WO2020050200A1 - シートモールディングコンパウンド、および繊維強化複合材料 - Google Patents
シートモールディングコンパウンド、および繊維強化複合材料 Download PDFInfo
- Publication number
- WO2020050200A1 WO2020050200A1 PCT/JP2019/034369 JP2019034369W WO2020050200A1 WO 2020050200 A1 WO2020050200 A1 WO 2020050200A1 JP 2019034369 W JP2019034369 W JP 2019034369W WO 2020050200 A1 WO2020050200 A1 WO 2020050200A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- resin composition
- component
- smc
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/003—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C43/00—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
- B29C43/02—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
- B29C43/021—Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2063/00—Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
- B29K2105/08—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
- B29K2105/0872—Prepregs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/25—Solid
- B29K2105/251—Particles, powder or granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2307/00—Use of elements other than metals as reinforcement
- B29K2307/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
- C08J2363/02—Polyglycidyl ethers of bis-phenols
Definitions
- the present invention relates to a sheet molding compound and a fiber-reinforced composite material.
- Priority is claimed on Japanese Patent Application No. 2018-165832 filed on September 5, 2018, the content of which is incorporated herein by reference.
- a fiber-reinforced composite material comprising a reinforcing fiber containing carbon fiber and a matrix resin has been widely used in aircraft, automobiles, and industrial applications due to its excellent mechanical properties and the like.
- the matrix resin of the fiber-reinforced composite material is required to exhibit high mechanical properties even in a high-temperature environment.
- the matrix resin of the molding material sheet molding compound (hereinafter, also referred to as SMC), prepreg, etc.) used in the production of the fiber reinforced composite material is required to have excellent moldability.
- thermosetting resin a resin composition containing a thermosetting resin excellent in impregnating property into reinforcing fibers and heat resistance after curing is often used.
- thermosetting resin a phenol resin, a melamine resin, a bismaleimide resin, an unsaturated polyester resin, an epoxy resin, or the like is used.
- the epoxy resin composition has excellent moldability and heat resistance after curing, and a fiber-reinforced composite material using the epoxy resin composition can exhibit a high degree of mechanical properties, and thus is suitable as a matrix resin.
- Examples of a method for producing a fiber-reinforced composite material by molding a molding material include an autoclave molding method, a filament wind molding method, a resin injection molding method, a vacuum resin injection molding method, and a press molding method.
- the press molding method is in high demand because the productivity is high and a fiber-reinforced composite material having an excellent design surface is easily obtained.
- a molding material used in the press molding method a fiber-reinforced composite material of a complicated shape can be manufactured, and a fiber-reinforced composite material optimal for a structural member can be obtained. SMCs are actively used.
- the matrix resin used for the SMC must have a very low viscosity during the manufacture of the SMC in order to ensure impregnation of the carbon fibers during the manufacture of the SMC.
- the SMC matrix resin moderately thickens to the B stage (a state where the viscosity is increased by semi-curing and can be fluidized by heating), It has moderate tackiness (adhesiveness) and drapability (flexibility).
- B stage stability a state where the viscosity is increased by semi-curing and can be fluidized by heating.
- the matrix resin of the SMC is cured in a short time and has high heat resistance after the curing.
- the occurrence of burrs after molding the SMC matrix resin is small, and the rigidity is equal to or higher than the mold temperature.
- the epoxy resin composition is excellent in mechanical properties and heat resistance of a cured product, it is difficult to achieve both fast curing property and B-stage stability.
- a curing agent that cures an epoxy resin in a short period of time rapidly advances the curing reaction at room temperature, and therefore cannot maintain the B stage of the epoxy resin composition for a long time.
- thermosetting resin composition obtained by diluting an unsaturated polyester resin or a vinyl ester resin with styrene is usually used as the matrix resin of the SMC.
- a thermosetting resin composition containing an unsaturated polyester resin or a vinyl ester resin has a large curing shrinkage and contains many low volatile organic compounds contained in a molded article.
- the epoxy resin composition has a smaller curing shrinkage than the thermosetting resin composition obtained by diluting the unsaturated polyester resin or the vinyl ester resin with styrene, and has a very small amount of the low volatile organic compound contained in the molded article. is there.
- a resin composition comprising an epoxy resin having a hydroxyl group, a polyol, and a polyisocyanate compound (Patent Document 1).
- a resin composition comprising an epoxy resin, a polyol, a polyisocyanate compound, dicyandiamide, and a specific imidazole compound (Patent Document 2).
- a resin composition comprising an epoxy resin, an aminoalkylimidazole compound, and a diazabicycloalkylene compound (Patent Document 3).
- a liquid adhesive comprising an epoxy resin, a curing agent having an activation temperature of 20 to 100 ° C., and a curing agent having an activation temperature of 100 to 200 ° C.
- Patent Document 4 A reactive hot melt adhesive containing an epoxy resin which is solid at room temperature, an epoxy resin which is liquid at room temperature, a linear polyoxypropylene having an amino group terminal, and a latent curing agent (dicyandiamide) (Patent Document 5).
- An impregnating resin composition containing an epoxy resin, a latent curing agent, a resin having a polymerizable unsaturated group, and a polymerization initiator (Patent Document 6).
- Epoxy resin compositions containing an epoxy resin, an acid anhydride, and a Lewis acid salt (boron trichloride amine complex) (Patent Documents 7 to 9).
- Non-Patent Document 1 A resin composition containing an epoxy resin and 2,5-dimethyl-2,5-hexamethylenediamine and mensendiamine as curing agents.
- the resin compositions (1) and (2) utilize a urethane-forming reaction, the rate of the thickening reaction and the state of the B stage greatly change under the influence of moisture in the resin composition. Therefore, it is difficult to ensure the handling workability of the SMC and the stability of the B stage.
- the resin composition of (3) has a fast curing property, but has low storage stability, and it is difficult to ensure the handling workability of the SMC and the stability of the B stage.
- the liquid adhesive of (4) uses a curing agent having an activation temperature of 20 to 100 ° C.
- the first step A gelation state is caused by the curing reaction of. Therefore, before the second stage of curing, the fluidity is low and shaping is difficult, and it cannot be used as a matrix resin for SMC.
- the reactive hot melt adhesive (5) has a high viscosity, cannot obtain good impregnation into the reinforcing fiber, and cannot be used as a matrix resin of SMC.
- Patent Document 5 describes that a solvent is included in the resin composition for impregnation, and removal of the solvent and part of the curing reaction are advanced by heating. Have been. This method can be applied to the production of a thin prepreg in which the solvent can be easily removed and the temperature unevenness due to the thickness during heating and cooling is small. However, in the case of a thick sheet such as an SMC, it is difficult to remove the solvent, and the temperature unevenness increases.
- the epoxy resin composition of (7) takes a long time to be B-staged at room temperature (23 ° C.).
- the viscosity after the B-stage at room temperature is low and the tack is too strong, so that it is not suitable for SMC.
- the resin composition (8) contains 2,5-dimethyl-2,5-hexanediamine, the pot life is short.
- the resin composition contains mensendiamine, the curability of the resin composition is insufficient. Therefore, it is not suitable for the SMC matrix resin.
- the present invention can suppress the occurrence of burrs at the time of press molding, and obtain a fiber-reinforced composite material having excellent fluidity and rapid curability of a matrix resin at the time of press molding, and excellent mold release properties, mechanical properties and heat resistance. It is an object of the present invention to provide a sheet molding compound that can be used. Another object of the present invention is to provide a fiber-reinforced composite material having excellent releasability, mechanical properties and heat resistance.
- the present inventors have found that the gel time of the epoxy resin composition and the temperature at the start of the curing reaction have a causal relationship with the generation of burrs when molding the sheet molding compound. Then, they have found that the above problems can be solved by defining the gel time of the epoxy resin composition and the temperature at the start of the curing reaction, and have reached the present invention.
- the present invention has the following aspects.
- [2] containing an epoxy resin composition and a reinforcing fiber The epoxy resin composition includes a reaction product of an epoxy resin and an acid anhydride, A gel time at 140 ° C.
- a sheet molding compound, wherein the temperature at the start of the curing reaction of the epoxy resin composition is 70 to 115 ° C. [3] containing an epoxy resin composition and a reinforcing fiber, A sheet molding compound, wherein the epoxy resin composition contains the following components (A), (B) and (C).
- the epoxy resin composition contains 0.1 to 10 parts by mass of the component (D) based on the total mass (100 parts by mass) of the epoxy resin contained in the epoxy resin composition.
- the component (A) contains a glycidylamine-based epoxy resin, and the content of the glycidylamine-based epoxy resin contained in the component (A) is out of the total mass (100% by mass) of the component (A).
- a fiber-reinforced composite material which is a press-formed product of the sheet molding compound according to any one of [1] to [12].
- the sheet molding compound of the present invention can suppress the occurrence of burrs at the time of press molding, and is excellent in the fluidity and rapid curability of the matrix resin at the time of press molding, and is also a fiber reinforced with excellent demoldability, mechanical properties and heat resistance.
- a composite material can be obtained.
- the fiber-reinforced composite material of the present invention is a press-molded product of the sheet molding compound of the present invention, and has excellent mold release properties, mechanical properties, and heat resistance.
- Epoxy resin is a compound having two or more epoxy groups in a molecule.
- An “acid anhydride group” is a group having a structure in which one water molecule has been removed from two acid groups (such as a carboxy group).
- Acid anhydride is a compound having an acid anhydride group.
- Hydrogenated phthalic anhydride is a compound in which some or all of the unsaturated carbon bonds in the benzene ring of phthalic anhydride have been replaced by saturated carbon bonds.
- Thickener means that an epoxy resin composition is prepared by mixing components contained in the epoxy resin composition, and the epoxy resin composition immediately after preparation is allowed to stand at 23 ° C. in an environment of 7 to 14 days. And a B-staged epoxy resin composition.
- Sheet molding compound (SMC)” is a sheet-like molding material containing short fiber reinforcing fibers and a thermosetting resin.
- Viscosity is a value measured using a rheometer under the following conditions: measurement mode: constant stress, stress value: 300 Pa, frequency: 1.59 Hz, plate diameter: 25 mm, plate type: parallel plate, plate gap: 0.5 mm. It is. “Burr” is an unnecessary part formed at the end of a molded product (press molded product of SMC) formed by the epoxy resin composition flowing out of the gap between the upper and lower molds during SMC press molding and solidifying. It is. “Room temperature” means 25 ° C. "-" Indicating a numerical range means that the numerical values described before and after the numerical range are included as the lower limit and the upper limit.
- the sheet molding compound of the present invention contains an epoxy resin composition and a reinforcing fiber.
- the epoxy resin composition contained in the SMC of the present invention has a component (A): an epoxy resin liquid at 25 ° C., a component (B): an acid anhydride liquid at 25 ° C., and a component (C) having a melting point of: It is preferable to include a curing agent having a temperature of 40 ° C or higher and lower than 180 ° C. More preferably, the epoxy resin composition further comprises a component (D): a curing agent having a melting point of 180 to 300 ° C. In the epoxy resin composition, the component (B) acts on the component (A) to form an ester bond.
- the epoxy resin composition can be thickened by the reaction product of the epoxy resin and the acid anhydride.
- the thickened material containing the reactant of the epoxy resin and the acid anhydride may be the matrix resin of the SMC of the present invention, and the matrix resin of the present invention contains the reactant of the epoxy resin and the acid anhydride. May be. If the epoxy resin composition contained in the SMC of the present invention is a thickened epoxy resin composition, both the productivity and the handleability of the SMC can be compatible, and the stability of the B stage of the SMC is more excellent. (That is, the B-stage can be maintained for a long period of time), and the change in viscosity of the SMC with the passage of time is small, and the storage stability is excellent.
- the gel time of the epoxy resin composition at 140 ° C. is 30 to 140 seconds, preferably 40 to 120 seconds, and more preferably 50 to 85 seconds.
- the gel time at 140 ° C. is 30 seconds or more, preferably 40 seconds or more, more preferably 50 seconds or more
- the fluidity of the matrix resin during SMC press molding is improved.
- the gel time at 140 ° C. is 140 seconds or less, preferably 120 seconds or less, and more preferably 85 seconds or less, it is possible to suppress the occurrence of burrs at the time of SMC press molding, to reduce the time required for the demolding operation, and to reduce the productivity. Can be maintained.
- the matrix resin at the time of press molding of the SMC is also excellent in the quick curing property.
- the gel time of the epoxy resin composition can be adjusted by the composition of the epoxy resin composition.
- the gel time of the epoxy resin composition is a value measured as follows. That is, the epoxy resin composition immediately after preparation is put in a sealable container, sealed, and allowed to stand at 23 ° C. for 7 days. After holding the cover glass for 120 seconds on a hot plate previously heated to 140 ° C., place the epoxy resin composition 7 days after preparation on the cover glass, sandwich the epoxy resin composition with another cover glass, Immediately after the sandwiching, the time measurement is started, the upper cover glass is moved with tweezers or the like, and the time until the cover glass does not move is measured. This is defined as the gel time at 140 ° C. of the epoxy resin composition. The gel time is almost the same when measured with the epoxy resin composition alone and when measured with the SMC.
- the temperature at the start of the curing reaction of the epoxy resin composition is 70 to 115 ° C, preferably 80 to 110 ° C, more preferably 90 to 105 ° C.
- the temperature at the start of the curing reaction is 70 ° C. or higher, preferably 80 ° C. or higher, more preferably 90 ° C. or higher, the fluidity of the matrix resin during SMC press molding is improved.
- the temperature at the start of the curing reaction is 115 ° C. or lower, preferably 110 ° C. or lower, and more preferably 105 ° C. or lower, the generation of burrs can be suppressed, the demolding operation does not take much time, and the productivity can be maintained.
- the matrix resin at the time of press molding of the SMC is also excellent in rapid curability.
- the temperature at the start of the curing reaction of the epoxy resin composition can be adjusted by the composition of the epoxy resin composition.
- the viscosity of the epoxy resin composition at the start of the curing reaction is preferably from 0.4 to 100 Pa ⁇ s, more preferably from 0.6 to 80 Pa ⁇ s, even more preferably from 0.8 to 50 Pa ⁇ s.
- the viscosity at the start of the curing reaction is 0.4 Pa ⁇ s or more, preferably 0.6 Pa ⁇ s or more, and more preferably 0.8 Pa ⁇ s or more, the generation of burrs at the time of SMC press molding can be further suppressed.
- the viscosity at the start of the curing reaction is 100 Pa ⁇ s or less, preferably 80 Pa ⁇ s or less, and more preferably 50 Pa ⁇ s or less, the fluidity of the matrix resin during SMC press molding is further improved.
- the viscosity of the epoxy resin composition at the start of the curing reaction can be adjusted by the composition of the epoxy resin composition.
- the temperature and viscosity at the start of the curing reaction of the epoxy resin composition are values measured as described below. That is, the epoxy resin composition immediately after preparation is put in a sealable container, sealed, and allowed to stand at 23 ° C. for 7 days. Then, using a rheometer, the measurement mode is constant stress, the stress value is 300 Pa, and the frequency is 1.59 Hz. , Plate diameter: 25 mm, plate type: parallel plate, plate gap: 0.5 mm, heating rate: 2 ° C./min, and the viscosity of the epoxy resin composition 7 days after preparation was raised from 25 ° C. while heating.
- the viscosity immediately before the start of the curing reaction of the epoxy resin composition is defined as the viscosity at the start of the curing reaction of the epoxy resin composition.
- the temperature immediately before the epoxy resin composition starts the curing reaction is defined as the temperature at the time when the epoxy resin composition starts the curing reaction.
- the temperature at the start of the curing reaction is almost the same when measured with the epoxy resin composition alone and when measured with the SMC.
- the viscosity at the start of the curing reaction is almost the same when measured with the epoxy resin composition alone and when measured with the SMC.
- the viscosity at 30 ° C. of the epoxy resin composition 30 minutes after preparation is preferably 0.5 to 15 Pa ⁇ s, more preferably 0.5 to 10 Pa ⁇ s, and ⁇ 5 Pa ⁇ s is more preferable. If the viscosity at 30 ° C. after 30 minutes from the preparation is 0.5 Pa ⁇ s or more, preferably 1 Pa ⁇ s or more, the epoxy resin composition is applied to a film during the production of SMC, as described in detail later. At this time, the accuracy of the basis weight (the thickness of the epoxy resin composition) tends to be stable. If the viscosity at 30 ° C.
- an SMC is manufactured using the epoxy resin composition and the reinforcing fibers and the like.
- the impregnating property of the epoxy resin composition into the reinforcing fibers tends to increase, and the epoxy resin composition can be suitably used for the production of SMC.
- the viscosity at 30 ° C. of the epoxy resin composition 7 days and 14 days after preparation is preferably 5,000 to 75,000 Pa ⁇ s, respectively, and 6,000 to 60,000 Pa. S is more preferable, and 7,000 to 50,000 Pa ⁇ s is further preferable. If the viscosity at 30 ° C. after 7 days and 14 days after preparation is respectively 5,000 Pa ⁇ s or more, preferably 6,000 Pa ⁇ s or more, more preferably 7,000 Pa ⁇ s or more, the surface during handling of SMC Is in an appropriate range, and cutting and laminating work tend to be easy. If the viscosity at 30 ° C.
- b2 / b1 ⁇ 5 may be satisfied.
- b2 / b1 ⁇ 4 is more preferable, and b2 / b1 ⁇ 3 is even more preferable.
- b2 / b1 ⁇ 5, preferably b2 / b1 ⁇ 4, and more preferably b2 / b1 ⁇ 3 the B-stage stability of the epoxy resin composition or its thickened product in SMC is more excellent. That is, while the B stage tends to be held for a long period of time, the change in viscosity of the SMC over time is small, and the storage stability tends to be excellent.
- Component (A) is an epoxy resin that is liquid at 25 ° C.
- the component (A) is a component that adjusts the viscosity of the epoxy resin composition to the above range and enhances the impregnation of the epoxy resin composition into the reinforcing fibers during the production of SMC. Further, it is a component for improving the mechanical properties and heat resistance of the fiber-reinforced composite material which is a press-formed product of SMC.
- the component (A) has an aromatic ring, the mechanical properties of the fiber-reinforced composite material can be easily adjusted to a desired range.
- a glycidyl ether bisphenol-type epoxy resin
- a bisphenol bisphenol A, bisphenol F, bisphenol AD, a halogen-substituted product thereof or the like
- Glycidyl ethers of polyhydric phenols glycidyl ethers of polyhydric alcohols (such as polyoxyalkylene bisphenol A); and polyglycidyl compounds derived from aromatic amines.
- a bisphenol-type epoxy resin is used because it is easy to adjust the viscosity of the epoxy resin composition to a viscosity suitable for impregnating the reinforcing fibers and to easily adjust the mechanical properties of the fiber-reinforced composite material to a desired range. Resins are preferred.
- a bisphenol type epoxy resin a bifunctional bisphenol type epoxy resin is preferable.
- “bifunctional” means having two epoxy groups in the molecule.
- a bisphenol A type epoxy resin is more preferable from the viewpoint that the heat resistance and the chemical resistance of the fiber reinforced composite material are good.
- a bisphenol F type epoxy resin is more preferable from the viewpoint that the viscosity is lower than that of a bisphenol A type epoxy resin having a similar molecular weight and the elastic modulus of the fiber reinforced composite material is higher.
- an alicyclic epoxy is also preferable as the component (A) because it can have high heat resistance and high weather resistance while having low viscosity.
- Component (A) may be a trifunctional or higher functional epoxy resin.
- a trifunctional epoxy resin and a tetrafunctional epoxy resin can further improve the heat resistance of the fiber-reinforced composite material without greatly changing the viscosity of the epoxy resin composition.
- “trifunctional” means having three epoxy groups in the molecule.
- “Tetrafunctional” means having four epoxy groups in the molecule.
- bifunctional alicyclic epoxy resin examples include the following. 2021P, 2081, 2000 of Celoxide (registered trademark) manufactured by Daicel Corporation, TTA26 manufactured by JIANGSU TETRA NEW MATERIAL TECHNOLOGY.
- one type may be used alone, or two or more types may be used in combination.
- the change over time in the viscosity of the epoxy resin composition can be accelerated. That is, by adjusting the content of the glycidylamine-based epoxy resin, the values of the above-mentioned viscosity b1 and viscosity b2 can be controlled, so that the time required for the epoxy resin composition to be B-staged in the production of SMC is shortened, and the productivity is increased. Can also be increased.
- N, N, N ′, N′-tetraglycidyl-m-xylylenediamine is preferable because the speed of thickening is easily controlled and there is little concern about deterioration in physical properties.
- the content of the glycidylamine-based epoxy resin contained in the component (A) is based on the total mass (100% by mass) of the component (A). , Preferably 1 to 30% by mass, more preferably 2 to 20% by mass, still more preferably 3 to 15% by mass.
- the content of the glycidylamine-based epoxy resin in the total mass of the component (A) is 1% by mass or more, more preferably 2% by mass or more, and still more preferably 3% by mass or more, the B stage of the epoxy resin composition It tends to be able to reduce the activation time suitably.
- the content of the glycidylamine-based epoxy resin in the total mass of the component (A) is 30% by mass or less, more preferably 20% by mass or less, and still more preferably 15% by mass or less, the storage stability of the SMC is good. It tends to be.
- the viscosity of the component (A) at 25 ° C. may be such that the viscosity at 30 ° C. of the epoxy resin composition 30 minutes after preparation is 0.5 to 15 Pa ⁇ s, and the viscosity of the component (A) at 25 ° C.
- the viscosity is preferably from 0.3 to 500 Pa ⁇ s, more preferably from 0.3 to 400 Pa ⁇ s.
- the content of the component (A) in the epoxy resin composition is preferably set so that the viscosity at 30 ° C. of the epoxy resin composition 30 minutes after preparation becomes 0.5 to 15 Pa ⁇ s. ) Can be selected depending on the type.
- the content of the component (A) in the epoxy resin composition is preferably from 20 to 100% by mass, more preferably from 50 to 95% by mass, based on the total mass (100% by mass) of all epoxy resins contained in the epoxy resin composition. preferable.
- the viscosity at 30 ° C. of the epoxy resin composition 30 minutes after preparation can be easily adjusted to the above range, and the impregnation into the reinforcing fibers can be performed. Will be higher. Further, the heat resistance of the fiber-reinforced composite material is higher.
- Component (B) is a liquid anhydride at 25 ° C.
- the component (B) is a component that can act on the component (A) at room temperature, and is a component that increases the viscosity of the epoxy resin composition immediately after preparation and brings the epoxy resin composition into the B stage. Since the component (B) is liquid at 25 ° C., each component in the epoxy resin composition is uniformly mixed, and the epoxy resin composition can be uniformly thickened at 25 ° C.
- a cyclic acid anhydride having one or two or more structures (cyclic acid anhydride groups) in which one water molecule is removed from two acids in the molecule can be mentioned.
- the cyclic acid anhydride having one cyclic acid anhydride group in the molecule include dodecenyl succinic anhydride, polyadipic anhydride, polyazeleic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methylhexahydrophthalic anhydride.
- Methylhymic acid hexahydrophthalic anhydride, phthalic anhydride, trimellitic anhydride, 3-acetamidophthalic anhydride, 4-pentene-1,2-dicarboxylic anhydride, 6-bromo-1,2-dihydro- 4H-3,1-benzoxazine-2,4-dione, 2,3-anthracenedicarboxylic anhydride and the like.
- cyclic anhydride having two cyclic anhydride groups in the molecule examples include glyceryl bisanhydrotrimellitate monoacetate, ethylene glycol bisanhydrotrimellitate, pyromellitic anhydride, and benzophenonetetracarboxylic anhydride.
- 1,2,3,4-cyclobutanetetracarboxylic dianhydride bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, diphenyl-3, 3 ', 4,4'-tetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran -3-yl) -tetralin-1,2-dicarboxylic anhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3- Clohexene-1,2-dicarboxylic anhydride, N, N-bis [2- (2,6-dioxomorpholino) ethyl] glycine, 4,4′-sulfonyldiphthalic anhydride, 4,4′-sul
- phthalic anhydride or a hydrogenated anhydride which may have a substituent may be used in view of the stability of thickening of the epoxy resin composition, the heat resistance of the cured product of the epoxy resin composition and the mechanical properties.
- Phthalic acid is preferred, and a compound represented by the following formula (1) or a compound represented by the following formula (2) is more preferred.
- one type may be used alone, or two or more types may be used in combination.
- the content of the component (B) in the epoxy resin composition is preferably such that the acid anhydride group is 0.1 to 0.5 equivalent to 1 equivalent of the epoxy group contained in the epoxy resin composition.
- An amount of 0.1 to 0.4 equivalent is more preferable, and an amount of 0.1 to 0.3 equivalent is more preferable.
- the B stage of the epoxy resin composition proceeds appropriately. If the content of the component (B) is such that the acid anhydride group is at least 0.1 equivalent relative to 1 equivalent of the epoxy group contained in the epoxy resin composition, the epoxy resin composition can be B-staged. Satisfactorily is achieved, an appropriate tack is obtained, and the releasability of the carrier film from the SMC tends to be good.
- the content of the component (B) is 0.5 equivalent or less, more preferably 0.4 equivalent or less, still more preferably 0.3 equivalent or less, based on 1 equivalent of the epoxy group contained in the epoxy resin composition.
- the amount is equal to or less than the equivalent value, the B-stage of the epoxy resin composition proceeds moderately, so that good drapability is obtained, and the workability of SMC cutting work, lamination work, and the like tends to be good. is there.
- the content of the component (B) in the epoxy resin composition is preferably from 1 to 30 parts by mass, more preferably from 3 to 25 parts by mass, based on the total mass (100 parts by mass) of all epoxy resins contained in the epoxy resin composition. Is more preferably 5 to 20 parts by mass.
- the B stage of the epoxy resin composition proceeds appropriately.
- the content of the component (B) is at least 1 part by mass, more preferably at least 3% by mass, and still more preferably at least 5% by mass, based on the total mass of all epoxy resins contained in the epoxy resin composition.
- the B stage of the epoxy resin composition is favorably achieved, a suitable tack is obtained, and the releasability of the carrier film from the SMC tends to be improved.
- the content of the component (B) is 30 parts by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less, based on the total mass of all epoxy resins contained in the epoxy resin composition, Since the B-stage of the epoxy resin composition is moderately advanced, good drapability is obtained, and workability such as SMC cutting work and lamination work tends to be good.
- the cyclic acid anhydride having two cyclic acid anhydride groups in the molecule Is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and preferably 1 to 5 parts by mass, based on the total mass (100 parts by mass) of all epoxy resins contained in the epoxy resin composition. More preferred. If the content of the cyclic acid anhydride having two cyclic acid anhydride groups in the molecule in the epoxy resin composition is within the above range, the fluidity of the matrix resin during SMC press molding tends to be better. is there.
- the content of the compound having two cyclic acid anhydride groups in the molecule is at most 20 parts by mass, preferably at most 10 parts by mass, more preferably at most 5 parts by mass, based on the total mass of all epoxy resins contained in the epoxy resin composition.
- the amount is not more than part by mass, the mold tends to be sufficiently filled with the SMC.
- Component (C) is a curing agent having a melting point of at least 40 ° C and less than 180 ° C.
- the component (C) functions as a curing agent for the epoxy resin, and causes the component (A) and the component (B) to react at room temperature during the B-stage in which the component (A) and the component (B) react. Is a component that acts as a catalyst.
- Component (C) is preferably solid at 25 ° C. Since the component (C) is in a solid state at 25 ° C., the reaction of the component (C) during the production of the SMC or during the storage of the produced SMC is suppressed, and the productivity, storage stability, handleability and pressability of the SMC are reduced. The fluidity of the matrix resin during molding tends to be better.
- the melting point of component (C) is 40 ° C. or more and less than 180 ° C., preferably 50 to 170 ° C., more preferably 60 to 150 ° C., and even more preferably 65 to 120 ° C. In another embodiment, the melting point of the component (C) is 40 ° C. or more and less than 180 ° C., preferably 40 to 120 ° C. If the melting point of the component (C) is 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 65 ° C. or higher, a rapid reaction can be suppressed even at a low temperature, and the moldability and storage of SMC can be suppressed. The stability tends to be good.
- the melting point of the component (C) is less than 180 ° C., preferably 170 ° C. or less, more preferably 150 ° C. or less, and still more preferably 120 ° C. or less, generation of burrs during SMC press molding tends to be further suppressed.
- the curing time does not become too long, and the productivity tends to be improved.
- the melting point of the component (C) is a value measured by a differential scanning calorimeter (Q1000 manufactured by TA Instruments). Specifically, about 3 mg of the measurement sample was sealed in a dedicated aluminum hermetic pan, and the data obtained by increasing the temperature at a measurement temperature of ⁇ 50 ° C. to 300 ° C. at a rate of temperature increase of 10 ° C./min were plotted on the horizontal axis. When the calorific value is plotted on the vertical axis, the inflection point between the baseline of the calorific value and the peak top generated by the endothermic reaction is defined as the melting point.
- the average particle size of the component (C) is preferably 25 ⁇ m or less, more preferably 1 to 15 ⁇ m.
- the average particle size of the component (C) is 25 ⁇ m or less, more preferably 15 ⁇ m or less, the surface area of the component (C) becomes sufficient, and the content of the component (C) in the epoxy resin composition can be reduced. , SMC curing time can be shortened. Further, the component (C) is easily dispersed uniformly in the epoxy resin composition, the ratio of the unreacted component (C) in the cured product can be reduced, and the physical properties of the SMC press molded product of the present invention are improved. .
- the average particle size of the component (C) is a value measured using a spray particle size distribution measuring device.
- component (C) examples include aliphatic amines having a melting point of 40 ° C. or more and less than 180 ° C., aromatic amines, modified amines, secondary amines, tertiary amines, imidazole compounds, mercaptans, and the like.
- 1H-imidazole (melting point: 90 ° C.), 2-methylimidazole (melting point: 144 ° C.), 2-undecylimidazole (melting point: 73 ° C.), 2-phenylimidazole ( Melting point: 142 ° C.), 2-phenyl-4-methylimidazole (melting point: 179 ° C.), 1-cyanoethyl-2-methylimidazole (melting point: 55 ° C.), 1-cyanoethyl-2-phenylimidazole (melting point: 108 ° C.) and the like.
- a compound obtained by modifying an amine may be used as long as the melting point is 40 ° C. or more and less than 180 ° C.
- examples of such a compound include a compound of 2-methylimidazole and phenylglycidyl ether or bisphenol A diglycidyl ether (epoxy resin amine adduct).
- epoxy resin amine adducts include PN-23 (melting point: 60 ° C), PN-23J (melting point: 60 ° C), PN-31 (melting point: 52 ° C), PN-31J (manufactured by Ajinomoto Fine Techno Co.
- component (C) one type may be used alone, or two or more types may be used in combination.
- the content of the component (C) in the epoxy resin composition is preferably from 1 to 10 parts by mass, more preferably from 2 to 8 parts by mass, based on the total mass (100 parts by mass) of all the epoxy resins contained in the epoxy resin composition. More preferably, it is 4 to 8 parts by mass.
- the content of the component (C) is at least 1 part by mass, more preferably at least 2 parts by mass, and still more preferably at least 4 parts by mass, based on the total mass of all epoxy resins contained in the epoxy resin composition.
- the content of the component (C) is 10 parts by mass or less, more preferably 8 parts by mass or less, based on the total mass of all epoxy resins contained in the epoxy resin composition, the reinforcing fiber of the epoxy resin composition can be obtained. Tends to be high.
- Component (D) is a curing agent having a melting point of 180 to 300 ° C.
- the melting point of the component (D) is a value measured by the same method as the melting point of the component (C).
- the average particle size of the component (D) is preferably 25 ⁇ m or less, more preferably 1 to 15 ⁇ m.
- the average particle diameter of the component (D) is 25 ⁇ m or less, more preferably 15 ⁇ m or less, the surface area of the component (D) becomes sufficient and the content of the component (D) in the epoxy resin composition can be reduced. , SMC curing time can be shortened.
- the component (D) is easily dispersed uniformly in the epoxy resin composition, the ratio of the unreacted component (D) in the cured product can be reduced, and the physical properties of the SMC press molded product of the present invention are improved.
- the average particle size of the component (D) is a value measured by the same method as the average particle size of the component (C).
- the component (D) dicyandiamide, an imidazole compound having a melting point of 180 to 300 ° C., and the like can be given. From the viewpoint of further improving the heat resistance of the press-formed product of the SMC of the present invention, among the imidazole compounds, particularly, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s- Triazine (melting point: 253 ° C.) is preferred.
- the epoxy resin composition further contains dicyandiamide (melting point: 206 ° C.) as the component (D), so that the B-stage of the epoxy resin composition and the stability of the B-stage and the quick-curing property are not impaired.
- the toughness and heat resistance of the SMC press molded product obtained from the epoxy resin composition can be further improved.
- one type may be used alone, or two or more types may be used in combination.
- the content of the component (D) in the epoxy resin composition is preferably from 0.1 to 10 parts by mass, more preferably from 0.3 to 10 parts by mass, based on the total mass (100 parts by mass) of all epoxy resins contained in the epoxy resin composition. 7 parts by mass is more preferable, and 1 to 5 parts by mass is further preferable.
- the content of the component (D) is at least 0.1 part by mass, more preferably at least 0.3 part by mass, still more preferably at least 1 part by mass, based on the total mass of all epoxy resins contained in the epoxy resin composition. If so, the generation of burrs during SMC press molding can be further suppressed, and the toughness and heat resistance of the SMC press molded product tend to be better.
- the content of the component (D) is 10 parts by mass or less, more preferably 7 parts by mass or less, and still more preferably 5 parts by mass or less, based on the total mass of all epoxy resins contained in the epoxy resin composition.
- the epoxy resin composition may contain components (other components) other than the above-mentioned components (A), (B), (C) and (D) as necessary.
- Other components that the epoxy resin composition may optionally include include a thickening accelerator, an epoxy resin curing accelerator, an inorganic filler, an internal mold release agent, a surfactant, an organic pigment, and an inorganic pigment.
- an imidazole-based compound that is liquid at 25 ° C. is preferable since the time required for the epoxy resin composition to be B-staged can be hastened.
- Examples of imidazole that is liquid at 25 ° C. include 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole and the like. .
- One kind of imidazole that is liquid at 25 ° C. may be used alone, or two or more kinds may be used in combination.
- the content of imidazole which is liquid at 25 ° C is based on the total mass (100 parts by mass) of all epoxy resins contained in the epoxy resin composition. On the other hand, it is preferably 0.01 to 0.2 part by mass, more preferably 0.01 to 0.1 part by mass, and still more preferably 0.03 to 0.07 part by mass. If the content of imidazole liquid at 25 ° C. is 0.01 parts by mass or more, more preferably 0.03 parts by mass or more with respect to the total mass of all epoxy resins contained in the epoxy resin composition, the epoxy resin There is a tendency that the time for the composition to be B-staged can be shortened.
- the content of imidazole liquid at 25 ° C. is 0.2 parts by mass or less, more preferably 0.1 part by mass or less, further preferably 0.1 part by mass or less with respect to the total mass of all epoxy resins contained in the epoxy resin composition. If it is at most 07 parts by mass, the stability of the B stage of the epoxy resin composition will tend to be good.
- a urea compound is preferable because the mechanical properties (flexural strength and flexural modulus) of the fiber-reinforced composite material are higher.
- urea compounds include 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea, and 3- (3-chloro-4-methylphenyl) -1,1- Dimethylurea, 2,4-bis (3,3-dimethylureido) toluene, 1,1 ′-(4-methyl-1,3-phenylene) bis (3,3-dimethylurea) and the like can be mentioned.
- the epoxy resin composition may contain a compound (for example, boric acid, boric acid ester compound, etc.) that coordinates to an amine.
- a compound that coordinates to an amine for example, L-070E (a mixture of bisphenol A diglycidyl ether, phenolic barrack resin, and borate compound, manufactured by Shikoku Chemicals Co., Ltd.) and the like can be mentioned.
- the inorganic filler examples include calcium carbonate, aluminum hydroxide, clay, barium sulfate, magnesium oxide, glass powder, hollow glass beads, and aerosil.
- curing shrinkage can be reduced.
- the internal release agent examples include carnauba wax, zinc stearate, calcium stearate and the like.
- the epoxy resin composition contains the internal release agent, the releasability of the SMC after molding becomes easier.
- a liquid surfactant is preferable from the viewpoint of migration to the surface of the SMC, and a liquid surfactant containing an alkyl chain having 12 to 18 carbon atoms is more preferable.
- the epoxy resin composition contains a surfactant, the releasability of the carrier film from the SMC can be improved. Further, voids included in the SMC can be reduced.
- the epoxy resin other than the component (A) an epoxy resin in a semi-solid or solid state at 25 ° C. may be mentioned.
- an epoxy resin having an aromatic ring is preferable, and a bifunctional epoxy resin is more preferable.
- the epoxy resin composition of the present invention may include various epoxy resins for the purpose of improving the heat resistance of the SMC press molded product and adjusting the viscosity of the epoxy resin composition. .
- a polyfunctional epoxy resin, a novolak type epoxy resin, and an epoxy resin having a naphthalene skeleton are effective.
- the resin other than the epoxy resin examples include a thermoplastic resin, a thermoplastic elastomer, and an elastomer other than the thermoplastic elastomer. These not only change the viscoelasticity of the epoxy resin composition to optimize the viscosity, storage modulus and thixotropic properties of the epoxy resin composition, but also improve the toughness of the cured epoxy resin composition. is there.
- the resin other than the epoxy resin core-shell type elastomer fine particles are preferable.
- Examples of commercially available core-shell type elastomer fine particles include “METABLEN (registered trademark)” (manufactured by Mitsubishi Chemical Corporation), “STAPHYLOID (registered trademark)” (manufactured by Aica Industries), and “PARALOID (registered trademark)”. (Manufactured by Dow Chemical Company).
- the core-shell type elastomer fine particles can also be obtained as a master batch type epoxy resin preliminarily dispersed in an epoxy resin.
- MX-113, MX-120, MX-125, MX-128, MX-130, MX-135, MX-136, MX-156, MX-156, MX series of Kaneace manufactured by Kaneka Corporation 153, MX-257, MX-150, MX-154, MX-960, MX-170, MX-267, MX-965, MX-217, MX-416, MX-451, MX-553, MX-710, MX-714 or the like can be used.
- the resin other than the epoxy resin one type may be used alone, or two or more types may be used in combination.
- the epoxy resin composition can be prepared by a conventionally known method.
- each component may be mixed and prepared at the same time, and a master batch in which the component (C) and, if necessary, the component (D) and the like are appropriately dispersed in the component (A) is prepared. It may be prepared by mixing the batch and the remaining components.
- the kneading speed may be adjusted, or the temperature may not be raised during kneading, such as by cooling the preparation pot or the kneading pot with water. preferable.
- Examples of the kneading apparatus include a grinder, an attritor, a planetary mixer, a dissolver, a three-roller, a kneader, a universal stirrer, a homogenizer, a homodispenser, a ball mill, and a bead mill. Two or more kneading apparatuses may be used in combination.
- the viscosity immediately after preparation can be reduced by including the component (A).
- the viscosity at 30 ° C. of the epoxy resin composition 30 minutes after preparation can be 15 Pa ⁇ s or less. Therefore, it is excellent in impregnating the reinforcing fibers and can be suitably used for the production of SMC.
- the viscosity can be increased in a short time after preparation. For example, the viscosity at 30 ° C. of the epoxy resin composition 7 days after preparation can be 5,000 to 75,000 Pa ⁇ s.
- the epoxy resin composition contained in the SMC of the present invention can maintain the viscosity after thickening for a long time.
- the viscosity at 30 ° C. of the epoxy resin composition 14 days after preparation can be 5,000 to 75,000 Pa ⁇ s. Therefore, the tackiness and drapability after the B stage is formed, and the stability of the B stage are excellent.
- the rigidity, mechanical properties, and heat resistance of the SMC press molded product can be further improved.
- the reinforcing fibers contained in the SMC of the present invention various fibers can be adopted depending on the use and purpose of use of the SMC, and carbon fibers (including graphite fibers; the same applies hereinafter), aramid fibers, and silicon carbide. Fiber, alumina fiber, boron fiber, tungsten carbide fiber, glass fiber and the like. Among these, carbon fibers and glass fibers are preferable, and carbon fibers are particularly preferable, from the viewpoint of the mechanical properties of the fiber-reinforced composite material.
- the reinforcing fibers are usually used in the form of a reinforcing fiber bundle consisting of a single fiber of 1,000 or more and 60,000 or less.
- the reinforcing fibers may be present while maintaining the shape of the reinforcing fiber bundle, or may be present in the form of bundles composed of fewer fibers, but usually the bundle composed of fewer fibers is present. There are divided into.
- the reinforcing fiber a chopped reinforcing fiber bundle made of short fibers is preferable.
- the average length of the reinforcing fibers is preferably from 0.3 to 10 cm, more preferably from 1 to 5 cm, even more preferably from 2.5 to 5 cm.
- an SMC excellent in balance between moldability and mechanical properties can be obtained.
- the average length of the reinforcing fibers is 0.3 cm or more, more preferably 1 cm or more, and still more preferably 2.5 cm or more, a fiber-reinforced composite material having better mechanical properties tends to be easily obtained.
- the average length of the reinforcing fibers is 10 cm or less, more preferably 5 cm or less, the fluidity of the matrix resin during press molding tends to be further improved.
- a sheet-like material in which chopped reinforcing fiber bundles are stacked two-dimensionally at random is more preferable.
- the SMC is manufactured, for example, by sufficiently impregnating a sheet-like material of a chopped reinforcing fiber bundle with the above-described epoxy resin composition to thicken the epoxy resin composition.
- the method of impregnating the sheet-like material of the chopped reinforcing fiber bundle with the epoxy resin composition various conventionally known methods can be adopted according to the form of the reinforcing fiber.
- the following method can be mentioned.
- Two films on which the epoxy resin composition is uniformly applied are prepared.
- the chopped reinforcing fiber bundle is randomly distributed on the surface of one of the films to which the epoxy resin composition is applied to form a chopped reinforcing fiber bundle sheet.
- the epoxy resin composition application surface of the other film is stuck on the sheet-like material of the chopped reinforcing fiber bundle, and the epoxy resin composition is pressure-impregnated and impregnated into the sheet-like material of the chopped reinforcing fiber bundle, and the sheet molding compound precursor ( SMC precursor).
- the SMC precursor in which the epoxy resin composition is impregnated into the chopped fiber bundle is held at a temperature of about room temperature to about 60 ° C. for several hours to several tens of days, or at a temperature of about 60 to 80 ° C. for several seconds to several tens of minutes.
- the epoxy group of the component (A) in the epoxy resin composition and the optionally mixed other epoxy resin undergoes an esterification reaction with the carboxy group derived from the component (B), and the epoxy resin composition becomes Stage (thicken).
- Stage (thicken) By increasing the viscosity of the epoxy resin composition in this manner, tackiness on the surface of the SMC is suppressed, and an SMC suitable for a molding operation is obtained.
- reaction conditions between the epoxy group of the epoxy resin and the carboxy group derived from the component (B) are such that the viscosity at 30 ° C. and the viscosity at the start of the curing reaction of the epoxy resin composition obtained after the esterification reaction fall within the above ranges. It is preferable to select
- the SMC of the present invention including the epoxy resin composition having a gel time at 140 ° C. of 30 to 140 seconds and a temperature at the start of the curing reaction of 70 to 115 ° C.
- the generation of burrs can be suppressed.
- the matrix resin is excellent in the rapid curing property at the time of press molding of the SMC, that is, the curing speed at the time of press molding is high, the mold occupation time is shortened, and the productivity of the fiber reinforced composite material is increased.
- an epoxy resin composition containing the above-mentioned components (A), (B) and (C) it becomes a thickened product of the epoxy resin composition which is more excellent in tackiness and drapeability after B-stage, The workability of handling the SMC is further improved.
- the SMC of the present invention satisfying b2 / b1 ⁇ 5, It is excellent in the stability of the stage and tends to be able to hold the B stage for a long period of time, and has a small change in viscosity of the SMC over time, and tends to have excellent storage stability.
- the SMC of the present invention since the cured product contains an epoxy resin composition having excellent rigidity, mechanical properties and heat resistance, it is possible to obtain a fiber-reinforced composite material having excellent mold release properties, mechanical properties and heat resistance. Can be.
- the fiber-reinforced composite material of the present invention is a press-formed product of the SMC of the present invention.
- the fiber-reinforced composite material of the present invention can be produced by press-molding the SMC of the present invention and curing the epoxy resin composition contained in the SMC of the present invention.
- Examples of the method for producing the fiber-reinforced composite material of the present invention include the following methods.
- One SMC of the present invention or a stack of a plurality of SMCs of the present invention is set between a pair of molds.
- the SMC is press-molded (compression-molded) to cure the epoxy resin composition contained in the SMC to obtain a press-molded SMC, that is, a fiber-reinforced composite material that is a cured SMC.
- a honeycomb structure such as a corrugated cardboard may be used as a core material, and the SMC of the present invention may be arranged on both surfaces or one surface thereof.
- stacking two SMCs is referred to as “2ply stacking”.
- the temperature for press molding is preferably from 120 to 230 ° C.
- the press molding time is preferably 2 to 60 minutes.
- Component (B)) HN-2200 3-methyl-1,2,3,6-tetrahydrophthalic anhydride or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride (manufactured by Hitachi Chemical Co., Ltd., viscosity at 25 ° C .: 75 mPa) -S).
- Component (C)) -PN-23J epoxy resin amine adduct (manufactured by Ajinomoto Fine Techno Co., Ltd., melting point: 59 ° C, average particle diameter: 5 ⁇ m).
- -PN-31J epoxy resin amine adduct (manufactured by Ajinomoto Fine Techno Co., melting point: 52 ° C, average particle diameter: 5 ⁇ m).
- -P-0505 epoxy resin amine adduct (manufactured by Shikoku Chemicals, melting point: 69 ° C, average particle size: 5 ⁇ m).
- L-070E a mixture of bisphenol A diglycidyl ether, phenolic barrack resin, and borate compound (manufactured by Shikoku Chemicals).
- the viscosity at 30 ° C. of the epoxy resin composition 30 minutes after the preparation is a measure of the impregnation when the epoxy resin composition impregnates the reinforcing fibers, and the lower the viscosity, the better the impregnation.
- the viscosity at 30 ° C. of the epoxy resin composition after 7 days from the preparation is determined by determining whether the epoxy resin composition is an appropriate B-stage thickened material such that the SMC can exhibit appropriate tackiness and drape. It is a guide to make a decision. Specifically, if the viscosity is in the range of 5,000 to 75,000 Pa ⁇ s, it is determined that the epoxy resin composition is a moderate B-stage thickened material. The viscosity at 30 ° C.
- B stage stability a measure of whether the B stage can be maintained for a long time (B stage stability). Specifically, if the viscosity is in the range of 5,000 to 75,000 Pa ⁇ s, it is determined that the stability of the B stage is good.
- the measurement of the temperature-raising viscosity is a measure of the fluidity of the matrix resin, that is, the epoxy resin composition during press molding of the SMC, and the amount of burrs generated during press molding.
- the temperature at the start of the curing reaction was evaluated according to the following evaluation criteria. In the case of "A", it was determined that the fluidity of the matrix resin was good and that the occurrence of burrs during press molding was small.
- the epoxy resin composition immediately after preparation was placed in a sealable container, sealed, and allowed to stand in a room at 23 ° C. in a place protected from direct sunlight for 7 days.
- a cover glass manufactured by Matsunami Glass Industry Co., Ltd.
- an epoxy resin 7 days after preparation is placed on the cover glass.
- the gel time at 140 ° C. of the epoxy resin composition was taken.
- the gel time measurement is a measure of the SMC molding time. In addition, it becomes a measure of the generation of burrs during SMC press molding.
- the epoxy resin composition application surface of the other film is stuck on the sheet-like material obtained earlier, the chopped carbon fiber bundle is sandwiched by the epoxy resin composition, and this is passed between rolls and pressed. Then, the epoxy resin composition was pressure-impregnated and impregnated into the chopped carbon fiber bundle to obtain an SMC precursor.
- the resulting SMC precursor is allowed to stand at room temperature for 7 days to sufficiently thicken the epoxy resin composition in the SMC precursor, containing the epoxy resin composition and the reinforcing fiber, and having a length of 280 mm. An 280 mm wide SMC was obtained.
- a laminate obtained by stacking SMCs by 2 ply was charged into a molding die having a length of 300 mm, a width of 300 mm and a thickness of 2 mm at a charge rate (ratio of the area of the SMC to the die area) of 65%, and a die temperature of 140 ° C.
- the epoxy resin composition was cured by heating and compressing under a pressure of 4 MPa for 5 minutes to obtain a flat fiber-reinforced composite material (CFRP molded plate) having a thickness of about 2 mm and a square of 300 mm.
- the following measurement and evaluation were performed on the obtained fiber-reinforced composite material. The results are shown in Tables 1 to 3.
- burr generation rate (XY) / (X) ⁇ 100 (I) (In the formula (I), X is the mass of the SMC charged in the molding die, and Y is the mass of the molded product (fiber-reinforced composite material) taken out of the molding die after molding.)
- burrs on the molding die If the generation of burrs on the molding die is small, the burrs can be removed in a short time after molding, so that the molding cycle can be shortened.
- the occurrence of burrs was evaluated according to the following evaluation criteria. A (good): The burr generation rate is less than 6%. B (bad): The burr occurrence rate is 6% or more.
- the epoxy resin compositions used in Examples 1 to 13 were appropriately B-staged 7 days after preparation, and had moderate tack and drape when used as SMC.
- the tackiness and drapeability after 14 days were not significantly different from those after 7 days, and the fluidity of the matrix resin at the time of SMC press molding was also equal. It can be seen from the measurement results of the viscosity at elevated temperature that the fluidity is stable.
- the SMCs obtained in Examples 1 to 13 have a gel time of the epoxy resin composition of 30 to 140 seconds, a good fast curing property of the matrix resin, and a short time in the production of the fiber reinforced composite material. Molded.
- the SMC press-formed products (fiber-reinforced composite materials) obtained in Examples 1 to 13 were less likely to generate burrs, and Examples 1 to 13 showed that SMCs with high productivity were obtained. Was. It can be seen from the results of the gel time measurement that the above-mentioned rapid curing property and the above-mentioned productivity are excellent. Further, from the SMCs obtained in Examples 1 to 13, fiber-reinforced composite materials having excellent mechanical properties and heat resistance were obtained.
- the sheet molding compound of the present invention suppresses the generation of burrs during press molding, impregnates the reinforcing fiber of the epoxy resin composition used in the production of the sheet molding compound into the reinforcing fibers, and tackiness and drapeability after the B-stage. Excellent in B-stage stability (fluidity during press molding), rapid curing when heated (shortening of mold occupancy time during press molding), and heat resistance of press-molded products. High material. Further, the sheet molding compound of the present invention has excellent mechanical properties and heat resistance after curing, and thus is suitable as a raw material for structural parts for industrial use and automobiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
Abstract
プレス成形時のバリの発生を抑制でき、プレス成形時のマトリックス樹脂の流動性および速硬化性に優れるとともに、脱型性、機械特性および耐熱性に優れた繊維強化複合材料を得ることができるシートモールディングコンパウンドを提供する。本発明のシートモールディングコンパウンドは、エポキシ樹脂組成物と強化繊維とを含有し、前記エポキシ樹脂組成物の140℃におけるゲルタイムが30~140秒であり、前記エポキシ樹脂組成物の硬化反応開始時の温度が70~115℃であり、調製から7日後の前記エポキシ樹脂組成物の30℃における粘度をb1とし、調製から14日後の前記エポキシ樹脂組成物の30℃における粘度をb2としたときに、b2/b1≦5である。
Description
本発明は、シートモールディングコンパウンド、および繊維強化複合材料に関する。
本願は、2018年9月5日に、日本で出願された特願2018-165832号に基づき優先権を主張し、その内容をここに援用する。
本願は、2018年9月5日に、日本で出願された特願2018-165832号に基づき優先権を主張し、その内容をここに援用する。
炭素繊維を含む強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、その優れた機械特性等から、航空機、自動車、産業用途に幅広く用いられている。近年、その使用実績を積むにしたがって繊維強化複合材料の適用範囲はますます拡がってきている。
繊維強化複合材料のマトリックス樹脂には、高温環境にあっても高度の機械特性を発現することが必要とされる。また、繊維強化複合材料の製造に用いられる成形材料(シートモールディングコンパウンド(以下、SMCとも記す。)、プリプレグ等)のマトリックス樹脂には、成形性に優れることが必要とされる。
繊維強化複合材料のマトリックス樹脂には、高温環境にあっても高度の機械特性を発現することが必要とされる。また、繊維強化複合材料の製造に用いられる成形材料(シートモールディングコンパウンド(以下、SMCとも記す。)、プリプレグ等)のマトリックス樹脂には、成形性に優れることが必要とされる。
成形材料のマトリックス樹脂としては、強化繊維への含浸性や硬化後の耐熱性に優れる熱硬化性樹脂を含む樹脂組成物が用いられることが多い。熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等が用いられている。
このうち、エポキシ樹脂組成物は、成形性および硬化後の耐熱性に優れており、エポキシ樹脂組成物を用いた繊維強化複合材料が高度の機械特性を発揮できることから、マトリックス樹脂として好適である。
このうち、エポキシ樹脂組成物は、成形性および硬化後の耐熱性に優れており、エポキシ樹脂組成物を用いた繊維強化複合材料が高度の機械特性を発揮できることから、マトリックス樹脂として好適である。
成形材料を成形して繊維強化複合材料を製造する方法としては、オートクレーブ成形法、フィラメントワインド成形法、樹脂注入成形法、真空樹脂注入成形法、プレス成形法等がある。このうち、プレス成形法は、生産性が高く、優れた意匠面を有する繊維強化複合材料が得られやすいことから需要が高まっている。
プレス成形法に用いる成形材料としては、複雑な形状の繊維強化複合材料の製造が可能であり、構造部材に最適な繊維強化複合材料が得られることから、強化短繊維とマトリックス樹脂とから構成されるSMCが活発に利用されている。
プレス成形法に用いる成形材料としては、複雑な形状の繊維強化複合材料の製造が可能であり、構造部材に最適な繊維強化複合材料が得られることから、強化短繊維とマトリックス樹脂とから構成されるSMCが活発に利用されている。
SMCに用いられるマトリックス樹脂には、下記の特性が求められる。
・SMCの製造時の炭素繊維への含浸性を確保するため、SMCのマトリックス樹脂がSMCの製造時に非常に低粘度であること。
・プレス成形時のSMCの取り扱い作業性を確保するため、SMCのマトリックス樹脂が適度に増粘することによってBステージ(半硬化によって増粘した状態であって、加熱によって流動化し得る状態)となり、適度なタック性(粘着性)およびドレープ性(柔軟性)を有すること。
・プレス成形時のマトリックス樹脂の流動性を確保するため、SMCのマトリックス樹脂がBステージを長期間保持できること(Bステージの安定性)。
・プレス成形法においては短時間かつ高温でSMCを成形するため、SMCのマトリックス樹脂が短時間で硬化し、かつ硬化後に高い耐熱性を有すること。
・プレス成形後の脱型作業やバリ取り作業の時間をできるだけ短時間にするために、SMCのマトリックス樹脂を成形した後のバリの発生が少なく、型温に対して同等以上の高い剛性を有すること。
・高い機械特性および耐熱性を有する炭素繊維強化複合材料を得るため、SMCのマトリックス樹脂を硬化した後に高い機械特性および耐熱性を発現できること。
・SMCの製造時の炭素繊維への含浸性を確保するため、SMCのマトリックス樹脂がSMCの製造時に非常に低粘度であること。
・プレス成形時のSMCの取り扱い作業性を確保するため、SMCのマトリックス樹脂が適度に増粘することによってBステージ(半硬化によって増粘した状態であって、加熱によって流動化し得る状態)となり、適度なタック性(粘着性)およびドレープ性(柔軟性)を有すること。
・プレス成形時のマトリックス樹脂の流動性を確保するため、SMCのマトリックス樹脂がBステージを長期間保持できること(Bステージの安定性)。
・プレス成形法においては短時間かつ高温でSMCを成形するため、SMCのマトリックス樹脂が短時間で硬化し、かつ硬化後に高い耐熱性を有すること。
・プレス成形後の脱型作業やバリ取り作業の時間をできるだけ短時間にするために、SMCのマトリックス樹脂を成形した後のバリの発生が少なく、型温に対して同等以上の高い剛性を有すること。
・高い機械特性および耐熱性を有する炭素繊維強化複合材料を得るため、SMCのマトリックス樹脂を硬化した後に高い機械特性および耐熱性を発現できること。
しかし、エポキシ樹脂組成物は、硬化物の機械特性および耐熱性に優れるものの、速硬化性とBステージの安定性とを両立することは困難である。
すなわち、エポキシ樹脂を短時間で硬化させる硬化剤は、室温において硬化反応を速やかに進行させるため、エポキシ樹脂組成物のBステージを長期間保持できない。一方、エポキシ樹脂組成物のBステージを長期間保持できる硬化剤は、短時間でエポキシ樹脂を硬化させることが困難である。
すなわち、エポキシ樹脂を短時間で硬化させる硬化剤は、室温において硬化反応を速やかに進行させるため、エポキシ樹脂組成物のBステージを長期間保持できない。一方、エポキシ樹脂組成物のBステージを長期間保持できる硬化剤は、短時間でエポキシ樹脂を硬化させることが困難である。
そのため、SMCのマトリックス樹脂としては、通常、不飽和ポリエステル樹脂またはビニルエステル樹脂をスチレンで希釈した熱硬化性樹脂組成物が用いられる。しかし、不飽和ポリエステル樹脂やビニルエステル樹脂を含む熱硬化性樹脂組成物は、硬化収縮が大きいことや成形品中に含まれる低揮発性有機化合物が多いことから、マトリックス樹脂のエポキシ化が望まれている。エポキシ樹脂組成物は、該不飽和ポリエステル樹脂またはビニルエステル樹脂をスチレンで希釈した熱硬化性樹脂組成物と比較し、硬化収縮が小さく、成形品中に含まれる低揮発性有機化合物も極少量である。
SMCに用いられるエポキシ樹脂組成物としては、下記のものが提案されている。
(1)水酸基を有するエポキシ樹脂、ポリオール、ポリイソシアネート化合物からなる樹脂組成物(特許文献1)。
(2)エポキシ樹脂、ポリオール、ポリイソシアネート化合物、ジシアンジアミド、特定のイミダゾール化合物からなる樹脂組成物(特許文献2)。
(3)エポキシ樹脂、アミノアルキルイミダゾール化合物、ジアザビシクロアルキレン化合物からなる樹脂組成物(特許文献3)。
(1)水酸基を有するエポキシ樹脂、ポリオール、ポリイソシアネート化合物からなる樹脂組成物(特許文献1)。
(2)エポキシ樹脂、ポリオール、ポリイソシアネート化合物、ジシアンジアミド、特定のイミダゾール化合物からなる樹脂組成物(特許文献2)。
(3)エポキシ樹脂、アミノアルキルイミダゾール化合物、ジアザビシクロアルキレン化合物からなる樹脂組成物(特許文献3)。
接着剤に用いられるエポキシ樹脂組成物としては、下記のものが提案されている。
(4)エポキシ樹脂と、活性化温度が20~100℃である硬化剤と、活性化温度が100~200℃である硬化剤からなる液状接着剤(特許文献4)。
(5)室温において固体のエポキシ樹脂、室温において液体のエポキシ樹脂、アミノ基末端を有する線状ポリオキシプロピレン、潜伏性硬化剤(ジシアンジアミド)を含有する反応性ホットメルト接着剤(特許文献5)。
(4)エポキシ樹脂と、活性化温度が20~100℃である硬化剤と、活性化温度が100~200℃である硬化剤からなる液状接着剤(特許文献4)。
(5)室温において固体のエポキシ樹脂、室温において液体のエポキシ樹脂、アミノ基末端を有する線状ポリオキシプロピレン、潜伏性硬化剤(ジシアンジアミド)を含有する反応性ホットメルト接着剤(特許文献5)。
プリプレグに用いられるエポキシ樹脂組成物としては、下記のものが提案されている。
(6)エポキシ樹脂、潜在性硬化剤、重合性不飽和基を有する樹脂、重合開始剤を含有する含浸用樹脂組成物(特許文献6)。
(7)エポキシ樹脂、酸無水物、ルイス酸塩(三塩化ホウ素アミン錯体)を含むエポキシ樹脂組成物(特許文献7~9)。
(6)エポキシ樹脂、潜在性硬化剤、重合性不飽和基を有する樹脂、重合開始剤を含有する含浸用樹脂組成物(特許文献6)。
(7)エポキシ樹脂、酸無水物、ルイス酸塩(三塩化ホウ素アミン錯体)を含むエポキシ樹脂組成物(特許文献7~9)。
エポキシ樹脂を安定してBステージ化することができるエポキシ樹脂組成物としては、下記のものが提案されている。
(8)エポキシ樹脂と、硬化剤として2,5-ジメチル-2,5-ヘキサメチレンジアミン、メンセンジアミンを含有する樹脂組成物(非特許文献1)。
(8)エポキシ樹脂と、硬化剤として2,5-ジメチル-2,5-ヘキサメチレンジアミン、メンセンジアミンを含有する樹脂組成物(非特許文献1)。
新保正樹編、「エポキシ樹脂ハンドブック」、日刊工業新聞社、昭和62(1987)年12月25日、p.155~156
(1)、(2)の樹脂組成物は、ウレタン化反応を利用しているため、樹脂組成物中の水分の影響で増粘反応速度とBステージの状態が大幅に変化する。そのため、SMCの取り扱い作業性およびBステージの安定性を確保することが困難である。
(3)の樹脂組成物は、速硬化性を有するが貯蔵安定性が低く、SMCの取り扱い作業性およびBステージの安定性を確保することが困難である。
(4)の液状接着剤は、活性化温度が20~100℃である硬化剤(ポリアミン、メルカプタン、イソシアネート、イミダゾール、ポリアミド、ポリサルファイドフェノール、BF3錯体、ケチミン等)を用いているため、1段目の硬化反応でゲル化状態に至ってしまう。そのため、2段階目の硬化前では流動性が少なく、賦形が困難であり、SMCのマトリックス樹脂として用いることができない。
(5)の反応性ホットメルト接着剤は、粘度が高く、強化繊維への良好な含浸性を得ることができず、SMCのマトリックス樹脂として用いることができない。
(3)の樹脂組成物は、速硬化性を有するが貯蔵安定性が低く、SMCの取り扱い作業性およびBステージの安定性を確保することが困難である。
(4)の液状接着剤は、活性化温度が20~100℃である硬化剤(ポリアミン、メルカプタン、イソシアネート、イミダゾール、ポリアミド、ポリサルファイドフェノール、BF3錯体、ケチミン等)を用いているため、1段目の硬化反応でゲル化状態に至ってしまう。そのため、2段階目の硬化前では流動性が少なく、賦形が困難であり、SMCのマトリックス樹脂として用いることができない。
(5)の反応性ホットメルト接着剤は、粘度が高く、強化繊維への良好な含浸性を得ることができず、SMCのマトリックス樹脂として用いることができない。
(6)の含浸用樹脂組成物を用いたプリプレグの製造においては、含浸用樹脂組成物に溶媒を含ませ、加熱によって溶媒の除去および硬化反応の一部を進めることが、特許文献5に記載されている。この方法は、溶媒の除去が容易であり、加熱、冷却時の厚さによる温度むらが少ない薄いプリプレグの製造には適用できる。しかし、SMCのような厚物のシートでは、溶媒の除去が困難であり、温度むらが大きくなるため、Bステージ化後には表面と内部の状態が違った不良物となる。
(7)のエポキシ樹脂組成物は、室温(23℃)でBステージ化するまでに時間が長くかかる。また、室温でBステージ化した後の粘度が低く、タックが強すぎるためSMCには適さない。
(8)の樹脂組成物は、2、5-ジメチル-2,5-ヘキサンジアミンを含有するため、ポットライフが短い。また、メンセンジアミンを含有するため、樹脂組成物の硬化性が不十分である。そのため、SMCのマトリックス樹脂には適さない。
(7)のエポキシ樹脂組成物は、室温(23℃)でBステージ化するまでに時間が長くかかる。また、室温でBステージ化した後の粘度が低く、タックが強すぎるためSMCには適さない。
(8)の樹脂組成物は、2、5-ジメチル-2,5-ヘキサンジアミンを含有するため、ポットライフが短い。また、メンセンジアミンを含有するため、樹脂組成物の硬化性が不十分である。そのため、SMCのマトリックス樹脂には適さない。
本発明は、プレス成形時のバリの発生を抑制でき、プレス成形時のマトリックス樹脂の流動性および速硬化性に優れるとともに、脱型性、機械特性および耐熱性に優れた繊維強化複合材料を得ることができるシートモールディングコンパウンドを提供することを目的とする。また、脱型性、機械特性および耐熱性に優れた繊維強化複合材料を提供することを目的とする。
本発明者らは鋭意検討の結果、エポキシ樹脂組成物のゲルタイムおよび硬化反応開始時の温度が、シートモールディングコンパウンドを成形する際のバリの発生と因果関係があることを突き止めた。そして、エポキシ樹脂組成物のゲルタイムおよび硬化反応開始時の温度を規定することで上記課題を解決できることを見出し、本発明に至った。
本発明は、以下の態様を有する。
[1]エポキシ樹脂組成物と強化繊維とを含有し、
前記エポキシ樹脂組成物の140℃におけるゲルタイムが30~140秒であり、
前記エポキシ樹脂組成物の硬化反応開始時の温度が70~115℃であり、
調製から7日後の前記エポキシ樹脂組成物の30℃における粘度をb1とし、調製から14日後の前記エポキシ樹脂組成物の30℃における粘度をb2としたときに、b2/b1≦5である、シートモールディングコンパウンド。
[2]エポキシ樹脂組成物と強化繊維とを含有し、
前記エポキシ樹脂組成物はエポキシ樹脂と酸無水物との反応物を含み、
前記エポキシ樹脂組成物の140℃におけるゲルタイムが30~140秒であり、
前記エポキシ樹脂組成物の硬化反応開始時の温度が70~115℃である、シートモールディングコンパウンド。
[3]エポキシ樹脂組成物と強化繊維とを含有し、
前記エポキシ樹脂組成物が下記成分(A)、成分(B)および成分(C)を含む、シートモールディングコンパウンド。
成分(A):25℃において液状のエポキシ樹脂。
成分(B):25℃において液状の酸無水物。
成分(C):融点が40℃以上180℃未満の硬化剤。
[4]前記成分(B)が、前記エポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、0.1~0.5当量の酸無水物基を含む、[3]に記載のシートモールディングコンパウンド。
[5]前記成分(C)が、融点が40℃以上120℃以下の硬化剤を含む、[3]または[4]に記載のシートモールディングコンパウンド。
[6]前記エポキシ樹脂組成物が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の総質量(100質量部)に対して、1~30質量部の前記成分(B)を含み、かつ1~10質量部の前記成分(C)を含む、[3]~[5]のいずれかに記載のシートモールディングコンパウンド。
[7]前記エポキシ樹脂組成物が下記成分(D)をさらに含む、[3]~[6]のいずれかに記載のシートモールディングコンパウンド。
成分(D):融点が180~300℃の硬化剤。
[8]前記エポキシ樹脂組成物が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の総質量(100質量部)に対して、0.1~10質量部の前記成分(D)を含む、[7]に記載のシートモールディングコンパウンド。
[9]前記成分(A)がグリシジルアミン系エポキシ樹脂を含み、前記成分(A)に含まれるグリシジルアミン系エポキシ樹脂の含有量が、前記成分(A)の総質量(100質量%)のうち1~30質量%である、[3]~[8]のいずれかに記載のシートモールディングコンパウンド。
[10]前記エポキシ樹脂組成物が、前記エポキシ樹脂組成物の増粘物である、[1]~[9]のいずれかに記載のシートモールディングコンパウンド。
[11]前記エポキシ樹脂組成物の硬化反応開始時の粘度が0.4~100Pa・sである、[1]~[10]のいずれかに記載のシートモールディングコンパウンド。
[12]前記強化繊維の平均長さが0.3~10cmである、[1]~[11]のいずれかに記載のシートモールディングコンパウンド。
[13][1]~[12]のいずれかに記載のシートモールディングコンパウンドのプレス成形物である、繊維強化複合材料。
[1]エポキシ樹脂組成物と強化繊維とを含有し、
前記エポキシ樹脂組成物の140℃におけるゲルタイムが30~140秒であり、
前記エポキシ樹脂組成物の硬化反応開始時の温度が70~115℃であり、
調製から7日後の前記エポキシ樹脂組成物の30℃における粘度をb1とし、調製から14日後の前記エポキシ樹脂組成物の30℃における粘度をb2としたときに、b2/b1≦5である、シートモールディングコンパウンド。
[2]エポキシ樹脂組成物と強化繊維とを含有し、
前記エポキシ樹脂組成物はエポキシ樹脂と酸無水物との反応物を含み、
前記エポキシ樹脂組成物の140℃におけるゲルタイムが30~140秒であり、
前記エポキシ樹脂組成物の硬化反応開始時の温度が70~115℃である、シートモールディングコンパウンド。
[3]エポキシ樹脂組成物と強化繊維とを含有し、
前記エポキシ樹脂組成物が下記成分(A)、成分(B)および成分(C)を含む、シートモールディングコンパウンド。
成分(A):25℃において液状のエポキシ樹脂。
成分(B):25℃において液状の酸無水物。
成分(C):融点が40℃以上180℃未満の硬化剤。
[4]前記成分(B)が、前記エポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、0.1~0.5当量の酸無水物基を含む、[3]に記載のシートモールディングコンパウンド。
[5]前記成分(C)が、融点が40℃以上120℃以下の硬化剤を含む、[3]または[4]に記載のシートモールディングコンパウンド。
[6]前記エポキシ樹脂組成物が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の総質量(100質量部)に対して、1~30質量部の前記成分(B)を含み、かつ1~10質量部の前記成分(C)を含む、[3]~[5]のいずれかに記載のシートモールディングコンパウンド。
[7]前記エポキシ樹脂組成物が下記成分(D)をさらに含む、[3]~[6]のいずれかに記載のシートモールディングコンパウンド。
成分(D):融点が180~300℃の硬化剤。
[8]前記エポキシ樹脂組成物が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の総質量(100質量部)に対して、0.1~10質量部の前記成分(D)を含む、[7]に記載のシートモールディングコンパウンド。
[9]前記成分(A)がグリシジルアミン系エポキシ樹脂を含み、前記成分(A)に含まれるグリシジルアミン系エポキシ樹脂の含有量が、前記成分(A)の総質量(100質量%)のうち1~30質量%である、[3]~[8]のいずれかに記載のシートモールディングコンパウンド。
[10]前記エポキシ樹脂組成物が、前記エポキシ樹脂組成物の増粘物である、[1]~[9]のいずれかに記載のシートモールディングコンパウンド。
[11]前記エポキシ樹脂組成物の硬化反応開始時の粘度が0.4~100Pa・sである、[1]~[10]のいずれかに記載のシートモールディングコンパウンド。
[12]前記強化繊維の平均長さが0.3~10cmである、[1]~[11]のいずれかに記載のシートモールディングコンパウンド。
[13][1]~[12]のいずれかに記載のシートモールディングコンパウンドのプレス成形物である、繊維強化複合材料。
本発明のシートモールディングコンパウンドは、プレス成形時のバリの発生を抑制でき、プレス成形時のマトリックス樹脂の流動性および速硬化性に優れるとともに、脱型性、機械特性および耐熱性に優れた繊維強化複合材料を得ることができる。
また、本発明の繊維強化複合材料は、本発明のシートモールディングコンパウンドのプレス成型物であって、脱型性、機械特性および耐熱性に優れる。
また、本発明の繊維強化複合材料は、本発明のシートモールディングコンパウンドのプレス成型物であって、脱型性、機械特性および耐熱性に優れる。
以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「25℃において液状」とは、25℃、1気圧の条件下で液体であることを意味する。
「25℃において固体状」とは、25℃、1気圧の条件下で固体であることを意味する。
「エポキシ樹脂」は、エポキシ基を分子内に2個以上有する化合物である。
「酸無水物基」は、2つの酸基(カルボキシ基等)から1つの水分子が除去された構造を有する基である。
「酸無水物」は、酸無水物基を有する化合物である。
「水素添加無水フタル酸」は、無水フタル酸のベンゼン環の不飽和炭素結合の一部または全部が飽和炭素結合に置き換わった化合物である。
「増粘物」は、エポキシ樹脂組成物に含まれる成分を混合してエポキシ樹脂組成物を調製し、調製直後のエポキシ樹脂組成物を23℃の環境下に静置し、7~14日経過し、Bステージ化したエポキシ樹脂組成物である。
「シートモールディングコンパウンド(SMC)」は、短繊維の強化繊維と熱硬化性樹脂とを含むシート状の成形材料である。
「粘度」は、レオメータを用い、測定モード:応力一定、応力値:300Pa、周波数:1.59Hz、プレート径:25mm、プレートタイプ:パラレルプレート、プレートギャップ:0.5mmの条件で測定された値である。
「バリ」は、SMCのプレス成形時に上下の金型の隙間からエポキシ樹脂組成物が流出し、固化することで形成される成形品(SMCのプレス成形物)の端部に形成される不要部分である。
「室温」とは、25℃を意味する。
数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。
「25℃において液状」とは、25℃、1気圧の条件下で液体であることを意味する。
「25℃において固体状」とは、25℃、1気圧の条件下で固体であることを意味する。
「エポキシ樹脂」は、エポキシ基を分子内に2個以上有する化合物である。
「酸無水物基」は、2つの酸基(カルボキシ基等)から1つの水分子が除去された構造を有する基である。
「酸無水物」は、酸無水物基を有する化合物である。
「水素添加無水フタル酸」は、無水フタル酸のベンゼン環の不飽和炭素結合の一部または全部が飽和炭素結合に置き換わった化合物である。
「増粘物」は、エポキシ樹脂組成物に含まれる成分を混合してエポキシ樹脂組成物を調製し、調製直後のエポキシ樹脂組成物を23℃の環境下に静置し、7~14日経過し、Bステージ化したエポキシ樹脂組成物である。
「シートモールディングコンパウンド(SMC)」は、短繊維の強化繊維と熱硬化性樹脂とを含むシート状の成形材料である。
「粘度」は、レオメータを用い、測定モード:応力一定、応力値:300Pa、周波数:1.59Hz、プレート径:25mm、プレートタイプ:パラレルプレート、プレートギャップ:0.5mmの条件で測定された値である。
「バリ」は、SMCのプレス成形時に上下の金型の隙間からエポキシ樹脂組成物が流出し、固化することで形成される成形品(SMCのプレス成形物)の端部に形成される不要部分である。
「室温」とは、25℃を意味する。
数値範囲を示す「~」は、その前後に記載された数値を下限値および上限値として含むことを意味する。
[シートモールディングコンパウンド]
本発明のシートモールディングコンパウンドは、エポキシ樹脂組成物と強化繊維とを含有する。
本発明のシートモールディングコンパウンドは、エポキシ樹脂組成物と強化繊維とを含有する。
<エポキシ樹脂組成物>
本発明のSMCに含有されるエポキシ樹脂組成物は、成分(A):25℃において液状のエポキシ樹脂と、成分(B):25℃において液状の酸無水物と、成分(C):融点が40℃以上180℃未満の硬化剤とを含むことが好ましい。エポキシ樹脂組成物は、成分(D):融点が180~300℃の硬化剤をさらに含むことがより好ましい。
エポキシ樹脂組成物においては、成分(B)が成分(A)と作用することによってエステル結合を形成する。エポキシ樹脂組成物の調製直後から、エポキシ樹脂と酸無水物との反応物により、エポキシ樹脂組成物を増粘させることができる。そして、エポキシ樹脂と酸無水物との反応物を含む増粘物が本発明のSMCのマトリックス樹脂であってもよく、本発明のマトリックス樹脂は、エポキシ樹脂と酸無水物の反応物を含んでいてもよい。
本発明のSMCに含まれるエポキシ樹脂組成物が、エポキシ樹脂組成物の増粘物であれば、SMCの生産性と取扱い性とを両立させることができ、SMCのBステージの安定性がより優れる(すなわち、Bステージを長期間保持できる)傾向にあるとともに、SMCの経時による粘度変化が小さく、貯蔵安定性に優れる傾向にあるので好ましい。
本発明のSMCに含有されるエポキシ樹脂組成物は、成分(A):25℃において液状のエポキシ樹脂と、成分(B):25℃において液状の酸無水物と、成分(C):融点が40℃以上180℃未満の硬化剤とを含むことが好ましい。エポキシ樹脂組成物は、成分(D):融点が180~300℃の硬化剤をさらに含むことがより好ましい。
エポキシ樹脂組成物においては、成分(B)が成分(A)と作用することによってエステル結合を形成する。エポキシ樹脂組成物の調製直後から、エポキシ樹脂と酸無水物との反応物により、エポキシ樹脂組成物を増粘させることができる。そして、エポキシ樹脂と酸無水物との反応物を含む増粘物が本発明のSMCのマトリックス樹脂であってもよく、本発明のマトリックス樹脂は、エポキシ樹脂と酸無水物の反応物を含んでいてもよい。
本発明のSMCに含まれるエポキシ樹脂組成物が、エポキシ樹脂組成物の増粘物であれば、SMCの生産性と取扱い性とを両立させることができ、SMCのBステージの安定性がより優れる(すなわち、Bステージを長期間保持できる)傾向にあるとともに、SMCの経時による粘度変化が小さく、貯蔵安定性に優れる傾向にあるので好ましい。
エポキシ樹脂組成物の140℃におけるゲルタイムは、30~140秒であり、40~120秒が好ましく、50~85秒がより好ましい。
140℃におけるゲルタイムが30秒以上、好ましくは40秒以上、より好ましくは50秒以上であれば、SMCのプレス成形時におけるマトリックス樹脂の流動性が向上する。140℃におけるゲルタイムが140秒以下、好ましくは120秒以下、より好ましくは85秒以下であれば、SMCのプレス成形時におけるバリの発生を抑制でき、脱型作業に時間がかかりにくく、生産性を維持できる。また、140℃におけるゲルタイムが前記範囲内であれば、SMCのプレス成形時におけるマトリックス樹脂の速硬化性にも優れる。
エポキシ樹脂組成物のゲルタイムは、エポキシ樹脂組成物の配合組成により調節できる。
140℃におけるゲルタイムが30秒以上、好ましくは40秒以上、より好ましくは50秒以上であれば、SMCのプレス成形時におけるマトリックス樹脂の流動性が向上する。140℃におけるゲルタイムが140秒以下、好ましくは120秒以下、より好ましくは85秒以下であれば、SMCのプレス成形時におけるバリの発生を抑制でき、脱型作業に時間がかかりにくく、生産性を維持できる。また、140℃におけるゲルタイムが前記範囲内であれば、SMCのプレス成形時におけるマトリックス樹脂の速硬化性にも優れる。
エポキシ樹脂組成物のゲルタイムは、エポキシ樹脂組成物の配合組成により調節できる。
エポキシ樹脂組成物のゲルタイムは以下のようにして測定される値である。
すなわち、調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で7日間静置する。予め140℃に熱したホットプレート上に、カバーガラスを120秒保持した後、このカバーガラスの上に調製から7日後のエポキシ樹脂組成物を置き、他のカバーガラスでエポキシ樹脂組成物を挟み、挟んだ直後から時間の計測を始め、上側のカバーガラスをピンセット等で動かし、カバーガラスが動かなくなるまでの時間を測定し、これをエポキシ樹脂組成物の140℃におけるゲルタイムとする。
なお、ゲルタイムは、エポキシ樹脂組成物単独で測定した場合と、SMCの状態で測定した場合とで、ほぼ一致する。
すなわち、調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で7日間静置する。予め140℃に熱したホットプレート上に、カバーガラスを120秒保持した後、このカバーガラスの上に調製から7日後のエポキシ樹脂組成物を置き、他のカバーガラスでエポキシ樹脂組成物を挟み、挟んだ直後から時間の計測を始め、上側のカバーガラスをピンセット等で動かし、カバーガラスが動かなくなるまでの時間を測定し、これをエポキシ樹脂組成物の140℃におけるゲルタイムとする。
なお、ゲルタイムは、エポキシ樹脂組成物単独で測定した場合と、SMCの状態で測定した場合とで、ほぼ一致する。
エポキシ樹脂組成物の硬化反応開始時の温度は、70~115℃であり、80~110℃が好ましく、90~105℃がより好ましい。
硬化反応開始時の温度が70℃以上、好ましくは80℃以上、より好ましくは90℃以上であれば、SMCのプレス成形時におけるマトリックス樹脂の流動性が向上する。硬化反応開始時の温度が115℃以下、好ましくは110℃以下、より好ましくは105℃以下であれば、バリの発生を抑制でき、脱型作業に時間がかかりにくく、生産性を維持できる。また、硬化反応開始時の温度が前記範囲内であれば、SMCのプレス成形時におけるマトリックス樹脂の速硬化性にも優れる。
エポキシ樹脂組成物の硬化反応開始時の温度は、エポキシ樹脂組成物の配合組成により調節できる。
硬化反応開始時の温度が70℃以上、好ましくは80℃以上、より好ましくは90℃以上であれば、SMCのプレス成形時におけるマトリックス樹脂の流動性が向上する。硬化反応開始時の温度が115℃以下、好ましくは110℃以下、より好ましくは105℃以下であれば、バリの発生を抑制でき、脱型作業に時間がかかりにくく、生産性を維持できる。また、硬化反応開始時の温度が前記範囲内であれば、SMCのプレス成形時におけるマトリックス樹脂の速硬化性にも優れる。
エポキシ樹脂組成物の硬化反応開始時の温度は、エポキシ樹脂組成物の配合組成により調節できる。
エポキシ樹脂組成物の硬化反応開始時の粘度は、0.4~100Pa・sが好ましく、0.6~80Pa・sがより好ましく、0.8~50Pa・sがさらに好ましい。
硬化反応開始時の粘度が0.4Pa・s以上、好ましくは0.6Pa・s以上、より好ましくは0.8Pa・s以上であれば、SMCのプレス成形時におけるバリの発生をより抑制できる。硬化反応開始時の粘度が100Pa・s以下、好ましくは80Pa・s以下、より好ましくは50Pa・s以下であれば、SMCのプレス成形時におけるマトリックス樹脂の流動性がより向上する。
エポキシ樹脂組成物の硬化反応開始時の粘度は、エポキシ樹脂組成物の配合組成により調節できる。
硬化反応開始時の粘度が0.4Pa・s以上、好ましくは0.6Pa・s以上、より好ましくは0.8Pa・s以上であれば、SMCのプレス成形時におけるバリの発生をより抑制できる。硬化反応開始時の粘度が100Pa・s以下、好ましくは80Pa・s以下、より好ましくは50Pa・s以下であれば、SMCのプレス成形時におけるマトリックス樹脂の流動性がより向上する。
エポキシ樹脂組成物の硬化反応開始時の粘度は、エポキシ樹脂組成物の配合組成により調節できる。
エポキシ樹脂組成物の硬化反応開始時の温度および粘度は以下のようにして測定される値である。
すなわち、調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で7日間静置した後、レオメータを用い、測定モード:応力一定、応力値:300Pa、周波数:1.59Hz、プレート径:25mm、プレートタイプ:パラレルプレート、プレートギャップ:0.5mm、昇温速度:2℃/minの条件で、調製から7日後のエポキシ樹脂組成物を25℃から昇温しながら粘度を測定し、エポキシ樹脂組成物が硬化反応を開始する直前(すなわち、急激に粘度が上昇する直前)の粘度をエポキシ樹脂組成物の硬化反応開始時の粘度とする。また、エポキシ樹脂組成物が硬化反応を開始する直前の温度をエポキシ樹脂組成物の硬化反応開始時の温度とする。
なお、硬化反応開始時の温度は、エポキシ樹脂組成物単独で測定した場合と、SMCの状態で測定した場合とで、ほぼ一致する。
硬化反応開始時の粘度は、エポキシ樹脂組成物単独で測定した場合と、SMCの状態で測定した場合とで、ほぼ一致する。
すなわち、調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で7日間静置した後、レオメータを用い、測定モード:応力一定、応力値:300Pa、周波数:1.59Hz、プレート径:25mm、プレートタイプ:パラレルプレート、プレートギャップ:0.5mm、昇温速度:2℃/minの条件で、調製から7日後のエポキシ樹脂組成物を25℃から昇温しながら粘度を測定し、エポキシ樹脂組成物が硬化反応を開始する直前(すなわち、急激に粘度が上昇する直前)の粘度をエポキシ樹脂組成物の硬化反応開始時の粘度とする。また、エポキシ樹脂組成物が硬化反応を開始する直前の温度をエポキシ樹脂組成物の硬化反応開始時の温度とする。
なお、硬化反応開始時の温度は、エポキシ樹脂組成物単独で測定した場合と、SMCの状態で測定した場合とで、ほぼ一致する。
硬化反応開始時の粘度は、エポキシ樹脂組成物単独で測定した場合と、SMCの状態で測定した場合とで、ほぼ一致する。
下記粘度測定(a)で測定される、調製から30分後のエポキシ樹脂組成物の30℃における粘度は、0.5~15Pa・sが好ましく、0.5~10Pa・sがより好ましく、1~5Pa・sがさらに好ましい。
調製から30分後の30℃における粘度が0.5Pa・s以上、好ましくは1Pa・s以上であれば、詳しくは後述するが、SMCの製造時において、エポキシ樹脂組成物をフィルムに塗工する際の目付(エポキシ樹脂組成物の厚み)の精度が安定しやすい傾向にある。調製から30分後の30℃における粘度が15Pa・s以下、好ましくは10Pa・s以下、より好ましくは5Pa・s以下であれば、このエポキシ樹脂組成物と強化繊維等を用いてSMCを製造する際に、エポキシ樹脂組成物の強化繊維への含浸性が高くなる傾向にあり、SMCの製造に好適に使用することができる。
粘度測定(a):調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で30分間静置した後、エポキシ樹脂組成物の30℃における粘度を測定する。
調製から30分後の30℃における粘度が0.5Pa・s以上、好ましくは1Pa・s以上であれば、詳しくは後述するが、SMCの製造時において、エポキシ樹脂組成物をフィルムに塗工する際の目付(エポキシ樹脂組成物の厚み)の精度が安定しやすい傾向にある。調製から30分後の30℃における粘度が15Pa・s以下、好ましくは10Pa・s以下、より好ましくは5Pa・s以下であれば、このエポキシ樹脂組成物と強化繊維等を用いてSMCを製造する際に、エポキシ樹脂組成物の強化繊維への含浸性が高くなる傾向にあり、SMCの製造に好適に使用することができる。
粘度測定(a):調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で30分間静置した後、エポキシ樹脂組成物の30℃における粘度を測定する。
下記粘度測定(b)で測定される、調製から7日後と14日後のエポキシ樹脂組成物の30℃における粘度は、それぞれ5,000~75,000Pa・sが好ましく、6,000~60,000Pa・sがより好ましく、7,000~50,000Pa・sがさらに好ましい。
調製から7日後と14日後の30℃における粘度が、それぞれ5,000Pa・s以上、好ましくは6,000Pa・s以上、より好ましくは7,000Pa・s以上であれば、SMCの取り扱い時において表面のタックが適切な範囲となり、カットや積層作業がしやすくなる傾向にある。調製から7日後と14日後の30℃における粘度が75,000Pa・s以下、好ましくは60,000Pa・s以下、より好ましくは50,000Pa・s以下であれば、SMCのドレープ性が適切な範囲となり、取り扱い作業性が良好となる傾向にある。
粘度測定(b):調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で7日間または14日間静置した後、エポキシ樹脂組成物の30℃における粘度を測定する。
調製から7日後と14日後の30℃における粘度が、それぞれ5,000Pa・s以上、好ましくは6,000Pa・s以上、より好ましくは7,000Pa・s以上であれば、SMCの取り扱い時において表面のタックが適切な範囲となり、カットや積層作業がしやすくなる傾向にある。調製から7日後と14日後の30℃における粘度が75,000Pa・s以下、好ましくは60,000Pa・s以下、より好ましくは50,000Pa・s以下であれば、SMCのドレープ性が適切な範囲となり、取り扱い作業性が良好となる傾向にある。
粘度測定(b):調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃で7日間または14日間静置した後、エポキシ樹脂組成物の30℃における粘度を測定する。
また、調製から7日後のエポキシ樹脂組成物の30℃における粘度をb1とし、調製から14日後のエポキシ樹脂組成物の30℃における粘度をb2としたときに、b2/b1≦5であることが好ましく、b2/b1≦4がより好ましく、b2/b1≦3がさらに好ましい。
b2/b1≦5、好ましくはb2/b1≦4、さらに好ましくはb2/b1≦3であれば、SMC中でのエポキシ樹脂組成物、またはその増粘物のBステージの安定性がより優れる、すなわち、Bステージを長期間保持できる傾向にあるとともに、SMCの経時による粘度変化が小さく、貯蔵安定性に優れる傾向にある。
b2/b1≦5、好ましくはb2/b1≦4、さらに好ましくはb2/b1≦3であれば、SMC中でのエポキシ樹脂組成物、またはその増粘物のBステージの安定性がより優れる、すなわち、Bステージを長期間保持できる傾向にあるとともに、SMCの経時による粘度変化が小さく、貯蔵安定性に優れる傾向にある。
(成分(A))
成分(A)は、25℃において液状のエポキシ樹脂である。
成分(A)は、エポキシ樹脂組成物の粘度を前記範囲に調整し、SMCの製造時において、エポキシ樹脂組成物の強化繊維への含浸性を高める成分である。また、SMCのプレス成形物である繊維強化複合材料の機械特性および耐熱性を高める成分である。また、成分(A)が芳香族環を有する場合、繊維強化複合材料の機械特性を所望の範囲に調整しやすい。
成分(A)は、25℃において液状のエポキシ樹脂である。
成分(A)は、エポキシ樹脂組成物の粘度を前記範囲に調整し、SMCの製造時において、エポキシ樹脂組成物の強化繊維への含浸性を高める成分である。また、SMCのプレス成形物である繊維強化複合材料の機械特性および耐熱性を高める成分である。また、成分(A)が芳香族環を有する場合、繊維強化複合材料の機械特性を所望の範囲に調整しやすい。
成分(A)としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールAD、これらのハロゲン置換体等)のグリシジルエーテル(ビスフェノール型エポキシ樹脂);フェノール類と芳香族カルボニル化合物との縮合反応により得られる多価フェノール類のグリシジルエーテル;多価アルコール類(ポリオキシアルキレンビスフェノールA等)のグリシジルエーテル;芳香族アミン類から誘導されるポリグリシジル化合物等が挙げられる。
成分(A)としては、エポキシ樹脂組成物の粘度を強化繊維への含浸に適した粘度に調整しやすく、かつ繊維強化複合材料の機械特性を所望の範囲に調整しやすい点から、ビスフェノール型エポキシ樹脂が好ましい。
ビスフェノール型エポキシ樹脂としては、二官能のビスフェノール型エポキシ樹脂が好ましい。ここで「二官能」とは、分子内にエポキシ基を2つ有することを意味する。
ある態様として、繊維強化複合材料の耐熱性および耐薬品性が良好である点からは、ビスフェノールA型エポキシ樹脂がより好ましい。
別の態様として、同程度の分子量を有するビスフェノールA型エポキシ樹脂よりも粘度が低く、繊維強化複合材料の弾性率が高い点からは、ビスフェノールF型エポキシ樹脂がより好ましい。
さらに別の態様として、成分(A)としては、低粘度でありながら、耐熱性が高くでき、また、耐候性も高くなることから脂環式エポキシも好ましい。
ビスフェノール型エポキシ樹脂としては、二官能のビスフェノール型エポキシ樹脂が好ましい。ここで「二官能」とは、分子内にエポキシ基を2つ有することを意味する。
ある態様として、繊維強化複合材料の耐熱性および耐薬品性が良好である点からは、ビスフェノールA型エポキシ樹脂がより好ましい。
別の態様として、同程度の分子量を有するビスフェノールA型エポキシ樹脂よりも粘度が低く、繊維強化複合材料の弾性率が高い点からは、ビスフェノールF型エポキシ樹脂がより好ましい。
さらに別の態様として、成分(A)としては、低粘度でありながら、耐熱性が高くでき、また、耐候性も高くなることから脂環式エポキシも好ましい。
成分(A)は、三官能以上のエポキシ樹脂であってもよい。特に、三官能のエポキシ樹脂、四官能のエポキシ樹脂は、エポキシ樹脂組成物の粘度を大きく変えずに、繊維強化複合材料の耐熱性をさらに向上できる。ここで「三官能」とは、分子内にエポキシ基を3つ有することを意味する。「四官能」とは、分子内にエポキシ基を4つ有することを意味する。
二官能のビスフェノール型エポキシ樹脂の市販品としては、下記のものが挙げられる。
三菱ケミカル社製のjER(登録商標。以下同様。)の825、827、828、828EL、828XA、806、806H、807、4004P、4005P、4007P、4010P、
DIC社製のエピクロン(登録商標)の840、840-S、850、850-S、EXA-850CRP、850-LC、830、830-S、835、EXA-830CRP、EXA-830LVP、EXA-835LV、
新日鉄住金化学社製のエポトート(登録商標)のYD-115、YD-115G、YD-115CA、YD-118T、YD-127、YD-128、YD-128G、YD-128S、YD-128CA、YDF-170、YDF-2001、YDF-2004、YDF-2005RL等。
三菱ケミカル社製のjER(登録商標。以下同様。)の825、827、828、828EL、828XA、806、806H、807、4004P、4005P、4007P、4010P、
DIC社製のエピクロン(登録商標)の840、840-S、850、850-S、EXA-850CRP、850-LC、830、830-S、835、EXA-830CRP、EXA-830LVP、EXA-835LV、
新日鉄住金化学社製のエポトート(登録商標)のYD-115、YD-115G、YD-115CA、YD-118T、YD-127、YD-128、YD-128G、YD-128S、YD-128CA、YDF-170、YDF-2001、YDF-2004、YDF-2005RL等。
二官能の脂環式エポキシ樹脂の市販品としては、下記のものが挙げられる。
ダイセル社製のセロキサイド(登録商標)の2021P、2081、2000、
JIANGSU TETRA NEW MATERIAL TECHNOLOGY社製のTTA26等。
ダイセル社製のセロキサイド(登録商標)の2021P、2081、2000、
JIANGSU TETRA NEW MATERIAL TECHNOLOGY社製のTTA26等。
三官能以上の成分(A)の市販品としては、下記のものが挙げられる。
三菱ケミカル社製のjERの152、154、157S70、1031S、1032H60、604、630、630LSD、
DIC社製のN-730A、N-740、N-770、N-775、N-740-80M、N-770-70M、N-865、N-865-80M、N-660、N-665、N-670、N-673、N-680、N-690、N-695、N-665-EXP、N-672-EXP、N-655-EXP-S、N-662-EXP-S、N-665-EXP-S、N-670-EXP-S、N-685-EXP-S、HP-5000、
三菱ガス化学社製のTETRAD-X等。
三菱ケミカル社製のjERの152、154、157S70、1031S、1032H60、604、630、630LSD、
DIC社製のN-730A、N-740、N-770、N-775、N-740-80M、N-770-70M、N-865、N-865-80M、N-660、N-665、N-670、N-673、N-680、N-690、N-695、N-665-EXP、N-672-EXP、N-655-EXP-S、N-662-EXP-S、N-665-EXP-S、N-670-EXP-S、N-685-EXP-S、HP-5000、
三菱ガス化学社製のTETRAD-X等。
成分(A)は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
特に、成分(A)が上記のTETRAD-X等のようなグリシジルアミン系エポキシ樹脂を含むことによって、エポキシ樹脂組成物の粘度の経時変化を早めることができる。
すなわち、このグリシジルアミン系エポキシ樹脂の含有量を調整することで、上記の粘度b1や粘度b2の値を制御でき、SMCの製造においてエポキシ樹脂組成物がBステージ化する時間を早め、その生産性を高めることもできる。
グリシジルアミン系エポキシ樹脂としては、増粘する早さを調節しやすく、物性低下の懸念も少ない点から、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミンが好ましい。
すなわち、このグリシジルアミン系エポキシ樹脂の含有量を調整することで、上記の粘度b1や粘度b2の値を制御でき、SMCの製造においてエポキシ樹脂組成物がBステージ化する時間を早め、その生産性を高めることもできる。
グリシジルアミン系エポキシ樹脂としては、増粘する早さを調節しやすく、物性低下の懸念も少ない点から、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミンが好ましい。
エポキシ樹脂組成物が成分(A)としてグリシジルアミン系エポキシ樹脂を含む場合、成分(A)に含まれるグリシジルアミン系エポキシ樹脂の含有量は、成分(A)の総質量(100質量%)のうち、1~30質量%が好ましく、2~20質量%がより好ましく、3~15質量%がさらに好ましい。
成分(A)の総質量のうち、グリシジルアミン系エポキシ樹脂の含有量が1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上であれば、エポキシ樹脂組成物のBステージ化時間を好適に短縮できる傾向にある。成分(A)の総質量のうち、グリシジルアミン系エポキシ樹脂の含有量が30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下であれば、SMCの貯蔵安定性が良好となる傾向にある。
成分(A)の総質量のうち、グリシジルアミン系エポキシ樹脂の含有量が1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上であれば、エポキシ樹脂組成物のBステージ化時間を好適に短縮できる傾向にある。成分(A)の総質量のうち、グリシジルアミン系エポキシ樹脂の含有量が30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下であれば、SMCの貯蔵安定性が良好となる傾向にある。
成分(A)の25℃における粘度は、調製から30分後のエポキシ樹脂組成物の30℃における粘度が0.5~15Pa・sとなる粘度であればよく、成分(A)の25℃における粘度は0.3~500Pa・sが好ましく、0.3~400Pa・sがより好ましい。
エポキシ樹脂組成物における成分(A)の含有量は、調製から30分後のエポキシ樹脂組成物の30℃における粘度が0.5~15Pa・sとなるように設定するのが好ましく、成分(A)の種類により選択することができる。
エポキシ樹脂組成物における成分(A)の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量(100質量%)のうち、20~100質量%が好ましく、50~95質量%がより好ましい。
エポキシ樹脂組成物における成分(A)の含有量が前記範囲内であれば、調製から30分後のエポキシ樹脂組成物の30℃における粘度を前記範囲に容易に調整でき、強化繊維への含浸性が高くなる。また、繊維強化複合材料の耐熱性がより高くなる。
エポキシ樹脂組成物における成分(A)の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量(100質量%)のうち、20~100質量%が好ましく、50~95質量%がより好ましい。
エポキシ樹脂組成物における成分(A)の含有量が前記範囲内であれば、調製から30分後のエポキシ樹脂組成物の30℃における粘度を前記範囲に容易に調整でき、強化繊維への含浸性が高くなる。また、繊維強化複合材料の耐熱性がより高くなる。
(成分(B))
成分(B)は、25℃において液状の酸無水物である。
成分(B)は、成分(A)に対して室温で作用できる成分であり、エポキシ樹脂組成物を調製直後から増粘させ、エポキシ樹脂組成物をBステージ化させる成分である。
成分(B)は、25℃において液状であることによって、エポキシ樹脂組成物における各成分が均一に混合され、25℃においてエポキシ樹脂組成物を均一に増粘させることができる。
成分(B)は、25℃において液状の酸無水物である。
成分(B)は、成分(A)に対して室温で作用できる成分であり、エポキシ樹脂組成物を調製直後から増粘させ、エポキシ樹脂組成物をBステージ化させる成分である。
成分(B)は、25℃において液状であることによって、エポキシ樹脂組成物における各成分が均一に混合され、25℃においてエポキシ樹脂組成物を均一に増粘させることができる。
成分(B)としては、分子内の2つの酸から1つの水分子が除去された構造(環状酸無水物基)を1つまたは2つ以上有する環状酸無水物を挙げることができる。
分子内に1つの環状酸無水物基を有する環状酸無水物としては、例えばドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ヘキサヒドロ無水フタル酸、無水フタル酸、無水トリメリット酸、3-アセトアミドフタル酸無水物、4-ペンテン-1,2-ジカルボン酸無水物、6-ブロモ-1,2-ジヒドロ-4H-3,1-ベンゾオキサジン-2,4-ジオン、2,3-アントラセンジカルボン酸無水物等が挙げられる。
分子内に2つの環状酸無水物基を有する環状酸無水物としては、例えばグリセリルビスアンヒドロトリメリテートモノアセテート、エチレングリコールビスアンヒドロトリメリテート、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジフェニル-3,3’,4,4’-テトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、N,N-ビス[2-(2,6-ジオキソモルホリノ)エチル]グリシン、4,4’-スルホニルジフタル酸無水物、4,4’-エチレンビス(2,6-モルホリンジオン)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビス(フタル酸無水物)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等が挙げられる。
分子内に1つの環状酸無水物基を有する環状酸無水物としては、例えばドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルハイミック酸、ヘキサヒドロ無水フタル酸、無水フタル酸、無水トリメリット酸、3-アセトアミドフタル酸無水物、4-ペンテン-1,2-ジカルボン酸無水物、6-ブロモ-1,2-ジヒドロ-4H-3,1-ベンゾオキサジン-2,4-ジオン、2,3-アントラセンジカルボン酸無水物等が挙げられる。
分子内に2つの環状酸無水物基を有する環状酸無水物としては、例えばグリセリルビスアンヒドロトリメリテートモノアセテート、エチレングリコールビスアンヒドロトリメリテート、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジフェニル-3,3’,4,4’-テトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、N,N-ビス[2-(2,6-ジオキソモルホリノ)エチル]グリシン、4,4’-スルホニルジフタル酸無水物、4,4’-エチレンビス(2,6-モルホリンジオン)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビス(フタル酸無水物)、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等が挙げられる。
成分(B)としては、エポキシ樹脂組成物の増粘の安定性、エポキシ樹脂組成物の硬化物の耐熱性や機械特性の点から、無水フタル酸または置換基を有してもよい水素添加無水フタル酸が好ましく、下記式(1)で表される化合物または下記式(2)で表される化合物がより好ましい。
成分(B)は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
エポキシ樹脂組成物における成分(B)の含有量は、エポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、酸無水物基が0.1~0.5当量となる量が好ましく、0.1~0.4当量となる量がより好ましく、0.1~0.3当量となる量がさらに好ましい。
エポキシ樹脂組成物における成分(B)の含有量が前記範囲内であれば、エポキシ樹脂組成物のBステージ化が適度に進行する。成分(B)の含有量が、エポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、酸無水物基が0.1当量以上となる量であれば、エポキシ樹脂組成物のBステージ化が良好に達成され、適度なタックが得られ、SMCからのキャリアフィルムの離形性も良好となる傾向にある。成分(B)の含有量がエポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、酸無水物基が0.5当量以下、より好ましくは0.4当量以下、さらに好ましくは0.3当量値以下となる量であれば、エポキシ樹脂組成物のBステージ化が適度に進むため、良好なドレープ性が得られるとともに、SMCのカット作業、積層作業等の作業性も良好となる傾向にある。
エポキシ樹脂組成物における成分(B)の含有量が前記範囲内であれば、エポキシ樹脂組成物のBステージ化が適度に進行する。成分(B)の含有量が、エポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、酸無水物基が0.1当量以上となる量であれば、エポキシ樹脂組成物のBステージ化が良好に達成され、適度なタックが得られ、SMCからのキャリアフィルムの離形性も良好となる傾向にある。成分(B)の含有量がエポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、酸無水物基が0.5当量以下、より好ましくは0.4当量以下、さらに好ましくは0.3当量値以下となる量であれば、エポキシ樹脂組成物のBステージ化が適度に進むため、良好なドレープ性が得られるとともに、SMCのカット作業、積層作業等の作業性も良好となる傾向にある。
また、エポキシ樹脂組成物における成分(B)の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量(100質量部)に対して、1~30質量部が好ましく、3~25質量部がより好ましく、5~20質量部がさらに好ましい。
エポキシ樹脂組成物における成分(B)の含有量が前記範囲内であれば、エポキシ樹脂組成物のBステージ化が適度に進行する。成分(B)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、1質量部以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であれば、エポキシ樹脂組成物のBステージ化が良好に達成され、適度なタックが得られ、SMCからのキャリアフィルムの離形性も良好となる傾向にある。成分(B)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、30質量部以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下であれば、エポキシ樹脂組成物のBステージ化が適度に進むため、良好なドレープ性が得られるとともに、SMCのカット作業、積層作業等の作業性も良好となる傾向にある。
エポキシ樹脂組成物における成分(B)の含有量が前記範囲内であれば、エポキシ樹脂組成物のBステージ化が適度に進行する。成分(B)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、1質量部以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であれば、エポキシ樹脂組成物のBステージ化が良好に達成され、適度なタックが得られ、SMCからのキャリアフィルムの離形性も良好となる傾向にある。成分(B)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、30質量部以下、より好ましくは25質量%以下、さらに好ましくは20質量%以下であれば、エポキシ樹脂組成物のBステージ化が適度に進むため、良好なドレープ性が得られるとともに、SMCのカット作業、積層作業等の作業性も良好となる傾向にある。
また、エポキシ樹脂組成物が成分(B)として上述の分子内に2つの環状酸無水物基を有する環状酸無水物を含む場合、分子内に2つの環状酸無水物基を有する環状酸無水物の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量(100質量部)に対して、1~20質量部が好ましく、1~10質量部がより好ましく、1~5質量部がさらに好ましい。
エポキシ樹脂組成物における分子内に2つの環状酸無水物基を有する環状酸無水物の含有量が前記範囲内であれば、SMCのプレス成形時におけるマトリックス樹脂の流動性がより良好となる傾向にある。分子内に2つの環状酸無水物基を有する化合物の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して20質量部以下、好ましくは10質量部以下、さらに好ましくは5質量部以下であれば、成形型に対して、SMCを十分に充填できる傾向がある。
エポキシ樹脂組成物における分子内に2つの環状酸無水物基を有する環状酸無水物の含有量が前記範囲内であれば、SMCのプレス成形時におけるマトリックス樹脂の流動性がより良好となる傾向にある。分子内に2つの環状酸無水物基を有する化合物の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して20質量部以下、好ましくは10質量部以下、さらに好ましくは5質量部以下であれば、成形型に対して、SMCを十分に充填できる傾向がある。
(成分(C))
成分(C)は、融点が40℃以上180℃未満の硬化剤である。
成分(C)は、エポキシ樹脂の硬化剤として働くとともに、成分(A)と成分(B)とが反応するBステージ化の際に、成分(A)と成分(B)とを室温で反応させるための触媒として作用する成分である。
成分(C)は、25℃において固体状であることが好ましい。成分(C)が25℃において固体状であることにより、SMC製造時や製造されたSMCの貯蔵中における成分(C)の反応が抑制され、SMCの生産性、貯蔵安定性、取扱い性、プレス成形時におけるマトリックス樹脂の流動性等がより良好となる傾向にある。
成分(C)は、融点が40℃以上180℃未満の硬化剤である。
成分(C)は、エポキシ樹脂の硬化剤として働くとともに、成分(A)と成分(B)とが反応するBステージ化の際に、成分(A)と成分(B)とを室温で反応させるための触媒として作用する成分である。
成分(C)は、25℃において固体状であることが好ましい。成分(C)が25℃において固体状であることにより、SMC製造時や製造されたSMCの貯蔵中における成分(C)の反応が抑制され、SMCの生産性、貯蔵安定性、取扱い性、プレス成形時におけるマトリックス樹脂の流動性等がより良好となる傾向にある。
成分(C)の融点は、40℃以上180℃未満であり、50~170℃が好ましく、60~150℃がより好ましく、65~120℃がさらに好ましい。また、別の態様として、成分(C)の融点は、40℃以上180℃未満であり、40~120℃が好ましい。
成分(C)の融点が40℃以上、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは65℃以上であれば、低温側でも急激な反応を抑制でき、SMCの成形性や貯蔵安定性が良好になる傾向にある。成分(C)の融点が180℃未満、好ましくは170℃以下、より好ましくは150℃以下、さらに好ましくは120℃以下であれば、SMCのプレス成形時にバリの発生をより抑制できる傾向にあるとともに、硬化時間が長くなりすぎず、生産性が向上する傾向にある。
成分(C)の融点が40℃以上、好ましくは50℃以上、より好ましくは60℃以上、さらに好ましくは65℃以上であれば、低温側でも急激な反応を抑制でき、SMCの成形性や貯蔵安定性が良好になる傾向にある。成分(C)の融点が180℃未満、好ましくは170℃以下、より好ましくは150℃以下、さらに好ましくは120℃以下であれば、SMCのプレス成形時にバリの発生をより抑制できる傾向にあるとともに、硬化時間が長くなりすぎず、生産性が向上する傾向にある。
成分(C)の融点は、示差走査熱流計(TAインスツルメント社製Q1000)で測定される値である。具体的には、専用のアルミニウムハーメチックパンに測定試料を約3mg封入し、測定温度:-50℃から300℃まで、昇温速度:10℃/minで昇温したデータを、横軸に温度、縦軸に発熱量をとったとき、発熱量のベースラインと、吸熱反応によって生じたピークトップとの変曲点を融点とする。
成分(C)の平均粒子径は、25μm以下が好ましく、1~15μmがより好ましい。
成分(C)の平均粒子径が25μm以下、より好ましくは15μm以下であれば、成分(C)の表面積が充分となり、エポキシ樹脂組成物中の成分(C)の含有量を低減させることができ、SMCの硬化時間を短縮することができる。また、エポキシ樹脂組成物中で成分(C)が均一に分散しやすく、硬化物中における未反応の成分(C)の割合を低減でき、本発明のSMCのプレス成型物の物性が良好となる。
成分(C)の平均粒子径は、スプレー粒子径分布測定装置を用いて測定される値である。
成分(C)の平均粒子径が25μm以下、より好ましくは15μm以下であれば、成分(C)の表面積が充分となり、エポキシ樹脂組成物中の成分(C)の含有量を低減させることができ、SMCの硬化時間を短縮することができる。また、エポキシ樹脂組成物中で成分(C)が均一に分散しやすく、硬化物中における未反応の成分(C)の割合を低減でき、本発明のSMCのプレス成型物の物性が良好となる。
成分(C)の平均粒子径は、スプレー粒子径分布測定装置を用いて測定される値である。
成分(C)としては、融点が40℃以上180℃未満の脂肪族アミン、芳香族アミン、変性アミン、二級アミン、三級アミン、イミダゾール系化合物、メルカプタン類等が挙げられる。
成分(C)としては、具体的には、1H-イミダゾール(融点:90℃)、2-メチルイミダゾール(融点:144℃)、2-ウンデシルイミダゾール(融点:73℃)、2-フェニルイミダゾール(融点:142℃)、2-フェニル4-メチルイミダゾール(融点:179℃)、1-シアノエチル-2-メチルイミダゾール(融点55℃)、1-シアノエチル-2-フェニルイミダゾール(融点108℃)等が挙げられる。
成分(C)としては、具体的には、1H-イミダゾール(融点:90℃)、2-メチルイミダゾール(融点:144℃)、2-ウンデシルイミダゾール(融点:73℃)、2-フェニルイミダゾール(融点:142℃)、2-フェニル4-メチルイミダゾール(融点:179℃)、1-シアノエチル-2-メチルイミダゾール(融点55℃)、1-シアノエチル-2-フェニルイミダゾール(融点108℃)等が挙げられる。
また、成分(C)としては、融点が40℃以上180℃未満であれば、アミンを変性した化合物でもよい。このような化合物としては、例えば、2-メチルイミダゾールと、フェニルグリシジルエーテルやビスフェノールAジグリシジルエーテルとの化合物(エポキシ樹脂アミンアダクト)などが挙げられる。
エポキシ樹脂アミンアダクトの市販品としては、味の素ファインテクノ社製のPN-23(融点:60℃)、PN-23J(融点:60℃)、PN-31(融点:52℃)、PN-31J(融点:52℃)、PN-40(融点:76℃)、PN-40J(融点:76℃)、PN-50(融点:83℃)、PN-50J(融点:84℃)、P-0505(融点:69℃)が挙げられ、なかでも、PN-23、PN-23J、PN-31,PN-31J、P-0505が好ましい。
エポキシ樹脂アミンアダクトの市販品としては、味の素ファインテクノ社製のPN-23(融点:60℃)、PN-23J(融点:60℃)、PN-31(融点:52℃)、PN-31J(融点:52℃)、PN-40(融点:76℃)、PN-40J(融点:76℃)、PN-50(融点:83℃)、PN-50J(融点:84℃)、P-0505(融点:69℃)が挙げられ、なかでも、PN-23、PN-23J、PN-31,PN-31J、P-0505が好ましい。
成分(C)は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
エポキシ樹脂組成物における成分(C)の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量(100質量部)に対して、1~10質量部が好ましく、2~8質量部がより好ましく、4~8質量部がさらに好ましい。
成分(C)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、1質量部以上、より好ましくは2質量部以上、さらに好ましくは4質量部以上であれば、SMCのプレス成形時にバリの発生をより抑制できる傾向にある。成分(C)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、10質量部以下、より好ましくは8質量部以下であれば、エポキシ樹脂組成物の強化繊維への含浸性が高くなる傾向にある。
成分(C)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、1質量部以上、より好ましくは2質量部以上、さらに好ましくは4質量部以上であれば、SMCのプレス成形時にバリの発生をより抑制できる傾向にある。成分(C)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、10質量部以下、より好ましくは8質量部以下であれば、エポキシ樹脂組成物の強化繊維への含浸性が高くなる傾向にある。
(成分(D))
成分(D)は、融点が180~300℃の硬化剤である。
エポキシ樹脂組成物が成分(D)を含むことで、SMCの貯蔵安定性を向上させることができる。
成分(D)の融点は、成分(C)の融点と同様の方法により測定される値である。
成分(D)は、融点が180~300℃の硬化剤である。
エポキシ樹脂組成物が成分(D)を含むことで、SMCの貯蔵安定性を向上させることができる。
成分(D)の融点は、成分(C)の融点と同様の方法により測定される値である。
成分(D)の平均粒子径は、25μm以下が好ましく、1~15μmがより好ましい。
成分(D)の平均粒子径が25μm以下、より好ましくは15μm以下であれば、成分(D)の表面積が充分となり、エポキシ樹脂組成物中の成分(D)の含有量を低減させることができ、SMCの硬化時間を短縮することができる。また、エポキシ樹脂組成物中で成分(D)が均一に分散しやすく、硬化物中における未反応の成分(D)の割合を低減でき、本発明のSMCのプレス成型物の物性が良好となる。
成分(D)の平均粒子径は、成分(C)の平均粒子径と同様の方法により測定される値である。
成分(D)の平均粒子径が25μm以下、より好ましくは15μm以下であれば、成分(D)の表面積が充分となり、エポキシ樹脂組成物中の成分(D)の含有量を低減させることができ、SMCの硬化時間を短縮することができる。また、エポキシ樹脂組成物中で成分(D)が均一に分散しやすく、硬化物中における未反応の成分(D)の割合を低減でき、本発明のSMCのプレス成型物の物性が良好となる。
成分(D)の平均粒子径は、成分(C)の平均粒子径と同様の方法により測定される値である。
成分(D)としては、ジシアンジアミド、融点が180~300℃のイミダゾール系化合物等が挙げられる。
本発明のSMCのプレス成形物の耐熱性がさらに向上する観点から、イミダゾール系化合物の中でも特に、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(融点:253℃)が好適である。
また、エポキシ樹脂組成物が成分(D)としてジシアンジアミド(融点:206℃)をさらに含むことによって、エポキシ樹脂組成物のBステージ化およびBステージ化の安定性、ならびに速硬化性を損なうことなく、エポキシ樹脂組成物から得られるSMCのプレス成形物の靱性および耐熱性をさらに向上することができる。
本発明のSMCのプレス成形物の耐熱性がさらに向上する観点から、イミダゾール系化合物の中でも特に、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(融点:253℃)が好適である。
また、エポキシ樹脂組成物が成分(D)としてジシアンジアミド(融点:206℃)をさらに含むことによって、エポキシ樹脂組成物のBステージ化およびBステージ化の安定性、ならびに速硬化性を損なうことなく、エポキシ樹脂組成物から得られるSMCのプレス成形物の靱性および耐熱性をさらに向上することができる。
成分(D)は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
エポキシ樹脂組成物における成分(D)の含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量(100質量部)に対して、0.1~10質量部が好ましく、0.3~7質量部がより好ましく、1~5質量部がさらに好ましい。
成分(D)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、0.1質量部以上、より好ましくは0.3質量部以上、さらに好ましくは1質量部以上であれば、SMCのプレス成形時にバリの発生をより抑制でき、SMCのプレス成形物の靱性や耐熱性がより良好となる傾向にある。成分(D)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、10質量部以下、より好ましくは7質量部以下、さらに好ましくは5質量部以下であれば、エポキシ樹脂組成物の強化繊維への含浸性やBステージの安定性が良好となる傾向にある。
成分(D)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、0.1質量部以上、より好ましくは0.3質量部以上、さらに好ましくは1質量部以上であれば、SMCのプレス成形時にバリの発生をより抑制でき、SMCのプレス成形物の靱性や耐熱性がより良好となる傾向にある。成分(D)の含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、10質量部以下、より好ましくは7質量部以下、さらに好ましくは5質量部以下であれば、エポキシ樹脂組成物の強化繊維への含浸性やBステージの安定性が良好となる傾向にある。
(他の成分)
エポキシ樹脂組成物は、必要に応じて上述した成分(A)、成分(B)、成分(C)および成分(D)以外の成分(他の成分)を含んでいてもよい。
エポキシ樹脂組成物が必要に応じて含んでいてもよい他の成分としては、増粘促進剤、エポキシ樹脂の硬化促進剤、無機質充填材、内部離型剤、界面活性剤、有機顔料、無機顔料、成分(A)以外のエポキシ樹脂、エポキシ樹脂以外の他の樹脂等が挙げられる。
エポキシ樹脂組成物は、必要に応じて上述した成分(A)、成分(B)、成分(C)および成分(D)以外の成分(他の成分)を含んでいてもよい。
エポキシ樹脂組成物が必要に応じて含んでいてもよい他の成分としては、増粘促進剤、エポキシ樹脂の硬化促進剤、無機質充填材、内部離型剤、界面活性剤、有機顔料、無機顔料、成分(A)以外のエポキシ樹脂、エポキシ樹脂以外の他の樹脂等が挙げられる。
増粘促進剤としては、エポキシ樹脂組成物がBステージ化する時間を早めることができる点から、25℃において液状のイミダゾール系化合物が好適である。
25℃において液状のイミダゾールとしては、例えば、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等を挙げることができる。
25℃において液状のイミダゾールは、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
エポキシ樹脂組成物が増粘促進剤として25℃において液状のイミダゾールを含む場合、25℃において液状のイミダゾールの含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量(100質量部)に対して、0.01~0.2質量部が好ましく、0.01~0.1質量部がより好ましく、0.03~0.07質量部がさらに好ましい。
25℃において液状のイミダゾールの含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、0.01質量部以上、さらに好ましくは0.03質量部以上であれば、エポキシ樹脂組成物がBステージ化する時間をより早めることができる傾向にある。25℃において液状のイミダゾールの含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、0.2質量部以下、より好ましくは0.1質量部以下、さらに好ましくは0.07質量部以下であれば、エポキシ樹脂組成物のBステージの安定性が良好となる傾向にある。
25℃において液状のイミダゾールとしては、例えば、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等を挙げることができる。
25℃において液状のイミダゾールは、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
エポキシ樹脂組成物が増粘促進剤として25℃において液状のイミダゾールを含む場合、25℃において液状のイミダゾールの含有量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量(100質量部)に対して、0.01~0.2質量部が好ましく、0.01~0.1質量部がより好ましく、0.03~0.07質量部がさらに好ましい。
25℃において液状のイミダゾールの含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、0.01質量部以上、さらに好ましくは0.03質量部以上であれば、エポキシ樹脂組成物がBステージ化する時間をより早めることができる傾向にある。25℃において液状のイミダゾールの含有量が、エポキシ樹脂組成物に含まれる全エポキシ樹脂の総質量に対して、0.2質量部以下、より好ましくは0.1質量部以下、さらに好ましくは0.07質量部以下であれば、エポキシ樹脂組成物のBステージの安定性が良好となる傾向にある。
エポキシ樹脂の硬化促進剤としては、繊維強化複合材料の機械特性(曲げ強度、曲げ弾性率)がより高くなる点から、尿素化合物が好ましい。
尿素化合物としては、3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、2,4-ビス(3,3-ジメチルウレイド)トルエン、1,1’-(4-メチル-1,3-フェニレン)ビス(3,3-ジメチル尿素)等が挙げられる。
さらに、硬化剤の保存安定性を高めることを目的とし、アミンに配位する化合物(例えばホウ酸、ホウ酸エステル化合物等)をエポキシ樹脂組成物が含むこともできる。アミンに配位する化合物の市販品としては、例えば、L-070E(四国化成工業社製、ビスフェノールAジグリシジルエーテル、フェノールのバラック樹脂、ホウ酸エステル化合物の混合物)等を挙げることができる。
尿素化合物としては、3-フェニル-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、2,4-ビス(3,3-ジメチルウレイド)トルエン、1,1’-(4-メチル-1,3-フェニレン)ビス(3,3-ジメチル尿素)等が挙げられる。
さらに、硬化剤の保存安定性を高めることを目的とし、アミンに配位する化合物(例えばホウ酸、ホウ酸エステル化合物等)をエポキシ樹脂組成物が含むこともできる。アミンに配位する化合物の市販品としては、例えば、L-070E(四国化成工業社製、ビスフェノールAジグリシジルエーテル、フェノールのバラック樹脂、ホウ酸エステル化合物の混合物)等を挙げることができる。
無機質充填材としては、炭酸カルシウム、水酸化アルミニウム、クレー、硫酸バリウム、酸化マグネシウム、ガラスパウダー、中空ガラスビーズ、エアロジル等が挙げられる。
エポキシ樹脂組成物が無機充填材を含むことで、硬化収縮の低減が可能となる。
エポキシ樹脂組成物が無機充填材を含むことで、硬化収縮の低減が可能となる。
内部離型剤としては、カルナバワックス、ステアリン酸亜鉛、ステアリン酸カルシウム等が挙げられる。
エポキシ樹脂組成物が内部離型剤を含むことで、SMCの成形後の脱型性がより容易となる。
エポキシ樹脂組成物が内部離型剤を含むことで、SMCの成形後の脱型性がより容易となる。
界面活性剤としては、SMCの表面への移行性の点から、液状の界面活性剤が好ましく、炭素数12~18のアルキル鎖を含む液状の界面活性剤がより好ましい。
エポキシ樹脂組成物が界面活性剤を含むことで、SMCからのキャリアフィルムの離形性を向上することができる。また、SMCに含まれるボイドを減らすことができる。
エポキシ樹脂組成物が界面活性剤を含むことで、SMCからのキャリアフィルムの離形性を向上することができる。また、SMCに含まれるボイドを減らすことができる。
成分(A)以外のエポキシ樹脂としては、25℃で半固形または固形状態のエポキシ樹脂が挙げられる。成分(A)以外のエポキシ樹脂としては、芳香族環を有するエポキシ樹脂が好ましく、二官能のエポキシ樹脂がさらに好ましい。また、二官能のエポキシ樹脂以外にも、SMCのプレス成形物の耐熱性向上やエポキシ樹脂組成物の粘度調節を目的として、様々なエポキシ樹脂を本発明のエポキシ樹脂組成物が含んでいてもよい。耐熱性を向上させるためには、多官能のエポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン骨格のエポキシ樹脂が有効である。
エポキシ樹脂以外の他の樹脂としては、熱可塑性樹脂、熱可塑性エラストマー、および熱可塑性エラストマー以外のエラストマー等が挙げられる。これらは、エポキシ樹脂組成物の粘弾性を変化させて、エポキシ樹脂組成物の粘度、貯蔵弾性率およびチキソトロープ性を適正化するだけでなく、エポキシ樹脂組成物の硬化物の靭性を向上させる役割がある。
エポキシ樹脂以外の他の樹脂としては、コアシェル型エラストマー微粒子が好ましい。コアシェル型エラストマー微粒子として市販品として入手可能なものとしては「メタブレン(登録商標)」(三菱ケミカル社製)や、「スタフィロイド(登録商標)」(アイカ工業社製)、「パラロイド(登録商標)」(ダウケミカル社製)等が挙げられる。コアシェル型エラストマー微粒子はエポキシ樹脂に予め分散されたマスターバッチ型のエポキシ樹脂としても入手することができ、このようなコアシェル型エラストマー分散エポキシ樹脂としては、「カネエース(登録商標。以下同様。)」(カネカ社製)や「アクリセット(登録商標)BPシリーズ」(日本触媒社製)等が挙げられる。
エポキシ樹脂組成物の調製時間を短縮するだけでなく、エポキシ樹脂組成物中のゴム粒子の分散状態を良好にすることができる点から、エポキシ樹脂以外の他の樹脂としては、コアシェル型エラストマー分散エポキシ樹脂を用いることが好ましい。
具体的には、カネカ社製のカネエースのMXシリーズである、MX-113、MX-120、MX-125、MX-128、MX-130、MX-135、MX-136、MX-156、MX-153、MX-257、MX-150、MX-154、MX-960、MX-170、MX-267、MX-965、MX-217、MX-416、MX-451、MX-553、MX-710、MX-714等を用いることができる。
エポキシ樹脂以外の他の樹脂は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
エポキシ樹脂以外の他の樹脂としては、コアシェル型エラストマー微粒子が好ましい。コアシェル型エラストマー微粒子として市販品として入手可能なものとしては「メタブレン(登録商標)」(三菱ケミカル社製)や、「スタフィロイド(登録商標)」(アイカ工業社製)、「パラロイド(登録商標)」(ダウケミカル社製)等が挙げられる。コアシェル型エラストマー微粒子はエポキシ樹脂に予め分散されたマスターバッチ型のエポキシ樹脂としても入手することができ、このようなコアシェル型エラストマー分散エポキシ樹脂としては、「カネエース(登録商標。以下同様。)」(カネカ社製)や「アクリセット(登録商標)BPシリーズ」(日本触媒社製)等が挙げられる。
エポキシ樹脂組成物の調製時間を短縮するだけでなく、エポキシ樹脂組成物中のゴム粒子の分散状態を良好にすることができる点から、エポキシ樹脂以外の他の樹脂としては、コアシェル型エラストマー分散エポキシ樹脂を用いることが好ましい。
具体的には、カネカ社製のカネエースのMXシリーズである、MX-113、MX-120、MX-125、MX-128、MX-130、MX-135、MX-136、MX-156、MX-153、MX-257、MX-150、MX-154、MX-960、MX-170、MX-267、MX-965、MX-217、MX-416、MX-451、MX-553、MX-710、MX-714等を用いることができる。
エポキシ樹脂以外の他の樹脂は、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。
(エポキシ樹脂組成物の調製方法)
エポキシ樹脂組成物は、従来公知の方法で調製できる。例えば、各成分を同時に混合して調製してもよく、予め成分(A)に、成分(C)と、必要に応じて成分(D)等を各々適宜分散させたマスターバッチを調製し、マスターバッチと残りの成分とを混合して調製してもよい。また、混練による剪断発熱等で、系内の温度が上がる場合には、混練速度を調節したり、調製釜や混練釜を水冷したりする等、混練中に温度を上げない工夫をすることが好ましい。
混練装置としては、らいかい機、アトライタ、プラネタリミキサー、ディゾルバー、三本ロール、ニーダー、万能撹拌機、ホモジナイザー、ホモディスペンサー、ボールミル、ビーズミルが挙げられる。混練装置は、2種以上を併用してもよい。
エポキシ樹脂組成物は、従来公知の方法で調製できる。例えば、各成分を同時に混合して調製してもよく、予め成分(A)に、成分(C)と、必要に応じて成分(D)等を各々適宜分散させたマスターバッチを調製し、マスターバッチと残りの成分とを混合して調製してもよい。また、混練による剪断発熱等で、系内の温度が上がる場合には、混練速度を調節したり、調製釜や混練釜を水冷したりする等、混練中に温度を上げない工夫をすることが好ましい。
混練装置としては、らいかい機、アトライタ、プラネタリミキサー、ディゾルバー、三本ロール、ニーダー、万能撹拌機、ホモジナイザー、ホモディスペンサー、ボールミル、ビーズミルが挙げられる。混練装置は、2種以上を併用してもよい。
(エポキシ樹脂組成物の効果)
本発明のSMCに含有されるエポキシ樹脂組成物にあっては、成分(A)を含むことで調製直後の粘度を低くすることができる。例えば、調製から30分後のエポキシ樹脂組成物の30℃における粘度を15Pa・s以下とすることができる。そのため、強化繊維への含浸性に優れ、SMCの製造に好適に使用することができる。
また、本発明のSMCに含有されるエポキシ樹脂組成物にあっては、調製後から短時間で増粘させることができる。例えば、調製から7日後の前記エポキシ樹脂組成物の30℃における粘度を5,000~75,000Pa・sとすることができる。そのため、SMCの取り扱い時において表面のタックを抑えることができるとともに、適切なドレープ性を得ることができ、良好な取り扱い作業性を得ることができる。
さらに、本発明のSMCに含有されるエポキシ樹脂組成物にあっては、増粘後の粘度を長時間保持させることができる。例えば、調製から14日後のエポキシ樹脂組成物の30℃における粘度を5,000~75,000Pa・sとすることができる。そのため、Bステージ化後のタック性およびドレープ性、ならびにBステージの安定性に優れる。
また、本発明のSMCに含有されるエポキシ樹脂組成物にあっては、成分(A)を含むことで、SMCのプレス成形物の剛性、機械特性および耐熱性をより高めることができる。
本発明のSMCに含有されるエポキシ樹脂組成物にあっては、成分(A)を含むことで調製直後の粘度を低くすることができる。例えば、調製から30分後のエポキシ樹脂組成物の30℃における粘度を15Pa・s以下とすることができる。そのため、強化繊維への含浸性に優れ、SMCの製造に好適に使用することができる。
また、本発明のSMCに含有されるエポキシ樹脂組成物にあっては、調製後から短時間で増粘させることができる。例えば、調製から7日後の前記エポキシ樹脂組成物の30℃における粘度を5,000~75,000Pa・sとすることができる。そのため、SMCの取り扱い時において表面のタックを抑えることができるとともに、適切なドレープ性を得ることができ、良好な取り扱い作業性を得ることができる。
さらに、本発明のSMCに含有されるエポキシ樹脂組成物にあっては、増粘後の粘度を長時間保持させることができる。例えば、調製から14日後のエポキシ樹脂組成物の30℃における粘度を5,000~75,000Pa・sとすることができる。そのため、Bステージ化後のタック性およびドレープ性、ならびにBステージの安定性に優れる。
また、本発明のSMCに含有されるエポキシ樹脂組成物にあっては、成分(A)を含むことで、SMCのプレス成形物の剛性、機械特性および耐熱性をより高めることができる。
<強化繊維>
本発明のSMCに含有される強化繊維としては、SMCの用途や使用目的に応じて様々なものを採用することができ、炭素繊維(黒鉛繊維を含む。以下同様。)、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維等が挙げられる。これらの中でも、繊維強化複合材料の機械特性の点から、炭素繊維、ガラス繊維が好ましく、炭素繊維が特に好ましい。
本発明のSMCに含有される強化繊維としては、SMCの用途や使用目的に応じて様々なものを採用することができ、炭素繊維(黒鉛繊維を含む。以下同様。)、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維、タングステンカーバイド繊維、ガラス繊維等が挙げられる。これらの中でも、繊維強化複合材料の機械特性の点から、炭素繊維、ガラス繊維が好ましく、炭素繊維が特に好ましい。
強化繊維は、通常1000本以上、60000本以下の範囲の単繊維からなる強化繊維束の状態で使用される。SMC中では、強化繊維は強化繊維束の形状を保ったまま存在している場合もあれば、より少ない繊維からなる束に分かれて存在する場合もあるが、通常は、より少ない繊維からなる束に分かれて存在する。
強化繊維としては、短繊維からなるチョップド強化繊維束が好ましい。
強化繊維の平均長さは、0.3~10cmが好ましく、1~5cmがより好ましく、2.5~5cmがさらに好ましい。
強化繊維の平均長さが前記範囲内であれば、成形性と機械的特性のバランスに優れたSMCが得られる。強化繊維の平均長さが0.3cm以上、より好ましくは1cm以上、さらに好ましくは2.5cm以上であれば、機械特性がより良好な繊維強化複合材料が得られやすくなる傾向にある。強化繊維の平均長さが10cm以下、より好ましくは5cm以下であれば、プレス成形時におけるマトリックス樹脂の流動性がより向上する傾向にある。
SMCにおける強化繊維の形態としては、チョップド強化繊維束が二次元ランダムに積み重なったシート状物がより好ましい。
強化繊維の平均長さは、0.3~10cmが好ましく、1~5cmがより好ましく、2.5~5cmがさらに好ましい。
強化繊維の平均長さが前記範囲内であれば、成形性と機械的特性のバランスに優れたSMCが得られる。強化繊維の平均長さが0.3cm以上、より好ましくは1cm以上、さらに好ましくは2.5cm以上であれば、機械特性がより良好な繊維強化複合材料が得られやすくなる傾向にある。強化繊維の平均長さが10cm以下、より好ましくは5cm以下であれば、プレス成形時におけるマトリックス樹脂の流動性がより向上する傾向にある。
SMCにおける強化繊維の形態としては、チョップド強化繊維束が二次元ランダムに積み重なったシート状物がより好ましい。
<シートモールディングコンパウンドの製造方法>
SMCは、例えば、チョップド強化繊維束のシート状物に、上述したエポキシ樹脂組成物を十分に含浸させ、エポキシ樹脂組成物を増粘させることによって製造される。
SMCは、例えば、チョップド強化繊維束のシート状物に、上述したエポキシ樹脂組成物を十分に含浸させ、エポキシ樹脂組成物を増粘させることによって製造される。
チョップド強化繊維束のシート状物にエポキシ樹脂組成物を含浸させる方法については、強化繊維の形態に応じて、従来公知の様々な方法を採用できる。例えば、下記の方法が挙げられる。
エポキシ樹脂組成物を均一に塗布したフィルムを2枚用意する。一方のフィルムのエポキシ樹脂組成物の塗布面にチョップド強化繊維束を無秩序に撒き、チョップド強化繊維束のシート状物とする。他方のフィルムのエポキシ樹脂組成物の塗布面をチョップド強化繊維束のシート状物の上に貼り合わせ、エポキシ樹脂組成物をチョップド強化繊維束のシート状物に圧着含浸させ、シートモールディングコンパウンド前駆体(SMC前駆体)を得る。
エポキシ樹脂組成物を均一に塗布したフィルムを2枚用意する。一方のフィルムのエポキシ樹脂組成物の塗布面にチョップド強化繊維束を無秩序に撒き、チョップド強化繊維束のシート状物とする。他方のフィルムのエポキシ樹脂組成物の塗布面をチョップド強化繊維束のシート状物の上に貼り合わせ、エポキシ樹脂組成物をチョップド強化繊維束のシート状物に圧着含浸させ、シートモールディングコンパウンド前駆体(SMC前駆体)を得る。
エポキシ樹脂組成物をチョップド強化繊維束に含浸させたSMC前駆体を室温~60℃程度の温度で数時間~数十日間、または、60~80℃程度の温度で数秒~数十分保持することによって、エポキシ樹脂組成物中の成分(A)および任意に配合された他のエポキシ樹脂が有するエポキシ基と、成分(B)に由来するカルボキシ基とがエステル化反応し、エポキシ樹脂組成物がBステージ化(増粘)する。このようにエポキシ樹脂組成物を増粘させることによって、SMCの表面のタックが抑制され、成形作業に適したSMCが得られる。
エポキシ樹脂が有するエポキシ基と成分(B)に由来するカルボキシ基との反応条件は、エステル化反応後に得られるエポキシ樹脂組成物の30℃における粘度や硬化反応開始時の粘度が上述した範囲になるよう選択することが好ましい。
エポキシ樹脂が有するエポキシ基と成分(B)に由来するカルボキシ基との反応条件は、エステル化反応後に得られるエポキシ樹脂組成物の30℃における粘度や硬化反応開始時の粘度が上述した範囲になるよう選択することが好ましい。
<作用効果>
以上説明した、140℃におけるゲルタイムが30~140秒であり、かつ硬化反応開始時の温度が70~115℃であるエポキシ樹脂組成物を含む本発明のSMCにあっては、SMCのプレス成形時におけるマトリックス樹脂の流動性に優れるとともに、バリの発生を抑制できる。また、SMCのプレス成形時におけるマトリックス樹脂の速硬化性に優れる、すなわちプレス成形時の硬化速度が速いことから、金型占有時間が短くなり、繊維強化複合材料の生産性が高くなる。特に、上述した成分(A)、成分(B)および成分(C)を含むエポキシ樹脂組成物を用いれば、Bステージ化後のタック性およびドレープ性により優れるエポキシ樹脂組成物の増粘物となり、SMCの取り扱い作業性がより向上する。
また、調製から7日後の30℃における粘度をb1とし、調製から14日後の30℃における粘度をb2としたときに、b2/b1≦5である本発明のSMCにあっては、SMCのBステージの安定性に優れ、Bステージを長期間保持できる傾向にあるとともに、SMCの経時による粘度変化が小さく、貯蔵安定性に優れる傾向にある。
さらに、本発明のSMCにあっては、硬化物の剛性、機械特性および耐熱性に優れるエポキシ樹脂組成物を含むため、脱型性、機械特性および耐熱性に優れた繊維強化複合材料を得ることができる。
以上説明した、140℃におけるゲルタイムが30~140秒であり、かつ硬化反応開始時の温度が70~115℃であるエポキシ樹脂組成物を含む本発明のSMCにあっては、SMCのプレス成形時におけるマトリックス樹脂の流動性に優れるとともに、バリの発生を抑制できる。また、SMCのプレス成形時におけるマトリックス樹脂の速硬化性に優れる、すなわちプレス成形時の硬化速度が速いことから、金型占有時間が短くなり、繊維強化複合材料の生産性が高くなる。特に、上述した成分(A)、成分(B)および成分(C)を含むエポキシ樹脂組成物を用いれば、Bステージ化後のタック性およびドレープ性により優れるエポキシ樹脂組成物の増粘物となり、SMCの取り扱い作業性がより向上する。
また、調製から7日後の30℃における粘度をb1とし、調製から14日後の30℃における粘度をb2としたときに、b2/b1≦5である本発明のSMCにあっては、SMCのBステージの安定性に優れ、Bステージを長期間保持できる傾向にあるとともに、SMCの経時による粘度変化が小さく、貯蔵安定性に優れる傾向にある。
さらに、本発明のSMCにあっては、硬化物の剛性、機械特性および耐熱性に優れるエポキシ樹脂組成物を含むため、脱型性、機械特性および耐熱性に優れた繊維強化複合材料を得ることができる。
[繊維強化複合材料]
本発明の繊維強化複合材料は、本発明のSMCのプレス成形物である。
本発明の繊維強化複合材料は、本発明のSMCをプレス成形して、本発明のSMCに含有されるエポキシ樹脂組成物を硬化させることによって製造できる。
本発明の繊維強化複合材料は、本発明のSMCのプレス成形物である。
本発明の繊維強化複合材料は、本発明のSMCをプレス成形して、本発明のSMCに含有されるエポキシ樹脂組成物を硬化させることによって製造できる。
本発明の繊維強化複合材料の製造方法としては、例えば、下記の方法が挙げられる。
1枚の本発明のSMCまたは複数枚の本発明のSMCを重ねたものを、1対の金型の間にセットする。SMCをプレス成形(圧縮成形)して、SMCに含有されるエポキシ樹脂組成物を硬化させ、SMCのプレス成形物、すなわちSMCの硬化物である繊維強化複合材料を得る。ダンボール等のハニカム構造体を芯材とし、その両面または片面に本発明のSMCを配してもよい。
なお、本明細書において、例えば2枚のSMCを積層することを「2ply積層」という。
プレス成形の温度は、120~230℃が好ましい。
プレス成形の時間は、2~60分が好ましい。
1枚の本発明のSMCまたは複数枚の本発明のSMCを重ねたものを、1対の金型の間にセットする。SMCをプレス成形(圧縮成形)して、SMCに含有されるエポキシ樹脂組成物を硬化させ、SMCのプレス成形物、すなわちSMCの硬化物である繊維強化複合材料を得る。ダンボール等のハニカム構造体を芯材とし、その両面または片面に本発明のSMCを配してもよい。
なお、本明細書において、例えば2枚のSMCを積層することを「2ply積層」という。
プレス成形の温度は、120~230℃が好ましい。
プレス成形の時間は、2~60分が好ましい。
<作用効果>
以上説明した本発明の繊維強化複合材料にあっては、本発明のSMCのプレス成形物であるため、プレス成形時のバリの発生が抑制される。そのため、作業性に優れ、脱型性、機械特性および耐熱性に優れる。
以上説明した本発明の繊維強化複合材料にあっては、本発明のSMCのプレス成形物であるため、プレス成形時のバリの発生が抑制される。そのため、作業性に優れ、脱型性、機械特性および耐熱性に優れる。
[他の実施形態]
本発明は、上述した各実施形態に限定されるものではなく、請求の範囲に記載された範囲内で種々の変更が可能である。異なる実施形態に、上述した各実施形態に示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は、上述した各実施形態に限定されるものではなく、請求の範囲に記載された範囲内で種々の変更が可能である。異なる実施形態に、上述した各実施形態に示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。
<各成分>
(成分(A))
・jER828:ビスフェノールA型液状エポキシ樹脂(三菱ケミカル社製、25℃における粘度:12Pa・s)。
・jER807:ビスフェノールF型液状エポキシ樹脂(三菱ケミカル社製、25℃における粘度:3Pa・s)。
・jER827:ビスフェノールA型液状エポキシ樹脂(三菱ケミカル社製、25℃における粘度:9Pa・s)。
・TETRAD-X:N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン(三菱ガス化学社製、25℃における粘度:2Pa・s)。
(成分(A))
・jER828:ビスフェノールA型液状エポキシ樹脂(三菱ケミカル社製、25℃における粘度:12Pa・s)。
・jER807:ビスフェノールF型液状エポキシ樹脂(三菱ケミカル社製、25℃における粘度:3Pa・s)。
・jER827:ビスフェノールA型液状エポキシ樹脂(三菱ケミカル社製、25℃における粘度:9Pa・s)。
・TETRAD-X:N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン(三菱ガス化学社製、25℃における粘度:2Pa・s)。
(成分(B))
・HN-2200:3-メチル-1,2,3,6-テトラヒドロ無水フタル酸または4-メチル-1,2,3,6-テトラヒドロ無水フタル酸(日立化成社製、25℃における粘度:75mPa・s)。
・HN-2200:3-メチル-1,2,3,6-テトラヒドロ無水フタル酸または4-メチル-1,2,3,6-テトラヒドロ無水フタル酸(日立化成社製、25℃における粘度:75mPa・s)。
(成分(C))
・PN-23J:エポキシ樹脂アミンアダクト(味の素ファインテクノ社製、融点:59℃、平均粒子径:5μm)。
・PN-31J:エポキシ樹脂アミンアダクト(味の素ファインテクノ社製、融点:52℃、平均粒子径:5μm)。
・P-0505:エポキシ樹脂アミンアダクト(四国化成工業社製、融点:69℃、平均粒子径:5μm)。
・PN-23J:エポキシ樹脂アミンアダクト(味の素ファインテクノ社製、融点:59℃、平均粒子径:5μm)。
・PN-31J:エポキシ樹脂アミンアダクト(味の素ファインテクノ社製、融点:52℃、平均粒子径:5μm)。
・P-0505:エポキシ樹脂アミンアダクト(四国化成工業社製、融点:69℃、平均粒子径:5μm)。
(成分(D))
・2MZA-PW:2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(四国化成工業社製、融点:253℃、平均粒子径:約4μm)。
・DICYANEX1400F:ジシアンジアミド(エアープロダクツ社製、融点206℃、平均粒子径:4μm)。
・2MZA-PW:2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(四国化成工業社製、融点:253℃、平均粒子径:約4μm)。
・DICYANEX1400F:ジシアンジアミド(エアープロダクツ社製、融点206℃、平均粒子径:4μm)。
(他の成分)
・L-070E:ビスフェノールAジグリシジルエーテル、フェノールのバラック樹脂、ホウ酸エステル化合物の混合物(四国化成工業社製)。
・カーボンブラック(無機顔料):三菱カーボンブラック#1000(三菱ケミカル社製)
・L-070E:ビスフェノールAジグリシジルエーテル、フェノールのバラック樹脂、ホウ酸エステル化合物の混合物(四国化成工業社製)。
・カーボンブラック(無機顔料):三菱カーボンブラック#1000(三菱ケミカル社製)
<マスターバッチの調製>
成分(C)、成分(D)については、それぞれをjER828と1:1(質量比)で混合した。混合には、遊星式撹拌・脱泡装置MAZERUSTAR(倉敷紡績社製)を用いた。
得られた混合物をそれぞれ三本ロールで混練しマスターバッチを得た。
成分(C)、成分(D)については、それぞれをjER828と1:1(質量比)で混合した。混合には、遊星式撹拌・脱泡装置MAZERUSTAR(倉敷紡績社製)を用いた。
得られた混合物をそれぞれ三本ロールで混練しマスターバッチを得た。
[実施例1~13、比較例1]
<エポキシ樹脂組成物の調製>
表1~3に示す配合に従い、各成分をフラスコに秤量した。PN-23J、PN-31J、P-0505、カーボンブラック、2MZA-PW、DICYANEX1400Fについては、マスターバッチを用いた。フラスコに秤量した各成分を室温にて均一に撹拌し、エポキシ樹脂組成物を得た。撹拌には、遊星式撹拌・脱泡装置MAZERUSTAR(倉敷紡績社製)を用いた。
得られたエポキシ樹脂組成物について、下記の測定および評価を行った。結果を表1~3に示す。
<エポキシ樹脂組成物の調製>
表1~3に示す配合に従い、各成分をフラスコに秤量した。PN-23J、PN-31J、P-0505、カーボンブラック、2MZA-PW、DICYANEX1400Fについては、マスターバッチを用いた。フラスコに秤量した各成分を室温にて均一に撹拌し、エポキシ樹脂組成物を得た。撹拌には、遊星式撹拌・脱泡装置MAZERUSTAR(倉敷紡績社製)を用いた。
得られたエポキシ樹脂組成物について、下記の測定および評価を行った。結果を表1~3に示す。
(粘度の測定1:等温粘度の測定)
調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃の部屋で直射日光の当たらない場所に静置し、保管した。調製から30分後、7日後、14日後のエポキシ樹脂組成物の粘度を以下のように測定した。
レオメータ(サーモフィッシャーサイエンティフィック社製、HAAKE MARS40)のプレートを予め30℃まで加温し、温度が安定するまで待った。温度が安定したことを確認してから、エポキシ樹脂組成物をプレートに分取し、ギャップを調整した後、ノーマルフォース値が3N以下になるまで待ち、下記条件にて測定を開始した。10分間で10点測定し、その最終測定値を粘度とした。
・測定モード:応力一定、
・応力値:300Pa、
・周波数:1.59Hz、
・プレート径:25mm、
・プレートタイプ:パラレルプレート、
・プレートギャップ:0.5mm。
調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃の部屋で直射日光の当たらない場所に静置し、保管した。調製から30分後、7日後、14日後のエポキシ樹脂組成物の粘度を以下のように測定した。
レオメータ(サーモフィッシャーサイエンティフィック社製、HAAKE MARS40)のプレートを予め30℃まで加温し、温度が安定するまで待った。温度が安定したことを確認してから、エポキシ樹脂組成物をプレートに分取し、ギャップを調整した後、ノーマルフォース値が3N以下になるまで待ち、下記条件にて測定を開始した。10分間で10点測定し、その最終測定値を粘度とした。
・測定モード:応力一定、
・応力値:300Pa、
・周波数:1.59Hz、
・プレート径:25mm、
・プレートタイプ:パラレルプレート、
・プレートギャップ:0.5mm。
調製から30分後のエポキシ樹脂組成物の30℃における粘度は、エポキシ樹脂組成物が強化繊維に含浸する際の含浸性の目安となり、粘度が低いほど含浸性に優れることを意味する。
調製から7日後のエポキシ樹脂組成物の30℃における粘度は、エポキシ樹脂組成物が、SMCが適度なタック性やドレープ性を発揮できるような、適度なBステージの増粘物となっているかを判断するための目安となる。具体的には、粘度が5,000~75,000Pa・sの範囲内であれば、エポキシ樹脂組成物が適度なBステージの増粘物となっていると判断する。
調製から14日後のエポキシ樹脂組成物の30℃における粘度は、Bステージを長期間保持できているか(Bステージの安定性)の目安となる。具体的には、粘度が5,000~75,000Pa・sの範囲内であれば、Bステージの安定性が良好であると判断する。
調製から7日後のエポキシ樹脂組成物の30℃における粘度は、エポキシ樹脂組成物が、SMCが適度なタック性やドレープ性を発揮できるような、適度なBステージの増粘物となっているかを判断するための目安となる。具体的には、粘度が5,000~75,000Pa・sの範囲内であれば、エポキシ樹脂組成物が適度なBステージの増粘物となっていると判断する。
調製から14日後のエポキシ樹脂組成物の30℃における粘度は、Bステージを長期間保持できているか(Bステージの安定性)の目安となる。具体的には、粘度が5,000~75,000Pa・sの範囲内であれば、Bステージの安定性が良好であると判断する。
(粘度の測定2:昇温粘度の測定)
調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃の部屋で直射日光の当たらない場所に静置し、保管した。調製から7日後、14日後のエポキシ樹脂組成物の粘度を以下のように測定し、エポキシ樹脂組成物が硬化反応を開始する直前の粘度を「硬化反応開始時の粘度」とし、エポキシ樹脂組成物が硬化反応を開始する直前の温度を「硬化反応開始時の温度」とした。
レオメータ(サーモフィッシャーサイエンティフィック社製、HAAKE MARS40)のプレートを予め25℃まで加温し、温度が安定するまで待った。温度が安定したことを確認してから、エポキシ樹脂組成物をプレートに分取し、ギャップを調整した後、下記条件にて測定を開始した。
・測定モード:応力一定、
・応力値:300Pa、
・周波数:1.59Hz、
・プレート径:25mm、
・プレートタイプ:パラレルプレート、
・プレートギャップ:0.5mm、
・昇温速度:25℃から、エポキシ樹脂組成物が硬化反応を開始する直前の温度(つまり、急激に粘度が上昇する温度)まで、2℃/minで昇温した。
調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃の部屋で直射日光の当たらない場所に静置し、保管した。調製から7日後、14日後のエポキシ樹脂組成物の粘度を以下のように測定し、エポキシ樹脂組成物が硬化反応を開始する直前の粘度を「硬化反応開始時の粘度」とし、エポキシ樹脂組成物が硬化反応を開始する直前の温度を「硬化反応開始時の温度」とした。
レオメータ(サーモフィッシャーサイエンティフィック社製、HAAKE MARS40)のプレートを予め25℃まで加温し、温度が安定するまで待った。温度が安定したことを確認してから、エポキシ樹脂組成物をプレートに分取し、ギャップを調整した後、下記条件にて測定を開始した。
・測定モード:応力一定、
・応力値:300Pa、
・周波数:1.59Hz、
・プレート径:25mm、
・プレートタイプ:パラレルプレート、
・プレートギャップ:0.5mm、
・昇温速度:25℃から、エポキシ樹脂組成物が硬化反応を開始する直前の温度(つまり、急激に粘度が上昇する温度)まで、2℃/minで昇温した。
昇温粘度の測定は、SMCのプレス成形時におけるマトリックス樹脂、すなわちエポキシ樹脂組成物の流動性およびプレス成形時のバリの発生量の目安となる。
硬化反応開始時の温度について、下記の評価基準で評価した。「A」の場合、マトリックス樹脂の流動性が良好であり、かつプレス成形時のバリの発生が少ないと判断した。
A(良好):7日後および14日後のエポキシ樹脂組成物の硬化反応開始時の温度が70℃~115℃である。
B(不良):7日後および14日後のエポキシ樹脂組成物の硬化反応開始時の温度が70℃未満または115℃超である。
硬化反応開始時の温度について、下記の評価基準で評価した。「A」の場合、マトリックス樹脂の流動性が良好であり、かつプレス成形時のバリの発生が少ないと判断した。
A(良好):7日後および14日後のエポキシ樹脂組成物の硬化反応開始時の温度が70℃~115℃である。
B(不良):7日後および14日後のエポキシ樹脂組成物の硬化反応開始時の温度が70℃未満または115℃超である。
(ゲルタイムの測定)
調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃の部屋で直射日光の当たらない場所に7日間静置した。予め140℃に熱したホットプレート上に、厚さ0.13~0.17mmのカバーガラス(松浪硝子工業社製)を120秒保持した後、このカバーガラスの上に調製から7日後のエポキシ樹脂組成物を置き、他のカバーガラスでエポキシ樹脂組成物を挟み、挟んだ直後から時間の計測を始め、上側のカバーガラスをピンセットで動かし、カバーガラスが動かなくなるまでの時間を測定し、これをエポキシ樹脂組成物の140℃におけるゲルタイムとした。
ゲルタイム測定は、SMCの成形時間の目安となる。また、SMCのプレス成形時のバリの発生の目安となる。
A(良好):ゲルタイムが50~85秒である。
B(やや良好):ゲルタイムが30秒以上50秒未満、または85秒超140秒以下である。
C(不良):ゲルタイムが30秒未満、または、140秒超である。
調製した直後のエポキシ樹脂組成物を密閉できる容器に入れて密封し、23℃の部屋で直射日光の当たらない場所に7日間静置した。予め140℃に熱したホットプレート上に、厚さ0.13~0.17mmのカバーガラス(松浪硝子工業社製)を120秒保持した後、このカバーガラスの上に調製から7日後のエポキシ樹脂組成物を置き、他のカバーガラスでエポキシ樹脂組成物を挟み、挟んだ直後から時間の計測を始め、上側のカバーガラスをピンセットで動かし、カバーガラスが動かなくなるまでの時間を測定し、これをエポキシ樹脂組成物の140℃におけるゲルタイムとした。
ゲルタイム測定は、SMCの成形時間の目安となる。また、SMCのプレス成形時のバリの発生の目安となる。
A(良好):ゲルタイムが50~85秒である。
B(やや良好):ゲルタイムが30秒以上50秒未満、または85秒超140秒以下である。
C(不良):ゲルタイムが30秒未満、または、140秒超である。
<SMCの製造>
ドクターブレードを用いて、エポキシ樹脂組成物をポリエチレン製キャリアフィルム上に塗工量が360g/m2となるように塗布したものを2枚用意した。
一方のフィルムのエポキシ樹脂組成物の塗布面に、フィラメント数が3,000本の炭素繊維束(三菱ケミカル社製、TR50S 3L)が平均長さ25mmに切断されたチョップド炭素繊維束を、炭素繊維の目付が1080g/m2で略均一になるように、かつ炭素繊維の繊維方向がランダムになるように散布し、シート状物とした。
他方のフィルムのエポキシ樹脂組成物の塗布面を、先に得られたシート状物の上に貼り合わせて、エポキシ樹脂組成物でチョップド炭素繊維束を挟み込み、これをロールの間に通して押圧して、エポキシ樹脂組成物をチョップド炭素繊維束に圧着含浸させ、SMC前駆体を得た。
得られたSMC前駆体を室温にて7日間静置することによって、SMC前駆体中のエポキシ樹脂組成物を十分に増粘させて、エポキシ樹脂組成物と強化繊維とを含有する、縦280mm、横280mmのSMCを得た。
ドクターブレードを用いて、エポキシ樹脂組成物をポリエチレン製キャリアフィルム上に塗工量が360g/m2となるように塗布したものを2枚用意した。
一方のフィルムのエポキシ樹脂組成物の塗布面に、フィラメント数が3,000本の炭素繊維束(三菱ケミカル社製、TR50S 3L)が平均長さ25mmに切断されたチョップド炭素繊維束を、炭素繊維の目付が1080g/m2で略均一になるように、かつ炭素繊維の繊維方向がランダムになるように散布し、シート状物とした。
他方のフィルムのエポキシ樹脂組成物の塗布面を、先に得られたシート状物の上に貼り合わせて、エポキシ樹脂組成物でチョップド炭素繊維束を挟み込み、これをロールの間に通して押圧して、エポキシ樹脂組成物をチョップド炭素繊維束に圧着含浸させ、SMC前駆体を得た。
得られたSMC前駆体を室温にて7日間静置することによって、SMC前駆体中のエポキシ樹脂組成物を十分に増粘させて、エポキシ樹脂組成物と強化繊維とを含有する、縦280mm、横280mmのSMCを得た。
<繊維強化複合材料の製造>
SMCを2ply積層した積層物を、縦300mm、横300mm、厚さ2mmの成形用金型にチャージ率(金型面積に対するSMCの面積の割合)65%でチャージして、金型温度140℃、圧力4MPaの条件で5分間加熱圧縮し、エポキシ樹脂組成物を硬化させ、厚さ約2mm、300mm角の平板状の繊維強化複合材料(CFRP成形板)を得た。
得られた繊維強化複合材料について、下記の測定および評価を行った。結果を表1~3に示す。
SMCを2ply積層した積層物を、縦300mm、横300mm、厚さ2mmの成形用金型にチャージ率(金型面積に対するSMCの面積の割合)65%でチャージして、金型温度140℃、圧力4MPaの条件で5分間加熱圧縮し、エポキシ樹脂組成物を硬化させ、厚さ約2mm、300mm角の平板状の繊維強化複合材料(CFRP成形板)を得た。
得られた繊維強化複合材料について、下記の測定および評価を行った。結果を表1~3に示す。
(バリの発生の評価)
繊維強化複合材料を製造する際のバリ発生率を下記式(I)より算出した。
バリ発生率=(X-Y)/(X)×100 ・・・(I)
(式(I)中、Xは成形用金型にチャージしたSMCの質量であり、Yは成形後、成形用金型から取り出した成形物(繊維強化複合材料)の質量である。)
繊維強化複合材料を製造する際のバリ発生率を下記式(I)より算出した。
バリ発生率=(X-Y)/(X)×100 ・・・(I)
(式(I)中、Xは成形用金型にチャージしたSMCの質量であり、Yは成形後、成形用金型から取り出した成形物(繊維強化複合材料)の質量である。)
成形用金型へのバリの発生が少ないと、成形後、短時間でバリを除去できるので、成形サイクルを短縮することができる。
下記評価基準により、バリの発生を評価した。
A(良好):バリ発生率が6%未満である。
B(不良):バリ発生率が6%以上である。
下記評価基準により、バリの発生を評価した。
A(良好):バリ発生率が6%未満である。
B(不良):バリ発生率が6%以上である。
(機械特性の評価1:3点曲げ試験)
繊維強化複合材料から幅25mm、長さ100mm、厚さ約2mmの試験片を12枚切り出し、万能試験機(インストロン社製、インストロン5965)を用い、JIS K 7017に準拠し、下記条件にて曲げ強度、曲げ弾性率および曲げ破断伸度を測定し、12枚の平均値を求めた。
・クロスヘッドスピード;1mm/分、
・スパン間距離:繊維強化複合材料の厚さを実測し、(厚さ×16)mmとした。
繊維強化複合材料から幅25mm、長さ100mm、厚さ約2mmの試験片を12枚切り出し、万能試験機(インストロン社製、インストロン5965)を用い、JIS K 7017に準拠し、下記条件にて曲げ強度、曲げ弾性率および曲げ破断伸度を測定し、12枚の平均値を求めた。
・クロスヘッドスピード;1mm/分、
・スパン間距離:繊維強化複合材料の厚さを実測し、(厚さ×16)mmとした。
(機械特性の評価2:引張試験)
繊維強化複合材料から幅25mm、長さ250mm、厚さ約2mmの試験片を6枚切り出し、万能試験機(インストロン社製、インストロン4482型)を用い、JIS K 7164に準拠し、下記条件にて引張強度および引張弾性率を測定し、6枚の平均値を求めた。
・スパン間距離:150mm、
・歪ゲージ:KFGS-20-120-C1-11L1M2R、
・ゲージ長:20mm、
・データ記録装置:KYOWA EDX100A、
・クロスヘッドスピード:2mm/分。
繊維強化複合材料から幅25mm、長さ250mm、厚さ約2mmの試験片を6枚切り出し、万能試験機(インストロン社製、インストロン4482型)を用い、JIS K 7164に準拠し、下記条件にて引張強度および引張弾性率を測定し、6枚の平均値を求めた。
・スパン間距離:150mm、
・歪ゲージ:KFGS-20-120-C1-11L1M2R、
・ゲージ長:20mm、
・データ記録装置:KYOWA EDX100A、
・クロスヘッドスピード:2mm/分。
(耐熱性の評価:耐熱性試験)
繊維強化複合材料を長さ55mm×幅12.5mmの試験片に加工し、レオメータ(TAインスツルメント社製、ARES-RDA)を用いて測定周波数1Hz、昇温速度5℃/分で測定を行った。温度-tanδ曲線が極大値を示すときの温度をガラス転温度とし、以下の評価基準にて耐熱性を評価した。
A(良好):ガラス転移温度が140℃以上である。
B(不良):ガラス転移温度が140℃未満である。
繊維強化複合材料を長さ55mm×幅12.5mmの試験片に加工し、レオメータ(TAインスツルメント社製、ARES-RDA)を用いて測定周波数1Hz、昇温速度5℃/分で測定を行った。温度-tanδ曲線が極大値を示すときの温度をガラス転温度とし、以下の評価基準にて耐熱性を評価した。
A(良好):ガラス転移温度が140℃以上である。
B(不良):ガラス転移温度が140℃未満である。
実施例1~13で用いたエポキシ樹脂組成物は、調製から7日後に適度にBステージ化しており、SMCとした場合、ほどよいタックとドレープ性を有した。また、14日後のタック性とドレープ性は7日後と大きく変わらず、SMCのプレス成形時のマトリックス樹脂の流動性も同等であった。昇温粘度の測定の結果からも前記流動性が安定していることが分かる。
また、実施例1~13で得られたSMCは、エポキシ樹脂組成物のゲルタイムが30~140秒であり、マトリックス樹脂の速硬化性が良好であり、繊維強化複合材料の製造において、短時間で成形できた。
また、実施例1~13で得られたSMCのプレス成形物(繊維強化複合材料)は、バリの発生も少なく、実施例1~13からは生産性が高いSMCが得られたことが示された。ゲルタイム測定の結果からも前記速硬化性、前記生産性の高さに優れることが分かる。
さらに、実施例1~13で得られたSMCからは、機械特性および耐熱性に優れた繊維強化複合材料が得られた。
また、実施例1~13で得られたSMCは、エポキシ樹脂組成物のゲルタイムが30~140秒であり、マトリックス樹脂の速硬化性が良好であり、繊維強化複合材料の製造において、短時間で成形できた。
また、実施例1~13で得られたSMCのプレス成形物(繊維強化複合材料)は、バリの発生も少なく、実施例1~13からは生産性が高いSMCが得られたことが示された。ゲルタイム測定の結果からも前記速硬化性、前記生産性の高さに優れることが分かる。
さらに、実施例1~13で得られたSMCからは、機械特性および耐熱性に優れた繊維強化複合材料が得られた。
対して、比較例1の場合は、タック性およびドレープ性と、それらの経時変化等による取り扱い性は各実施例と差はないが、SMCの成形時にバリが多く発生した。
比較例1の場合、実施例1~13に比べてエポキシ樹脂組成物のゲルタイムおよび硬化反応開始時の温度が大きく異なることから、エポキシ樹脂組成物の硬化性とバリの発生量とが相関関係にあることが示された。実施例および比較例の結果から明らかなように、エポキシ樹脂組成物の硬化性を適切にすることで、すなわち、エポキシ樹脂組成物のゲルタイムおよび硬化反応開始時を規定することで、SMCの成形性を変えることができた。
比較例1の場合、実施例1~13に比べてエポキシ樹脂組成物のゲルタイムおよび硬化反応開始時の温度が大きく異なることから、エポキシ樹脂組成物の硬化性とバリの発生量とが相関関係にあることが示された。実施例および比較例の結果から明らかなように、エポキシ樹脂組成物の硬化性を適切にすることで、すなわち、エポキシ樹脂組成物のゲルタイムおよび硬化反応開始時を規定することで、SMCの成形性を変えることができた。
本発明のシートモールディングコンパウンドは、プレス成形時のバリの発生が抑制されると共に、シートモールディングコンパウンドの製造に用いるエポキシ樹脂組成物の強化繊維への含浸性、Bステージ化後のタック性およびドレープ性、Bステージの安定性(プレス成形時の流動性)、加熱した際の速硬化性(プレス成形時の金型占有時間が短いこと)、およびプレス成形物の耐熱性に優れ、生産が非常に高い材料である。また、本発明のシートモールディングコンパウンドは、硬化後の機械特性および耐熱性に優れることから、工業用、自動車用の構造部品の原料として好適である。
Claims (13)
- エポキシ樹脂組成物と強化繊維とを含有し、
前記エポキシ樹脂組成物の140℃におけるゲルタイムが30~140秒であり、
前記エポキシ樹脂組成物の硬化反応開始時の温度が70~115℃であり、
調製から7日後の前記エポキシ樹脂組成物の30℃における粘度をb1とし、調製から14日後の前記エポキシ樹脂組成物の30℃における粘度をb2としたときに、b2/b1≦5である、シートモールディングコンパウンド。 - エポキシ樹脂組成物と強化繊維とを含有し、
前記エポキシ樹脂組成物はエポキシ樹脂と酸無水物との反応物を含み、
前記エポキシ樹脂組成物の140℃におけるゲルタイムが30~140秒であり、
前記エポキシ樹脂組成物の硬化反応開始時の温度が70~115℃である、シートモールディングコンパウンド。 - エポキシ樹脂組成物と強化繊維とを含有し、
前記エポキシ樹脂組成物が下記成分(A)、成分(B)および成分(C)を含む、シートモールディングコンパウンド。
成分(A):25℃において液状のエポキシ樹脂。
成分(B):25℃において液状の酸無水物。
成分(C):融点が40℃以上180℃未満の硬化剤。 - 前記成分(B)が、前記エポキシ樹脂組成物に含まれるエポキシ基の1当量に対して、0.1~0.5当量の酸無水物基を含む、請求項3に記載のシートモールディングコンパウンド。
- 前記成分(C)が、融点が40℃以上120℃以下の硬化剤を含む、請求項3または4に記載のシートモールディングコンパウンド。
- 前記エポキシ樹脂組成物が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の総質量(100質量部)に対して、1~30質量部の前記成分(B)を含み、かつ1~10質量部の前記成分(C)を含む、請求項3~5のいずれか一項に記載のシートモールディングコンパウンド。
- 前記エポキシ樹脂組成物が下記成分(D)をさらに含む、請求項3~6のいずれか一項に記載のシートモールディングコンパウンド。
成分(D):融点が180~300℃の硬化剤。 - 前記エポキシ樹脂組成物が、前記エポキシ樹脂組成物に含まれるエポキシ樹脂の総質量(100質量部)に対して、0.1~10質量部の前記成分(D)を含む、請求項7に記載のシートモールディングコンパウンド。
- 前記成分(A)がグリシジルアミン系エポキシ樹脂を含み、前記成分(A)に含まれるグリシジルアミン系エポキシ樹脂の含有量が、前記成分(A)の総質量(100質量%)のうち1~30質量%である、請求項3~8のいずれか一項に記載のシートモールディングコンパウンド。
- 前記エポキシ樹脂組成物が、前記エポキシ樹脂組成物の増粘物である、請求項1~9のいずれか一項に記載のシートモールディングコンパウンド。
- 前記エポキシ樹脂組成物の硬化反応開始時の粘度が0.4~100Pa・sである、請求項1~10のいずれか一項に記載のシートモールディングコンパウンド。
- 前記強化繊維の平均長さが0.3~10cmである、請求項1~11のいずれか一項に記載のシートモールディングコンパウンド。
- 請求項1~12のいずれか一項に記載のシートモールディングコンパウンドのプレス成形物である、繊維強化複合材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980057890.0A CN112654666A (zh) | 2018-09-05 | 2019-09-02 | 片状模塑料及纤维增强复合材料 |
EP19856811.5A EP3848405B1 (en) | 2018-09-05 | 2019-09-02 | Sheet molding compound and fiber-reinforced composite material |
JP2019550865A JP7036122B2 (ja) | 2018-09-05 | 2019-09-02 | シートモールディングコンパウンドの製造方法 |
ES19856811T ES2971016T3 (es) | 2018-09-05 | 2019-09-02 | Compuesto para el moldeo de láminas y material compuesto reforzado con fibra |
US17/192,103 US20210221969A1 (en) | 2018-09-05 | 2021-03-04 | Sheet molding compound and fiber-reinforced composite |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018165832 | 2018-09-05 | ||
JP2018-165832 | 2018-09-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/192,103 Continuation US20210221969A1 (en) | 2018-09-05 | 2021-03-04 | Sheet molding compound and fiber-reinforced composite |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020050200A1 true WO2020050200A1 (ja) | 2020-03-12 |
Family
ID=69723209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/034369 WO2020050200A1 (ja) | 2018-09-05 | 2019-09-02 | シートモールディングコンパウンド、および繊維強化複合材料 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20210221969A1 (ja) |
EP (1) | EP3848405B1 (ja) |
JP (1) | JP7036122B2 (ja) |
CN (1) | CN112654666A (ja) |
ES (1) | ES2971016T3 (ja) |
WO (1) | WO2020050200A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241287A1 (ja) * | 2020-05-27 | 2021-12-02 | 住友化学株式会社 | エポキシ樹脂組成物 |
WO2022045329A1 (ja) | 2020-08-31 | 2022-03-03 | 東レ株式会社 | 成形材料および繊維強化複合材料 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114233975B (zh) * | 2021-12-27 | 2023-12-29 | 国家石油天然气管网集团有限公司 | 一种长输油气管道修复用smc及施工方法 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191723A (ja) | 1982-05-04 | 1983-11-09 | Dainippon Ink & Chem Inc | エポキシシ−トモ−ルデイングコンパウンドの製造方法 |
JPS6178841A (ja) * | 1984-09-27 | 1986-04-22 | Mitsubishi Gas Chem Co Inc | エポキシ樹脂積層板の製法 |
JPH0288684A (ja) | 1988-09-27 | 1990-03-28 | Nitto Denko Corp | 接着方法及びそれに使用する液状接着剤 |
JPH0288685A (ja) | 1988-08-10 | 1990-03-28 | Teroson Gmbh | 反応性ホツトメルト接着剤 |
JPH02286722A (ja) | 1989-04-28 | 1990-11-26 | Dainippon Ink & Chem Inc | 含浸用樹脂組成物、プリプレグ、及び積層板の製法 |
JPH0488011A (ja) | 1990-07-31 | 1992-03-19 | Sumitomo Chem Co Ltd | エポキシ樹脂組成物 |
JPH11302507A (ja) * | 1998-02-17 | 1999-11-02 | Toray Ind Inc | 繊維強化複合材料用エポキシ樹脂組成物、繊維強化複合材料用中間基材および繊維強化複合材料 |
JP2000309626A (ja) * | 1990-05-21 | 2000-11-07 | Dow Chem Co:The | エポキシ樹脂組成物のゲル化時間調節方法 |
JP2001354788A (ja) | 2000-06-16 | 2001-12-25 | Toho Tenax Co Ltd | ロービングプリプレグ及びその製造方法 |
JP2002012649A (ja) * | 2000-06-28 | 2002-01-15 | Matsushita Electric Works Ltd | エポキシ樹脂組成物、シートモールディングコンパウンド及び成形品 |
JP2002145986A (ja) * | 2000-11-10 | 2002-05-22 | Mitsubishi Rayon Co Ltd | エポキシ樹脂組成物及び該エポキシ樹脂組成物を使用したプリプレグ |
JP2004043769A (ja) | 2002-05-23 | 2004-02-12 | Toho Tenax Co Ltd | エポキシ樹脂組成物並びにロービングプリプレグ及びその製造方法 |
JP2004189811A (ja) | 2002-12-10 | 2004-07-08 | Toho Tenax Co Ltd | 織物プリプレグ |
WO2008077836A2 (de) | 2006-12-21 | 2008-07-03 | BSH Bosch und Siemens Hausgeräte GmbH | Gargerät mit einem garbehälter |
JP2014185256A (ja) * | 2013-03-25 | 2014-10-02 | Yokohama Rubber Co Ltd:The | エポキシ樹脂組成物 |
WO2015001764A1 (ja) * | 2013-07-04 | 2015-01-08 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ及び積層板 |
WO2017150521A1 (ja) * | 2016-02-29 | 2017-09-08 | 三菱ケミカル株式会社 | エポキシ樹脂組成物、成形材料および繊維強化複合材料 |
WO2018190329A1 (ja) * | 2017-04-12 | 2018-10-18 | 三菱ケミカル株式会社 | シートモールディングコンパウンド、および繊維強化複合材料 |
JP2018165832A (ja) | 2018-07-04 | 2018-10-25 | 株式会社ニコン | 駆動システム及び駆動方法、露光装置及び露光方法、並びにデバイス製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103917574B (zh) * | 2011-10-31 | 2017-09-22 | 东丽株式会社 | 纤维强化复合材料用二液型环氧树脂组合物和纤维强化复合材料 |
TWI545155B (zh) * | 2012-06-05 | 2016-08-11 | 三菱麗陽股份有限公司 | 環氧樹脂組成物、預浸絲束、複合材料補強壓力容器以及鋼腱 |
CN106232692B (zh) * | 2014-04-15 | 2020-01-17 | 三菱瓦斯化学株式会社 | 纤维强化复合材料 |
EP3296359B1 (en) * | 2015-05-13 | 2020-07-08 | Mitsubishi Chemical Corporation | Sheet-molding compound and fiber-reinforced composite material |
WO2017033632A1 (ja) * | 2015-08-27 | 2017-03-02 | Dic株式会社 | エポキシ樹脂組成物及び繊維強化複合材料 |
PL3178863T3 (pl) * | 2015-12-11 | 2020-01-31 | Evonik Degussa Gmbh | Kompozycje żywicy epoksydowej do wytwarzania kompozytów stabilnych przy magazynowaniu |
CN110650989B (zh) * | 2017-05-24 | 2023-03-31 | 三菱化学株式会社 | 成型材料、及纤维增强复合材料 |
-
2019
- 2019-09-02 EP EP19856811.5A patent/EP3848405B1/en active Active
- 2019-09-02 ES ES19856811T patent/ES2971016T3/es active Active
- 2019-09-02 CN CN201980057890.0A patent/CN112654666A/zh active Pending
- 2019-09-02 WO PCT/JP2019/034369 patent/WO2020050200A1/ja unknown
- 2019-09-02 JP JP2019550865A patent/JP7036122B2/ja active Active
-
2021
- 2021-03-04 US US17/192,103 patent/US20210221969A1/en active Pending
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191723A (ja) | 1982-05-04 | 1983-11-09 | Dainippon Ink & Chem Inc | エポキシシ−トモ−ルデイングコンパウンドの製造方法 |
JPS6178841A (ja) * | 1984-09-27 | 1986-04-22 | Mitsubishi Gas Chem Co Inc | エポキシ樹脂積層板の製法 |
JPH0288685A (ja) | 1988-08-10 | 1990-03-28 | Teroson Gmbh | 反応性ホツトメルト接着剤 |
JPH0288684A (ja) | 1988-09-27 | 1990-03-28 | Nitto Denko Corp | 接着方法及びそれに使用する液状接着剤 |
JPH02286722A (ja) | 1989-04-28 | 1990-11-26 | Dainippon Ink & Chem Inc | 含浸用樹脂組成物、プリプレグ、及び積層板の製法 |
JP2000309626A (ja) * | 1990-05-21 | 2000-11-07 | Dow Chem Co:The | エポキシ樹脂組成物のゲル化時間調節方法 |
JPH0488011A (ja) | 1990-07-31 | 1992-03-19 | Sumitomo Chem Co Ltd | エポキシ樹脂組成物 |
JPH11302507A (ja) * | 1998-02-17 | 1999-11-02 | Toray Ind Inc | 繊維強化複合材料用エポキシ樹脂組成物、繊維強化複合材料用中間基材および繊維強化複合材料 |
JP2001354788A (ja) | 2000-06-16 | 2001-12-25 | Toho Tenax Co Ltd | ロービングプリプレグ及びその製造方法 |
JP2002012649A (ja) * | 2000-06-28 | 2002-01-15 | Matsushita Electric Works Ltd | エポキシ樹脂組成物、シートモールディングコンパウンド及び成形品 |
JP2002145986A (ja) * | 2000-11-10 | 2002-05-22 | Mitsubishi Rayon Co Ltd | エポキシ樹脂組成物及び該エポキシ樹脂組成物を使用したプリプレグ |
JP2004043769A (ja) | 2002-05-23 | 2004-02-12 | Toho Tenax Co Ltd | エポキシ樹脂組成物並びにロービングプリプレグ及びその製造方法 |
JP2004189811A (ja) | 2002-12-10 | 2004-07-08 | Toho Tenax Co Ltd | 織物プリプレグ |
WO2008077836A2 (de) | 2006-12-21 | 2008-07-03 | BSH Bosch und Siemens Hausgeräte GmbH | Gargerät mit einem garbehälter |
JP2014185256A (ja) * | 2013-03-25 | 2014-10-02 | Yokohama Rubber Co Ltd:The | エポキシ樹脂組成物 |
WO2015001764A1 (ja) * | 2013-07-04 | 2015-01-08 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ及び積層板 |
WO2017150521A1 (ja) * | 2016-02-29 | 2017-09-08 | 三菱ケミカル株式会社 | エポキシ樹脂組成物、成形材料および繊維強化複合材料 |
WO2018190329A1 (ja) * | 2017-04-12 | 2018-10-18 | 三菱ケミカル株式会社 | シートモールディングコンパウンド、および繊維強化複合材料 |
JP2018165832A (ja) | 2018-07-04 | 2018-10-25 | 株式会社ニコン | 駆動システム及び駆動方法、露光装置及び露光方法、並びにデバイス製造方法 |
Non-Patent Citations (2)
Title |
---|
MASAKI SHIMBO: "Nikkan Kogyo Shimbun", 25 December 1987, article "Epoxy Resin Handbook", pages: 155 - 156 |
See also references of EP3848405A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241287A1 (ja) * | 2020-05-27 | 2021-12-02 | 住友化学株式会社 | エポキシ樹脂組成物 |
WO2022045329A1 (ja) | 2020-08-31 | 2022-03-03 | 東レ株式会社 | 成形材料および繊維強化複合材料 |
Also Published As
Publication number | Publication date |
---|---|
JP7036122B2 (ja) | 2022-03-15 |
US20210221969A1 (en) | 2021-07-22 |
EP3848405B1 (en) | 2024-01-17 |
EP3848405A1 (en) | 2021-07-14 |
JPWO2020050200A1 (ja) | 2020-09-10 |
EP3848405A4 (en) | 2021-09-22 |
ES2971016T3 (es) | 2024-06-03 |
CN112654666A (zh) | 2021-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6856157B2 (ja) | シートモールディングコンパウンド、および繊維強化複合材料 | |
JP6292345B2 (ja) | 成形材料および繊維強化複合材料 | |
JPWO2019098028A1 (ja) | 熱硬化性樹脂組成物、プリプレグ、ならびに繊維強化複合材料およびその製造方法 | |
JP7036122B2 (ja) | シートモールディングコンパウンドの製造方法 | |
JP7206993B2 (ja) | 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 | |
WO2019003824A1 (ja) | 繊維強化複合材料用プリフォーム、熱硬化性樹脂組成物、繊維強化複合材料及び繊維強化複合材料の製造方法 | |
US12060466B2 (en) | Molding material, fiber-reinforced composite article and method for producing fiber-reinforced composite article | |
WO2019017365A1 (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP6866936B2 (ja) | シートモールディングコンパウンド、及び成形品 | |
JP6737410B1 (ja) | シートモールディングコンパウンドおよび繊維強化複合材料 | |
JP2019023281A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP7230433B2 (ja) | エポキシ樹脂組成物、成形材料の製造方法、成形材料、繊維強化複合材料及び繊維強化複合材料の製造方法 | |
WO2020071360A1 (ja) | シートモールディングコンパウンド、繊維強化複合材料、繊維強化複合材料の製造方法 | |
JP2019023283A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019550865 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19856811 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019856811 Country of ref document: EP Effective date: 20210406 |