WO2020044246A1 - Hydrogel and uses therefor - Google Patents
Hydrogel and uses therefor Download PDFInfo
- Publication number
- WO2020044246A1 WO2020044246A1 PCT/IB2019/057225 IB2019057225W WO2020044246A1 WO 2020044246 A1 WO2020044246 A1 WO 2020044246A1 IB 2019057225 W IB2019057225 W IB 2019057225W WO 2020044246 A1 WO2020044246 A1 WO 2020044246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogel
- mass
- parts
- monomer
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/56—Acrylamide; Methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
- C08L101/14—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to hydrogels and uses thereof. More specifically, the present invention relates to a hydrogel capable of suppressing the growth of dendrite, a hydrogel usable even in a high-concentration aqueous electrolyte environment, a gel electrolyte using the same, a separator, and an alkaline battery.
- the inventors of the present invention solve the second problem by introducing a certain amount of a strongly ionized functional group (for example, a sulfone group) into a skeleton of a polymer matrix constituting a hydrogel.
- a strongly ionized functional group for example, a sulfone group
- the hydrophilicity of the skeleton was sometimes increased by the introduction of a strongly ionized functional group. Since the increase in hydrophilicity affects the degree of swelling when immersed in the electrolytic solution and the mechanical strength of the hydrogel, there is room for improvement.
- the hydrogel When the hydrogel is immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, it shows a piercing strength of 0.35 N or more. (6) When the hydrogel is immersed for one week in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C., the impedance at a frequency of 100 kHz shows a value of 20 ⁇ or less.
- polyfunctional monomers include N, N '- ⁇ [(2-acrylamido-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (oxy)] bis (propane- 1,3-diyl) diacrylamide (CAS No. 139329-90-2), N, N ', N "-triacryloyldiethylenetriamine (CAS No. 34330-10-4), N, N', N '',N'''-tetraacryloyltriethylenetetramine (CAS No. 158749-66-7) and the like.
- the polyfunctional monomer may be only one kind or a mixture of plural kinds.
- the copolymer includes units derived from a monofunctional monomer and a polyfunctional monomer, but the amount of each monomer used in the production of the copolymer, and the content of each unit in the copolymer, Almost the same.
- the content of the unit derived from the polyfunctional monomer in the copolymer can be measured by pyrolysis GC and / or IR.
- the hydrogel according to the first embodiment of the present invention may contain an additive, if necessary.
- Additives include electrolytes, preservatives, bactericides, fungicides, rust inhibitors, antioxidants, defoamers, stabilizers, fragrances, surfactants, coloring agents, gel strength improvers (eg, cellulose nano Fiber).
- the monofunctional monomer B is not particularly limited as long as it is a monomer having a carboxyl group and one ethylenically unsaturated group.
- the carboxyl group includes the case where it is present in the monofunctional monomer B in the form of a salt.
- the monofunctional monomer B may be a mixture of a monomer that is not in a salt form and a monomer in a salt form.
- the monofunctional monomer B includes (meth) acrylic acid, sodium (meth) acrylate, potassium (meth) acrylate, lithium (meth) acrylate, vinyl benzoic acid, sodium vinyl benzoate, potassium vinyl benzoate, Examples thereof include lithium vinyl benzoate, vinyl acetic acid, sodium vinyl acetate, potassium potassium acetate, and lithium vinyl acetate.
- (A-3) Content ratio of component derived from monofunctional monomer A and component derived from monofunctional monomer B When the copolymer contains a component derived from monofunctional monomer B, the monofunctional monomer A total of 100 mol% of the component derived from A and the component derived from the monofunctional monomer B, the component derived from the monofunctional monomer A is 30 mol% or more, and the component derived from the monofunctional monomer B is 70 mol. % Or less.
- the content of the component derived from the monofunctional monomer A can range from 30 mol% to less than 100 mol%, specifically, 30 mol%, 40 mol%, 50 mol%, 60 mol%, 70 mol%, 80 mol%, 90 mol%. , 99 mol%.
- polyfunctional monomer is not particularly limited as long as it has 2 to 6 ethylenically unsaturated groups. From the viewpoint of alkali resistance, it is preferable not to have an ester bond.
- polyfunctional monomers include divinylbenzene, sodium divinylbenzene sulfonate, divinyl biphenyl, divinyl sulfone, diethylene glycol divinyl ether, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, dimethyldiallylammonium chloride, N, N'- Methylenebis (meth) acrylamide, N, N'-ethylenebis (meth) acrylamide, N, N '- ⁇ [(2-acrylamido-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (Oxy)] bis (propane-1,3-diyl) diacrylamide (CAS
- the polyfunctional monomer preferably does not have an amide bond.
- the polyfunctional monomer may be only one kind or a mixture of plural kinds.
- the polymer derived from the polyfunctional monomer is preferably contained at a ratio of 0.1 to 5 parts by mass with respect to 100 parts by mass of the copolymer.
- the proportion of the polymer derived from the polyfunctional monomer is less than 0.1 part by mass, the crosslinking density may be low. If the amount is more than 5 parts by mass, the polymer derived from the polyfunctional monomer may undergo phase separation, resulting in a hydrogel having a non-uniform crosslinked structure.
- the ratio is more preferably from 0.2 to 4.5 parts by mass, and even more preferably from 0.4 to 4.0 parts by mass.
- the copolymer is composed of components derived from monofunctional monomers and polyfunctional monomers, the amount of each monomer used in the production of the copolymer, the content of each component in the copolymer, Almost the same. Further, the content of the polymer derived from the polyfunctional monomer in the copolymer can be measured by pyrolysis GC and / or IR.
- Examples of the carboxyl group-containing monomer include (meth) acrylic acid, vinylbenzoic acid, maleic acid, fumaric acid, itaconic acid, and alkali metal salts thereof.
- Examples of the sulfonic acid monomer include vinyl sulfonic acid, methyl vinyl sulfonic acid, styrene sulfonic acid, (meth) acryl sulfonic acid, ethyl (meth) acrylate sulfonic acid, acrylamidohydroxypropane sulfonic acid, and (meth) acrylamidomethylpropane sulfonic acid.
- the absorbance ratio is larger than 5.0, the ratio derived from the sulfonic acid group unit in the polymer becomes high, so that the cohesive force at the time of immersion in the high-concentration electrolyte solution becomes weak, and the strength reinforcing effect may not be obtained. If it is less than 0.001, the cohesive force becomes too strong, and the hydrogel is separated from water and may be cured.
- the absorbance ratio is more preferably in the range of 0.001 to 4.5.
- the range is more preferably from 0.005 to 4.0, further preferably from 0.01 to 3.5, further preferably from 0.025 to 3.0, and further preferably from 0.5 to 3.0.
- the range is 0.1 to 3.0, more preferably, 0.2 to 2.0.
- the average degree of polymerization is preferably from 3,000 to 1,800,000, and more preferably from 3,000 to 1,500,000.
- the polyacrylic acid-based polymer is preferably contained in an amount of 0.5 to 19 parts by mass per 100 parts by mass of the hydrogel. If the content is less than 0.5 parts by mass, the effect of improving mechanical strength may not be obtained. If the amount is more than 19 parts by mass, the entanglement with the polymer network becomes too strong, and the water retention and flexibility of the hydrogel may decrease.
- the content is preferably 0.5 to 15 parts by mass.
- the component derived from the monofunctional monomer A and the polyacrylic acid-based polymer are present in the hydrogel in a mass ratio of 100: 2.5 to 90.
- the water contained in the hydrogel according to the second aspect of the present invention is contained in 21 to 89.5 parts by mass per 100 parts by mass of the hydrogel.
- the content is less than 21 parts by mass, the amount of the electrolyte component that can be contained becomes small, and when used as a gel electrolyte for a battery, the impedance is high and desired battery characteristics may not be obtained in some cases. If the amount is more than 89.5 parts by mass, the mechanical strength of the hydrogel may decrease.
- the content is more preferably from 30 to 85 parts by mass, and still more preferably from 40 to 80 parts by mass.
- the hydrogel according to the second aspect of the present invention may contain, as necessary, other components (a) a support material, (b) a protective film, and (c) an additive. Although it is good, it is the same as (a) the support material, (b) the protective film, and (c) the additive in the first embodiment described above, and thus the description is omitted.
- a thermal polymerization initiator or a photopolymerization initiator can be used.
- a photopolymerization initiator which has little change in components before and after polymerization.
- the photopolymerization initiator include 2-hydroxy-2-methyl-1-phenyl-propan-1-one (product name: Omnirad 1173, manufactured by BASF Japan), 1-hydroxy-cyclohexyl-phenyl-ketone ( Product name: Omnirad 184, manufactured by BASF Japan Ltd.), 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-propan-1-one (product name: Omnirad 2959, BASF.
- the polymerization initiator may be only one kind or a mixture of plural kinds.
- the amount of the polymerization initiator to be used is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of all the monomers (monofunctional monomer, polyfunctional monomer and optionally other monomer) in total. When the amount is less than 0.05 parts by mass, the polymerization reaction does not sufficiently proceed, and unpolymerized monomers may remain in the obtained hydrogel. If the amount is more than 5 parts by mass, a residue of the polymerization initiator after the polymerization reaction may give an odor, or physical properties may be reduced due to the influence of the residue.
- the amount used is more preferably from 0.06 to 3 parts by mass, even more preferably from 0.07 to 1.5 parts by mass.
- the hydrogel precursor is formed into a sheet by, for example, (i) a method of injecting the hydrogel precursor into a mold, (ii) pouring the hydrogel precursor between protective films, And (iii) a method of coating a hydrogel precursor on a protective film.
- Method (i) has the advantage that a hydrogel of any shape can be obtained.
- Methods (ii) and (iii) have the advantage that relatively thin hydrogels can be obtained.
- the hydrogel containing the support is produced by method (i).
- the hydrogel precursor may contain other monomers and additives described above.
- a network structure can be obtained by polymerizing the monofunctional monomer and the polyfunctional monomer in the hydrogel precursor by applying heat or irradiating light.
- the conditions of heat application and light irradiation are not particularly limited as long as a network structure can be obtained, and general conditions can be adopted.
- the hydrogel can be used for an alkaline battery (eg, a gel electrolyte, a separator, etc.).
- the alkaline battery here is a secondary battery that can use a hydrogel as an electrolyte layer and / or a separator between a positive electrode and a negative electrode.
- Examples of such a secondary battery include a nickel-hydrogen secondary battery, a nickel-zinc secondary battery, a zinc-air battery, a lithium-air battery, an aluminum-air battery, a magnesium-air battery, a calcium-air battery, and a hydrogen-air battery.
- these secondary batteries use an alkaline aqueous solution as an electrolytic solution, liquid leakage from the secondary batteries can be prevented by the hydrogel.
- the configuration of the alkaline battery is not particularly limited, and any general configuration can be used.
- nickel or a nickel alloy is used as a positive electrode of a nickel-hydrogen secondary battery
- a hydrogen storage alloy is used as a negative electrode
- nickel or a nickel alloy is used as a positive electrode of a nickel-zinc secondary battery
- zinc or zinc oxide is used as a negative electrode.
- the positive electrode and the negative electrode may be formed on a current collector made of nickel, aluminum, copper, or the like.
- the hydrogel When the hydrogel is a separator, the hydrogel preferably includes a supporting material (intermediate base material).
- the number of cycles at which the charge / discharge efficiency is 60% or less is preferably 65 cycles or more, more preferably 70 cycles or more, and even more preferably 75 cycles or more. And more preferably 80 cycles or more. A large number of cycles means that an internal short circuit due to dendrite generated on the negative electrode is suppressed.
- the charge / discharge efficiency after 40 times of charge / discharge is preferably 70% or more, more preferably 75% or more, and further preferably 80%.
- Applications other than the alkaline battery include uses such as a material for a capacitor, a material for an electric double layer capacitor, and a material for a concrete anticorrosion method.
- the degree of swelling is defined as a value obtained by subtracting the mass of a blank from the mass of a tea bag containing a hydrogel swelled in a 4M KOH aqueous solution, with the mass of a tea bag containing no hydrogel immersed in a 4M KOH aqueous solution as a blank.
- the swelling degree (%) was calculated by dividing by the mass of the hydrogel before swelling and multiplying by 100.
- the degree of swelling after immersion at 25 ° C. for 14 days, after immersion for 21 days, and after immersion for 35 days was B 25 ° C. [14 days] , B 25 ° C.
- the degree of swelling after dipping for 14 days, after dipping for 21 days, and after dipping for 35 days was B 60 ° C [14 days] , B 60 ° C [21 days] , and B 60 ° C [35 days] , respectively.
- the hydrogel used a nonwoven fabric or the like as the support material 0.3 g of the hydrogel was scraped off from the support material, and the swelling degree was calculated in the same manner as the above method using the sample as a measurement sample.
- the degree of swelling was determined by setting the mass of a tea bag not containing a hydrogel immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl as a blank, and adding a hydrogel swelled to an aqueous solution containing 1.5 M LiOH and 10 M LiCl.
- the value obtained by subtracting the mass of the blank from the mass of the tea bag by the mass of the hydrogel before swelling was calculated as a swelling degree (%).
- a swelling degree %.
- the hydrogel used a nonwoven fabric or the like as the support material 0.3 g of the hydrogel was scraped off from the support material, and the swelling degree was calculated in the same manner as described above.
- a piercing test was performed using XT Plus (manufactured by Eiko Seiki Co., Ltd.).
- the hydrogel was placed on a table having a hole having a diameter of 7 mm, and adjusted to a position where a stainless steel jig having a diameter of 3 mm passed through the center of the hole of the table. Thereafter, the piercing was performed at a speed of 1.0 mm / sec, and the maximum stress until the tip of the jig penetrated was measured. This measurement was carried out for five test pieces, the maximum stress was calculated, and the average of these was defined as the piercing strength. At this time, the piercing strength after immersion at 25 ° C.
- the piercing strength after immersion at 60 ° C. for 14 days, after immersion for 21 days, and after immersion for 35 days was F 60 ° C. [14 days] , F 60 ° C. [21 days] , and F 60 ° C. [35 days] .
- the piercing strength after immersion at 60 ° C. for 14 days, after immersion for 21 days, and after immersion for 35 days was F 60 ° C. [14 days] , F 60 ° C. [21 days] , and F 60 ° C. [35 days] .
- the thickness of the sheet was less than 2 mm, the sheets were laminated so that the thickness was adjusted to 2 mm.
- a laminate of a zinc electrode plate and a hydrogel was produced by stacking two zinc electrode plates in a state where a hydrogel was interposed between opposed zinc electrode plates having a width of 15 mm, a length of 40 mm, and a thickness of 300 ⁇ m. . Further, the laminate was sandwiched and fixed between two 70 mm square acrylic plates to produce a cell for DC polarization measurement. Note that a sheet made of Teflon (registered trademark) having a width of 10 mm, a length of 30 mm, and a thickness of 800 ⁇ m is sandwiched between the acrylic plates at a position where the laminate of the zinc electrode plate and the hydrogel does not exist between the two acrylic plates.
- Teflon registered trademark
- This DC polarization measurement cell was immersed in a 4 M KOH aqueous solution in which zinc oxide was dissolved in saturation at 25 ° C. for 72 hours.
- the cell for DC polarization measurement after immersion is placed in an acrylic solution containing a 4M aqueous solution of KOH in which zinc oxide is dissolved in saturation, and the zinc in the cell for DC polarization measurement is measured using a measuring device HJ1010SD8 (manufactured by Hokuto Denko KK).
- a constant DC current of 1 mA / cm 2 was passed between the electrode plates, and a change in voltage over time was measured.
- the energized state was determined, and the time during which the energized state was maintained from the start of the measurement was defined as the energized time.
- the measured voltage was less than 0.014 V, a short-circuit state was set.
- the obtained mixture was further mixed with a self-revolving mixer at 2,000 rpm for 20 minutes to prepare a negative electrode mixture.
- the obtained negative electrode mixture was fixed to Celmet (manufactured by Sumitomo Electric Industries, Ltd.), dried at 150 ° C. for 5 hours or more, roll-pressed, and cut into 20 mm ⁇ 30 mm to obtain a negative electrode.
- the thickness of the negative electrode was 700 ⁇ m on average, the negative electrode capacity per unit area was 25 mAh / cm 2 , and the capacity of the manufactured negative electrode was 150 mAh.
- the battery was subjected to a charge / discharge cycle test in which the battery was charged at a 1 / 2C rate for 1 hour and charged and discharged at a 1 / 2C rate for 1 hour.
- the number of times of charging and discharging was the number of times of charging and discharging at a 1 / 2C rate.
- the charge / discharge cycle test was performed for 1 hour for charging and 1 hour for discharging, and the discharge cutoff voltage was 1.0 V.
- the 1C rate is a current amount that can discharge or charge the entire capacity of the negative electrode in one hour. For example, when the capacity of the positive electrode is 128 mAh, the 1C rate is 128 mA, the 1 / 2C rate is 68 mA, and the 1 / 4C rate is 32 mA.
- melting point The melting point of the polyfunctional monomer was calculated by differential scanning calorimetry (DSC measurement).
- the hydrogel was cut into a width of 20 mm and a length of 30 mm, and immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl for one week. The hydrogel after immersion was bent until both ends on the long side were in contact. At this time, when the hydrogel was not cracked, it was evaluated as ⁇ , and when it was broken, it was evaluated as x.
- the hydrogel was cut into a width of 20 mm ⁇ length of 20 mm ⁇ 2 mm and immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl for one week to obtain a hydrogel after immersion in a high-concentration electrolyte.
- the hydrogel after immersion in the high-concentration electrolyte was sandwiched between two Ni plates (width 20 mm, length 40 mm, thickness 1.0 mm) to obtain a test piece.
- the AC amplitude of the test piece was measured by a two-terminal method with an AC amplitude of 10 mV (rms) and a measurement frequency range of 100 kHz to 100 Hz. From the obtained measurement results, the real component of the impedance at a frequency of 100 kHz (Z ′ / ⁇ ) was defined as the impedance at a frequency of 100 kHz, and the real component of the impedance at a frequency of 1 kHz (Z ′ / ⁇ ) was defined as the impedance at a frequency of 1 kHz.
- the thickness of the test piece was less than 2 mm, the sheets were laminated, and the thickness of the laminated sheet was adjusted to 2 mm and measured.
- the weight average molecular weight (Mw) was defined as pullulan-converted weight average molecular weight measured using gel permeation chromatography (GPC). Specifically, 50 mg of a sample was dissolved in 5 mL of a 0.2 M NaNO 3 aqueous solution (permeation time: 24 ⁇ 1 hr (complete dissolution)), and filtered through a 0.45 ⁇ m aqueous chromatodisk (13N) manufactured by GL. was measured using a chromatograph under the following measurement conditions, and the weight average molecular weight of the sample was determined from a standard pullulan calibration curve prepared in advance.
- GPC gel permeation chromatography
- the obtained absorbance [1040 ⁇ 20 cm ⁇ 1 ] is calculated using the straight line connecting the wave numbers of 1070 ⁇ 10 cm ⁇ 1 and 990 ⁇ 20 cm ⁇ 1 at the lowest absorbance position that does not intersect with the infrared absorption spectrum in the middle as the baseline.
- the obtained absorbance [1650 ⁇ 130 cm ⁇ 1 ] is defined as a straight line connecting the wave number between 1770 ⁇ 40 cm ⁇ 1 and 1490 ⁇ 20 cm ⁇ 1 at the lowest absorbance position that does not intersect with the infrared absorption spectrum on the way.
- a silicon frame having a thickness of 2 mm was placed on the peelable PET film, and the hydrogel precursor was poured into the frame. Then, the peelable PET film was placed on the hydrogel precursor. Then, using a small UV polymerization machine (manufactured by JATEC, J-cure 1500, metal halide lamp model name MJ-1500L), ultraviolet rays having an energy of 7,000 mJ / cm 2 were applied under the conditions of a conveyor speed of 0.4 m / min and a work-to-work distance of 150 mm. By performing the irradiation step three times, a sheet-shaped hydrogel having a thickness of 2 mm was produced.
- a small UV polymerization machine manufactured by JATEC, J-cure 1500, metal halide lamp model name MJ-1500L
- a piercing test after immersion in the prepared hydrogel with an alkaline solution was performed.
- the hydrogel used for the DC polarization measurement and the charge / discharge test was prepared by the following procedure.
- a polyolefin nonwoven fabric having a thickness of 103 ⁇ m and a basis weight of 45 g / m 2 (OA-1887P, manufactured by Nippon Vilene Co., Ltd.) was placed as a support between the two releasable PET films, and after pouring the above-mentioned hydrogel precursor, After adjusting to a thickness of 200 ⁇ m with a roller, irradiation with UV light of irradiation conditions of 65 mW / cm 2 and / 7,000 mJ / cm 2 was performed using a UV lamp system (product name: Light Hammer 10, manufactured by Heraeus). Thus, a hydrogel having a thickness of 200 ⁇ m was produced.
- Example 2a The polyfunctional monomer was N, N ′- ⁇ [(2-acrylamido-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (oxy)] bis (propane-1,3-diyl A) Hydrogel was obtained in the same manner as in Example 1a, except that diacrylamide (FAM401, manufactured by Fuji Film Co., melting point 107 ° C.) was changed to 0.66 parts by mass. The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
- diacrylamide FAM401, manufactured by Fuji Film Co., melting point 107 ° C.
- Example 3a Except that the polyfunctional monomer was changed to 0.47 parts by mass of N, N ′, N ′′, N ′ ′′-tetraacryloyltriethylenetetramine (FAM402, FAM402, melting point 110 ° C.) A hydrogel was obtained in the same manner as in 1a. The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
- FAM402 FAM402, melting point 110 ° C.
- Example 4a A hydrogel was obtained in the same manner as in Example 1a, except that the monofunctional monomer was changed to 2-acrylamido-2-methylpropanesulfonic acid (AMPS, manufactured by MCC Unitech). The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
- AMPS 2-acrylamido-2-methylpropanesulfonic acid
- Example 5a A hydrogel was obtained in the same manner as in Example 2a, except that the monofunctional monomer was changed to 2-acrylamido-2-methylpropanesulfonic acid. The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
- Example 1a A hydrogel was obtained in the same manner as in Example 1a, except that the polyfunctional monomer was changed to 0.3 parts by mass of sodium divinylbenzenesulfonate (DVBS, manufactured by Tosoh Organic Chemicals, Inc.). The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, and a charge / discharge test were performed.
- DVBS sodium divinylbenzenesulfonate
- Example 2a A hydrogel was obtained in the same manner as in Example 1a, except that the polyfunctional monomer was changed to 0.6 parts by mass of sodium divinylbenzene sulfonate (manufactured by Tosoh Organic Chemicals, Inc.). The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, and a charge / discharge test were performed.
- Example 1a Example 1a except that the polyfunctional monomer was changed to 0.3 parts by mass of A-200 (polyethylene glycol # 200 diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) having two ethylenically unsaturated groups and an ester bond.
- a hydrogel was obtained in the same manner as described above. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
- Example 1a Example 1a except that the polyfunctional monomer was changed to 0.4 parts by mass of A-400 (polyethylene glycol # 400 diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) having two ethylenically unsaturated groups and an ester bond.
- a hydrogel was obtained in the same manner as described above. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
- Example 1a Example 1a except that the polyfunctional monomer was changed to 0.45 parts by mass of A-GLY-9EA having three ethylenically unsaturated groups and an ester bond (Ethoxylated glycerine triacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.).
- a hydrogel was obtained in the same manner. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
- Example 6a Same as Example 1a except that the polyfunctional monomer was changed to 0.3 parts by mass of A-TMMT (pentaerythritol tetraacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) having four ethylenically unsaturated groups and an ester bond. To obtain a hydrogel. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
- A-TMMT penentaerythritol tetraacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.
- ⁇ Comparative Example 7a> According to the contents described in Japanese Patent Application Laid-Open No. 2015-95286, a polytetrafluoroethylene emulsion aqueous solution having a concentration of 60% by mass (Polyflon PTFE D made by Daikin Industries, Ltd.) is used for 2.5 g of hydrotalcite as a layered double hydroxide. -210C) 5 g, and 2.5 g of a 20% by mass aqueous solution of polyethyleneimine (EPOMIN SP200 manufactured by Nippon Shokubai Co., Ltd.) were kneaded and rolled to obtain a 200 ⁇ m sheet. The swelling characteristics of the obtained sheet were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, and a charge / discharge test were performed.
- Polyflon PTFE D made by Daikin Industries, Ltd.
- the obtained hydrogel was cut into a 30 mm square.
- the cut hydrogel was immersed in 100 mL of a 4 M aqueous KOH solution at a temperature of 25 ° C. for 3 days.
- the distance between adjacent vertices of the hydrogel after immersion was measured, and the distance D between vertices was determined.
- the distance D between the vertices was divided by 30 mm and the value was less than 0.75, it means that the hydrogel after immersion in the electrolytic solution was warped or wound, and was evaluated as x.
- the value was 0.75 or more, it means that the hydrogel sheet did not change in shape after immersion in the electrolytic solution, and was evaluated as ⁇ .
- Example 1b 20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 25 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred.
- Julimer AC-10LP manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000
- a sheet-shaped hydrogel having a thickness of 2 mm was produced.
- the prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
- Example 1b A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used.
- the prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
- Example 1b A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used.
- the prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
- Example 5b 20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), polyacryl 80 parts by mass of a 5% by mass aqueous solution of an acid (manufactured by Wako Pure Chemical Industries, polyacrylic acid, weight average molecular weight: 1,000,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor.
- TBAS 2-acrylamide-2-methylpropanesulfonic acid
- DVBS sodium divinylbenzenesulfonate
- polyacryl 80 parts by mass of a 5% by mass aqueous solution of an acid manufactured by Wako Pure Chemical Industries, polyacrylic acid, weight average molecular
- Example 9b 20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 25 parts by mass of a 20% by mass aqueous solution of Aqualic DL453 (manufactured by Nippon Shokubai Co., Ltd., sodium polyacrylate, weight average molecular weight: 50,000) was added and stirred.
- Aqualic DL453 manufactured by Nippon Shokubai Co., Ltd., sodium polyacrylate, weight average molecular weight: 50,000
- ⁇ Comparative Example 2b 20 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), and 79.5 parts by mass of ion-exchanged water were put in a container and stirred. To this solution was added 0.20 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
- a 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used.
- the prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
- ⁇ Comparative Example 5b 10 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred.
- 2-acrylamide-2-methylpropanesulfonic acid product name: TBAS, manufactured by MCC Unitech
- sodium divinylbenzenesulfonate product name: DVBS, manufactured by Tosoh Organic Chemicals
- Table 7 shows the absorbance and the absorbance ratio of the polyacrylic acid polymers used in Examples 1b to 13b.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention relates to a hydrogel and uses therefor. The present invention specifically relates to a hydrogel containing water and a macromolecular matrix and uses for said hydrogel, the hydrogel being characterized in that: the macromolecular matrix includes a copolymer of a monofunctional monomer having a hydrophilic group and one ethylenically unsaturated group and a polyfunctional monomer having an amide group and three to six ethylenically unsaturated groups but not having an ester bond; 40–95 parts by mass of water and 5–60 parts by mass of the macromolecular matrix are included per 100 parts by mass of the hydrogel; and when the hydrogel has been immersed in a 4M KOH aqueous solution at a temperature of 25°C for 14 days, the degree of swelling of the hydrogel is no more than 650%.
Description
本発明は、ハイドロゲル及びその用途に関する。更に詳しくは、本発明は、デンドライトの成長の抑制が可能なハイドロゲル、高濃度の水系電解液の環境下でも使用可能なハイドロゲル、それらを用いたゲル状電解質、セパレータ、及びアルカリ電池に関する。
The present invention relates to hydrogels and uses thereof. More specifically, the present invention relates to a hydrogel capable of suppressing the growth of dendrite, a hydrogel usable even in a high-concentration aqueous electrolyte environment, a gel electrolyte using the same, a separator, and an alkaline battery.
本願は、2018年8月31日に出願された日本国特願2018−163485号、2018年9月10日に出願された日本国特願2018−168757号、及び2019年3月4日に出願された日本国特願2019−038620号に基づく優先権を主張し、それらの内容をここに援用する。
This application filed Japanese Patent Application No. 2018-163485 filed on Aug. 31, 2018, Japanese Patent Application No. 2018-168775 filed on Sep. 10, 2018, and filed on Mar. 4, 2019 Priority is claimed based on Japanese Patent Application No. 2019-038620, the contents of which are incorporated herein by reference.
近年の環境問題への世界的な関心の高まりを背景に、再生可能エネルギーの活用、ガソリン車から電気自動車への移行やスマートグリッドの活用の流れが加速している。そのような動きに伴い、高エネルギー密度を示す蓄電池(二次電池)の重要性が高まっている。
空気中の酸素を正極活物質として利用する金属空気電池は、電池内に正極活物質を充填する必要がなく、負極活物質を電池内部に多く充填できる。そのため、金属空気電池は、高いエネルギー密度を有する次世代二次電池として注目されている。金属空気電池として、リチウム空気電池、亜鉛空気電池、アルミニウム空気電池、鉄空気電池、マグネシウム空気電池等が知られている。
しかしながら、金属空気電池では、正極部分が撥水膜等で外部と隔離されているが、その封止性能は十分とは言えず、正極から電解液が蒸散するため電池内が乾燥しやすいことや、電解液として使用する強塩基性電解液が漏液すること等が問題となっている。
更に、金属空気電池の中でも亜鉛やリチウム等のデンドライトを発生しうる負極を用いた空気電池は、高い理論エネルギー密度を持つことから注目を集めている。しかし、亜鉛空気電池は、繰返し充放電を行った際に、負極上に成長するデンドライトによって内部短絡を起こすため、電池寿命に課題があることが知られている。
従来のアルカリ二次電池の分野では、イオン伝導性を保ちながら乾燥や液漏れを防止するために、ゲル化した電解質を電池用材料として使用する検討が行われていた。例えば、日本国特開2005−322635号公報(特許文献1)には、ポリビニルアルコールとアニオン性架橋共重合体とからなる重合体組成物に、水酸化アルカリを含有させてなるアルカリ電池用高分子ハイドロゲル電解質が記載されている。また、国際公開第2017/51734号(特許文献2)及び日本国特開2017−183204号公報(特許文献3)には、ポリアクリル酸系重合体の架橋体から構成されるシート状のハイドロゲルが記載されている。
また、亜鉛二次電池のようなデンドライトを発生しうる負極を用いた二次電池において、デンドライトによる内部短絡を抑制する方法として、例えば、日本国特開2015−095286号公報(特許文献4)に記載の方法がある。特許文献4には、結晶層間に水酸化物イオンを取り込んだ構造をもつハイドロタルサイト等を用いたアニオン伝導性膜をセパレータとして使用することが記載されている。このアニオン伝導性膜は、水酸化物イオン伝導性を保持しながら高い機械強度を有するため、デンドライトの成長を抑制できるとされている。
また、リチウムを使用する金属空気電池では、リチウムイオン伝導性固体電解質はアルカリ耐性が低いため、電解液のpHを下げることが望まれている。そこで、日本国特開2012−033490号公報(特許文献5)では、高濃度のリチウムハライドを含む水系電解液を用いることが提案されている。 In recent years, with the increasing global interest in environmental issues, the use of renewable energy, the shift from gasoline vehicles to electric vehicles, and the use of smart grids are accelerating. With such a movement, the importance of a storage battery (secondary battery) having a high energy density is increasing.
A metal-air battery using oxygen in the air as a positive electrode active material does not need to be filled with a positive electrode active material in the battery, and can fill a large amount of the negative electrode active material in the battery. For this reason, metal-air batteries have attracted attention as next-generation secondary batteries having a high energy density. As a metal air battery, a lithium air battery, a zinc air battery, an aluminum air battery, an iron air battery, a magnesium air battery, and the like are known.
However, in a metal-air battery, although the positive electrode portion is isolated from the outside by a water-repellent film or the like, the sealing performance is not sufficient, and the electrolyte easily evaporates from the positive electrode, so that the inside of the battery is easily dried. There is a problem that the strong basic electrolyte used as the electrolyte leaks.
Furthermore, among metal-air batteries, an air battery using a negative electrode capable of generating dendrites such as zinc and lithium has attracted attention because of its high theoretical energy density. However, zinc-air batteries are known to have a problem in battery life because dendrites growing on the negative electrode cause internal short-circuits when repeatedly charged and discharged.
In the field of conventional alkaline secondary batteries, studies have been made to use a gelled electrolyte as a battery material in order to prevent drying and liquid leakage while maintaining ion conductivity. For example, Japanese Patent Application Laid-Open No. 2005-322635 (Patent Document 1) discloses a polymer for an alkaline battery in which a polymer composition comprising polyvinyl alcohol and an anionic crosslinked copolymer contains an alkali hydroxide. A hydrogel electrolyte is described. Further, WO2017 / 51734 (Patent Document 2) and JP-A-2017-183204 (Patent Document 3) disclose a sheet-like hydrogel composed of a crosslinked product of a polyacrylic acid-based polymer. Is described.
Further, in a secondary battery using a negative electrode capable of generating dendrites, such as a zinc secondary battery, a method for suppressing internal short circuit due to dendrites is disclosed in, for example, Japanese Patent Application Laid-Open No. 2015-095286 (Patent Document 4) There is a method described. Patent Document 4 describes that an anion-conductive film using hydrotalcite or the like having a structure in which hydroxide ions are incorporated between crystal layers is used as a separator. It is said that this anion-conductive film has high mechanical strength while maintaining hydroxide ion conductivity, and can suppress the growth of dendrite.
Further, in a metal-air battery using lithium, since the lithium ion conductive solid electrolyte has low alkali resistance, it is desired to lower the pH of the electrolytic solution. Therefore, Japanese Patent Application Laid-Open No. 2012-033490 (Patent Document 5) proposes to use an aqueous electrolyte containing a high concentration of lithium halide.
空気中の酸素を正極活物質として利用する金属空気電池は、電池内に正極活物質を充填する必要がなく、負極活物質を電池内部に多く充填できる。そのため、金属空気電池は、高いエネルギー密度を有する次世代二次電池として注目されている。金属空気電池として、リチウム空気電池、亜鉛空気電池、アルミニウム空気電池、鉄空気電池、マグネシウム空気電池等が知られている。
しかしながら、金属空気電池では、正極部分が撥水膜等で外部と隔離されているが、その封止性能は十分とは言えず、正極から電解液が蒸散するため電池内が乾燥しやすいことや、電解液として使用する強塩基性電解液が漏液すること等が問題となっている。
更に、金属空気電池の中でも亜鉛やリチウム等のデンドライトを発生しうる負極を用いた空気電池は、高い理論エネルギー密度を持つことから注目を集めている。しかし、亜鉛空気電池は、繰返し充放電を行った際に、負極上に成長するデンドライトによって内部短絡を起こすため、電池寿命に課題があることが知られている。
従来のアルカリ二次電池の分野では、イオン伝導性を保ちながら乾燥や液漏れを防止するために、ゲル化した電解質を電池用材料として使用する検討が行われていた。例えば、日本国特開2005−322635号公報(特許文献1)には、ポリビニルアルコールとアニオン性架橋共重合体とからなる重合体組成物に、水酸化アルカリを含有させてなるアルカリ電池用高分子ハイドロゲル電解質が記載されている。また、国際公開第2017/51734号(特許文献2)及び日本国特開2017−183204号公報(特許文献3)には、ポリアクリル酸系重合体の架橋体から構成されるシート状のハイドロゲルが記載されている。
また、亜鉛二次電池のようなデンドライトを発生しうる負極を用いた二次電池において、デンドライトによる内部短絡を抑制する方法として、例えば、日本国特開2015−095286号公報(特許文献4)に記載の方法がある。特許文献4には、結晶層間に水酸化物イオンを取り込んだ構造をもつハイドロタルサイト等を用いたアニオン伝導性膜をセパレータとして使用することが記載されている。このアニオン伝導性膜は、水酸化物イオン伝導性を保持しながら高い機械強度を有するため、デンドライトの成長を抑制できるとされている。
また、リチウムを使用する金属空気電池では、リチウムイオン伝導性固体電解質はアルカリ耐性が低いため、電解液のpHを下げることが望まれている。そこで、日本国特開2012−033490号公報(特許文献5)では、高濃度のリチウムハライドを含む水系電解液を用いることが提案されている。 In recent years, with the increasing global interest in environmental issues, the use of renewable energy, the shift from gasoline vehicles to electric vehicles, and the use of smart grids are accelerating. With such a movement, the importance of a storage battery (secondary battery) having a high energy density is increasing.
A metal-air battery using oxygen in the air as a positive electrode active material does not need to be filled with a positive electrode active material in the battery, and can fill a large amount of the negative electrode active material in the battery. For this reason, metal-air batteries have attracted attention as next-generation secondary batteries having a high energy density. As a metal air battery, a lithium air battery, a zinc air battery, an aluminum air battery, an iron air battery, a magnesium air battery, and the like are known.
However, in a metal-air battery, although the positive electrode portion is isolated from the outside by a water-repellent film or the like, the sealing performance is not sufficient, and the electrolyte easily evaporates from the positive electrode, so that the inside of the battery is easily dried. There is a problem that the strong basic electrolyte used as the electrolyte leaks.
Furthermore, among metal-air batteries, an air battery using a negative electrode capable of generating dendrites such as zinc and lithium has attracted attention because of its high theoretical energy density. However, zinc-air batteries are known to have a problem in battery life because dendrites growing on the negative electrode cause internal short-circuits when repeatedly charged and discharged.
In the field of conventional alkaline secondary batteries, studies have been made to use a gelled electrolyte as a battery material in order to prevent drying and liquid leakage while maintaining ion conductivity. For example, Japanese Patent Application Laid-Open No. 2005-322635 (Patent Document 1) discloses a polymer for an alkaline battery in which a polymer composition comprising polyvinyl alcohol and an anionic crosslinked copolymer contains an alkali hydroxide. A hydrogel electrolyte is described. Further, WO2017 / 51734 (Patent Document 2) and JP-A-2017-183204 (Patent Document 3) disclose a sheet-like hydrogel composed of a crosslinked product of a polyacrylic acid-based polymer. Is described.
Further, in a secondary battery using a negative electrode capable of generating dendrites, such as a zinc secondary battery, a method for suppressing internal short circuit due to dendrites is disclosed in, for example, Japanese Patent Application Laid-Open No. 2015-095286 (Patent Document 4) There is a method described. Patent Document 4 describes that an anion-conductive film using hydrotalcite or the like having a structure in which hydroxide ions are incorporated between crystal layers is used as a separator. It is said that this anion-conductive film has high mechanical strength while maintaining hydroxide ion conductivity, and can suppress the growth of dendrite.
Further, in a metal-air battery using lithium, since the lithium ion conductive solid electrolyte has low alkali resistance, it is desired to lower the pH of the electrolytic solution. Therefore, Japanese Patent Application Laid-Open No. 2012-033490 (Patent Document 5) proposes to use an aqueous electrolyte containing a high concentration of lithium halide.
特許文献1に記載されたハイドロゲルは、アニオン性架橋共重合体とポリビニルアルコールとを混合し、乾燥することで得られたハイドロゲルである。そのため、骨格を構成する重合体が互いに独立している。しかしながら、このようなハイドロゲルは、水分を含ませた際に伸びがなく、脆くなるという課題があった。
また、特許文献2及び3に記載されたハイドロゲルは、シート状のハイドロゲルであるため、強度や伸びに優れており、亜鉛二次電池用のセパレータとして用いることが可能である。しかしながら、これらハイドロゲルは、デンドライトの成長抑制については改善の余地があった。
また、特許文献4に記載されたアニオン伝導性膜は、選択的なイオン伝導性を持ち、機械強度に優れるため、デンドライトの成長を抑制する性能が高く、亜鉛二次電池のサイクル特性を向上できる。しかしながら、アニオン伝導性膜の大部分がポリマーや無機物から構成されているため、保水性及びイオン伝導性が低いという課題があった。
そのため、保水性及びイオン伝導性に優れ、デンドライトの成長を抑制可能なイオン伝導性膜を提供することが望まれていた。(以下、「第1の課題」という。) The hydrogel described in Patent Literature 1 is a hydrogel obtained by mixing an anionic crosslinked copolymer and polyvinyl alcohol and drying the mixture. Therefore, the polymers constituting the skeleton are independent of each other. However, such a hydrogel has a problem that it does not elongate and becomes brittle when moistened.
Moreover, since the hydrogels described in Patent Documents 2 and 3 are sheet-like hydrogels, they have excellent strength and elongation, and can be used as separators for zinc secondary batteries. However, these hydrogels have room for improvement in dendrite growth suppression.
In addition, the anion conductive membrane described in Patent Document 4 has selective ionic conductivity and excellent mechanical strength, and therefore has high performance of suppressing dendrite growth and can improve cycle characteristics of a zinc secondary battery. . However, since most of the anion conductive membrane is composed of a polymer or an inorganic substance, there is a problem that water retention and ionic conductivity are low.
Therefore, it has been desired to provide an ion-conductive film which is excellent in water retention and ion conductivity and can suppress the growth of dendrite. (Hereinafter, this will be referred to as "first problem.")
また、特許文献2及び3に記載されたハイドロゲルは、シート状のハイドロゲルであるため、強度や伸びに優れており、亜鉛二次電池用のセパレータとして用いることが可能である。しかしながら、これらハイドロゲルは、デンドライトの成長抑制については改善の余地があった。
また、特許文献4に記載されたアニオン伝導性膜は、選択的なイオン伝導性を持ち、機械強度に優れるため、デンドライトの成長を抑制する性能が高く、亜鉛二次電池のサイクル特性を向上できる。しかしながら、アニオン伝導性膜の大部分がポリマーや無機物から構成されているため、保水性及びイオン伝導性が低いという課題があった。
そのため、保水性及びイオン伝導性に優れ、デンドライトの成長を抑制可能なイオン伝導性膜を提供することが望まれていた。(以下、「第1の課題」という。) The hydrogel described in Patent Literature 1 is a hydrogel obtained by mixing an anionic crosslinked copolymer and polyvinyl alcohol and drying the mixture. Therefore, the polymers constituting the skeleton are independent of each other. However, such a hydrogel has a problem that it does not elongate and becomes brittle when moistened.
Moreover, since the hydrogels described in Patent Documents 2 and 3 are sheet-like hydrogels, they have excellent strength and elongation, and can be used as separators for zinc secondary batteries. However, these hydrogels have room for improvement in dendrite growth suppression.
In addition, the anion conductive membrane described in Patent Document 4 has selective ionic conductivity and excellent mechanical strength, and therefore has high performance of suppressing dendrite growth and can improve cycle characteristics of a zinc secondary battery. . However, since most of the anion conductive membrane is composed of a polymer or an inorganic substance, there is a problem that water retention and ionic conductivity are low.
Therefore, it has been desired to provide an ion-conductive film which is excellent in water retention and ion conductivity and can suppress the growth of dendrite. (Hereinafter, this will be referred to as "first problem.")
さらに、従来のハイドロゲルは、特許文献5のような高濃度の水系電解液存在下ではハイドロゲルを構成する重合体に結合する官能基の電離が弱まり、保水性の低下とそれに伴う柔軟性の低下や硬化を生じていた。そのため、このハイドロゲルは、高濃度の水系電解液を用いるアルカリ二次電池には使用できないという課題があった。(以下、「第2の課題」という。)
Further, in the conventional hydrogel, in the presence of a high-concentration aqueous electrolyte as described in Patent Document 5, ionization of a functional group bonded to a polymer constituting the hydrogel is weakened, resulting in a decrease in water retention and an accompanying increase in flexibility. Deterioration and hardening occurred. Therefore, there is a problem that this hydrogel cannot be used for an alkaline secondary battery using a high-concentration aqueous electrolyte. (Hereinafter, referred to as "second problem")
本発明の発明者等は、前記第1の課題を解決するために、ハイドロゲルを構成する高分子マトリックス形成用のモノマーについて、種々検討した。その結果、エステル結合を有さずアミド基を有する多官能性モノマーが、網目の緻密性を向上させ、正極方向へのデンドライトの成長を物理的に阻害することで、デンドライトの成長を抑制可能な高分子マトリックスを備え、保水性及びイオン伝導性に優れたハイドロゲルを提供できることを見出した。ところで、例えば、日本国特開2017−068933号公報では、アルカリ二次電池用のセパレータの分野において、ポリアミド系不織布をセパレータとして使用した場合、それはアルカリ電解液中で徐々に分解することで分解生成物を生じ、その分解生成物は電池特性の低下をもたらすことが記載されている。つまり、この公報では、アルカリ二次電池の構成物として、アミド結合を有する物質を使用することが適切でないことは技術常識であるとされていた。ところが、このような技術常識にもかかわらず、本発明において、アミド基を有する多官能性モノマーに由来する成分を含む高分子マトリックスが、保水性及びイオン伝導性に優れ、デンドライトの成長を抑制可能なイオン伝導性膜を提供できることは、極めて意外なことである。
The inventors of the present invention have conducted various studies on a monomer for forming a polymer matrix constituting a hydrogel in order to solve the first problem. As a result, a polyfunctional monomer having an amide group without an ester bond can improve densification of the network and physically inhibit dendrite growth in the positive electrode direction, thereby suppressing dendrite growth. It has been found that a hydrogel having a polymer matrix and excellent in water retention and ion conductivity can be provided. By the way, for example, in Japanese Patent Application Laid-Open No. 2017-068933, in the field of a separator for an alkaline secondary battery, when a polyamide-based nonwoven fabric is used as a separator, it is decomposed by being gradually decomposed in an alkaline electrolyte. It is described that a decomposition product is produced, and its decomposition product causes a decrease in battery characteristics. That is, in this publication, it was considered that it is common technical knowledge that it is not appropriate to use a substance having an amide bond as a component of the alkaline secondary battery. However, despite such general technical knowledge, in the present invention, a polymer matrix containing a component derived from a polyfunctional monomer having an amide group is excellent in water retention and ionic conductivity, and can suppress the growth of dendrites. It is extremely surprising that such an ion conductive membrane can be provided.
かくして、前記第1の課題を解決する本発明の第1の態様は、水と高分子マトリックスとを含むハイドロゲルであって、
前記高分子マトリックスは、親水性基及び1個のエチレン性不飽和基を有する単官能性モノマーと、エステル結合を有さず、アミド基及び3~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含み、
前記ハイドロゲル100質量部中に、前記水を40~95質量部、及び前記高分子マトリックスを5~60質量部含有し、
前記ハイドロゲルが、25℃の温度下で4MのKOH水溶液に14日間浸漬した場合、650%以下の膨潤度を示すことを特徴とするハイドロゲルが提供される。 Thus, a first aspect of the present invention for solving the first problem is a hydrogel comprising water and a polymer matrix,
The polymer matrix includes a monofunctional monomer having a hydrophilic group and one ethylenically unsaturated group, and a polyfunctional monomer having no amide group and 3 to 6 ethylenically unsaturated groups without an ester bond. Including a copolymer with a functional monomer,
In 100 parts by mass of the hydrogel, the water contains 40 to 95 parts by mass, and the polymer matrix contains 5 to 60 parts by mass,
When the hydrogel is immersed in a 4 M aqueous KOH solution at a temperature of 25 ° C. for 14 days, the hydrogel exhibits a swelling degree of 650% or less.
前記高分子マトリックスは、親水性基及び1個のエチレン性不飽和基を有する単官能性モノマーと、エステル結合を有さず、アミド基及び3~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含み、
前記ハイドロゲル100質量部中に、前記水を40~95質量部、及び前記高分子マトリックスを5~60質量部含有し、
前記ハイドロゲルが、25℃の温度下で4MのKOH水溶液に14日間浸漬した場合、650%以下の膨潤度を示すことを特徴とするハイドロゲルが提供される。 Thus, a first aspect of the present invention for solving the first problem is a hydrogel comprising water and a polymer matrix,
The polymer matrix includes a monofunctional monomer having a hydrophilic group and one ethylenically unsaturated group, and a polyfunctional monomer having no amide group and 3 to 6 ethylenically unsaturated groups without an ester bond. Including a copolymer with a functional monomer,
In 100 parts by mass of the hydrogel, the water contains 40 to 95 parts by mass, and the polymer matrix contains 5 to 60 parts by mass,
When the hydrogel is immersed in a 4 M aqueous KOH solution at a temperature of 25 ° C. for 14 days, the hydrogel exhibits a swelling degree of 650% or less.
更に、本発明の発明者等は、前記第2の課題を解決するために、ハイドロゲルを構成する高分子マトリックスの骨格に強電離の官能基(例えば、スルホン基)を一定量導入することで、高濃度の水系電解液環境下でのハイドロゲルの硬化を抑制することを試みた。その結果、ある程度の抑制は可能であったが、強電離の官能基の導入によって骨格の親水性が高まることがあった。親水性の高まりは、電解液浸漬時の膨潤度やハイドロゲルの機械強度に影響を与えるため、改良の余地があった。そこで、鋭意検討した結果、特定の重量平均分子量のポリアクリル酸系重合体をハイドロゲルに含ませることで共重合体の析出を防止し、高濃度の水系電解液の環境下でも使用可能で機械強度に優れるハイドロゲルを提供できることを見い出し、本発明に至った。
Furthermore, the inventors of the present invention solve the second problem by introducing a certain amount of a strongly ionized functional group (for example, a sulfone group) into a skeleton of a polymer matrix constituting a hydrogel. We tried to suppress the hardening of the hydrogel in the environment of high concentration aqueous electrolyte. As a result, although some suppression was possible, the hydrophilicity of the skeleton was sometimes increased by the introduction of a strongly ionized functional group. Since the increase in hydrophilicity affects the degree of swelling when immersed in the electrolytic solution and the mechanical strength of the hydrogel, there is room for improvement. Therefore, as a result of intensive studies, the precipitation of the copolymer was prevented by including a polyacrylic acid-based polymer with a specific weight-average molecular weight in the hydrogel, and it was possible to use it in an environment with a high-concentration aqueous electrolyte. The present inventors have found that a hydrogel having excellent strength can be provided, and have reached the present invention.
かくして、前記第2の課題を解決する本発明の第2の態様は、水と、ポリアクリル酸系重合体と、高分子マトリックスとを含むハイドロゲルであって、
前記ポリアクリル酸系重合体が、3,000~2,000,000の重量平均分子量を有し、
前記高分子マトリックスは、エチレン性不飽和基を有する単官能性モノマーと、2~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含み、
前記エチレン性不飽和基を有する単官能性モノマーが、スルホン基及びリン酸基から選択される少なくとも1つの基と、1個のエチレン性不飽和基とを有する単官能性モノマーAを含み、
単官能性モノマーA由来の成分とポリアクリル酸系重合体とが100:2.5~90の質量比でハイドロゲル中に存在し、
前記ハイドロゲル100質量部中に、前記水を21~89.5質量部、前記ポリアクリル酸系重合体を0.5~19質量部、及び前記高分子マトリックスを10~60質量部含有することを特徴とするハイドロゲルが提供される。 Thus, a second aspect of the present invention for solving the second problem is a hydrogel comprising water, a polyacrylic acid-based polymer, and a polymer matrix,
The polyacrylic acid-based polymer has a weight average molecular weight of 3,000 to 2,000,000,
The polymer matrix includes a monofunctional monomer having an ethylenically unsaturated group and a copolymer of a polyfunctional monomer having 2 to 6 ethylenically unsaturated groups,
The monofunctional monomer having an ethylenically unsaturated group includes a monofunctional monomer A having at least one group selected from a sulfone group and a phosphate group and one ethylenically unsaturated group,
A component derived from the monofunctional monomer A and the polyacrylic acid-based polymer are present in the hydrogel in a mass ratio of 100: 2.5 to 90,
In 100 parts by mass of the hydrogel, 21 to 89.5 parts by mass of the water, 0.5 to 19 parts by mass of the polyacrylic acid-based polymer, and 10 to 60 parts by mass of the polymer matrix are contained. A hydrogel is provided.
前記ポリアクリル酸系重合体が、3,000~2,000,000の重量平均分子量を有し、
前記高分子マトリックスは、エチレン性不飽和基を有する単官能性モノマーと、2~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含み、
前記エチレン性不飽和基を有する単官能性モノマーが、スルホン基及びリン酸基から選択される少なくとも1つの基と、1個のエチレン性不飽和基とを有する単官能性モノマーAを含み、
単官能性モノマーA由来の成分とポリアクリル酸系重合体とが100:2.5~90の質量比でハイドロゲル中に存在し、
前記ハイドロゲル100質量部中に、前記水を21~89.5質量部、前記ポリアクリル酸系重合体を0.5~19質量部、及び前記高分子マトリックスを10~60質量部含有することを特徴とするハイドロゲルが提供される。 Thus, a second aspect of the present invention for solving the second problem is a hydrogel comprising water, a polyacrylic acid-based polymer, and a polymer matrix,
The polyacrylic acid-based polymer has a weight average molecular weight of 3,000 to 2,000,000,
The polymer matrix includes a monofunctional monomer having an ethylenically unsaturated group and a copolymer of a polyfunctional monomer having 2 to 6 ethylenically unsaturated groups,
The monofunctional monomer having an ethylenically unsaturated group includes a monofunctional monomer A having at least one group selected from a sulfone group and a phosphate group and one ethylenically unsaturated group,
A component derived from the monofunctional monomer A and the polyacrylic acid-based polymer are present in the hydrogel in a mass ratio of 100: 2.5 to 90,
In 100 parts by mass of the hydrogel, 21 to 89.5 parts by mass of the water, 0.5 to 19 parts by mass of the polyacrylic acid-based polymer, and 10 to 60 parts by mass of the polymer matrix are contained. A hydrogel is provided.
更に、本発明によれば、上記ハイドロゲルと、前記ハイドロゲルに含ませた電解質成分とを含むゲル状電解質が提供される。
また、本発明によれば、上記ハイドロゲル又は上記ゲル状電解質を用いたセパレータが提供される。
更に、本発明によれば、上記ハイドロゲル、上記ゲル状電解質、及び上記セパレータのいずれかを含むアルカリ電池が提供される。 Further, according to the present invention, there is provided a gel electrolyte including the hydrogel and an electrolyte component contained in the hydrogel.
Further, according to the present invention, there is provided a separator using the hydrogel or the gel electrolyte.
Further, according to the present invention, there is provided an alkaline battery including any one of the hydrogel, the gel electrolyte, and the separator.
また、本発明によれば、上記ハイドロゲル又は上記ゲル状電解質を用いたセパレータが提供される。
更に、本発明によれば、上記ハイドロゲル、上記ゲル状電解質、及び上記セパレータのいずれかを含むアルカリ電池が提供される。 Further, according to the present invention, there is provided a gel electrolyte including the hydrogel and an electrolyte component contained in the hydrogel.
Further, according to the present invention, there is provided a separator using the hydrogel or the gel electrolyte.
Further, according to the present invention, there is provided an alkaline battery including any one of the hydrogel, the gel electrolyte, and the separator.
本発明の第1の態様によれば、網目の緻密性を向上させ、正極方向へのデンドライトの成長を物理的に阻害することで、デンドライトの成長を抑制可能な高分子マトリックスを備え、保水性及びイオン伝導性に優れたハイドロゲルを提供できる。
本発明の第1の態様によるハイドロゲルは、デンドライトの成長を抑制可能であるから、ゲル状電解質及びセパレータとして用いた場合、アルカリ電池の充放電繰り返し数を増加できる。 According to the first aspect of the present invention, a polymer matrix capable of suppressing dendrite growth by improving denseness of a network and physically inhibiting dendrite growth in a positive electrode direction is provided. And a hydrogel having excellent ion conductivity can be provided.
Since the hydrogel according to the first aspect of the present invention can suppress the growth of dendrites, when used as a gel electrolyte and a separator, the number of charge / discharge repetitions of an alkaline battery can be increased.
本発明の第1の態様によるハイドロゲルは、デンドライトの成長を抑制可能であるから、ゲル状電解質及びセパレータとして用いた場合、アルカリ電池の充放電繰り返し数を増加できる。 According to the first aspect of the present invention, a polymer matrix capable of suppressing dendrite growth by improving denseness of a network and physically inhibiting dendrite growth in a positive electrode direction is provided. And a hydrogel having excellent ion conductivity can be provided.
Since the hydrogel according to the first aspect of the present invention can suppress the growth of dendrites, when used as a gel electrolyte and a separator, the number of charge / discharge repetitions of an alkaline battery can be increased.
また、本発明の第1の態様によれば、以下の構成を有する場合、よりデンドライトの成長を抑制可能な高分子マトリックスを備え、保水性及びイオン伝導性に優れたハイドロゲルを提供できる。
(1)多官能性モノマー中の3~6個のエチレン性不飽和基が、下記式(X)
で表されるビニルアミド由来の2価の基に含まれる。
(2)多官能性モノマーが、直線状又は分岐状の炭化水素鎖から構成されるモノマーであり、炭化水素鎖は、それを構成する炭素原子が、酸素原子及び又は窒素原子で置き換えられていてもよく、
前記ビニルアミド由来の2価の基が、
(i)下記式(X−I)
(式中、Rは、水素原子又は炭素数1~4のアルキル基を意味する)
として前記炭化水素鎖の末端に位置する、及び/又は
(ii)前記炭化水素鎖の炭素原子を置き換える窒素原子と共に前記式(X)で表される基として位置する。
(3)多官能性モノマーが、10~40個の炭素原子を有し、かつ70~150℃の融点を有する水溶性のモノマーである。
(4)共重合体が、単官能性モノマーに由来する単位100質量部と、多官能性モノマーに由来する単位0.1~5質量部とを含む。
(5)ハイドロゲルが、それを酸化亜鉛で飽和させた4MのKOH水溶液に浸漬させた後、間隔200μmの亜鉛極板間に位置させた状態で、亜鉛極板間に1mA/cm2の直流電流を通電する直流分極試験に付した場合、700分以上の通電時間を示す。
(6)ハイドロゲルが、それを酸化亜鉛で飽和させた4MのKOH水溶液に浸漬させた後、間隔200μmの亜鉛極板間に位置させた状態で、亜鉛極板間に1mA/cm2の直流電流を通電する直流分極試験に付した場合、通電開始から40分経過したときの亜鉛極板1cm2あたり2.0~15mVの電圧を示す。 Further, according to the first aspect of the present invention, when having the following constitution, it is possible to provide a hydrogel having a polymer matrix capable of suppressing the growth of dendrite and having excellent water retention and ion conductivity.
(1) 3 to 6 ethylenically unsaturated groups in the polyfunctional monomer are represented by the following formula (X)
Is included in the divalent group derived from vinylamide represented by
(2) The polyfunctional monomer is a monomer composed of a linear or branched hydrocarbon chain, wherein the carbon atom constituting the hydrocarbon chain is replaced with an oxygen atom and / or a nitrogen atom. Well,
The divalent group derived from the vinylamide,
(I) The following formula (XI)
(Wherein, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
And / or (ii) as a group represented by the formula (X) together with a nitrogen atom replacing a carbon atom of the hydrocarbon chain.
(3) The polyfunctional monomer is a water-soluble monomer having 10 to 40 carbon atoms and having a melting point of 70 to 150 ° C.
(4) The copolymer contains 100 parts by mass of a unit derived from a monofunctional monomer and 0.1 to 5 parts by mass of a unit derived from a polyfunctional monomer.
(5) After the hydrogel is immersed in a 4 M KOH aqueous solution saturated with zinc oxide, and placed between zinc electrodes at a distance of 200 μm, a direct current of 1 mA / cm 2 is applied between the zinc electrodes. When subjected to a DC polarization test in which an electric current is applied, an energization time of 700 minutes or more is shown.
(6) After the hydrogel is immersed in a 4M aqueous KOH solution saturated with zinc oxide, and placed between zinc electrodes at a distance of 200 μm, a direct current of 1 mA / cm 2 is applied between the zinc electrodes. When subjected to a DC polarization test in which a current is applied, a voltage of 2.0 to 15 mV per 1 cm 2 of zinc electrode plate when 40 minutes have elapsed from the start of the current application.
(1)多官能性モノマー中の3~6個のエチレン性不飽和基が、下記式(X)
で表されるビニルアミド由来の2価の基に含まれる。
(2)多官能性モノマーが、直線状又は分岐状の炭化水素鎖から構成されるモノマーであり、炭化水素鎖は、それを構成する炭素原子が、酸素原子及び又は窒素原子で置き換えられていてもよく、
前記ビニルアミド由来の2価の基が、
(i)下記式(X−I)
(式中、Rは、水素原子又は炭素数1~4のアルキル基を意味する)
として前記炭化水素鎖の末端に位置する、及び/又は
(ii)前記炭化水素鎖の炭素原子を置き換える窒素原子と共に前記式(X)で表される基として位置する。
(3)多官能性モノマーが、10~40個の炭素原子を有し、かつ70~150℃の融点を有する水溶性のモノマーである。
(4)共重合体が、単官能性モノマーに由来する単位100質量部と、多官能性モノマーに由来する単位0.1~5質量部とを含む。
(5)ハイドロゲルが、それを酸化亜鉛で飽和させた4MのKOH水溶液に浸漬させた後、間隔200μmの亜鉛極板間に位置させた状態で、亜鉛極板間に1mA/cm2の直流電流を通電する直流分極試験に付した場合、700分以上の通電時間を示す。
(6)ハイドロゲルが、それを酸化亜鉛で飽和させた4MのKOH水溶液に浸漬させた後、間隔200μmの亜鉛極板間に位置させた状態で、亜鉛極板間に1mA/cm2の直流電流を通電する直流分極試験に付した場合、通電開始から40分経過したときの亜鉛極板1cm2あたり2.0~15mVの電圧を示す。 Further, according to the first aspect of the present invention, when having the following constitution, it is possible to provide a hydrogel having a polymer matrix capable of suppressing the growth of dendrite and having excellent water retention and ion conductivity.
(1) 3 to 6 ethylenically unsaturated groups in the polyfunctional monomer are represented by the following formula (X)
Is included in the divalent group derived from vinylamide represented by
(2) The polyfunctional monomer is a monomer composed of a linear or branched hydrocarbon chain, wherein the carbon atom constituting the hydrocarbon chain is replaced with an oxygen atom and / or a nitrogen atom. Well,
The divalent group derived from the vinylamide,
(I) The following formula (XI)
(Wherein, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
And / or (ii) as a group represented by the formula (X) together with a nitrogen atom replacing a carbon atom of the hydrocarbon chain.
(3) The polyfunctional monomer is a water-soluble monomer having 10 to 40 carbon atoms and having a melting point of 70 to 150 ° C.
(4) The copolymer contains 100 parts by mass of a unit derived from a monofunctional monomer and 0.1 to 5 parts by mass of a unit derived from a polyfunctional monomer.
(5) After the hydrogel is immersed in a 4 M KOH aqueous solution saturated with zinc oxide, and placed between zinc electrodes at a distance of 200 μm, a direct current of 1 mA / cm 2 is applied between the zinc electrodes. When subjected to a DC polarization test in which an electric current is applied, an energization time of 700 minutes or more is shown.
(6) After the hydrogel is immersed in a 4M aqueous KOH solution saturated with zinc oxide, and placed between zinc electrodes at a distance of 200 μm, a direct current of 1 mA / cm 2 is applied between the zinc electrodes. When subjected to a DC polarization test in which a current is applied, a voltage of 2.0 to 15 mV per 1 cm 2 of zinc electrode plate when 40 minutes have elapsed from the start of the current application.
さらに、本発明の第2の態様によれば、
(i)ハイドロゲルを構成する高分子マトリックスの骨格にスルホン基及び/又はリン酸基を導入することで、ハイドロゲル内に多量の電解質を含有させた際の骨格の析出を防止し、柔軟性を保持することができる
(ii)特定の範囲の重量平均分子量を有するポリアクリル酸系重合体を含有させることで、電解液浸漬後のハイドロゲルに高い機械強度を付与できる
という効果を奏する。
本発明の第2の態様によるハイドロゲルは、電解質を高濃度で含浸させた状態でも保水性及び柔軟性を保持している点から、電極や固体電解質に対して良好な密着性を示すため、それら電池材料との界面抵抗の増大を抑制でき、その結果、良好な電池特性を実現できる。更に、本発明の第2の態様によるハイドロゲルは、機械強度に優れている点から、電池用のゲル電解質として用いた場合に取り扱いに優れている。 Further, according to a second aspect of the present invention,
(I) By introducing a sulfone group and / or a phosphate group into the skeleton of the polymer matrix constituting the hydrogel, it is possible to prevent the skeleton from being precipitated when a large amount of electrolyte is contained in the hydrogel, and to provide flexibility. (Ii) By including a polyacrylic acid-based polymer having a weight average molecular weight in a specific range, high mechanical strength can be imparted to the hydrogel after immersion in the electrolytic solution.
Since the hydrogel according to the second aspect of the present invention retains water retention and flexibility even in a state where the electrolyte is impregnated at a high concentration, it shows good adhesion to electrodes and solid electrolytes. An increase in the interface resistance with these battery materials can be suppressed, and as a result, good battery characteristics can be realized. Furthermore, the hydrogel according to the second aspect of the present invention is excellent in handling when used as a gel electrolyte for batteries because of its excellent mechanical strength.
(i)ハイドロゲルを構成する高分子マトリックスの骨格にスルホン基及び/又はリン酸基を導入することで、ハイドロゲル内に多量の電解質を含有させた際の骨格の析出を防止し、柔軟性を保持することができる
(ii)特定の範囲の重量平均分子量を有するポリアクリル酸系重合体を含有させることで、電解液浸漬後のハイドロゲルに高い機械強度を付与できる
という効果を奏する。
本発明の第2の態様によるハイドロゲルは、電解質を高濃度で含浸させた状態でも保水性及び柔軟性を保持している点から、電極や固体電解質に対して良好な密着性を示すため、それら電池材料との界面抵抗の増大を抑制でき、その結果、良好な電池特性を実現できる。更に、本発明の第2の態様によるハイドロゲルは、機械強度に優れている点から、電池用のゲル電解質として用いた場合に取り扱いに優れている。 Further, according to a second aspect of the present invention,
(I) By introducing a sulfone group and / or a phosphate group into the skeleton of the polymer matrix constituting the hydrogel, it is possible to prevent the skeleton from being precipitated when a large amount of electrolyte is contained in the hydrogel, and to provide flexibility. (Ii) By including a polyacrylic acid-based polymer having a weight average molecular weight in a specific range, high mechanical strength can be imparted to the hydrogel after immersion in the electrolytic solution.
Since the hydrogel according to the second aspect of the present invention retains water retention and flexibility even in a state where the electrolyte is impregnated at a high concentration, it shows good adhesion to electrodes and solid electrolytes. An increase in the interface resistance with these battery materials can be suppressed, and as a result, good battery characteristics can be realized. Furthermore, the hydrogel according to the second aspect of the present invention is excellent in handling when used as a gel electrolyte for batteries because of its excellent mechanical strength.
また、本発明の第2の態様によれば、以下の構成を有する場合、取扱い性及び電池特性に、より優れたハイドロゲルを提供できる。
(1)エチレン性不飽和基を有する単官能性モノマーが、カルボキシル基と1個のエチレン性不飽和基を有する単官能性モノマーBを更に含み、単官能性モノマーA及びBの含有割合が、30mol%以上70mol%以下の範囲である。
(2)ポリアクリル酸系重合体が、カルボキシル基含有モノマーの単独重合体、又はカルボキシル基含有モノマーとスルホン酸基含有モノマーとの共重合体である。
(3)ポリアクリル酸系重合体は、FT−IR測定において得られた1650±130cm−1の範囲の最大ピークの吸光度(吸光度[1650±130cm−1])と1040±20cm−1の範囲の最大ピークの吸光度(吸光度[1040±20cm−1])との吸光度比(吸光度[1040±20cm−1]/吸光度[1650±130cm−1])が、0.001~5.0の範囲の値を示す重合体である。
(4)ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液に1週間浸漬した場合、50~300%の膨潤度を示す。
(5)ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液中に1週間浸漬した場合、0.35N以上の突刺強度を示す。
(6)ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液中に1週間浸漬した場合、周波数100kHzにおけるインピーダンスとして、20Ω以下の値を示す。 Further, according to the second aspect of the present invention, when the following configuration is provided, a hydrogel having more excellent handleability and battery characteristics can be provided.
(1) The monofunctional monomer having an ethylenically unsaturated group further includes a monofunctional monomer B having a carboxyl group and one ethylenically unsaturated group, and the content ratio of the monofunctional monomers A and B is The range is from 30 mol% to 70 mol%.
(2) The polyacrylic acid-based polymer is a homopolymer of a carboxyl group-containing monomer or a copolymer of a carboxyl group-containing monomer and a sulfonic acid group-containing monomer.
(3) The polyacrylic acid polymer has a maximum peak absorbance (absorbance [1650 ± 130 cm-1] ) in the range of 1650 ± 130 cm −1 and an absorbance of 1040 ± 20 cm −1 obtained in the FT-IR measurement. The absorbance ratio (absorbance [1040 ± 20 cm-1] / absorbance [1650 ± 130 cm-1] ) with the absorbance of the maximum peak (absorbance [1040 ± 20 cm-1] ) is a value in the range of 0.001 to 5.0. It is a polymer which shows.
(4) When the hydrogel is immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, it shows a swelling degree of 50 to 300%.
(5) When the hydrogel is immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, it shows a piercing strength of 0.35 N or more.
(6) When the hydrogel is immersed for one week in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C., the impedance at a frequency of 100 kHz shows a value of 20Ω or less.
(1)エチレン性不飽和基を有する単官能性モノマーが、カルボキシル基と1個のエチレン性不飽和基を有する単官能性モノマーBを更に含み、単官能性モノマーA及びBの含有割合が、30mol%以上70mol%以下の範囲である。
(2)ポリアクリル酸系重合体が、カルボキシル基含有モノマーの単独重合体、又はカルボキシル基含有モノマーとスルホン酸基含有モノマーとの共重合体である。
(3)ポリアクリル酸系重合体は、FT−IR測定において得られた1650±130cm−1の範囲の最大ピークの吸光度(吸光度[1650±130cm−1])と1040±20cm−1の範囲の最大ピークの吸光度(吸光度[1040±20cm−1])との吸光度比(吸光度[1040±20cm−1]/吸光度[1650±130cm−1])が、0.001~5.0の範囲の値を示す重合体である。
(4)ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液に1週間浸漬した場合、50~300%の膨潤度を示す。
(5)ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液中に1週間浸漬した場合、0.35N以上の突刺強度を示す。
(6)ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液中に1週間浸漬した場合、周波数100kHzにおけるインピーダンスとして、20Ω以下の値を示す。 Further, according to the second aspect of the present invention, when the following configuration is provided, a hydrogel having more excellent handleability and battery characteristics can be provided.
(1) The monofunctional monomer having an ethylenically unsaturated group further includes a monofunctional monomer B having a carboxyl group and one ethylenically unsaturated group, and the content ratio of the monofunctional monomers A and B is The range is from 30 mol% to 70 mol%.
(2) The polyacrylic acid-based polymer is a homopolymer of a carboxyl group-containing monomer or a copolymer of a carboxyl group-containing monomer and a sulfonic acid group-containing monomer.
(3) The polyacrylic acid polymer has a maximum peak absorbance (absorbance [1650 ± 130 cm-1] ) in the range of 1650 ± 130 cm −1 and an absorbance of 1040 ± 20 cm −1 obtained in the FT-IR measurement. The absorbance ratio (absorbance [1040 ± 20 cm-1] / absorbance [1650 ± 130 cm-1] ) with the absorbance of the maximum peak (absorbance [1040 ± 20 cm-1] ) is a value in the range of 0.001 to 5.0. It is a polymer which shows.
(4) When the hydrogel is immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, it shows a swelling degree of 50 to 300%.
(5) When the hydrogel is immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, it shows a piercing strength of 0.35 N or more.
(6) When the hydrogel is immersed for one week in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C., the impedance at a frequency of 100 kHz shows a value of 20Ω or less.
(第1の態様によるハイドロゲル)
本発明の第1の態様によるハイドロゲルは、それを酸化亜鉛で飽和させた4MのKOH水溶液に浸漬させた後、間隔200μmの亜鉛極板間に位置させた状態で、亜鉛極板間に1mA/cm2の直流電流を通電する直流分極試験に付した場合、700分以上の通電時間を示すことが好ましい。通電時間が長いことは、例えば、負極の亜鉛板から成長するデンドライトが正極に到達しにくいこと、言い換えると、デンドライトによる短絡抑制性能に優れることを意味している。通電時間が700分未満の場合、デンドライトによる短絡を十分抑制できないことがある。通電時間は、800分以上であることがより好ましく、900分以上であることが更に好ましく、1,000分以上であることが特に好ましい。 (Hydrogel according to the first embodiment)
The hydrogel according to the first aspect of the present invention, after being immersed in a 4 M KOH aqueous solution saturated with zinc oxide, is placed between the zinc electrodes at a distance of 200 μm, and is placed between the zinc electrodes at 1 mA. When subjected to a DC polarization test in which a DC current of / cm 2 is applied, it is preferable to show an energization time of 700 minutes or more. A long energization time means that, for example, dendrites growing from the zinc plate of the negative electrode hardly reach the positive electrode, in other words, excellent short-circuit suppression performance by the dendrites. If the energization time is less than 700 minutes, the short circuit due to dendrite may not be sufficiently suppressed. The energization time is more preferably 800 minutes or more, further preferably 900 minutes or more, and particularly preferably 1,000 minutes or more.
本発明の第1の態様によるハイドロゲルは、それを酸化亜鉛で飽和させた4MのKOH水溶液に浸漬させた後、間隔200μmの亜鉛極板間に位置させた状態で、亜鉛極板間に1mA/cm2の直流電流を通電する直流分極試験に付した場合、700分以上の通電時間を示すことが好ましい。通電時間が長いことは、例えば、負極の亜鉛板から成長するデンドライトが正極に到達しにくいこと、言い換えると、デンドライトによる短絡抑制性能に優れることを意味している。通電時間が700分未満の場合、デンドライトによる短絡を十分抑制できないことがある。通電時間は、800分以上であることがより好ましく、900分以上であることが更に好ましく、1,000分以上であることが特に好ましい。 (Hydrogel according to the first embodiment)
The hydrogel according to the first aspect of the present invention, after being immersed in a 4 M KOH aqueous solution saturated with zinc oxide, is placed between the zinc electrodes at a distance of 200 μm, and is placed between the zinc electrodes at 1 mA. When subjected to a DC polarization test in which a DC current of / cm 2 is applied, it is preferable to show an energization time of 700 minutes or more. A long energization time means that, for example, dendrites growing from the zinc plate of the negative electrode hardly reach the positive electrode, in other words, excellent short-circuit suppression performance by the dendrites. If the energization time is less than 700 minutes, the short circuit due to dendrite may not be sufficiently suppressed. The energization time is more preferably 800 minutes or more, further preferably 900 minutes or more, and particularly preferably 1,000 minutes or more.
ハイドロゲルは、それを酸化亜鉛で飽和させた4MのKOH水溶液に浸漬させた後、間隔200μmの亜鉛極板間に位置させた状態で、亜鉛極板間に1mA/cm2の直流電流を通電する直流分極試験に付した場合、通電開始から40分経過したときの亜鉛極板1cm2あたり2.5~15mVの電圧を示す。この範囲内の電圧を示すことで、アルカリ二次電池のセパレータとして用いた際の抵抗を低減できるため、電池特性を向上できる。電圧は、2.5~12.5mVであることがより好ましく、2.5~10.0mVであることが更に好ましい。
ハイドロゲルは、それを25℃又は60℃の温度下4MのKOH水溶液に14日間、21日間、及び35日間浸漬させた場合、測定される6種の膨潤度が650%以下を示すことが好ましい。膨潤度が低いことは、ハイドロゲルを構成する高分子マトリックスの骨格の網目が緻密であることを意味しており、緻密性が高いほど、即ち膨潤度が低いほど、デンドライトの成長を抑制できると発明者等は考えている。膨潤度が650%よりも大きい場合、ハイドロゲルが膨潤により強度低下することがある。膨潤度は、100~650%であることがより好ましく、100~600%であることが更に好ましく、100~550%であることが特に好ましい。 The hydrogel was immersed in a 4M aqueous solution of KOH saturated with zinc oxide, and then passed between the zinc plates at a distance of 200 μm, and a direct current of 1 mA / cm 2 was applied between the zinc plates. When a DC polarization test is performed, a voltage of 2.5 to 15 mV per 1 cm 2 of zinc electrode plate when 40 minutes have passed from the start of energization is shown. By exhibiting a voltage within this range, the resistance when used as a separator of an alkaline secondary battery can be reduced, so that battery characteristics can be improved. The voltage is more preferably from 2.5 to 12.5 mV, even more preferably from 2.5 to 10.0 mV.
When the hydrogel is immersed in a 4 M aqueous KOH solution at a temperature of 25 ° C. or 60 ° C. for 14 days, 21 days, and 35 days, it is preferable that the measured 6 types of swelling show 650% or less. . The low degree of swelling means that the network of the skeleton of the polymer matrix constituting the hydrogel is dense.The higher the density, that is, the lower the degree of swelling, the more the dendrite growth can be suppressed. The inventors are thinking. If the degree of swelling is larger than 650%, the strength of the hydrogel may decrease due to swelling. The degree of swelling is more preferably from 100 to 650%, further preferably from 100 to 600%, and particularly preferably from 100 to 550%.
ハイドロゲルは、それを25℃又は60℃の温度下4MのKOH水溶液に14日間、21日間、及び35日間浸漬させた場合、測定される6種の膨潤度が650%以下を示すことが好ましい。膨潤度が低いことは、ハイドロゲルを構成する高分子マトリックスの骨格の網目が緻密であることを意味しており、緻密性が高いほど、即ち膨潤度が低いほど、デンドライトの成長を抑制できると発明者等は考えている。膨潤度が650%よりも大きい場合、ハイドロゲルが膨潤により強度低下することがある。膨潤度は、100~650%であることがより好ましく、100~600%であることが更に好ましく、100~550%であることが特に好ましい。 The hydrogel was immersed in a 4M aqueous solution of KOH saturated with zinc oxide, and then passed between the zinc plates at a distance of 200 μm, and a direct current of 1 mA / cm 2 was applied between the zinc plates. When a DC polarization test is performed, a voltage of 2.5 to 15 mV per 1 cm 2 of zinc electrode plate when 40 minutes have passed from the start of energization is shown. By exhibiting a voltage within this range, the resistance when used as a separator of an alkaline secondary battery can be reduced, so that battery characteristics can be improved. The voltage is more preferably from 2.5 to 12.5 mV, even more preferably from 2.5 to 10.0 mV.
When the hydrogel is immersed in a 4 M aqueous KOH solution at a temperature of 25 ° C. or 60 ° C. for 14 days, 21 days, and 35 days, it is preferable that the measured 6 types of swelling show 650% or less. . The low degree of swelling means that the network of the skeleton of the polymer matrix constituting the hydrogel is dense.The higher the density, that is, the lower the degree of swelling, the more the dendrite growth can be suppressed. The inventors are thinking. If the degree of swelling is larger than 650%, the strength of the hydrogel may decrease due to swelling. The degree of swelling is more preferably from 100 to 650%, further preferably from 100 to 600%, and particularly preferably from 100 to 550%.
ハイドロゲルは、それを25℃又は60℃の温度下4MのKOH水溶液に14日間、21日間、及び35日間浸漬させた場合、測定される6種の突刺強度が0.25N以上を示すことが好ましい。ここでの突刺強度は、ハイドロゲルに直径3mmの治具の先端が貫通するまでの最大応力の平均値を意味する。突刺強度が0.25N未満の場合、機械強度が低くなり自立膜として扱えなくなることがある。突刺強度は、0.25~20.0Nであることがより好ましい。
ハイドロゲルは、10~3,000μmの厚さを有することが好ましい。厚さが10μm未満の場合、電池を組立てる場合に、正極とハイドロゲルと負極とを積層後にプレスした際、正極あるいは負極上の凸部がハイドロゲルを突き破り、短絡を起こすことがある。3,000μmより厚い場合、電極間の抵抗が増大し、ハイドロゲルを電池材料として用いたときの電池特性が低下することがある。厚さは、次の降順、10~2,000μm、20~1,000μm、20~750μm、20~550μm、20~450μm、20~400μm、20~350μm、30~350μm、及び30~300μmで好ましい。 When the hydrogel is immersed in a 4 M KOH aqueous solution at a temperature of 25 ° C. or 60 ° C. for 14 days, 21 days, and 35 days, the measured six types of piercing strengths show 0.25 N or more. preferable. The piercing strength here means the average value of the maximum stress until the tip of a jig having a diameter of 3 mm penetrates the hydrogel. If the puncture strength is less than 0.25 N, the mechanical strength may be low, and the puncture strength may not be handled as a self-supporting film. The piercing strength is more preferably 0.25 to 20.0 N.
The hydrogel preferably has a thickness of 10 to 3,000 μm. When the thickness is less than 10 μm, when the battery is assembled, when the positive electrode, the hydrogel, and the negative electrode are laminated and then pressed, the convex portion on the positive electrode or the negative electrode may break through the hydrogel and cause a short circuit. If the thickness is more than 3,000 μm, the resistance between the electrodes may increase, and the battery characteristics when the hydrogel is used as a battery material may deteriorate. The thickness is preferably in the following descending order: 10 to 2,000 μm, 20 to 1,000 μm, 20 to 750 μm, 20 to 550 μm, 20 to 450 μm, 20 to 400 μm, 20 to 350 μm, 30 to 350 μm, and 30 to 300 μm .
ハイドロゲルは、10~3,000μmの厚さを有することが好ましい。厚さが10μm未満の場合、電池を組立てる場合に、正極とハイドロゲルと負極とを積層後にプレスした際、正極あるいは負極上の凸部がハイドロゲルを突き破り、短絡を起こすことがある。3,000μmより厚い場合、電極間の抵抗が増大し、ハイドロゲルを電池材料として用いたときの電池特性が低下することがある。厚さは、次の降順、10~2,000μm、20~1,000μm、20~750μm、20~550μm、20~450μm、20~400μm、20~350μm、30~350μm、及び30~300μmで好ましい。 When the hydrogel is immersed in a 4 M KOH aqueous solution at a temperature of 25 ° C. or 60 ° C. for 14 days, 21 days, and 35 days, the measured six types of piercing strengths show 0.25 N or more. preferable. The piercing strength here means the average value of the maximum stress until the tip of a jig having a diameter of 3 mm penetrates the hydrogel. If the puncture strength is less than 0.25 N, the mechanical strength may be low, and the puncture strength may not be handled as a self-supporting film. The piercing strength is more preferably 0.25 to 20.0 N.
The hydrogel preferably has a thickness of 10 to 3,000 μm. When the thickness is less than 10 μm, when the battery is assembled, when the positive electrode, the hydrogel, and the negative electrode are laminated and then pressed, the convex portion on the positive electrode or the negative electrode may break through the hydrogel and cause a short circuit. If the thickness is more than 3,000 μm, the resistance between the electrodes may increase, and the battery characteristics when the hydrogel is used as a battery material may deteriorate. The thickness is preferably in the following descending order: 10 to 2,000 μm, 20 to 1,000 μm, 20 to 750 μm, 20 to 550 μm, 20 to 450 μm, 20 to 400 μm, 20 to 350 μm, 30 to 350 μm, and 30 to 300 μm .
本発明の第1の態様によるハイドロゲルは、水と高分子マトリックスとを含む。
The hydrogel according to the first aspect of the present invention includes water and a polymer matrix.
(1)高分子マトリックス
本発明の第1の態様によるハイドロゲルに含まれる高分子マトリックスは、親水性基及び1個のエチレン性不飽和基を有する単官能性モノマーと、エステル結合を有さず、アミド基及び3~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含む。この共重合体は、各種モノマーを重合し架橋することで形成できる。
高分子マトリックスは、ハイドロゲル100質量部中に5~60質量部含まれる。含有量が5質量部未満の場合、ハイドロゲルの強度が低くなり、シート形状を保てなくなることがある。60質量部より多いと、イオンの移動が阻害されてしまうため、抵抗が高くなることがある。含有量は、5~50質量部であることが好ましく、10~40質量部であることがより好ましい。
また、高分子マトリックス中の共重合体の含有量は、45質量部以上であることが好ましく、55質量部以上であることがより好ましい。高分子マトリックスは、共重合体のみから構成されていてもよい。 (1) Polymer matrix The polymer matrix contained in the hydrogel according to the first embodiment of the present invention is a polymer matrix having a monofunctional monomer having a hydrophilic group and one ethylenically unsaturated group, having no ester bond. And a copolymer with a polyfunctional monomer having an amide group and 3 to 6 ethylenically unsaturated groups. This copolymer can be formed by polymerizing and crosslinking various monomers.
The polymer matrix is contained in an amount of 5 to 60 parts by mass per 100 parts by mass of the hydrogel. When the content is less than 5 parts by mass, the strength of the hydrogel is reduced, and the sheet shape may not be maintained. If the amount is more than 60 parts by mass, the movement of ions is hindered, so that the resistance may increase. The content is preferably from 5 to 50 parts by mass, more preferably from 10 to 40 parts by mass.
Further, the content of the copolymer in the polymer matrix is preferably at least 45 parts by mass, more preferably at least 55 parts by mass. The polymer matrix may be composed of only a copolymer.
本発明の第1の態様によるハイドロゲルに含まれる高分子マトリックスは、親水性基及び1個のエチレン性不飽和基を有する単官能性モノマーと、エステル結合を有さず、アミド基及び3~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含む。この共重合体は、各種モノマーを重合し架橋することで形成できる。
高分子マトリックスは、ハイドロゲル100質量部中に5~60質量部含まれる。含有量が5質量部未満の場合、ハイドロゲルの強度が低くなり、シート形状を保てなくなることがある。60質量部より多いと、イオンの移動が阻害されてしまうため、抵抗が高くなることがある。含有量は、5~50質量部であることが好ましく、10~40質量部であることがより好ましい。
また、高分子マトリックス中の共重合体の含有量は、45質量部以上であることが好ましく、55質量部以上であることがより好ましい。高分子マトリックスは、共重合体のみから構成されていてもよい。 (1) Polymer matrix The polymer matrix contained in the hydrogel according to the first embodiment of the present invention is a polymer matrix having a monofunctional monomer having a hydrophilic group and one ethylenically unsaturated group, having no ester bond. And a copolymer with a polyfunctional monomer having an amide group and 3 to 6 ethylenically unsaturated groups. This copolymer can be formed by polymerizing and crosslinking various monomers.
The polymer matrix is contained in an amount of 5 to 60 parts by mass per 100 parts by mass of the hydrogel. When the content is less than 5 parts by mass, the strength of the hydrogel is reduced, and the sheet shape may not be maintained. If the amount is more than 60 parts by mass, the movement of ions is hindered, so that the resistance may increase. The content is preferably from 5 to 50 parts by mass, more preferably from 10 to 40 parts by mass.
Further, the content of the copolymer in the polymer matrix is preferably at least 45 parts by mass, more preferably at least 55 parts by mass. The polymer matrix may be composed of only a copolymer.
(a)単官能性モノマー
単官能性モノマーは、親水性基及び1個のエチレン性不飽和基を有する限りは限定されない。親水性基としては、カルボキシル基、スルホン酸基等が挙げられる。ここでカルボキシル基及びスルホン酸基には、塩の形態で単官能性モノマー中に存在する場合も含まれる。更に、単官能性モノマーは、塩の形態でないモノマーと塩の形態のモノマーとの混合物であってもよい。例えば、単官能性モノマーは、(メタ)アクリル酸、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、(メタ)アクリル酸リチウム、ビニル安息香酸、ビニル安息香酸ナトリウム、ビニル安息香酸カリウム、ビニル安息香酸リチウム、ビニル酢酸、ビニル酢酸ナトリウム、ビニル酢酸カリウム、ビニル酢酸リチウム、ビニルスルホン酸、ビニルスルホン酸ナトリウム、ビニルスルホン酸カリウム、ビニルスルホン酸リチウム、p−スチレンスルホン酸、p−スチレンスルホン酸ナトリウム、p−スチレンスルホン酸カリウム、p−スチレンスルホン酸リチウム、アリルスルホン酸、アリルスルホン酸ナトリウム、アリルスルホン酸カリウム、アリルスルホン酸リチウム、2−アクリルアミド−2−メチルプロパンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸カリウム、2−アクリルアミド−2−メチルプロパンスルホン酸リチウム等が挙げられる。 (A) Monofunctional monomer The monofunctional monomer is not limited as long as it has a hydrophilic group and one ethylenically unsaturated group. Examples of the hydrophilic group include a carboxyl group and a sulfonic group. Here, the carboxyl group and the sulfonic acid group include those present in the monofunctional monomer in the form of a salt. Further, the monofunctional monomer may be a mixture of a monomer in a salt form and a monomer in a salt form. For example, monofunctional monomers include (meth) acrylic acid, sodium (meth) acrylate, potassium (meth) acrylate, lithium (meth) acrylate, vinyl benzoic acid, sodium vinyl benzoate, potassium vinyl benzoate, vinyl Lithium benzoate, vinyl acetic acid, sodium vinyl acetate, potassium potassium acetate, lithium vinyl acetate, vinyl sulfonic acid, sodium vinyl sulfonate, potassium vinyl sulfonate, lithium vinyl sulfonate, p-styrene sulfonic acid, sodium p-styrene sulfonate , Potassium p-styrenesulfonate, lithium p-styrenesulfonate, allylsulfonic acid, sodium allylsulfonate, potassium allylsulfonate, lithium allylsulfonate, 2-acrylamido-2-methylpropanesulfonic acid, - sodium acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-2-potassium-methylpropanesulfonic acid, 2-acrylamido-2-methyl-lithium sulfonic acid and the like.
単官能性モノマーは、親水性基及び1個のエチレン性不飽和基を有する限りは限定されない。親水性基としては、カルボキシル基、スルホン酸基等が挙げられる。ここでカルボキシル基及びスルホン酸基には、塩の形態で単官能性モノマー中に存在する場合も含まれる。更に、単官能性モノマーは、塩の形態でないモノマーと塩の形態のモノマーとの混合物であってもよい。例えば、単官能性モノマーは、(メタ)アクリル酸、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、(メタ)アクリル酸リチウム、ビニル安息香酸、ビニル安息香酸ナトリウム、ビニル安息香酸カリウム、ビニル安息香酸リチウム、ビニル酢酸、ビニル酢酸ナトリウム、ビニル酢酸カリウム、ビニル酢酸リチウム、ビニルスルホン酸、ビニルスルホン酸ナトリウム、ビニルスルホン酸カリウム、ビニルスルホン酸リチウム、p−スチレンスルホン酸、p−スチレンスルホン酸ナトリウム、p−スチレンスルホン酸カリウム、p−スチレンスルホン酸リチウム、アリルスルホン酸、アリルスルホン酸ナトリウム、アリルスルホン酸カリウム、アリルスルホン酸リチウム、2−アクリルアミド−2−メチルプロパンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸カリウム、2−アクリルアミド−2−メチルプロパンスルホン酸リチウム等が挙げられる。 (A) Monofunctional monomer The monofunctional monomer is not limited as long as it has a hydrophilic group and one ethylenically unsaturated group. Examples of the hydrophilic group include a carboxyl group and a sulfonic group. Here, the carboxyl group and the sulfonic acid group include those present in the monofunctional monomer in the form of a salt. Further, the monofunctional monomer may be a mixture of a monomer in a salt form and a monomer in a salt form. For example, monofunctional monomers include (meth) acrylic acid, sodium (meth) acrylate, potassium (meth) acrylate, lithium (meth) acrylate, vinyl benzoic acid, sodium vinyl benzoate, potassium vinyl benzoate, vinyl Lithium benzoate, vinyl acetic acid, sodium vinyl acetate, potassium potassium acetate, lithium vinyl acetate, vinyl sulfonic acid, sodium vinyl sulfonate, potassium vinyl sulfonate, lithium vinyl sulfonate, p-styrene sulfonic acid, sodium p-styrene sulfonate , Potassium p-styrenesulfonate, lithium p-styrenesulfonate, allylsulfonic acid, sodium allylsulfonate, potassium allylsulfonate, lithium allylsulfonate, 2-acrylamido-2-methylpropanesulfonic acid, - sodium acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-2-potassium-methylpropanesulfonic acid, 2-acrylamido-2-methyl-lithium sulfonic acid and the like.
(b)多官能性モノマー
多官能性モノマーは、エステル結合を有さず、アミド基及び3~6個のエチレン性不飽和基を有している。この多官能性モノマーは、架橋剤の役割を有するため、ハイドロゲルを構成する高分子マトリックスの骨格の網目の緻密性を向上できる。この向上の結果、正極方向へのデンドライトの成長を物理的に阻害することで、負極上に発生するデンドライトによる内部短絡を抑制できると発明者等は考えている。エチレン性不飽和基の数が2個以下の場合、骨格の網目の緻密性が低下することにより、デンドライトの成長を抑制する性能が低下することがある。7個以上の場合、骨格に局所的に網目が密になった箇所ができることで、ハイドロゲルに局所的に高い応力が加わるため、ハイドロゲルが脆くなることがある。エチレン性不飽和基の数は、3個又は4個であることが好ましい。
多官能性モノマー中の3~6個のエチレン性不飽和基は、下記式(X)
で表されるビニルアミド由来の2価の基に含まれることが好ましい。ビニルアミド由来の2価の基を有する多官能性モノマーを使用することで、高分子マトリックスの主骨格を形成する単官能性モノマーと、多官能性モノマーとの反応性を向上できる。その結果、高分子マトリックスを形成する網目の緻密性を向上できるため、デンドライトによる内部短絡の抑制性能を高めたハイドロゲルを得ることができる。
また、多官能性モノマーは、直線状又は分岐状の炭化水素鎖から構成されるモノマーであり、炭化水素鎖は、それを構成する炭素原子が、酸素原子及び又は窒素原子で置き換えられていてもよい。そして、ビニルアミド由来の2価の基が、
(i)下記式(X−I)
(式中、Rは、水素原子又は炭素数1~4のアルキル基を意味する)
として炭化水素鎖の末端に位置する、及び/又は
(ii)炭化水素鎖の炭素原子を置き換える窒素原子と共に式(X)で表される基として位置する
ことが好ましい。
また、多官能性モノマーは、10~40個の炭素原子を有し、かつ70~150℃の融点を有する水溶性のモノマーであることが好ましい。
具体的な多官能性モノマーとしては、N,N’−{[(2−アクリルアミド−2−[(3−アクリルアミドプロポキシ)メチル]プロパン−1,3−ジイル)ビス(オキシ)]ビス(プロパン−1,3−ジイル)}ジアクリルアミド(CAS No.1393329−90−2)、N,N’,N’’−トリアクリロイルジエチレントリアミン(CAS No.34330−10−4)、N,N’,N’’,N’’’−テトラアクリロイルトリエチレンテトラミン(CAS No.158749−66−7)等が挙げられる。
多官能性モノマーは、1種のみであってもよく、複数種の混合物であってもよい。
多官能性モノマー由来の単位は、単官能性モノマー由来の単位100質量部に対して、0.1~5質量部の割合で含まれていることが好ましい。多官能性モノマー由来の単位の割合が0.1質量部未満の場合、架橋密度が低くなることがある。5質量部より多い場合、多官能性モノマー由来の単位が相分離してしまい、架橋構造が不均一なハイドロゲルとなることがある。割合は、0.2~4.5質量部であることが好ましく、0.4~4.0質量部であることがより好ましい。
なお、共重合体は、単官能性モノマー及び多官能性モノマーに由来する単位を含むが、共重合体製造時の各モノマーの使用量と、共重合体中の各単位の含有量とは、ほぼ同じである。また、共重合体中の多官能性モノマー由来の単位の含有量は、熱分解GC及び/又はIRにより測定できる。 (B) Polyfunctional monomer The polyfunctional monomer has no ester bond and has an amide group and 3 to 6 ethylenically unsaturated groups. Since this polyfunctional monomer has a role of a cross-linking agent, the density of the network of the skeleton of the polymer matrix constituting the hydrogel can be improved. The inventors believe that as a result of this improvement, the internal short circuit due to dendrite generated on the negative electrode can be suppressed by physically inhibiting the growth of dendrite in the direction of the positive electrode. When the number of ethylenically unsaturated groups is two or less, the performance of suppressing the growth of dendrites may decrease due to the reduction in the density of the skeleton network. In the case of seven or more, a locally dense network is formed in the skeleton, and a high stress is locally applied to the hydrogel, so that the hydrogel may become brittle. The number of ethylenically unsaturated groups is preferably three or four.
3 to 6 ethylenically unsaturated groups in the polyfunctional monomer are represented by the following formula (X)
Is preferably contained in a divalent group derived from vinylamide represented by By using a polyfunctional monomer having a divalent group derived from vinylamide, the reactivity between the monofunctional monomer forming the main skeleton of the polymer matrix and the polyfunctional monomer can be improved. As a result, the denseness of the network forming the polymer matrix can be improved, so that a hydrogel with improved performance of suppressing internal short circuits due to dendrites can be obtained.
Further, the polyfunctional monomer is a monomer composed of a linear or branched hydrocarbon chain, and the hydrocarbon chain may have a carbon atom constituting the hydrocarbon chain replaced with an oxygen atom and / or a nitrogen atom. Good. And a divalent group derived from vinylamide is
(I) The following formula (XI)
(Wherein, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
And / or (ii) as a group represented by the formula (X) together with a nitrogen atom replacing a carbon atom of the hydrocarbon chain.
Further, the polyfunctional monomer is preferably a water-soluble monomer having 10 to 40 carbon atoms and having a melting point of 70 to 150 ° C.
Specific polyfunctional monomers include N, N '-{[(2-acrylamido-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (oxy)] bis (propane- 1,3-diyl) diacrylamide (CAS No. 139329-90-2), N, N ', N "-triacryloyldiethylenetriamine (CAS No. 34330-10-4), N, N', N '',N'''-tetraacryloyltriethylenetetramine (CAS No. 158749-66-7) and the like.
The polyfunctional monomer may be only one kind or a mixture of plural kinds.
The unit derived from the polyfunctional monomer is preferably contained in a proportion of 0.1 to 5 parts by mass based on 100 parts by mass of the unit derived from the monofunctional monomer. When the proportion of the unit derived from the polyfunctional monomer is less than 0.1 part by mass, the crosslinking density may be low. If the amount is more than 5 parts by mass, the unit derived from the polyfunctional monomer may undergo phase separation, resulting in a hydrogel having a non-uniform crosslinked structure. The proportion is preferably from 0.2 to 4.5 parts by mass, more preferably from 0.4 to 4.0 parts by mass.
In addition, the copolymer includes units derived from a monofunctional monomer and a polyfunctional monomer, but the amount of each monomer used in the production of the copolymer, and the content of each unit in the copolymer, Almost the same. The content of the unit derived from the polyfunctional monomer in the copolymer can be measured by pyrolysis GC and / or IR.
多官能性モノマーは、エステル結合を有さず、アミド基及び3~6個のエチレン性不飽和基を有している。この多官能性モノマーは、架橋剤の役割を有するため、ハイドロゲルを構成する高分子マトリックスの骨格の網目の緻密性を向上できる。この向上の結果、正極方向へのデンドライトの成長を物理的に阻害することで、負極上に発生するデンドライトによる内部短絡を抑制できると発明者等は考えている。エチレン性不飽和基の数が2個以下の場合、骨格の網目の緻密性が低下することにより、デンドライトの成長を抑制する性能が低下することがある。7個以上の場合、骨格に局所的に網目が密になった箇所ができることで、ハイドロゲルに局所的に高い応力が加わるため、ハイドロゲルが脆くなることがある。エチレン性不飽和基の数は、3個又は4個であることが好ましい。
多官能性モノマー中の3~6個のエチレン性不飽和基は、下記式(X)
で表されるビニルアミド由来の2価の基に含まれることが好ましい。ビニルアミド由来の2価の基を有する多官能性モノマーを使用することで、高分子マトリックスの主骨格を形成する単官能性モノマーと、多官能性モノマーとの反応性を向上できる。その結果、高分子マトリックスを形成する網目の緻密性を向上できるため、デンドライトによる内部短絡の抑制性能を高めたハイドロゲルを得ることができる。
また、多官能性モノマーは、直線状又は分岐状の炭化水素鎖から構成されるモノマーであり、炭化水素鎖は、それを構成する炭素原子が、酸素原子及び又は窒素原子で置き換えられていてもよい。そして、ビニルアミド由来の2価の基が、
(i)下記式(X−I)
(式中、Rは、水素原子又は炭素数1~4のアルキル基を意味する)
として炭化水素鎖の末端に位置する、及び/又は
(ii)炭化水素鎖の炭素原子を置き換える窒素原子と共に式(X)で表される基として位置する
ことが好ましい。
また、多官能性モノマーは、10~40個の炭素原子を有し、かつ70~150℃の融点を有する水溶性のモノマーであることが好ましい。
具体的な多官能性モノマーとしては、N,N’−{[(2−アクリルアミド−2−[(3−アクリルアミドプロポキシ)メチル]プロパン−1,3−ジイル)ビス(オキシ)]ビス(プロパン−1,3−ジイル)}ジアクリルアミド(CAS No.1393329−90−2)、N,N’,N’’−トリアクリロイルジエチレントリアミン(CAS No.34330−10−4)、N,N’,N’’,N’’’−テトラアクリロイルトリエチレンテトラミン(CAS No.158749−66−7)等が挙げられる。
多官能性モノマーは、1種のみであってもよく、複数種の混合物であってもよい。
多官能性モノマー由来の単位は、単官能性モノマー由来の単位100質量部に対して、0.1~5質量部の割合で含まれていることが好ましい。多官能性モノマー由来の単位の割合が0.1質量部未満の場合、架橋密度が低くなることがある。5質量部より多い場合、多官能性モノマー由来の単位が相分離してしまい、架橋構造が不均一なハイドロゲルとなることがある。割合は、0.2~4.5質量部であることが好ましく、0.4~4.0質量部であることがより好ましい。
なお、共重合体は、単官能性モノマー及び多官能性モノマーに由来する単位を含むが、共重合体製造時の各モノマーの使用量と、共重合体中の各単位の含有量とは、ほぼ同じである。また、共重合体中の多官能性モノマー由来の単位の含有量は、熱分解GC及び/又はIRにより測定できる。 (B) Polyfunctional monomer The polyfunctional monomer has no ester bond and has an amide group and 3 to 6 ethylenically unsaturated groups. Since this polyfunctional monomer has a role of a cross-linking agent, the density of the network of the skeleton of the polymer matrix constituting the hydrogel can be improved. The inventors believe that as a result of this improvement, the internal short circuit due to dendrite generated on the negative electrode can be suppressed by physically inhibiting the growth of dendrite in the direction of the positive electrode. When the number of ethylenically unsaturated groups is two or less, the performance of suppressing the growth of dendrites may decrease due to the reduction in the density of the skeleton network. In the case of seven or more, a locally dense network is formed in the skeleton, and a high stress is locally applied to the hydrogel, so that the hydrogel may become brittle. The number of ethylenically unsaturated groups is preferably three or four.
3 to 6 ethylenically unsaturated groups in the polyfunctional monomer are represented by the following formula (X)
Is preferably contained in a divalent group derived from vinylamide represented by By using a polyfunctional monomer having a divalent group derived from vinylamide, the reactivity between the monofunctional monomer forming the main skeleton of the polymer matrix and the polyfunctional monomer can be improved. As a result, the denseness of the network forming the polymer matrix can be improved, so that a hydrogel with improved performance of suppressing internal short circuits due to dendrites can be obtained.
Further, the polyfunctional monomer is a monomer composed of a linear or branched hydrocarbon chain, and the hydrocarbon chain may have a carbon atom constituting the hydrocarbon chain replaced with an oxygen atom and / or a nitrogen atom. Good. And a divalent group derived from vinylamide is
(I) The following formula (XI)
(Wherein, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
And / or (ii) as a group represented by the formula (X) together with a nitrogen atom replacing a carbon atom of the hydrocarbon chain.
Further, the polyfunctional monomer is preferably a water-soluble monomer having 10 to 40 carbon atoms and having a melting point of 70 to 150 ° C.
Specific polyfunctional monomers include N, N '-{[(2-acrylamido-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (oxy)] bis (propane- 1,3-diyl) diacrylamide (CAS No. 139329-90-2), N, N ', N "-triacryloyldiethylenetriamine (CAS No. 34330-10-4), N, N', N '',N'''-tetraacryloyltriethylenetetramine (CAS No. 158749-66-7) and the like.
The polyfunctional monomer may be only one kind or a mixture of plural kinds.
The unit derived from the polyfunctional monomer is preferably contained in a proportion of 0.1 to 5 parts by mass based on 100 parts by mass of the unit derived from the monofunctional monomer. When the proportion of the unit derived from the polyfunctional monomer is less than 0.1 part by mass, the crosslinking density may be low. If the amount is more than 5 parts by mass, the unit derived from the polyfunctional monomer may undergo phase separation, resulting in a hydrogel having a non-uniform crosslinked structure. The proportion is preferably from 0.2 to 4.5 parts by mass, more preferably from 0.4 to 4.0 parts by mass.
In addition, the copolymer includes units derived from a monofunctional monomer and a polyfunctional monomer, but the amount of each monomer used in the production of the copolymer, and the content of each unit in the copolymer, Almost the same. The content of the unit derived from the polyfunctional monomer in the copolymer can be measured by pyrolysis GC and / or IR.
(c)他の重合体
本発明の効果を阻害しない範囲で、上記単官能性モノマーと多官能性モノマーの共重合体以外の他の重合体が、前記共重合体と重合しない形態で高分子マトリックスに含まれていてもよい。他の重合体としては、ポリビニルスルホン酸系重合体、ポリアクリル酸系重合体、セルロース誘導体等が挙げられる。高分子マトリックス100質量部中に占める他の重合体の割合は、50質量部未満であることが好ましい。 (C) Other polymers Within a range that does not impair the effects of the present invention, polymers other than the above-mentioned copolymer of a monofunctional monomer and a polyfunctional monomer are not polymerized with the above-mentioned copolymer. It may be included in a matrix. Other polymers include polyvinyl sulfonic acid-based polymers, polyacrylic acid-based polymers, cellulose derivatives and the like. The proportion of the other polymer in 100 parts by mass of the polymer matrix is preferably less than 50 parts by mass.
本発明の効果を阻害しない範囲で、上記単官能性モノマーと多官能性モノマーの共重合体以外の他の重合体が、前記共重合体と重合しない形態で高分子マトリックスに含まれていてもよい。他の重合体としては、ポリビニルスルホン酸系重合体、ポリアクリル酸系重合体、セルロース誘導体等が挙げられる。高分子マトリックス100質量部中に占める他の重合体の割合は、50質量部未満であることが好ましい。 (C) Other polymers Within a range that does not impair the effects of the present invention, polymers other than the above-mentioned copolymer of a monofunctional monomer and a polyfunctional monomer are not polymerized with the above-mentioned copolymer. It may be included in a matrix. Other polymers include polyvinyl sulfonic acid-based polymers, polyacrylic acid-based polymers, cellulose derivatives and the like. The proportion of the other polymer in 100 parts by mass of the polymer matrix is preferably less than 50 parts by mass.
(2)水
本発明の第1の態様によるハイドロゲルに含まれる水は、ハイドロゲル100質量部中に40~95質量部含まれる。含有量が40質量部未満の場合、電解質成分を含有できる量が少なくなり、電池のゲル電解質として使用した場合、インピーダンスが高く、望む電池特性が得られないことがある。95質量部より多いと、ハイドロゲルの強度が低くなることがある。含有量は、50~90質量部であることがより好ましく、60~90質量部であることが更に好ましい。
(3)電解質成分
水には電解質成分が溶解していてもよい。電解質成分を含むハイドロゲルは、ゲル状電解質として使用できる。電解質成分としては、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH)2)、水酸化バリウム(Ba(OH)2)、水酸化リチウム(LiOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)、フッ化リチウム(LiF)、塩化リチウム(LiCl)、臭化リチウム(LiBr)、ヨウ化リチウム(LiI)、塩化ナトリウム(NaCl)、臭化ナトリウム(NaBr)、塩化カリウム(KCl)、臭化カリウム(KBr)、塩化カルシウム(CaCl2)等が挙げられる。電解質成分の溶解量は、水100質量部に対して、70質量部以下であることが好ましい。溶解量が70質量部より多い場合、電解質濃度が高くなりすぎるため、インピーダンスが高くなることがある。好ましい溶解量は、4~70質量部である。 (2) Water The water contained in the hydrogel according to the first embodiment of the present invention is contained in an amount of 40 to 95 parts by mass per 100 parts by mass of the hydrogel. When the content is less than 40 parts by mass, the amount of the electrolyte component that can be contained is small, and when used as a gel electrolyte for a battery, the impedance is high and desired battery characteristics may not be obtained in some cases. If the amount is more than 95 parts by mass, the strength of the hydrogel may decrease. The content is more preferably from 50 to 90 parts by mass, and still more preferably from 60 to 90 parts by mass.
(3) Electrolyte component The electrolyte component may be dissolved in water. A hydrogel containing an electrolyte component can be used as a gel electrolyte. As the electrolyte components, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), lithium hydroxide (LiOH), and hydroxide Rubidium (RbOH), cesium hydroxide (CsOH), lithium fluoride (LiF), lithium chloride (LiCl), lithium bromide (LiBr), lithium iodide (LiI), sodium chloride (NaCl), sodium bromide (NaBr) ), Potassium chloride (KCl), potassium bromide (KBr), calcium chloride (CaCl 2 ), and the like. The dissolved amount of the electrolyte component is preferably 70 parts by mass or less based on 100 parts by mass of water. When the amount of dissolution is more than 70 parts by mass, the impedance may be increased because the electrolyte concentration becomes too high. The preferred dissolution amount is 4 to 70 parts by mass.
本発明の第1の態様によるハイドロゲルに含まれる水は、ハイドロゲル100質量部中に40~95質量部含まれる。含有量が40質量部未満の場合、電解質成分を含有できる量が少なくなり、電池のゲル電解質として使用した場合、インピーダンスが高く、望む電池特性が得られないことがある。95質量部より多いと、ハイドロゲルの強度が低くなることがある。含有量は、50~90質量部であることがより好ましく、60~90質量部であることが更に好ましい。
(3)電解質成分
水には電解質成分が溶解していてもよい。電解質成分を含むハイドロゲルは、ゲル状電解質として使用できる。電解質成分としては、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH)2)、水酸化バリウム(Ba(OH)2)、水酸化リチウム(LiOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)、フッ化リチウム(LiF)、塩化リチウム(LiCl)、臭化リチウム(LiBr)、ヨウ化リチウム(LiI)、塩化ナトリウム(NaCl)、臭化ナトリウム(NaBr)、塩化カリウム(KCl)、臭化カリウム(KBr)、塩化カルシウム(CaCl2)等が挙げられる。電解質成分の溶解量は、水100質量部に対して、70質量部以下であることが好ましい。溶解量が70質量部より多い場合、電解質濃度が高くなりすぎるため、インピーダンスが高くなることがある。好ましい溶解量は、4~70質量部である。 (2) Water The water contained in the hydrogel according to the first embodiment of the present invention is contained in an amount of 40 to 95 parts by mass per 100 parts by mass of the hydrogel. When the content is less than 40 parts by mass, the amount of the electrolyte component that can be contained is small, and when used as a gel electrolyte for a battery, the impedance is high and desired battery characteristics may not be obtained in some cases. If the amount is more than 95 parts by mass, the strength of the hydrogel may decrease. The content is more preferably from 50 to 90 parts by mass, and still more preferably from 60 to 90 parts by mass.
(3) Electrolyte component The electrolyte component may be dissolved in water. A hydrogel containing an electrolyte component can be used as a gel electrolyte. As the electrolyte components, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), lithium hydroxide (LiOH), and hydroxide Rubidium (RbOH), cesium hydroxide (CsOH), lithium fluoride (LiF), lithium chloride (LiCl), lithium bromide (LiBr), lithium iodide (LiI), sodium chloride (NaCl), sodium bromide (NaBr) ), Potassium chloride (KCl), potassium bromide (KBr), calcium chloride (CaCl 2 ), and the like. The dissolved amount of the electrolyte component is preferably 70 parts by mass or less based on 100 parts by mass of water. When the amount of dissolution is more than 70 parts by mass, the impedance may be increased because the electrolyte concentration becomes too high. The preferred dissolution amount is 4 to 70 parts by mass.
(4)その他の成分
(a)支持材
本発明の第1の態様によるハイドロゲルは、織布、不織布、多孔質シート等の支持材(以下、「中間基材」ともいう)を含んでいてもよい。支持材を含むことで、ハイドロゲルの形状を容易に維持できる。支持材の材質としては、セルロース、絹、麻等の天然繊維やポリエステル、ナイロン、レーヨン、ポリエチレン、ポリプロピレン、ポリウレタン等の合成繊維、それらの混紡が挙げられる。電解質成分を含ませる場合、電解質成分により分解する成分を持たないレーヨン、ポリエチレン、ポリプロピレン等の合成繊維、それらの混紡が好ましい。支持材は、ハイドロゲルの表面、裏面、及び中間のいずれに位置していてもよい。
支持材は、ハイドロゲルの厚みをAとし、支持材の厚みをBとするとき、0.45≦B/A<1の関係を満たすことが好ましい。B/Aが0.45未満の場合、電解質を含浸させるためにハイドロゲルを電解液に浸漬させた場合、支持材のハイドロゲル内の偏在によって生じるシート表裏での膨潤差によって、巻きや反りが発生することがある。1以上の場合、ハイドロゲル表面から支持材がむき出しているため、電解液の保湿性の低下や電極との密着性が低下することがある。B/Aの関係は、0.45≦B/A<1であることがより好ましく、0.5≦B/A<1であることが更に好ましい。 (4) Other Components (a) Supporting Material The hydrogel according to the first aspect of the present invention includes a supporting material such as a woven fabric, a nonwoven fabric, and a porous sheet (hereinafter, also referred to as an “intermediate base material”). Is also good. By including the support material, the shape of the hydrogel can be easily maintained. Examples of the material of the support include natural fibers such as cellulose, silk, and hemp, synthetic fibers such as polyester, nylon, rayon, polyethylene, polypropylene, and polyurethane, and blends thereof. When an electrolyte component is included, synthetic fibers such as rayon, polyethylene, and polypropylene having no component decomposed by the electrolyte component, and blends thereof are preferable. The support material may be located on any of the front surface, the back surface, and the middle of the hydrogel.
When the thickness of the hydrogel is A and the thickness of the support is B, the support preferably satisfies the relationship of 0.45 ≦ B / A <1. When B / A is less than 0.45, when the hydrogel is immersed in the electrolytic solution to impregnate the electrolyte, winding and warping are caused by the swelling difference between the front and back of the sheet caused by uneven distribution of the support material in the hydrogel. May occur. In the case of 1 or more, since the support material is exposed from the surface of the hydrogel, the moisture retention of the electrolytic solution may decrease, and the adhesion to the electrode may decrease. The relationship of B / A is more preferably 0.45 ≦ B / A <1, and even more preferably 0.5 ≦ B / A <1.
(a)支持材
本発明の第1の態様によるハイドロゲルは、織布、不織布、多孔質シート等の支持材(以下、「中間基材」ともいう)を含んでいてもよい。支持材を含むことで、ハイドロゲルの形状を容易に維持できる。支持材の材質としては、セルロース、絹、麻等の天然繊維やポリエステル、ナイロン、レーヨン、ポリエチレン、ポリプロピレン、ポリウレタン等の合成繊維、それらの混紡が挙げられる。電解質成分を含ませる場合、電解質成分により分解する成分を持たないレーヨン、ポリエチレン、ポリプロピレン等の合成繊維、それらの混紡が好ましい。支持材は、ハイドロゲルの表面、裏面、及び中間のいずれに位置していてもよい。
支持材は、ハイドロゲルの厚みをAとし、支持材の厚みをBとするとき、0.45≦B/A<1の関係を満たすことが好ましい。B/Aが0.45未満の場合、電解質を含浸させるためにハイドロゲルを電解液に浸漬させた場合、支持材のハイドロゲル内の偏在によって生じるシート表裏での膨潤差によって、巻きや反りが発生することがある。1以上の場合、ハイドロゲル表面から支持材がむき出しているため、電解液の保湿性の低下や電極との密着性が低下することがある。B/Aの関係は、0.45≦B/A<1であることがより好ましく、0.5≦B/A<1であることが更に好ましい。 (4) Other Components (a) Supporting Material The hydrogel according to the first aspect of the present invention includes a supporting material such as a woven fabric, a nonwoven fabric, and a porous sheet (hereinafter, also referred to as an “intermediate base material”). Is also good. By including the support material, the shape of the hydrogel can be easily maintained. Examples of the material of the support include natural fibers such as cellulose, silk, and hemp, synthetic fibers such as polyester, nylon, rayon, polyethylene, polypropylene, and polyurethane, and blends thereof. When an electrolyte component is included, synthetic fibers such as rayon, polyethylene, and polypropylene having no component decomposed by the electrolyte component, and blends thereof are preferable. The support material may be located on any of the front surface, the back surface, and the middle of the hydrogel.
When the thickness of the hydrogel is A and the thickness of the support is B, the support preferably satisfies the relationship of 0.45 ≦ B / A <1. When B / A is less than 0.45, when the hydrogel is immersed in the electrolytic solution to impregnate the electrolyte, winding and warping are caused by the swelling difference between the front and back of the sheet caused by uneven distribution of the support material in the hydrogel. May occur. In the case of 1 or more, since the support material is exposed from the surface of the hydrogel, the moisture retention of the electrolytic solution may decrease, and the adhesion to the electrode may decrease. The relationship of B / A is more preferably 0.45 ≦ B / A <1, and even more preferably 0.5 ≦ B / A <1.
(b)保護フィルム
本発明の第1の態様によるハイドロゲルは、その表面及び/又は裏面に保護フィルムを備えていてもよい。保護フィルムをセパレータとして用いる場合は、離型処理されていることが好ましい。表面及び裏面の両方に保護フィルムを備える場合、表裏異なる剥離強度に調製してもよい。また、保護フィルムを支持材として用いる場合は離型処理の必要はない。
保護フィルムとしては、ポリエステル、ポリオレフィン、ポリスチレン、ポリウレタン、紙、樹脂フィルム(例えば、ポリエチレンフィルム、ポリプロピレンフィルム)をラミネートした紙等からなるフィルムが挙げられる。離型処理としては、熱又は紫外線で架橋、硬化反応させる焼き付け型のシリコーンコーティングが挙げられる。 (B) Protective film The hydrogel according to the first aspect of the present invention may have a protective film on its front surface and / or back surface. When a protective film is used as a separator, it is preferable that the protective film has been release-treated. When a protective film is provided on both the front surface and the back surface, the front and back surfaces may have different peel strengths. When a protective film is used as a support, there is no need for a release treatment.
Examples of the protective film include films made of polyester, polyolefin, polystyrene, polyurethane, paper, paper laminated with a resin film (eg, polyethylene film, polypropylene film), and the like. Examples of the release treatment include a baking type silicone coating which is crosslinked and cured by heat or ultraviolet rays.
本発明の第1の態様によるハイドロゲルは、その表面及び/又は裏面に保護フィルムを備えていてもよい。保護フィルムをセパレータとして用いる場合は、離型処理されていることが好ましい。表面及び裏面の両方に保護フィルムを備える場合、表裏異なる剥離強度に調製してもよい。また、保護フィルムを支持材として用いる場合は離型処理の必要はない。
保護フィルムとしては、ポリエステル、ポリオレフィン、ポリスチレン、ポリウレタン、紙、樹脂フィルム(例えば、ポリエチレンフィルム、ポリプロピレンフィルム)をラミネートした紙等からなるフィルムが挙げられる。離型処理としては、熱又は紫外線で架橋、硬化反応させる焼き付け型のシリコーンコーティングが挙げられる。 (B) Protective film The hydrogel according to the first aspect of the present invention may have a protective film on its front surface and / or back surface. When a protective film is used as a separator, it is preferable that the protective film has been release-treated. When a protective film is provided on both the front surface and the back surface, the front and back surfaces may have different peel strengths. When a protective film is used as a support, there is no need for a release treatment.
Examples of the protective film include films made of polyester, polyolefin, polystyrene, polyurethane, paper, paper laminated with a resin film (eg, polyethylene film, polypropylene film), and the like. Examples of the release treatment include a baking type silicone coating which is crosslinked and cured by heat or ultraviolet rays.
(c)添加剤
本発明の第1の態様によるハイドロゲルは、必要に応じて、添加剤を含んでいてもよい。添加剤としては、電解質、防腐剤、殺菌剤、防黴剤、防錆剤、酸化防止剤、消泡剤、安定剤、香料、界面活性剤、着色剤、ゲル強度向上剤(例えば、セルロースナノファイバー)等が挙げられる。 (C) Additive The hydrogel according to the first embodiment of the present invention may contain an additive, if necessary. Additives include electrolytes, preservatives, bactericides, fungicides, rust inhibitors, antioxidants, defoamers, stabilizers, fragrances, surfactants, coloring agents, gel strength improvers (eg, cellulose nano Fiber).
本発明の第1の態様によるハイドロゲルは、必要に応じて、添加剤を含んでいてもよい。添加剤としては、電解質、防腐剤、殺菌剤、防黴剤、防錆剤、酸化防止剤、消泡剤、安定剤、香料、界面活性剤、着色剤、ゲル強度向上剤(例えば、セルロースナノファイバー)等が挙げられる。 (C) Additive The hydrogel according to the first embodiment of the present invention may contain an additive, if necessary. Additives include electrolytes, preservatives, bactericides, fungicides, rust inhibitors, antioxidants, defoamers, stabilizers, fragrances, surfactants, coloring agents, gel strength improvers (eg, cellulose nano Fiber).
(第2の態様によるハイドロゲル)
本発明の第2の態様によるハイドロゲルは、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液に1週間浸漬した場合、50~300%の膨潤度を示すことが好ましい。膨潤度が50%未満の場合、ハイドロゲルの固形分量が大きくなり、柔軟性の低下や、場合によっては硬化を起こすことがある。300%より大きい場合、膨潤後のハイドロゲルの機械強度が低いために、取り扱い時にハイドロゲルが破壊されることがある。膨潤度は、50~280%であることがより好ましい。
ハイドロゲルは、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液中に1週間浸漬した場合、0.35N以上の突刺強度を示すことが好ましい。ここでの突刺強度は、ハイドロゲルに直径3mmの治具の先端が貫通するまでの最大応力の平均値を意味する。突刺強度が0.35N未満の場合、機械強度が低くなり自立膜として扱えなくなることがある。突刺強度の上限は、300Nであることがより好ましい。
ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液に1週間浸漬した場合、周波数100kHzにおけるインピーダンスとして、20Ω以下の値を示すことが好ましい。インピーダンスの値が20Ωより大きい場合、電解質の抵抗増大によって電池特性の低下をもたらすことがある。インピーダンスの値は、18Ω以下であることがより好ましく、16Ω以下であることが更に好ましく、14Ω以下であることが特に好ましい。インピーダンスの値の下限は、0.05Ωであることが好ましい。 (Hydrogel according to the second embodiment)
The hydrogel according to the second aspect of the present invention exhibits a swelling degree of 50 to 300% when immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week. preferable. When the degree of swelling is less than 50%, the solid content of the hydrogel becomes large, which may cause a decrease in flexibility or, in some cases, curing. If it is more than 300%, the mechanical strength of the hydrogel after swelling is low, so that the hydrogel may be broken during handling. The degree of swelling is more preferably 50 to 280%.
The hydrogel preferably exhibits a puncture strength of 0.35 N or more when immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week. The piercing strength here means the average value of the maximum stress until the tip of a jig having a diameter of 3 mm penetrates the hydrogel. When the puncture strength is less than 0.35 N, the mechanical strength is reduced, and the puncture strength may not be handled as a self-supporting film. The upper limit of the piercing strength is more preferably 300N.
When the hydrogel is immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, it preferably shows a value of 20Ω or less as an impedance at a frequency of 100 kHz. When the impedance value is larger than 20Ω, the battery characteristics may be deteriorated due to the increase in the resistance of the electrolyte. The value of the impedance is more preferably 18Ω or less, further preferably 16Ω or less, and particularly preferably 14Ω or less. The lower limit of the impedance value is preferably 0.05Ω.
本発明の第2の態様によるハイドロゲルは、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液に1週間浸漬した場合、50~300%の膨潤度を示すことが好ましい。膨潤度が50%未満の場合、ハイドロゲルの固形分量が大きくなり、柔軟性の低下や、場合によっては硬化を起こすことがある。300%より大きい場合、膨潤後のハイドロゲルの機械強度が低いために、取り扱い時にハイドロゲルが破壊されることがある。膨潤度は、50~280%であることがより好ましい。
ハイドロゲルは、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液中に1週間浸漬した場合、0.35N以上の突刺強度を示すことが好ましい。ここでの突刺強度は、ハイドロゲルに直径3mmの治具の先端が貫通するまでの最大応力の平均値を意味する。突刺強度が0.35N未満の場合、機械強度が低くなり自立膜として扱えなくなることがある。突刺強度の上限は、300Nであることがより好ましい。
ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液に1週間浸漬した場合、周波数100kHzにおけるインピーダンスとして、20Ω以下の値を示すことが好ましい。インピーダンスの値が20Ωより大きい場合、電解質の抵抗増大によって電池特性の低下をもたらすことがある。インピーダンスの値は、18Ω以下であることがより好ましく、16Ω以下であることが更に好ましく、14Ω以下であることが特に好ましい。インピーダンスの値の下限は、0.05Ωであることが好ましい。 (Hydrogel according to the second embodiment)
The hydrogel according to the second aspect of the present invention exhibits a swelling degree of 50 to 300% when immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week. preferable. When the degree of swelling is less than 50%, the solid content of the hydrogel becomes large, which may cause a decrease in flexibility or, in some cases, curing. If it is more than 300%, the mechanical strength of the hydrogel after swelling is low, so that the hydrogel may be broken during handling. The degree of swelling is more preferably 50 to 280%.
The hydrogel preferably exhibits a puncture strength of 0.35 N or more when immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week. The piercing strength here means the average value of the maximum stress until the tip of a jig having a diameter of 3 mm penetrates the hydrogel. When the puncture strength is less than 0.35 N, the mechanical strength is reduced, and the puncture strength may not be handled as a self-supporting film. The upper limit of the piercing strength is more preferably 300N.
When the hydrogel is immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, it preferably shows a value of 20Ω or less as an impedance at a frequency of 100 kHz. When the impedance value is larger than 20Ω, the battery characteristics may be deteriorated due to the increase in the resistance of the electrolyte. The value of the impedance is more preferably 18Ω or less, further preferably 16Ω or less, and particularly preferably 14Ω or less. The lower limit of the impedance value is preferably 0.05Ω.
本発明の第2の態様によるハイドロゲルは、水と、ポリアクリル酸系重合体と、高分子マトリックスとを含む。
The hydrogel according to the second aspect of the present invention includes water, a polyacrylic acid-based polymer, and a polymer matrix.
(1)高分子マトリックス
本発明の第2の態様によるハイドロゲルに含まれる高分子マトリックスは、エチレン性不飽和基を有する単官能性モノマーと、2~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含む。この共重合体は、各種モノマーを重合し架橋することで形成できる。
高分子マトリックスは、ハイドロゲル100質量部中に10~60質量部含まれる。含有量が10質量部未満の場合、ハイドロゲルの機械強度が低くなり、シート形状を保てなくなることがある。60質量部より多いと、イオンの移動が阻害されてしてしまうため、イオン抵抗が高くなることがある。含有量は、10~55質量部であることが好ましく、10~50質量部であることがより好ましい。
また、高分子マトリックス中の共重合体の含有量は、45質量部以上であることが好ましく、55質量部以上であることがより好ましい。高分子マトリックスは、共重合体のみから構成されていてもよい。 (1) Polymer matrix The polymer matrix contained in the hydrogel according to the second aspect of the present invention comprises a monofunctional monomer having an ethylenically unsaturated group and a polyfunctional monomer having 2 to 6 ethylenically unsaturated groups. Includes copolymers with functional monomers. This copolymer can be formed by polymerizing and crosslinking various monomers.
The polymer matrix is contained in an amount of 10 to 60 parts by mass per 100 parts by mass of the hydrogel. When the content is less than 10 parts by mass, the mechanical strength of the hydrogel becomes low, and the sheet shape may not be maintained. If the amount is more than 60 parts by mass, the movement of ions is hindered, and the ion resistance may increase. The content is preferably from 10 to 55 parts by mass, more preferably from 10 to 50 parts by mass.
Further, the content of the copolymer in the polymer matrix is preferably at least 45 parts by mass, more preferably at least 55 parts by mass. The polymer matrix may be composed of only a copolymer.
本発明の第2の態様によるハイドロゲルに含まれる高分子マトリックスは、エチレン性不飽和基を有する単官能性モノマーと、2~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含む。この共重合体は、各種モノマーを重合し架橋することで形成できる。
高分子マトリックスは、ハイドロゲル100質量部中に10~60質量部含まれる。含有量が10質量部未満の場合、ハイドロゲルの機械強度が低くなり、シート形状を保てなくなることがある。60質量部より多いと、イオンの移動が阻害されてしてしまうため、イオン抵抗が高くなることがある。含有量は、10~55質量部であることが好ましく、10~50質量部であることがより好ましい。
また、高分子マトリックス中の共重合体の含有量は、45質量部以上であることが好ましく、55質量部以上であることがより好ましい。高分子マトリックスは、共重合体のみから構成されていてもよい。 (1) Polymer matrix The polymer matrix contained in the hydrogel according to the second aspect of the present invention comprises a monofunctional monomer having an ethylenically unsaturated group and a polyfunctional monomer having 2 to 6 ethylenically unsaturated groups. Includes copolymers with functional monomers. This copolymer can be formed by polymerizing and crosslinking various monomers.
The polymer matrix is contained in an amount of 10 to 60 parts by mass per 100 parts by mass of the hydrogel. When the content is less than 10 parts by mass, the mechanical strength of the hydrogel becomes low, and the sheet shape may not be maintained. If the amount is more than 60 parts by mass, the movement of ions is hindered, and the ion resistance may increase. The content is preferably from 10 to 55 parts by mass, more preferably from 10 to 50 parts by mass.
Further, the content of the copolymer in the polymer matrix is preferably at least 45 parts by mass, more preferably at least 55 parts by mass. The polymer matrix may be composed of only a copolymer.
(a)共重合体
共重合体は、エチレン性不飽和基を有する単官能性モノマーと、2~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含む。単官能性モノマーは、スルホン基及びリン酸基から選択される少なくとも1つの基と、1個のエチレン性不飽和基とを有する単官能性モノマーAを含む。共重合体は、任意成分として、カルボキシル基又はその中和された官能基と、1個のエチレン性不飽和基とを有する単官能性モノマーBを更に含んでいてもよい。 (A) Copolymer The copolymer includes a copolymer of a monofunctional monomer having an ethylenically unsaturated group and a polyfunctional monomer having 2 to 6 ethylenically unsaturated groups. The monofunctional monomer includes a monofunctional monomer A having at least one group selected from a sulfone group and a phosphate group and one ethylenically unsaturated group. The copolymer may further include, as an optional component, a monofunctional monomer B having a carboxyl group or a neutralized functional group thereof and one ethylenically unsaturated group.
共重合体は、エチレン性不飽和基を有する単官能性モノマーと、2~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含む。単官能性モノマーは、スルホン基及びリン酸基から選択される少なくとも1つの基と、1個のエチレン性不飽和基とを有する単官能性モノマーAを含む。共重合体は、任意成分として、カルボキシル基又はその中和された官能基と、1個のエチレン性不飽和基とを有する単官能性モノマーBを更に含んでいてもよい。 (A) Copolymer The copolymer includes a copolymer of a monofunctional monomer having an ethylenically unsaturated group and a polyfunctional monomer having 2 to 6 ethylenically unsaturated groups. The monofunctional monomer includes a monofunctional monomer A having at least one group selected from a sulfone group and a phosphate group and one ethylenically unsaturated group. The copolymer may further include, as an optional component, a monofunctional monomer B having a carboxyl group or a neutralized functional group thereof and one ethylenically unsaturated group.
(a−1)単官能性モノマーA
単官能性モノマーAは、スルホン基及びリン酸基から選択される少なくとも1つの基と、1個のエチレン性不飽和基とを有するモノマーである限り、特に限定されない。ここで、スルホン基及びリン酸基には、塩の形態で単官能性モノマーA中に存在する場合も含まれる。更に、単官能性モノマーAは、塩の形態でないモノマーと塩の形態のモノマーとの混合物であってもよい。
例えば、単官能性モノマーAは、ビニルスルホン酸、ビニルスルホン酸ナトリウム、ビニルスルホン酸カリウム、ビニルスルホン酸リチウム、p−スチレンスルホン酸、p−スチレンスルホン酸ナトリウム、p−スチレンスルホン酸カリウム、p−スチレンスルホン酸リチウム、アリルスルホン酸、アリルスルホン酸ナトリウム、アリルスルホン酸カリウム、アリルスルホン酸リチウム、2−アクリルアミド−2−メチルプロパンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸カリウム、2−アクリルアミド−2−メチルプロパンスルホン酸リチウム等のスルホン基含有モノマー、ビニルホスホン酸、ビニルホスホン酸ナトリウム、ビニルホスホン酸カリウム、ビニルホスホン酸リチウム、ジエチルビニルホスホネート、ジメチルビニルホスホネート、フェニルビニルホスホン酸、フェニルビニルホスホン酸ナトリウム、フェニルビニルホスホン酸カリウム、フェニルビニルホスホン酸リチウム等のリン酸基含有モノマーが挙げられる。電離度の高いスルホン基及び/又はリン酸基を共重合体中に導入することによって、高濃度電解液中に浸漬したときのイオン性官能基の電離が安定し、保水性及び柔軟性を維持できる。電離のしやすさは、酸解離定数(pKa)によって判断することもできる。 (A-1) Monofunctional monomer A
The monofunctional monomer A is not particularly limited as long as it is a monomer having at least one group selected from a sulfone group and a phosphate group and one ethylenically unsaturated group. Here, the sulfone group and the phosphate group include those present in the monofunctional monomer A in the form of a salt. Further, the monofunctional monomer A may be a mixture of a monomer that is not in a salt form and a monomer in a salt form.
For example, the monofunctional monomer A may be vinyl sulfonic acid, sodium vinyl sulfonate, potassium vinyl sulfonate, lithium vinyl sulfonate, p-styrene sulfonic acid, sodium p-styrene sulfonate, potassium p-styrene sulfonate, p-styrene sulfonate. Lithium styrenesulfonate, allylsulfonic acid, sodium allylsulfonate, potassium allylsulfonate, lithium allylsulfonate, 2-acrylamido-2-methylpropanesulfonic acid, sodium 2-acrylamido-2-methylpropanesulfonate, 2-acrylamide Sulfonic acid group-containing monomers such as potassium 2-methylpropanesulfonate, lithium 2-acrylamido-2-methylpropanesulfonate, vinylphosphonic acid, sodium vinylphosphonate, potassium vinylphosphonate Beam, lithium vinyl phosphonic acid, diethyl vinylphosphonate, dimethyl vinylphosphonate, phenyl vinyl phosphonic acid, sodium phenyl vinyl phosphonic acid, potassium phenylvinyl phosphonic acid, phosphoric acid group-containing monomer of lithium phenyl vinyl phosphonic acid. By introducing a sulfonate group and / or a phosphate group having a high degree of ionization into the copolymer, the ionization of the ionic functional group when immersed in a high-concentration electrolyte solution is stabilized, and water retention and flexibility are maintained. it can. The ease of ionization can also be determined by the acid dissociation constant (pKa).
単官能性モノマーAは、スルホン基及びリン酸基から選択される少なくとも1つの基と、1個のエチレン性不飽和基とを有するモノマーである限り、特に限定されない。ここで、スルホン基及びリン酸基には、塩の形態で単官能性モノマーA中に存在する場合も含まれる。更に、単官能性モノマーAは、塩の形態でないモノマーと塩の形態のモノマーとの混合物であってもよい。
例えば、単官能性モノマーAは、ビニルスルホン酸、ビニルスルホン酸ナトリウム、ビニルスルホン酸カリウム、ビニルスルホン酸リチウム、p−スチレンスルホン酸、p−スチレンスルホン酸ナトリウム、p−スチレンスルホン酸カリウム、p−スチレンスルホン酸リチウム、アリルスルホン酸、アリルスルホン酸ナトリウム、アリルスルホン酸カリウム、アリルスルホン酸リチウム、2−アクリルアミド−2−メチルプロパンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム、2−アクリルアミド−2−メチルプロパンスルホン酸カリウム、2−アクリルアミド−2−メチルプロパンスルホン酸リチウム等のスルホン基含有モノマー、ビニルホスホン酸、ビニルホスホン酸ナトリウム、ビニルホスホン酸カリウム、ビニルホスホン酸リチウム、ジエチルビニルホスホネート、ジメチルビニルホスホネート、フェニルビニルホスホン酸、フェニルビニルホスホン酸ナトリウム、フェニルビニルホスホン酸カリウム、フェニルビニルホスホン酸リチウム等のリン酸基含有モノマーが挙げられる。電離度の高いスルホン基及び/又はリン酸基を共重合体中に導入することによって、高濃度電解液中に浸漬したときのイオン性官能基の電離が安定し、保水性及び柔軟性を維持できる。電離のしやすさは、酸解離定数(pKa)によって判断することもできる。 (A-1) Monofunctional monomer A
The monofunctional monomer A is not particularly limited as long as it is a monomer having at least one group selected from a sulfone group and a phosphate group and one ethylenically unsaturated group. Here, the sulfone group and the phosphate group include those present in the monofunctional monomer A in the form of a salt. Further, the monofunctional monomer A may be a mixture of a monomer that is not in a salt form and a monomer in a salt form.
For example, the monofunctional monomer A may be vinyl sulfonic acid, sodium vinyl sulfonate, potassium vinyl sulfonate, lithium vinyl sulfonate, p-styrene sulfonic acid, sodium p-styrene sulfonate, potassium p-styrene sulfonate, p-styrene sulfonate. Lithium styrenesulfonate, allylsulfonic acid, sodium allylsulfonate, potassium allylsulfonate, lithium allylsulfonate, 2-acrylamido-2-methylpropanesulfonic acid, sodium 2-acrylamido-2-methylpropanesulfonate, 2-acrylamide Sulfonic acid group-containing monomers such as potassium 2-methylpropanesulfonate, lithium 2-acrylamido-2-methylpropanesulfonate, vinylphosphonic acid, sodium vinylphosphonate, potassium vinylphosphonate Beam, lithium vinyl phosphonic acid, diethyl vinylphosphonate, dimethyl vinylphosphonate, phenyl vinyl phosphonic acid, sodium phenyl vinyl phosphonic acid, potassium phenylvinyl phosphonic acid, phosphoric acid group-containing monomer of lithium phenyl vinyl phosphonic acid. By introducing a sulfonate group and / or a phosphate group having a high degree of ionization into the copolymer, the ionization of the ionic functional group when immersed in a high-concentration electrolyte solution is stabilized, and water retention and flexibility are maintained. it can. The ease of ionization can also be determined by the acid dissociation constant (pKa).
(a−2)単官能性モノマーB
単官能性モノマーBは、カルボキシル基と1個のエチレン性不飽和基とを有するモノマーである限り、特に限定されない。ここで、カルボキシル基には、塩の形態で単官能性モノマーB中に存在する場合も含まれる。更に、単官能性モノマーBは、塩の形態でないモノマーと塩の形態のモノマーとの混合物であってもよい。
例えば、単官能性モノマーBは、(メタ)アクリル酸、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、(メタ)アクリル酸リチウム、ビニル安息香酸、ビニル安息香酸ナトリウム、ビニル安息香酸カリウム、ビニル安息香酸リチウム、ビニル酢酸、ビニル酢酸ナトリウム、ビニル酢酸カリウム、ビニル酢酸リチウム等が挙げられる。 (A-2) Monofunctional monomer B
The monofunctional monomer B is not particularly limited as long as it is a monomer having a carboxyl group and one ethylenically unsaturated group. Here, the carboxyl group includes the case where it is present in the monofunctional monomer B in the form of a salt. Further, the monofunctional monomer B may be a mixture of a monomer that is not in a salt form and a monomer in a salt form.
For example, the monofunctional monomer B includes (meth) acrylic acid, sodium (meth) acrylate, potassium (meth) acrylate, lithium (meth) acrylate, vinyl benzoic acid, sodium vinyl benzoate, potassium vinyl benzoate, Examples thereof include lithium vinyl benzoate, vinyl acetic acid, sodium vinyl acetate, potassium potassium acetate, and lithium vinyl acetate.
単官能性モノマーBは、カルボキシル基と1個のエチレン性不飽和基とを有するモノマーである限り、特に限定されない。ここで、カルボキシル基には、塩の形態で単官能性モノマーB中に存在する場合も含まれる。更に、単官能性モノマーBは、塩の形態でないモノマーと塩の形態のモノマーとの混合物であってもよい。
例えば、単官能性モノマーBは、(メタ)アクリル酸、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、(メタ)アクリル酸リチウム、ビニル安息香酸、ビニル安息香酸ナトリウム、ビニル安息香酸カリウム、ビニル安息香酸リチウム、ビニル酢酸、ビニル酢酸ナトリウム、ビニル酢酸カリウム、ビニル酢酸リチウム等が挙げられる。 (A-2) Monofunctional monomer B
The monofunctional monomer B is not particularly limited as long as it is a monomer having a carboxyl group and one ethylenically unsaturated group. Here, the carboxyl group includes the case where it is present in the monofunctional monomer B in the form of a salt. Further, the monofunctional monomer B may be a mixture of a monomer that is not in a salt form and a monomer in a salt form.
For example, the monofunctional monomer B includes (meth) acrylic acid, sodium (meth) acrylate, potassium (meth) acrylate, lithium (meth) acrylate, vinyl benzoic acid, sodium vinyl benzoate, potassium vinyl benzoate, Examples thereof include lithium vinyl benzoate, vinyl acetic acid, sodium vinyl acetate, potassium potassium acetate, and lithium vinyl acetate.
(a−3)単官能性モノマーAに由来する成分と単官能性モノマーBに由来する成分との含有割合
共重合体は、単官能性モノマーBに由来する成分を含む場合、単官能性モノマーAに由来する成分と単官能性モノマーBに由来する成分との合計100mol%に対して、単官能性モノマーAに由来する成分を30mol%以上と、単官能性モノマーBに由来する成分を70mol%以下とを含むことが好ましい。これら範囲内で両成分を共重合体中に含むことで、高濃度の水系電解液の環境下でも使用可能なハイドロゲルを提供できる。
単官能性モノマーAに由来する成分の含有量は、30mol%以上100mol%未満の範囲を取り得、具体的には、30mol%、40mol%、50mol%、60mol%、70mol%、80mol%、90mol%、99mol%を取り得る。 (A-3) Content ratio of component derived from monofunctional monomer A and component derived from monofunctional monomer B When the copolymer contains a component derived from monofunctional monomer B, the monofunctional monomer A total of 100 mol% of the component derived from A and the component derived from the monofunctional monomer B, the component derived from the monofunctional monomer A is 30 mol% or more, and the component derived from the monofunctional monomer B is 70 mol. % Or less. By including both components in the copolymer within these ranges, it is possible to provide a hydrogel that can be used even in an environment of a high-concentration aqueous electrolyte solution.
The content of the component derived from the monofunctional monomer A can range from 30 mol% to less than 100 mol%, specifically, 30 mol%, 40 mol%, 50 mol%, 60 mol%, 70 mol%, 80 mol%, 90 mol%. , 99 mol%.
共重合体は、単官能性モノマーBに由来する成分を含む場合、単官能性モノマーAに由来する成分と単官能性モノマーBに由来する成分との合計100mol%に対して、単官能性モノマーAに由来する成分を30mol%以上と、単官能性モノマーBに由来する成分を70mol%以下とを含むことが好ましい。これら範囲内で両成分を共重合体中に含むことで、高濃度の水系電解液の環境下でも使用可能なハイドロゲルを提供できる。
単官能性モノマーAに由来する成分の含有量は、30mol%以上100mol%未満の範囲を取り得、具体的には、30mol%、40mol%、50mol%、60mol%、70mol%、80mol%、90mol%、99mol%を取り得る。 (A-3) Content ratio of component derived from monofunctional monomer A and component derived from monofunctional monomer B When the copolymer contains a component derived from monofunctional monomer B, the monofunctional monomer A total of 100 mol% of the component derived from A and the component derived from the monofunctional monomer B, the component derived from the monofunctional monomer A is 30 mol% or more, and the component derived from the monofunctional monomer B is 70 mol. % Or less. By including both components in the copolymer within these ranges, it is possible to provide a hydrogel that can be used even in an environment of a high-concentration aqueous electrolyte solution.
The content of the component derived from the monofunctional monomer A can range from 30 mol% to less than 100 mol%, specifically, 30 mol%, 40 mol%, 50 mol%, 60 mol%, 70 mol%, 80 mol%, 90 mol%. , 99 mol%.
(a−4)多官能性モノマー
多官能性モノマーは、2~6個のエチレン性不飽和基を有する限り、特に限定されない。耐アルカリ性の観点から、エステル結合を保有しないことが好ましい。例えば、多官能性モノマーとしては、ジビニルベンゼン、ジビニルベンゼンスルホン酸ナトリウム、ジビニルビフェニル、ジビニルスルホン、ジエチレングリコールジビニルエーテル、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、ジメチルジアリルアンモニウムクロリド、N,N’−メチレンビス(メタ)アクリルアミド、N,N’−エチレンビス(メタ)アクリルアミド、N,N’−{[(2−アクリルアミド−2−[(3−アクリルアミドプロポキシ)メチル]プロパン−1,3−ジイル)ビス(オキシ)]ビス(プロパン−1,3−ジイル)}ジアクリルアミド(CAS No.1393329−90−2)、N,N’,N’’−トリアクリロイルジエチレントリアミン(CAS No.34330−10−4)、N,N’,N’’,N’’’−テトラアクリロイルトリエチレンテトラミン(CAS No.158749−66−7)、N,N’−ジアクリロイル−2,7,10−トリオキサ−1,13−トリデカンアミン(CAS No.160432−07−5)等が挙げられる。より優れたアルカリ耐性をもたせるために、多官能性モノマーは、アミド結合を有していないことが好ましい。多官能性モノマーは、1種のみであってもよく、複数種の混合物であってもよい。
多官能性モノマー由来の重合体は、共重合体100質量部に対して、0.1~5質量部の割合で含まれることが好ましい。多官能性モノマー由来の重合体の割合が0.1質量部未満の場合、架橋密度が低くなることがある。5質量部より多い場合、多官能性モノマー由来の重合体が相分離してしまい、架橋構造が不均一なハイドロゲルとなることがある。割合は、0.2~4.5質量部であることがより好ましく、0.4~4.0質量部であることが更に好ましい。
なお、共重合体は、単官能性モノマー及び多官能性モノマーに由来する成分からなるが、共重合体製造時の各モノマーの使用量と、共重合体中の各成分の含有量とは、ほぼ同じである。また、共重合体中の多官能性モノマー由来の重合体の含有量は、熱分解GC及び/又はIRにより測定できる。 (A-4) Polyfunctional Monomer The polyfunctional monomer is not particularly limited as long as it has 2 to 6 ethylenically unsaturated groups. From the viewpoint of alkali resistance, it is preferable not to have an ester bond. For example, polyfunctional monomers include divinylbenzene, sodium divinylbenzene sulfonate, divinyl biphenyl, divinyl sulfone, diethylene glycol divinyl ether, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, dimethyldiallylammonium chloride, N, N'- Methylenebis (meth) acrylamide, N, N'-ethylenebis (meth) acrylamide, N, N '-{[(2-acrylamido-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (Oxy)] bis (propane-1,3-diyl) diacrylamide (CAS No. 13933329-90-2), N, N ′, N ″ -triacryloyldiethylenetriamine (CAS No. 34330) 10-4), N, N ′, N ″, N ′ ″-tetraacryloyltriethylenetetramine (CAS No. 15849-66-7), N, N′-diacryloyl-2,7,10-trioxa -1,13-tridecaneamine (CAS No. 160432-07-5) and the like. In order to provide better alkali resistance, the polyfunctional monomer preferably does not have an amide bond. The polyfunctional monomer may be only one kind or a mixture of plural kinds.
The polymer derived from the polyfunctional monomer is preferably contained at a ratio of 0.1 to 5 parts by mass with respect to 100 parts by mass of the copolymer. When the proportion of the polymer derived from the polyfunctional monomer is less than 0.1 part by mass, the crosslinking density may be low. If the amount is more than 5 parts by mass, the polymer derived from the polyfunctional monomer may undergo phase separation, resulting in a hydrogel having a non-uniform crosslinked structure. The ratio is more preferably from 0.2 to 4.5 parts by mass, and even more preferably from 0.4 to 4.0 parts by mass.
Incidentally, the copolymer is composed of components derived from monofunctional monomers and polyfunctional monomers, the amount of each monomer used in the production of the copolymer, the content of each component in the copolymer, Almost the same. Further, the content of the polymer derived from the polyfunctional monomer in the copolymer can be measured by pyrolysis GC and / or IR.
多官能性モノマーは、2~6個のエチレン性不飽和基を有する限り、特に限定されない。耐アルカリ性の観点から、エステル結合を保有しないことが好ましい。例えば、多官能性モノマーとしては、ジビニルベンゼン、ジビニルベンゼンスルホン酸ナトリウム、ジビニルビフェニル、ジビニルスルホン、ジエチレングリコールジビニルエーテル、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、ジメチルジアリルアンモニウムクロリド、N,N’−メチレンビス(メタ)アクリルアミド、N,N’−エチレンビス(メタ)アクリルアミド、N,N’−{[(2−アクリルアミド−2−[(3−アクリルアミドプロポキシ)メチル]プロパン−1,3−ジイル)ビス(オキシ)]ビス(プロパン−1,3−ジイル)}ジアクリルアミド(CAS No.1393329−90−2)、N,N’,N’’−トリアクリロイルジエチレントリアミン(CAS No.34330−10−4)、N,N’,N’’,N’’’−テトラアクリロイルトリエチレンテトラミン(CAS No.158749−66−7)、N,N’−ジアクリロイル−2,7,10−トリオキサ−1,13−トリデカンアミン(CAS No.160432−07−5)等が挙げられる。より優れたアルカリ耐性をもたせるために、多官能性モノマーは、アミド結合を有していないことが好ましい。多官能性モノマーは、1種のみであってもよく、複数種の混合物であってもよい。
多官能性モノマー由来の重合体は、共重合体100質量部に対して、0.1~5質量部の割合で含まれることが好ましい。多官能性モノマー由来の重合体の割合が0.1質量部未満の場合、架橋密度が低くなることがある。5質量部より多い場合、多官能性モノマー由来の重合体が相分離してしまい、架橋構造が不均一なハイドロゲルとなることがある。割合は、0.2~4.5質量部であることがより好ましく、0.4~4.0質量部であることが更に好ましい。
なお、共重合体は、単官能性モノマー及び多官能性モノマーに由来する成分からなるが、共重合体製造時の各モノマーの使用量と、共重合体中の各成分の含有量とは、ほぼ同じである。また、共重合体中の多官能性モノマー由来の重合体の含有量は、熱分解GC及び/又はIRにより測定できる。 (A-4) Polyfunctional Monomer The polyfunctional monomer is not particularly limited as long as it has 2 to 6 ethylenically unsaturated groups. From the viewpoint of alkali resistance, it is preferable not to have an ester bond. For example, polyfunctional monomers include divinylbenzene, sodium divinylbenzene sulfonate, divinyl biphenyl, divinyl sulfone, diethylene glycol divinyl ether, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, dimethyldiallylammonium chloride, N, N'- Methylenebis (meth) acrylamide, N, N'-ethylenebis (meth) acrylamide, N, N '-{[(2-acrylamido-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (Oxy)] bis (propane-1,3-diyl) diacrylamide (CAS No. 13933329-90-2), N, N ′, N ″ -triacryloyldiethylenetriamine (CAS No. 34330) 10-4), N, N ′, N ″, N ′ ″-tetraacryloyltriethylenetetramine (CAS No. 15849-66-7), N, N′-diacryloyl-2,7,10-trioxa -1,13-tridecaneamine (CAS No. 160432-07-5) and the like. In order to provide better alkali resistance, the polyfunctional monomer preferably does not have an amide bond. The polyfunctional monomer may be only one kind or a mixture of plural kinds.
The polymer derived from the polyfunctional monomer is preferably contained at a ratio of 0.1 to 5 parts by mass with respect to 100 parts by mass of the copolymer. When the proportion of the polymer derived from the polyfunctional monomer is less than 0.1 part by mass, the crosslinking density may be low. If the amount is more than 5 parts by mass, the polymer derived from the polyfunctional monomer may undergo phase separation, resulting in a hydrogel having a non-uniform crosslinked structure. The ratio is more preferably from 0.2 to 4.5 parts by mass, and even more preferably from 0.4 to 4.0 parts by mass.
Incidentally, the copolymer is composed of components derived from monofunctional monomers and polyfunctional monomers, the amount of each monomer used in the production of the copolymer, the content of each component in the copolymer, Almost the same. Further, the content of the polymer derived from the polyfunctional monomer in the copolymer can be measured by pyrolysis GC and / or IR.
(b)他の重合体
本発明の効果を阻害しない範囲で、上記単官能性モノマーと多官能性モノマーとの共重合体以外の他の重合体が、前記共重合体と重合しない形態で高分子マトリックスに含まれていてもよい。他の重合体としては、セルロース誘導体等が挙げられる。高分子マトリックス100質量部中に占める他の重合体の割合は、50質量部未満であることが好ましい。 (B) Other polymers Within a range that does not impair the effects of the present invention, polymers other than the above-described copolymer of the monofunctional monomer and the polyfunctional monomer are highly polymerized in a form that does not polymerize with the copolymer. It may be contained in a molecular matrix. Other polymers include cellulose derivatives and the like. The proportion of the other polymer in 100 parts by mass of the polymer matrix is preferably less than 50 parts by mass.
本発明の効果を阻害しない範囲で、上記単官能性モノマーと多官能性モノマーとの共重合体以外の他の重合体が、前記共重合体と重合しない形態で高分子マトリックスに含まれていてもよい。他の重合体としては、セルロース誘導体等が挙げられる。高分子マトリックス100質量部中に占める他の重合体の割合は、50質量部未満であることが好ましい。 (B) Other polymers Within a range that does not impair the effects of the present invention, polymers other than the above-described copolymer of the monofunctional monomer and the polyfunctional monomer are highly polymerized in a form that does not polymerize with the copolymer. It may be contained in a molecular matrix. Other polymers include cellulose derivatives and the like. The proportion of the other polymer in 100 parts by mass of the polymer matrix is preferably less than 50 parts by mass.
(2)ポリアクリル酸系重合体
本発明の第2の態様によるハイドロゲルに含まれるポリアクリル酸系重合体は、ハイドロゲルへの添加剤として使用できさえすれば、特に限定されない。ポリアクリル酸系重合体は、アルカリ性環境下において比較的凝集力が高いため、ハイドロゲルを構成する高分子網目の絡み合いを増大させ、ハイドロゲルを強固にする作用を有すると考えられる。
ポリアクリル酸系重合体としては、カルボキシル基含有モノマーの単独重合体、又はカルボキシル基含有モノマーとスルホン酸基含有モノマーとの共重合体等が挙げられる。カルボキシル基含有モノマーとしては、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、フマル酸、イタコン酸、これらのアルカリ金属塩等が挙げられる。スルホン酸系モノマーとしては、ビニルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸、(メタ)アクリルスルホン酸、(メタ)アクリル酸スルホン酸エチル、アクリルアミドヒドロキシプロパンスルホン酸、(メタ)アクリルアミドメチルプロパンスルホン酸、アリロキシプロパンスルホン酸、アリルスルホン酸、これらのアルカリ金属塩等が挙げられる。
具体的なポリアクリル酸系重合体としては、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸カリウム、ポリ(メタ)アクリル酸アンモニウム、(メタ)アクリル酸−マレイン酸共重合体、(メタ)アクリル酸−スルホン酸系モノマー共重合体等が挙げられる。 (2) Polyacrylic acid polymer The polyacrylic acid polymer contained in the hydrogel according to the second aspect of the present invention is not particularly limited as long as it can be used as an additive to the hydrogel. Since the polyacrylic acid-based polymer has relatively high cohesive strength in an alkaline environment, it is considered that the polyacrylic acid polymer has an effect of increasing the entanglement of the polymer network constituting the hydrogel and strengthening the hydrogel.
Examples of the polyacrylic acid-based polymer include a homopolymer of a carboxyl group-containing monomer and a copolymer of a carboxyl group-containing monomer and a sulfonic acid group-containing monomer. Examples of the carboxyl group-containing monomer include (meth) acrylic acid, vinylbenzoic acid, maleic acid, fumaric acid, itaconic acid, and alkali metal salts thereof. Examples of the sulfonic acid monomer include vinyl sulfonic acid, methyl vinyl sulfonic acid, styrene sulfonic acid, (meth) acryl sulfonic acid, ethyl (meth) acrylate sulfonic acid, acrylamidohydroxypropane sulfonic acid, and (meth) acrylamidomethylpropane sulfonic acid. , Allyloxypropanesulfonic acid, allylsulfonic acid, and alkali metal salts thereof.
Specific polyacrylic acid-based polymers include poly (meth) acrylic acid, sodium poly (meth) acrylate, potassium poly (meth) acrylate, ammonium poly (meth) acrylate, and maleic (meth) acrylate-maleic. Acid copolymers, (meth) acrylic acid-sulfonic acid monomer copolymers and the like can be mentioned.
本発明の第2の態様によるハイドロゲルに含まれるポリアクリル酸系重合体は、ハイドロゲルへの添加剤として使用できさえすれば、特に限定されない。ポリアクリル酸系重合体は、アルカリ性環境下において比較的凝集力が高いため、ハイドロゲルを構成する高分子網目の絡み合いを増大させ、ハイドロゲルを強固にする作用を有すると考えられる。
ポリアクリル酸系重合体としては、カルボキシル基含有モノマーの単独重合体、又はカルボキシル基含有モノマーとスルホン酸基含有モノマーとの共重合体等が挙げられる。カルボキシル基含有モノマーとしては、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、フマル酸、イタコン酸、これらのアルカリ金属塩等が挙げられる。スルホン酸系モノマーとしては、ビニルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸、(メタ)アクリルスルホン酸、(メタ)アクリル酸スルホン酸エチル、アクリルアミドヒドロキシプロパンスルホン酸、(メタ)アクリルアミドメチルプロパンスルホン酸、アリロキシプロパンスルホン酸、アリルスルホン酸、これらのアルカリ金属塩等が挙げられる。
具体的なポリアクリル酸系重合体としては、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸カリウム、ポリ(メタ)アクリル酸アンモニウム、(メタ)アクリル酸−マレイン酸共重合体、(メタ)アクリル酸−スルホン酸系モノマー共重合体等が挙げられる。 (2) Polyacrylic acid polymer The polyacrylic acid polymer contained in the hydrogel according to the second aspect of the present invention is not particularly limited as long as it can be used as an additive to the hydrogel. Since the polyacrylic acid-based polymer has relatively high cohesive strength in an alkaline environment, it is considered that the polyacrylic acid polymer has an effect of increasing the entanglement of the polymer network constituting the hydrogel and strengthening the hydrogel.
Examples of the polyacrylic acid-based polymer include a homopolymer of a carboxyl group-containing monomer and a copolymer of a carboxyl group-containing monomer and a sulfonic acid group-containing monomer. Examples of the carboxyl group-containing monomer include (meth) acrylic acid, vinylbenzoic acid, maleic acid, fumaric acid, itaconic acid, and alkali metal salts thereof. Examples of the sulfonic acid monomer include vinyl sulfonic acid, methyl vinyl sulfonic acid, styrene sulfonic acid, (meth) acryl sulfonic acid, ethyl (meth) acrylate sulfonic acid, acrylamidohydroxypropane sulfonic acid, and (meth) acrylamidomethylpropane sulfonic acid. , Allyloxypropanesulfonic acid, allylsulfonic acid, and alkali metal salts thereof.
Specific polyacrylic acid-based polymers include poly (meth) acrylic acid, sodium poly (meth) acrylate, potassium poly (meth) acrylate, ammonium poly (meth) acrylate, and maleic (meth) acrylate-maleic. Acid copolymers, (meth) acrylic acid-sulfonic acid monomer copolymers and the like can be mentioned.
ポリアクリル酸系重合体は、FT−IR測定において、1650±130cm−1の範囲と1040±20cm−1の範囲に吸収帯を示すことが好ましい。1650±130cm−1の範囲の吸収帯は、カルボン酸又はその塩に由来し、1040±20cm−1の範囲の吸収体は、スルホン酸又はその塩に由来すると発明者等は考えている。
ポリアクリル酸系重合体は、FT−IR測定において得られた1650±130cm−1の範囲の最大ピークの吸光度(吸光度[1650±130cm−1])と1040±50cm−1範囲の最大ピークの吸光度(吸光度[1040±50cm−1])との吸光度比(吸光度[1040±20cm−1]/吸光度[1650±130cm−1])が、0.001~5.0の範囲の値を示す重合体であることが好ましい。吸光度比が5.0より大きい場合、重合体中におけるスルホン酸基ユニット由来の比率が高くなるため、高濃度電解液浸漬時の凝集力が弱くなり、強度補強効果が得られないことがある。0.001未満の場合、凝集力が強くなりすぎてハイドロゲルが離水し、硬化することがある。吸光度比は、0.001~4.5の範囲がより好ましい。0.005~4.0の範囲が更に好ましく、0.01~3.5の範囲が更に好ましく、0.025~3.0の範囲が更に好ましく、0.5~3.0の範囲が更に好ましく、0.1~3.0の範囲が更に好ましく、0.2~2.0の範囲が特に好ましい。
ポリアクリル酸系重合体は、3,000~2,000,000の重量平均分子量を示す。重量平均分子量が3,000未満の場合、高濃度電解質存在下でのポリアクリル酸系重合体の凝集力が弱く、また、高分子網目とポリアクリル酸系重合体との絡み合いが少ないため、十分な機械強度向上の効果が得られないことがある。2,000,000を超える場合、高濃度電解質存在下でのポリアクリル酸系重合体の凝集力と高分子網目とポリアクリル酸系重合体との絡み合いが過度になりすぎるため、ハイドロゲルが不均一に収縮し、歪な形状となることがある。平均重合度は、3,000~1,800,000であることが好ましく、3,000~1,500,000であることが更に好ましい。
ポリアクリル酸系重合体は、ハイドロゲル100質量部中に、0.5~19質量部含まれていることが好ましい。含有量が0.5質量部未満の場合、機械強度向上の効果が得られないことがある。19質量部より多い場合、高分子網目との絡み合いが強くなりすぎてハイドロゲルの保水性や柔軟性が低下することがある。含有量は0.5~15質量部であることが好ましい。
単官能性モノマーA由来成分とポリアクリル酸系重合体とは、100:2.5~90の質量比でハイドロゲル中に存在している。ポリアクリル酸系重合体の質量比が2.5未満の場合、機械強度向上の効果が得られないことがある。90より多い場合、高分子網目との絡み合いが強くなりすぎてハイドロゲルの保水性や柔軟性が低下することがある。質量比は、100:5~90であることが好ましく、100:7.5~90であることがより好ましく、100:10~90であることが更に好ましい。 Polyacrylic acid-based polymer, in FT-IR measurement, preferably shows an absorption band in the range of 1650 ± 130 cm -1 range and 1040 ± 20 cm -1. The inventors believe that the absorption band in the range of 1650 ± 130 cm −1 is derived from a carboxylic acid or a salt thereof, and the absorber in the range of 1040 ± 20 cm −1 is derived from a sulfonic acid or a salt thereof.
The polyacrylic acid-based polymer has an absorbance of the maximum peak in the range of 1650 ± 130 cm −1 (absorbance [1650 ± 130 cm −1 ] ) and an absorbance of the maximum peak in the range of 1040 ± 50 cm −1 obtained in the FT-IR measurement. Polymer having an absorbance ratio (absorbance [1040 ± 20 cm-1] / absorbance [1650 ± 130 cm-1] ) with respect to (absorbance [1040 ± 50 cm-1] ) in the range of 0.001 to 5.0. It is preferable that When the absorbance ratio is larger than 5.0, the ratio derived from the sulfonic acid group unit in the polymer becomes high, so that the cohesive force at the time of immersion in the high-concentration electrolyte solution becomes weak, and the strength reinforcing effect may not be obtained. If it is less than 0.001, the cohesive force becomes too strong, and the hydrogel is separated from water and may be cured. The absorbance ratio is more preferably in the range of 0.001 to 4.5. The range is more preferably from 0.005 to 4.0, further preferably from 0.01 to 3.5, further preferably from 0.025 to 3.0, and further preferably from 0.5 to 3.0. Preferably, the range is 0.1 to 3.0, more preferably, 0.2 to 2.0.
The polyacrylic acid polymer has a weight average molecular weight of 3,000 to 2,000,000. If the weight average molecular weight is less than 3,000, the cohesion of the polyacrylic acid polymer in the presence of the high concentration electrolyte is weak, and the entanglement between the polymer network and the polyacrylic acid polymer is small. In some cases, an effect of improving mechanical strength may not be obtained. When it exceeds 2,000,000, the cohesive force of the polyacrylic acid-based polymer in the presence of the high-concentration electrolyte and the entanglement between the polymer network and the polyacrylic acid-based polymer become excessive, so that the hydrogel is not formed. It may shrink uniformly, resulting in a distorted shape. The average degree of polymerization is preferably from 3,000 to 1,800,000, and more preferably from 3,000 to 1,500,000.
The polyacrylic acid-based polymer is preferably contained in an amount of 0.5 to 19 parts by mass per 100 parts by mass of the hydrogel. If the content is less than 0.5 parts by mass, the effect of improving mechanical strength may not be obtained. If the amount is more than 19 parts by mass, the entanglement with the polymer network becomes too strong, and the water retention and flexibility of the hydrogel may decrease. The content is preferably 0.5 to 15 parts by mass.
The component derived from the monofunctional monomer A and the polyacrylic acid-based polymer are present in the hydrogel in a mass ratio of 100: 2.5 to 90. When the mass ratio of the polyacrylic acid-based polymer is less than 2.5, the effect of improving mechanical strength may not be obtained. If it is more than 90, the entanglement with the polymer network becomes too strong, and the water retention and flexibility of the hydrogel may be reduced. The mass ratio is preferably from 100: 5 to 90, more preferably from 100: 7.5 to 90, and even more preferably from 100: 10 to 90.
ポリアクリル酸系重合体は、FT−IR測定において得られた1650±130cm−1の範囲の最大ピークの吸光度(吸光度[1650±130cm−1])と1040±50cm−1範囲の最大ピークの吸光度(吸光度[1040±50cm−1])との吸光度比(吸光度[1040±20cm−1]/吸光度[1650±130cm−1])が、0.001~5.0の範囲の値を示す重合体であることが好ましい。吸光度比が5.0より大きい場合、重合体中におけるスルホン酸基ユニット由来の比率が高くなるため、高濃度電解液浸漬時の凝集力が弱くなり、強度補強効果が得られないことがある。0.001未満の場合、凝集力が強くなりすぎてハイドロゲルが離水し、硬化することがある。吸光度比は、0.001~4.5の範囲がより好ましい。0.005~4.0の範囲が更に好ましく、0.01~3.5の範囲が更に好ましく、0.025~3.0の範囲が更に好ましく、0.5~3.0の範囲が更に好ましく、0.1~3.0の範囲が更に好ましく、0.2~2.0の範囲が特に好ましい。
ポリアクリル酸系重合体は、3,000~2,000,000の重量平均分子量を示す。重量平均分子量が3,000未満の場合、高濃度電解質存在下でのポリアクリル酸系重合体の凝集力が弱く、また、高分子網目とポリアクリル酸系重合体との絡み合いが少ないため、十分な機械強度向上の効果が得られないことがある。2,000,000を超える場合、高濃度電解質存在下でのポリアクリル酸系重合体の凝集力と高分子網目とポリアクリル酸系重合体との絡み合いが過度になりすぎるため、ハイドロゲルが不均一に収縮し、歪な形状となることがある。平均重合度は、3,000~1,800,000であることが好ましく、3,000~1,500,000であることが更に好ましい。
ポリアクリル酸系重合体は、ハイドロゲル100質量部中に、0.5~19質量部含まれていることが好ましい。含有量が0.5質量部未満の場合、機械強度向上の効果が得られないことがある。19質量部より多い場合、高分子網目との絡み合いが強くなりすぎてハイドロゲルの保水性や柔軟性が低下することがある。含有量は0.5~15質量部であることが好ましい。
単官能性モノマーA由来成分とポリアクリル酸系重合体とは、100:2.5~90の質量比でハイドロゲル中に存在している。ポリアクリル酸系重合体の質量比が2.5未満の場合、機械強度向上の効果が得られないことがある。90より多い場合、高分子網目との絡み合いが強くなりすぎてハイドロゲルの保水性や柔軟性が低下することがある。質量比は、100:5~90であることが好ましく、100:7.5~90であることがより好ましく、100:10~90であることが更に好ましい。 Polyacrylic acid-based polymer, in FT-IR measurement, preferably shows an absorption band in the range of 1650 ± 130 cm -1 range and 1040 ± 20 cm -1. The inventors believe that the absorption band in the range of 1650 ± 130 cm −1 is derived from a carboxylic acid or a salt thereof, and the absorber in the range of 1040 ± 20 cm −1 is derived from a sulfonic acid or a salt thereof.
The polyacrylic acid-based polymer has an absorbance of the maximum peak in the range of 1650 ± 130 cm −1 (absorbance [1650 ± 130 cm −1 ] ) and an absorbance of the maximum peak in the range of 1040 ± 50 cm −1 obtained in the FT-IR measurement. Polymer having an absorbance ratio (absorbance [1040 ± 20 cm-1] / absorbance [1650 ± 130 cm-1] ) with respect to (absorbance [1040 ± 50 cm-1] ) in the range of 0.001 to 5.0. It is preferable that When the absorbance ratio is larger than 5.0, the ratio derived from the sulfonic acid group unit in the polymer becomes high, so that the cohesive force at the time of immersion in the high-concentration electrolyte solution becomes weak, and the strength reinforcing effect may not be obtained. If it is less than 0.001, the cohesive force becomes too strong, and the hydrogel is separated from water and may be cured. The absorbance ratio is more preferably in the range of 0.001 to 4.5. The range is more preferably from 0.005 to 4.0, further preferably from 0.01 to 3.5, further preferably from 0.025 to 3.0, and further preferably from 0.5 to 3.0. Preferably, the range is 0.1 to 3.0, more preferably, 0.2 to 2.0.
The polyacrylic acid polymer has a weight average molecular weight of 3,000 to 2,000,000. If the weight average molecular weight is less than 3,000, the cohesion of the polyacrylic acid polymer in the presence of the high concentration electrolyte is weak, and the entanglement between the polymer network and the polyacrylic acid polymer is small. In some cases, an effect of improving mechanical strength may not be obtained. When it exceeds 2,000,000, the cohesive force of the polyacrylic acid-based polymer in the presence of the high-concentration electrolyte and the entanglement between the polymer network and the polyacrylic acid-based polymer become excessive, so that the hydrogel is not formed. It may shrink uniformly, resulting in a distorted shape. The average degree of polymerization is preferably from 3,000 to 1,800,000, and more preferably from 3,000 to 1,500,000.
The polyacrylic acid-based polymer is preferably contained in an amount of 0.5 to 19 parts by mass per 100 parts by mass of the hydrogel. If the content is less than 0.5 parts by mass, the effect of improving mechanical strength may not be obtained. If the amount is more than 19 parts by mass, the entanglement with the polymer network becomes too strong, and the water retention and flexibility of the hydrogel may decrease. The content is preferably 0.5 to 15 parts by mass.
The component derived from the monofunctional monomer A and the polyacrylic acid-based polymer are present in the hydrogel in a mass ratio of 100: 2.5 to 90. When the mass ratio of the polyacrylic acid-based polymer is less than 2.5, the effect of improving mechanical strength may not be obtained. If it is more than 90, the entanglement with the polymer network becomes too strong, and the water retention and flexibility of the hydrogel may be reduced. The mass ratio is preferably from 100: 5 to 90, more preferably from 100: 7.5 to 90, and even more preferably from 100: 10 to 90.
(3)水
本発明の第2の態様によるハイドロゲルに含まれる水は、ハイドロゲル100質量部中に21~89.5質量部含まれる。含有量が21質量部未満の場合、電解質成分を含有できる量が少なくなり、電池のゲル電解質として使用した場合、インピーダンスが高く、望む電池特性が得られないことがある。89.5質量部より多いと、ハイドロゲルの機械強度が低くなることがある。含有量は、30~85質量部であることがより好ましく、40~80質量部であることが更に好ましい。 (3) Water The water contained in the hydrogel according to the second aspect of the present invention is contained in 21 to 89.5 parts by mass per 100 parts by mass of the hydrogel. When the content is less than 21 parts by mass, the amount of the electrolyte component that can be contained becomes small, and when used as a gel electrolyte for a battery, the impedance is high and desired battery characteristics may not be obtained in some cases. If the amount is more than 89.5 parts by mass, the mechanical strength of the hydrogel may decrease. The content is more preferably from 30 to 85 parts by mass, and still more preferably from 40 to 80 parts by mass.
本発明の第2の態様によるハイドロゲルに含まれる水は、ハイドロゲル100質量部中に21~89.5質量部含まれる。含有量が21質量部未満の場合、電解質成分を含有できる量が少なくなり、電池のゲル電解質として使用した場合、インピーダンスが高く、望む電池特性が得られないことがある。89.5質量部より多いと、ハイドロゲルの機械強度が低くなることがある。含有量は、30~85質量部であることがより好ましく、40~80質量部であることが更に好ましい。 (3) Water The water contained in the hydrogel according to the second aspect of the present invention is contained in 21 to 89.5 parts by mass per 100 parts by mass of the hydrogel. When the content is less than 21 parts by mass, the amount of the electrolyte component that can be contained becomes small, and when used as a gel electrolyte for a battery, the impedance is high and desired battery characteristics may not be obtained in some cases. If the amount is more than 89.5 parts by mass, the mechanical strength of the hydrogel may decrease. The content is more preferably from 30 to 85 parts by mass, and still more preferably from 40 to 80 parts by mass.
(4)電解質成分
水には電解質成分が溶解していてもよい。電解質成分を含むハイドロゲルは、ゲル状電解質として使用できる。なお、電解質成分の種類及び溶解量については、前述の第1の態様における電解質成分と同じであるため、説明を省略する。 (4) Electrolyte component An electrolyte component may be dissolved in water. A hydrogel containing an electrolyte component can be used as a gel electrolyte. Note that the type and amount of the electrolyte component are the same as the electrolyte component in the above-described first embodiment, and a description thereof will be omitted.
水には電解質成分が溶解していてもよい。電解質成分を含むハイドロゲルは、ゲル状電解質として使用できる。なお、電解質成分の種類及び溶解量については、前述の第1の態様における電解質成分と同じであるため、説明を省略する。 (4) Electrolyte component An electrolyte component may be dissolved in water. A hydrogel containing an electrolyte component can be used as a gel electrolyte. Note that the type and amount of the electrolyte component are the same as the electrolyte component in the above-described first embodiment, and a description thereof will be omitted.
(5)その他の成分
本発明の第2の態様によるハイドロゲルは、その他の成分として、必要に応じて(a)支持材、(b)保護フィルム、及び(c)添加剤を含んでいてもよいが、前述の第1の態様における(a)支持材、(b)保護フィルム、及び(c)添加剤と同じであるため、説明を省略する。 (5) Other components The hydrogel according to the second aspect of the present invention may contain, as necessary, other components (a) a support material, (b) a protective film, and (c) an additive. Although it is good, it is the same as (a) the support material, (b) the protective film, and (c) the additive in the first embodiment described above, and thus the description is omitted.
本発明の第2の態様によるハイドロゲルは、その他の成分として、必要に応じて(a)支持材、(b)保護フィルム、及び(c)添加剤を含んでいてもよいが、前述の第1の態様における(a)支持材、(b)保護フィルム、及び(c)添加剤と同じであるため、説明を省略する。 (5) Other components The hydrogel according to the second aspect of the present invention may contain, as necessary, other components (a) a support material, (b) a protective film, and (c) an additive. Although it is good, it is the same as (a) the support material, (b) the protective film, and (c) the additive in the first embodiment described above, and thus the description is omitted.
(ハイドロゲルの製造方法)
ハイドロゲルは、例えば、
(i)水、単官能性モノマー、多官能性モノマー、及び重合開始剤を含む、本発明の第1の態様によるハイドロゲル前駆体、或いは、水、単官能性モノマーAと、任意成分としての単官能性モノマーBと、多官能性モノマー、ポリアクリル酸系重合体、及び重合開始剤を含む、本発明の第2の態様によるハイドロゲル前駆体を調製する工程(調製工程)
(ii)単官能性モノマー及び多官能性モノマーを重合させることによりハイドロゲルを得る工程(重合工程)
を経ることにより製造できる。 (Method for producing hydrogel)
Hydrogels, for example,
(I) a hydrogel precursor according to the first aspect of the present invention, comprising water, a monofunctional monomer, a polyfunctional monomer, and a polymerization initiator, or water, a monofunctional monomer A, and Step of preparing a hydrogel precursor according to the second aspect of the present invention, including a monofunctional monomer B, a polyfunctional monomer, a polyacrylic acid-based polymer, and a polymerization initiator (preparation step)
(Ii) Step of obtaining a hydrogel by polymerizing a monofunctional monomer and a polyfunctional monomer (polymerization step)
It can be manufactured by going through.
ハイドロゲルは、例えば、
(i)水、単官能性モノマー、多官能性モノマー、及び重合開始剤を含む、本発明の第1の態様によるハイドロゲル前駆体、或いは、水、単官能性モノマーAと、任意成分としての単官能性モノマーBと、多官能性モノマー、ポリアクリル酸系重合体、及び重合開始剤を含む、本発明の第2の態様によるハイドロゲル前駆体を調製する工程(調製工程)
(ii)単官能性モノマー及び多官能性モノマーを重合させることによりハイドロゲルを得る工程(重合工程)
を経ることにより製造できる。 (Method for producing hydrogel)
Hydrogels, for example,
(I) a hydrogel precursor according to the first aspect of the present invention, comprising water, a monofunctional monomer, a polyfunctional monomer, and a polymerization initiator, or water, a monofunctional monomer A, and Step of preparing a hydrogel precursor according to the second aspect of the present invention, including a monofunctional monomer B, a polyfunctional monomer, a polyacrylic acid-based polymer, and a polymerization initiator (preparation step)
(Ii) Step of obtaining a hydrogel by polymerizing a monofunctional monomer and a polyfunctional monomer (polymerization step)
It can be manufactured by going through.
(1)調製工程
この工程での重合開始剤には、熱重合開始剤及び光重合開始剤のいずれも使用できる。この内、重合前後での成分の変化の少ない光重合開始剤を使用することが好ましい。光重合開始剤としては、例えば、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(製品名:Omnirad 1173,BASF・ジャパン社製)、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(製品名:Omnirad 184,BASF・ジャパン社製)、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−プロパン−1−オン(製品名:Omnirad 2959,BASF・ジャパン社製)、2−メチル−1−[(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン(製品名:Omnirad 907,BASF・ジャパン社製)、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン(製品名:Omnirad 369,BASF・ジャパン社製)等が挙げられる。重合開始剤は、1種のみであってもよく、複数種の混合物であってもよい。 (1) Preparation Step As the polymerization initiator in this step, either a thermal polymerization initiator or a photopolymerization initiator can be used. Of these, it is preferable to use a photopolymerization initiator which has little change in components before and after polymerization. Examples of the photopolymerization initiator include 2-hydroxy-2-methyl-1-phenyl-propan-1-one (product name: Omnirad 1173, manufactured by BASF Japan), 1-hydroxy-cyclohexyl-phenyl-ketone ( Product name: Omnirad 184, manufactured by BASF Japan Ltd.), 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-propan-1-one (product name: Omnirad 2959, BASF. Japan), 2-methyl-1-[(methylthio) phenyl] -2-morpholinopropan-1-one (product name: Omnirad 907, manufactured by BASF Japan), 2-benzyl-2-dimethylamino- 1- (4-morpholinophenyl) -butan-1-one (product name: Omnirad 369) BASF · Japan Co., Ltd.), and the like. The polymerization initiator may be only one kind or a mixture of plural kinds.
この工程での重合開始剤には、熱重合開始剤及び光重合開始剤のいずれも使用できる。この内、重合前後での成分の変化の少ない光重合開始剤を使用することが好ましい。光重合開始剤としては、例えば、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(製品名:Omnirad 1173,BASF・ジャパン社製)、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(製品名:Omnirad 184,BASF・ジャパン社製)、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−プロパン−1−オン(製品名:Omnirad 2959,BASF・ジャパン社製)、2−メチル−1−[(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン(製品名:Omnirad 907,BASF・ジャパン社製)、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン(製品名:Omnirad 369,BASF・ジャパン社製)等が挙げられる。重合開始剤は、1種のみであってもよく、複数種の混合物であってもよい。 (1) Preparation Step As the polymerization initiator in this step, either a thermal polymerization initiator or a photopolymerization initiator can be used. Of these, it is preferable to use a photopolymerization initiator which has little change in components before and after polymerization. Examples of the photopolymerization initiator include 2-hydroxy-2-methyl-1-phenyl-propan-1-one (product name: Omnirad 1173, manufactured by BASF Japan), 1-hydroxy-cyclohexyl-phenyl-ketone ( Product name: Omnirad 184, manufactured by BASF Japan Ltd.), 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-propan-1-one (product name: Omnirad 2959, BASF. Japan), 2-methyl-1-[(methylthio) phenyl] -2-morpholinopropan-1-one (product name: Omnirad 907, manufactured by BASF Japan), 2-benzyl-2-dimethylamino- 1- (4-morpholinophenyl) -butan-1-one (product name: Omnirad 369) BASF · Japan Co., Ltd.), and the like. The polymerization initiator may be only one kind or a mixture of plural kinds.
重合開始剤の使用量は、全モノマー(単官能性モノマー、多官能性モノマー、及び任意に他のモノマー)の合計100質量部に対して、0.05~5質量部であることが好ましい。使用量が0.05質量部未満の場合、重合反応が十分に進行せず、得られたハイドロゲル中に、未重合のモノマーが残存することがある。5質量部より多いと、重合反応後の重合開始剤の残物により、臭気を帯びたり、残物の影響により物性が低下したりすることがある。使用量は、0.06~3質量部であることがより好ましく、0.07~1.5質量部であることが更に好ましい。
The amount of the polymerization initiator to be used is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of all the monomers (monofunctional monomer, polyfunctional monomer and optionally other monomer) in total. When the amount is less than 0.05 parts by mass, the polymerization reaction does not sufficiently proceed, and unpolymerized monomers may remain in the obtained hydrogel. If the amount is more than 5 parts by mass, a residue of the polymerization initiator after the polymerization reaction may give an odor, or physical properties may be reduced due to the influence of the residue. The amount used is more preferably from 0.06 to 3 parts by mass, even more preferably from 0.07 to 1.5 parts by mass.
ハイドロゲルを製造する場合、ハイドロゲル前駆体のシート状への成形は、例えば、(i)ハイドロゲル前駆体を型枠に注入する方法、(ii)保護フィルム間にハイドロゲル前駆体を流し込み、一定の厚みに保持する方法、(iii)保護フィルム上にハイドロゲル前駆体をコーティングする方法、等が挙げられる。方法(i)は、任意の形状のハイドロゲルを得ることができる利点がある。方法(ii)及び(iii)は、比較的薄いハイドロゲルを得ることができる利点がある。支持材を含むハイドロゲルは、方法(i)により製造することが適切である。なお、ハイドロゲル前駆体には、上記の他のモノマー、添加剤等が含まれていてもよい。
When producing the hydrogel, the hydrogel precursor is formed into a sheet by, for example, (i) a method of injecting the hydrogel precursor into a mold, (ii) pouring the hydrogel precursor between protective films, And (iii) a method of coating a hydrogel precursor on a protective film. Method (i) has the advantage that a hydrogel of any shape can be obtained. Methods (ii) and (iii) have the advantage that relatively thin hydrogels can be obtained. Suitably, the hydrogel containing the support is produced by method (i). The hydrogel precursor may contain other monomers and additives described above.
(2)重合工程
ハイドロゲル前駆体中の単官能性モノマー及び多官能性モノマーを熱付与又は光照射により重合させることにより網目構造を得ることができる。熱付与及び光照射の条件は、網目構造を得ることができる限り、特に限定されず、一般的な条件を採用できる。 (2) Polymerization Step A network structure can be obtained by polymerizing the monofunctional monomer and the polyfunctional monomer in the hydrogel precursor by applying heat or irradiating light. The conditions of heat application and light irradiation are not particularly limited as long as a network structure can be obtained, and general conditions can be adopted.
ハイドロゲル前駆体中の単官能性モノマー及び多官能性モノマーを熱付与又は光照射により重合させることにより網目構造を得ることができる。熱付与及び光照射の条件は、網目構造を得ることができる限り、特に限定されず、一般的な条件を採用できる。 (2) Polymerization Step A network structure can be obtained by polymerizing the monofunctional monomer and the polyfunctional monomer in the hydrogel precursor by applying heat or irradiating light. The conditions of heat application and light irradiation are not particularly limited as long as a network structure can be obtained, and general conditions can be adopted.
(3)その他の工程
その他の工程として、電解質成分含有工程が挙げられる。電解質成分含有工程では、重合後のハイドロゲルを電解質成分水溶液に浸漬することで、ハイドロゲル中の水にアルカリ水溶液中の電解質成分が溶解される。この浸漬は、所望する電解質成分量のハイドロゲルを得るための条件下で行われる。例えば、浸漬温度としては、4~80℃の、冷却、常温(約25℃)及び加温下で行うことができる。浸漬時間は、常温下では、6~336時間とすることができる。
浸漬後に、ハイドロゲルを乾燥させることで、含水量の調整を行ってもよい。その調整としては、例えば、浸漬前後のハイドロゲルの質量をほぼ同一にすることが挙げられる。 (3) Other Steps Other steps include an electrolyte component-containing step. In the electrolyte component-containing step, the electrolyte component in the alkaline aqueous solution is dissolved in the water in the hydrogel by immersing the polymerized hydrogel in the aqueous electrolyte component solution. This immersion is performed under conditions for obtaining a hydrogel having a desired electrolyte component amount. For example, the immersion can be performed under cooling, normal temperature (about 25 ° C.) and heating at 4 to 80 ° C. The immersion time can be 6 to 336 hours at normal temperature.
After immersion, the water content may be adjusted by drying the hydrogel. As the adjustment, for example, the mass of the hydrogel before and after immersion is made substantially the same.
その他の工程として、電解質成分含有工程が挙げられる。電解質成分含有工程では、重合後のハイドロゲルを電解質成分水溶液に浸漬することで、ハイドロゲル中の水にアルカリ水溶液中の電解質成分が溶解される。この浸漬は、所望する電解質成分量のハイドロゲルを得るための条件下で行われる。例えば、浸漬温度としては、4~80℃の、冷却、常温(約25℃)及び加温下で行うことができる。浸漬時間は、常温下では、6~336時間とすることができる。
浸漬後に、ハイドロゲルを乾燥させることで、含水量の調整を行ってもよい。その調整としては、例えば、浸漬前後のハイドロゲルの質量をほぼ同一にすることが挙げられる。 (3) Other Steps Other steps include an electrolyte component-containing step. In the electrolyte component-containing step, the electrolyte component in the alkaline aqueous solution is dissolved in the water in the hydrogel by immersing the polymerized hydrogel in the aqueous electrolyte component solution. This immersion is performed under conditions for obtaining a hydrogel having a desired electrolyte component amount. For example, the immersion can be performed under cooling, normal temperature (about 25 ° C.) and heating at 4 to 80 ° C. The immersion time can be 6 to 336 hours at normal temperature.
After immersion, the water content may be adjusted by drying the hydrogel. As the adjustment, for example, the mass of the hydrogel before and after immersion is made substantially the same.
(ハイドロゲルの用途)
ハイドロゲルは、アルカリ電池(例えば、ゲル状電解質、セパレータ等)に使用できる。
ここでのアルカリ電池は、正極及び負極間の電解質層及び/又はセパレータとしてハイドロゲルを使用し得る二次電池である。そのような二次電池としては、ニッケル−水素二次電池、ニッケル−亜鉛二次電池、亜鉛空気電池、リチウム空気電池、アルミニウム空気電池、マグネシウム空気電池、カルシウム空気電池、水素空気電池等が挙げられる。これら二次電池は、電解液としてアルカリ水溶液を使用しているため、二次電池からの液漏れをハイドロゲルにより防止できる。
アルカリ電池の構成は、特に限定されず、一般的な構成をいずれも使用できる。例えば、ニッケル−水素二次電池の正極としてはニッケル又はニッケル合金を、負極としては水素吸蔵合金を、ニッケル−亜鉛二次電池の正極としてはニッケル又はニッケル合金を、負極としては亜鉛又は酸化亜鉛を使用できる。正極及び負極は、ニッケル、アルミニウム、銅等からなる集電体上に形成されていてもよい。 (Use of hydrogel)
The hydrogel can be used for an alkaline battery (eg, a gel electrolyte, a separator, etc.).
The alkaline battery here is a secondary battery that can use a hydrogel as an electrolyte layer and / or a separator between a positive electrode and a negative electrode. Examples of such a secondary battery include a nickel-hydrogen secondary battery, a nickel-zinc secondary battery, a zinc-air battery, a lithium-air battery, an aluminum-air battery, a magnesium-air battery, a calcium-air battery, and a hydrogen-air battery. . Since these secondary batteries use an alkaline aqueous solution as an electrolytic solution, liquid leakage from the secondary batteries can be prevented by the hydrogel.
The configuration of the alkaline battery is not particularly limited, and any general configuration can be used. For example, nickel or a nickel alloy is used as a positive electrode of a nickel-hydrogen secondary battery, a hydrogen storage alloy is used as a negative electrode, nickel or a nickel alloy is used as a positive electrode of a nickel-zinc secondary battery, and zinc or zinc oxide is used as a negative electrode. Can be used. The positive electrode and the negative electrode may be formed on a current collector made of nickel, aluminum, copper, or the like.
ハイドロゲルは、アルカリ電池(例えば、ゲル状電解質、セパレータ等)に使用できる。
ここでのアルカリ電池は、正極及び負極間の電解質層及び/又はセパレータとしてハイドロゲルを使用し得る二次電池である。そのような二次電池としては、ニッケル−水素二次電池、ニッケル−亜鉛二次電池、亜鉛空気電池、リチウム空気電池、アルミニウム空気電池、マグネシウム空気電池、カルシウム空気電池、水素空気電池等が挙げられる。これら二次電池は、電解液としてアルカリ水溶液を使用しているため、二次電池からの液漏れをハイドロゲルにより防止できる。
アルカリ電池の構成は、特に限定されず、一般的な構成をいずれも使用できる。例えば、ニッケル−水素二次電池の正極としてはニッケル又はニッケル合金を、負極としては水素吸蔵合金を、ニッケル−亜鉛二次電池の正極としてはニッケル又はニッケル合金を、負極としては亜鉛又は酸化亜鉛を使用できる。正極及び負極は、ニッケル、アルミニウム、銅等からなる集電体上に形成されていてもよい。 (Use of hydrogel)
The hydrogel can be used for an alkaline battery (eg, a gel electrolyte, a separator, etc.).
The alkaline battery here is a secondary battery that can use a hydrogel as an electrolyte layer and / or a separator between a positive electrode and a negative electrode. Examples of such a secondary battery include a nickel-hydrogen secondary battery, a nickel-zinc secondary battery, a zinc-air battery, a lithium-air battery, an aluminum-air battery, a magnesium-air battery, a calcium-air battery, and a hydrogen-air battery. . Since these secondary batteries use an alkaline aqueous solution as an electrolytic solution, liquid leakage from the secondary batteries can be prevented by the hydrogel.
The configuration of the alkaline battery is not particularly limited, and any general configuration can be used. For example, nickel or a nickel alloy is used as a positive electrode of a nickel-hydrogen secondary battery, a hydrogen storage alloy is used as a negative electrode, nickel or a nickel alloy is used as a positive electrode of a nickel-zinc secondary battery, and zinc or zinc oxide is used as a negative electrode. Can be used. The positive electrode and the negative electrode may be formed on a current collector made of nickel, aluminum, copper, or the like.
ハイドロゲルが、セパレータである場合、ハイドロゲルは支持材(中間基材)を備えていることが好ましい。
アルカリ電池は、実施例に記載した充放電サイクル試験において、充放電効率が60%以下になるサイクル数が、65サイクル以上であることが好ましく、70サイクル以上であることがより好ましく、75サイクル以上であることが更に好ましく、80サイクル以上であることが特に好ましい。サイクル数が多いことは、負極上に発生するデンドライトによる内部短絡を抑制することを意味する。
また、40回充放電後の充放電効率は、70%以上であることが好ましく、75%以上であることがより好ましく、80%であることが更に好ましい。
アルカリ電池以外の用途として、コンデンサ用材料や電気二重層キャパシタ用材料やコンクリート防食工法用の材料等の用途が挙げられる。 When the hydrogel is a separator, the hydrogel preferably includes a supporting material (intermediate base material).
In the charge / discharge cycle test described in Examples, the number of cycles at which the charge / discharge efficiency is 60% or less is preferably 65 cycles or more, more preferably 70 cycles or more, and even more preferably 75 cycles or more. And more preferably 80 cycles or more. A large number of cycles means that an internal short circuit due to dendrite generated on the negative electrode is suppressed.
Further, the charge / discharge efficiency after 40 times of charge / discharge is preferably 70% or more, more preferably 75% or more, and further preferably 80%.
Applications other than the alkaline battery include uses such as a material for a capacitor, a material for an electric double layer capacitor, and a material for a concrete anticorrosion method.
アルカリ電池は、実施例に記載した充放電サイクル試験において、充放電効率が60%以下になるサイクル数が、65サイクル以上であることが好ましく、70サイクル以上であることがより好ましく、75サイクル以上であることが更に好ましく、80サイクル以上であることが特に好ましい。サイクル数が多いことは、負極上に発生するデンドライトによる内部短絡を抑制することを意味する。
また、40回充放電後の充放電効率は、70%以上であることが好ましく、75%以上であることがより好ましく、80%であることが更に好ましい。
アルカリ電池以外の用途として、コンデンサ用材料や電気二重層キャパシタ用材料やコンクリート防食工法用の材料等の用途が挙げられる。 When the hydrogel is a separator, the hydrogel preferably includes a supporting material (intermediate base material).
In the charge / discharge cycle test described in Examples, the number of cycles at which the charge / discharge efficiency is 60% or less is preferably 65 cycles or more, more preferably 70 cycles or more, and even more preferably 75 cycles or more. And more preferably 80 cycles or more. A large number of cycles means that an internal short circuit due to dendrite generated on the negative electrode is suppressed.
Further, the charge / discharge efficiency after 40 times of charge / discharge is preferably 70% or more, more preferably 75% or more, and further preferably 80%.
Applications other than the alkaline battery include uses such as a material for a capacitor, a material for an electric double layer capacitor, and a material for a concrete anticorrosion method.
以下、実施例によって本発明を更に具体的に説明するが、本発明はこれらにより何ら制限されるものではない。まず、実施例で測定する各種物性の測定方法を記載する。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. First, methods for measuring various physical properties measured in Examples will be described.
(膨潤度)
(1)4MのKOH水溶液での膨潤度(方法a:実施例1a~5a及び比較例1a~7a)
アルカリ浸漬前のハイドロゲルを5mm角に切り、計量した。その後、250メッシュのポリエチレン製ティーバッグにハイドロゲルを入れ、ティーバッグを100mLの4MのKOH水溶液に浸漬した。その後、25℃及び60℃の温度下で、14日間、21日間、35日間浸漬した後、10分間水切りをしたものを計量し、4MのKOH水溶液に膨潤させたハイドロゲル入りティーバッグを得た。なお、水切り時にハイドロゲルが柔らかくなってメッシュを通り抜ける場合は、「液状化」したと記載した。
膨潤度は、4MのKOH水溶液に浸漬したハイドロゲルが入っていないティーバッグの質量をブランクとし、4MのKOH水溶液に膨潤させたハイドロゲル入りティーバッグの質量から、ブランクの質量を減じた値を、膨潤前のハイドロゲルの質量で除して、100を掛けた値を膨潤度(%)として算出した。25℃で14日間浸漬後、21日間浸漬後、35日間浸漬後の膨潤度を、それぞれB25℃[14日間]、B25℃[21日間]、B25℃[35日間]とし、60℃で14日間浸漬後、21日間浸漬後、35日間浸漬後の膨潤度を、それぞれB60℃[14日間]、B60℃[21日間]、B60℃[35日間]とした。
ハイドロゲルが支持材として不織布等を用いている場合は、支持材からハイドロゲルを0.3g削り取り、それを測定サンプルとして上記方法と同様にして、膨潤度を算出した。 (Swelling degree)
(1) Degree of swelling in 4M KOH aqueous solution (Method a: Examples 1a to 5a and Comparative examples 1a to 7a)
The hydrogel before immersion in alkali was cut into 5 mm squares and weighed. Thereafter, the hydrogel was placed in a 250-mesh polyethylene tea bag, and the tea bag was immersed in 100 mL of a 4M KOH aqueous solution. Then, after immersing for 14 days, 21 days, and 35 days at a temperature of 25 ° C. and 60 ° C., the water was drained for 10 minutes, weighed, and a hydrogel-containing tea bag swollen with a 4 M aqueous KOH solution was obtained. . In addition, when the hydrogel became soft at the time of draining and passed through the mesh, it was described as "liquefied".
The degree of swelling is defined as a value obtained by subtracting the mass of a blank from the mass of a tea bag containing a hydrogel swelled in a 4M KOH aqueous solution, with the mass of a tea bag containing no hydrogel immersed in a 4M KOH aqueous solution as a blank. The swelling degree (%) was calculated by dividing by the mass of the hydrogel before swelling and multiplying by 100. The degree of swelling after immersion at 25 ° C. for 14 days, after immersion for 21 days, and after immersion for 35 days was B 25 ° C. [14 days] , B 25 ° C. [21 days] , and B 25 ° C. [35 days]. The degree of swelling after dipping for 14 days, after dipping for 21 days, and after dipping for 35 days was B 60 ° C [14 days] , B 60 ° C [21 days] , and B 60 ° C [35 days] , respectively.
When the hydrogel used a nonwoven fabric or the like as the support material, 0.3 g of the hydrogel was scraped off from the support material, and the swelling degree was calculated in the same manner as the above method using the sample as a measurement sample.
(1)4MのKOH水溶液での膨潤度(方法a:実施例1a~5a及び比較例1a~7a)
アルカリ浸漬前のハイドロゲルを5mm角に切り、計量した。その後、250メッシュのポリエチレン製ティーバッグにハイドロゲルを入れ、ティーバッグを100mLの4MのKOH水溶液に浸漬した。その後、25℃及び60℃の温度下で、14日間、21日間、35日間浸漬した後、10分間水切りをしたものを計量し、4MのKOH水溶液に膨潤させたハイドロゲル入りティーバッグを得た。なお、水切り時にハイドロゲルが柔らかくなってメッシュを通り抜ける場合は、「液状化」したと記載した。
膨潤度は、4MのKOH水溶液に浸漬したハイドロゲルが入っていないティーバッグの質量をブランクとし、4MのKOH水溶液に膨潤させたハイドロゲル入りティーバッグの質量から、ブランクの質量を減じた値を、膨潤前のハイドロゲルの質量で除して、100を掛けた値を膨潤度(%)として算出した。25℃で14日間浸漬後、21日間浸漬後、35日間浸漬後の膨潤度を、それぞれB25℃[14日間]、B25℃[21日間]、B25℃[35日間]とし、60℃で14日間浸漬後、21日間浸漬後、35日間浸漬後の膨潤度を、それぞれB60℃[14日間]、B60℃[21日間]、B60℃[35日間]とした。
ハイドロゲルが支持材として不織布等を用いている場合は、支持材からハイドロゲルを0.3g削り取り、それを測定サンプルとして上記方法と同様にして、膨潤度を算出した。 (Swelling degree)
(1) Degree of swelling in 4M KOH aqueous solution (Method a: Examples 1a to 5a and Comparative examples 1a to 7a)
The hydrogel before immersion in alkali was cut into 5 mm squares and weighed. Thereafter, the hydrogel was placed in a 250-mesh polyethylene tea bag, and the tea bag was immersed in 100 mL of a 4M KOH aqueous solution. Then, after immersing for 14 days, 21 days, and 35 days at a temperature of 25 ° C. and 60 ° C., the water was drained for 10 minutes, weighed, and a hydrogel-containing tea bag swollen with a 4 M aqueous KOH solution was obtained. . In addition, when the hydrogel became soft at the time of draining and passed through the mesh, it was described as "liquefied".
The degree of swelling is defined as a value obtained by subtracting the mass of a blank from the mass of a tea bag containing a hydrogel swelled in a 4M KOH aqueous solution, with the mass of a tea bag containing no hydrogel immersed in a 4M KOH aqueous solution as a blank. The swelling degree (%) was calculated by dividing by the mass of the hydrogel before swelling and multiplying by 100. The degree of swelling after immersion at 25 ° C. for 14 days, after immersion for 21 days, and after immersion for 35 days was B 25 ° C. [14 days] , B 25 ° C. [21 days] , and B 25 ° C. [35 days]. The degree of swelling after dipping for 14 days, after dipping for 21 days, and after dipping for 35 days was B 60 ° C [14 days] , B 60 ° C [21 days] , and B 60 ° C [35 days] , respectively.
When the hydrogel used a nonwoven fabric or the like as the support material, 0.3 g of the hydrogel was scraped off from the support material, and the swelling degree was calculated in the same manner as the above method using the sample as a measurement sample.
(2)1.5M LiOHと10M LiClとを含む水溶液での膨潤度(方法b:実施例1b~13b及び比較例1b~6b)
ハイドロゲルを幅5mm×長さ5mm×2mm厚に切り、計量した。その後、250メッシュのポリエチレン製ティーバッグにハイドロゲルを入れ、ティーバッグを1.5M LiOHと10M LiClとを含む水溶液100mLに浸漬した。その後、25℃の温度下で、1週間浸漬した後、10分間水切りをしたものを計量し、1.5M LiOHと10M LiClとを含む水溶液に膨潤させたハイドロゲル入りティーバッグを得た。なお、水切り時にハイドロゲルが柔らかくなってメッシュを通り抜ける場合は、「液状化」したと記載した。
膨潤度は、1.5M LiOHと10M LiClとを含む水溶液に浸漬したハイドロゲルが入っていないティーバッグの質量をブランクとし、1.5M LiOHと10M LiClとを含む水溶液に膨潤させたハイドロゲル入りティーバッグの質量から、ブランクの質量を減じた値を、膨潤前のハイドロゲルの質量で除して、100を掛けた値を膨潤度(%)として算出した。
ハイドロゲルが支持材として不織布等を用いる場合は、支持材からハイドロゲルを0.3g削り取り、それを上記方法と同様にして、膨潤度を算出した。 (2) Degree of swelling in an aqueous solution containing 1.5 M LiOH and 10 M LiCl (Method b: Examples 1b to 13b and Comparative Examples 1b to 6b)
The hydrogel was cut into a width of 5 mm × length of 5 mm × 2 mm and weighed. Thereafter, the hydrogel was placed in a 250-mesh polyethylene tea bag, and the tea bag was immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl. Then, after immersing at 25 ° C. for one week, the water was drained for 10 minutes, weighed, and a hydrogel-containing tea bag swelled in an aqueous solution containing 1.5 M LiOH and 10 M LiCl was obtained. In addition, when the hydrogel became soft at the time of draining and passed through the mesh, it was described as "liquefied".
The degree of swelling was determined by setting the mass of a tea bag not containing a hydrogel immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl as a blank, and adding a hydrogel swelled to an aqueous solution containing 1.5 M LiOH and 10 M LiCl. The value obtained by subtracting the mass of the blank from the mass of the tea bag by the mass of the hydrogel before swelling was calculated as a swelling degree (%).
When the hydrogel used a nonwoven fabric or the like as the support material, 0.3 g of the hydrogel was scraped off from the support material, and the swelling degree was calculated in the same manner as described above.
ハイドロゲルを幅5mm×長さ5mm×2mm厚に切り、計量した。その後、250メッシュのポリエチレン製ティーバッグにハイドロゲルを入れ、ティーバッグを1.5M LiOHと10M LiClとを含む水溶液100mLに浸漬した。その後、25℃の温度下で、1週間浸漬した後、10分間水切りをしたものを計量し、1.5M LiOHと10M LiClとを含む水溶液に膨潤させたハイドロゲル入りティーバッグを得た。なお、水切り時にハイドロゲルが柔らかくなってメッシュを通り抜ける場合は、「液状化」したと記載した。
膨潤度は、1.5M LiOHと10M LiClとを含む水溶液に浸漬したハイドロゲルが入っていないティーバッグの質量をブランクとし、1.5M LiOHと10M LiClとを含む水溶液に膨潤させたハイドロゲル入りティーバッグの質量から、ブランクの質量を減じた値を、膨潤前のハイドロゲルの質量で除して、100を掛けた値を膨潤度(%)として算出した。
ハイドロゲルが支持材として不織布等を用いる場合は、支持材からハイドロゲルを0.3g削り取り、それを上記方法と同様にして、膨潤度を算出した。 (2) Degree of swelling in an aqueous solution containing 1.5 M LiOH and 10 M LiCl (Method b: Examples 1b to 13b and Comparative Examples 1b to 6b)
The hydrogel was cut into a width of 5 mm × length of 5 mm × 2 mm and weighed. Thereafter, the hydrogel was placed in a 250-mesh polyethylene tea bag, and the tea bag was immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl. Then, after immersing at 25 ° C. for one week, the water was drained for 10 minutes, weighed, and a hydrogel-containing tea bag swelled in an aqueous solution containing 1.5 M LiOH and 10 M LiCl was obtained. In addition, when the hydrogel became soft at the time of draining and passed through the mesh, it was described as "liquefied".
The degree of swelling was determined by setting the mass of a tea bag not containing a hydrogel immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl as a blank, and adding a hydrogel swelled to an aqueous solution containing 1.5 M LiOH and 10 M LiCl. The value obtained by subtracting the mass of the blank from the mass of the tea bag by the mass of the hydrogel before swelling was calculated as a swelling degree (%).
When the hydrogel used a nonwoven fabric or the like as the support material, 0.3 g of the hydrogel was scraped off from the support material, and the swelling degree was calculated in the same manner as described above.
(突刺強度)
(1)4MのKOH水溶液での膨潤度(方法a:実施例1a~5a及び比較例1a~7a)
ハイドロゲルを幅30mm×長さ30mm×2mm厚に切り取った。切り取ったハイドロゲルを、25℃及び60℃の温度下で4MのKOH水溶液100mLに14日間、21日間、35日間浸漬した後、アルカリ溶液浸漬後のハイドロゲルとした。アルカリ溶液に所定の時間浸漬させた後に引き上げた各種ハイドロゲルを23℃湿度50%の環境下で3時間おいた後、テクスチャーアナライザーTA.XT Plus(英弘精機社製)を用いて突刺試験を実施した。直径7mmの穴を有する台にハイドロゲルをのせ、直径3mmのステンレス製円柱の治具が台の穴の中心を通る位置に調整した。その後、1.0mm/秒の速度で突刺し、治具の先端が貫通するまでの最大応力を測定した。この測定を5つの試験片について行い、最大応力を算出し、これらの平均を突刺強度とした。このとき、25℃で14日間浸漬後、21日間浸漬後、35日間浸漬後の突刺強度を、それぞれF25℃[14日間]、F25℃[21日間]、F25℃[35日間]とし、60℃で14日間浸漬後、21日間浸漬後、35日間浸漬後の突刺強度を、それぞれF60℃[14日間]、F60℃[21日間]、F60℃[35日間]とした。なお、シートの厚みが2mmに満たない場合は、シートを積層させて厚みが2mmとなるように調整した。 (Puncture strength)
(1) Degree of swelling in 4M KOH aqueous solution (Method a: Examples 1a to 5a and Comparative examples 1a to 7a)
The hydrogel was cut into a width of 30 mm × length of 30 mm × 2 mm. The cut hydrogel was immersed in 100 mL of a 4M KOH aqueous solution at 25 ° C. and 60 ° C. for 14 days, 21 days, and 35 days, and then a hydrogel immersed in an alkaline solution. Various hydrogels pulled up after being immersed in an alkali solution for a predetermined time are placed in an environment of 23 ° C. and 50% humidity for 3 hours, and then subjected to a texture analyzer TA. A piercing test was performed using XT Plus (manufactured by Eiko Seiki Co., Ltd.). The hydrogel was placed on a table having a hole having a diameter of 7 mm, and adjusted to a position where a stainless steel jig having a diameter of 3 mm passed through the center of the hole of the table. Thereafter, the piercing was performed at a speed of 1.0 mm / sec, and the maximum stress until the tip of the jig penetrated was measured. This measurement was carried out for five test pieces, the maximum stress was calculated, and the average of these was defined as the piercing strength. At this time, the piercing strength after immersion at 25 ° C. for 14 days, after immersion for 21 days, and after immersion for 35 days was F 25 ° C. [14 days] , F 25 ° C. [21 days] , and F 25 ° C. [35 days]. The piercing strength after immersion at 60 ° C. for 14 days, after immersion for 21 days, and after immersion for 35 days was F 60 ° C. [14 days] , F 60 ° C. [21 days] , and F 60 ° C. [35 days] . When the thickness of the sheet was less than 2 mm, the sheets were laminated so that the thickness was adjusted to 2 mm.
(1)4MのKOH水溶液での膨潤度(方法a:実施例1a~5a及び比較例1a~7a)
ハイドロゲルを幅30mm×長さ30mm×2mm厚に切り取った。切り取ったハイドロゲルを、25℃及び60℃の温度下で4MのKOH水溶液100mLに14日間、21日間、35日間浸漬した後、アルカリ溶液浸漬後のハイドロゲルとした。アルカリ溶液に所定の時間浸漬させた後に引き上げた各種ハイドロゲルを23℃湿度50%の環境下で3時間おいた後、テクスチャーアナライザーTA.XT Plus(英弘精機社製)を用いて突刺試験を実施した。直径7mmの穴を有する台にハイドロゲルをのせ、直径3mmのステンレス製円柱の治具が台の穴の中心を通る位置に調整した。その後、1.0mm/秒の速度で突刺し、治具の先端が貫通するまでの最大応力を測定した。この測定を5つの試験片について行い、最大応力を算出し、これらの平均を突刺強度とした。このとき、25℃で14日間浸漬後、21日間浸漬後、35日間浸漬後の突刺強度を、それぞれF25℃[14日間]、F25℃[21日間]、F25℃[35日間]とし、60℃で14日間浸漬後、21日間浸漬後、35日間浸漬後の突刺強度を、それぞれF60℃[14日間]、F60℃[21日間]、F60℃[35日間]とした。なお、シートの厚みが2mmに満たない場合は、シートを積層させて厚みが2mmとなるように調整した。 (Puncture strength)
(1) Degree of swelling in 4M KOH aqueous solution (Method a: Examples 1a to 5a and Comparative examples 1a to 7a)
The hydrogel was cut into a width of 30 mm × length of 30 mm × 2 mm. The cut hydrogel was immersed in 100 mL of a 4M KOH aqueous solution at 25 ° C. and 60 ° C. for 14 days, 21 days, and 35 days, and then a hydrogel immersed in an alkaline solution. Various hydrogels pulled up after being immersed in an alkali solution for a predetermined time are placed in an environment of 23 ° C. and 50% humidity for 3 hours, and then subjected to a texture analyzer TA. A piercing test was performed using XT Plus (manufactured by Eiko Seiki Co., Ltd.). The hydrogel was placed on a table having a hole having a diameter of 7 mm, and adjusted to a position where a stainless steel jig having a diameter of 3 mm passed through the center of the hole of the table. Thereafter, the piercing was performed at a speed of 1.0 mm / sec, and the maximum stress until the tip of the jig penetrated was measured. This measurement was carried out for five test pieces, the maximum stress was calculated, and the average of these was defined as the piercing strength. At this time, the piercing strength after immersion at 25 ° C. for 14 days, after immersion for 21 days, and after immersion for 35 days was F 25 ° C. [14 days] , F 25 ° C. [21 days] , and F 25 ° C. [35 days]. The piercing strength after immersion at 60 ° C. for 14 days, after immersion for 21 days, and after immersion for 35 days was F 60 ° C. [14 days] , F 60 ° C. [21 days] , and F 60 ° C. [35 days] . When the thickness of the sheet was less than 2 mm, the sheets were laminated so that the thickness was adjusted to 2 mm.
(2)1.5M LiOHと10M LiClとを含む水溶液での膨潤度(方法b:実施例1b~13b及び比較例1b~6b)
ハイドロゲルを幅30mm×長さ30mm×2mm厚に切り取った。切り取ったハイドロゲルを、25℃の温度下で1.5M LiOHと10M LiClとを含む水溶液100mLに1週間浸漬したゲルをアルカリ溶液浸漬後のハイドロゲルとした。アルカリ溶液浸漬後のハイドロゲルを電解液から引き上げ、10分間水切りをした後、23℃、湿度50%RHの環境下でテクスチャーアナライザーTA.XT Plus(英弘精機社製)を用いて次の手順で突刺試験を実施した。直径7mmの穴を有する台にアルカリ溶液浸漬後のハイドロゲルをのせ、直径3mmのステンレス製円柱の治具が台の穴の中心を通る位置に調整した。その後、1.0mm/秒の速度で突刺し、治具の先端が貫通するまでの最大応力を測定した。この測定を5つの試験片について行い、最大応力を算出し、これらの平均を突刺強度とした。試験片の厚みが2mmに満たない場合は、シートを積層し、積層したシート厚みが2mmになるように調整して測定した。 (2) Degree of swelling in an aqueous solution containing 1.5 M LiOH and 10 M LiCl (Method b: Examples 1b to 13b and Comparative Examples 1b to 6b)
The hydrogel was cut into a width of 30 mm × length of 30 mm × 2 mm. The cut hydrogel was immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, and the gel was used as a hydrogel after immersion in an alkaline solution. The hydrogel immersed in the alkali solution is pulled up from the electrolytic solution, drained for 10 minutes, and then subjected to texture analyzer TA. A piercing test was performed using XT Plus (manufactured by Eiko Seiki Co., Ltd.) according to the following procedure. The hydrogel after immersion in the alkaline solution was placed on a table having a hole having a diameter of 7 mm, and adjusted to a position where a jig of a stainless steel cylinder having a diameter of 3 mm passed through the center of the hole of the table. Thereafter, the piercing was performed at a speed of 1.0 mm / sec, and the maximum stress until the tip of the jig penetrated was measured. This measurement was carried out for five test pieces, the maximum stress was calculated, and the average of these was defined as the piercing strength. When the thickness of the test piece was less than 2 mm, the sheets were laminated, and the thickness of the laminated sheet was adjusted to 2 mm and measured.
ハイドロゲルを幅30mm×長さ30mm×2mm厚に切り取った。切り取ったハイドロゲルを、25℃の温度下で1.5M LiOHと10M LiClとを含む水溶液100mLに1週間浸漬したゲルをアルカリ溶液浸漬後のハイドロゲルとした。アルカリ溶液浸漬後のハイドロゲルを電解液から引き上げ、10分間水切りをした後、23℃、湿度50%RHの環境下でテクスチャーアナライザーTA.XT Plus(英弘精機社製)を用いて次の手順で突刺試験を実施した。直径7mmの穴を有する台にアルカリ溶液浸漬後のハイドロゲルをのせ、直径3mmのステンレス製円柱の治具が台の穴の中心を通る位置に調整した。その後、1.0mm/秒の速度で突刺し、治具の先端が貫通するまでの最大応力を測定した。この測定を5つの試験片について行い、最大応力を算出し、これらの平均を突刺強度とした。試験片の厚みが2mmに満たない場合は、シートを積層し、積層したシート厚みが2mmになるように調整して測定した。 (2) Degree of swelling in an aqueous solution containing 1.5 M LiOH and 10 M LiCl (Method b: Examples 1b to 13b and Comparative Examples 1b to 6b)
The hydrogel was cut into a width of 30 mm × length of 30 mm × 2 mm. The cut hydrogel was immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, and the gel was used as a hydrogel after immersion in an alkaline solution. The hydrogel immersed in the alkali solution is pulled up from the electrolytic solution, drained for 10 minutes, and then subjected to texture analyzer TA. A piercing test was performed using XT Plus (manufactured by Eiko Seiki Co., Ltd.) according to the following procedure. The hydrogel after immersion in the alkaline solution was placed on a table having a hole having a diameter of 7 mm, and adjusted to a position where a jig of a stainless steel cylinder having a diameter of 3 mm passed through the center of the hole of the table. Thereafter, the piercing was performed at a speed of 1.0 mm / sec, and the maximum stress until the tip of the jig penetrated was measured. This measurement was carried out for five test pieces, the maximum stress was calculated, and the average of these was defined as the piercing strength. When the thickness of the test piece was less than 2 mm, the sheets were laminated, and the thickness of the laminated sheet was adjusted to 2 mm and measured.
(直流分極測定における通電時間)
対向する幅15mm、長さ40mm、厚み300μmの亜鉛極板間にハイドロゲルを介在させた状態で2枚の亜鉛極板を重ね合わせることで、亜鉛極板とハイドロゲルとの積層体を作製した。更に2枚の70mm角のアクリル板で前記積層体を挟持して固定することで直流分極測定用セルを作製した。なお、2枚のアクリル板の間の亜鉛極板とハイドロゲルとの積層体が存在しない箇所に幅10mm、長さ30mm、厚み800μmテフロン(登録商標)製のシートをアクリル板間に挟むことで、亜鉛極板間が間隔200μmとなるように調整した。この直流分極測定用セルを、酸化亜鉛を飽和溶解させた4MのKOH水溶液に25℃で72時間浸漬した。浸漬後の直流分極測定用セルを、酸化亜鉛を飽和溶解させた4MのKOH水溶液が入ったアクリル製溶液に入れ、測定装置HJ1010SD8(北斗電工社製)を用いて、直流分極測定用セルの亜鉛極板間に1mA/cm2の直流定電流を通電させ、経時での電圧の変化を測定した。このとき測定電圧が0.014V以上であることを通電状態とし、測定開始から通電状態を保持している時間を通電時間とした。また、測定電圧が0.014V未満となったときを短絡状態とした。 (Electrification time in DC polarization measurement)
A laminate of a zinc electrode plate and a hydrogel was produced by stacking two zinc electrode plates in a state where a hydrogel was interposed between opposed zinc electrode plates having a width of 15 mm, a length of 40 mm, and a thickness of 300 μm. . Further, the laminate was sandwiched and fixed between two 70 mm square acrylic plates to produce a cell for DC polarization measurement. Note that a sheet made of Teflon (registered trademark) having a width of 10 mm, a length of 30 mm, and a thickness of 800 μm is sandwiched between the acrylic plates at a position where the laminate of the zinc electrode plate and the hydrogel does not exist between the two acrylic plates. The distance between the electrode plates was adjusted to be 200 μm. This DC polarization measurement cell was immersed in a 4 M KOH aqueous solution in which zinc oxide was dissolved in saturation at 25 ° C. for 72 hours. The cell for DC polarization measurement after immersion is placed in an acrylic solution containing a 4M aqueous solution of KOH in which zinc oxide is dissolved in saturation, and the zinc in the cell for DC polarization measurement is measured using a measuring device HJ1010SD8 (manufactured by Hokuto Denko KK). A constant DC current of 1 mA / cm 2 was passed between the electrode plates, and a change in voltage over time was measured. At this time, when the measured voltage was 0.014 V or more, the energized state was determined, and the time during which the energized state was maintained from the start of the measurement was defined as the energized time. When the measured voltage was less than 0.014 V, a short-circuit state was set.
対向する幅15mm、長さ40mm、厚み300μmの亜鉛極板間にハイドロゲルを介在させた状態で2枚の亜鉛極板を重ね合わせることで、亜鉛極板とハイドロゲルとの積層体を作製した。更に2枚の70mm角のアクリル板で前記積層体を挟持して固定することで直流分極測定用セルを作製した。なお、2枚のアクリル板の間の亜鉛極板とハイドロゲルとの積層体が存在しない箇所に幅10mm、長さ30mm、厚み800μmテフロン(登録商標)製のシートをアクリル板間に挟むことで、亜鉛極板間が間隔200μmとなるように調整した。この直流分極測定用セルを、酸化亜鉛を飽和溶解させた4MのKOH水溶液に25℃で72時間浸漬した。浸漬後の直流分極測定用セルを、酸化亜鉛を飽和溶解させた4MのKOH水溶液が入ったアクリル製溶液に入れ、測定装置HJ1010SD8(北斗電工社製)を用いて、直流分極測定用セルの亜鉛極板間に1mA/cm2の直流定電流を通電させ、経時での電圧の変化を測定した。このとき測定電圧が0.014V以上であることを通電状態とし、測定開始から通電状態を保持している時間を通電時間とした。また、測定電圧が0.014V未満となったときを短絡状態とした。 (Electrification time in DC polarization measurement)
A laminate of a zinc electrode plate and a hydrogel was produced by stacking two zinc electrode plates in a state where a hydrogel was interposed between opposed zinc electrode plates having a width of 15 mm, a length of 40 mm, and a thickness of 300 μm. . Further, the laminate was sandwiched and fixed between two 70 mm square acrylic plates to produce a cell for DC polarization measurement. Note that a sheet made of Teflon (registered trademark) having a width of 10 mm, a length of 30 mm, and a thickness of 800 μm is sandwiched between the acrylic plates at a position where the laminate of the zinc electrode plate and the hydrogel does not exist between the two acrylic plates. The distance between the electrode plates was adjusted to be 200 μm. This DC polarization measurement cell was immersed in a 4 M KOH aqueous solution in which zinc oxide was dissolved in saturation at 25 ° C. for 72 hours. The cell for DC polarization measurement after immersion is placed in an acrylic solution containing a 4M aqueous solution of KOH in which zinc oxide is dissolved in saturation, and the zinc in the cell for DC polarization measurement is measured using a measuring device HJ1010SD8 (manufactured by Hokuto Denko KK). A constant DC current of 1 mA / cm 2 was passed between the electrode plates, and a change in voltage over time was measured. At this time, when the measured voltage was 0.014 V or more, the energized state was determined, and the time during which the energized state was maintained from the start of the measurement was defined as the energized time. When the measured voltage was less than 0.014 V, a short-circuit state was set.
(直流分極測定における40分経過後の亜鉛極板1cm2あたりの電圧)
上記直流分極測定において、通電開始から40分経過したときの電圧を亜鉛極板の面積で除することで算出した値を「直流分極測定における40分経過後の亜鉛極板1cm2あたりの電圧」とした。 (Voltage per 1 cm 2 of zinc electrode after 40 minutes in DC polarization measurement)
In the DC polarization measurement, the value calculated by dividing the voltage at 40 minutes after the start of energization by the area of the zinc electrode plate is referred to as “voltage per 1 cm 2 of zinc electrode plate after 40 minutes in DC polarization measurement”. And
上記直流分極測定において、通電開始から40分経過したときの電圧を亜鉛極板の面積で除することで算出した値を「直流分極測定における40分経過後の亜鉛極板1cm2あたりの電圧」とした。 (Voltage per 1 cm 2 of zinc electrode after 40 minutes in DC polarization measurement)
In the DC polarization measurement, the value calculated by dividing the voltage at 40 minutes after the start of energization by the area of the zinc electrode plate is referred to as “voltage per 1 cm 2 of zinc electrode plate after 40 minutes in DC polarization measurement”. And
(充放電試験)
ハイドロゲルを酸化亜鉛を飽和溶解させた4MのKOH水溶液(電解質成分)に25℃で72時間浸漬することで、電解質成分含浸ハイドロゲルを得た。
酸化亜鉛80質量部、炭酸カルシウム5質量部、導電助剤としてアセチレンブラック5質量部、結着剤としてポリフッ化ビニリデン(PVDF)10質量部を混合後、固形分量が40質量%になるように適当量のNMP(n−メチル−2−ピロリドン)を加えた。得られた混合物を更に自公転式ミキサーで2,000rpm、20分間混合することで、負極合剤を調製した。得られた負極合剤をセルメット(住友電工社製)に固定し、150℃で5時間以上乾燥後、ロールプレスし、20mm×30mmにカットすることで負極を得た。負極の厚さは平均700μmであり、単位面積あたりの負極容量は25mAh/cm2であり、作製した負極の容量は150mAhであった。
水酸化ニッケル91.5質量部、水酸化コバルト3.15質量部、増粘剤としてカルボキシメチルセルロースナトリウム(ダイセル社製、2260)を0.13質量部、分散剤としてポリエチレングリコールモノ−p−イソオクチルフェニルエーテル(ナカライテスク社製、トリトンX)0.22質量部、結着剤としてポリテトラフルオロエチレン(PTFE)5質量部を混合後、固形分量が50質量%になるように適当量のイオン交換水を加えた。得られた混合物を更に自公転式ミキサーで2,000rpm、20分間混合することで、正極合剤を調製した。得られた正極合剤をセルメット(住友電工社製)に固定し、80℃で5時間以上乾燥後、ロールプレスし、20mm角にカットすることで正極を得た。正極の厚さは平均600μmであり、単位面積あたりの正極容量は32mAh/cm2であり、作製した正極の容量は128mAhであった。
前記負極の両面を40mm×30mmの上記電解質成分含浸ハイドロゲルで挟み込み、その外側に前記正極を配し、更に全体をアクリル板で固定することで、充放電試験用のニッケル−亜鉛蓄電池セルを得た。このセルは、正極容量を負極容量に対して大過剰とした正極容量規制のセルであった。ニッケル−亜鉛蓄電池セルを正極容量に対して1/4C率で1時間充電し、1/4C率で1時間放電した後、1/4C率で2時間充電し、1/4C率で1時間放電した。1/2C率で1時間充電し、1/2C率で1時間充放電する充放電サイクル試験に付した。充放電回数は、1/2C率での充放電回数とした。
充放電サイクル試験は充電1時間及び放電1時間とし、放電カットオフ電圧は1.0Vとした。ここで1C率とは負極の全容量を1時間で放電又は充電できるだけの電流量とした。例えば、正極の容量が128mAhとすると1C率は128mA、1/2C率は68mA、1/4C率は32mAとなった。 (Charging / discharging test)
The hydrogel was immersed in a 4 M aqueous KOH solution (electrolyte component) in which zinc oxide was saturated and dissolved at 25 ° C. for 72 hours to obtain an electrolyte component-impregnated hydrogel.
After mixing 80 parts by mass of zinc oxide, 5 parts by mass of calcium carbonate, 5 parts by mass of acetylene black as a conductive aid, and 10 parts by mass of polyvinylidene fluoride (PVDF) as a binder, the solid content is appropriately adjusted to 40% by mass. An amount of NMP (n-methyl-2-pyrrolidone) was added. The obtained mixture was further mixed with a self-revolving mixer at 2,000 rpm for 20 minutes to prepare a negative electrode mixture. The obtained negative electrode mixture was fixed to Celmet (manufactured by Sumitomo Electric Industries, Ltd.), dried at 150 ° C. for 5 hours or more, roll-pressed, and cut into 20 mm × 30 mm to obtain a negative electrode. The thickness of the negative electrode was 700 μm on average, the negative electrode capacity per unit area was 25 mAh / cm 2 , and the capacity of the manufactured negative electrode was 150 mAh.
91.5 parts by mass of nickel hydroxide, 3.15 parts by mass of cobalt hydroxide, 0.13 parts by mass of sodium carboxymethyl cellulose (manufactured by Daicel Corporation, 2260) as a thickener, and polyethylene glycol mono-p-isooctyl as a dispersant. After mixing 0.22 parts by mass of phenyl ether (manufactured by Nacalai Tesque, Triton X) and 5 parts by mass of polytetrafluoroethylene (PTFE) as a binder, an appropriate amount of ion exchange was performed so that the solid content became 50% by mass. Water was added. The obtained mixture was further mixed at 2,000 rpm for 20 minutes using a self-revolving mixer to prepare a positive electrode mixture. The obtained positive electrode mixture was fixed to Celmet (manufactured by Sumitomo Electric Industries, Ltd.), dried at 80 ° C. for 5 hours or more, roll-pressed, and cut into 20 mm square to obtain a positive electrode. The thickness of the positive electrode was 600 μm on average, the positive electrode capacity per unit area was 32 mAh / cm 2 , and the capacity of the manufactured positive electrode was 128 mAh.
A nickel-zinc storage battery cell for a charge / discharge test is obtained by sandwiching both sides of the negative electrode with the electrolyte component-impregnated hydrogel of 40 mm × 30 mm, disposing the positive electrode on the outside thereof, and further fixing the whole with an acrylic plate. Was. This cell was a positive electrode capacity-regulated cell in which the positive electrode capacity was much larger than the negative electrode capacity. The nickel-zinc storage battery cell was charged at a rate of 1 / 4C with respect to the positive electrode capacity for 1 hour, discharged at a rate of 1 / 4C for 1 hour, charged at a rate of 1 / 4C for 2 hours, and discharged at a rate of 1 / 4C for 1 hour. did. The battery was subjected to a charge / discharge cycle test in which the battery was charged at a 1 / 2C rate for 1 hour and charged and discharged at a 1 / 2C rate for 1 hour. The number of times of charging and discharging was the number of times of charging and discharging at a 1 / 2C rate.
The charge / discharge cycle test was performed for 1 hour for charging and 1 hour for discharging, and the discharge cutoff voltage was 1.0 V. Here, the 1C rate is a current amount that can discharge or charge the entire capacity of the negative electrode in one hour. For example, when the capacity of the positive electrode is 128 mAh, the 1C rate is 128 mA, the 1 / 2C rate is 68 mA, and the 1 / 4C rate is 32 mA.
ハイドロゲルを酸化亜鉛を飽和溶解させた4MのKOH水溶液(電解質成分)に25℃で72時間浸漬することで、電解質成分含浸ハイドロゲルを得た。
酸化亜鉛80質量部、炭酸カルシウム5質量部、導電助剤としてアセチレンブラック5質量部、結着剤としてポリフッ化ビニリデン(PVDF)10質量部を混合後、固形分量が40質量%になるように適当量のNMP(n−メチル−2−ピロリドン)を加えた。得られた混合物を更に自公転式ミキサーで2,000rpm、20分間混合することで、負極合剤を調製した。得られた負極合剤をセルメット(住友電工社製)に固定し、150℃で5時間以上乾燥後、ロールプレスし、20mm×30mmにカットすることで負極を得た。負極の厚さは平均700μmであり、単位面積あたりの負極容量は25mAh/cm2であり、作製した負極の容量は150mAhであった。
水酸化ニッケル91.5質量部、水酸化コバルト3.15質量部、増粘剤としてカルボキシメチルセルロースナトリウム(ダイセル社製、2260)を0.13質量部、分散剤としてポリエチレングリコールモノ−p−イソオクチルフェニルエーテル(ナカライテスク社製、トリトンX)0.22質量部、結着剤としてポリテトラフルオロエチレン(PTFE)5質量部を混合後、固形分量が50質量%になるように適当量のイオン交換水を加えた。得られた混合物を更に自公転式ミキサーで2,000rpm、20分間混合することで、正極合剤を調製した。得られた正極合剤をセルメット(住友電工社製)に固定し、80℃で5時間以上乾燥後、ロールプレスし、20mm角にカットすることで正極を得た。正極の厚さは平均600μmであり、単位面積あたりの正極容量は32mAh/cm2であり、作製した正極の容量は128mAhであった。
前記負極の両面を40mm×30mmの上記電解質成分含浸ハイドロゲルで挟み込み、その外側に前記正極を配し、更に全体をアクリル板で固定することで、充放電試験用のニッケル−亜鉛蓄電池セルを得た。このセルは、正極容量を負極容量に対して大過剰とした正極容量規制のセルであった。ニッケル−亜鉛蓄電池セルを正極容量に対して1/4C率で1時間充電し、1/4C率で1時間放電した後、1/4C率で2時間充電し、1/4C率で1時間放電した。1/2C率で1時間充電し、1/2C率で1時間充放電する充放電サイクル試験に付した。充放電回数は、1/2C率での充放電回数とした。
充放電サイクル試験は充電1時間及び放電1時間とし、放電カットオフ電圧は1.0Vとした。ここで1C率とは負極の全容量を1時間で放電又は充電できるだけの電流量とした。例えば、正極の容量が128mAhとすると1C率は128mA、1/2C率は68mA、1/4C率は32mAとなった。 (Charging / discharging test)
The hydrogel was immersed in a 4 M aqueous KOH solution (electrolyte component) in which zinc oxide was saturated and dissolved at 25 ° C. for 72 hours to obtain an electrolyte component-impregnated hydrogel.
After mixing 80 parts by mass of zinc oxide, 5 parts by mass of calcium carbonate, 5 parts by mass of acetylene black as a conductive aid, and 10 parts by mass of polyvinylidene fluoride (PVDF) as a binder, the solid content is appropriately adjusted to 40% by mass. An amount of NMP (n-methyl-2-pyrrolidone) was added. The obtained mixture was further mixed with a self-revolving mixer at 2,000 rpm for 20 minutes to prepare a negative electrode mixture. The obtained negative electrode mixture was fixed to Celmet (manufactured by Sumitomo Electric Industries, Ltd.), dried at 150 ° C. for 5 hours or more, roll-pressed, and cut into 20 mm × 30 mm to obtain a negative electrode. The thickness of the negative electrode was 700 μm on average, the negative electrode capacity per unit area was 25 mAh / cm 2 , and the capacity of the manufactured negative electrode was 150 mAh.
91.5 parts by mass of nickel hydroxide, 3.15 parts by mass of cobalt hydroxide, 0.13 parts by mass of sodium carboxymethyl cellulose (manufactured by Daicel Corporation, 2260) as a thickener, and polyethylene glycol mono-p-isooctyl as a dispersant. After mixing 0.22 parts by mass of phenyl ether (manufactured by Nacalai Tesque, Triton X) and 5 parts by mass of polytetrafluoroethylene (PTFE) as a binder, an appropriate amount of ion exchange was performed so that the solid content became 50% by mass. Water was added. The obtained mixture was further mixed at 2,000 rpm for 20 minutes using a self-revolving mixer to prepare a positive electrode mixture. The obtained positive electrode mixture was fixed to Celmet (manufactured by Sumitomo Electric Industries, Ltd.), dried at 80 ° C. for 5 hours or more, roll-pressed, and cut into 20 mm square to obtain a positive electrode. The thickness of the positive electrode was 600 μm on average, the positive electrode capacity per unit area was 32 mAh / cm 2 , and the capacity of the manufactured positive electrode was 128 mAh.
A nickel-zinc storage battery cell for a charge / discharge test is obtained by sandwiching both sides of the negative electrode with the electrolyte component-impregnated hydrogel of 40 mm × 30 mm, disposing the positive electrode on the outside thereof, and further fixing the whole with an acrylic plate. Was. This cell was a positive electrode capacity-regulated cell in which the positive electrode capacity was much larger than the negative electrode capacity. The nickel-zinc storage battery cell was charged at a rate of 1 / 4C with respect to the positive electrode capacity for 1 hour, discharged at a rate of 1 / 4C for 1 hour, charged at a rate of 1 / 4C for 2 hours, and discharged at a rate of 1 / 4C for 1 hour. did. The battery was subjected to a charge / discharge cycle test in which the battery was charged at a 1 / 2C rate for 1 hour and charged and discharged at a 1 / 2C rate for 1 hour. The number of times of charging and discharging was the number of times of charging and discharging at a 1 / 2C rate.
The charge / discharge cycle test was performed for 1 hour for charging and 1 hour for discharging, and the discharge cutoff voltage was 1.0 V. Here, the 1C rate is a current amount that can discharge or charge the entire capacity of the negative electrode in one hour. For example, when the capacity of the positive electrode is 128 mAh, the 1C rate is 128 mA, the 1 / 2C rate is 68 mA, and the 1 / 4C rate is 32 mA.
(融点)
多官能性モノマーの融点は、示差走査熱量測定(DSC測定)によって算出した。 (Melting point)
The melting point of the polyfunctional monomer was calculated by differential scanning calorimetry (DSC measurement).
多官能性モノマーの融点は、示差走査熱量測定(DSC測定)によって算出した。 (Melting point)
The melting point of the polyfunctional monomer was calculated by differential scanning calorimetry (DSC measurement).
(電解液浸漬後の折り曲げ試験)
ハイドロゲルを幅20mm×長さ30mmに切り、1.5M LiOHと10M LiClとを含む水溶液100mLに1週間浸漬した。浸漬後のハイドロゲルの長辺側の両端が接するまで折り曲げた。このとき、ハイドロゲルが割れなかったときを○、割れたときを×として評価した。 (Bending test after immersion in electrolyte)
The hydrogel was cut into a width of 20 mm and a length of 30 mm, and immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl for one week. The hydrogel after immersion was bent until both ends on the long side were in contact. At this time, when the hydrogel was not cracked, it was evaluated as ○, and when it was broken, it was evaluated as x.
ハイドロゲルを幅20mm×長さ30mmに切り、1.5M LiOHと10M LiClとを含む水溶液100mLに1週間浸漬した。浸漬後のハイドロゲルの長辺側の両端が接するまで折り曲げた。このとき、ハイドロゲルが割れなかったときを○、割れたときを×として評価した。 (Bending test after immersion in electrolyte)
The hydrogel was cut into a width of 20 mm and a length of 30 mm, and immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl for one week. The hydrogel after immersion was bent until both ends on the long side were in contact. At this time, when the hydrogel was not cracked, it was evaluated as ○, and when it was broken, it was evaluated as x.
(交流インピーダンス測定)
ハイドロゲルを幅20mm×長さ20mm×2mm厚に切り取り、1.5M LiOHと10M LiClとを含む水溶液100mLに1週間浸漬し、高濃度電解液浸漬後のハイドロゲルとした。高濃度電解液浸漬後のハイドロゲルを2枚のNi板(幅20mm、長さ40mm、厚み1.0mm)で挟み、試験片とした。FRAインピーダンスアナライザー(Autolab社製 PGSTAT)を用いて、交流振幅を10mV(r.m.s.)、測定周波数範囲を100kHzから100Hzとして、2端子法にて試験片の交流インピーダンスを測定した。得られた測定結果から、周波数100kHzにおけるインピーダンスの実数成分(Z’/Ω)を周波数100kHzにおけるインピーダンスとし、周波数1kHzにおけるインピーダンスの実数成分(Z’/Ω)を周波数1kHzにおけるインピーダンスとした。試験片の厚みが2mmに満たない場合は、シートを積層し、積層したシート厚みが2mmになるように調整して測定した。 (AC impedance measurement)
The hydrogel was cut into a width of 20 mm × length of 20 mm × 2 mm and immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl for one week to obtain a hydrogel after immersion in a high-concentration electrolyte. The hydrogel after immersion in the high-concentration electrolyte was sandwiched between two Ni plates (width 20 mm, length 40 mm, thickness 1.0 mm) to obtain a test piece. Using a FRA impedance analyzer (PGSTAT, manufactured by Autolab), the AC amplitude of the test piece was measured by a two-terminal method with an AC amplitude of 10 mV (rms) and a measurement frequency range of 100 kHz to 100 Hz. From the obtained measurement results, the real component of the impedance at a frequency of 100 kHz (Z ′ / Ω) was defined as the impedance at a frequency of 100 kHz, and the real component of the impedance at a frequency of 1 kHz (Z ′ / Ω) was defined as the impedance at a frequency of 1 kHz. When the thickness of the test piece was less than 2 mm, the sheets were laminated, and the thickness of the laminated sheet was adjusted to 2 mm and measured.
ハイドロゲルを幅20mm×長さ20mm×2mm厚に切り取り、1.5M LiOHと10M LiClとを含む水溶液100mLに1週間浸漬し、高濃度電解液浸漬後のハイドロゲルとした。高濃度電解液浸漬後のハイドロゲルを2枚のNi板(幅20mm、長さ40mm、厚み1.0mm)で挟み、試験片とした。FRAインピーダンスアナライザー(Autolab社製 PGSTAT)を用いて、交流振幅を10mV(r.m.s.)、測定周波数範囲を100kHzから100Hzとして、2端子法にて試験片の交流インピーダンスを測定した。得られた測定結果から、周波数100kHzにおけるインピーダンスの実数成分(Z’/Ω)を周波数100kHzにおけるインピーダンスとし、周波数1kHzにおけるインピーダンスの実数成分(Z’/Ω)を周波数1kHzにおけるインピーダンスとした。試験片の厚みが2mmに満たない場合は、シートを積層し、積層したシート厚みが2mmになるように調整して測定した。 (AC impedance measurement)
The hydrogel was cut into a width of 20 mm × length of 20 mm × 2 mm and immersed in 100 mL of an aqueous solution containing 1.5 M LiOH and 10 M LiCl for one week to obtain a hydrogel after immersion in a high-concentration electrolyte. The hydrogel after immersion in the high-concentration electrolyte was sandwiched between two Ni plates (width 20 mm, length 40 mm, thickness 1.0 mm) to obtain a test piece. Using a FRA impedance analyzer (PGSTAT, manufactured by Autolab), the AC amplitude of the test piece was measured by a two-terminal method with an AC amplitude of 10 mV (rms) and a measurement frequency range of 100 kHz to 100 Hz. From the obtained measurement results, the real component of the impedance at a frequency of 100 kHz (Z ′ / Ω) was defined as the impedance at a frequency of 100 kHz, and the real component of the impedance at a frequency of 1 kHz (Z ′ / Ω) was defined as the impedance at a frequency of 1 kHz. When the thickness of the test piece was less than 2 mm, the sheets were laminated, and the thickness of the laminated sheet was adjusted to 2 mm and measured.
(重量平均分子量)
重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した、プルラン換算重量平均分子量とした。具体的には、試料50mgを0.2M NaNO3水溶液5mLに溶解させ(浸透時間:24±1hr(完全溶解))、GL社製、水系0.45μmのクロマトディスク(13N)にて濾過した上で次の測定条件にてクロマトグラフを用いて測定し、予め作成しておいた標準プルラン検量線から試料の重量平均分子量を求めた。
・使用装置:東ソー社製 HLC−8020GPC EcoSEC(RI検出器・UV検出器内蔵)
・ガードカラム:東ソー社製 TSK GUARDCOLUMN PWXL−H(6.0mmI.D.×4.0cm)×1本
・カラム:東ソー社製 TSKgel G6000 PWXL(7.8mmI.D.×30cm)×1本+東ソー社製 TSKgel G3000 PWXL(7.8mmI.D.×30cm)×1本
・カラム温度:40℃
・移動相:0.2M NaNO3水溶液
・移動相流量:リファレンス側ポンプ=0.6mL/min
サンプル側ポンプ=0.6mL/min
・検出器:RI検出器
・試料濃度:1.0wt%
・注入量:100μL
・測定時間:65min
・サンプリングピッチ:500msec
検量線用標準プルラン試料は、昭和電工社製、商品名「Shodex」の重量平均分子量が2,560,000、1,600,000、380,000、212,000、100,000、48,000、23,700、12,200、5,800のものを用いた。
上記検量線用標準プルランをA(1,600,000、212,000、48,000、12,200)及びB(2,560,000、380,000、100,000、23,700、5,800)にグループ分けした後、Aを各々1~2.5mg秤量後蒸留水2mLに溶解し、Bも各々1~2.5mg秤量後蒸留水2mLに溶解した。標準プルラン検量線は、作製した各A及びB溶解液を100μL注入して測定後に得られた保持時間から較正曲線(三次式)を作成することにより得られ、その検量線を用いて重量平均分子量を算出した。 (Weight average molecular weight)
The weight average molecular weight (Mw) was defined as pullulan-converted weight average molecular weight measured using gel permeation chromatography (GPC). Specifically, 50 mg of a sample was dissolved in 5 mL of a 0.2 M NaNO 3 aqueous solution (permeation time: 24 ± 1 hr (complete dissolution)), and filtered through a 0.45 μm aqueous chromatodisk (13N) manufactured by GL. Was measured using a chromatograph under the following measurement conditions, and the weight average molecular weight of the sample was determined from a standard pullulan calibration curve prepared in advance.
-Equipment used: Tosoh Corporation HLC-8020GPC EcoSEC (Built-in RI detector / UV detector)
・ Guard column: TSK GUARDCOLUMN PWXL-H (6.0 mm ID × 4.0 cm) × 1 by Tosoh ・ Column: TSKgel G6000 PWXL (7.8 mm ID × 30 cm) × 1 by Tosoh + Tosoh TSKgel G3000 PWXL (7.8 mm ID × 30 cm) x 1 column temperature: 40 ° C
Mobile phase: 0.2 M NaNO 3 solution Mobile phase flow rate: Reference side pump = 0.6 mL / min
Sample side pump = 0.6mL / min
・ Detector: RI detector ・ Sample concentration: 1.0 wt%
・ Injection volume: 100 μL
・ Measurement time: 65min
・ Sampling pitch: 500msec
The standard pullulan sample for the calibration curve was manufactured by Showa Denko KK and has a trade name of “Shodex” having a weight average molecular weight of 2,560,000, 1,600,000, 380,000, 212,000, 100,000, 48,000. , 23,700, 12,200, 5,800.
The standard pullulan for the above calibration curve was A (1,600,000, 212,000, 48,000, 12,200) and B (2,560,000, 380,000, 100,000, 23,700, 5, After being grouped into 800), A was weighed in 1 to 2.5 mg each and dissolved in 2 mL of distilled water, and B was weighed in 1 to 2.5 mg each and dissolved in 2 mL of distilled water. The standard pullulan calibration curve was obtained by injecting 100 μL of each of the prepared A and B lysates and creating a calibration curve (cubic equation) from the retention times obtained after the measurement, and using the calibration curve, the weight average molecular weight was obtained. Was calculated.
重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した、プルラン換算重量平均分子量とした。具体的には、試料50mgを0.2M NaNO3水溶液5mLに溶解させ(浸透時間:24±1hr(完全溶解))、GL社製、水系0.45μmのクロマトディスク(13N)にて濾過した上で次の測定条件にてクロマトグラフを用いて測定し、予め作成しておいた標準プルラン検量線から試料の重量平均分子量を求めた。
・使用装置:東ソー社製 HLC−8020GPC EcoSEC(RI検出器・UV検出器内蔵)
・ガードカラム:東ソー社製 TSK GUARDCOLUMN PWXL−H(6.0mmI.D.×4.0cm)×1本
・カラム:東ソー社製 TSKgel G6000 PWXL(7.8mmI.D.×30cm)×1本+東ソー社製 TSKgel G3000 PWXL(7.8mmI.D.×30cm)×1本
・カラム温度:40℃
・移動相:0.2M NaNO3水溶液
・移動相流量:リファレンス側ポンプ=0.6mL/min
サンプル側ポンプ=0.6mL/min
・検出器:RI検出器
・試料濃度:1.0wt%
・注入量:100μL
・測定時間:65min
・サンプリングピッチ:500msec
検量線用標準プルラン試料は、昭和電工社製、商品名「Shodex」の重量平均分子量が2,560,000、1,600,000、380,000、212,000、100,000、48,000、23,700、12,200、5,800のものを用いた。
上記検量線用標準プルランをA(1,600,000、212,000、48,000、12,200)及びB(2,560,000、380,000、100,000、23,700、5,800)にグループ分けした後、Aを各々1~2.5mg秤量後蒸留水2mLに溶解し、Bも各々1~2.5mg秤量後蒸留水2mLに溶解した。標準プルラン検量線は、作製した各A及びB溶解液を100μL注入して測定後に得られた保持時間から較正曲線(三次式)を作成することにより得られ、その検量線を用いて重量平均分子量を算出した。 (Weight average molecular weight)
The weight average molecular weight (Mw) was defined as pullulan-converted weight average molecular weight measured using gel permeation chromatography (GPC). Specifically, 50 mg of a sample was dissolved in 5 mL of a 0.2 M NaNO 3 aqueous solution (permeation time: 24 ± 1 hr (complete dissolution)), and filtered through a 0.45 μm aqueous chromatodisk (13N) manufactured by GL. Was measured using a chromatograph under the following measurement conditions, and the weight average molecular weight of the sample was determined from a standard pullulan calibration curve prepared in advance.
-Equipment used: Tosoh Corporation HLC-8020GPC EcoSEC (Built-in RI detector / UV detector)
・ Guard column: TSK GUARDCOLUMN PWXL-H (6.0 mm ID × 4.0 cm) × 1 by Tosoh ・ Column: TSKgel G6000 PWXL (7.8 mm ID × 30 cm) × 1 by Tosoh + Tosoh TSKgel G3000 PWXL (7.8 mm ID × 30 cm) x 1 column temperature: 40 ° C
Mobile phase: 0.2 M NaNO 3 solution Mobile phase flow rate: Reference side pump = 0.6 mL / min
Sample side pump = 0.6mL / min
・ Detector: RI detector ・ Sample concentration: 1.0 wt%
・ Injection volume: 100 μL
・ Measurement time: 65min
・ Sampling pitch: 500msec
The standard pullulan sample for the calibration curve was manufactured by Showa Denko KK and has a trade name of “Shodex” having a weight average molecular weight of 2,560,000, 1,600,000, 380,000, 212,000, 100,000, 48,000. , 23,700, 12,200, 5,800.
The standard pullulan for the above calibration curve was A (1,600,000, 212,000, 48,000, 12,200) and B (2,560,000, 380,000, 100,000, 23,700, 5, After being grouped into 800), A was weighed in 1 to 2.5 mg each and dissolved in 2 mL of distilled water, and B was weighed in 1 to 2.5 mg each and dissolved in 2 mL of distilled water. The standard pullulan calibration curve was obtained by injecting 100 μL of each of the prepared A and B lysates and creating a calibration curve (cubic equation) from the retention times obtained after the measurement, and using the calibration curve, the weight average molecular weight was obtained. Was calculated.
(FT−IR測定)
ポリアクリル酸系重合体の吸光度測定は、以下の方法により吸光度[1040±20cm−1]及び吸光度[1650±130cm−1]を求め、吸光度比=(吸光度[1040±20cm−1]/吸光度[1650±130cm−1])を算出した。
具体的には80℃の温度下で80時間乾燥させた試料を取り出し、一回反射型ATR法(=微小表面部分析法)にて赤外吸収スペクトルを得た。
・測定装置:フーリエ変換赤外分光光度計 Nicolet iS10(Thermo SCIENTIFIC社製)および一回反射型水平状ATR Smart−iTR(Thermo SCIENTIFIC社製)
・ATRクリスタル:Diamond with ZnSe lens、角度42°
・測定法:一回ATR法
・測定波数領域:4,000cm−1~650cm−1
・測定深度の波数依存性:補正せず
・検出器:重水素化硫酸トリグリシン(DTGS)検出器およびKBrビームスプリッター
・分解能:4cm−1
・積算回数:16回(バックグランド測定時も同様)
・試験数:n=3
ATR法では、試料と高屈折率結晶の密着度合によって測定で得られる赤外吸収スペクトルの強度が変化するため、ATRアクセサリーの「Smart−iTR」で掛けられる最大荷重を掛けて密着度合をほぼ均一にして測定を行なった。以上の条件で得られた赤外線吸収スペクトルは、次のようにピーク処理をして吸光度[1040±20cm−1]及び吸光度[1650±130cm−1]を求め、吸光度比=(吸光度[1040±20cm−1]/吸光度[1650±130cm−1])を算出した。得られる吸光度[1040±20cm−1]は、波数1070±10cm−1と990±20cm−1との間を途中で赤外吸収スペクトルと交差しない最低吸光度位置で結んだ直線をベースラインとして、波数1040±20cm−1の赤外吸収スペクトルにおけるベースラインとの吸光度差(測定された吸光度−ベースラインの吸光度)の最大値を意味する。なお、この吸光度の測定では、最大吸収スペクトルで他の吸収スペクトルが重なっている場合でもピーク分離は実施していない。
得られる吸光度[1650±130cm−1]とは、波数1770±40cm−1と1490±20cm−1との間を途中で赤外吸収スペクトルと交差しない最低吸光度位置で結んだ直線をベースラインとして、波数1650±130cm−1の赤外吸収スペクトルにおけるベースラインとの吸光度差(測定された吸光度−ベースラインの吸光度)の最大値を意味する。なお、この吸光度の測定では、最大吸収スペクトルで他の吸収スペクトルが重なっている場合でもピーク分離は実施していない。 (FT-IR measurement)
In the measurement of the absorbance of the polyacrylic acid-based polymer, the absorbance [1040 ± 20 cm-1] and the absorbance [1650 ± 130 cm-1] are obtained by the following method, and the absorbance ratio = (absorbance [1040 ± 20 cm-1] / absorbance [ 1650 ± 130 cm-1] ).
Specifically, a sample dried at a temperature of 80 ° C. for 80 hours was taken out, and an infrared absorption spectrum was obtained by a single reflection ATR method (= micro surface analysis).
-Measuring apparatus: Fourier transform infrared spectrophotometer Nicolet iS10 (manufactured by Thermo SCIENTIFIC) and single reflection type horizontal ATR Smart-iTR (manufactured by Thermo SCIENTIFIC)
・ ATR crystal: Diamond with ZnSe lenses, angle 42 °
・ Measurement method: Single ATR method ・ Measurement wave number region: 4,000 cm -1 to 650 cm -1
-Wave number dependence of measurement depth: uncorrected-Detector: deuterated triglycine sulfate (DTGS) detector and KBr beam splitter-Resolution: 4 cm -1
・ Number of integration: 16 times (same for background measurement)
・ Number of tests: n = 3
In the ATR method, since the intensity of the infrared absorption spectrum obtained by the measurement changes depending on the degree of adhesion between the sample and the high refractive index crystal, the degree of adhesion is almost uniform by applying the maximum load applied by the "Smart-iTR" of the ATR accessory. Was measured. The infrared absorption spectrum obtained under the above conditions was subjected to a peak treatment as follows to obtain an absorbance [1040 ± 20 cm-1] and an absorbance [1650 ± 130 cm-1], and an absorbance ratio = (absorbance [1040 ± 20 cm-1]) -1] / absorbance [1650 ± 130 cm-1] ) was calculated. The obtained absorbance [1040 ± 20 cm −1 ] is calculated using the straight line connecting the wave numbers of 1070 ± 10 cm −1 and 990 ± 20 cm −1 at the lowest absorbance position that does not intersect with the infrared absorption spectrum in the middle as the baseline. It means the maximum value of the absorbance difference from the baseline in the infrared absorption spectrum at 1040 ± 20 cm −1 (measured absorbance−absorbance at the baseline). In the measurement of the absorbance, no peak separation was performed even when another absorption spectrum overlapped with the maximum absorption spectrum.
The obtained absorbance [1650 ± 130 cm −1 ] is defined as a straight line connecting the wave number between 1770 ± 40 cm −1 and 1490 ± 20 cm −1 at the lowest absorbance position that does not intersect with the infrared absorption spectrum on the way. It means the maximum value of the absorbance difference from the baseline in the infrared absorption spectrum at a wave number of 1650 ± 130 cm −1 (measured absorbance−absorbance at the baseline). In the measurement of the absorbance, no peak separation was performed even when another absorption spectrum overlapped with the maximum absorption spectrum.
ポリアクリル酸系重合体の吸光度測定は、以下の方法により吸光度[1040±20cm−1]及び吸光度[1650±130cm−1]を求め、吸光度比=(吸光度[1040±20cm−1]/吸光度[1650±130cm−1])を算出した。
具体的には80℃の温度下で80時間乾燥させた試料を取り出し、一回反射型ATR法(=微小表面部分析法)にて赤外吸収スペクトルを得た。
・測定装置:フーリエ変換赤外分光光度計 Nicolet iS10(Thermo SCIENTIFIC社製)および一回反射型水平状ATR Smart−iTR(Thermo SCIENTIFIC社製)
・ATRクリスタル:Diamond with ZnSe lens、角度42°
・測定法:一回ATR法
・測定波数領域:4,000cm−1~650cm−1
・測定深度の波数依存性:補正せず
・検出器:重水素化硫酸トリグリシン(DTGS)検出器およびKBrビームスプリッター
・分解能:4cm−1
・積算回数:16回(バックグランド測定時も同様)
・試験数:n=3
ATR法では、試料と高屈折率結晶の密着度合によって測定で得られる赤外吸収スペクトルの強度が変化するため、ATRアクセサリーの「Smart−iTR」で掛けられる最大荷重を掛けて密着度合をほぼ均一にして測定を行なった。以上の条件で得られた赤外線吸収スペクトルは、次のようにピーク処理をして吸光度[1040±20cm−1]及び吸光度[1650±130cm−1]を求め、吸光度比=(吸光度[1040±20cm−1]/吸光度[1650±130cm−1])を算出した。得られる吸光度[1040±20cm−1]は、波数1070±10cm−1と990±20cm−1との間を途中で赤外吸収スペクトルと交差しない最低吸光度位置で結んだ直線をベースラインとして、波数1040±20cm−1の赤外吸収スペクトルにおけるベースラインとの吸光度差(測定された吸光度−ベースラインの吸光度)の最大値を意味する。なお、この吸光度の測定では、最大吸収スペクトルで他の吸収スペクトルが重なっている場合でもピーク分離は実施していない。
得られる吸光度[1650±130cm−1]とは、波数1770±40cm−1と1490±20cm−1との間を途中で赤外吸収スペクトルと交差しない最低吸光度位置で結んだ直線をベースラインとして、波数1650±130cm−1の赤外吸収スペクトルにおけるベースラインとの吸光度差(測定された吸光度−ベースラインの吸光度)の最大値を意味する。なお、この吸光度の測定では、最大吸収スペクトルで他の吸収スペクトルが重なっている場合でもピーク分離は実施していない。 (FT-IR measurement)
In the measurement of the absorbance of the polyacrylic acid-based polymer, the absorbance [1040 ± 20 cm-1] and the absorbance [1650 ± 130 cm-1] are obtained by the following method, and the absorbance ratio = (absorbance [1040 ± 20 cm-1] / absorbance [ 1650 ± 130 cm-1] ).
Specifically, a sample dried at a temperature of 80 ° C. for 80 hours was taken out, and an infrared absorption spectrum was obtained by a single reflection ATR method (= micro surface analysis).
-Measuring apparatus: Fourier transform infrared spectrophotometer Nicolet iS10 (manufactured by Thermo SCIENTIFIC) and single reflection type horizontal ATR Smart-iTR (manufactured by Thermo SCIENTIFIC)
・ ATR crystal: Diamond with ZnSe lenses, angle 42 °
・ Measurement method: Single ATR method ・ Measurement wave number region: 4,000 cm -1 to 650 cm -1
-Wave number dependence of measurement depth: uncorrected-Detector: deuterated triglycine sulfate (DTGS) detector and KBr beam splitter-Resolution: 4 cm -1
・ Number of integration: 16 times (same for background measurement)
・ Number of tests: n = 3
In the ATR method, since the intensity of the infrared absorption spectrum obtained by the measurement changes depending on the degree of adhesion between the sample and the high refractive index crystal, the degree of adhesion is almost uniform by applying the maximum load applied by the "Smart-iTR" of the ATR accessory. Was measured. The infrared absorption spectrum obtained under the above conditions was subjected to a peak treatment as follows to obtain an absorbance [1040 ± 20 cm-1] and an absorbance [1650 ± 130 cm-1], and an absorbance ratio = (absorbance [1040 ± 20 cm-1]) -1] / absorbance [1650 ± 130 cm-1] ) was calculated. The obtained absorbance [1040 ± 20 cm −1 ] is calculated using the straight line connecting the wave numbers of 1070 ± 10 cm −1 and 990 ± 20 cm −1 at the lowest absorbance position that does not intersect with the infrared absorption spectrum in the middle as the baseline. It means the maximum value of the absorbance difference from the baseline in the infrared absorption spectrum at 1040 ± 20 cm −1 (measured absorbance−absorbance at the baseline). In the measurement of the absorbance, no peak separation was performed even when another absorption spectrum overlapped with the maximum absorption spectrum.
The obtained absorbance [1650 ± 130 cm −1 ] is defined as a straight line connecting the wave number between 1770 ± 40 cm −1 and 1490 ± 20 cm −1 at the lowest absorbance position that does not intersect with the infrared absorption spectrum on the way. It means the maximum value of the absorbance difference from the baseline in the infrared absorption spectrum at a wave number of 1650 ± 130 cm −1 (measured absorbance−absorbance at the baseline). In the measurement of the absorbance, no peak separation was performed even when another absorption spectrum overlapped with the maximum absorption spectrum.
<実施例1a>
単官能性モノマーとしてアクリル酸(東亞合成社製)20質量部、多官能性モノマーとしてN,N’,N’’−トリアクリロイルジエチレントリアミン(富士フィルム社製、FAM301、融点89℃)0.34質量部、イオン交換水80質量部を容器に入れ攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.20質量部を加え、マクネチックスターラー(アズワン社製、RS−6AR)を用いて攪拌することでハイドロゲル前駆体を調製した。剥離性PETフィルム上に2mm厚のシリコン枠を置き、枠内にハイドロゲル前駆体を流し込んだ後、ハイドロゲル前駆体上に剥離性PETフィルムを載せた。その後、小型UV重合機(JATEC社製、J−cure1500、メタルハライドランプ型名MJ−1500L)にてコンベアー速度0.4m/分、ワーク間距離150mmの条件でエネルギー7,000mJ/cm2の紫外線を照射する工程を3回行うことで、2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルにアルカリ溶液浸漬後の突刺試験を行った。
また、直流分極測定及び充放電試験に用いたハイドロゲルは、以下の手順で作製した。2枚の剥離性PETフィルムの間に支持材として厚みが103μm、目付けが45g/m2のポリオレフィン不織布(日本バイリーン社製 OA−18738P)を配置し、前述のハイドロゲル前駆体を流し込んだ後、ローラーで厚みが200μmとなるように調整した後、UVランプシステム(ヘレウス社製、装置名:Light Hammer 10)を用いて、照射条件65mW/cm2、/7,000mJ/cm2の紫外線を照射することで、200μm厚のハイドロゲルを作製した。作製したハイドロゲルの膨潤特性評価、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 1a>
20 parts by mass of acrylic acid (manufactured by Toagosei Co., Ltd.) as a monofunctional monomer, and 0.34 parts by mass of N, N ′, N ″ -triacryloyldiethylenetriamine (manufactured by Fuji Film Co., FAM301, melting point 89 ° C.) as a polyfunctional monomer And 80 parts by mass of ion-exchanged water in a container and stirred. To this solution was added 0.20 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred using a magnetic stirrer (RS-6AR, manufactured by As One Corporation) to prepare a hydrogel precursor. did. A silicon frame having a thickness of 2 mm was placed on the peelable PET film, and the hydrogel precursor was poured into the frame. Then, the peelable PET film was placed on the hydrogel precursor. Then, using a small UV polymerization machine (manufactured by JATEC, J-cure 1500, metal halide lamp model name MJ-1500L), ultraviolet rays having an energy of 7,000 mJ / cm 2 were applied under the conditions of a conveyor speed of 0.4 m / min and a work-to-work distance of 150 mm. By performing the irradiation step three times, a sheet-shaped hydrogel having a thickness of 2 mm was produced. A piercing test after immersion in the prepared hydrogel with an alkaline solution was performed.
The hydrogel used for the DC polarization measurement and the charge / discharge test was prepared by the following procedure. A polyolefin nonwoven fabric having a thickness of 103 μm and a basis weight of 45 g / m 2 (OA-1887P, manufactured by Nippon Vilene Co., Ltd.) was placed as a support between the two releasable PET films, and after pouring the above-mentioned hydrogel precursor, After adjusting to a thickness of 200 μm with a roller, irradiation with UV light of irradiation conditions of 65 mW / cm 2 and / 7,000 mJ / cm 2 was performed using a UV lamp system (product name: Light Hammer 10, manufactured by Heraeus). Thus, a hydrogel having a thickness of 200 μm was produced. The swelling characteristics of the prepared hydrogel, a direct current polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
単官能性モノマーとしてアクリル酸(東亞合成社製)20質量部、多官能性モノマーとしてN,N’,N’’−トリアクリロイルジエチレントリアミン(富士フィルム社製、FAM301、融点89℃)0.34質量部、イオン交換水80質量部を容器に入れ攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.20質量部を加え、マクネチックスターラー(アズワン社製、RS−6AR)を用いて攪拌することでハイドロゲル前駆体を調製した。剥離性PETフィルム上に2mm厚のシリコン枠を置き、枠内にハイドロゲル前駆体を流し込んだ後、ハイドロゲル前駆体上に剥離性PETフィルムを載せた。その後、小型UV重合機(JATEC社製、J−cure1500、メタルハライドランプ型名MJ−1500L)にてコンベアー速度0.4m/分、ワーク間距離150mmの条件でエネルギー7,000mJ/cm2の紫外線を照射する工程を3回行うことで、2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルにアルカリ溶液浸漬後の突刺試験を行った。
また、直流分極測定及び充放電試験に用いたハイドロゲルは、以下の手順で作製した。2枚の剥離性PETフィルムの間に支持材として厚みが103μm、目付けが45g/m2のポリオレフィン不織布(日本バイリーン社製 OA−18738P)を配置し、前述のハイドロゲル前駆体を流し込んだ後、ローラーで厚みが200μmとなるように調整した後、UVランプシステム(ヘレウス社製、装置名:Light Hammer 10)を用いて、照射条件65mW/cm2、/7,000mJ/cm2の紫外線を照射することで、200μm厚のハイドロゲルを作製した。作製したハイドロゲルの膨潤特性評価、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 1a>
20 parts by mass of acrylic acid (manufactured by Toagosei Co., Ltd.) as a monofunctional monomer, and 0.34 parts by mass of N, N ′, N ″ -triacryloyldiethylenetriamine (manufactured by Fuji Film Co., FAM301, melting point 89 ° C.) as a polyfunctional monomer And 80 parts by mass of ion-exchanged water in a container and stirred. To this solution was added 0.20 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred using a magnetic stirrer (RS-6AR, manufactured by As One Corporation) to prepare a hydrogel precursor. did. A silicon frame having a thickness of 2 mm was placed on the peelable PET film, and the hydrogel precursor was poured into the frame. Then, the peelable PET film was placed on the hydrogel precursor. Then, using a small UV polymerization machine (manufactured by JATEC, J-cure 1500, metal halide lamp model name MJ-1500L), ultraviolet rays having an energy of 7,000 mJ / cm 2 were applied under the conditions of a conveyor speed of 0.4 m / min and a work-to-work distance of 150 mm. By performing the irradiation step three times, a sheet-shaped hydrogel having a thickness of 2 mm was produced. A piercing test after immersion in the prepared hydrogel with an alkaline solution was performed.
The hydrogel used for the DC polarization measurement and the charge / discharge test was prepared by the following procedure. A polyolefin nonwoven fabric having a thickness of 103 μm and a basis weight of 45 g / m 2 (OA-1887P, manufactured by Nippon Vilene Co., Ltd.) was placed as a support between the two releasable PET films, and after pouring the above-mentioned hydrogel precursor, After adjusting to a thickness of 200 μm with a roller, irradiation with UV light of irradiation conditions of 65 mW / cm 2 and / 7,000 mJ / cm 2 was performed using a UV lamp system (product name: Light Hammer 10, manufactured by Heraeus). Thus, a hydrogel having a thickness of 200 μm was produced. The swelling characteristics of the prepared hydrogel, a direct current polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
<実施例2a>
多官能性モノマーをN,N’−{[(2−アクリルアミド−2−[(3−アクリルアミドプロポキシ)メチル]プロパン−1,3−ジイル)ビス(オキシ)]ビス(プロパン−1,3−ジイル)}ジアクリルアミド(富士フィルム社製、FAM401、融点107℃)0.66質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 2a>
The polyfunctional monomer was N, N ′-{[(2-acrylamido-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (oxy)] bis (propane-1,3-diyl A) Hydrogel was obtained in the same manner as in Example 1a, except that diacrylamide (FAM401, manufactured by Fuji Film Co., melting point 107 ° C.) was changed to 0.66 parts by mass. The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
多官能性モノマーをN,N’−{[(2−アクリルアミド−2−[(3−アクリルアミドプロポキシ)メチル]プロパン−1,3−ジイル)ビス(オキシ)]ビス(プロパン−1,3−ジイル)}ジアクリルアミド(富士フィルム社製、FAM401、融点107℃)0.66質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 2a>
The polyfunctional monomer was N, N ′-{[(2-acrylamido-2-[(3-acrylamidopropoxy) methyl] propane-1,3-diyl) bis (oxy)] bis (propane-1,3-diyl A) Hydrogel was obtained in the same manner as in Example 1a, except that diacrylamide (FAM401, manufactured by Fuji Film Co., melting point 107 ° C.) was changed to 0.66 parts by mass. The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
<実施例3a>
多官能性モノマーをN,N’,N’’,N’’’−テトラアクリロイルトリエチレンテトラミン(富士フィルム社製、FAM402、融点110℃)0.47質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 3a>
Except that the polyfunctional monomer was changed to 0.47 parts by mass of N, N ′, N ″, N ′ ″-tetraacryloyltriethylenetetramine (FAM402, FAM402, melting point 110 ° C.) A hydrogel was obtained in the same manner as in 1a. The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
多官能性モノマーをN,N’,N’’,N’’’−テトラアクリロイルトリエチレンテトラミン(富士フィルム社製、FAM402、融点110℃)0.47質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 3a>
Except that the polyfunctional monomer was changed to 0.47 parts by mass of N, N ′, N ″, N ′ ″-tetraacryloyltriethylenetetramine (FAM402, FAM402, melting point 110 ° C.) A hydrogel was obtained in the same manner as in 1a. The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
<実施例4a>
単官能性モノマーを2−アクリルアミド−2−メチルプロパンスルホン酸(MCCユニッテック社製、AMPS)に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 4a>
A hydrogel was obtained in the same manner as in Example 1a, except that the monofunctional monomer was changed to 2-acrylamido-2-methylpropanesulfonic acid (AMPS, manufactured by MCC Unitech). The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
単官能性モノマーを2−アクリルアミド−2−メチルプロパンスルホン酸(MCCユニッテック社製、AMPS)に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 4a>
A hydrogel was obtained in the same manner as in Example 1a, except that the monofunctional monomer was changed to 2-acrylamido-2-methylpropanesulfonic acid (AMPS, manufactured by MCC Unitech). The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
<実施例5a>
単官能性モノマーを2−アクリルアミド−2−メチルプロパンスルホン酸に変更したこと以外は、実施例2aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 5a>
A hydrogel was obtained in the same manner as in Example 2a, except that the monofunctional monomer was changed to 2-acrylamido-2-methylpropanesulfonic acid. The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
単官能性モノマーを2−アクリルアミド−2−メチルプロパンスルホン酸に変更したこと以外は、実施例2aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験、充放電試験及び電解液浸漬後の外観評価を行った。 <Example 5a>
A hydrogel was obtained in the same manner as in Example 2a, except that the monofunctional monomer was changed to 2-acrylamido-2-methylpropanesulfonic acid. The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, a charge / discharge test, and an appearance evaluation after immersion in an electrolyte were performed.
<比較例1a>
多官能性モノマーをジビニルベンゼンスルホン酸ナトリウム(東ソー有機化学社製、DVBS)0.3質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験及び充放電試験を行った。 <Comparative Example 1a>
A hydrogel was obtained in the same manner as in Example 1a, except that the polyfunctional monomer was changed to 0.3 parts by mass of sodium divinylbenzenesulfonate (DVBS, manufactured by Tosoh Organic Chemicals, Inc.). The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, and a charge / discharge test were performed.
多官能性モノマーをジビニルベンゼンスルホン酸ナトリウム(東ソー有機化学社製、DVBS)0.3質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験及び充放電試験を行った。 <Comparative Example 1a>
A hydrogel was obtained in the same manner as in Example 1a, except that the polyfunctional monomer was changed to 0.3 parts by mass of sodium divinylbenzenesulfonate (DVBS, manufactured by Tosoh Organic Chemicals, Inc.). The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, and a charge / discharge test were performed.
<比較例2a>
多官能性モノマーをジビニルベンゼンスルホン酸ナトリウム(東ソー有機化学社製)0.6質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験及び充放電試験を行った。 <Comparative Example 2a>
A hydrogel was obtained in the same manner as in Example 1a, except that the polyfunctional monomer was changed to 0.6 parts by mass of sodium divinylbenzene sulfonate (manufactured by Tosoh Organic Chemicals, Inc.). The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, and a charge / discharge test were performed.
多官能性モノマーをジビニルベンゼンスルホン酸ナトリウム(東ソー有機化学社製)0.6質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験及び充放電試験を行った。 <Comparative Example 2a>
A hydrogel was obtained in the same manner as in Example 1a, except that the polyfunctional monomer was changed to 0.6 parts by mass of sodium divinylbenzene sulfonate (manufactured by Tosoh Organic Chemicals, Inc.). The swelling characteristics of the obtained hydrogel were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, and a charge / discharge test were performed.
<比較例3a>
多官能性モノマーを2個のエチレン性不飽和基及びエステル結合を有するA−200(新中村化学工業社製 ポリエチレングリコール#200ジアクリレート)0.3質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルはアルカリ溶液浸漬時に液状化したため、各種物性を測定できなかった。 <Comparative Example 3a>
Example 1a except that the polyfunctional monomer was changed to 0.3 parts by mass of A-200 (polyethylene glycol # 200 diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) having two ethylenically unsaturated groups and an ester bond. A hydrogel was obtained in the same manner as described above. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
多官能性モノマーを2個のエチレン性不飽和基及びエステル結合を有するA−200(新中村化学工業社製 ポリエチレングリコール#200ジアクリレート)0.3質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルはアルカリ溶液浸漬時に液状化したため、各種物性を測定できなかった。 <Comparative Example 3a>
Example 1a except that the polyfunctional monomer was changed to 0.3 parts by mass of A-200 (polyethylene glycol # 200 diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) having two ethylenically unsaturated groups and an ester bond. A hydrogel was obtained in the same manner as described above. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
<比較例4a>
多官能性モノマーを2個のエチレン性不飽和基及びエステル結合を有するA−400(新中村化学工業社製 ポリエチレングリコール#400ジアクリレート)0.4質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルはアルカリ溶液浸漬時に液状化したため、各種物性を測定できなかった。 <Comparative Example 4a>
Example 1a except that the polyfunctional monomer was changed to 0.4 parts by mass of A-400 (polyethylene glycol # 400 diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) having two ethylenically unsaturated groups and an ester bond. A hydrogel was obtained in the same manner as described above. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
多官能性モノマーを2個のエチレン性不飽和基及びエステル結合を有するA−400(新中村化学工業社製 ポリエチレングリコール#400ジアクリレート)0.4質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルはアルカリ溶液浸漬時に液状化したため、各種物性を測定できなかった。 <Comparative Example 4a>
Example 1a except that the polyfunctional monomer was changed to 0.4 parts by mass of A-400 (polyethylene glycol # 400 diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) having two ethylenically unsaturated groups and an ester bond. A hydrogel was obtained in the same manner as described above. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
<比較例5a>
多官能性モノマーを3個のエチレン性不飽和基及びエステル結合を有するA−GLY−9EA(新中村化学工業社製 Ethoxylated glycerine triacrylate)0.45質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルはアルカリ溶液浸漬時に液状化したため、各種物性を測定できなかった。 <Comparative Example 5a>
Example 1a except that the polyfunctional monomer was changed to 0.45 parts by mass of A-GLY-9EA having three ethylenically unsaturated groups and an ester bond (Ethoxylated glycerine triacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.). A hydrogel was obtained in the same manner. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
多官能性モノマーを3個のエチレン性不飽和基及びエステル結合を有するA−GLY−9EA(新中村化学工業社製 Ethoxylated glycerine triacrylate)0.45質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルはアルカリ溶液浸漬時に液状化したため、各種物性を測定できなかった。 <Comparative Example 5a>
Example 1a except that the polyfunctional monomer was changed to 0.45 parts by mass of A-GLY-9EA having three ethylenically unsaturated groups and an ester bond (Ethoxylated glycerine triacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.). A hydrogel was obtained in the same manner. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
<比較例6a>
多官能性モノマーを4個のエチレン性不飽和基及びエステル結合を有するA−TMMT(新中村化学工業社製 ペンタエリスリトールテトラアクリレート)0.3質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルはアルカリ溶液浸漬時に液状化したため、各種物性を測定できなかった。 <Comparative Example 6a>
Same as Example 1a except that the polyfunctional monomer was changed to 0.3 parts by mass of A-TMMT (pentaerythritol tetraacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) having four ethylenically unsaturated groups and an ester bond. To obtain a hydrogel. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
多官能性モノマーを4個のエチレン性不飽和基及びエステル結合を有するA−TMMT(新中村化学工業社製 ペンタエリスリトールテトラアクリレート)0.3質量部に変更したこと以外は、実施例1aと同様にしてハイドロゲルを得た。得られたハイドロゲルはアルカリ溶液浸漬時に液状化したため、各種物性を測定できなかった。 <Comparative Example 6a>
Same as Example 1a except that the polyfunctional monomer was changed to 0.3 parts by mass of A-TMMT (pentaerythritol tetraacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.) having four ethylenically unsaturated groups and an ester bond. To obtain a hydrogel. Since the obtained hydrogel was liquefied when immersed in an alkaline solution, various physical properties could not be measured.
<比較例7a>
日本国特開2015−95286号公報に記載の内容に従い、層状複水酸化物としてのハイドロタルサイト2.5gに対し、60質量%濃度のポリテトラフルオロエチレンエマルション水溶液(ダイキン工業社製 ポリフロン PTFE D−210C)5g、及び20質量%濃度のポリエチレンイミン(日本触媒社製 EPOMIN SP200)水溶液2.5gを混錬し、圧延することで、200μmのシートを得た。得られたシートの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験及び充放電試験を行った。 <Comparative Example 7a>
According to the contents described in Japanese Patent Application Laid-Open No. 2015-95286, a polytetrafluoroethylene emulsion aqueous solution having a concentration of 60% by mass (Polyflon PTFE D made by Daikin Industries, Ltd.) is used for 2.5 g of hydrotalcite as a layered double hydroxide. -210C) 5 g, and 2.5 g of a 20% by mass aqueous solution of polyethyleneimine (EPOMIN SP200 manufactured by Nippon Shokubai Co., Ltd.) were kneaded and rolled to obtain a 200 μm sheet. The swelling characteristics of the obtained sheet were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, and a charge / discharge test were performed.
日本国特開2015−95286号公報に記載の内容に従い、層状複水酸化物としてのハイドロタルサイト2.5gに対し、60質量%濃度のポリテトラフルオロエチレンエマルション水溶液(ダイキン工業社製 ポリフロン PTFE D−210C)5g、及び20質量%濃度のポリエチレンイミン(日本触媒社製 EPOMIN SP200)水溶液2.5gを混錬し、圧延することで、200μmのシートを得た。得られたシートの膨潤特性評価、アルカリ溶液浸漬後の突刺試験、直流分極試験及び充放電試験を行った。 <Comparative Example 7a>
According to the contents described in Japanese Patent Application Laid-Open No. 2015-95286, a polytetrafluoroethylene emulsion aqueous solution having a concentration of 60% by mass (Polyflon PTFE D made by Daikin Industries, Ltd.) is used for 2.5 g of hydrotalcite as a layered double hydroxide. -210C) 5 g, and 2.5 g of a 20% by mass aqueous solution of polyethyleneimine (EPOMIN SP200 manufactured by Nippon Shokubai Co., Ltd.) were kneaded and rolled to obtain a 200 μm sheet. The swelling characteristics of the obtained sheet were evaluated, a piercing test after immersion in an alkaline solution, a DC polarization test, and a charge / discharge test were performed.
実施例1a~5a及び比較例1a~7aの原料種及びその使用割合を表1に、実施例1a~5a及び比較例1a~7aの結果を表2に示す。
Table 1 shows the raw material species of Examples 1a to 5a and Comparative examples 1a to 7a and their use ratios, and Table 2 shows the results of Examples 1a to 5a and Comparative examples 1a to 7a.
表2から、エステル結合を有さず、アミド基及び3~6個のエチレン性不飽和基を有する多官能性モノマーを共重合体の構成成分として用いることで、通電時間が長く、充放電サイクル特性に優れるハイドロゲル、即ちデンドライトの成長を抑制する性能に優れたハイドロゲルを提供できることが分かる。
From Table 2, it can be seen that the use of a polyfunctional monomer having no amide group and 3 to 6 ethylenically unsaturated groups without an ester bond as a component of the copolymer results in a long energization time and a high charge-discharge cycle. It can be seen that a hydrogel having excellent properties, that is, a hydrogel having excellent performance of suppressing dendrite growth can be provided.
<比較例8a>
多官能性モノマーをジビニルベンゼンスルホン酸ナトリウム(東ソー有機化学社製)0.6質量部、支持材を80μm厚のポリプロピレン−ポリエチレン系不織布(シンワ社製 9515F)に変更したこと以外は、実施例1aと同様にして200μm厚のハイドロゲルを得た。得られたハイドロゲルの電解液浸漬後の外観評価を行った。結果を、実施例1a~5aの結果と合わせて表3に示す。なお、外観評価は、以下の反り巻きの評価とした。 <Comparative Example 8a>
Example 1a Except that the polyfunctional monomer was changed to 0.6 parts by mass of sodium divinylbenzenesulfonate (manufactured by Tosoh Organic Chemicals) and the support was changed to a polypropylene-polyethylene nonwoven fabric (9515F manufactured by Shinwa) having a thickness of 80 μm. A hydrogel having a thickness of 200 μm was obtained in the same manner as described above. The appearance of the obtained hydrogel after immersion in the electrolytic solution was evaluated. Table 3 shows the results together with the results of Examples 1a to 5a. In addition, the appearance evaluation was the evaluation of the following warp winding.
多官能性モノマーをジビニルベンゼンスルホン酸ナトリウム(東ソー有機化学社製)0.6質量部、支持材を80μm厚のポリプロピレン−ポリエチレン系不織布(シンワ社製 9515F)に変更したこと以外は、実施例1aと同様にして200μm厚のハイドロゲルを得た。得られたハイドロゲルの電解液浸漬後の外観評価を行った。結果を、実施例1a~5aの結果と合わせて表3に示す。なお、外観評価は、以下の反り巻きの評価とした。 <Comparative Example 8a>
Example 1a Except that the polyfunctional monomer was changed to 0.6 parts by mass of sodium divinylbenzenesulfonate (manufactured by Tosoh Organic Chemicals) and the support was changed to a polypropylene-polyethylene nonwoven fabric (9515F manufactured by Shinwa) having a thickness of 80 μm. A hydrogel having a thickness of 200 μm was obtained in the same manner as described above. The appearance of the obtained hydrogel after immersion in the electrolytic solution was evaluated. Table 3 shows the results together with the results of Examples 1a to 5a. In addition, the appearance evaluation was the evaluation of the following warp winding.
(反り巻きの評価)
得られたハイドロゲルを30mm角に切り取った。切り取ったハイドロゲルを25℃の温度下で100mLの4MのKOH水溶液に3日間浸漬した。浸漬後のハイドロゲルの隣り合う頂点の距離を計測し、頂点間距離Dを求めた。頂点間距離Dを30mmで除したときに、その値が0.75未満である場合、電解液浸漬後のハイドロゲルが反っている或いは巻いていることを意味するため、×と評価した。一方で、その値が0.75以上の場合、電解液浸漬後にハイドロゲルのシートは形状的に変化していないことを意味するため、○と評価した。 (Evaluation of warp winding)
The obtained hydrogel was cut into a 30 mm square. The cut hydrogel was immersed in 100 mL of a 4 M aqueous KOH solution at a temperature of 25 ° C. for 3 days. The distance between adjacent vertices of the hydrogel after immersion was measured, and the distance D between vertices was determined. When the distance D between the vertices was divided by 30 mm and the value was less than 0.75, it means that the hydrogel after immersion in the electrolytic solution was warped or wound, and was evaluated as x. On the other hand, when the value was 0.75 or more, it means that the hydrogel sheet did not change in shape after immersion in the electrolytic solution, and was evaluated as ○.
得られたハイドロゲルを30mm角に切り取った。切り取ったハイドロゲルを25℃の温度下で100mLの4MのKOH水溶液に3日間浸漬した。浸漬後のハイドロゲルの隣り合う頂点の距離を計測し、頂点間距離Dを求めた。頂点間距離Dを30mmで除したときに、その値が0.75未満である場合、電解液浸漬後のハイドロゲルが反っている或いは巻いていることを意味するため、×と評価した。一方で、その値が0.75以上の場合、電解液浸漬後にハイドロゲルのシートは形状的に変化していないことを意味するため、○と評価した。 (Evaluation of warp winding)
The obtained hydrogel was cut into a 30 mm square. The cut hydrogel was immersed in 100 mL of a 4 M aqueous KOH solution at a temperature of 25 ° C. for 3 days. The distance between adjacent vertices of the hydrogel after immersion was measured, and the distance D between vertices was determined. When the distance D between the vertices was divided by 30 mm and the value was less than 0.75, it means that the hydrogel after immersion in the electrolytic solution was warped or wound, and was evaluated as x. On the other hand, when the value was 0.75 or more, it means that the hydrogel sheet did not change in shape after immersion in the electrolytic solution, and was evaluated as ○.
表3から、実施例1a~5aのハイドロゲルは、反りや巻きが生じない、取扱い性の良好なシートであることが分かる。
From Table 3, it can be seen that the hydrogels of Examples 1a to 5a are sheets that do not warp or roll and have good handleability.
<実施例1b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を25質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。剥離性PETフィルム上に2mm厚のシリコン枠を置き、枠内にハイドロゲル前駆体を流し込んだ後、ハイドロゲル前駆体上に剥離性PETフィルムを載せた。その後、小型UV重合機(JATEC社製、J−cure1500、メタルハライドランプ型名MJ−1500L)にてコンベアー速度0.4m/分、ワーク間距離150mmの条件でエネルギー7,000mJ/cm2の紫外線を照射する工程を3回行うことで、2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 1b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 25 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A silicon frame having a thickness of 2 mm was placed on the peelable PET film, and the hydrogel precursor was poured into the frame. Then, the peelable PET film was placed on the hydrogel precursor. Then, using a small UV polymerization machine (manufactured by JATEC, J-cure 1500, metal halide lamp model name MJ-1500L), ultraviolet rays having an energy of 7,000 mJ / cm 2 were applied under the conditions of a conveyor speed of 0.4 m / min and a work-to-work distance of 150 mm. By performing the irradiation step three times, a sheet-shaped hydrogel having a thickness of 2 mm was produced. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を25質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。剥離性PETフィルム上に2mm厚のシリコン枠を置き、枠内にハイドロゲル前駆体を流し込んだ後、ハイドロゲル前駆体上に剥離性PETフィルムを載せた。その後、小型UV重合機(JATEC社製、J−cure1500、メタルハライドランプ型名MJ−1500L)にてコンベアー速度0.4m/分、ワーク間距離150mmの条件でエネルギー7,000mJ/cm2の紫外線を照射する工程を3回行うことで、2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 1b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 25 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A silicon frame having a thickness of 2 mm was placed on the peelable PET film, and the hydrogel precursor was poured into the frame. Then, the peelable PET film was placed on the hydrogel precursor. Then, using a small UV polymerization machine (manufactured by JATEC, J-cure 1500, metal halide lamp model name MJ-1500L), ultraviolet rays having an energy of 7,000 mJ / cm 2 were applied under the conditions of a conveyor speed of 0.4 m / min and a work-to-work distance of 150 mm. By performing the irradiation step three times, a sheet-shaped hydrogel having a thickness of 2 mm was produced. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例2b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水67.1質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を12.5質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 2b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 67.1 parts by mass of water was put in a container and stirred. Further, 12.5 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水67.1質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を12.5質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 2b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 67.1 parts by mass of water was put in a container and stirred. Further, 12.5 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例3b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、ポリアクリル酸(和光純薬社製、ポリアクリル酸、重量平均分子量:25,000)の20質量%水溶液を25質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 3b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 25 parts by mass of a 20% by mass aqueous solution of polyacrylic acid (manufactured by Wako Pure Chemical Industries, polyacrylic acid, weight average molecular weight: 25,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、ポリアクリル酸(和光純薬社製、ポリアクリル酸、重量平均分子量:25,000)の20質量%水溶液を25質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 3b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 25 parts by mass of a 20% by mass aqueous solution of polyacrylic acid (manufactured by Wako Pure Chemical Industries, polyacrylic acid, weight average molecular weight: 25,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例4b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水67.1質量部を容器に入れ攪拌した。更に、ポリアクリル酸(和光純薬社製、ポリアクリル酸、重量平均分子量:25,000)の20質量%水溶液を12.5質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 4b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 67.1 parts by mass of water was put in a container and stirred. Further, 12.5 parts by mass of a 20% by mass aqueous solution of polyacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd., polyacrylic acid, weight average molecular weight: 25,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水67.1質量部を容器に入れ攪拌した。更に、ポリアクリル酸(和光純薬社製、ポリアクリル酸、重量平均分子量:25,000)の20質量%水溶液を12.5質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 4b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 67.1 parts by mass of water was put in a container and stirred. Further, 12.5 parts by mass of a 20% by mass aqueous solution of polyacrylic acid (manufactured by Wako Pure Chemical Industries, Ltd., polyacrylic acid, weight average molecular weight: 25,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例5b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、ポリアクリル酸(和光純薬社製、ポリアクリル酸、重量平均分子量:1,000,000)の5質量%水溶液を80質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 5b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), polyacryl 80 parts by mass of a 5% by mass aqueous solution of an acid (manufactured by Wako Pure Chemical Industries, polyacrylic acid, weight average molecular weight: 1,000,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、ポリアクリル酸(和光純薬社製、ポリアクリル酸、重量平均分子量:1,000,000)の5質量%水溶液を80質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 5b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), polyacryl 80 parts by mass of a 5% by mass aqueous solution of an acid (manufactured by Wako Pure Chemical Industries, polyacrylic acid, weight average molecular weight: 1,000,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例6b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水39.6質量部、ポリアクリル酸(和光純薬社製、ポリアクリル酸、重量平均分子量:1,000,000)の5質量%水溶液を40質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 6b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 39.6 parts by mass of water and 40 parts by mass of a 5% by mass aqueous solution of polyacrylic acid (manufactured by Wako Pure Chemical Industries, polyacrylic acid, weight average molecular weight: 1,000,000) were added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水39.6質量部、ポリアクリル酸(和光純薬社製、ポリアクリル酸、重量平均分子量:1,000,000)の5質量%水溶液を40質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 6b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 39.6 parts by mass of water and 40 parts by mass of a 5% by mass aqueous solution of polyacrylic acid (manufactured by Wako Pure Chemical Industries, polyacrylic acid, weight average molecular weight: 1,000,000) were added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例7b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)15質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を25質量部加え、攪拌した後、アクリル酸(日本触媒社製)5質量部を加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 7b>
15 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Furthermore, 25 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred, and then, 5 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.) Was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)15質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を25質量部加え、攪拌した後、アクリル酸(日本触媒社製)5質量部を加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 7b>
15 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Furthermore, 25 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred, and then, 5 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.) Was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例8b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水29.6質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を50質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 8b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 29.6 parts by mass of water was put in a container and stirred. Further, 50 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水29.6質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を50質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 8b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 29.6 parts by mass of water was put in a container and stirred. Further, 50 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例9b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、アクアリックDL453(日本触媒社製、ポリアクリル酸Na、重量平均分子量:50,000)の20質量%水溶液を25質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 9b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 25 parts by mass of a 20% by mass aqueous solution of Aqualic DL453 (manufactured by Nippon Shokubai Co., Ltd., sodium polyacrylate, weight average molecular weight: 50,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、アクアリックDL453(日本触媒社製、ポリアクリル酸Na、重量平均分子量:50,000)の20質量%水溶液を25質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 9b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 25 parts by mass of a 20% by mass aqueous solution of Aqualic DL453 (manufactured by Nippon Shokubai Co., Ltd., sodium polyacrylate, weight average molecular weight: 50,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例10b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水68.7質量部を容器に入れ攪拌した。更に、アクアリックGH001(日本触媒社製、アクリル酸スルホン酸系モノマー共重合体の46質量%水溶液、重量平均分子量:11,000)を10.9質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 10b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 68.7 parts by mass of water was put in a container and stirred. Further, 10.9 parts by mass of Aqualic GH001 (46 mass% aqueous solution of acrylic acid sulfonic acid-based monomer copolymer, weight average molecular weight: 11,000, manufactured by Nippon Shokubai Co., Ltd.) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水68.7質量部を容器に入れ攪拌した。更に、アクアリックGH001(日本触媒社製、アクリル酸スルホン酸系モノマー共重合体の46質量%水溶液、重量平均分子量:11,000)を10.9質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 10b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 68.7 parts by mass of water was put in a container and stirred. Further, 10.9 parts by mass of Aqualic GH001 (46 mass% aqueous solution of acrylic acid sulfonic acid-based monomer copolymer, weight average molecular weight: 11,000, manufactured by Nippon Shokubai Co., Ltd.) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例11b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、アクアリックGH003(日本触媒社製、アクリル酸スルホン酸系モノマー共重合体の46質量%水溶液、重量平均分子量:11,000)を10.9質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例10bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 11b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 10.9 parts by mass of Aqualic GH003 (46% by mass aqueous solution of acrylic acid sulfonic acid-based monomer copolymer, weight average molecular weight: 11,000, manufactured by Nippon Shokubai Co., Ltd.) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 10b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、アクアリックGH003(日本触媒社製、アクリル酸スルホン酸系モノマー共重合体の46質量%水溶液、重量平均分子量:11,000)を10.9質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例10bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 11b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 10.9 parts by mass of Aqualic GH003 (46% by mass aqueous solution of acrylic acid sulfonic acid-based monomer copolymer, weight average molecular weight: 11,000, manufactured by Nippon Shokubai Co., Ltd.) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 10b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例12b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、アクアリックGL234(日本触媒社製、アクリル酸スルホン酸系モノマー共重合体Naの46質量%水溶液、重量平均分子量:140,000)を10.9質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例10bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 12b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 10.9 parts by mass of Aqualic GL234 (46 mass% aqueous solution of acrylic acid sulfonic acid-based monomer copolymer Na, manufactured by Nippon Shokubai Co., Ltd., weight average molecular weight: 140,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 10b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、アクアリックGL234(日本触媒社製、アクリル酸スルホン酸系モノマー共重合体Naの46質量%水溶液、重量平均分子量:140,000)を10.9質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例10bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 12b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 10.9 parts by mass of Aqualic GL234 (46 mass% aqueous solution of acrylic acid sulfonic acid-based monomer copolymer Na, manufactured by Nippon Shokubai Co., Ltd., weight average molecular weight: 140,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 10b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<実施例13b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、アクアリックGL366(日本触媒社製、アクリル酸スルホン酸系モノマー共重合体Naの46質量%水溶液、重量平均分子量:6,000)を10.9質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例10bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 13b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 10.9 parts by mass of Aqualic GL366 (manufactured by Nippon Shokubai Co., Ltd., 46 mass% aqueous solution of acrylic acid sulfonic acid-based monomer copolymer Na, weight average molecular weight: 6,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 10b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、アクアリックGL366(日本触媒社製、アクリル酸スルホン酸系モノマー共重合体Naの46質量%水溶液、重量平均分子量:6,000)を10.9質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例10bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Example 13b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 10.9 parts by mass of Aqualic GL366 (manufactured by Nippon Shokubai Co., Ltd., 46 mass% aqueous solution of acrylic acid sulfonic acid-based monomer copolymer Na, weight average molecular weight: 6,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 10b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<比較例1b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水79.6質量部を容器に入れ攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.1質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 1b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 79.6 parts by mass of water was put in a container and stirred. To this solution was added 0.1 part by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水79.6質量部を容器に入れ攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.1質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 1b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 79.6 parts by mass of water was put in a container and stirred. To this solution was added 0.1 part by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<比較例2b>
アクリル酸(日本触媒社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水79.5質量部を容器に入れ攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.20質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 2b>
20 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), and 79.5 parts by mass of ion-exchanged water were put in a container and stirred. To this solution was added 0.20 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
アクリル酸(日本触媒社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水79.5質量部を容器に入れ攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.20質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 2b>
20 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), and 79.5 parts by mass of ion-exchanged water were put in a container and stirred. To this solution was added 0.20 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<比較例3b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)5質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水79.5質量部を容器に入れ攪拌した。更にアクリル酸(日本触媒社製)15質量部を加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.2質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 3b>
5 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 79.5 parts by mass of water was put in a container and stirred. Further, 15 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.) was added and stirred. To this solution was added 0.2 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)5質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水79.5質量部を容器に入れ攪拌した。更にアクリル酸(日本触媒社製)15質量部を加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.2質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 3b>
5 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 79.5 parts by mass of water was put in a container and stirred. Further, 15 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.) was added and stirred. To this solution was added 0.2 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<比較例4b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)15質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水79.4質量部を容器に入れ攪拌した。更にアクリル酸(日本触媒社製)5質量部を加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.1質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 4b>
15 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 79.4 parts by mass of water was put in a container and stirred. Further, 5 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.) was added and stirred. To this solution was added 0.1 part by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)15質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水79.4質量部を容器に入れ攪拌した。更にアクリル酸(日本触媒社製)5質量部を加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.1質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 4b>
15 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 79.4 parts by mass of water was put in a container and stirred. Further, 5 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.) was added and stirred. To this solution was added 0.1 part by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<比較例5b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)10質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を50質量部加え、攪拌した後、アクリル酸(日本触媒社製)10質量部を加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 5b>
10 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 50 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight-average molecular weight: 20,000) was added, and after stirring, 10 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.) Was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)10質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、イオン交換水54.6質量部を容器に入れ攪拌した。更に、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の20質量%水溶液を50質量部加え、攪拌した後、アクリル酸(日本触媒社製)10質量部を加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定に付した。 <Comparative Example 5b>
10 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals), ion exchange 54.6 parts by mass of water was put in a container and stirred. Further, 50 parts by mass of a 20% by mass aqueous solution of Julimer AC-10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight-average molecular weight: 20,000) was added, and after stirring, 10 parts by mass of acrylic acid (manufactured by Nippon Shokubai Co., Ltd.) Was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, immersion in electrolyte solution, bending test, piercing test, and AC impedance measurement.
<比較例6b>
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の25質量%水溶液を80質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定を行った。 <Comparative Example 6b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals, Inc.), Julimer AC 80 parts by mass of a 25% by mass aqueous solution of -10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, bending test after immersion in electrolyte, piercing test, and AC impedance measurement.
2−アクリルアミド−2−メチルプロパンスルホン酸(製品名:TBAS、MCCユニテック社製)20質量部、ジビニルベンゼンスルホン酸ナトリウム(製品名:DVBS、東ソー有機化学社製)0.3質量部、ジュリマーAC−10LP(東亞合成社製、ポリアクリル酸、重量平均分子量:20,000)の25質量%水溶液を80質量部加え、攪拌した。この溶液に重合開始剤としてOmnirad 1173(BASF・ジャパン社製)0.10質量部を加え、攪拌することでハイドロゲル前駆体を調製した。このハイドロゲル前駆体を使用すること以外は、実施例1bと同様にして2mm厚のシート状のハイドロゲルを作製した。作製したハイドロゲルを膨潤度測定、電解液浸漬後折り曲げ試験、突刺試験、交流インピーダンス測定を行った。 <Comparative Example 6b>
20 parts by mass of 2-acrylamide-2-methylpropanesulfonic acid (product name: TBAS, manufactured by MCC Unitech), 0.3 parts by mass of sodium divinylbenzenesulfonate (product name: DVBS, manufactured by Tosoh Organic Chemicals, Inc.), Julimer AC 80 parts by mass of a 25% by mass aqueous solution of -10LP (manufactured by Toagosei Co., Ltd., polyacrylic acid, weight average molecular weight: 20,000) was added and stirred. 0.10 parts by mass of Omnirad 1173 (manufactured by BASF Japan) as a polymerization initiator was added to this solution, and the mixture was stirred to prepare a hydrogel precursor. A 2 mm-thick sheet-like hydrogel was prepared in the same manner as in Example 1b except that this hydrogel precursor was used. The prepared hydrogel was subjected to swelling degree measurement, bending test after immersion in electrolyte, piercing test, and AC impedance measurement.
実施例1b~13b及び比較例1b~6bの結果を表4~6に示す。
Tables 4 to 6 show the results of Examples 1b to 13b and Comparative Examples 1b to 6b.
表4~6から、特定の重量平均分子量のポリアクリル酸系重合体を含むことで、高濃度の水系電解液の環境下でも、柔軟性及び高い機械強度を有するハイドロゲルを提供できることが分かる。
From Tables 4 to 6, it can be seen that a hydrogel having flexibility and high mechanical strength can be provided even in a high-concentration aqueous electrolyte environment by containing a polyacrylic acid-based polymer having a specific weight average molecular weight.
なお、実施例1b~13bで使用したポリアクリル酸系重合体の吸光度及び吸光度比を表7に記載する。
Table 7 shows the absorbance and the absorbance ratio of the polyacrylic acid polymers used in Examples 1b to 13b.
Claims (18)
- 水と、高分子マトリックスとを含むハイドロゲルであって、
前記高分子マトリックスは、親水性基及び1個のエチレン性不飽和基を有する単官能性モノマーと、エステル結合を有さず、アミド基及び3~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含み、
前記ハイドロゲル100質量部中に、前記水を40~95質量部、及び前記高分子マトリックスを5~60質量部含有し、
前記ハイドロゲルが、25℃の温度下で4MのKOH水溶液に14日間浸漬した場合、650%以下の膨潤度を示すことを特徴とするハイドロゲル。 A hydrogel comprising water and a polymer matrix,
The polymer matrix includes a monofunctional monomer having a hydrophilic group and one ethylenically unsaturated group, and a polyfunctional monomer having no amide group and 3 to 6 ethylenically unsaturated groups without an ester bond. Including a copolymer with a functional monomer,
In 100 parts by mass of the hydrogel, the water contains 40 to 95 parts by mass, and the polymer matrix contains 5 to 60 parts by mass,
A hydrogel, wherein the hydrogel exhibits a swelling degree of 650% or less when immersed in a 4M KOH aqueous solution at a temperature of 25 ° C. for 14 days. - 前記多官能性モノマー中の3~6個のエチレン性不飽和基が、下記式(X)
で表されるビニルアミド由来の2価の基に含まれる、請求項1に記載のハイドロゲル。 3 to 6 ethylenically unsaturated groups in the polyfunctional monomer are represented by the following formula (X)
The hydrogel according to claim 1, which is contained in a divalent group derived from vinylamide represented by the following formula: - 前記多官能性モノマーが、直線状又は分岐状の炭化水素鎖から構成されるモノマーであり、前記炭化水素鎖は、それを構成する炭素原子が、酸素原子及び又は窒素原子で置き換えられていてもよく、
前記ビニルアミド由来の2価の基が、
(i)下記式(X−I)
(式中、Rは、水素原子又は炭素数1~4のアルキル基を意味する)
として前記炭化水素鎖の末端に位置する、及び/又は
(ii)前記炭化水素鎖の炭素原子を置き換える窒素原子と共に前記式(X)で表される基として位置する、
請求項2に記載のハイドロゲル。 The polyfunctional monomer is a monomer composed of a linear or branched hydrocarbon chain, and the hydrocarbon chain may have a carbon atom constituting the hydrocarbon chain replaced with an oxygen atom and / or a nitrogen atom. Often,
The divalent group derived from the vinylamide,
(I) The following formula (XI)
(Wherein, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)
And / or (ii) as a group represented by the formula (X) together with a nitrogen atom replacing a carbon atom of the hydrocarbon chain,
The hydrogel according to claim 2. - 前記多官能性モノマーが、10~40個の炭素原子を有し、かつ70~150℃の融点を有する水溶性のモノマーである、請求項1~3のいずれか1項に記載のハイドロゲル。 4. The hydrogel according to claim 1, wherein the polyfunctional monomer is a water-soluble monomer having 10 to 40 carbon atoms and having a melting point of 70 to 150 ° C.
- 前記共重合体が、前記単官能性モノマーに由来する単位100質量部と、前記多官能性モノマーに由来する単位0.1~5質量部とを含む、請求項1~4のいずれか1項に記載のハイドロゲル。 5. The copolymer according to claim 1, wherein the copolymer contains 100 parts by mass of a unit derived from the monofunctional monomer and 0.1 to 5 parts by mass of a unit derived from the polyfunctional monomer. 2. The hydrogel according to 1.
- 前記ハイドロゲルが、それを酸化亜鉛で飽和させた4MのKOH水溶液に浸漬させた後、間隔200μmの亜鉛極板間に位置させた状態で、前記亜鉛極板間に1mA/cm2の直流電流を通電する直流分極試験に付した場合、700分以上の通電時間を示す、請求項1~5のいずれか1項に記載のハイドロゲル。 After the hydrogel was immersed in a 4 M KOH aqueous solution saturated with zinc oxide, and placed between zinc electrodes at a distance of 200 μm, a direct current of 1 mA / cm 2 was applied between the zinc electrodes. The hydrogel according to any one of claims 1 to 5, wherein when subjected to a DC polarization test in which a current is applied, the hydrogel exhibits an energization time of 700 minutes or more.
- 前記ハイドロゲルが、それを酸化亜鉛で飽和させた4MのKOH水溶液に浸漬させた後、間隔200μmの亜鉛極板間に位置させた状態で、前記亜鉛極板間に1mA/cm2の直流電流を通電する直流分極試験に付した場合、通電開始から40分経過したときの亜鉛極板1cm2あたり2.0~15mVの電圧を示す、請求項1~6のいずれか1項に記載のハイドロゲル。 After the hydrogel was immersed in a 4 M KOH aqueous solution saturated with zinc oxide, and placed between zinc electrodes at a distance of 200 μm, a direct current of 1 mA / cm 2 was applied between the zinc electrodes. 7 shows a voltage of 2.0 to 15 mV per 1 cm 2 of zinc electrode plate when 40 minutes have passed from the start of energization, when subjected to a DC polarization test in which energization is performed. gel.
- 水と、ポリアクリル酸系重合体と、高分子マトリックスとを含むハイドロゲルであって、
前記ポリアクリル酸系重合体が、3,000~2,000,000の重量平均分子量を有し、
前記高分子マトリックスは、エチレン性不飽和基を有する単官能性モノマーと、2~6個のエチレン性不飽和基を有する多官能性モノマーとの共重合体を含み、
前記エチレン性不飽和基を有する単官能性モノマーが、スルホン基とリン酸基とから選択される少なくとも1種の基と、1個のエチレン性不飽和基とを有する単官能性モノマーAを含み、
単官能性モノマーA由来の成分とポリアクリル酸系重合体とが100:2.5~90の質量比でハイドロゲル中に存在し、
前記ハイドロゲル100質量部中に、前記水を21~89.5質量部、前記ポリアクリル酸系重合体を0.5~19質量部、及び前記高分子マトリックスを10~60質量部含有することを特徴とするハイドロゲル。 A hydrogel comprising water, a polyacrylic acid-based polymer, and a polymer matrix,
The polyacrylic acid-based polymer has a weight average molecular weight of 3,000 to 2,000,000,
The polymer matrix includes a monofunctional monomer having an ethylenically unsaturated group and a copolymer of a polyfunctional monomer having 2 to 6 ethylenically unsaturated groups,
The monofunctional monomer having an ethylenically unsaturated group includes a monofunctional monomer A having at least one group selected from a sulfone group and a phosphate group and one ethylenically unsaturated group. ,
A component derived from the monofunctional monomer A and the polyacrylic acid-based polymer are present in the hydrogel in a mass ratio of 100: 2.5 to 90,
In 100 parts by mass of the hydrogel, 21 to 89.5 parts by mass of the water, 0.5 to 19 parts by mass of the polyacrylic acid-based polymer, and 10 to 60 parts by mass of the polymer matrix are contained. Hydrogel characterized by the following. - 前記エチレン性不飽和基を有する単官能性モノマーが、カルボキシル基と1個のエチレン性不飽和基とを有する単官能性モノマーBを更に含み、前記単官能性モノマーA及びBの含有割合が、30mol%以上、70mol%以下の範囲である、請求項8に記載のハイドロゲル。 The monofunctional monomer having an ethylenically unsaturated group further includes a monofunctional monomer B having a carboxyl group and one ethylenically unsaturated group, the content ratio of the monofunctional monomers A and B, The hydrogel according to claim 8, which is in a range of 30 mol% or more and 70 mol% or less.
- 前記ポリアクリル酸系重合体が、カルボキシル基含有モノマーの単独重合体、又はカルボキシル基含有モノマーとスルホン酸基含有モノマーとの共重合体である、請求項8又は9に記載のハイドロゲル。 The hydrogel according to claim 8 or 9, wherein the polyacrylic acid-based polymer is a homopolymer of a carboxyl group-containing monomer or a copolymer of a carboxyl group-containing monomer and a sulfonic acid group-containing monomer.
- 前記ポリアクリル酸系重合体は、FT−IR測定において得られた1650±130cm−1の範囲の最大ピークの吸光度(吸光度[1650±130cm−1])と1040±20cm−1の範囲の最大ピークの吸光度(吸光度[1040±20cm−1])との吸光度比(吸光度[1040±20cm−1]/吸光度[1650±130cm−1])が、0.001~5.0の範囲の値を示す重合体である、請求項8~10のいずれか1項に記載のハイドロゲル。 The polyacrylic acid-based polymer, FT-IR maximum peak absorbance of 1650 range of ± 130 cm -1 obtained in the measurement (absorbance [1650 ± 130cm-1]) and 1040 the maximum peak in the range of ± 20 cm -1 absorbance (absorbance [1040 ± 20cm-1]) and the ratio of absorbance (absorbance [1040 ± 20cm-1] / absorbance [1650 ± 130cm-1]) indicates a value in the range of 0.001-5.0 The hydrogel according to any one of claims 8 to 10, which is a polymer.
- 前記ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液に1週間浸漬した場合、50~300%の膨潤度を示す、請求項8~11のいずれか1項に記載のハイドロゲル。 12. The hydrogel according to claim 8, wherein the hydrogel exhibits a swelling degree of 50 to 300% when immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week. The hydrogel according to claim 1.
- 前記ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液中に1週間浸漬した場合、0.35N以上の突刺強度を示す、請求項8~12のいずれか1項に記載のハイドロゲル。 13. The hydrogel according to claim 8, wherein the hydrogel exhibits a puncture strength of 0.35 N or more when immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week. Or the hydrogel according to claim 1.
- 前記ハイドロゲルが、それを25℃の温度下1.5MのLiOHと10MのLiClとを含む水溶液中に1週間浸漬した場合、周波数100kHzにおけるインピーダンスとして、20Ω以下の値を示す、請求項8~13のいずれか1項に記載のハイドロゲル。 The hydrogel, when immersed in an aqueous solution containing 1.5 M LiOH and 10 M LiCl at a temperature of 25 ° C. for one week, exhibits a value of 20Ω or less as an impedance at a frequency of 100 kHz. 14. The hydrogel according to any one of 13).
- アルカリ電池用である、請求項8~14のいずれか1項に記載のハイドロゲル。 15. The hydrogel according to any one of claims 8 to 14, which is for an alkaline battery.
- 請求項1~15のいずれか1項に記載のハイドロゲルと、前記ハイドロゲルに含ませた電解質成分とを含むゲル状電解質。 A gel electrolyte comprising the hydrogel according to any one of claims 1 to 15 and an electrolyte component contained in the hydrogel.
- 請求項1~15のいずれか1項に記載のハイドロゲル又は請求項16に記載のゲル状電解質を用いたセパレータ。 A separator using the hydrogel according to any one of claims 1 to 15 or the gel electrolyte according to claim 16.
- 請求項1~15のいずれか1項に記載のハイドロゲル、請求項16に記載のゲル状電解質、及び請求項17に記載のセパレータのいずれか1種を含むアルカリ電池。 An alkaline battery comprising the hydrogel according to any one of claims 1 to 15, the gel electrolyte according to claim 16, and the separator according to claim 17.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980051666.0A CN112533997B (en) | 2018-08-31 | 2019-08-28 | Hydrogels and uses thereof |
US17/262,990 US20210163694A1 (en) | 2018-08-31 | 2019-08-28 | Hydrogel and uses therefor |
EP19854865.3A EP3845606A4 (en) | 2018-08-31 | 2019-08-28 | Hydrogel and uses therefor |
KR1020217002817A KR102489297B1 (en) | 2018-08-31 | 2019-08-28 | Hydrogels and their uses |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-163485 | 2018-08-31 | ||
JP2018163485A JP6718489B2 (en) | 2018-08-31 | 2018-08-31 | Hydrogel sheet and its use |
JP2018-168757 | 2018-09-10 | ||
JP2018168757 | 2018-09-10 | ||
JP2019038620A JP6668530B2 (en) | 2018-09-10 | 2019-03-04 | Hydrogel for alkaline battery, gel electrolyte and battery using the same |
JP2019-038620 | 2019-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020044246A1 true WO2020044246A1 (en) | 2020-03-05 |
Family
ID=69643219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2019/057225 WO2020044246A1 (en) | 2018-08-31 | 2019-08-28 | Hydrogel and uses therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020044246A1 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005322635A (en) | 2004-04-09 | 2005-11-17 | Dainichiseika Color & Chem Mfg Co Ltd | Hydrogel electrolyte for alkaline battery, and manufacturing method of the same |
JP2012033490A (en) | 2010-07-28 | 2012-02-16 | Samsung Electronics Co Ltd | Lithium air battery |
JP2013185119A (en) * | 2012-03-09 | 2013-09-19 | Sekisui Plastics Co Ltd | Adhesive hydrogel and use of the same |
JP2015095286A (en) | 2013-11-08 | 2015-05-18 | 株式会社日本触媒 | Anion conductive film and battery |
WO2015146840A1 (en) * | 2014-03-28 | 2015-10-01 | 積水化成品工業株式会社 | Water-rich adherent gel, composition for manufacturing water-rich adherent gel, and electrode pad |
WO2016031709A1 (en) * | 2014-08-29 | 2016-03-03 | 富士フイルム株式会社 | Nail cosmetic, artificial nail, and nail art kit |
WO2017051734A1 (en) | 2015-09-25 | 2017-03-30 | 積水化成品工業株式会社 | Hydrogel and method for producing same |
JP2017068933A (en) | 2015-09-28 | 2017-04-06 | ニッポン高度紙工業株式会社 | Battery separator and secondary battery including the same |
JP2017183204A (en) | 2016-03-31 | 2017-10-05 | 積水化成品工業株式会社 | Alkaline zinc storage battery |
JP2018163485A (en) | 2017-03-24 | 2018-10-18 | 富士ゼロックス株式会社 | Data transmission system and program |
JP2018168757A (en) | 2017-03-30 | 2018-11-01 | 株式会社豊田自動織機 | Scroll compressor |
JP2019038620A (en) | 2017-08-22 | 2019-03-14 | キヤノン株式会社 | Image forming apparatus and temperature control method |
-
2019
- 2019-08-28 WO PCT/IB2019/057225 patent/WO2020044246A1/en unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005322635A (en) | 2004-04-09 | 2005-11-17 | Dainichiseika Color & Chem Mfg Co Ltd | Hydrogel electrolyte for alkaline battery, and manufacturing method of the same |
JP2012033490A (en) | 2010-07-28 | 2012-02-16 | Samsung Electronics Co Ltd | Lithium air battery |
JP2013185119A (en) * | 2012-03-09 | 2013-09-19 | Sekisui Plastics Co Ltd | Adhesive hydrogel and use of the same |
JP2015095286A (en) | 2013-11-08 | 2015-05-18 | 株式会社日本触媒 | Anion conductive film and battery |
WO2015146840A1 (en) * | 2014-03-28 | 2015-10-01 | 積水化成品工業株式会社 | Water-rich adherent gel, composition for manufacturing water-rich adherent gel, and electrode pad |
WO2016031709A1 (en) * | 2014-08-29 | 2016-03-03 | 富士フイルム株式会社 | Nail cosmetic, artificial nail, and nail art kit |
WO2017051734A1 (en) | 2015-09-25 | 2017-03-30 | 積水化成品工業株式会社 | Hydrogel and method for producing same |
JP2017068933A (en) | 2015-09-28 | 2017-04-06 | ニッポン高度紙工業株式会社 | Battery separator and secondary battery including the same |
JP2017183204A (en) | 2016-03-31 | 2017-10-05 | 積水化成品工業株式会社 | Alkaline zinc storage battery |
JP2018163485A (en) | 2017-03-24 | 2018-10-18 | 富士ゼロックス株式会社 | Data transmission system and program |
JP2018168757A (en) | 2017-03-30 | 2018-11-01 | 株式会社豊田自動織機 | Scroll compressor |
JP2019038620A (en) | 2017-08-22 | 2019-03-14 | キヤノン株式会社 | Image forming apparatus and temperature control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6186852B2 (en) | Slurry composition for secondary battery porous membrane, electrode for secondary battery, separator for secondary battery, and secondary battery | |
KR100906251B1 (en) | Gel-typed Polymer Electrolyte Containing Diacryl Amide-based Polymeric Material and Electrochemical Device Comprising the Same | |
JP2896361B2 (en) | Polymer solid electrolyte, method for producing the same, and lithium secondary battery employing the polymer solid electrolyte | |
KR102302348B1 (en) | Hydrogel, its use and its manufacturing method | |
KR102489297B1 (en) | Hydrogels and their uses | |
JP6718489B2 (en) | Hydrogel sheet and its use | |
CN106797031B (en) | Composition for lithium secondary battery electrode | |
CN113698718B (en) | Zwitterionic hydrogel, electrolyte, secondary battery or super capacitor, and electric equipment | |
JP7416239B2 (en) | Binder for non-aqueous secondary battery electrodes and slurry for non-aqueous secondary battery electrodes | |
JP3998446B2 (en) | Alkaline storage battery | |
JP2013196942A (en) | Secondary battery electrolyte gel and manufacturing method thereof and secondary battery including the same | |
JP6668530B2 (en) | Hydrogel for alkaline battery, gel electrolyte and battery using the same | |
WO2020044246A1 (en) | Hydrogel and uses therefor | |
JP2011159503A (en) | Lithium ion conductive polymer electrolyte and lithium battery | |
JP2005322635A (en) | Hydrogel electrolyte for alkaline battery, and manufacturing method of the same | |
JP2020021572A (en) | Hydrogel for alkaline battery, gelatinous electrolyte containing the same, and the alkaline battery | |
WO2000072399A1 (en) | Polymer electrolyte | |
CN115716896A (en) | Polyethylene oxide comb polymer and preparation method and application thereof | |
JPWO2017195562A1 (en) | Non-aqueous secondary battery | |
JP2020136086A (en) | Hydrogel for alkaline cell, manufacturing method thereof and its use | |
JP7533873B2 (en) | Lithium-sulfur secondary battery and method for manufacturing the lithium-sulfur secondary battery | |
EP4449521A1 (en) | A negative electrode comprising a metal substrate and a protective layer | |
WO2024052249A1 (en) | Battery electrode and method of making the same | |
CN116247289A (en) | Solid electrolyte and solid battery comprising same | |
TW202211521A (en) | Binder for non-aqueous secondary battery electrode and slurry for non-aqueous secondary battery electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19854865 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217002817 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019854865 Country of ref document: EP Effective date: 20210331 |