Nothing Special   »   [go: up one dir, main page]

WO2019239560A1 - 蓄電素子とそれを用いた蓄電池 - Google Patents

蓄電素子とそれを用いた蓄電池 Download PDF

Info

Publication number
WO2019239560A1
WO2019239560A1 PCT/JP2018/022805 JP2018022805W WO2019239560A1 WO 2019239560 A1 WO2019239560 A1 WO 2019239560A1 JP 2018022805 W JP2018022805 W JP 2018022805W WO 2019239560 A1 WO2019239560 A1 WO 2019239560A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
current collector
electrode current
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2018/022805
Other languages
English (en)
French (fr)
Inventor
知秀 伊達
白方 雅人
史彦 長谷川
政明 引地
Original Assignee
国立大学法人東北大学
未来エナジーラボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 未来エナジーラボ株式会社 filed Critical 国立大学法人東北大学
Priority to PCT/JP2018/022805 priority Critical patent/WO2019239560A1/ja
Priority to CN201980004184.XA priority patent/CN112204812A/zh
Priority to US16/644,580 priority patent/US20210098793A1/en
Priority to KR1020207004015A priority patent/KR20210019396A/ko
Priority to JP2020525626A priority patent/JP7072925B2/ja
Priority to PCT/JP2019/023319 priority patent/WO2019240183A1/ja
Publication of WO2019239560A1 publication Critical patent/WO2019239560A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a storage element and a storage battery using the same.
  • Patent Documents 1 and 2 disclose an outdoor monitoring device that stores the generated power of a solar cell in a storage battery, uses it as drive power for an apparatus such as an imaging camera, and monitors the obtained captured image. Yes.
  • a power supply system has been proposed that combines power generation and storage using natural energy to enable power supply for 24 hours regardless of whether power is generated or not.
  • This power supply system is used for lighting in tunnels and air purification.
  • the voltage stabilization circuit in addition to the voltage stabilization circuit, it is necessary to provide a storage battery and a switching circuit for power supply switching. Such a system is costly.
  • the power stored in the storage battery is used after charging to a certain amount. This is because when the battery is used (discharged) while being charged, the discharge voltage (output voltage) fluctuates due to the fluctuation of the charging voltage. If the electric power generated by natural energy is stored in the storage battery and discharged at the same time, the terminal is used for both charging and discharging. As a result, the discharge voltage fluctuates due to the fluctuation of the charging voltage (generated voltage).
  • FIG. 15 shows a configuration example of a conventional lithium ion storage element A.
  • a positive electrode current collector 1 having a positive electrode active material layer 2 formed on both sides and a negative electrode current collector 4 having a negative electrode active material layer 5 formed on both sides are interposed via a separator 7. It has a superposed structure.
  • the positive electrode current collector 1 and the positive electrode active material layer 2 constitute a positive electrode
  • the negative electrode current collector 4 and the negative electrode active material layer 5 constitute a negative electrode.
  • the positive electrode terminal 3 is provided at the left end of the end region where the positive electrode active material layer 2 of the positive electrode current collector 1 is not formed, and the end region of the negative electrode current collector 4 where the negative electrode active material layer 5 is not formed.
  • FIG. 16 is a diagram schematically illustrating a configuration viewed from the negative electrode side after the positive electrode, the separator, and the negative electrode are overlaid. A large number of such lithium ion electricity storage elements A are overlapped with a separator interposed therebetween. The superposed element is housed in a battery container together with the electrolytic solution and sealed to produce a storage battery.
  • the positive terminal 3 is connected to a power source 8 and a load 9 such as a power generator, and the negative terminal 6 is connected to a changeover switch 10.
  • Two terminals of the switch 10 are connected to a power source 8 and a load 9, respectively. If the switch 10 is connected to the power source 8 side, the power storage element A is charged by the power of the power source 8, and if the switch 10 is connected to the load 9 side, the power storage element A is discharged and supplied to the load 9.
  • the conventional power storage element A is configured to switch between charging and discharging by the switch 10. If the switch 10 is omitted and charging and discharging can be performed at the same time, the load 9 is directly affected by the power fluctuation of the power supply 8.
  • the present invention has been made in view of the above circumstances, and has a simple configuration that does not require a significant increase in cost, and can perform discharge while suppressing voltage fluctuation even during charging. And it aims at providing the storage battery using the same.
  • a power storage element includes a sheet-like positive electrode current collector and a negative electrode current collector, each of which has an active material layer formed on a surface and is arranged in the thickness direction, and the positive electrode current collector And a separator sandwiched between the negative electrode current collector, a first terminal connected to the outer periphery of the positive electrode current collector, a second terminal connected to the outer periphery of the negative electrode current collector, A third terminal connected to an outer periphery of at least one of the positive electrode current collector and the negative electrode current collector, and in the plan view from the thickness direction, the first terminal and the second terminal A power storage element, wherein the terminal and the third terminal do not overlap with each other.
  • main surfaces of the positive electrode current collector and the negative electrode current collector each have a rectangular shape, and the third of the four sides constituting the rectangle. It is preferable that neither the first terminal nor the second terminal is provided in the side portion where the terminal is provided.
  • the third terminal and the first terminal connected to the positive electrode current collector or the negative electrode current collector connected to the third terminal or the The second terminal is connected at a predetermined distance or more, and the predetermined distance is such that the active material layer is formed even when the active material layer is peeled off with a width of 0.1 mm between the two terminals. It is preferable that the ratio R1 / R1 ′ between the resistance R1 in the region where the current is applied and the resistance R1 ′ in the region where the active material layer is not formed be adjusted to 1 or less.
  • the third terminal is connected to one outer periphery of the positive electrode current collector and the negative electrode current collector, It is preferable that a fourth terminal is connected to the other outer periphery, and that the fourth terminal does not overlap the first terminal, the second terminal, and the third terminal in the plan view.
  • the fourth terminal and the first terminal connected to the positive electrode current collector or the negative electrode current collector connected to the fourth terminal or the The second terminal is connected at a predetermined distance or more, and the predetermined distance is such that the active material layer is formed even when the active material layer is peeled off with a width of 0.1 mm between the two terminals. It is preferable that the ratio R2 / R2 ′ between the resistance R2 in the region where the current is applied and the resistance R2 ′ in the region where the active material layer is not formed be adjusted to 1 or less.
  • a storage battery stores a plurality of the storage elements according to any one of [1] to [3] together with an electrolyte in a battery container.
  • the terminal, the plurality of second terminals, and the plurality of third terminals each form a group and are drawn out of the battery container.
  • a storage battery stores a plurality of the storage elements according to any one of [4] or [5] above in the battery container together with an electrolyte.
  • the terminal, the plurality of second terminals, the plurality of third terminals, and the plurality of fourth elements each form a group and are drawn out of the battery container.
  • the power storage device of the present invention and the storage battery using the power storage device have a simple configuration that does not require a significant increase in cost, and can discharge while suppressing voltage fluctuations even during charging.
  • FIG. 1 is a diagram in which a positive electrode (left side) and a negative electrode (right side) are extracted and arranged from the power storage device B1 according to the first embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating the configuration of the assembled power storage device B1 as an example, assuming a case where it is applied to a lithium ion battery device.
  • the power storage element B1 includes a sheet-like positive electrode current collector 11 and a negative electrode current collector 15 that are arranged side by side in the thickness direction, and a separator (non-conductive) sandwiched between the positive electrode current collector 11 and the negative electrode current collector 15. And three electrode terminals (first terminal 13, second terminal 17, and third terminal 14).
  • a positive electrode active material layer 12 and a negative electrode active material layer 16 are formed on the surfaces (preferably the entire main surface) of the positive electrode current collector 11 and the negative electrode current collector 15, respectively.
  • the positive electrode includes the positive electrode current collector 11 and the positive electrode active material layer 12
  • the negative electrode includes the negative electrode current collector 15 and the negative electrode active material layer 16.
  • the first terminal (positive electrode terminal) 13 is connected to the outer periphery (here, the upper left end portion) of the positive electrode current collector 11.
  • the second terminal (negative electrode terminal) 17 is connected to the outer periphery (upper right end portion) of the negative electrode current collector 15.
  • the third terminal 14 is connected to at least one of the positive electrode current collector 11 and the negative electrode current collector 15 (here, the lower right end of the positive electrode current collector 11).
  • the first terminal 13, the second terminal 17, and the third terminal 14 are provided so as not to overlap each other in a plan view from the thickness direction of the positive electrode current collector 11 and the negative electrode current collector 15.
  • the third terminal 14 has a first terminal 13 or a second terminal 17 around a central axis C connecting the centers of the positive electrode current collector 11 and the negative electrode current collector 15 in a plan view from the thickness direction. It is preferable that they are arranged so as to be axially symmetric.
  • the active material constituting the positive electrode active material layer 12 for example, it is preferable to use a material having a spinel structure, an olivine structure, or a perovskite structure whose crystal structure does not change depending on the lithium ion content. The crystal structure is maintained even during overcharge or overdischarge, and safety is enhanced.
  • the active material for constituting the negative electrode active material layer 16 carbon, graphite, carbon material such as the LTO (lithium-titanium oxide Li 4 Ti 5 O 12) or the like having a spinel structure, an overvoltage condition of the battery An active material that does not emit smoke or ignite can be used.
  • the first terminal 13 and the second terminal 17 are connected to a power source 8 such as a power generator without passing through a changeover switch. Further, in the power storage element B1, the second terminal 17 and the third terminal 14 are connected to the load 9 without passing through the changeover switch. That is, in the electricity storage element B1, it is possible to realize a state in which both the charging circuit to which the power source 8 is connected and the discharging circuit to which the load 9 is connected are simultaneously conducted. Accordingly, the storage element B1 is discharged (powered) to the load 9 through the negative electrode terminal 17 and the third terminal 14 simultaneously while being charged by the power source 8 through the positive electrode terminal 13 and the negative electrode terminal 17. It can be carried out.
  • the supply voltage (discharge voltage) to the load 9 is kept stable even if the supply voltage (charge voltage) of the power supply 8 varies. This is because an active material layer (here, the positive electrode active material layer 12) is interposed between the first terminal 13 and the third terminal 14, and the voltage fluctuation is attenuated there.
  • an active material layer here, the positive electrode active material layer 12
  • the potential of the positive electrode of the storage element B1 varies depending on the content of conductive ions (lithium ions) contained in the positive electrode active material 12. That is, the potential of the positive electrode of the electricity storage element B1 is limited by the amount of movement of the conduction ions regardless of the external charging voltage. That is, even if the charging voltage at the first terminal 13 varies, the voltage variation attenuates while propagating through the movement of the conductive ions in the positive electrode active material 12. As a result, voltage fluctuations reaching the third terminal 14 are suppressed, and the discharge voltage becomes constant.
  • the electrode potential also depends on the difference between the impedance of the storage element B1 and the impedance of the power source 8.
  • the impedance of power supply 8 is preferably higher than the impedance of power storage element B1.
  • the fluctuation amount of the charging voltage supplied through the thin wiring is reduced in the power storage element B1 having a sufficiently wide region.
  • independent (separate) electrode terminals are provided for charge input and charge output. Therefore, the fluctuating voltage and fluctuating current input at the electrode terminal for charge input are relaxed when lithium ions in the active material layer move to the anode, and the fluctuating voltage, It is output as a true voltage that is not affected by the fluctuation current. With this structure, it is possible to charge from the input terminal even when the generated current is very small, and it is possible to supply a current with very little voltage fluctuation from the output terminal.
  • the potential difference between the positive and negative electrodes changes depending on the state of charge.
  • the variation range of this potential difference varies depending on the type of active material used. For example, when lithium manganate is used for the positive electrode and graphite is used for the negative electrode, the potential difference fluctuation range is approximately 3 V to 4.2 V.
  • the initial terminal voltage is 3V and a voltage of 3.5V is applied to the input terminal
  • the storage element B1 is slowly charged, and the output terminal voltage slowly rises from 3V to 3.5V. It becomes a constant voltage at 5V. Since the storage element B1 using lithium manganate for the positive electrode has a stable crystal structure, it can output the same amount of current as the input current from the output terminal.
  • the main surfaces of the positive electrode current collector 11 and the negative electrode current collector 15 are preferably rectangular, and more preferably have the same area.
  • the first terminal 13, the second terminal 17, and the third terminal 14 are preferably separated from each other.
  • the side where the third terminal 14 is provided among the four sides constituting the rectangle it is preferable that the first terminal 13 and the second terminal 17 are connected to different sides.
  • first terminal 13 and the third terminal 14 exemplify a case where the first terminal 13 and the third terminal 14 are provided in the vicinity of two vertices on a diagonal line on the rectangular main surface of the positive electrode current collector 11. Yes.
  • the first terminal 13 and the third terminal 14 do not have to overlap in plan view from the direction perpendicular to the main surface.
  • the rectangular main surface of the positive electrode current collector 11 may be provided near two vertices on the same side.
  • the third terminal 14 is connected to the outer periphery of the positive electrode current collector 11
  • the third terminal 14 is connected to the outer periphery of the negative electrode current collector 15. It may be.
  • the first terminal 13 and the second terminal 17 are connected to the power source 8, and the first terminal 13 and the third terminal 14 are connected to the load 9.
  • the limitation on the positional relationship between the first terminal 13 and the third terminal 14 is the same as that when connected to the outer periphery of the positive electrode current collector 11.
  • the storage battery stores a necessary number (plural) of storage elements B1 in a battery container together with an electrolyte solution or a solid electrolyte according to a required capacity.
  • a storage battery is formed by sealing the battery container.
  • the plurality of first terminals 13, the plurality of second terminals 17, and the plurality of third terminals 14 each form a group, and at least a part (tip portion) is drawn out of the battery container. .
  • FIG. 3A and 3B are exploded views schematically showing a configuration example of a laminated storage battery including the storage element B1 of FIG.
  • FIG. 3A the layers of the positive electrode current collector 11, the negative electrode current collector 15, and the separator 7 constituting the laminate type storage battery are separated and arranged in the order of lamination.
  • FIG. 3B the layers of the laminate films 19A and 19B constituting the laminate type storage battery are separated and shown side by side.
  • the electricity storage element B1 is formed by alternately stacking (superimposing) layers of a plurality of positive electrode current collectors 11 and negative electrode current collectors 15 with separators 7 interposed therebetween as shown in FIG. 3A.
  • the uppermost layer and the lowermost layer of the laminated power storage element B1 are covered with aluminum laminate films 19A and 19B shown in FIG. 5B, and are stored in a battery container together with an electrolyte solution.
  • a type storage battery can be obtained.
  • the charging circuit and the discharging circuit are separately formed with a simple configuration having three electrode terminals. Since the active material layer is interposed between the two circuits, even if the voltage input from the charging circuit fluctuates, the fluctuation is caused by the rectifying action in the active material layer. The influence on the output voltage can be kept low. Therefore, the storage element B1 according to the present embodiment and the storage battery using the storage element B1 have a simple configuration that does not require a significant increase in cost, and stable discharge with suppressed voltage fluctuation even during charging. It can be performed.
  • the power storage element B1 and the storage battery according to the present embodiment are applied to a power supply system that combines power generation and storage using natural energy, a voltage stabilization circuit and a switching circuit for power supply switching are unnecessary, and the system is inexpensive. Can be configured.
  • the storage element B1 and the storage battery according to the present embodiment do not exclude the use of a converter or an inverter for adjusting the generated voltage to a desired voltage.
  • the power storage target is not limited to natural power generation such as solar power generation, wind power generation, tidal current / tidal power generation, and any power source whose supply voltage fluctuates is included.
  • FIG. 4 is a diagram in which the positive electrode (left side) and the negative electrode (right side) are extracted and arranged from the electricity storage device B2 according to the second embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating the configuration of the assembled power storage device B2 as an example, assuming a case where it is applied to a lithium ion battery device.
  • the third terminal 14 is connected to one outer periphery of the positive electrode current collector 11 and the negative electrode current collector 15, and the fourth terminal 18 is connected to the other outer periphery.
  • the fourth terminal 18 is provided so as not to overlap the first terminal 13, the second terminal 17, and the third terminal 14. It has been.
  • the first terminal 13, the second terminal 17, the third terminal 14, and the fourth terminal 18 are respectively in a rectangular main surface of the positive electrode current collector 11 or the negative electrode current collector 15. The case where it is connected to four vertex vicinity is illustrated.
  • the first terminal 13 and the third terminal 14 are respectively connected to the vicinity of two vertices on the diagonal line on the rectangular main surface of the positive electrode current collector 11.
  • the second terminal 17 and the fourth terminal 18 are respectively connected to the vicinity of two vertices on the diagonal line on the rectangular main surface of the negative electrode current collector 15.
  • the positive terminal 13 and the negative terminal 17 are connected to the power source 8, and the third terminal 14 and the fourth terminal 18 are connected to the load 9.
  • first terminal 13, the second terminal 17, the third terminal 14, and the fourth terminal 18 do not have to overlap in plan view from the direction perpendicular to the main surface. It is not limited to the arrangement at.
  • FIG. 5 illustrates two types of circuits for connecting the power supply 8 and the load 9.
  • the first terminal 13 and the second terminal 17 are connected to the power source 8, and the third terminal 14 and the fourth terminal 18 are connected to the load 9.
  • the first terminal 13 and the fourth terminal 18 are connected to the power supply 8, and the third terminal 14 and the second terminal 17 are connected to the load 9. Similar effects can be obtained by using either circuit.
  • one of the two terminals connected to the power supply 8 is a common terminal with one of the two terminals connected to the load 9.
  • the two terminals connected to the power supply 8 and the two terminals connected to the load 9 are completely separate terminals, and the influence of power fluctuations of the power supply 8 reaches the load 9. , Can be suppressed more.
  • a storage battery is formed by storing a necessary number (plural) of storage elements B2 in a battery container together with an electrolyte solution or a solid electrolyte according to a required capacity, and sealing the battery container.
  • the plurality of first terminals 13, the plurality of second terminals 17, the plurality of third terminals 14, and the plurality of fourth terminals 18 each form a group, and at least a part (tip portion) is a battery container. Has been pulled out of.
  • FIG. 6 is a diagram in which the positive electrode (left side) and the negative electrode (right side) are extracted and arranged from the electricity storage device B3 according to the third embodiment of the present invention.
  • FIG. 7 is a diagram schematically showing, as an example, the configuration of the assembled power storage device B3, assuming a case where it is applied to a lithium ion battery device.
  • the main surfaces of the positive electrode current collector 11 and the negative electrode current collector 15 are rectangular, and of the four sides constituting the rectangle, the side where the first terminal 13 is provided, or the second terminal
  • the third terminal 14 is provided on the same side as the side on which 17 is provided. 6 and 7, on the outer periphery of the positive electrode current collector 11, the first terminal 13 is connected to one end (left end) of the same side (upper side), and the third terminal 14 is connected to the other end (right end). The case where it is done is illustrated.
  • the separation distance between the input terminal (first terminal 13 or second terminal 17) and the output terminal (third terminal 14) is If it is short, the influence of the power fluctuation (noise current) of the power supply 8 on the load 9 may be exerted.
  • the input terminal and the output terminal are provided sufficiently apart from each other.
  • the preferable separation distance between the input terminal and the output terminal is preferably a predetermined distance or more.
  • the active material layer between them may be peeled off. Even when the active material layer is peeled off, it is preferable that power fluctuation (noise current) can be sufficiently suppressed.
  • the noise absorption capability is a ratio R1 / R1 ′ between a resistance R1 in a region where an active material layer between terminals is formed and a resistance R1 ′ in a region where no active material layer is formed (active material layer non-forming region).
  • the resistor R1 is a combined resistance of the internal resistance of the active material layer and the internal resistance of the current collector (metal).
  • the resistance R1 ′ is obtained by ⁇ ′ ⁇ L ′ / A ′.
  • ⁇ ′ is the specific resistance of the current collector (the positive electrode current collector 11 or the negative electrode current collector 15)
  • L ′ is the length between the terminals passing through the exposed current collector when the active material layer is peeled off.
  • A is the cross-sectional area of the exposed current collector. A varies depending on the exposed width of the active material layer.
  • the amount of current flowing in the active material layer is large when the active material layer is interposed in the propagation of the input current.
  • the resistance R1 of the active material layer formation region needs to be larger than the resistance R1 'of the active material layer non-formation region. Therefore, even when the active material layer is peeled off with a width of 0.1 mm between the two terminals, the noise absorption capability R1 / R1 'is preferably 1 or less, and more preferably 0.2 or less.
  • variety from which the active material peeled here means the width
  • the current collector is made of aluminum (volume resistivity is 2.8 ⁇ cm), the thickness of the current collector is 20 ⁇ m, the number of electrodes (total number of positive and negative electrodes) is 30, and the active material layer between the input and output terminals
  • the width of the non-formation region is 1 mm
  • the resistance between the input and output terminals is 4.7 m ⁇
  • the noise level is attenuated to about 30%.
  • the width of the active material layer non-formation region is 2 mm
  • the noise level is attenuated to about 20%.
  • the noise level is attenuated to about 10%.
  • the third terminal 14 is also provided when the fourth terminal 18 is provided on the same side as the side where the first terminal 13 is provided or the side where the second terminal 17 is provided.
  • the ratio R2 / R2 ′ can be defined.
  • R2 / R2 ' is preferably 1 or less, and more preferably 0.2 or less.
  • R2 is the resistance of the region where the active material layer between the terminals is formed, and the resistance of the region where the R2 'active material layer is not formed (active material layer non-forming region).
  • FIG. 8 is a diagram in which the positive electrode (upper side) and the negative electrode (lower side) are extracted and arranged from the electricity storage device B4 according to the fourth embodiment of the present invention.
  • FIG. 9 is a diagram schematically showing, as an example, the configuration of the assembled power storage device B4, assuming a case where it is applied to a lithium ion battery device.
  • a plurality of (here, two) first terminals 13A and 13B connected to the power source and one third terminal 14 connected to the load are connected to the outer periphery of the positive electrode current collector 11.
  • a second terminal 17 connected to the power source and a fourth terminal 18 connected to the load are connected to the outer periphery of the negative electrode current collector 15.
  • the main surface of the positive electrode current collector 11 is rectangular, and among the four sides constituting the rectangle, the first terminals 13A and 13B are provided in one side portion, and the third side is provided in the other side portion.
  • the case where the terminal 14 is provided is illustrated.
  • the main surface of the negative electrode current collector 15 is rectangular, and among the four sides constituting the rectangle, the second terminal 17 is provided in one side portion, and the fourth terminal 18 is provided in the other side portion. The case where is provided is illustrated.
  • the first terminal 13A and the second terminal 17 are connected to the first power supply 8A, the first terminal 13B and the second terminal 17 are connected to the second power supply 8B, and the third terminal 14 and the fourth terminal 18 are connected to the load 9.
  • the third terminal 14 includes the first terminals 13 ⁇ / b> A and 13 ⁇ / b> B, the second terminal 17, and the fourth terminal.
  • the terminals 18 are provided so as not to overlap each other.
  • FIG. 10 is a diagram in which the positive electrode (upper side) and the negative electrode (lower side) are extracted and arranged from the electric storage element B5 according to the fifth embodiment of the present invention.
  • FIG. 11 is a diagram schematically showing, as an example, the configuration of the assembled power storage device B5 assuming a case where it is applied to a cylindrical lithium ion battery device.
  • a plurality (here, three) of first terminals 13A, 13B, 13C connected to the power source and a plurality (here, three) of first terminals 13A, 13B, 13C connected to the power source are provided on the outer periphery of the positive electrode current collector 11.
  • 3 terminals 14A, 14B, 14C are connected.
  • a plurality (three in this case) of second terminals 17A, 17B, and 17C are connected to the outer periphery of the negative electrode current collector 15.
  • the main surface of the positive electrode current collector 11 is rectangular, and among the four sides constituting the rectangle, the first terminals 13A, 13B, and 13C are provided on one side part, and the other side part is provided on the other side part.
  • the case where the third terminals 14A, 14B, and 14C are provided is illustrated.
  • the case where the main surface of the negative electrode current collector 15 is rectangular and the second terminals 17A, 17B, and 17C are provided on one side of the four sides forming the rectangle is illustrated. .
  • the first terminals 13A, 13B, and 13C are connected in parallel to one end of the power source 8, and the second terminals 17A, 17B, and 17C are connected in parallel to the other end of the power source 8. Further, the third terminals 14A, 14B, and 14C are connected in parallel to one end of the load 9, and the second terminals 17A, 17B, and 17C are connected in parallel to the other end of the load.
  • the third terminals 14A, 14B, and 14C may be provided on the negative electrode current collector 15, and in this case, the first terminals 13A, 13B, and 13C are connected in parallel to the other end of the load. .
  • the third terminals 14A, 14B, 14C are the first terminals 13A, 13B, 13C, second The terminals 17A, 17B, and 17C are provided so as not to overlap each other.
  • FIG. 12 is a diagram schematically showing a configuration of a cylindrical dry battery including the storage element B5 of FIG.
  • the cylindrical storage battery is wound in a roll shape so that the inner side becomes the positive electrode current collector 11 and the outer side becomes the negative electrode current collector 15.
  • the outermost periphery of the wound wound body is protected by a separator 7. Both ends in the winding axis direction of the wound body are sandwiched between insulators 21. These are housed in a cylindrical metal container 20.
  • 1st terminal 13 (13A, 13B, 13C) is connected to the positive electrode cap attached via the insulating ring 25 with respect to the ring-shaped connection part 22 provided in the upper part of the metal containers 20.
  • FIG. The second terminals 17 (17A, 17B, 17C) are connected to the bottom of the metal container 20.
  • the third terminal 14 is connected to a ring-shaped connection portion attached via an insulating ring 23 provided on the upper edge portion of the metal container 20.
  • FIG. 13 is a diagram in which the positive electrode (upper side) and the negative electrode (lower side) are extracted and arranged from the electric storage element B6 according to the fifth embodiment of the present invention.
  • FIG. 14 is a diagram schematically illustrating a connection example of the power storage element B6, assuming a case where the present invention is applied to a cylindrical lithium ion battery element.
  • a plurality (three in this case) of fourth terminals 18A, 18B, and 18C connected to a load are connected to the outer periphery of the negative electrode current collector 15.
  • the main surface of the negative electrode current collector 15 is rectangular, and among the four sides constituting the rectangle, the second terminal 17 is connected to one side portion, and the fourth terminal is connected to the other side portion.
  • the case where 18A, 18B, and 18C are connected is illustrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

この蓄電素子では、表面に活物質層が形成され、厚み方向に並んで配置されたシート状の正極集電体および負極集電体と、正極集電体と前記負極集電体との間に挟まれたセパレータと、正極集電体の外周に接続された第1の端子と、負極集電体の外周に接続された第2の端子と、正極集電体と負極集電体のうち、少なくとも一方の外周に接続された第3の端子と、を備え、厚み方向からの平面視において、第1の端子、第2の端子、第3の端子が、互いに重ならない。

Description

蓄電素子とそれを用いた蓄電池
 本発明は、蓄電素子と、それを用いた蓄電池に関する。
 太陽光発電、風力発電、潮流・潮力発電のような、自然エネルギーを利用した発電では、環境変化による発電電力の変動が避けられない。これらの発電電力を使用する際には、電圧安定化回路を設けて、出力される発電電力を安定化している。
 一方、例えば、夜間、空が曇っているとき、あるいは大気が無風状態、凪状態のとき等には、自然エネルギーによる発電を行うことが難しい。そのため、発電可能なときに、蓄電池を用いて余剰電力を蓄電し、発電が難しいときに、蓄電した余剰電力を使用する等の工夫が行われている。例えば、特許文献1、2には、太陽電池の発電電力を蓄電池に蓄え、それを、撮像カメラ等の機器の駆動電力として活用し、得られた撮影像を監視する屋外監視装置が開示されている。
 この他にも、自然エネルギーによる発電と蓄電を組み合わせ、発電時と非発電時とに関わらず、24時間の電力供給を可能とする電力供給システムが提案されている。この電力供給システムは、トンネル内の照明や空気の浄化等に活用されている。ところが、こうしたシステムは、電圧安定化回路に加えて、蓄電池と給電切り替えのためのスイッチング回路を設ける必要がある。このようなシステムは、コストがかかる。
特開2008-98854号公報 特開2015-64800号公報
 蓄電池に蓄えられた電力は、一定量まで充電した後に使用される。充電しながら使用(放電)しようとすると、放電電圧(出力電圧)が、充電電圧の変動に影響されて変動するためである。仮に、自然エネルギーによる電力を、蓄電池に蓄えると同時に放電しようとすると、充電と放電とで端子が兼用される。その結果、放電電圧は、充電電圧(発電電圧)の変動に影響されて変動する。
 図15は従来のリチウムイオン蓄電素子Aの構成例を示すものである。リチウムイオン蓄電素子Aは、両面に正極活物質層2が形成された正極集電体1と、両面に負極活物質層5が形成された負極集電体4とを、セパレータ7を介挿して重ね合わせた構造を有する。正極集電体1および正極活物質層2は正極を構成し、負極集電体4および負極活物質層5は負極を構成する。正極集電体1の正極活物質層2が形成されていない端部領域の左端には正極端子3が設けられ、負極集電体4の負極活物質層5が形成されていない端部領域の右端には負極端子6が設けられている。図16は、正極、セパレータ、負極を重ね合わせた後に、負極側から見た構成を模式的に示す図である。このようなリチウムイオン蓄電素子Aを、セパレータを介挿しつつ、多数重ね合わせる。重ね合わせた素子を電解液と共に、電池容器に収納し、封止することで、蓄電池が製作される。
 正極端子3は発電装置等の電源8および負荷9に接続され、負極端子6は切り替えスイッチ10に接続される。スイッチ10の二つの端子は電源8および負荷9にそれぞれ接続される。スイッチ10を電源8側に接続すれば電源8の電力により蓄電素子Aが充電され、スイッチ10を負荷9側に接続すれば蓄電素子Aから放電され負荷9に給電される。
 このように、従来の蓄電素子Aは、スイッチ10により充電と放電を切り替えて行うように構成されている。仮に、スイッチ10を省略して充電と放電とを同時に行えるようにした場合は、負荷9が直接、電源8の電力変動の影響を受けることになる。
 本発明は上記事情を鑑みて為されたものであり、コストを大幅に増大する必要のない簡単な構成からなり、充電中であっても、電圧変動を抑えた放電を行うことができる蓄電素子、および、それを用いた蓄電池を提供することを目的とする。
[1]本発明の一態様に係る蓄電素子は、表面に活物質層が形成され、厚み方向に並んで配置されたシート状の正極集電体および負極集電体と、前記正極集電体と前記負極集電体との間に挟まれたセパレータと、前記正極集電体の外周に接続された第1の端子と、前記負極集電体の外周に接続された第2の端子と、前記正極集電体と前記負極集電体のうち、少なくとも一方の外周に接続された第3の端子と、を備え、前記厚み方向からの平面視において、前記第1の端子、前記第2の端子、前記第3の端子が、互いに重ならないことを特徴とする蓄電素子。
[2]上記[1]に記載の蓄電素子において、前記正極集電体および前記負極集電体の主面が、それぞれ矩形の形状をなし、前記矩形を構成する四辺のうち、前記第3の端子が設けられている辺の部分に、前記第1の端子、前記第2の端子のいずれも設けられていないことが好ましい。
[3]上記[1]に記載の蓄電素子において、前記第3の端子と、前記第3端子が接続する前記正極集電体または前記負極集電体に接続された前記第1の端子または前記第2の端子とは、所定の距離以上離れて接続されており、前記所定の距離は、2つの端子間において前記活物質層が0.1mm幅で剥離した場合においても、活物質層が形成されている領域の抵抗R1と、活物質層が形成されていない領域の抵抗R1’との比率R1/R1’が、1以下となるように調整されていることが好ましい。
[4]上記[1]~[3]のいずれか一つに記載の蓄電素子において、前記正極集電体と前記負極集電体のうち、一方の外周に前記第3の端子が接続され、他方の外周に第4の端子が接続され、前記平面視において、前記第4の端子が、前記第1の端子、前記第2の端子、前記第3の端子と重ならないことが好ましい。
[5]上記[4]に記載の蓄電素子において、前記第4の端子と、前記第4端子が接続する前記正極集電体または前記負極集電体に接続された前記第1の端子または前記第2の端子とは、所定の距離以上離れて接続されており、前記所定の距離は、2つの端子間において前記活物質層が0.1mm幅で剥離した場合においても、活物質層が形成されている領域の抵抗R2と、活物質層が形成されていない領域の抵抗R2’との比率R2/R2’が、1以下となるように調整されていることが好ましい。
[6]本発明の一態様に係る蓄電池は、電池容器に、電解質とともに、上記[1]~[3]のいずれか一つに記載の蓄電素子を複数個収納し、複数の前記第1の端子、複数の前記第2の端子、および複数の前記第3の端子が、それぞれ群を形成して、前記電池容器の外に引き出されている。
[7]本発明の他の一態様に係る蓄電池は、電池容器に、電解質とともに、上記[4]または[5]のいずれかに記載の蓄電素子を複数個収納し、複数の前記第1の端子、複数の前記第2の端子、複数の前記第3の端子、および複数の前記第4の素子が、それぞれ群を形成して、前記電池容器の外に引き出されている。
 本発明の蓄電素子、および、それを用いた蓄電池は、コストを大幅に増大する必要のない簡単な構成からなり、充電中であっても、電圧変動を抑えた放電を行うことができる。
本発明の第一実施形態に係る蓄電素子から、正極と負極を抜き出して並べた図である。 本発明の第一実施形態に係る蓄電素子の構成を、模式的に示す図である。 図2の蓄電素子を含む蓄電池の構成を、模式的に示す図である。 図2の蓄電素子を含む蓄電池の構成を、模式的に示す図である。 本発明の第二実施形態に係る蓄電素子から、正極と負極を抜き出して並べた図である。 本発明の第二実施形態に係る蓄電素子の構成を、模式的に示す図である。 本発明の第三実施形態に係る蓄電素子から、正極と負極を抜き出して並べた図である。 本発明の第三実施形態に係る蓄電素子の構成を、模式的に示す図である。 本発明の第四実施形態に係る蓄電素子から、正極と負極を抜き出して並べた図である。 本発明の第四実施形態に係る蓄電素子の構成を、模式的に示す図である。 本発明の第五実施形態に係る蓄電素子から、正極と負極を抜き出して並べた図である。 本発明の第五実施形態に係る蓄電素子の構成を、模式的に示す図である。 図11の蓄電素子を含む蓄電池の構成を、模式的に示す図である。 本発明の第六実施形態に係る蓄電素子から、正極と負極を抜き出して並べた図である。 本発明の第六実施形態に係る蓄電素子の構成を、模式的に示す図である。 従来の蓄電素子から、正極と負極を抜き出して並べた図である。 従来の蓄電素子の構成を、模式的に示す図である。
 以下、本発明を適用した実施形態に係る蓄電素子について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴を分かりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
<第一実施形態>
 図1は、本発明の第一実施形態に係る蓄電素子B1から、正極(左側)と負極(右側)を抜き出して並べた図である。図2は、リチウムイオン電池素子に適用する場合を想定し、組み立てた蓄電素子B1の構成を、一例として模式的に示す図である。
 蓄電素子B1は、厚み方向に並んで配置されたシート状の正極集電体11および負極集電体15と、正極集電体11と負極集電体15との間に挟まれたセパレータ(不図示)と、3つの電極端子(第1の端子13、第2の端子17、第3の端子14)と、を備えている。
 正極集電体11、負極集電体15の表面(好ましくは主面の全体)に、それぞれ、正極活物質層12、負極活物質層16が形成されている。蓄電素子B1において、正極は、正極集電体11と正極活物質層12とで構成され、負極は、負極集電体15、負極活物質層16とで構成されている。
 第1の端子(正極端子)13は、正極集電体11の外周(ここでは、左上端部)に接続されている。第2の端子(負極端子)17は、負極集電体15の外周(右上端部)に接続されている。第3の端子14は、正極集電体11と負極集電体15のうち、少なくとも一方の外周(ここでは、正極集電体11の右下端部)に接続されている。
 第1の端子13、第2の端子17、第3の端子14は、正極集電体11、負極集電体15の厚み方向からの平面視において、互いに重ならないように設けられている。第3の端子14は、厚み方向からの平面視において、正極集電体11と負極集電体15の中心同士を結ぶ中心軸Cの周りに、第1の端子13または第2の端子17と軸対称となるように配置されていることが好ましい。
 正極活物質層12を構成する活物質としては、例えば、スピネル構造、オリビン構造、ペロブスカイト構造を有し、リチウムイオンの含有量によって結晶構造が変化しないものを用いることが好ましい。過充電又は過放電時にも結晶構造が維持され、安全性が高まる。また、負極活物質層16を構成する活物質としては、カーボン、グラファイト、等の炭素材料、スピネル構造を有するLTO(リチウムチタン酸化物LiTi12)等のように、電池の過電圧状態になっても発煙・発火しない活物質を用いることができる。
 図2に示すように、本実施形態の蓄電素子B1では、第1の端子13と第2の端子17とが、切り替えスイッチを介することなく発電装置等の電源8に接続される。また、蓄電素子B1では、第2の端子17と第3の端子14とが、切り替えスイッチを介することなく負荷9に接続される。つまり、蓄電素子B1では、電源8が接続された充電回路、負荷9が接続された放電回路の両方を、同時に導通させた状態を実現することができる。従って、蓄電素子B1は、電源8により、正極端子13および負極端子17を通じて充電が行われている間、同時に、負極端子17および第3の端子14を通じて、負荷9に対して放電(給電)を行うことができる。
 蓄電素子B1では、電源8の供給電圧(充電電圧)に変動があっても、負荷9への供給電圧(放電電圧)は安定に保たれる。これは、第1の端子13と第3の端子14との間に活物質層(ここでは正極活物質層12)が介在しており、そこで電圧変動が減衰されるためである。
 蓄電素子B1の正極の電位は、正極活物質12中に含まれる伝導イオン(リチウムイオン)の含有量によって変動する。つまり、蓄電素子B1の正極の電位は、外部からの充電電圧によらず、伝導イオンの移動量に律速される。すなわち、第1の端子13における充電電圧に変動があっても、電圧変動は、正極活物質12中における伝導イオンの移動を介して伝搬する間に減衰する。その結果、第3の端子14に至る電圧変動は抑えられ、放電電圧が一定になる。
 また当該電極電位は、蓄電素子B1のインピーダンスと電源8のインピーダンスの差にも依存する。電源8のインピーダンスは、蓄電素子B1のインピーダンスより高いことが好ましい。細い配線を介して供給される充電電圧の変動量は、十分広い領域を有する蓄電素子B1において緩和される。
 本実施形態では、電荷入力用と電荷出力用とで独立した(別々の)電極端子を設けている。そのため、電荷入力用の電極端子において入力される変動電圧、変動電流は、活物質層内のリチウムイオンがアノードに移動する際に緩和し、独立した電荷出力用の電極端子からは、変動電圧、変動電流の影響を受けない真の電圧として出力される。この構造により、発電電流が微小であっても入力端子から充電を行うことが可能となり、出力端子からは、電圧変動の極めて少ない電流を供給することが可能となる。
 蓄電素子B1は、その充電状態によって正負極の電位差が変化する。この電位差の変動範囲は、使用する活物質の種類によって異なる。例えば、正極にマンガン酸リチウム、負極にグラファイトを使った場合、電位差の変動範囲は概ね3V~4.2Vとなる。初期の端子間電圧が3Vで、入力端子に3.5Vの電圧が印加された場合、蓄電素子B1は、ゆっくりと充電され、出力端子電圧は3Vから3.5Vまでゆっくりと上昇し、3.5Vで一定電圧になる。正極にマンガン酸リチウムを用いた蓄電素子B1は、結晶構造が安定であるため、入力した電流量と同量の電流を、出力端子から出力することができる。
 正極集電体11および負極集電体15の主面は、それぞれ矩形の形状をなすことが好ましく、互いに同程度の面積であればより好ましい。また、上記平面視において、第1の端子13、第2の端子17、第3の端子14は、互いに離間していることが好ましい。例えば、図1、2に示すように、正極集電体11と負極集電体15の主面が矩形である場合、矩形を構成する四辺のうち、第3の端子14が設けられている辺と異なる辺に、第1の端子13及び第2の端子17が接続されていることが好ましい。
 図1、2では、第1の端子13、第3の端子14が、それぞれ、正極集電体11の矩形の主面において、対角線上の2つの頂点近傍に設けられている場合について例示している。しかしながら、第1の端子13、第3の端子14は、当該主面に垂直な方向からの平面視において、重なっていなければよい。例えば、正極集電体11の矩形の主面において、同一辺上の2つの頂点近傍に設けられていてもよい。
 なお、本実施形態では、第3の端子14が正極集電体11の外周に接続されている場合について例示しているが、第3の端子14は、負極集電体15の外周に接続されていてもよい。その場合には、第1の端子13および第2の端子17が電源8に接続され、第1の端子13および第3の端子14が負荷9に接続される。ただし、第1の端子13、第3の端子14の位置関係の制限については、正極集電体11の外周に接続されている場合と同様である。
 蓄電池は、求められる容量に応じて必要な個数(複数個)の蓄電素子B1を、電解質液または固体電解質とともに電池容器に収納する。電池容器を封止することによって蓄電池が形成される。複数の第1の端子13、複数の第2の端子17、および複数の第3の端子14は、それぞれ群を形成して、少なくとも一部(先端部)が電池容器の外に引き出されている。
 図3A、3Bは、それぞれ、図2の蓄電素子B1を含むラミネート型蓄電池の構成例を、模式的に示す分解図である。図3Aでは、ラミネート型蓄電池を構成する正極集電体11、負極集電体15、セパレータ7の各層を分離し、積層される順に並べて示している。図3Bでは、ラミネート型蓄電池を構成するラミネートフィルム19A、19Bの各層を分離し、並べて示している。
 蓄電素子B1は、複数個の正極集電体11、負極集電体15の層を、図3Aに示すように、セパレータ7を介挿しつつ交互に積層して(重ね合わせて)なる。積層した蓄電素子B1の最上層、最下層を、図5(B)に示すアルミニウム製ラミネートフィルム19A、19Bで覆い、電解質液とともに電池容器に収納し、この電池容器を封止することによって、ラミネート型蓄電池を得ることができる。
 以上のように、本実施形態に係る蓄電素子B1では、電極端子を3つとする簡単な構成によって、充電用の回路と放電用の回路が別々に形成されている。2つの回路の間には活物質層が介在しているため、充電用の回路から入力される電圧が変動しても、活物質層での整流作用により、その変動が放電用の回路での出力電圧に及ぼす影響を低く抑えることができる。したがって、本実施形態に係る蓄電素子B1、および、それを用いた蓄電池は、コストを大幅に増大する必要のない簡単な構成からなり、充電中であっても、電圧変動を抑えた安定した放電を行うことができる。
 例えば、本実施形態に係る蓄電素子B1および蓄電池を、自然エネルギーによる発電と蓄電を組み合わせた電力供給システムに適用した場合、電圧安定化回路や給電切り替えのためのスイッチング回路が不要となり、システムを安価に構成にすることができるようになる。
 なお、本実施形態に係る蓄電素子B1および蓄電池は、発電電圧を所望の電圧に調整するためのコンバーター、インバーターの使用を排除するものではない。また、蓄電対象としては、太陽光発電、風力発電、潮流・潮力発電のような自然エネルギー発電に限られることはなく、供給電圧が変動する電源であれば、いずれも含まれる。
<第二実施形態>
 図4は、本発明の第二実施形態に係る蓄電素子B2から、正極(左側)と負極(右側)を抜き出して並べた図である。図5は、リチウムイオン電池素子に適用する場合を想定し、組み立てた蓄電素子B2の構成を、一例として模式的に示す図である。
 本実施形態では、正極集電体11と負極集電体15のうち、一方の外周に第3の端子14が接続され、他方の外周に第4の端子18が接続されている。正極集電体11、負極集電体15の厚み方向からの平面視において、第4の端子18は、第1の端子13、第2の端子17、第3の端子14と重ならないように設けられている。
 その他の構成は、第一実施形態の構成と同様であり、第一実施形態と対応する箇所については、形状の違いによらず、同じ符号で示している。本実施形態では、少なくとも第一実施形態と同様の効果を得ることができる。
 図4、5では、第1の端子13、第2の端子17、第3の端子14、第4の端子18が、それぞれ正極集電体11または負極集電体15の矩形の主面において、4つの頂点近傍に接続されている場合について例示している。第1の端子13、第3の端子14は、それぞれ、正極集電体11の矩形の主面において、対角線上の2つの頂点近傍に接続されている。第2の端子17、第4の端子18は、それぞれ、負極集電体15の矩形の主面において、対角線上の2つの頂点近傍に接続されている。正極端子13および負極端子17は、電源8に接続され、第3の端子14および第4の端子18は負荷9に接続されている。
 なお、第1の端子13、第2の端子17、第3の端子14、第4の端子18は、当該主面に垂直な方向からの平面視において、重なっていなければよく、図4、5での配置に限定されることはない。
 図5には、電源8、負荷9を接続するための回路を二通り例示している。実線で示す回路では、第1の端子13および第2の端子17が電源8に接続され、第3の端子14および第4の端子18が負荷9に接続されている。破線で示す回路では、第1の端子13および第4の端子18が電源8に接続され、第3の端子14および第2の端子17が負荷9に接続されている。いずれの回路を用いても、同様の作用効果が得られる。
 第一実施形態では、電源8に接続される2端子のうち一方が、負荷9に接続される2端子のうち一方と共通する端子になっている。これに対し、本実施形態では、電源8に接続される2端子、負荷9に接続される2端子が完全に別端子となっており、電源8の電力変動の影響が負荷9に及ぶのを、より抑えることができる。
 蓄電池は、求められる容量に応じて必要な個数(複数個)の蓄電素子B2を、電解質液または固体電解質とともに電池容器に収納し、その電池容器を封止することによって形成される。複数の第1の端子13、複数の第2の端子17、複数の第3の端子14、複数の第4の端子18は、それぞれ群を形成して、少なくとも一部(先端部)が電池容器の外に引き出されている。
<第三実施形態>
 図6は、本発明の第三実施形態に係る蓄電素子B3から、正極(左側)と負極(右側)を抜き出して並べた図である。図7は、リチウムイオン電池素子に適用する場合を想定し、組み立てた蓄電素子B3の構成を、一例として模式的に示す図である。
 本実施形態では、正極集電体11、負極集電体15の主面が矩形であって、矩形を構成する四辺のうち、第1の端子13が設けられている辺、あるいは第2の端子17が設けられている辺と、同じ辺の部分に第3の端子14が設けられている。図6、7では、正極集電体11の外周において、同じ辺(上側の辺)の一端(左端)に第1の端子13が接続され、他端(右端)に第3の端子14が接続されている場合について例示している。
 その他の構成は、第一実施形態の構成と同様であり、第一実施形態と対応する箇所については、形状の違いによらず、同じ符号で示している。本実施形態では、少なくとも第一実施形態と同様の効果を得ることができる。
 剥離等の発生により、活物質層のノイズ吸収能力が低下している場合、入力端子(第1の端子13または第2の端子17)と出力端子(第3の端子14)との離間距離が短いと、負荷9に対する電源8の電力変動(ノイズ電流)の影響が及ぶ場合がある。ノイズレベルを減衰させ、活物質層による放電電圧をより安定化させるためには、入力端子と出力端子は、互いに十分離間して設けられることが好ましい。
 入力端子と出力端子との好適な離間距離は、所定の距離以上離れていることが好ましい。入力端子と出力端子とが同一辺に形成されている場合、それらの間の活物質層が剥離する場合がある。活物質層が剥離した場合でも、電力変動(ノイズ電流)を十分抑制できることが好ましい。
ノイズ吸収能力は、端子間の活物質層が形成されている領域の抵抗R1と、活物質層が形成されていない領域(活物質層非形成領域)の抵抗R1’との比率R1/R1’として定義される。抵抗R1は、活物質層の内部抵抗と集電体(金属)の内部抵抗との合成抵抗である。抵抗R1’は、ρ’×L’/A’で求められる。ここでρ’は集電体(正極集電体11または負極集電体15)の比抵抗であり、L’は活物質層が剥離し、露出した集電体を経由する端子間の長さであり、Aは露出した集電体の断面積である。Aは、活物質層の露出幅によって変動する。
 入力電流の伝搬に活物質層を介在させる上で、活物質層内を流れる電流量が大きくなることが好ましい。活物質層形成領域の抵抗R1を、活物質層非形成領域の抵抗R1’よりも大きくする必要がある。そこで、2つの端子間において活物質層が0.1mm幅で剥離した場合においても、ノイズ吸収能力R1/R1’は、1以下であれば好ましく、0.2以下であればより好ましい。なお、ここで活物質が剥離した幅とは、2つの端子が接続された辺と直交する方向の幅を意味する。
 例えば、集電体がアルミニウム(体積抵抗率が2.8μΩcm)からなり、集電体の厚さが20μm、電極枚数(正極と負極の合計枚数)が30枚、入出力端子間における活物質層非形成領域の幅が1mmである場合、入出力端子間の抵抗は4.7mΩとなり、ノイズレベルが約30%に減衰する。活物質層非形成領域の幅を2mmとした場合、ノイズレベルは約20%に減衰する。活物質層非形成領域の幅を4mmとした場合、ノイズレベルは約10%に減衰する。
 なお、第1の端子13が設けられている辺、あるいは第2の端子17が設けられている辺と、同じ辺に第4の端子18が設けられている場合にも、第3の端子14の場合と同様に、比率R2/R2’を定義することができる。R2/R2’は、1以下であれば好ましく、0.2以下であればより好ましい。ここでも、R2は端子間の活物質層が形成されている領域の抵抗であり、R2’活物質層が形成されていない領域(活物質層非形成領域)の抵抗である。
<第四実施形態>
 図8は、本発明の第四実施形態に係る蓄電素子B4から、正極(上側)と負極(下側)を抜き出して並べた図である。図9は、リチウムイオン電池素子に適用する場合を想定し、組み立てた蓄電素子B4の構成を、一例として模式的に示す図である。
 本実施形態では、正極集電体11の外周に、電源に接続する複数(ここでは2つ)の第1の端子13A、13B、および、負荷に接続する1つの第3の端子14が接続されている。そして、負極集電体15の外周には、電源に接続する第2の端子17、と負荷に接続する第4の端子18が接続されている。ここでは、正極集電体11の主面が矩形であって、矩形を構成する四辺のうち、一つの辺の部分に第1の端子13A、13Bが設けられ、他の辺の部分に第3の端子14が設けられている場合について例示している。また、負極集電体15の主面が矩形であって、矩形を構成する四辺のうち、一つの辺の部分に第2の端子17が設けられ、他の辺の部分に第4の端子18が設けられている場合について例示している。
 第1の端子13Aおよび第2の端子17は、第1の電源8Aに接続され、第1の端子13Bおよび第2の端子17は、第2の電源8Bに接続され、さらに、第3の端子14および第4の端子18は、負荷9に接続されている。
 図9に示すように、正極集電体11、負極集電体15の厚み方向からの平面視において、第3の端子14は、第1の端子13A、13B、第2の端子17、第4の端子18と、互いに重ならないように設けられている。
 その他の構成は、第一実施形態の構成と同様であり、第一実施形態と対応する箇所については、形状の違いによらず、同じ符号で示している。本実施形態では、少なくとも第一実施形態と同様の効果を得ることができる。
<第五実施形態>
 図10は、本発明の第五実施形態に係る蓄電素子B5から、正極(上側)と負極(下側)を抜き出して並べた図である。図11は、円筒型のリチウムイオン電池素子に適用する場合を想定し、組み立てた蓄電素子B5の構成を、一例として模式的に示す図である。
 本実施形態では、正極集電体11の外周に、電源に接続する複数(ここでは3つ)の第1の端子13A、13B、13C、および負荷に接続する複数(ここでは3つ)の第3の端子14A、14B、14Cが接続されている。そして、負極集電体15の外周には、複数(ここでは3つ)の第2の端子17A、17B、17Cが接続されている。ここでは、正極集電体11の主面が矩形であって、矩形を構成する四辺のうち、一つの辺の部分に第1の端子13A、13B、13Cが設けられ、他の辺の部分に第3の端子14A、14B、14Cが設けられている場合について例示している。また、負極集電体15の主面が矩形であって、矩形を構成する四辺のうち、一つの辺の部分に第2の端子17A、17B、17Cが設けられている場合について例示している。
 第1の端子13A、13B、13Cが電源8の一端に並列接続され、第2の端子17A、17B、17Cが電源8の他端に並列接続されている。また、第3の端子14A、14B、14Cが負荷9の一端に並列接続され、第2端子17A、17B、17Cが負荷の他端に並列接続されている。なお、第3の端子14A、14B、14Cは、負極集電体15に設けられていてもよく、その場合には、負荷の他端に第1の端子13A、13B、13Cが並列接続される。
 図11に示すように、正極集電体11、負極集電体15の厚み方向からの平面視において、第3の端子14A、14B、14Cは、第1の端子13A、13B、13C、第2の端子17A、17B、17Cと、互いに重ならないように設けられている。
 その他の構成は、第一実施形態の構成と同様であり、第一実施形態と対応する箇所については、形状の違いによらず、同じ符号で示している。本実施形態では、少なくとも第一実施形態と同様の効果を得ることができる。
 図12は、図11の蓄電素子B5を含む円筒型乾電池の構成を、模式的に示す図である。円筒型蓄電池は、内側が正極集電体11、外側が負極集電体15となるように、ロール状に巻回している。巻回した巻回体の最外周はセパレータ7で保護されている。巻回体の巻き回軸方向の両端は絶縁体21で挟まれている。これらは、円筒状の金属製容器20に収納されている。
 第1の端子13(13A、13B、13C)は、金属製容器20の上部に設けられたリング状接続部22に対し、絶縁性リング25を介して取り付けられた正極キャップに接続されている。第2の端子17(17A、17B、17C)は、金属製容器20の底部に接続されている。第3の端子14は、金属製容器20の上縁部に設けられた絶縁性リング23を介して取り付けられたリング状接続部に接続されている。
<第六実施形態>
 図13は、本発明の第五実施形態に係る蓄電素子B6から、正極(上側)と負極(下側)を抜き出して並べた図である。図14は、円筒型のリチウムイオン電池素子に適用する場合を想定し、蓄電素子B6の接続例を模式的に示す図である。
 本実施形態では、負極集電体15の外周に、負荷に接続される複数(ここでは3つ)の第4の端子18A、18B、18Cが接続されている。ここでは、負極集電体15の主面は矩形であって、矩形を構成する四辺のうち、一つの辺の部分に第2の端子17が接続され、他の辺の部分に第4の端子18A、18B、18Cが接続されている場合について例示している。
 その他の構成は、第五実施形態の構成と同様であり、第五実施形態と対応する箇所については、形状の違いによらず、同じ符号で示している。本実施形態では、少なくとも第五実施形態と同様の効果を得ることができる。
8・・・電源
9・・・負荷
10・・・スイッチ
1、11・・・正極集電体
2、12・・・正極活物質層
3、13、13A、13B、13C・・・第1の端子(正極端子)
14、14A、14B、14C・・・第3の端子
4、15・・・負極集電体
5、16・・・負極活物質層
6、17、17A、17B、17C・・・第2の端子(負極端子)
7・・・セパレータ
18、18A、18B、18C・・・第4の端子
19A、19B・・・ラミネートフィルム
20・・・金属製容器
21・・・絶縁体
22・・・リング状接続部
23・・・絶縁性リング
24・・・正極キャップ
25・・・絶縁性リング
A、B1、B2、B3、B4、B5、B6・・・蓄電素子
C・・・中心軸

Claims (7)

  1.  表面に活物質層が形成され、厚み方向に並んで配置されたシート状の正極集電体および負極集電体と、
     前記正極集電体と前記負極集電体との間に挟まれたセパレータと、
     前記正極集電体の外周に接続された第1の端子と、
     前記負極集電体の外周に接続された第2の端子と、
     前記正極集電体と前記負極集電体のうち、少なくとも一方の外周に接続された第3の端子と、を備え、
     前記厚み方向からの平面視において、前記第1の端子、前記第2の端子、前記第3の端子が、互いに重ならないことを特徴とする蓄電素子。
  2.  前記正極集電体および前記負極集電体の主面が、それぞれ矩形の形状をなし、
     前記矩形を構成する四辺のうち、前記第3の端子が設けられている辺と異なる辺に、前記第1の端子及び前記第2の端子が設けられていることを特徴とする請求項1に記載の蓄電素子。
  3.  前記第3の端子と、前記第3端子が接続する前記正極集電体または前記負極集電体に接続された前記第1の端子または前記第2の端子とは、所定の距離以上離れて接続されており、
    前記所定の距離は、2つの端子間において前記活物質層が0.1mm幅で剥離した場合においても、活物質層が形成されている領域の抵抗R1と、活物質層が形成されていない領域の抵抗R1’との比率R1/R1’が、1以下となるように調整されていることを特徴とする請求項1に記載の蓄電素子。
  4.  前記正極集電体と前記負極集電体のうち、一方の外周に前記第3の端子が接続され、他方の外周に第4の端子が接続され、
     前記平面視において、前記第4の端子が、前記第1の端子、前記第2の端子、前記第3の端子と重ならないことを特徴とする請求項1~3のいずれか一項に記載の蓄電素子。
  5.  前記第4の端子と、前記第4端子が接続する前記正極集電体または前記負極集電体に接続された前記第1の端子または前記第2の端子とは、所定の距離以上離れて接続されており、
    前記所定の距離は、2つの端子間において前記活物質層が0.1mm幅で剥離した場合においても、活物質層が形成されている領域の抵抗R2と、活物質層が形成されていない領域の抵抗R2’との比率R2/R2’が、1以下となるように調整されていることを特徴とする請求項4に記載の蓄電素子。
  6.  電池容器に、電解質とともに、請求項1~3のいずれか一項に記載の蓄電素子を複数個収納し、
     複数の前記第1の端子、複数の前記第2の端子、および複数の前記第3の端子が、それぞれ群を形成して、前記電池容器の外に引き出されていることを特徴とする蓄電池。
  7.  電池容器に、電解質とともに、請求項4または5のいずれかに記載の蓄電素子を複数個収納し、
     複数の前記第1の端子、複数の前記第2の端子、複数の前記第3の端子、および複数の前記第4の素子が、それぞれ群を形成して、前記電池容器の外に引き出されていることを特徴とする蓄電池。
PCT/JP2018/022805 2018-06-14 2018-06-14 蓄電素子とそれを用いた蓄電池 WO2019239560A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2018/022805 WO2019239560A1 (ja) 2018-06-14 2018-06-14 蓄電素子とそれを用いた蓄電池
CN201980004184.XA CN112204812A (zh) 2018-06-14 2019-06-12 蓄电元件、蓄电池及蓄放电系统
US16/644,580 US20210098793A1 (en) 2018-06-14 2019-06-12 Power storage element, power storage cell, and power storage and discharge system
KR1020207004015A KR20210019396A (ko) 2018-06-14 2019-06-12 축전 소자, 축전지 및 축방전 시스템
JP2020525626A JP7072925B2 (ja) 2018-06-14 2019-06-12 蓄電素子、蓄電池及び蓄放電システム
PCT/JP2019/023319 WO2019240183A1 (ja) 2018-06-14 2019-06-12 蓄電素子、蓄電池及び蓄放電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/022805 WO2019239560A1 (ja) 2018-06-14 2018-06-14 蓄電素子とそれを用いた蓄電池

Publications (1)

Publication Number Publication Date
WO2019239560A1 true WO2019239560A1 (ja) 2019-12-19

Family

ID=68842960

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/022805 WO2019239560A1 (ja) 2018-06-14 2018-06-14 蓄電素子とそれを用いた蓄電池
PCT/JP2019/023319 WO2019240183A1 (ja) 2018-06-14 2019-06-12 蓄電素子、蓄電池及び蓄放電システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023319 WO2019240183A1 (ja) 2018-06-14 2019-06-12 蓄電素子、蓄電池及び蓄放電システム

Country Status (5)

Country Link
US (1) US20210098793A1 (ja)
JP (1) JP7072925B2 (ja)
KR (1) KR20210019396A (ja)
CN (1) CN112204812A (ja)
WO (2) WO2019239560A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980177B (zh) * 2019-03-29 2021-10-22 东莞新能安科技有限公司 电极极片和包含所述电极极片的电化学装置
CN110010902A (zh) 2019-03-29 2019-07-12 宁德新能源科技有限公司 电极极片和包含所述电极极片的电化学装置
WO2024225439A1 (ja) * 2023-04-28 2024-10-31 興和株式会社 蓄放電システム、及び蓄電素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233201A (ja) * 1997-02-17 1998-09-02 Sanyo Electric Co Ltd 角型蓄電池
WO2011099620A1 (ja) * 2010-02-15 2011-08-18 三菱重工業株式会社 二次電池および二次電池製造装置
JP2012204305A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 電池セル
JP2017107869A (ja) * 2009-11-30 2017-06-15 楊 泰和 蓄電及び給電装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167188A (ja) * 1997-08-22 1999-03-09 Japan Storage Battery Co Ltd 二次電池用リード端子及びリチウム二次電池
JP2001319839A (ja) * 2000-05-11 2001-11-16 Nobuo Ashitachi 大容量コンデンサ
JP2002289168A (ja) * 2001-03-27 2002-10-04 Shin Kobe Electric Mach Co Ltd 制御弁式鉛蓄電池
US6806679B2 (en) * 2001-06-20 2004-10-19 Tai-Her Yang Low internal impedance current pool for a charging/discharging device
WO2007042892A1 (en) * 2005-10-12 2007-04-19 Jan Petrus Human Electrical storage device
CN2916941Y (zh) * 2006-03-02 2007-06-27 夏伟绩 双极耳蓄电池
JP4928215B2 (ja) 2006-10-10 2012-05-09 ジオ・システムズ株式会社 屋外監視装置及び映像監視システム
AP2009004899A0 (en) * 2006-12-21 2009-06-30 Human Jan Petrus Electrical storage device
KR20130091031A (ko) * 2012-02-07 2013-08-16 에스케이이노베이션 주식회사 배터리 셀
JP6340536B2 (ja) 2013-09-25 2018-06-13 株式会社 シリコンプラス 自立型監視カメラ
PL2899769T3 (pl) * 2013-11-27 2019-09-30 Lg Chem, Ltd. Kieszeń od akumulatora i akumulator ją zawierający
CN107666006A (zh) * 2016-07-28 2018-02-06 华为技术有限公司 一种多极耳电池及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233201A (ja) * 1997-02-17 1998-09-02 Sanyo Electric Co Ltd 角型蓄電池
JP2017107869A (ja) * 2009-11-30 2017-06-15 楊 泰和 蓄電及び給電装置
WO2011099620A1 (ja) * 2010-02-15 2011-08-18 三菱重工業株式会社 二次電池および二次電池製造装置
JP2012204305A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 電池セル

Also Published As

Publication number Publication date
US20210098793A1 (en) 2021-04-01
JPWO2019240183A1 (ja) 2021-07-15
CN112204812A (zh) 2021-01-08
JP7072925B2 (ja) 2022-05-23
KR20210019396A (ko) 2021-02-22
WO2019240183A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
KR101684283B1 (ko) 젤리롤형 전극 조립체
JP5618010B2 (ja) 多方向性リード−タブ構造を有するリチウム二次電池
TWI535090B (zh) Secondary battery
US11121439B2 (en) Secondary battery
KR20130118716A (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
JP2004158222A (ja) 多層積層電池
TWI546997B (zh) Lithium ion secondary battery
KR20130133640A (ko) 코너부 형상이 다양한 단차를 갖는 전극 조립체, 이를 포함하는 전지셀, 전지팩 및 디바이스
KR20140132323A (ko) 전극탭 접합성이 우수한 전극 조립체, 이를 포함하는 전지셀, 디바이스 및 이의 제조방법
JP2000100471A (ja) シート電池
JP7072925B2 (ja) 蓄電素子、蓄電池及び蓄放電システム
JP7312970B2 (ja) 電池
WO2006113924A3 (en) Safer high energy battery
CN108023112A (zh) 二次电池
CN113795939B (zh) 电极组件及电芯
JP2005267886A (ja) 二次電池
JPWO2019240183A5 (ja)
JP2000195495A (ja) シ―ト電池
US11189889B2 (en) Rechargeable battery
KR20130131843A (ko) 신규한 이차전지용 전극 분리막 조립체 및 이의 제조방법
KR20140017766A (ko) 이차 전지
KR101416805B1 (ko) 폴딩 셀 및 그를 갖는 폴딩형 슈퍼 커패시터
JPH0963630A (ja) 電気蓄積素子、電気蓄積装置および電気蓄積素子の製造方法
JP2004031269A (ja) 二次電池
WO2018154926A1 (ja) 蓄電シート及び電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18922892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP