WO2020048277A1 - 一种射频电路及通信设备 - Google Patents
一种射频电路及通信设备 Download PDFInfo
- Publication number
- WO2020048277A1 WO2020048277A1 PCT/CN2019/099321 CN2019099321W WO2020048277A1 WO 2020048277 A1 WO2020048277 A1 WO 2020048277A1 CN 2019099321 W CN2019099321 W CN 2019099321W WO 2020048277 A1 WO2020048277 A1 WO 2020048277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carrier signal
- frequency carrier
- signal
- unit
- power
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 111
- 230000003321 amplification Effects 0.000 claims abstract description 60
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 60
- 230000005540 biological transmission Effects 0.000 claims description 127
- 238000001514 detection method Methods 0.000 claims description 30
- 238000012545 processing Methods 0.000 claims description 18
- 238000002955 isolation Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03G—CONTROL OF AMPLIFICATION
- H03G3/00—Gain control in amplifiers or frequency changers
- H03G3/20—Automatic control
- H03G3/30—Automatic control in amplifiers having semiconductor devices
- H03G3/3036—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
- H03G3/3042—Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
- H04B1/0053—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/401—Circuits for selecting or indicating operating mode
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/0416—Circuits with power amplifiers having gain or transmission power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/0425—Circuits with power amplifiers with linearisation using predistortion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
- H04B2001/0408—Circuits with power amplifiers
- H04B2001/0433—Circuits with power amplifiers with linearisation using feedback
Definitions
- This application relates to the field of communication technologies, and in particular, to a radio frequency circuit and a communication device.
- 5G 5th-Generation, fifth-generation mobile communication technology
- NR New Radio
- LTE Long Term Evolution, Long Term Evolution
- 3GPP 3rd Generation Partnership Project
- LTE communication antenna and 5G communication antenna respectively, which not only increases the number of communication circuits and communication antennas, but also increases the size of the communication equipment. At the same time, it also increases the cost of communication equipment.
- This application proposes a radio frequency circuit and a communication device, which are used to solve the problem of redundant circuits and antennas in a communication device by providing a communication circuit and an antenna in a communication device that support multiple communication protocols.
- the technical solution adopted in the present application is to provide a radio frequency circuit, including: a first adjustable gain amplification unit, a second adjustable gain amplification unit, a combiner, a power amplifier, a directional coupler, and an antenna; the first adjustable A gain amplifying unit, configured to amplify the input first transmit frequency carrier signal and send the amplified first transmit frequency carrier signal to the combiner; and according to the detected first transmitted by the directional coupler, The power value of the transmitting frequency carrier signal controls the amplification gain of the first transmitting frequency carrier signal; the second adjustable gain amplifying unit is configured to amplify the input second transmitting frequency carrier signal, and Sending a second transmitting frequency carrier signal to the combiner; controlling the amplification gain of the second transmitting frequency carrier signal according to the detected power value of the second transmitting frequency carrier signal transmitted by the directional coupler; the A combiner for mixing the input carrier signal of the first transmission frequency and the carrier signal of the second transmission frequency, and transmitting the obtained mixed signal To the power amplifier; the power amplifier
- the first adjustable gain amplifier unit includes: a first adjustable gain amplifier, a first power detection unit, and a first power control unit; and the directional coupler is specifically configured to couple the input mixed signal Transmitting to the first power detection unit; the first power detection unit is configured to detect a power value of a first transmission frequency carrier signal in the mixed signal, and to detect the detected first transmission frequency carrier signal And sending the power value to the first power control unit; the first power control unit is configured to generate a first control by comparing a power value of the first transmit frequency carrier signal with a first reference power value Signal; sending the first control signal to the first adjustable gain amplifier to control the gain of the first adjustable gain amplifier; the first adjustable gain amplifier is used for the first control Under the signal amplification gain control, the first transmission frequency carrier signal is amplified, and the amplified first transmission frequency carrier signal is sent to the combiner.
- the first power detection unit is configured to detect a power value of a first transmission frequency carrier signal in the mixed signal, and to detect the detected first transmission frequency carrier signal And sending the power value to the
- the second adjustable gain amplification unit includes: a second adjustable gain amplifier, a second power detection unit, and a second power control unit; and the directional coupler is specifically configured to couple the input mixed signal Transmitting to the second power detection unit; the second power detection unit is configured to detect a power value of a second transmission frequency carrier signal in the mixed signal, and to detect the detected second transmission frequency carrier signal And sending the power value to the second power control unit; the second power control unit is configured to generate a second control by comparing the power value of the second transmit frequency carrier signal with a second reference power value Signal; sending the second control signal to the second adjustable gain amplifier to control the gain of the second adjustable gain amplifier; the second adjustable gain amplifier is used for the second control Under the signal amplification gain control, the second transmission frequency carrier signal is amplified, and the amplified second transmission frequency carrier signal is sent to the combiner.
- the second power detection unit is configured to detect a power value of a second transmission frequency carrier signal in the mixed signal, and to detect the detected second transmission frequency carrier signal And sending the power value to
- the present application also provides a communication device, including the radio frequency circuit described above.
- a radio frequency circuit and a communication device described in the present application realize that communication circuits of multiple communication protocols share a set of radio frequency communication circuits and an antenna, which effectively simplifies the radio frequency communication circuit in the communication device and reduces the cost of the communication device.
- FIG. 1 is a schematic structural diagram of a radio frequency circuit according to a first embodiment of the present application
- FIG. 2 is a schematic structural diagram of a radio frequency circuit according to a second embodiment of the present application.
- FIG. 3 is a schematic structural diagram of a radio frequency circuit according to a third embodiment of the present application.
- FIG. 4 is a schematic structural diagram of a radio frequency circuit according to a fourth embodiment of the present application.
- the first embodiment of the present application is a radio frequency circuit, as shown in FIG. 1, including the following components: a first adjustable gain amplification unit 10, a second adjustable gain amplification unit 20, a combiner 30, a power amplifier 40, Directional coupler 50 and antenna 60.
- the output terminal of the first adjustable gain amplifier unit 10 is connected to the first input terminal of the combiner 30; the output terminal of the second adjustable gain amplifier unit 20 is connected to the second input terminal of the combiner 30;
- the output of the coupler 30 is connected to the input of the power amplifier 40; the output of the power amplifier 40 is connected to the input of the directional coupler 50; the output of the directional coupler 50 is connected to the antenna 60; the coupling output of the directional coupler 50 Connected to the first adjustable gain amplification unit 10 and the second adjustable gain amplification unit 20, respectively.
- the first adjustable gain amplifying unit 10 is configured to amplify the input first transmitting frequency carrier signal and send the amplified first transmitting frequency carrier signal to the combiner 30; and transmit according to the detected directional coupler 50
- the power value of the first transmission frequency carrier signal is used to control the amplification gain of the first transmission frequency carrier signal.
- the second adjustable gain amplifying unit 20 is configured to amplify the input second transmission frequency carrier signal, and send the amplified second transmission frequency carrier signal to the combiner 30; and transmit according to the detected directional coupler 50
- the power value of the second transmission frequency carrier signal is used to control the amplification gain of the second transmission frequency carrier signal.
- the combiner 30 is configured to mix the inputted first transmission frequency carrier signal and the second transmission frequency carrier signal, and send the obtained mixed signal to the power amplifier 40; wherein the mixed signal includes: the first transmission frequency carrier signal and A second transmit frequency carrier signal.
- the power amplifier 40 is configured to amplify the input mixed signal to a set power, and send the amplified mixed signal to the directional coupler 50.
- the directional coupler 50 is configured to transmit the input mixed signal to the antenna 60 and couple the input mixed signal to the first adjustable gain amplification unit 10 and the second adjustable gain amplification unit 20.
- the first frequency carrier signal is an LTE communication frequency carrier signal; the second frequency carrier signal is a sub-6G frequency carrier signal for 5G communication.
- the first adjustable gain amplifying unit 10 and the second adjustable gain amplifying unit 20 perform automatic gain control according to the power of the communication carrier signal transmitted by the antenna 60, which can effectively correct the effects of the interaction between two communication carrier signals of different frequencies. Gain error, and other errors in the link.
- the radio frequency circuit described in the first embodiment of the present application realizes that the LTE communication circuit and the 5G communication circuit share a set of radio frequency communication circuit and an antenna, which effectively simplifies the radio frequency communication circuit in the communication device and reduces the cost of the communication device.
- the second embodiment of the present application is a radio frequency circuit, as shown in FIG. 2, including the following components: a first adjustable gain amplification unit 10, a second adjustable gain amplification unit 20, a combiner 30, a power amplifier 40, Directional coupler 50, antenna 60 and band-pass filter 70;
- the output terminal of the first adjustable gain amplifier unit 10 is connected to the first input terminal of the combiner 30; the output terminal of the second adjustable gain amplifier unit 20 is connected to the second input terminal of the combiner 30;
- the output of the amplifier 30 is connected to the input of the power amplifier 40; the output of the power amplifier 40 is connected to the input of the directional coupler 50; the band-pass filter 70 is connected to the output of the directional coupler 50 and the antenna 60;
- the coupling output ends of the coupler 50 are respectively connected to the first adjustable gain amplification unit 10 and the second adjustable gain amplification unit 20.
- the first adjustable gain amplifying unit 10 is configured to amplify the input first transmitting frequency carrier signal and send the amplified first transmitting frequency carrier signal to the combiner 30; and transmit according to the detected directional coupler 50
- the power value of the first transmission frequency carrier signal is used to control the amplification gain of the first transmission frequency carrier signal.
- the second adjustable gain amplifying unit 20 is configured to amplify the input second transmission frequency carrier signal, and send the amplified second transmission frequency carrier signal to the combiner 30; and transmit according to the detected directional coupler 50
- the power value of the second transmission frequency carrier signal is used to control the amplification gain of the second transmission frequency carrier signal.
- the combiner 30 is configured to mix the inputted first transmission frequency carrier signal and the second transmission frequency carrier signal, and send the obtained mixed signal to the power amplifier 40; wherein the mixed signal includes: the first transmission frequency carrier signal and A second transmit frequency carrier signal.
- the power amplifier 40 is configured to amplify the input mixed signal to a set power, and send the amplified mixed signal to the directional coupler 50.
- the directional coupler 50 is configured to transmit the input mixed signal to the antenna 60 and couple the input mixed signal to the first adjustable gain amplification unit 10 and the second adjustable gain amplification unit 20.
- the band-pass filter 70 is used for filtering clutter signals other than the mixed signals transmitted to the antenna 60 by the directional coupler 50.
- the first adjustable gain amplifier unit 10 includes a first adjustable gain amplifier 11, a first power detection unit 12, and a first power control unit 13.
- the directional coupler 50 is specifically configured to couple and transmit the input mixed signal to the first power detection unit 12.
- the first power detection unit 12 is configured to detect a power value of a first transmission frequency carrier signal in the mixed signal, and send the detected power value of the first transmission frequency carrier signal to the first power control unit 13.
- the first power control unit 13 is configured to generate a first control signal by comparing the power value of the first transmission frequency carrier signal with a first reference power value; and sending the first control signal to the first adjustable gain amplifier 11 To control the gain of the first adjustable gain amplifier 11.
- the first adjustable gain amplifier 11 is configured to amplify the first transmission frequency carrier signal under the control of the amplification gain of the first control signal, and send the amplified first transmission frequency carrier signal to the combiner.
- the second adjustable gain amplifier unit 20 includes a second adjustable gain amplifier 21, a second power detection unit 22, and a second power control unit 23.
- the directional coupler 50 is specifically configured to couple and transmit the input mixed signal to the second power detection unit 22.
- the second power detection unit 22 is configured to detect a power value of a second transmission frequency carrier signal in the mixed signal, and send the detected power value of the second transmission frequency carrier signal to the second power control unit 23.
- the second power control unit 23 is configured to generate a second control signal by comparing the power value of the second transmit frequency carrier signal with a second reference power value; and sending the second control signal to the second adjustable gain amplifier 21 To control the gain of the second adjustable gain amplifier 21.
- the second adjustable gain amplifier 21 is configured to amplify the second transmission frequency carrier signal under the control of the amplification gain of the second control signal, and send the amplified second transmission frequency carrier signal to the combiner.
- the first power detecting unit 12 may be specifically configured to: down-convert the first transmission frequency carrier signal through the first transmission frequency receiver, and detect the power of the first transmission frequency carrier signal after the down conversion Value; sending the detected power value of the first transmission frequency carrier signal after down conversion to the first power control unit 13.
- the second power detecting unit 22 may be specifically configured to: downconvert the second transmission frequency carrier signal through the second transmission frequency receiver, and detect the power value of the second transmission frequency carrier signal after the downconversion; and The power value of the down-converted carrier signal of the second transmission frequency is sent to the second power control unit 23.
- the first frequency carrier signal is an LTE communication frequency carrier signal; the second frequency carrier signal is a sub-6G frequency carrier signal for 5G communication.
- the first adjustable gain amplifying unit 10 and the second adjustable gain amplifying unit 20 perform automatic gain control according to the power of the communication carrier signal transmitted by the antenna 60, which can effectively correct the effects of the interaction between two communication carrier signals of different frequencies. Gain error, and other errors in the link.
- the radio frequency circuit described in the second embodiment of the present application realizes that the LTE communication circuit and the 5G communication circuit share a set of radio frequency communication circuit and an antenna, which effectively simplifies the radio frequency communication circuit in the communication device and reduces the cost of the communication device.
- a third embodiment of the present application is a radio frequency circuit, as shown in FIG. 3, including the following components: a first adjustable gain amplification unit 10, a second adjustable gain amplification unit 20, a combiner 30, a power amplifier 40, The directional coupler 50, the antenna 60, and the band-pass filter 70.
- the output terminal of the first adjustable gain amplifier unit 10 is connected to the first input terminal of the combiner 30; the output terminal of the second adjustable gain amplifier unit 20 is connected to the second input terminal of the combiner 30;
- the output of the amplifier 30 is connected to the input of the power amplifier 40; the output of the power amplifier 40 is connected to the input of the directional coupler 50; the band-pass filter 70 is connected to the output of the directional coupler 50 and the antenna 60;
- the coupling output ends of the coupler 50 are respectively connected to the first adjustable gain amplification unit 10 and the second adjustable gain amplification unit 20.
- the first adjustable gain amplifying unit 10 is configured to amplify the input first transmitting frequency carrier signal and send the amplified first transmitting frequency carrier signal to the combiner 30; and transmit according to the detected directional coupler 50
- the power value of the first transmission frequency carrier signal is used to control the amplification gain of the first transmission frequency carrier signal.
- the second adjustable gain amplifying unit 20 is configured to amplify the input second transmission frequency carrier signal, and send the amplified second transmission frequency carrier signal to the combiner 30; and transmit according to the detected directional coupler 50
- the power value of the second transmission frequency carrier signal is used to control the amplification gain of the second transmission frequency carrier signal.
- the combiner 30 is configured to mix the inputted first transmission frequency carrier signal and the second transmission frequency carrier signal, and send the obtained mixed signal to the power amplifier 40; wherein the mixed signal includes: the first transmission frequency carrier signal and A second transmit frequency carrier signal.
- the power amplifier 40 is configured to amplify the input mixed signal to a set power, and send the amplified mixed signal to the directional coupler 50.
- the directional coupler 50 is configured to transmit the input mixed signal to the antenna 60 and couple the input mixed signal to the first adjustable gain amplification unit 10 and the second adjustable gain amplification unit 20.
- the band-pass filter 70 is used for filtering clutter signals other than the mixed signals transmitted to the antenna 60 by the directional coupler 50.
- the first adjustable gain amplifier unit 10 includes a first adjustable gain amplifier 11, a first power detection unit 12, and a first power control unit 13.
- the directional coupler 50 is specifically configured to couple and transmit the input mixed signal to the first power detection unit 12.
- the first power detection unit 12 is configured to detect a power value of a first transmission frequency carrier signal in the mixed signal, and send the detected power value of the first transmission frequency carrier signal to the first power control unit 13.
- the first power control unit 13 is configured to generate a first control signal by comparing the power value of the first transmission frequency carrier signal with a first reference power value; and sending the first control signal to the first adjustable gain amplifier 11 To control the gain of the first adjustable gain amplifier 11.
- the first adjustable gain amplifier 11 is configured to amplify the first transmission frequency carrier signal under the control of the amplification gain of the first control signal, and send the amplified first transmission frequency carrier signal to the combiner.
- the second adjustable gain amplifier unit 20 includes a second adjustable gain amplifier 21, a second power detection unit 22, and a second power control unit 23.
- the directional coupler 50 is specifically configured to couple and transmit the input mixed signal to the second power detection unit 22.
- the second power detection unit 22 is configured to detect a power value of a second transmission frequency carrier signal in the mixed signal, and send the detected power value of the second transmission frequency carrier signal to the second power control unit 23.
- the second power control unit 23 is configured to generate a second control signal by comparing the power value of the second transmit frequency carrier signal with a second reference power value; and sending the second control signal to the second adjustable gain amplifier 21 To control the gain of the second adjustable gain amplifier 21.
- the second adjustable gain amplifier 21 is configured to amplify the second transmission frequency carrier signal under the control of the amplification gain of the second control signal, and send the amplified second transmission frequency carrier signal to the combiner.
- the first power detecting unit 12 may be specifically configured to: down-convert the first transmission frequency carrier signal through the first transmission frequency receiver, and detect the power of the first transmission frequency carrier signal after the down conversion Value; sending the detected power value of the first transmission frequency carrier signal after down conversion to the first power control unit 13.
- the second power detecting unit 22 may be specifically configured to: downconvert the second transmission frequency carrier signal through the second transmission frequency receiver, and detect the power value of the second transmission frequency carrier signal after the downconversion; and The power value of the down-converted carrier signal of the second transmission frequency is sent to the second power control unit 23.
- the first frequency carrier signal is an LTE communication frequency carrier signal; the second frequency carrier signal is a sub-6G frequency carrier signal for 5G communication.
- the first adjustable gain amplifying unit 10 and the second adjustable gain amplifying unit 20 perform automatic gain control according to the power of the communication carrier signal transmitted by the antenna 60, which can effectively correct the effects of the interaction between two communication carrier signals of different frequencies. Gain error, and other errors in the link.
- the radio frequency circuit further includes a first distortion control unit 81 and / or a second distortion control unit 82.
- the directional coupler 50 is further configured to couple and transmit the input mixed signal to the first distortion control unit 81 and / or the second distortion control unit 82.
- the first distortion control unit 81 is configured to demodulate a first transmit frequency carrier signal in the input mixed signal to obtain first data information; perform distortion analysis on the first data information to amplify the input to the first adjustable gain
- the first transmission frequency carrier signal of the unit 10 performs predistortion processing.
- a second distortion control unit 82 configured to demodulate a second transmit frequency carrier signal in the input mixed signal to obtain second data information; perform distortion analysis on the second data information to amplify the input to the second adjustable gain
- the second transmit frequency carrier signal of the unit 20 is subjected to predistortion processing.
- Predistortion processing is performed on the first frequency carrier signal input to the first adjustable gain amplifying unit 11 through the first distortion control unit 81, and predistortion processing can be performed on the first frequency carrier signal according to the feedback distortion data to correct the channel and the dual frequency. Signal quality degradation due to carrier intermodulation.
- Predistortion processing is performed on the second frequency carrier signal input to the second adjustable gain amplifying unit 21 through the first distortion control unit 82, and predistortion processing can be performed on the second frequency carrier signal according to the feedback distortion data to correct the channel and the dual frequency. Signal quality degradation due to carrier intermodulation.
- the radio frequency circuit described in the third embodiment of the present application realizes that the LTE communication circuit and the 5G communication circuit share a set of radio frequency communication circuit and an antenna, which effectively simplifies the radio frequency communication circuit in the communication equipment and reduces the cost of the communication equipment.
- a fourth embodiment of the present application is a radio frequency circuit, as shown in FIG. 4, including the following components: a first adjustable gain amplification unit 10, a second adjustable gain amplification unit 20, a combiner 30, a power amplifier 40, The directional coupler 50, the antenna 60, and the band-pass filter 70.
- the output terminal of the first adjustable gain amplifier unit 10 is connected to the first input terminal of the combiner 30; the output terminal of the second adjustable gain amplifier unit 20 is connected to the second input terminal of the combiner 30;
- the output of the amplifier 30 is connected to the input of the power amplifier 40; the output of the power amplifier 40 is connected to the input of the directional coupler 50; the band-pass filter 70 is connected to the output of the directional coupler 50 and the antenna 60;
- the coupling output ends of the coupler 50 are respectively connected to the first adjustable gain amplification unit 10 and the second adjustable gain amplification unit 20.
- the first adjustable gain amplifying unit 10 is configured to amplify the input first transmitting frequency carrier signal and send the amplified first transmitting frequency carrier signal to the combiner 30; and transmit according to the detected directional coupler 50
- the power value of the first transmission frequency carrier signal is used to control the amplification gain of the first transmission frequency carrier signal.
- the second adjustable gain amplifying unit 20 is configured to amplify the input second transmission frequency carrier signal, and send the amplified second transmission frequency carrier signal to the combiner 30; and transmit according to the detected directional coupler 50
- the power value of the second transmission frequency carrier signal is used to control the amplification gain of the second transmission frequency carrier signal.
- the combiner 30 is configured to mix the inputted first transmission frequency carrier signal and the second transmission frequency carrier signal, and send the obtained mixed signal to the power amplifier 40; wherein the mixed signal includes: the first transmission frequency carrier signal and A second transmit frequency carrier signal.
- the power amplifier 40 is configured to amplify the input mixed signal to a set power, and send the amplified mixed signal to the directional coupler 50.
- the directional coupler 50 is configured to transmit the input mixed signal to the antenna 60 and couple the input mixed signal to the first adjustable gain amplification unit 10 and the second adjustable gain amplification unit 20.
- the band-pass filter 70 is used for filtering clutter signals other than the mixed signals transmitted to the antenna 60 by the directional coupler 50.
- the first adjustable gain amplifier unit 10 includes a first adjustable gain amplifier 11, a first power detection unit 12, and a first power control unit 13.
- the directional coupler 50 is specifically configured to couple and transmit the input mixed signal to the first power detection unit 12.
- the first power detection unit 12 is configured to detect a power value of a first transmission frequency carrier signal in the mixed signal, and send the detected power value of the first transmission frequency carrier signal to the first power control unit 13.
- the first power control unit 13 is configured to generate a first control signal by comparing the power value of the first transmission frequency carrier signal with a first reference power value; and sending the first control signal to the first adjustable gain amplifier 11 To control the gain of the first adjustable gain amplifier 11.
- the first adjustable gain amplifier 11 is configured to amplify the first transmission frequency carrier signal under the control of the amplification gain of the first control signal, and send the amplified first transmission frequency carrier signal to the combiner.
- the second adjustable gain amplifier unit 20 includes a second adjustable gain amplifier 21, a second power detection unit 22, and a second power control unit 23.
- the directional coupler 50 is specifically configured to couple and transmit the input mixed signal to the second power detection unit 22.
- the second power detecting unit 22 is configured to detect the power value of the second transmission frequency carrier signal in the mixed signal, and send the detected power value of the second transmission frequency carrier signal to the second power control unit 23.
- the second power control unit 23 is configured to generate a second control signal by comparing the power value of the second transmit frequency carrier signal with a second reference power value; and sending the second control signal to the second adjustable gain amplifier 21 To control the gain of the second adjustable gain amplifier 21.
- the second adjustable gain amplifier 21 is configured to amplify the second transmission frequency carrier signal under the control of the amplification gain of the second control signal, and send the amplified second transmission frequency carrier signal to the combiner.
- the first power detecting unit 12 may be specifically configured to: down-convert the first transmission frequency carrier signal through the first transmission frequency receiver, and detect the power of the first transmission frequency carrier signal after the down conversion Value; sending the detected power value of the first transmission frequency carrier signal after down conversion to the first power control unit 13.
- the second power detecting unit 22 may be specifically configured to: downconvert the second transmission frequency carrier signal through the second transmission frequency receiver, and detect the power value of the second transmission frequency carrier signal after the downconversion; and The power value of the down-converted carrier signal of the second transmission frequency is sent to the second power control unit 23.
- the first frequency carrier signal is an LTE communication frequency carrier signal; the second frequency carrier signal is a sub-6G frequency carrier signal for 5G communication.
- the first adjustable gain amplifying unit 10 and the second adjustable gain amplifying unit 20 perform automatic gain control according to the power of the communication carrier signal transmitted by the antenna 60, which can effectively correct the effects of the interaction between two communication carrier signals of different frequencies. Gain error, and other errors in the link.
- the radio frequency circuit further includes: a first distortion control unit 81 and / or a second distortion control unit 82;
- the directional coupler 50 is further configured to couple and transmit the input mixed signal to the first distortion control unit 81 and / or the second distortion control unit 82.
- the first distortion control unit 81 is configured to demodulate a first transmit frequency carrier signal in the input mixed signal to obtain first data information; perform distortion analysis on the first data information to amplify the input to the first adjustable gain
- the first transmission frequency carrier signal of the unit 10 performs predistortion processing.
- a second distortion control unit 82 configured to demodulate a second transmit frequency carrier signal in the input mixed signal to obtain second data information; perform distortion analysis on the second data information to amplify the input to the second adjustable gain
- the second transmit frequency carrier signal of the unit 20 is subjected to predistortion processing.
- Predistortion processing is performed on the first frequency carrier signal input to the first adjustable gain amplifying unit 11 through the first distortion control unit 81, and predistortion processing can be performed on the first frequency carrier signal according to the feedback distortion data to correct the channel and the dual frequency. Signal quality degradation due to carrier intermodulation.
- Predistortion processing is performed on the second frequency carrier signal input to the second adjustable gain amplifying unit 21 through the first distortion control unit 82, and predistortion processing can be performed on the second frequency carrier signal according to the feedback distortion data to correct the channel and double Signal quality degradation due to carrier intermodulation.
- the radio frequency circuit further includes a transmitting and receiving combining isolation unit 91, a receiving amplifier 92, a power divider 93, a first receiving unit 94, and a second receiving unit 95.
- the transmitting input terminal of the transmitting and receiving combining isolation unit 91 is connected to the output terminal of the power amplifier 32; the band-pass filter 70 is respectively connected to the transmitting output / receiving input terminal of the transmitting and receiving combining isolation unit 91 and the antenna 60; transmitting and receiving The receiving output of the combined isolation unit 91 is connected to the input of the receiving amplifier 92; the output of the receiving amplifier 92 is connected to the input of the power divider 93; the two outputs of the power divider 93 are respectively connected to the first receiving unit 94 It is connected to the second receiving unit 95.
- the directional coupler 50 is specifically configured to transmit the input mixed signal to the transmitting and receiving combining isolation unit 91.
- the transmitting and receiving combining isolation unit 91 is configured to transmit the input mixed signal to the antenna 60; and transmit the received signal received by the antenna 60 to the receiving amplifier 92.
- the receiving amplifier 92 is configured to amplify the received received signal and transmit the amplified received signal to the power divider 93.
- the power divider 93 is configured to transmit the received reception signals to the first receiving unit 94 and the second receiving unit 95, respectively.
- the first receiving unit 94 is configured to sequentially perform mixing and demodulation processing on a first transmission frequency carrier signal in the received received signal to obtain first communication data information.
- the second receiving unit 95 is configured to sequentially perform frequency mixing and demodulation processing on a second transmission frequency carrier signal in the received received signal to obtain second communication data information.
- the transmitting and receiving combining and isolating unit 91 is a circulator, a duplexer, or a radio frequency single-pole double-position switch.
- the receiving amplifier 92 is a low-noise amplifier, and the noise figure of the receiving amplifier 92 is less than a set noise threshold.
- the receiving amplifier 92 can effectively reduce the noise figures of the first receiving unit 94 and the second receiving unit 95.
- the band-pass filter 70 is specifically configured to: filter out clutter signals other than the mixed signal transmitted to the antenna by the transmitting and receiving combining isolation unit; and filter the receiving signal transmitted by the antenna to the transmitting and receiving combining isolation unit Other than clutter signals.
- the passband bandwidth of the band-pass filter 70 is less than a set bandwidth threshold; the band-pass filter 70 can effectively filter out clutter signals generated by intermodulation of the first frequency carrier signal and the second frequency carrier signal.
- the radio frequency circuit described in the fourth embodiment of the present application realizes that the LTE communication circuit and the 5G communication circuit share a set of radio frequency communication circuit and an antenna, which effectively simplifies the radio frequency communication circuit in the communication equipment and reduces the cost of the communication equipment.
- the fifth embodiment of the present application is a communication device including some or all of the components in any one of the first embodiment to the fourth embodiment of the present application.
- the communication device includes, but is not limited to, devices such as a user terminal and a communication base station.
- the communication device described in the fifth embodiment of the present application realizes that the LTE communication circuit and the 5G communication circuit share a set of radio frequency communication circuits and an antenna, which effectively simplifies the radio frequency communication circuits in the communication equipment and reduces the cost of the communication equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Transmitters (AREA)
Abstract
本申请提出了一种射频电路,包括:第一可调增益放大单元(10)、第二可调增益放大单元(20)、合路器(30)、功率放大器(40)、定向耦合器(50)和天线(60);所述第一可调增益放大单元(10),用于对输入的第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至所述合路器(30);根据检测到的所述定向耦合器(50)传输的第一发射频率载波信号的功率值,对第一发射频率载波信号的放大增益进行控制。本申请还公开了一种通信设备,通过实施上述方案,实现了多种通信协议的通信电路共用一套射频通信电路和一个天线,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
Description
交叉引用
本申请引用于2018年9月5日递交的名称为“一种射频电路及通信设备”的第201811031540.0号中国专利申请,其通过引用被全部并入本申请。
本申请涉及通信技术领域,尤其涉及一种射频电路及通信设备。
随着通信技术的快速发展,5G(5th-Generation,第五代移动通信技术)NR(NewRadio,新空口)是在LTE(Long Term Evolution,长期演进)基础上演进出的新一代无线通信技术。根据3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)提出的频段规划,5G通信网络规划使用sub 6G和毫米波两种频谱资源,为了使通信设备同时支持LTE通信网络和5G通信网络,常规设计需要在通信设备中分别设置LTE射频通信电路和5G射频通信电路,并且需要分别设置LTE通信天线和5G通信天线,不仅增大了通信电路和通信天线的数量,也增大了通信设备的体积,同时也增加了通信设备的成本。
发明内容
本申请提出了一种射频电路及通信设备,用以解决现有技术中在通信设备中分别设置支持多种通信协议的通信电路和天线,导致通信设备中电路和天线冗余的问题。
本申请采用的技术方案是提供一种射频电路,包括:第一可调增益放大单元、第二可调增益放大单元、合路器、功率放大器、定向耦合器和天线;所述第一可调增益放大单元,用于对输入的第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至所述合路器;根据检测到的所述定向耦合器传输的第一发射频率载波信号的功率值,对第一发射频率载波信号的放大增益进行控制;所述第二可调增益放大单元,用于对输入的第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至所述合路器;根据检测到的所述定向耦合器传输的第二发射频率载波信号的功率值,对第二发射频率载波信号的放大增益进行控制;所述合路器,用于将输入的第一发射频率载波信号和第二发射频率载波信号进行混合,将得到的混合信号发送至所述功率放大器;所述功率放大器,用于将输入的混合信号放大至设定功率,并将放大后的混合信号发送至所述定向耦合器;所述定向耦合器,用于将输入的混合信号传输至所述天线,并将输入的混合信号耦合传输至所述第一可调增益放大单元和所述第二可调增益放大单元。
可选的,所述第一可调增益放大单元,包括:第一可调增益放大器、第一功率检测单元和第一功率控制单元;所述定向耦合器,具体用于将输入的混合信号耦合传输至所述第一功率检测单元;所述第一功率检测单元,用于检测所述混合信号中的第一发射频率载波信号的功率值,并将检测到的所述第一发射频率载波信号的功率值发送至所述第一功率控制单元;所述第一功率控制单元,用于通过对所述第一发射频率载波信号的功率值与第一基准功率值进行比较,以生成第一控制信号;将所述第一控制信号发送至所述第一可调增益放大器,以控制所述第一可调增益放大器的增益;所述第一可调增益放大器,用于在所述第一控制信号的放大增益控制下,对第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至所述合路器。
可选的,所述第二可调增益放大单元,包括:第二可调增益放大器、第二功率检测单元和第二功率控制单元;所述定向耦合器,具体用于将输入的混 合信号耦合传输至所述第二功率检测单元;所述第二功率检测单元,用于检测所述混合信号中的第二发射频率载波信号的功率值,并将检测到的所述第二发射频率载波信号的功率值发送至所述第二功率控制单元;所述第二功率控制单元,用于通过对所述第二发射频率载波信号的功率值与第二基准功率值进行比较,以生成第二控制信号;将所述第二控制信号发送至所述第二可调增益放大器,以控制所述第二可调增益放大器的增益;所述第二可调增益放大器,用于在所述第二控制信号的放大增益控制下,对第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至所述合路器。
本申请还提供一种通信设备,包括:上述的射频电路。
本申请所述一种射频电路及通信设备,实现了多种通信协议的通信电路共用一套射频通信电路和一个天线,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
图1为本申请第一实施例所述的射频电路组成结构示意图;
图2为本申请第二实施例所述的射频电路组成结构示意图;
图3为本申请第三实施例所述的射频电路组成结构示意图;
图4为本申请第四实施例所述的射频电路组成结构示意图。
为更进一步阐述本申请为达成预定目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本申请进行详细说明如后。
本申请第一实施例,一种射频电路,如图1所示,包括以下组成部分:第一可调增益放大单元10、第二可调增益放大单元20、合路器30、功率放大器40、定向耦合器50和天线60。
其中,第一可调增益放大单元10的输出端与合路器30的第一输入端连接;第二可调增益放大单元20的输出端与合路器30的第二输入端连接;合路器30的输出端与功率放大器40的输入端连接;功率放大器40的输出端与定向耦合器50的输入端连接;定向耦合器50的输出端与天线60连接;定向耦合器50的耦合输出端分别与第一可调增益放大单元10和第二可调增益放大单元20连接。
第一可调增益放大单元10,用于对输入的第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至合路器30;根据检测到的定向耦合器50传输的第一发射频率载波信号的功率值,对第一发射频率载波信号的放大增益进行控制。
第二可调增益放大单元20,用于对输入的第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至合路器30;根据检测到的定向耦合器50传输的第二发射频率载波信号的功率值,对第二发射频率载波信号的放大增益进行控制。
合路器30,用于将输入的第一发射频率载波信号和第二发射频率载波信号进行混合,将得到的混合信号发送至功率放大器40;其中,混合信号包括:第一发射频率载波信号和第二发射频率载波信号。
功率放大器40,用于将输入的混合信号放大至设定功率,并将放大后的混合信号发送至定向耦合器50。
定向耦合器50,用于将输入的混合信号传输至天线60,并将输入的混合信号耦合传输至第一可调增益放大单元10和第二可调增益放大单元20。
在本实施例中,第一频率载波信号为LTE通信频率载波信号;第二频率载波信号为5G通信的sub 6G频率载波信号。
将两个不同频率的通信载波信号通过一个射频电路进行放大,并通过一个天线60进行两个不同频率的通信载波信号的发射,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
第一可调增益放大单元10和第二可调增益放大单元20分别根据天线60发射的通信载波信号的功率,进行自动增益控制,能够有效修正两个不同频率的通信载波信号相互影响带来的增益误差,及链路其它误差。
本申请第一实施例所述的射频电路,实现了LTE通信电路和5G通信电路共用一套射频通信电路和一个天线,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
本申请第二实施例,一种射频电路,如图2所示,包括以下组成部分:第一可调增益放大单元10、第二可调增益放大单元20、合路器30、功率放大器40、定向耦合器50、天线60和带通滤波器70;
其中,第一可调增益放大单元10的输出端与合路器30的第一输入端连接;第二可调增益放大单元20的输出端与合路器30的第二输入端连接;合路器30的输出端与功率放大器40的输入端连接;功率放大器40的输出端与定向耦合器50的输入端连接;带通滤波器70分别与定向耦合器50的输出端及天线60连接;定向耦合器50的耦合输出端分别与第一可调增益放大单元10和第二可调增益放大单元20连接。
第一可调增益放大单元10,用于对输入的第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至合路器30;根据检测到的定向耦合器50传输的第一发射频率载波信号的功率值,对第一发射频率载波信号的放大增益进行控制。
第二可调增益放大单元20,用于对输入的第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至合路器30;根据检测到的定向耦合器50传输的第二发射频率载波信号的功率值,对第二发射频率载波信号的放大增益进行控制。
合路器30,用于将输入的第一发射频率载波信号和第二发射频率载波信号进行混合,将得到的混合信号发送至功率放大器40;其中,混合信号包括:第一发射频率载波信号和第二发射频率载波信号。
功率放大器40,用于将输入的混合信号放大至设定功率,并将放大后的混合信号发送至定向耦合器50。
定向耦合器50,用于将输入的混合信号传输至天线60,并将输入的混合信号耦合传输至第一可调增益放大单元10和第二可调增益放大单元20。
带通滤波器70,用于滤除定向耦合器50传输至天线60的混合信号以外的杂波信号。
在本实施例中,第一可调增益放大单元10,包括:第一可调增益放大器11、第一功率检测单元12和第一功率控制单元13。
定向耦合器50,具体用于将输入的混合信号耦合传输至第一功率检测单元12。
第一功率检测单元12,用于检测混合信号中的第一发射频率载波信号的功率值,并将检测到的第一发射频率载波信号的功率值发送至第一功率控制单元13。
第一功率控制单元13,用于通过对第一发射频率载波信号的功率值与第一基准功率值进行比较,以生成第一控制信号;将第一控制信号发送至第一可调增益放大器11,以控制第一可调增益放大器11的增益。
第一可调增益放大器11,用于在第一控制信号的放大增益控制下,对第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至合路器。
第二可调增益放大单元20,包括:第二可调增益放大器21、第二功率检测单元22和第二功率控制单元23。
定向耦合器50,具体用于将输入的混合信号耦合传输至第二功率检测单元22。
第二功率检测单元22,用于检测混合信号中的第二发射频率载波信号的功率值,并将检测到的第二发射频率载波信号的功率值发送至第二功率控制单元23。
第二功率控制单元23,用于通过对第二发射频率载波信号的功率值与第二基准功率值进行比较,以生成第二控制信号;将第二控制信号发送至第二可调增益放大器21,以控制第二可调增益放大器21的增益。
第二可调增益放大器21,用于在第二控制信号的放大增益控制下,对第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至合路器。
在本实施例中,第一功率检测单元12,可以具体用于:将第一发射频率载波信号通过第一发射频率接收机进行下变频,并检测下变频后的第一发射频率载波信号的功率值;将检测到的下变频后的第一发射频率载波信号的功率值发送至第一功率控制单元13。
第二功率检测单元22,可以具体用于:将第二发射频率载波信号通过第二发射频率接收机进行下变频,并检测下变频后的第二发射频率载波信号的功率值;并将检测到的下变频后的第二发射频率载波信号的功率值发送至第二功率控制单元23。
在本实施例中,第一频率载波信号为LTE通信频率载波信号;第二频率载波信号为5G通信的sub 6G频率载波信号。
将两个不同频率的通信载波信号通过一个射频电路进行放大,并通过一个天线60进行两个不同频率的通信载波信号的发射,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
第一可调增益放大单元10和第二可调增益放大单元20分别根据天线60发射的通信载波信号的功率,进行自动增益控制,能够有效修正两个不同频率的通信载波信号相互影响带来的增益误差,及链路其它误差。
本申请第二实施例所述的射频电路,实现了LTE通信电路和5G通信电路共用一套射频通信电路和一个天线,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
本申请第三实施例,一种射频电路,如图3所示,包括以下组成部分: 第一可调增益放大单元10、第二可调增益放大单元20、合路器30、功率放大器40、定向耦合器50、天线60和带通滤波器70。
其中,第一可调增益放大单元10的输出端与合路器30的第一输入端连接;第二可调增益放大单元20的输出端与合路器30的第二输入端连接;合路器30的输出端与功率放大器40的输入端连接;功率放大器40的输出端与定向耦合器50的输入端连接;带通滤波器70分别与定向耦合器50的输出端及天线60连接;定向耦合器50的耦合输出端分别与第一可调增益放大单元10和第二可调增益放大单元20连接。
第一可调增益放大单元10,用于对输入的第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至合路器30;根据检测到的定向耦合器50传输的第一发射频率载波信号的功率值,对第一发射频率载波信号的放大增益进行控制。
第二可调增益放大单元20,用于对输入的第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至合路器30;根据检测到的定向耦合器50传输的第二发射频率载波信号的功率值,对第二发射频率载波信号的放大增益进行控制。
合路器30,用于将输入的第一发射频率载波信号和第二发射频率载波信号进行混合,将得到的混合信号发送至功率放大器40;其中,混合信号包括:第一发射频率载波信号和第二发射频率载波信号。
功率放大器40,用于将输入的混合信号放大至设定功率,并将放大后的混合信号发送至定向耦合器50。
定向耦合器50,用于将输入的混合信号传输至天线60,并将输入的混合信号耦合传输至第一可调增益放大单元10和第二可调增益放大单元20。
带通滤波器70,用于滤除定向耦合器50传输至天线60的混合信号以外的杂波信号。
在本实施例中,第一可调增益放大单元10,包括:第一可调增益放大器 11、第一功率检测单元12和第一功率控制单元13。
定向耦合器50,具体用于将输入的混合信号耦合传输至第一功率检测单元12。
第一功率检测单元12,用于检测混合信号中的第一发射频率载波信号的功率值,并将检测到的第一发射频率载波信号的功率值发送至第一功率控制单元13。
第一功率控制单元13,用于通过对第一发射频率载波信号的功率值与第一基准功率值进行比较,以生成第一控制信号;将第一控制信号发送至第一可调增益放大器11,以控制第一可调增益放大器11的增益。
第一可调增益放大器11,用于在第一控制信号的放大增益控制下,对第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至合路器。
第二可调增益放大单元20,包括:第二可调增益放大器21、第二功率检测单元22和第二功率控制单元23。
定向耦合器50,具体用于将输入的混合信号耦合传输至第二功率检测单元22。
第二功率检测单元22,用于检测混合信号中的第二发射频率载波信号的功率值,并将检测到的第二发射频率载波信号的功率值发送至第二功率控制单元23。
第二功率控制单元23,用于通过对第二发射频率载波信号的功率值与第二基准功率值进行比较,以生成第二控制信号;将第二控制信号发送至第二可调增益放大器21,以控制第二可调增益放大器21的增益。
第二可调增益放大器21,用于在第二控制信号的放大增益控制下,对第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至合路器。
在本实施例中,第一功率检测单元12,可以具体用于:将第一发射频率 载波信号通过第一发射频率接收机进行下变频,并检测下变频后的第一发射频率载波信号的功率值;将检测到的下变频后的第一发射频率载波信号的功率值发送至第一功率控制单元13。
第二功率检测单元22,可以具体用于:将第二发射频率载波信号通过第二发射频率接收机进行下变频,并检测下变频后的第二发射频率载波信号的功率值;并将检测到的下变频后的第二发射频率载波信号的功率值发送至第二功率控制单元23。
在本实施例中,第一频率载波信号为LTE通信频率载波信号;第二频率载波信号为5G通信的sub 6G频率载波信号。
将两个不同频率的通信载波信号通过一个射频电路进行放大,并通过一个天线60进行两个不同频率的通信载波信号的发射,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
第一可调增益放大单元10和第二可调增益放大单元20分别根据天线60发射的通信载波信号的功率,进行自动增益控制,能够有效修正两个不同频率的通信载波信号相互影响带来的增益误差,及链路其它误差。
在本实施中,射频电路还包括:第一失真控制单元81和/或第二失真控制单元82。
定向耦合器50,还用于将输入的混合信号耦合传输至第一失真控制单元81和/或第二失真控制单元82。
第一失真控制单元81,用于对输入的混合信号中的第一发射频率载波信号解调,得到第一数据信息;对第一数据信息进行失真分析,以对输入至第一可调增益放大单元10的第一发射频率载波信号进行预失真处理。
第二失真控制单元82,用于对输入的混合信号中的第二发射频率载波信号解调,得到第二数据信息;对第二数据信息进行失真分析,以对输入至第二可调增益放大单元20的第二发射频率载波信号进行预失真处理。
通过第一失真控制单元81对输入至第一可调增益放大单元11的第一频 率载波信号进行预失真处理,能够根据反馈的失真数据对第一频率载波信号进行预失真处理以纠正信道和双载波互调带来的信号质量恶化。
通过第一失真控制单元82对输入至第二可调增益放大单元21的第二频率载波信号进行预失真处理,能够根据反馈的失真数据对第二频率载波信号进行预失真处理以纠正信道和双载波互调带来的信号质量恶化。
本申请第三实施例所述的射频电路,实现了LTE通信电路和5G通信电路共用一套射频通信电路和一个天线,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
本申请第四实施例,一种射频电路,如图4所示,包括以下组成部分:第一可调增益放大单元10、第二可调增益放大单元20、合路器30、功率放大器40、定向耦合器50、天线60和带通滤波器70。
其中,第一可调增益放大单元10的输出端与合路器30的第一输入端连接;第二可调增益放大单元20的输出端与合路器30的第二输入端连接;合路器30的输出端与功率放大器40的输入端连接;功率放大器40的输出端与定向耦合器50的输入端连接;带通滤波器70分别与定向耦合器50的输出端及天线60连接;定向耦合器50的耦合输出端分别与第一可调增益放大单元10和第二可调增益放大单元20连接。
第一可调增益放大单元10,用于对输入的第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至合路器30;根据检测到的定向耦合器50传输的第一发射频率载波信号的功率值,对第一发射频率载波信号的放大增益进行控制。
第二可调增益放大单元20,用于对输入的第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至合路器30;根据检测到的定向耦合器50传输的第二发射频率载波信号的功率值,对第二发射频率载波信号的放大增益进行控制。
合路器30,用于将输入的第一发射频率载波信号和第二发射频率载波信 号进行混合,将得到的混合信号发送至功率放大器40;其中,混合信号包括:第一发射频率载波信号和第二发射频率载波信号。
功率放大器40,用于将输入的混合信号放大至设定功率,并将放大后的混合信号发送至定向耦合器50。
定向耦合器50,用于将输入的混合信号传输至天线60,并将输入的混合信号耦合传输至第一可调增益放大单元10和第二可调增益放大单元20。
带通滤波器70,用于滤除定向耦合器50传输至天线60的混合信号以外的杂波信号。
在本实施例中,第一可调增益放大单元10,包括:第一可调增益放大器11、第一功率检测单元12和第一功率控制单元13。
定向耦合器50,具体用于将输入的混合信号耦合传输至第一功率检测单元12。
第一功率检测单元12,用于检测混合信号中的第一发射频率载波信号的功率值,并将检测到的第一发射频率载波信号的功率值发送至第一功率控制单元13。
第一功率控制单元13,用于通过对第一发射频率载波信号的功率值与第一基准功率值进行比较,以生成第一控制信号;将第一控制信号发送至第一可调增益放大器11,以控制第一可调增益放大器11的增益。
第一可调增益放大器11,用于在第一控制信号的放大增益控制下,对第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至合路器。
第二可调增益放大单元20,包括:第二可调增益放大器21、第二功率检测单元22和第二功率控制单元23。
定向耦合器50,具体用于将输入的混合信号耦合传输至第二功率检测单元22。
第二功率检测单元22,用于检测混合信号中的第二发射频率载波信号的 功率值,并将检测到的第二发射频率载波信号的功率值发送至第二功率控制单元23。
第二功率控制单元23,用于通过对第二发射频率载波信号的功率值与第二基准功率值进行比较,以生成第二控制信号;将第二控制信号发送至第二可调增益放大器21,以控制第二可调增益放大器21的增益。
第二可调增益放大器21,用于在第二控制信号的放大增益控制下,对第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至合路器。
在本实施例中,第一功率检测单元12,可以具体用于:将第一发射频率载波信号通过第一发射频率接收机进行下变频,并检测下变频后的第一发射频率载波信号的功率值;将检测到的下变频后的第一发射频率载波信号的功率值发送至第一功率控制单元13。
第二功率检测单元22,可以具体用于:将第二发射频率载波信号通过第二发射频率接收机进行下变频,并检测下变频后的第二发射频率载波信号的功率值;并将检测到的下变频后的第二发射频率载波信号的功率值发送至第二功率控制单元23。
在本实施例中,第一频率载波信号为LTE通信频率载波信号;第二频率载波信号为5G通信的sub 6G频率载波信号。
将两个不同频率的通信载波信号通过一个射频电路进行放大,并通过一个天线60进行两个不同频率的通信载波信号的发射,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
第一可调增益放大单元10和第二可调增益放大单元20分别根据天线60发射的通信载波信号的功率,进行自动增益控制,能够有效修正两个不同频率的通信载波信号相互影响带来的增益误差,及链路其它误差。
在本实施中,射频电路还包括:第一失真控制单元81和/或第二失真控制单元82;
定向耦合器50,还用于将输入的混合信号耦合传输至第一失真控制单元81和/或第二失真控制单元82。
第一失真控制单元81,用于对输入的混合信号中的第一发射频率载波信号解调,得到第一数据信息;对第一数据信息进行失真分析,以对输入至第一可调增益放大单元10的第一发射频率载波信号进行预失真处理。
第二失真控制单元82,用于对输入的混合信号中的第二发射频率载波信号解调,得到第二数据信息;对第二数据信息进行失真分析,以对输入至第二可调增益放大单元20的第二发射频率载波信号进行预失真处理。
通过第一失真控制单元81对输入至第一可调增益放大单元11的第一频率载波信号进行预失真处理,能够根据反馈的失真数据对第一频率载波信号进行预失真处理以纠正信道和双载波互调带来的信号质量恶化。
通过第一失真控制单元82对输入至第二可调增益放大单元21的第二频率载波信号进行预失真处理,能够根据反馈的失真数据对第二频率载波信号进行预失真处理以纠正信道和双载波互调带来的信号质量恶化。
在本实施中,射频电路还包括:发射接收合路隔离单元91、接收放大器92、功分器93、第一接收单元94和第二接收单元95。
其中,发射接收合路隔离单元91的发射输入端与功率放大器32的输出端连接;带通滤波器70分别与发射接收合路隔离单元91的发射输出/接收输入端及天线60连接;发射接收合路隔离单元91的接收输出端与接收放大器92的输入端连接;接收放大器92的输出端与功分器93的输入端连接;功分器93的两个输出端分别与第一接收单元94和第二接收单元95连接。
定向耦合器50,具体用于将输入的混合信号传输至发射接收合路隔离单元91。
发射接收合路隔离单元91,用于将输入的混合信号传输至天线60;并将天线60接收到的接收信号传输至接收放大器92。
接收放大器92,用于对接收到的接收信号进行放大,并将放大后的接收 信号传输至功分器93。
功分器93,用于将接收到的接收信号分别传输至第一接收单元94和第二接收单元95。
第一接收单元94,用于对接收到的接收信号中的第一发射频率载波信号依次进行混频和解调处理,以得到第一通信数据信息。
第二接收单元95,用于对接收到的接收信号中的第二发射频率载波信号依次进行混频和解调处理,以得到第二通信数据信息。
可选的,发射接收合路隔离单元91,为环形器、双工器或射频单刀双置开关。
在实施例中,接收放大器92为低噪声放大器,接收放大器92的噪声系数小于设定噪声门限值。接收放大器92能够有效降低第一接收单元94和第二接收单元95的噪声系数。
在实施例中,带通滤波器70,具体用于:滤除发射接收合路隔离单元传输至天线的混合信号以外的杂波信号;并滤除天线传输至发射接收合路隔离单元的接收信号以外的杂波信号。
带通滤波器70的通带带宽小于设定带宽门限值;带通滤波器70能够有效的滤除第一频率载波信号和第二频率载波信号互调产生的杂波信号。
本申请第四实施例所述的射频电路,实现了LTE通信电路和5G通信电路共用一套射频通信电路和一个天线,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
本申请第五实施例,一种通信设备,包括本申请第一实施例至本申请第四实施例中任一实施例中部分或全部组成部分。
在本实施例中,通信设备包括但不限于:用户终端和通信基站等设备。
本申请第五实施例所述的通信设备,实现了LTE通信电路和5G通信电路共用一套射频通信电路和一个天线,有效简化了通信设备中的射频通信电路,降低了通信设备的成本。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施例的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施例。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施例,上述的具体实施例仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。
Claims (11)
- 一种射频电路,包括:第一可调增益放大单元、第二可调增益放大单元、合路器、功率放大器、定向耦合器和天线;所述第一可调增益放大单元,用于对输入的第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至所述合路器;根据检测到的所述定向耦合器传输的第一发射频率载波信号的功率值,对第一发射频率载波信号的放大增益进行控制;所述第二可调增益放大单元,用于对输入的第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至所述合路器;根据检测到的所述定向耦合器传输的第二发射频率载波信号的功率值,对第二发射频率载波信号的放大增益进行控制;所述合路器,用于将输入的第一发射频率载波信号和第二发射频率载波信号进行混合,将得到的混合信号发送至所述功率放大器;所述功率放大器,用于将输入的混合信号放大至设定功率,并将放大后的混合信号发送至所述定向耦合器;所述定向耦合器,用于将输入的混合信号传输至所述天线,并将输入的混合信号耦合传输至所述第一可调增益放大单元和所述第二可调增益放大单元。
- 根据权利要求1所述的射频电路,其特征在于,所述第一可调增益放大单元,包括:第一可调增益放大器、第一功率检测单元和第一功率控制单元;所述定向耦合器,具体用于将输入的混合信号耦合传输至所述第一功率检测单元;所述第一功率检测单元,用于检测所述混合信号中的第一发射频率载波信号的功率值,并将检测到的所述第一发射频率载波信号的功率值发送至所述第一功率控制单元;所述第一功率控制单元,用于通过对所述第一发射频率载波信号的功率值 与第一基准功率值进行比较,以生成第一控制信号;将所述第一控制信号发送至所述第一可调增益放大器,以控制所述第一可调增益放大器的增益;所述第一可调增益放大器,用于在所述第一控制信号的放大增益控制下,对第一发射频率载波信号进行放大,并将放大后的第一发射频率载波信号发送至所述合路器。
- 根据权利要求2所述的射频电路,其中,所述第一功率检测单元,具体用于:将所述第一发射频率载波信号通过第一发射频率接收机进行下变频,并检测下变频后的第一发射频率载波信号的功率值;将检测到的下变频后的第一发射频率载波信号的功率值发送至所述第一功率控制单元。
- 根据权利要求1至3中任一项所述的射频电路,其中,所述第二可调增益放大单元,包括:第二可调增益放大器、第二功率检测单元和第二功率控制单元;所述定向耦合器,具体用于将输入的混合信号耦合传输至所述第二功率检测单元;所述第二功率检测单元,用于检测所述混合信号中的第二发射频率载波信号的功率值,并将检测到的所述第二发射频率载波信号的功率值发送至所述第二功率控制单元;所述第二功率控制单元,用于通过对所述第二发射频率载波信号的功率值与第二基准功率值进行比较,以生成第二控制信号;将所述第二控制信号发送至所述第二可调增益放大器,以控制所述第二可调增益放大器的增益;所述第二可调增益放大器,用于在所述第二控制信号的放大增益控制下,对第二发射频率载波信号进行放大,并将放大后的第二发射频率载波信号发送至所述合路器。
- 根据权利要求4所述的射频电路,其中,所述第二功率检测单元,具体 用于:将所述第二发射频率载波信号通过第二发射频率接收机进行下变频,并检测下变频后的第二发射频率载波信号的功率值;并将检测到的下变频后的第二发射频率载波信号的功率值发送至所述第二功率控制单元。
- 根据权利要求1所述的射频电路,其中,所述射频电路,还包括:第一失真控制单元;所述定向耦合器,还用于将输入的混合信号耦合传输至所述第一失真控制单元;所述第一失真控制单元,用于对输入的混合信号中的第一发射频率载波信号解调,得到第一数据信息;对所述第一数据信息进行失真分析,以对输入至所述第一可调增益放大单元的第一发射频率载波信号进行预失真处理。
- 根据权利要求1或6所述的射频电路,其中,所述射频电路,还包括:第二失真控制单元;所述定向耦合器,还用于将输入的混合信号耦合传输至所述第二失真控制单元;所述第二失真控制单元,用于对输入的混合信号中的第二发射频率载波信号解调,得到第二数据信息;对所述第二数据信息进行失真分析,以对输入至所述第二可调增益放大单元的第二发射频率载波信号进行预失真处理。
- 根据权利要求1所述的射频电路,其中,所述射频电路,还包括:发射接收合路隔离单元、接收放大器、功分器、第一接收单元和第二接收单元;所述定向耦合器,具体用于将输入的混合信号传输至所述发射接收合路隔离单元;所述发射接收合路隔离单元,用于将输入的混合信号传输至所述天线;并将所述天线接收到的接收信号传输至所述接收放大器;所述接收放大器,用于对接收到的所述接收信号进行放大,并将放大后的 接收信号传输至所述功分器;所述功分器,用于将接收到的接收信号分别传输至所述第一接收单元和所述第二接收单元;所述第一接收单元,用于对接收到的接收信号中的第一发射频率载波信号依次进行混频和解调处理,以得到第一通信数据信息;所述第二接收单元,用于对接收到的接收信号中的第二发射频率载波信号依次进行混频和解调处理,以得到第二通信数据信息。
- 根据权利要求8所述的射频电路,其中,所述发射接收合路隔离单元为环形器、双工器或射频单刀双置开关。
- 根据权利要求8或9所述的射频电路,其中,所述发射电路,还包括:带通滤波器;所述带通滤波器,用于滤除所述发射接收合路隔离单元传输至所述天线的混合信号以外的杂波信号;并滤除所述天线传输至所述发射接收合路隔离单元的接收信号以外的杂波信号。
- 一种通信设备,包括:如权利要求1至10中任一项所述的射频电路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811031540.0A CN110880942B (zh) | 2018-09-05 | 2018-09-05 | 一种射频电路及通信设备 |
CN201811031540.0 | 2018-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020048277A1 true WO2020048277A1 (zh) | 2020-03-12 |
Family
ID=69722988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/099321 WO2020048277A1 (zh) | 2018-09-05 | 2019-08-05 | 一种射频电路及通信设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110880942B (zh) |
WO (1) | WO2020048277A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114448463A (zh) * | 2020-10-19 | 2022-05-06 | Oppo广东移动通信有限公司 | 一种功率放大器模组、控制方法、终端及计算机存储介质 |
CN114499575A (zh) * | 2022-01-21 | 2022-05-13 | 维沃移动通信有限公司 | 射频功率放大器、模组、电子设备、信号处理方法及装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112886999B (zh) * | 2021-01-25 | 2021-10-26 | 维沃移动通信有限公司 | 射频电路、电子设备及射频控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5530920A (en) * | 1994-04-12 | 1996-06-25 | Fujitsu Limited | Automatic output level control system for multi-carrier radio transmission apparatus |
CN1288296A (zh) * | 1999-09-14 | 2001-03-21 | 松下电器产业株式会社 | 多载波发射机、无线基站设备和使用该发射机的系统 |
CN101247134A (zh) * | 2008-03-06 | 2008-08-20 | 中兴通讯股份有限公司 | 用于电调滤波单元的调谐装置和调谐方法 |
CN106411351A (zh) * | 2015-06-26 | 2017-02-15 | 天工方案公司 | 聚合载波的单独载波的功率检测 |
-
2018
- 2018-09-05 CN CN201811031540.0A patent/CN110880942B/zh active Active
-
2019
- 2019-08-05 WO PCT/CN2019/099321 patent/WO2020048277A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5530920A (en) * | 1994-04-12 | 1996-06-25 | Fujitsu Limited | Automatic output level control system for multi-carrier radio transmission apparatus |
CN1288296A (zh) * | 1999-09-14 | 2001-03-21 | 松下电器产业株式会社 | 多载波发射机、无线基站设备和使用该发射机的系统 |
CN101247134A (zh) * | 2008-03-06 | 2008-08-20 | 中兴通讯股份有限公司 | 用于电调滤波单元的调谐装置和调谐方法 |
CN106411351A (zh) * | 2015-06-26 | 2017-02-15 | 天工方案公司 | 聚合载波的单独载波的功率检测 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114448463A (zh) * | 2020-10-19 | 2022-05-06 | Oppo广东移动通信有限公司 | 一种功率放大器模组、控制方法、终端及计算机存储介质 |
CN114448463B (zh) * | 2020-10-19 | 2024-03-01 | Oppo广东移动通信有限公司 | 一种功率放大器模组、控制方法、终端及计算机存储介质 |
CN114499575A (zh) * | 2022-01-21 | 2022-05-13 | 维沃移动通信有限公司 | 射频功率放大器、模组、电子设备、信号处理方法及装置 |
CN114499575B (zh) * | 2022-01-21 | 2024-03-05 | 维沃移动通信有限公司 | 射频功率放大器、模组、电子设备、信号处理方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110880942B (zh) | 2022-12-23 |
CN110880942A (zh) | 2020-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10637700B2 (en) | Systems and methods for combining signals from multiple active wireless receivers | |
US9118439B2 (en) | Receiver for imbalanced carriers | |
US9083393B2 (en) | User equipment for simultaneously transmitting signals to which different wireless communication systems are applied through a plurality of frequency bands | |
WO2020048277A1 (zh) | 一种射频电路及通信设备 | |
KR101803342B1 (ko) | 무선 네트워크에서 운용되는 다중대역 라디오 장치 및 방법 | |
WO2017219954A1 (zh) | 通信收发机 | |
US10523305B2 (en) | Variable channelized bandwidth booster | |
US20110263216A1 (en) | User equipment apparatus for simultaneously transmitting signals via a plurality of wireless communication chips to which different wireless communication schemes are applied and method for controlling transmission power thereof | |
US20180331704A1 (en) | Radio-frequency circuit with multiple antennas nd radio-frequency signal processing method | |
CN102752010B (zh) | 一种用于通信基站的收发模块 | |
CN110661536A (zh) | 星用半双工vdes系统多通道射频收发机 | |
US8219051B2 (en) | Front-end receiver circuit with multiple paths which are simultaneously active and receiver system using the same | |
WO2022062538A1 (zh) | 一种无线通信组件、方法及终端设备 | |
WO2018057288A1 (en) | Multiplexing an rf signal with a control signal and/or a feedback signal | |
US10389430B2 (en) | Multi-amplifier booster for a wireless communication system | |
CN118575421A (zh) | 一种收发电路、收发信机以及相关装置 | |
WO2017096937A1 (zh) | 第五代微波基站收、发信机及其实现方法 | |
JP2017525285A (ja) | 近距離ブロッカ及び送信漏出を排除するためのアーキテクチャ | |
CN105099478A (zh) | 提高射频链路接收灵敏度的装置及方法 | |
EP4014328B1 (en) | Pre-amplifier for a modem | |
WO2024055895A1 (zh) | 一种收发装置及终端设备 | |
WO2024065713A1 (zh) | 一种射频系统及装置 | |
US20220224400A1 (en) | Repeater system for use with 5g new radio base station | |
US20160065392A1 (en) | Mobile terminal | |
WO2021134478A1 (zh) | 通信装置和网络设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19858093 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/07/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19858093 Country of ref document: EP Kind code of ref document: A1 |