガスの吸着等により汚染されている可能性が高いため、実際に位相シフト層12における組成分析を行うにあたっては、表面粗さの程度を考慮して、最表面の位相シフト層を一定程度除去することが好ましい。このため、本願実施例においては最表面から1.25nmの深さまでエッチングした位置の原子数濃度を位相シフト層12の表面原子数濃度としたが、表面組成を得るためのエッチング深さはこの値に制限されるものではない。
実施例1に用いた基板11と同様の合成石英ガラスからなる基板11を用意した。位相シフト層12を形成する際、実施例1においては、スパッタリングチャンバー21に導入する酸素(O2)の流量を1.5sccmとしたが、本実施例では、酸素(O2)の流量を3sccmとし、それ以外は、実施例1と同様の条件で位相シフト層12を形成した。実施例1と同様の項目について測定を行った。その測定結果を、図3の表に示す。
実施例2において作製されたシフトマスクブランクス10にフォトレジスト層を形成した後、ウェットエッチングにより位相シフト層12にパターンを形成した場合、フォトレジスト層と位相シフト層12の界面部分にエッチング液のしみ込み現象が発生しないことが確認された。
実施例1に用いた基板11と同様の合成石英ガラスからなる基板51を用意した。位相シフト層を形成する際にスパッタリングチャンバー21には酸素を導入せず、すなわち、酸素(O2)の導入量を0sccmとし、それ以外は、実施例1と同様の条件で位相シフト層を形成した。すなわち、比較例1においては、位相シフト層を形成する際にスパッタリングチャンバー21には酸素を導入しなかった。図6は、比較例1において作製された位相シフトマスクブランクス50の構成を示す模式図である。比較例1において作製された位相シフトマスクブランクス50の位相シフト層52の表面には、所定の算術平均高さの表面粗さが形成されていない。比較例1に係る位相シフトマスクブランクス50では、基板51の表面に形成された位相シフト層52について、実施例1と同様の項目について測定を行った。
以上の実験結果より、位相シフト層12の算術表面粗さは0.38nm以上であることが好ましい。また、位相シフト層12の表面から1.25nmの深さにおける酸素原子濃度は42.6%以上であることが好ましい。また、位相シフト層12の表面から1.25nmの深さにおける酸素原子濃度は、85nmの深さにおける酸素原子濃度よりも大きいことが好ましく、その比率は1.59よりも大きいことが好ましい。
かかる態様を有する本実施形態の位相シフトマスクブランクスは、ウェットエッチングの際にフォトレジストと位相シフト層との間にエッチング液がしみ込み難い傾向にあり、フォトレジスト露光時の露光光のパターンに対して、正確なマスクパターンを形成することができる。
上述した実施の形態では、位相シフト層12をスパッタリングにより形成する際に、スパッタリングチャンバー内に導入する酸素の流量を調整して、位相シフト層12表面の算術平均高さを所定の範囲とした。しかし、スパッタリングチャンバー内に導入する酸素流量の調整に代えて、位相シフト層12を形成後、その表面をドライエッチングまたはウェットエッチングすることによって、表面凹凸を所定の算術平均高さに形成してもよい。それにより、そのような位相シフト層12の表面に形成されるフォトレジスト層と位相シフト層12との密着性を向上させることが可能となる。
上述の実施の形態および変形例で説明した位相シフトマスクブランクス10は、表示装置製造用、半導体製造用、プリント基板製造用の位相シフトマスクを作製するための位相シフトマスクブランクスとして適用され得る。なお、表示装置製造用の位相シフトマスクを作製するための位相シフトマスクブランクスの場合には、基板11として520mm×800mm以上のサイズの基板を用いることができる。また、基板11の厚さは、8~21mmであってよい。
次に、実施例1、2により作製された位相シフトマスクブランクス10を用いて作製した位相シフトマスクの適用例として、半導体製造や液晶パネル製造のフォトリソグラフィ工程について、図5を参照して説明する。露光装置500には、実施例1、2により作製された位相シフトマスクブランクス10を用いて作製した位相シフトマスク513が配置される。また、露光装置500には、フォトレジストが塗布された感光性基板515がセットされる。
実施の形態の位相シフトマスクを用いることにより、露光工程におけるパターン不良を低減することができ、露光工程における歩留まりを向上させることができる。
日本国特許出願2018年第172898号(2018年9月14日出願)
Claims (12)
- 基板と、前記基板上に形成された位相シフト層を有する位相シフトマスクブランクスであって、
前記位相シフト層は、クロムと酸素とを含有し、
前記位相シフト層の表面の算術平均高さの値が0.38nm以上である、位相シフトマスクブランクス。 - 請求項1に記載の位相シフトマスクブランクスにおいて、
前記位相シフト層の表面の算術平均高さの値は、前記基板の表面の算術平均高さの値に比べて、0.04nm以上大きい、位相シフトマスクブランクス。 - 基板と、前記基板上に形成された位相シフト層を有する位相シフトマスクブランクスであって、
前記位相シフト層は、クロムと酸素とを含有し、
前記位相シフト層の表面の算術平均高さの値は、前記基板の表面の算術平均高さの値に比べて、0.04nm以上大きい、位相シフトマスクブランクス。 - 請求項1から請求項3までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
前記位相シフト層は、CrOCNまたはCrOCNにおける酸素が化学量論比よりも多い材料からなる、位相シフトマスクブランクス。 - 請求項1から請求項4までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
前記位相シフト層の表面から1.25nmの深さにおける酸素原子数濃度が42.6%以上である、位相シフトマスクブランクス。 - 請求項1から請求項5までのいずれか一項に記載の位相シフトマスクブランクスにおいて、前記位相シフト層の表面側の酸素原子数濃度が、基板側の酸素原子数濃度よりも大きい、位相シフトマスクブランクス。
- 請求項1から請求項6までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
前記位相シフト層の表面から1.25nmの深さにおける酸素原子数濃度の、前記位相シフト層の表面から85nmの深さにおける酸素原子数濃度に対する比は、1.59以上である、位相シフトマスクブランクス。 - 請求項1から請求項7までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
前記位相シフト層の表面は、ウェットエッチングまたはドライエッチングされた、位相シフトマスクブランクス。 - 請求項1から請求項8までのいずれか一項に記載の位相シフトマスクブランクスにおいて、
前記基板の大きさは、520mm×800mm以上である、位相シフトマスクブランクス。 - 請求項1から請求項9までのいずれか一項に記載の位相シフトマスクブランクスの、前記位相シフト層を所定のパターン状に形成した、位相シフトマスク。
- 請求項10に記載の位相シフトマスクを介して、フォトレジストが塗布された感光性基板を露光する、露光方法。
- 請求項11に記載の露光方法によって前記感光性基板を露光する露光工程と、
前記露光された感光性基板を現像する現像工程と、
を有する、デバイスの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217006617A KR102582203B1 (ko) | 2018-09-14 | 2019-05-20 | 위상 시프트 마스크 블랭크스, 위상 시프트 마스크, 노광 방법, 및 디바이스의 제조 방법 |
JP2020546687A JP7151774B2 (ja) | 2018-09-14 | 2019-05-20 | 位相シフトマスクブランクス、位相シフトマスク、露光方法、デバイスの製造方法、位相シフトマスクブランクスの製造方法、位相シフトマスクの製造方法、露光方法、及び、デバイスの製造方法 |
CN201980059790.1A CN112689796A (zh) | 2018-09-14 | 2019-05-20 | 相移掩模坯料、相移掩模、曝光方法以及器件制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018172898 | 2018-09-14 | ||
JP2018-172898 | 2018-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020054131A1 true WO2020054131A1 (ja) | 2020-03-19 |
Family
ID=69777713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/019862 WO2020054131A1 (ja) | 2018-09-14 | 2019-05-20 | 位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7151774B2 (ja) |
KR (1) | KR102582203B1 (ja) |
CN (1) | CN112689796A (ja) |
TW (1) | TWI818992B (ja) |
WO (1) | WO2020054131A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007279214A (ja) * | 2006-04-04 | 2007-10-25 | Shin Etsu Chem Co Ltd | フォトマスクブランク及びその製造方法、並びにフォトマスク及びその製造方法 |
JP2016153889A (ja) * | 2015-02-16 | 2016-08-25 | 大日本印刷株式会社 | フォトマスク、フォトマスクブランクス、およびフォトマスクの製造方法 |
JP2017033004A (ja) * | 2016-09-21 | 2017-02-09 | Hoya株式会社 | 表示装置製造用フォトマスク、該フォトマスクの製造方法、パターン転写方法及び表示装置の製造方法 |
JP2017181545A (ja) * | 2016-03-28 | 2017-10-05 | Hoya株式会社 | 表示装置製造用フォトマスクの製造方法 |
JP2018091889A (ja) * | 2016-11-30 | 2018-06-14 | Hoya株式会社 | マスクブランク、転写用マスクの製造方法及び半導体デバイスの製造方法 |
JP2018116263A (ja) * | 2017-01-16 | 2018-07-26 | Hoya株式会社 | 位相シフトマスクブランクおよびこれを用いた位相シフトマスクの製造方法、並びに表示装置の製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5588633B2 (ja) | 2009-06-30 | 2014-09-10 | アルバック成膜株式会社 | 位相シフトマスクの製造方法、フラットパネルディスプレイの製造方法及び位相シフトマスク |
JP6101646B2 (ja) * | 2013-02-26 | 2017-03-22 | Hoya株式会社 | 位相シフトマスクブランク及びその製造方法、位相シフトマスク及びその製造方法、並びに表示装置の製造方法 |
JP6324756B2 (ja) * | 2013-03-19 | 2018-05-16 | Hoya株式会社 | 位相シフトマスクブランク及びその製造方法、位相シフトマスクの製造方法、並びに表示装置の製造方法 |
JP6502143B2 (ja) * | 2015-03-27 | 2019-04-17 | Hoya株式会社 | マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法 |
JP6558326B2 (ja) * | 2016-08-23 | 2019-08-14 | 信越化学工業株式会社 | ハーフトーン位相シフトマスクブランクの製造方法、ハーフトーン位相シフトマスクブランク、ハーフトーン位相シフトマスク及びフォトマスクブランク用薄膜形成装置 |
JP6632950B2 (ja) * | 2016-09-21 | 2020-01-22 | Hoya株式会社 | フォトマスクブランク、フォトマスクブランクの製造方法、及びそれらを用いたフォトマスクの製造方法、並びに表示装置の製造方法 |
JP6733464B2 (ja) * | 2016-09-28 | 2020-07-29 | 信越化学工業株式会社 | ハーフトーン位相シフトマスクブランク及びハーフトーン位相シフトマスク |
-
2019
- 2019-05-20 WO PCT/JP2019/019862 patent/WO2020054131A1/ja active Application Filing
- 2019-05-20 CN CN201980059790.1A patent/CN112689796A/zh active Pending
- 2019-05-20 JP JP2020546687A patent/JP7151774B2/ja active Active
- 2019-05-20 KR KR1020217006617A patent/KR102582203B1/ko active IP Right Grant
- 2019-05-24 TW TW108117948A patent/TWI818992B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007279214A (ja) * | 2006-04-04 | 2007-10-25 | Shin Etsu Chem Co Ltd | フォトマスクブランク及びその製造方法、並びにフォトマスク及びその製造方法 |
JP2016153889A (ja) * | 2015-02-16 | 2016-08-25 | 大日本印刷株式会社 | フォトマスク、フォトマスクブランクス、およびフォトマスクの製造方法 |
JP2017181545A (ja) * | 2016-03-28 | 2017-10-05 | Hoya株式会社 | 表示装置製造用フォトマスクの製造方法 |
JP2017033004A (ja) * | 2016-09-21 | 2017-02-09 | Hoya株式会社 | 表示装置製造用フォトマスク、該フォトマスクの製造方法、パターン転写方法及び表示装置の製造方法 |
JP2018091889A (ja) * | 2016-11-30 | 2018-06-14 | Hoya株式会社 | マスクブランク、転写用マスクの製造方法及び半導体デバイスの製造方法 |
JP2018116263A (ja) * | 2017-01-16 | 2018-07-26 | Hoya株式会社 | 位相シフトマスクブランクおよびこれを用いた位相シフトマスクの製造方法、並びに表示装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112689796A (zh) | 2021-04-20 |
JP7151774B2 (ja) | 2022-10-12 |
JPWO2020054131A1 (ja) | 2021-08-30 |
TW202011108A (zh) | 2020-03-16 |
KR20210032534A (ko) | 2021-03-24 |
TWI818992B (zh) | 2023-10-21 |
KR102582203B1 (ko) | 2023-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI711876B (zh) | 光罩基底、光罩基底之製造方法、及使用其等之光罩之製造方法、以及顯示裝置之製造方法 | |
TWI676078B (zh) | 光罩基底及使用其之光罩之製造方法、以及顯示裝置之製造方法 | |
TWI829153B (zh) | 空白遮罩、使用其的光罩以及半導體元件的製造方法 | |
JP2002169265A (ja) | フォトマスクブランクス及びフォトマスクブランクスの製造方法 | |
KR20070095262A (ko) | 하프톤형 위상반전 블랭크 마스크, 하프톤형 위상반전포토마스크 및 그의 제조방법 | |
JP7340057B2 (ja) | フォトマスクブランク及びそれを用いたフォトマスク | |
JP7297692B2 (ja) | フォトマスクブランク、フォトマスクの製造方法、および表示装置の製造方法 | |
WO2020054131A1 (ja) | 位相シフトマスクブランクス、位相シフトマスク、露光方法、及び、デバイスの製造方法 | |
JP7514897B2 (ja) | ブランクマスク及びそれを用いたフォトマスク | |
JP7167922B2 (ja) | フォトマスクブランクス、フォトマスク、露光方法、及び、デバイスの製造方法 | |
JP2022189860A (ja) | フォトマスクブランク、フォトマスクの製造方法及び表示装置の製造方法 | |
JP2023037572A (ja) | ブランクマスク及びそれを用いたフォトマスク | |
JP7479536B2 (ja) | ブランクマスク及びそれを用いたフォトマスク | |
JP7539525B2 (ja) | ブランクマスク及びそれを用いたフォトマスク | |
JP7482187B2 (ja) | ブランクマスク及びそれを用いたフォトマスク | |
CN111624848B (zh) | 光掩模坯料、光掩模的制造方法、及显示装置的制造方法 | |
JP7254470B2 (ja) | 位相シフトマスクブランク、位相シフトマスクの製造方法、及び表示装置の製造方法 | |
TW202347011A (zh) | 相位移遮罩底板、相位移遮罩、及其等之製造方法 | |
JP2023108598A (ja) | マスクブランク、転写用マスク、転写用マスクの製造方法、及び表示装置の製造方法 | |
JP2023088855A (ja) | ブランクマスク及びそれを用いたフォトマスク | |
TW202303260A (zh) | 相位移光罩坯料、相位移光罩、曝光方法、以及元件製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19860326 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217006617 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020546687 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19860326 Country of ref document: EP Kind code of ref document: A1 |