WO2019235128A1 - リチウムイオン電池用電極、リチウムイオン電池用電極スラリー、リチウムイオン電池用電極の製造方法およびリチウムイオン電池 - Google Patents
リチウムイオン電池用電極、リチウムイオン電池用電極スラリー、リチウムイオン電池用電極の製造方法およびリチウムイオン電池 Download PDFInfo
- Publication number
- WO2019235128A1 WO2019235128A1 PCT/JP2019/018580 JP2019018580W WO2019235128A1 WO 2019235128 A1 WO2019235128 A1 WO 2019235128A1 JP 2019018580 W JP2019018580 W JP 2019018580W WO 2019235128 A1 WO2019235128 A1 WO 2019235128A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- lithium ion
- ion battery
- active material
- thickener
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 161
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 161
- 239000011267 electrode slurry Substances 0.000 title claims description 166
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 239000007772 electrode material Substances 0.000 claims abstract description 138
- 239000002562 thickening agent Substances 0.000 claims abstract description 120
- 229920005989 resin Polymers 0.000 claims abstract description 79
- 239000011347 resin Substances 0.000 claims abstract description 79
- 239000011230 binding agent Substances 0.000 claims abstract description 73
- 239000004373 Pullulan Substances 0.000 claims abstract description 29
- 229920001218 Pullulan Polymers 0.000 claims abstract description 29
- 235000019423 pullulan Nutrition 0.000 claims abstract description 29
- 238000005227 gel permeation chromatography Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 55
- 238000004898 kneading Methods 0.000 claims description 44
- 239000007787 solid Substances 0.000 claims description 31
- 239000012736 aqueous medium Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 239000003575 carbonaceous material Substances 0.000 claims description 19
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 18
- 229920001971 elastomer Polymers 0.000 claims description 16
- 239000005060 rubber Substances 0.000 claims description 16
- 229920002678 cellulose Polymers 0.000 claims description 11
- 239000001913 cellulose Substances 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 229920003169 water-soluble polymer Polymers 0.000 claims description 11
- 238000006266 etherification reaction Methods 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000002482 conductive additive Substances 0.000 claims description 7
- 229920005822 acrylic binder Polymers 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 112
- 238000002156 mixing Methods 0.000 description 52
- 239000000843 powder Substances 0.000 description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 33
- 239000002002 slurry Substances 0.000 description 29
- 239000002243 precursor Substances 0.000 description 25
- 238000002360 preparation method Methods 0.000 description 25
- 238000007580 dry-mixing Methods 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 239000002245 particle Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 17
- 239000007864 aqueous solution Substances 0.000 description 16
- 229910002804 graphite Inorganic materials 0.000 description 15
- 239000010439 graphite Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 14
- 239000011572 manganese Substances 0.000 description 14
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 13
- 239000001768 carboxy methyl cellulose Substances 0.000 description 13
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 13
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 239000000839 emulsion Substances 0.000 description 12
- 239000006228 supernatant Substances 0.000 description 12
- 229910021382 natural graphite Inorganic materials 0.000 description 11
- 239000007773 negative electrode material Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 238000004438 BET method Methods 0.000 description 10
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 238000001179 sorption measurement Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 239000011162 core material Substances 0.000 description 8
- 239000012153 distilled water Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- -1 lithium metals Chemical class 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 239000007774 positive electrode material Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000011780 sodium chloride Substances 0.000 description 7
- 229910021383 artificial graphite Inorganic materials 0.000 description 6
- 239000012752 auxiliary agent Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000005199 ultracentrifugation Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000011269 tar Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 239000007770 graphite material Substances 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000012925 reference material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000007581 slurry coating method Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229910015044 LiB Inorganic materials 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 2
- OHOIHSTWKIMQNC-UHFFFAOYSA-N [Li].[P]=O Chemical compound [Li].[P]=O OHOIHSTWKIMQNC-UHFFFAOYSA-N 0.000 description 2
- ZYXUQEDFWHDILZ-UHFFFAOYSA-N [Ni].[Mn].[Li] Chemical compound [Ni].[Mn].[Li] ZYXUQEDFWHDILZ-UHFFFAOYSA-N 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 239000011300 coal pitch Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 238000010556 emulsion polymerization method Methods 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910021384 soft carbon Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical class O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- LJPCNSSTRWGCMZ-UHFFFAOYSA-N 3-methyloxolane Chemical class CC1CCOC1 LJPCNSSTRWGCMZ-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 101100481033 Arabidopsis thaliana TGA7 gene Proteins 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RLJDSHNOFWICBY-UHFFFAOYSA-N [P]=O.[Fe].[Li] Chemical compound [P]=O.[Fe].[Li] RLJDSHNOFWICBY-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 238000007719 peel strength test Methods 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrode for a lithium ion battery, an electrode slurry for a lithium ion battery, a method for producing an electrode for a lithium ion battery, and a lithium ion battery.
- An electrode used for a lithium ion battery is generally mainly composed of an electrode active material layer and a current collector layer.
- the electrode active material layer can be obtained, for example, by applying an electrode slurry containing an electrode active material, a binder resin, a thickener and the like to the surface of a current collector layer such as a metal foil and drying.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2013-114747 discloses lithium using a negative electrode plate in which a negative electrode mixture paste is applied to at least one surface of a metal foil and then dried to form a negative electrode active material layer.
- a powdered negative electrode active material and a first thickener are kneaded together with a solvent, and after the first kneading Produced by second kneading by adding a second thickener and a solvent to the kneaded product and third kneading by adding a binder to the kneaded product after the second kneading.
- the first thickener is carboxymethylcellulose having a molecular weight of 330,000 or less
- the second thickener is carboxymethylcellulose having a molecular weight of 330,000 or more.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2014-203561
- an electrode active material mixture paste obtained by kneading electrode active material particles together with a kneading solvent is applied to the electrode core material and dried to form the electrode core material on the electrode core material.
- the electrode active material mixture paste includes electrode active material particles and carboxymethyl cellulose, and has a weight average amount Mw of 3.5 million.
- a polydispersity (weight average amount Mw / number average amount Mn) of 6 or more was kneaded with an aqueous solvent (viscosity A at a shear rate of 2 sec ⁇ 1 / shear rate at 40 sec ⁇ 1 ).
- a material having a viscosity B) of 3.8 or more and a viscosity B in the range of 500 to 1500 mPa ⁇ sec is used.
- the electrode active material mixture paste is used, and the opening is the D50 value of the electrode active material particles.
- a method for producing an electrode plate of a non-aqueous electrolyte secondary battery, wherein the electrode plate is applied to the electrode core material through a filter having a D50 value of 4 to 5 times the electrode active material particle or more. has been described.
- the lithium ion battery electrode obtained by the conventional manufacturing method may have low peel strength, and there is room for improvement in the adhesion between the current collector layer and the electrode active material layer. It became clear.
- the peel strength of an electrode for a lithium ion battery is low, the productivity of the electrode or battery is reduced, or the electrode active material layer is powdered off in the process of assembling the battery. As a result, the battery quality deteriorates and the battery cycle characteristics There is a concern that malfunctions may occur.
- the present invention has been made in view of the above circumstances, and provides an electrode for a lithium ion battery excellent in adhesiveness between a current collector layer and an electrode active material layer.
- the present inventors have intensively studied to achieve the above problems.
- the mixture containing the thickener is kneaded under conditions such that the decomposition of the thickener is suppressed, that is, the weight average molecular weight of the thickener contained in the electrode slurry is in a specific range.
- the weight average molecular weight of the resulting electrode slurry and the thickener in the electrode can be maintained at a high value, resulting in excellent adhesion between the current collector layer and the electrode active material layer.
- the inventors have found that an electrode for a lithium ion battery can be obtained and have completed the present invention.
- a current collector layer An electrode active material layer provided on at least one surface of the current collector layer and including an electrode active material, a binder resin, and a thickener;
- a lithium ion battery electrode comprising: An electrode for a lithium ion battery, wherein the weight average molecular weight (Mw) of the thickener extracted from the electrode active material layer, calculated by gel permeation chromatography (GPC) method in terms of pullulan, is 2,000,000 or more.
- Mw weight average molecular weight
- An electrode slurry for a lithium ion battery comprising an electrode active material, a binder resin, a thickener and an aqueous medium
- Mw weight average molecular weight of the thickener extracted from the electrode slurry for lithium ion batteries, calculated in pullulan conversion using a gel permeation chromatography (GPC) method, is 20000 or more.
- GPC gel permeation chromatography
- a current collector layer There is provided an electrode for a lithium ion battery, comprising: an electrode active material layer provided on at least one surface of the current collector layer and composed of a solid content of the electrode slurry for the lithium ion battery.
- a manufacturing method for manufacturing the electrode for a lithium ion battery Including the step of preparing the lithium ion battery electrode slurry,
- the step of preparing the lithium ion battery electrode slurry includes: A step of kneading a mixture containing an electrode active material, a binder resin, and a thickener under a condition such that the weight average molecular weight (Mw) of the thickener, which is calculated in terms of pullulan using the GPC method, is 20000 or more.
- Mw weight average molecular weight
- a lithium ion battery comprising the above electrode for a lithium ion battery.
- an electrode for a lithium ion battery having excellent adhesion between the current collector layer and the electrode active material layer.
- each component schematically shows the shape, size, and arrangement relationship to the extent that the present invention can be understood, and is different from the actual size.
- an electrode active material layer a layer containing an electrode active material
- an electrode active material layer formed on a current collector layer is referred to as an electrode.
- the numerical range “A to B” represents A or more and B or less unless otherwise specified.
- FIG. 1 is a cross-sectional view showing an example of the structure of a lithium ion battery electrode 100 according to an embodiment of the present invention.
- the electrode 100 for a lithium ion battery according to the present embodiment is provided on at least one surface of the current collector layer 101 and the current collector layer 101 and includes an electrode active material, a binder resin, and a thickener.
- the electrode slurry for a lithium ion battery according to the present embodiment includes an electrode active material, a binder resin, a thickener, and an aqueous medium, and is calculated in pullulan conversion using a gel permeation chromatography (GPC) method.
- the thickener extracted from the lithium ion battery electrode slurry has a weight average molecular weight (Mw) of 2,000,000 or more.
- the lithium ion battery electrode 100 according to the present embodiment is provided on at least one surface of the current collector layer 101 and the current collector layer 101, and the lithium ion battery electrode slurry according to the present embodiment.
- a weight of the thickener extracted from the electrode active material layer 103 which is calculated by pullulan conversion using a gel permeation chromatography (GPC) method.
- the average molecular weight (Mw) may be 2,000,000 or more.
- the thickener is dissolved in the electrode slurry and is not in a powder state.
- the lithium ion battery according to this embodiment is a lithium ion primary battery or a lithium ion secondary battery, and preferably a lithium ion secondary battery.
- the weight average molecular weight (Mw) of the thickener extracted from the electrode slurry for a lithium ion battery according to the present embodiment can be measured, for example, by the following procedure. (1) About 12.5 g of electrode slurry is weighed into a volumetric flask, and distilled water is added to make 50 mL. (2) After shaking lightly to make a uniform solution (for example, visually confirmed), ultracentrifuge (manufactured by Hitachi Koki Co., Ltd., product name: ultracentrifuge for Hitachi separation, model: CP80WX, rotor: angle rotor P70AT) is used for ultracentrifugation (30000 rpm (66000 G) ⁇ 30 minutes).
- the obtained filtrate was diluted 5-fold with a measurement solvent (0.1 M sodium chloride aqueous solution), the molecular weight distribution of the thickener was measured under the following measurement conditions, and the weight average molecular weight in terms of pullulan was calculated from the obtained results. calculate.
- the weight average molecular weight in terms of pullulan is a value calculated using a calibration curve prepared using monodispersed pullulan as a standard substance.
- the weight average molecular weight (Mw) of the thickener extracted from the electrode active material layer 103 can be measured, for example, by the following procedure. (1) About 1.0 g of an electrode active material layer is scraped off from a lithium ion battery electrode into a container, and distilled water is added and stirred to form a slurry. (2) About 12.5 g of the obtained electrode slurry is weighed into a measuring flask, and distilled water is added to make 50 mL.
- ultracentrifuge manufactured by Hitachi Koki Co., Ltd., product name: Hitachi centrifuge, model: CP80WX, rotor: angle rotor P70AT
- the separated supernatant obtained in (3) is collected, and ultracentrifugated again (30000 rpm (66000 G) ⁇ 30 minutes). Furthermore, the supernatant is collected and ultracentrifugated again (30000 rpm (66000 G) ⁇ 30 minutes).
- the electrode active material, the binder resin, the conductive aid and the like in the slurry are removed.
- the supernatant obtained in (4) is filtered with a 0.45 ⁇ m filter, and the obtained filtrate is further filtered with a 0.20 ⁇ m filter. Thereby, the electrode active material, binder resin, conductive auxiliary agent, etc. remaining in the supernatant obtained in (4) are removed.
- the obtained filtrate was diluted 5-fold with a measurement solvent (0.1 M sodium chloride aqueous solution), the molecular weight distribution of the thickener was measured under the following measurement conditions, and the weight average molecular weight in terms of pullulan was calculated from the obtained results. calculate.
- the weight average molecular weight in terms of pullulan is a value calculated using a calibration curve prepared using monodispersed pullulan as a standard substance.
- the electrode for a lithium ion battery obtained by a conventional manufacturing method may have a low peel strength, and the adhesion between the current collector layer and the electrode active material layer may be reduced. It became clear that there was room for improvement.
- the peel strength of an electrode for a lithium ion battery is low, the productivity of the electrode or battery is reduced, or the electrode active material layer is powdered off in the process of assembling the battery. As a result, the battery quality deteriorates and the battery cycle characteristics There is a concern that malfunctions may occur.
- the present inventors have intensively studied to achieve the above-mentioned problems.
- the weight average molecular weight of the thickener contained in the electrode is larger than the weight average molecular weight of the raw material thickener used as a raw material before being added to the slurry. It was found that it was decreasing. That is, in the step of preparing a lithium ion battery electrode, more specifically in the step of preparing a lithium ion battery electrode slurry, when the molecular chain of the thickener is decomposed and the weight average molecular weight is greatly reduced, It became clear that the adhesion between the electric conductor layer and the electrode active material layer was lowered, and an electrode for a lithium ion battery having a low peel strength was obtained.
- the present inventors have made further studies based on the above findings.
- the mixture containing the thickener is kneaded under such conditions that the decomposition of the thickener is suppressed, that is, the weight average molecular weight of the thickener contained in the lithium ion battery electrode slurry is not less than the above lower limit.
- the weight average molecular weight of the thickener in the obtained electrode slurry or lithium ion battery electrode can be maintained at a high value, and as a result, the current collector layer and the electrode active material It has been found that an electrode for a lithium ion battery excellent in adhesiveness with a layer can be obtained.
- the current collector layer and the electrode active material layer are formed by setting the weight average molecular weight of the thickener extracted from the electrode active material layer or the lithium ion battery electrode slurry to the above lower limit value or more. It is possible to obtain an electrode for a lithium ion battery excellent in adhesiveness.
- the adhesive property between the current collector layer and the electrode active material layer is excellent.
- the lithium ion battery electrode can be obtained is not necessarily clear, but the following reasons are conceivable.
- the lithium ion battery electrode slurry having a higher weight average molecular weight of the thickener has a higher elasticity than the viscosity, and there is a three-dimensional network formed by the interaction between the materials constituting the lithium ion battery electrode slurry. It is thought that it is developing.
- the binder resin can be prevented from being unevenly distributed on the surface of the electrode active material layer.
- the amount of the binder resin at the interface between the current collector layer and the electrode active material layer can be increased, and the current collector layer and the electrode active material It is considered that the adhesion with the layer can be improved.
- the current collector layer and the electrode active material layer are formed by setting the weight average molecular weight of the thickener extracted from the electrode active material layer or the lithium ion battery electrode slurry to the above lower limit value or more. It is possible to obtain an electrode for a lithium ion battery excellent in adhesiveness. That is, according to the present embodiment, by setting the weight average molecular weight of the thickener extracted from the electrode active material layer or the lithium ion battery electrode slurry to the above lower limit value or more, to the electrode active material layer surface of the binder resin. Can be suppressed, and the adhesion between the current collector layer and the electrode active material layer can be improved. As described above, according to this embodiment, it is possible to provide an electrode for a lithium ion battery excellent in adhesiveness between the current collector layer and the electrode active material layer.
- the minimum of the weight average molecular weight (Mw) of the thickener extracted from the electrode active material layer or the electrode slurry calculated using the GPC method is 2000000 or more, the current collector layer and the electrode From the viewpoint of further improving the adhesiveness with the active material layer, it is preferably 2100000 or more, and more preferably 2200000 or more.
- the upper limit of the weight average molecular weight (Mw) of the thickener extracted from the electrode active material layer or the electrode slurry, calculated by pullulan conversion using the GPC method is not particularly limited, but is preferably 5000000 or less. It is more preferably 4000000 or less, further preferably 3000000 or less, and particularly preferably 2800000 or less.
- the weight average molecular weight is not more than the above upper limit, the solubility of the thickener in the aqueous medium can be improved, and the solid content concentration of the electrode slurry can be increased. As a result, the storage of the electrode slurry according to this embodiment can be achieved.
- the elastic modulus can be effectively increased. Thereby, since uneven distribution to the electrode active material layer surface of binder resin can be suppressed further, the adhesiveness of a collector layer and an electrode active material layer can be improved further.
- the weight average molecular weight (Mw) and the number average molecular weight of the thickener extracted from the electrode active material layer or the electrode slurry, calculated by pullulan conversion using the GPC method is preferably less than 6.0 from the viewpoint of further improving the adhesion between the current collector layer and the electrode active material layer, and is 5.9 or less. More preferably, 5.8 or less is more preferable, and from the viewpoint of improving the stability of the electrode slurry, 2.0 or more is preferable, 3.0 or more is more preferable, and 4.0 or more is more preferable.
- the weight average molecular weight (Mw) and Mw / Mn of the thickener extracted from the electrode active material layer and the electrode slurry according to this embodiment are the production conditions such as the weight average molecular weight of the raw material thickener and the method for preparing the electrode slurry. This can be realized by highly controlling the above. More specifically, as a raw material thickener, use of an ultrahigh molecular weight thickener having a weight average molecular weight (Mw) of 2.5 million or more, preferably 3 million or more, or the decomposition of the thickener is suppressed.
- a B-type viscometer is used to improve coating stability of the electrode slurry and dispersion stability of each material constituting the electrode slurry.
- the viscosity measured under the condition of 4 s ⁇ 1 is preferably 1000 mPa ⁇ s or more and 20000 mPa ⁇ s or less, more preferably 2000 mPa ⁇ s or more and 15000 mPa ⁇ s or less, further preferably 4000 mPa ⁇ s or more and 14000 mPa ⁇ s or less, Especially preferably, it is 5000 mPa * s or more and 13000 mPa * s or less.
- the viscosity of the electrode slurry according to this embodiment is, for example, the solid content concentration of the electrode slurry, the blending ratio of each material constituting the electrode slurry, the type of each material constituting the electrode slurry, and the kneading at the time of preparing the electrode slurry. It can be adjusted by controlling production conditions such as solid content concentration, mixing speed, and mixing time in the process.
- the solid content concentration of the electrode slurry according to the present embodiment is preferably 35% by mass or more and 65% by mass or less from the viewpoint of improving the coating stability of the electrode slurry and the dispersion stability of each material constituting the electrode slurry. More preferably, it is 40 mass% or more and 60 mass% or less, More preferably, it is 40 mass% or more and 58 mass% or less, Most preferably, it is 45 mass% or more and 55 mass% or less.
- the pH of the electrode slurry according to the present embodiment is, for example, 6.0 or more and 8.0 or less, and preferably 6.5 or more and 7.5 or less.
- the method for adjusting the pH of the electrode slurry according to the present embodiment is not particularly limited. For example, it is adjusted by adjusting the blending ratio of each material constituting the electrode slurry, the type of each material constituting the electrode slurry, and the like. be able to.
- the electrode active material layer according to the present embodiment includes an electrode active material selected from a positive electrode active material and a negative electrode active material, a binder resin, and a thickener, and further includes a conductive aid as necessary.
- the electrode slurry according to the present embodiment includes an electrode active material selected from a positive electrode active material and a negative electrode active material, a binder resin, a thickener, and an aqueous medium, and further includes a conductive auxiliary agent as necessary. Including.
- Electrode active material The electrode active material according to this embodiment is appropriately selected according to the application.
- a positive electrode active material is used when producing a positive electrode
- a negative electrode active material is used when producing a negative electrode.
- the effect of improving the peel strength of this embodiment can be obtained particularly effectively.
- the positive electrode active material is not particularly limited as long as it is a normal positive electrode active material that can be used for the positive electrode of a lithium ion battery.
- lithium and transition metal composite oxides such as lithium nickel composite oxide, lithium cobalt composite oxide, lithium manganese composite oxide, and lithium-manganese-nickel composite oxide; transitions such as TiS 2 , FeS, and MoS 2 Metal sulfides: transition metal oxides such as MnO, V 2 O 5 , V 6 O 13 , TiO 2 , olivine-type lithium phosphorus oxide, and the like.
- the olivine-type lithium phosphorus oxide is, for example, at least one member selected from the group consisting of Mn, Cr, Co, Cu, Ni, V, Mo, Ti, Zn, Al, Ga, Mg, B, Nb, and Fe. It contains elements, lithium, phosphorus, and oxygen. In order to improve the characteristics of these compounds, some elements may be partially substituted with other elements.
- olivine type lithium iron phosphorus oxide, lithium cobalt composite oxide, lithium nickel composite oxide, lithium manganese composite oxide, and lithium-manganese-nickel composite oxide are preferable.
- These positive electrode active materials have a high working potential, a large capacity, and a large energy density.
- a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
- the negative electrode active material is not particularly limited as long as it is a normal negative electrode active material that can be used for the negative electrode of a lithium ion battery.
- carbon materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated carbon, hard carbon, soft carbon; lithium metals such as lithium metal and lithium alloy; metals such as silicon and tin; polyacene, polyacetylene, polypyrrole, etc. And the like.
- carbon materials are preferable, and graphite materials such as natural graphite and artificial graphite are particularly preferable.
- a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
- the content of the electrode active material is preferably 70 parts by mass or more and 99.97 parts by mass or less, and 85 parts by mass or more when the entire electrode active material layer or the total solid content of the electrode slurry is 100 parts by mass. More preferably, it is 99.85 parts by mass or less.
- the graphite material is not particularly limited as long as it is a normal graphite material that can be used for the negative electrode of a lithium ion battery.
- artificial graphite produced by heat-treating natural graphite, petroleum-based, and coal-based coke can be used.
- natural graphite refers to graphite that is naturally produced as ore.
- Artificial graphite refers to graphite produced by an artificial technique and graphite close to perfect crystals of graphite.
- Such artificial graphite can be obtained, for example, by using a tar or coke obtained from coal residue, crude oil distillation residue, or the like as a raw material, followed by a firing step and a graphitization step.
- the graphite material has graphite powder as a core material, and at least a part of the surface of the graphite powder is coated with a carbon material having lower crystallinity than the graphite powder (hereinafter also referred to as surface-coated graphite). ) Is preferred.
- the edge portion of the graphite powder is preferably covered with the carbon material.
- the binding property with the binder resin can be improved as compared with the case of using graphite alone, so that the amount of the binder resin can be reduced.
- the battery characteristics of the obtained lithium ion battery can be improved.
- the carbon material having lower crystallinity than the graphite powder is, for example, amorphous carbon such as soft carbon and hard carbon.
- Examples of the graphite powder used as the core material include artificial graphite produced by heat-treating natural graphite, petroleum-based and coal-based coke. In this embodiment, these graphite powders may be used alone or in combination of two or more. Among these, natural graphite is preferable from the viewpoint of cost.
- the surface-coated graphite according to the present embodiment is obtained by carbonizing the organic compound after the carbon powder is carbonized by the firing process and becomes a carbon material having lower crystallinity than the graphite powder and the graphite powder. It can produce by doing.
- the organic compound mixed with the graphite powder is not particularly limited as long as it is carbonized by firing to obtain a carbon material having lower crystallinity than the graphite powder.
- petroleum-based tar such as petroleum pitch, coal pitch, etc .
- thermoplastic resins such as polyvinyl chloride, polyvinyl acetate, polyvinyl butyral, polyvinyl alcohol, polyvinylidene chloride, polyacrylonitrile; heat of phenol resin, furfuryl alcohol resin, etc.
- curable resins natural resins such as cellulose; aromatic hydrocarbons such as naphthalene, alkylnaphthalene, and anthracene.
- these organic compounds may be used individually by 1 type, and may be used in combination of 2 or more type. Further, these organic compounds may be used by dissolving or dispersing in a solvent as necessary. Among the above organic compounds, tar and pitch are preferable from the viewpoint of price.
- the ratio of the carbon material derived from the organic compound in the surface-coated graphite according to the present embodiment is preferably 0.7% by mass or more and 8.% by mass when the negative electrode active material is 100% by mass. 0% by mass or less.
- coating amount is preferably 0.7% by mass or more and 8.% by mass when the negative electrode active material is 100% by mass. 0% by mass or less.
- the stability of the electrode slurry obtained can be improved by making the coating amount of a carbon material more than the said lower limit.
- the coating amount can be calculated by thermogravimetric analysis. More specifically, when the temperature of the negative electrode active material is increased to 900 ° C. at a temperature increase rate of 5 ° C./min in an oxygen atmosphere using a thermogravimetric analyzer (for example, TGA7 analyzer manufactured by Perkin Elma), the mass The reduced mass from the temperature at which the decrease starts to the temperature at which the mass decrease rate becomes moderate and then the mass decrease accelerates can be used as the coating amount.
- a thermogravimetric analyzer for example, TGA7 analyzer manufactured by Perkin Elma
- the specific surface area of the electrode active material by the nitrogen adsorption BET method is preferably 1.0 m 2 / g or more and 6.0 m 2 / g or less, more preferably 2.0 m 2 / g or more and 5.0 m 2 / g or less. is there.
- the specific surface area By setting the specific surface area to be equal to or greater than the above lower limit, the area for inserting and extracting lithium ions is increased, and the rate characteristics of the obtained lithium ion battery can be improved. Moreover, the binding property of binder resin can be improved by making a specific surface area into the said range.
- the average particle diameter of the electrode active material is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 5 ⁇ m or more, and particularly preferably 8 ⁇ m or more, from the viewpoint of suppressing side reactions during charge / discharge and suppressing the decrease in charge / discharge efficiency. From the viewpoint of input / output characteristics and electrode production (such as electrode surface smoothness), it is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
- the average particle diameter means a particle diameter (median diameter: d 50 ) at an integrated value of 50% in a particle size distribution (volume basis) by a laser diffraction scattering method.
- the binder resin is not particularly limited as long as the electrode can be molded and has sufficient electrochemical stability.
- a rubber-based binder resin or an acrylic-based binder resin can be used.
- the binder resin according to this embodiment is preferably formed of latex particles and dispersed in water to be used as an aqueous emulsion solution. That is, the binder resin according to this embodiment is preferably a so-called aqueous binder resin that is formed of latex particles of a binder resin and can be dispersed in water to form an aqueous emulsion solution.
- binder resin can be contained in an electrode active material layer, without inhibiting the contact between electrode active materials, between conductive support agents, and between an electrode active material and a conductive support agent.
- the water in which the binder resin is dispersed may be mixed with water such as alcohol and a highly hydrophilic solvent.
- the rubber binder resin examples include styrene / butadiene copolymer rubber.
- the acrylic binder resin for example, a polymer (homopolymer or acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, acrylate, or methacrylate unit (hereinafter referred to as “acryl unit”)). Copolymer) and the like.
- the copolymer include a copolymer containing an acrylic unit and a styrene unit, and a copolymer containing an acrylic unit and a silicon unit.
- These binder resins may be used alone or in combination of two or more.
- styrene / butadiene copolymer rubber is particularly preferable from the viewpoints of excellent binding properties, affinity with an electrolytic solution, price, electrochemical stability, and the like.
- the content of the binder resin is preferably 0.01 parts by mass or more and 10.0 parts by mass or less when the total amount of the electrode active material layer or the total solid content of the electrode slurry is 100 parts by mass. It is more preferable that the amount is not less than 5.0 parts by mass.
- the content of the binder resin is within the above range, the balance of electrode slurry coating properties, binder resin binding properties, and battery characteristics is further improved.
- the binder resin is dispersed in an aqueous medium and used as an emulsion aqueous solution.
- the aqueous medium in which the binder resin is dispersed is not particularly limited as long as the binder resin can be dispersed, but distilled water, ion exchange water, city water, industrial water, and the like can be used. Among these, distilled water and ion exchange water are preferable.
- the water may be mixed with water such as alcohol and a highly hydrophilic solvent.
- Styrene-butadiene copolymer rubber is a copolymer mainly composed of styrene and 1,3-butadiene.
- the main component means that in the styrene / butadiene copolymer rubber, the total content of the constituent units derived from styrene and the constituent units derived from 1,3-butadiene is the total polymerization unit of the styrene / butadiene copolymer rubber. This refers to the case of 50 mass% or more.
- the mass ratio (St / BD) between the structural unit derived from styrene (hereinafter also referred to as St) and the structural unit derived from 1,3-butadiene (hereinafter also referred to as BD) is, for example, 10/90 to 90 / 10.
- the styrene / butadiene copolymer rubber may be copolymerized with monomer components other than styrene and 1,3-butadiene.
- monomer components other than styrene and 1,3-butadiene examples thereof include conjugated diene monomers, unsaturated carboxylic acid monomers, and other known monomers that can be copolymerized.
- conjugated diene monomer examples include isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, piperylene and the like.
- the unsaturated carboxylic acid monomer include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid and the like.
- the method for producing the styrene / butadiene copolymer rubber is not particularly limited, but it is preferably produced by an emulsion polymerization method.
- the emulsion polymerization method When the emulsion polymerization method is used, latex particles containing styrene / butadiene copolymer rubber can be obtained.
- Conventionally known methods can be used for emulsion polymerization.
- styrene, 1,3-butadiene, and the above-mentioned various copolymerizable monomer components are preferably prepared by emulsion polymerization in water with the addition of a polymerization initiator, preferably in the presence of an emulsifier. Can do.
- thickener examples include water-soluble polymers such as a cellulose-based water-soluble polymer; polycarboxylic acid; polyethylene oxide; polyvinyl pyrrolidone; polyacrylic acid salt such as sodium polyacrylate; These thickeners may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, cellulose-based water-soluble polymers are preferable.
- cellulose-based water-soluble polymer examples include cellulose polymers such as carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, methylethylhydroxycellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts of these cellulose polymers. 1 type, or 2 or more types selected from the cellulose-type polymer salt etc. of this can be used. Among these, it is preferable to include at least one selected from carboxymethyl cellulose and carboxymethyl cellulose salt, one or more selected from carboxymethyl cellulose, ammonium salt of carboxymethyl cellulose, sodium salt of carboxymethyl cellulose and potassium salt of carboxymethyl cellulose It is more preferable to contain.
- cellulose polymers such as carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, methylethylhydroxycellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts of these cellulose polymers. 1 type, or 2 or more types selected from the
- the degree of etherification of the cellulosic water-soluble polymer is 0.50 or more and 1.0 because the solubility of the cellulosic water-soluble polymer in the aqueous medium can be improved and the solid content concentration of the electrode slurry can be increased. Or less, more preferably 0.75 or more and 0.90 or less.
- the degree of etherification means the degree of substitution of a hydroxyl group with a carboxymethyl group or the like per anhydroglucose unit in a cellulose-based water-soluble polymer.
- the content of the thickener is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, assuming that the entire electrode active material layer or the total solid content of the electrode slurry is 100 parts by mass. It is more preferable that it is 05 mass parts or more and 5.0 mass parts or less. When the content of the thickener is within the above range, the balance of electrode slurry coating properties, binder resin binding properties, and battery characteristics is further improved.
- the electrode active material layer and the electrode slurry according to the present embodiment further include a conductive additive from the viewpoint of improving the electron conductivity of the obtained electrode.
- the conductive auxiliary agent is not particularly limited as long as it has electronic conductivity and improves the conductivity of the electrode.
- the conductive additive according to the present embodiment include acetylene black, ketjen black, carbon black, carbon nanofibers, and carbon materials such as graphite having a smaller particle diameter than graphite used as an active material. These conductive aids may be used alone or in combination of two or more.
- the content of the conductive assistant is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, based on 100 parts by mass of the entire electrode active material layer or the entire solid content of the electrode slurry. It is more preferable that it is 05 mass parts or more and 5.0 mass parts or less.
- the content of the conductive additive is within the above range, the balance between the coating properties of the electrode slurry and the binding properties of the binder resin is further improved.
- the specific surface area of the conductive aid by the nitrogen adsorption BET method is preferably 50 m 2 / g or more and 1000 m 2 / g or less from the viewpoint of the balance between electrode slurry coating properties and electrode conductivity.
- aqueous medium It does not specifically limit about the aqueous medium which concerns on this embodiment, For example, distilled water, ion-exchange water, city water, industrial water etc. can be used. Among these, distilled water and ion exchange water are preferable.
- the water may be mixed with water such as alcohol and a highly hydrophilic solvent.
- the content of the electrode active material when the entire electrode active material layer is 100 parts by mass, the content of the electrode active material is preferably 70 parts by mass or more and 99.97 parts by mass or less, more preferably It is 85 mass parts or more and 99.85 mass parts or less.
- the content of the binder resin is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and more preferably 0.05 parts by mass or more and 5.0 parts by mass or less.
- the content of the thickener is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, more preferably 0.05 parts by mass or more and 5.0 parts by mass or less.
- the content of the conductive assistant is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and more preferably 0.05 parts by mass or more and 5.0 parts by mass or less.
- the content of each component constituting the electrode active material layer is within the above range, the balance between the handleability of the lithium ion battery electrode and the battery characteristics of the obtained lithium ion battery is particularly excellent.
- the content of the electrode active material is preferably 70 parts by mass or more and 99.97 parts by mass or less, more preferably 85, when the total amount of the solid content of the electrode slurry is 100 parts by mass. It is not less than 99 parts by mass and not more than 99.85 parts by mass.
- the content of the binder resin is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and more preferably 0.05 parts by mass or more and 5.0 parts by mass or less.
- the content of the thickener is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, more preferably 0.05 parts by mass or more and 5.0 parts by mass or less.
- the content of the conductive assistant is preferably 0.01 parts by mass or more and 10.0 parts by mass or less, and more preferably 0.05 parts by mass or more and 5.0 parts by mass or less.
- the content of each component constituting the electrode slurry is within the above range, the balance between the quality stability of the electrode slurry and the battery characteristics of the obtained lithium ion battery is particularly excellent.
- the electrode slurry for a lithium ion battery and the electrode for a lithium ion battery according to this embodiment can be obtained for the first time by a production method that highly controls various factors relating to the following two conditions (1) and (2). .
- the lithium ion battery electrode slurry and the lithium ion battery electrode according to this embodiment have various other specific manufacturing conditions, for example, on the premise that various factors related to the above two conditions are highly controlled. Can be adopted.
- the lithium ion battery electrode slurry and the lithium ion battery electrode according to the present embodiment are manufactured by adopting known methods except for highly controlling various factors related to the above two conditions. Is possible.
- an example of a method for manufacturing a lithium ion battery electrode slurry and a lithium ion battery electrode according to the present embodiment will be described.
- the manufacturing method of the lithium ion battery electrode 100 preferably includes the following two steps (1) and (2).
- the obtained electrode slurry Steps for Forming Electrode Active Material Layer 103 on Current Collector Layer 101 by Applying and Drying on Current Collector Layer 101 and Removing the Aqueous Medium will be described.
- an electrode slurry is prepared by mixing an electrode active material, a binder resin, a thickener, an aqueous medium, and a conductive aid as required. Since the types and blending ratios of the electrode active material, the binder resin, the thickener, and the conductive auxiliary agent have been described above, the description thereof is omitted here.
- the electrode slurry is obtained by dispersing or dissolving an electrode active material, a binder resin, a thickener, and, if necessary, a conductive additive in an aqueous medium.
- the step of preparing the electrode slurry includes, for example, the following slurry precursor preparation step (B) and electrode slurry preparation step (C), and includes a dry mixing step (A) as necessary.
- the slurry precursor preparation step (B) decomposition of the thickener is particularly likely to occur. Therefore, in order to maintain the weight average molecular weight (Mw) of the thickener above the lower limit value, the slurry precursor preparation is performed. It is important to adjust the production conditions such as the solid content concentration, mixing speed, and kneading time in the step (B). For example, the higher the solid content concentration, the more shear is applied to the slurry precursor, so the molecular chain of the thickener is more likely to be cut.
- the weight average molecular weight (Mw) can be maintained at a high value.
- the process of preparing an electrode slurry by this As a raw material thickener, you may use a thickener solution instead of a thickener powder.
- the thickener solution can be added at the stage of the slurry precursor preparation step (B) or the electrode slurry preparation step (C) without performing the step (A).
- a powder mixture containing the electrode active material and the thickener powder is prepared by dry mixing the electrode active material and the thickener powder in a powder state. At this time, you may mix a powder with a conductive support agent. Moreover, when adding a thickener as a thickener solution in a process (B), you may perform a dry-type mixing process (A) only with an electrode active material and a conductive support agent.
- the dispersibility of the electrode active material and the thickener can be enhanced, and the generation of the gel component derived from the thickener is further suppressed in the subsequent steps. it can. Thereby, generation
- a planetary motion type mixer is preferably used, and a planetary motion type planetary mixer is more preferably used.
- the electrode active material and the thickener powder can be sufficiently mixed while suppressing the scattering of the electrode active material and the thickener powder.
- the planetary motion mixer refers to a mixer having a rotation and revolution function as a stirring mechanism.
- the planetary motion type planetary mixer is a mixer having blades having rotation and revolution functions as a stirring mechanism.
- the rotation speed of the dry mixing in the dry mixing step (A) is preferably in the range of 0.05 m / sec to 0.55 m / sec, and in the range of 0.07 m / sec to 0.52 m / sec. More preferably, it is within.
- the rotation speed of the dry mixing in the dry mixing step (A) is within the above range, the electrode active material and the thickener powder are sufficiently mixed while suppressing the scattering of the electrode active material and the thickener powder. be able to.
- the revolution speed of the dry mixing in the dry mixing step (A) is preferably within a range of 0.01 m / sec or more and 0.20 m / sec or less, and is 0.02 m / sec or more and 0.15 m / sec or less. It is more preferable to be within the range.
- the revolution speed of the dry mixing in the dry mixing step (A) is within the above range, the electrode active material and the thickener powder are sufficiently mixed while suppressing the scattering of the electrode active material and the thickener powder. be able to.
- the mixing time of the dry mixing in the dry mixing step (A) is not particularly limited, but is, for example, 5 minutes to 120 minutes, preferably 10 minutes to 60 minutes.
- slurry precursor preparation step (B) an aqueous emulsion containing an aqueous medium and a binder resin in the powder mixture obtained in the step (A), or in the powder containing the electrode active material if the step (A) is not performed.
- One or two or more liquid components selected from the thickener solution are added and wet mixed to prepare a slurry precursor.
- the mixer for performing the wet mixing in the slurry precursor preparation step (B) it is preferable to use a planetary motion type mixer, and it is more preferable to use a planetary motion type planetary mixer.
- a mixer By using such a mixer, the dispersibility of each material can be enhanced while suppressing the scattering of each material constituting the electrode slurry.
- the slurry precursor preparation step (B) is not particularly limited, but may be a two-step or more step including at least a first kneading step (B2) and a second kneading step (B3). Furthermore, you may perform the conforming process (B1) performed before a 1st kneading process (B2) as needed.
- the powder mixture obtained in the step (A), or the powder containing the electrode active material when the step (A) is not performed, an aqueous medium, an aqueous emulsion containing a binder resin, and a thickening agent are added.
- this step one or more liquid components selected from the agent solution are blended.
- the rotation speed of the wet mixing in the acclimation step (B1) is preferably in the range of 0.10 m / sec to 2.5 m / sec, and in the range of 0.15 m / sec to 2.0 m / sec. More preferably, it is within. If the autorotation speed of the wet mixing in the blending step (B1) is within the above range, the powder may rise on the edge of the mixer during wet mixing, or the powder may be unevenly wetted.
- the liquid component can be fully adapted to the powder while more effectively suppressing the scattering of the product during kneading.
- the revolution speed of the wet mixing in the blending step (B1) is preferably in the range of 0.03 m / sec or more and 1.00 m / sec or less, and 0.04 m / sec or more and 0.80 m / sec or less. It is more preferable to be within the range. If the revolution speed of the wet mixing in the blending step (B1) is within the above range, the powder may rise on the edge of the mixer during wet mixing, or the powder may be unevenly wetted. The liquid component can be fully adapted to the powder while more effectively suppressing the scattering of the product during kneading.
- the mixing time of the wet mixing in the acclimation step (B1) is not particularly limited, but is preferably 0.5 minutes or more and 120 minutes or less, and more preferably 2 minutes or more and 60 minutes or less.
- the first kneading step (B2) and the second kneading step (B3) are steps for kneading the powder and liquid components to obtain a slurry precursor.
- the mixing time of the wet mixing in the first kneading step (B2) is not particularly limited, but is, for example, 5 minutes to 120 minutes.
- the mixing time of the wet mixing in the second kneading step (B3) is not particularly limited, but is, for example, 5 minutes to 120 minutes.
- the solid content concentration of the slurry precursor it is preferable to adjust the solid content concentration of the slurry precursor to 55% by mass or more and 77% by mass or less, and 58% by mass or more and 74% by mass. More preferably, the content is adjusted to 60% by mass or more and 73% by mass or less.
- the rotation speed of the wet mixing (the linear velocity of the blade of the planetary motion mixer) is 0.10 m / sec or more and 3.0 m / sec.
- the range is preferably within the following range, and more preferably within the range of 0.20 m / sec to 2.5 m / sec.
- the revolution speed of the wet mixing (the linear velocity of the planetary motion mixer blade) in the first kneading step (B2) and the second kneading step (B3) is 0.01 m / sec or more and 2.0 m. / Sec or less is preferable and 0.05 m / sec or more and 1.0 m / sec or less is more preferable.
- the electrode slurry preparation step (C) one or two types selected from an aqueous medium, an emulsion aqueous solution containing a binder resin, and a thickener solution in the slurry precursor obtained in the slurry precursor preparation step (B).
- the electrode slurry is prepared by further adding the above liquid components and performing wet mixing.
- a mixer for performing wet mixing in the electrode slurry preparation step (C) it is preferable to use a planetary motion type mixer, and it is more preferable to use a planetary motion type planetary mixer.
- a mixer it is possible to sufficiently mix while stirring at a low speed. Therefore, the dispersibility of each material which comprises an electrode slurry can be improved, suppressing the cutting
- an electrode slurry that is more excellent in quality stability can be obtained.
- the obtained electrode slurry is further excellent in dispersibility, when such an electrode slurry is used, a more uniform electrode active material layer can be obtained. As a result, a battery having further excellent battery characteristics can be obtained.
- the rotation speed of the wet mixing in the electrode slurry preparation step (C) (the linear speed of the blade of the planetary motion mixer) is not particularly limited, but is, for example, 0.10 m / sec or more and 10.0 m / sec or less. Within range.
- the revolution speed of the wet mixing in the electrode slurry preparation step (C) (the linear speed of the planetary motion mixer blade) is not particularly limited, but is, for example, 0.02 m / sec or more and 3.0 m / sec. Within the following range.
- the mixing time of the wet mixing in the electrode slurry preparation step (C) is not particularly limited, and is, for example, 5 minutes to 60 minutes.
- the solid content concentration of the electrode slurry in the electrode slurry preparation step (C) can be adjusted by adjusting the concentration and addition amount of the liquid component.
- the electrode slurry manufacturing method may further include a defoaming step (D): a step of vacuum defoaming.
- the vacuum defoaming may be performed after a bubble is removed by applying a sealing process to the container or shaft of the mixer, or may be performed after transferring to another container.
- the obtained electrode slurry is applied on the current collector layer 101 and dried, and the aqueous medium is removed to form the electrode active material layer 103 on the current collector layer 101.
- the electrode 100 for lithium ion batteries excellent in the adhesiveness of the electrical power collector layer 101 and the electrode active material layer 103 can be obtained.
- the electrode slurry according to the present embodiment is applied on the current collector layer 101 such as the positive electrode current collector or the negative electrode current collector and dried, and the aqueous medium is It can be obtained by forming the electrode active material layer 103 over the current collector layer 101 by removing.
- a method of applying the electrode slurry according to the present embodiment on the current collector layer 101 generally known methods can be used. Examples thereof include a reverse roll method, a direct roll method, a doctor blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method.
- the doctor blade method, the knife method, and the extrusion method are preferable in that a favorable surface state of the coating layer can be obtained in accordance with physical properties such as viscosity of the electrode slurry and drying properties.
- the electrode slurry according to this embodiment may be applied to only one side of the current collector layer 101 or may be applied to both sides. In the case of applying to both surfaces of the current collector layer 101, it may be applied sequentially on each side or on both sides simultaneously. Moreover, you may apply
- the current collector layer 101 used for manufacturing the lithium ion battery electrode 100 for example, a normal current collector that can be used for a lithium ion battery can be used.
- a normal current collector that can be used for a lithium ion battery can be used.
- the negative electrode current collector copper, stainless steel, nickel, titanium, or an alloy thereof can be used, and among these, copper is particularly preferable.
- the positive electrode current collector aluminum, stainless steel, nickel, titanium, or an alloy thereof can be used, and among these, aluminum is particularly preferable.
- the shape of the current collector is not particularly limited. For example, a foil-like one having a thickness in the range of 0.001 to 0.5 mm can be used.
- the thickness and density of the electrode active material layer 103 according to the present embodiment are not particularly limited because they are appropriately determined according to the intended use of the battery, and can be set according to generally known information.
- drying the applied electrode slurry As a method for drying the applied electrode slurry, generally known methods can be used. For example, hot air, vacuum, infrared rays, far infrared rays, electron beams, and low temperature winds can be used alone or in combination.
- the drying temperature is, for example, in the range of 30 ° C. or higher and 350 ° C. or lower.
- a pressing method a generally known method can be used. For example, a die press method, a calendar press method, etc. are mentioned.
- the pressing pressure is not particularly limited, but is, for example, in the range of 0.2 to 3 t / cm 2 .
- the thickness and density of the lithium ion battery electrode according to the present embodiment are not particularly limited because they are appropriately determined according to the intended use of the battery, and can be set according to generally known information.
- FIG. 2 is a cross-sectional view showing an example of the structure of the lithium ion battery 150 according to the embodiment of the present invention.
- the lithium ion battery 150 according to the present embodiment includes the lithium ion battery electrode according to the present embodiment. More specifically, the lithium ion battery 150 according to the present embodiment includes, for example, at least a positive electrode 120, an electrolyte layer 110, and a negative electrode 130, and at least one of the positive electrode 120 and the negative electrode 130 is lithium according to the present embodiment. Includes electrodes for ion batteries. Moreover, the lithium ion battery 150 according to the present embodiment may include a separator as necessary.
- the lithium ion battery 150 since at least one of the positive electrode 120 and the negative electrode 130 includes the electrode for the lithium ion battery according to the present embodiment, powder falling of the electrode active material layer when assembling the battery is suppressed. The battery quality, battery cycle characteristics, etc. are good.
- the lithium ion battery 150 according to this embodiment can be manufactured according to a known method.
- Examples of the form of the electrode include a laminated body and a wound body.
- the exterior body include a metal exterior body and an aluminum laminate exterior body.
- the shape of the battery include a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
- any known lithium salt can be used, and may be selected according to the type of the active material.
- CF 3 Examples include SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, and lower fatty acid carboxylate lithium.
- the solvent for dissolving the electrolyte used in the electrolyte layer 110 is not particularly limited as long as it is usually used as a liquid component for dissolving the electrolyte.
- ethylene carbonate (EC), propylene carbonate (PC) Carbonates such as butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC) and vinylene carbonate (VC); lactones such as ⁇ -butyrolactone and ⁇ -valerolactone; Ethers such as methoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; 1,3-dioxolane, 4-methyl- Oxolanes such as 1,3-dioxolane; nitrogen-containing compounds such as acetonitrile, nitrome
- a porous separator As a separator, a porous separator is mentioned, for example. As for the form of a separator, a film
- Carbon planetary material 1 average particle diameter d 50 : 16 ⁇ m, specific surface area by nitrogen adsorption BET method: 3.4 m 2 as
- the rotation speed and the revolution speed are linear speeds of the blades of the planetary planetary mixer.
- the average particle size d 50 is manufactured by Microtrac, it was measured by MT3000 device, specific surface area, Quantachrome Corporation, Inc., using a Quanta Sorb, determined by nitrogen adsorption BET method.
- the weight average molecular weight (Mw) and number average molecular weight (Mn) of the raw material thickener before using for preparation of an electrode slurry were measured with the following procedures.
- Thickener aqueous solution having a concentration of 1.2% by mass was diluted 5-fold with a measurement solvent (0.1 M sodium chloride aqueous solution), and the molecular weight distribution of the thickener was measured under the following measurement conditions. Result obtained From these, the weight average molecular weight (Mw) and the number average molecular weight (Mn) in terms of pullulan were calculated.
- the weight average molecular weight in terms of pullulan is a value calculated using a calibration curve prepared using monodispersed pullulan as a standard substance.
- the carbon material 1 (graphite coated with amorphous carbon on the surface) was produced as follows. Natural graphite having an average particle diameter d 50 of 16 ⁇ m and a specific surface area of 3.4 m 2 / g was used as a core material. 99.0 parts by mass of this natural graphite powder and 1.0 part by mass of coal-based pitch powder were mixed in a solid phase by simple mixing using a V blender. The obtained mixed powder was put into a graphite crucible and heat-treated at 1300 ° C. for 1 hour under a nitrogen stream to obtain graphite whose surface was coated with amorphous carbon.
- peel strength test The peel strength of the obtained electrode was measured by the following procedure. The electrode was cut out over a width of 20 mm and a length of 10 cm, and one side of the electrode was attached to a plate on which a double-sided tape was stretched. Next, the plate was fixed, and the electrode was peeled in the 90 ° direction at a speed of 100 mm / min. The peel strength (mN / mm) at that time was measured three times, and the average value was taken as the peel strength.
- the obtained filtrate was diluted 5-fold with a measurement solvent (0.1 M sodium chloride aqueous solution), the molecular weight distribution of the thickener was measured under the following measurement conditions, and the weight average molecular weight in terms of pullulan ( Mw) and number average molecular weight (Mn) were calculated respectively.
- Mw weight average molecular weight in terms of pullulan
- Mn number average molecular weight
- the weight average molecular weight in terms of pullulan is a value calculated using a calibration curve prepared using monodispersed pullulan as a standard substance.
- Example 2 The solid content concentration and the mixing time in the first kneading step (B2) were changed to the values shown in Table 1, respectively, and the carbon material 2 (natural graphite, average particle diameter d 50) was used instead of the carbon material 1 as an electrode active material. : 13 ⁇ m, specific surface area by nitrogen adsorption BET method: 3.6 m 2 / g), and the electrode slurry and the electrode were prepared in the same manner as in Example 1 except that the second kneading step (B3) was not performed. Each evaluation was performed individually. The obtained results are shown in Table 1.
- the rotation speed and the revolution speed are linear speeds of the blades of the planetary planetary mixer.
- the average particle size d 50 is manufactured by Microtrac, it was measured by MT3000 device, specific surface area, Quantachrome Corporation, Inc., using a Quanta Sorb, determined by nitrogen adsorption BET method.
- the planetary motion type planetary mixer in which the dry mixing step (A) has been completed has a concentration of 1.2 mass so that the solid content concentration of the obtained paste precursor is 86 mass%.
- the rotation speed and the revolution speed are linear speeds of the blades of the planetary planetary mixer.
- Example 4 Example 3 except that carbon material 2 (natural graphite, average particle diameter d 50 : 13 ⁇ m, specific surface area by nitrogen adsorption BET method: 3.6 m 2 / g) was used instead of carbon material 1 as the electrode active material. Similarly, an electrode slurry and an electrode were prepared, and each evaluation was performed. The obtained results are shown in Table 1.
- Example 5 and Comparative Example 1 The electrode slurry was set in the same manner as in Example 1 except that the solid content concentration and the mixing time in the first kneading step (B2) were respectively set to the values shown in Table 1, and the second kneading step (B3) was not carried out. And an electrode was produced and each evaluation was performed, respectively. The obtained results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本発明のリチウムイオン電池用電極(100)は、集電体層(101)と、集電体層(101)の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂および増粘剤を含む電極活物質層(103)と、を備え、ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、電極活物質層(103)から抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上である。
Description
本発明は、リチウムイオン電池用電極、リチウムイオン電池用電極スラリー、リチウムイオン電池用電極の製造方法およびリチウムイオン電池に関する。
リチウムイオン電池に用いられる電極は、一般的に、電極活物質層と集電体層から主に構成されている。電極活物質層は、例えば、電極活物質、バインダー樹脂および増粘剤等を含む電極スラリーを金属箔等の集電体層表面に塗布して乾燥することにより得ることができる。
このようなリチウムイオン電池用電極に関する技術としては、例えば、特許文献1および2に記載のものが挙げられる。
特許文献1(特開2013-114747号公報)には、金属箔の少なくとも一方の表面に負極合材ペーストを塗工後、乾燥することにより負極活物質層を形成してなる負極板を用いるリチウムイオン二次電池の製造方法において、上記負極合材ペーストとして、いずれも粉末状の負極活物質および第1の増粘剤を、溶媒とともに混練する第1の混練と、上記第1の混練後の混練物に第2の増粘剤と溶媒とを加えて混練する第2の混練と、上記第2の混練後の混練物に結着材を加えて混練する第3の混練とにより製造したものを用い、上記第1の増粘剤は、分子量が33万以下のカルボキシメチルセルロースであり、上記第2の増粘剤は、分子量が33万以上のカルボキシメチルセルロースであることを特徴とするリチウムイオン二次電池の製造方法が記載されている。
特許文献2(特開2014-203561号公報)には、電極活物質粒子を混練溶媒とともに混練した電極活物質合材ペーストを電極芯材に塗工して乾燥させることにより上記電極芯材上に電極活物質層を形成する、非水電解質二次電池の電極板の製造方法において、上記電極活物質合材ペーストとして、電極活物質粒子と、カルボキシルメチルセルロースであって,重量平均分量Mwが350万以下で、多分散度(重量平均分量Mw/数平均分量Mn)が6以上のものと、水溶媒とを混練して、(せん断速度2sec-1での粘度A/せん断速度40sec-1での粘度B)が3.8以上で、粘度Bが500~1500mPa・secの範囲内としたものを用い、上記電極活物質合材ペーストを、目開きが上記電極活物質粒子のD50値の4~5倍の範囲内でかつ上記電極活物質粒子のD50値以上であるフィルタを通して上記電極芯材への塗工に供することを特徴とする非水電解質二次電池の電極板の製造方法が記載されている。
本発明者らの検討によれば、従来の製造方法により得られるリチウムイオン電池用電極は剥離強度が低い場合があり、集電体層と電極活物質層との接着性に改善の余地があることが明らかになった。
リチウムイオン電池用電極の剥離強度が低い場合、電極や電池の生産性が低下したり、電池を組み立てる工程において電極活物質層の粉落ちが起こり、その結果、電池の品質劣化や電池のサイクル特性等に不具合が起きたりする懸念がある。
リチウムイオン電池用電極の剥離強度が低い場合、電極や電池の生産性が低下したり、電池を組み立てる工程において電極活物質層の粉落ちが起こり、その結果、電池の品質劣化や電池のサイクル特性等に不具合が起きたりする懸念がある。
本発明は上記事情に鑑みてなされたものであり、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極を提供するものである。
本発明者らは上記課題を達成すべく鋭意検討を重ねた。その結果、増粘剤の分解が抑制されるような条件すなわち電極スラリーに含まれる増粘剤の重量平均分子量が特定の範囲になるような条件で増粘剤を含む混合物を混練して電極スラリーを調製することによって、得られる電極スラリーや電極中の増粘剤の重量平均分子量を高い値に維持することができ、その結果、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極が得られることを見出して本発明を完成するに至った。
本発明によれば、
集電体層と、
上記集電体層の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂および増粘剤を含む電極活物質層と、
を備えるリチウムイオン電池用電極であって、
ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、上記電極活物質層から抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上であるリチウムイオン電池用電極が提供される。
集電体層と、
上記集電体層の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂および増粘剤を含む電極活物質層と、
を備えるリチウムイオン電池用電極であって、
ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、上記電極活物質層から抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上であるリチウムイオン電池用電極が提供される。
さらに、本発明によれば、
電極活物質、バインダー樹脂、増粘剤および水系媒体を含むリチウムイオン電池用電極スラリーであって、
ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、上記リチウムイオン電池用電極スラリーから抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上であるリチウムイオン電池用電極スラリーが提供される。
電極活物質、バインダー樹脂、増粘剤および水系媒体を含むリチウムイオン電池用電極スラリーであって、
ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、上記リチウムイオン電池用電極スラリーから抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上であるリチウムイオン電池用電極スラリーが提供される。
さらに、本発明によれば、
集電体層と、
上記集電体層の少なくとも一方の面に設けられ、かつ、上記リチウムイオン電池用電極スラリーの固形分により構成された電極活物質層と、を含むリチウムイオン電池用電極が提供される。
集電体層と、
上記集電体層の少なくとも一方の面に設けられ、かつ、上記リチウムイオン電池用電極スラリーの固形分により構成された電極活物質層と、を含むリチウムイオン電池用電極が提供される。
さらに、本発明によれば、
上記リチウムイオン電池用電極を製造するための製造方法であって、
上記リチウムイオン電池用電極スラリーを調製する工程を含み、
上記リチウムイオン電池用電極スラリーを調製する工程は、
GPC法を用いてプルラン換算で算出される、上記増粘剤の重量平均分子量(Mw)が2000000以上になるような条件で、電極活物質、バインダー樹脂および増粘剤を含む混合物を混練する工程を含むリチウムイオン電池用電極の製造方法が提供される。
上記リチウムイオン電池用電極を製造するための製造方法であって、
上記リチウムイオン電池用電極スラリーを調製する工程を含み、
上記リチウムイオン電池用電極スラリーを調製する工程は、
GPC法を用いてプルラン換算で算出される、上記増粘剤の重量平均分子量(Mw)が2000000以上になるような条件で、電極活物質、バインダー樹脂および増粘剤を含む混合物を混練する工程を含むリチウムイオン電池用電極の製造方法が提供される。
また、本発明によれば、
上記リチウムイオン電池用電極を備える、リチウムイオン電池が提供される。
上記リチウムイオン電池用電極を備える、リチウムイオン電池が提供される。
本発明によれば、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極を提供することができる。
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。
なお、本実施形態では特に断りがなければ、電極活物質を含む層を電極活物質層と呼び、集電体層上に電極活物質層を形成させたものを電極と呼ぶ。また、本実施形態では数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。
なお、本実施形態では特に断りがなければ、電極活物質を含む層を電極活物質層と呼び、集電体層上に電極活物質層を形成させたものを電極と呼ぶ。また、本実施形態では数値範囲の「A~B」は特に断りがなければ、A以上B以下を表す。
<リチウムイオン電池用電極およびリチウムイオン電池用電極スラリー>
はじめに、本実施形態に係るリチウムイオン電池用電極およびリチウムイオン電池用電極スラリーについて説明する。図1は、本発明に係る実施形態のリチウムイオン電池用電極100の構造の一例を示す断面図である。
本実施形態に係るリチウムイオン電池用電極100は、集電体層101と、集電体層101の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂および増粘剤を含む電極活物質層103と、を備え、ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、電極活物質層103から抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上である。
また、本実施形態に係るリチウムイオン電池用電極スラリーは、電極活物質、バインダー樹脂、増粘剤および水系媒体を含み、ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、上記リチウムイオン電池用電極スラリーから抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上である。
また、本実施形態に係るリチウムイオン電池用電極100は、集電体層101と、集電体層101の少なくとも一方の面に設けられ、かつ、本実施形態に係るリチウムイオン電池用電極スラリーの固形分により構成された電極活物質層103と、を備え、ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、電極活物質層103から抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上であってもよい。
ここで、本実施形態に係る電極スラリーにおいて、増粘剤は電極スラリー中に溶解しており、粉末状態ではない。
また、本実施形態に係るリチウムイオン電池はリチウムイオン一次電池またはリチウムイオン二次電池であり、好ましくはリチウムイオン二次電池である。
はじめに、本実施形態に係るリチウムイオン電池用電極およびリチウムイオン電池用電極スラリーについて説明する。図1は、本発明に係る実施形態のリチウムイオン電池用電極100の構造の一例を示す断面図である。
本実施形態に係るリチウムイオン電池用電極100は、集電体層101と、集電体層101の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂および増粘剤を含む電極活物質層103と、を備え、ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、電極活物質層103から抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上である。
また、本実施形態に係るリチウムイオン電池用電極スラリーは、電極活物質、バインダー樹脂、増粘剤および水系媒体を含み、ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、上記リチウムイオン電池用電極スラリーから抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上である。
また、本実施形態に係るリチウムイオン電池用電極100は、集電体層101と、集電体層101の少なくとも一方の面に設けられ、かつ、本実施形態に係るリチウムイオン電池用電極スラリーの固形分により構成された電極活物質層103と、を備え、ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、電極活物質層103から抽出された上記増粘剤の重量平均分子量(Mw)が2000000以上であってもよい。
ここで、本実施形態に係る電極スラリーにおいて、増粘剤は電極スラリー中に溶解しており、粉末状態ではない。
また、本実施形態に係るリチウムイオン電池はリチウムイオン一次電池またはリチウムイオン二次電池であり、好ましくはリチウムイオン二次電池である。
ここで、本実施形態に係るリチウムイオン電池用電極スラリーから抽出された増粘剤の重量平均分子量(Mw)は、例えば、以下の手順により測定することができる。
(1)電極スラリー約12.5gをメスフラスコに量りとり、蒸留水を加えて50mLとする。
(2)軽く振り混ぜて均一な溶液にした後(例えば目視により確認)、超遠心分離機(日立工機株式会社製、製品名:日立分離用超遠心機、型式:CP80WX、ロータ:アングルロータP70AT)を用いて、超遠心分離(30000rpm(66000G)×30分)を行う。
(3)(2)で得られた分離後の上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行う。さらに、上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行う。これらの超遠心分離操作によって、スラリー中の電極活物質、バインダー樹脂、導電助剤等を除去する。
(4)(3)で得られた上澄み液を0.45μmフィルターでろ過し、得られた濾液をさらに0.20μmフィルターでろ過する。これにより、(3)で得られた上澄み液に残っている、電極活物質、バインダー樹脂および導電助剤等を除去する。得られた濾液を測定溶媒(0.1M塩化ナトリウム水溶液)で5倍に希釈し、以下の測定条件で増粘剤の分子量分布の測定をおこない、得られた結果からプルラン換算の重量平均分子量を算出する。ここで、プルラン換算の重量平均分子量とは、標準物質として単分散プルランを用いて作成した検量線を用いて算出した値である。
(測定条件)
装置:ゲル浸透クロマトグラフ GPC(東ソー株式会社製、ポンプ型式:DP-8020)
検出器:示差屈折率検出器RI(東ソー株式会社製、RI-8020型、感度16)
カラム:TSKgel guardcolumn PWXL(1本)、TSKgel PWXL(2本)(φ6mm×4cm、φ7.8mm×30cm、東ソー株式会社製)
溶媒:0.1M塩化ナトリウム水溶液
流速:0.5mL/min
カラム温度:45℃
注入量:0.2mL
標準物質:単分散プルラン(昭和電工製)
(1)電極スラリー約12.5gをメスフラスコに量りとり、蒸留水を加えて50mLとする。
(2)軽く振り混ぜて均一な溶液にした後(例えば目視により確認)、超遠心分離機(日立工機株式会社製、製品名:日立分離用超遠心機、型式:CP80WX、ロータ:アングルロータP70AT)を用いて、超遠心分離(30000rpm(66000G)×30分)を行う。
(3)(2)で得られた分離後の上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行う。さらに、上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行う。これらの超遠心分離操作によって、スラリー中の電極活物質、バインダー樹脂、導電助剤等を除去する。
(4)(3)で得られた上澄み液を0.45μmフィルターでろ過し、得られた濾液をさらに0.20μmフィルターでろ過する。これにより、(3)で得られた上澄み液に残っている、電極活物質、バインダー樹脂および導電助剤等を除去する。得られた濾液を測定溶媒(0.1M塩化ナトリウム水溶液)で5倍に希釈し、以下の測定条件で増粘剤の分子量分布の測定をおこない、得られた結果からプルラン換算の重量平均分子量を算出する。ここで、プルラン換算の重量平均分子量とは、標準物質として単分散プルランを用いて作成した検量線を用いて算出した値である。
(測定条件)
装置:ゲル浸透クロマトグラフ GPC(東ソー株式会社製、ポンプ型式:DP-8020)
検出器:示差屈折率検出器RI(東ソー株式会社製、RI-8020型、感度16)
カラム:TSKgel guardcolumn PWXL(1本)、TSKgel PWXL(2本)(φ6mm×4cm、φ7.8mm×30cm、東ソー株式会社製)
溶媒:0.1M塩化ナトリウム水溶液
流速:0.5mL/min
カラム温度:45℃
注入量:0.2mL
標準物質:単分散プルラン(昭和電工製)
また、電極活物質層103から抽出された増粘剤の重量平均分子量(Mw)は、例えば、以下の手順により測定することができる。
(1)リチウムイオン電池用電極から電極活物質層約1.0gを容器に削り取り、蒸留水を加えて撹拌し、スラリー状にする。
(2)得られた電極スラリー約12.5gをメスフラスコに量りとり、蒸留水を加えて50mLとする。
(3)軽く振り混ぜて均一な溶液にした後(例えば目視により確認)、超遠心分離機(日立工機株式会社製、製品名:日立分離用超遠心機、型式:CP80WX、ロータ:アングルロータP70AT)を用いて、超遠心分離(30000rpm(66000G)×30分)を行う。
(4)(3)で得られた分離後の上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行う。さらに、上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行う。これらの超遠心分離操作によって、スラリー中の電極活物質、バインダー樹脂、導電助剤等を除去する。
(5)(4)で得られた上澄み液を0.45μmフィルターでろ過し、得られた濾液をさらに0.20μmフィルターでろ過する。これにより、(4)で得られた上澄み液に残っている、電極活物質、バインダー樹脂および導電助剤等を除去する。得られた濾液を測定溶媒(0.1M塩化ナトリウム水溶液)で5倍に希釈し、以下の測定条件で増粘剤の分子量分布の測定をおこない、得られた結果からプルラン換算の重量平均分子量を算出する。ここで、プルラン換算の重量平均分子量とは、標準物質として単分散プルランを用いて作成した検量線を用いて算出した値である。
(1)リチウムイオン電池用電極から電極活物質層約1.0gを容器に削り取り、蒸留水を加えて撹拌し、スラリー状にする。
(2)得られた電極スラリー約12.5gをメスフラスコに量りとり、蒸留水を加えて50mLとする。
(3)軽く振り混ぜて均一な溶液にした後(例えば目視により確認)、超遠心分離機(日立工機株式会社製、製品名:日立分離用超遠心機、型式:CP80WX、ロータ:アングルロータP70AT)を用いて、超遠心分離(30000rpm(66000G)×30分)を行う。
(4)(3)で得られた分離後の上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行う。さらに、上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行う。これらの超遠心分離操作によって、スラリー中の電極活物質、バインダー樹脂、導電助剤等を除去する。
(5)(4)で得られた上澄み液を0.45μmフィルターでろ過し、得られた濾液をさらに0.20μmフィルターでろ過する。これにより、(4)で得られた上澄み液に残っている、電極活物質、バインダー樹脂および導電助剤等を除去する。得られた濾液を測定溶媒(0.1M塩化ナトリウム水溶液)で5倍に希釈し、以下の測定条件で増粘剤の分子量分布の測定をおこない、得られた結果からプルラン換算の重量平均分子量を算出する。ここで、プルラン換算の重量平均分子量とは、標準物質として単分散プルランを用いて作成した検量線を用いて算出した値である。
前述したように、本発明者らの検討によれば、従来の製造方法により得られるリチウムイオン電池用電極は剥離強度が低い場合があり、集電体層と電極活物質層との接着性に改善の余地があることが明らかになった。
リチウムイオン電池用電極の剥離強度が低い場合、電極や電池の生産性が低下したり、電池を組み立てる工程において電極活物質層の粉落ちが起こり、その結果、電池の品質劣化や電池のサイクル特性等に不具合が起きたりする懸念がある。
本発明者らは上記課題を達成すべく鋭意検討を重ねた。その結果、剥離強度が低いリチウムイオン電池用電極では、電極に含まれる増粘剤の重量平均分子量が、原料として用いた、スラリーに添加する前の原料増粘剤の重量平均分子量に比べて大きく低下していることを知見した。すなわち、リチウムイオン電池用電極を作製する工程、より具体的にはリチウムイオン電池用電極スラリーを調製する工程において、増粘剤の分子鎖が分解して重量平均分子量が大きく低下した場合に、集電体層と電極活物質層との接着性が低下し、剥離強度が低いリチウムイオン電池用電極が得られることが明らかになった。
本発明者らは上記知見を基にさらに鋭意検討した。その結果、増粘剤の分解が抑制されるような条件すなわちリチウムイオン電池用電極スラリーに含まれる増粘剤の重量平均分子量が上記下限値以上になるよう条件で増粘剤を含む混合物を混練して電極スラリーを調製することによって、得られる電極スラリーやリチウムイオン電池用電極中の増粘剤の重量平均分子量を高い値に維持することができ、その結果、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極が得られることを見出した。
すなわち、本実施形態によれば、電極活物質層あるいはリチウムイオン電池用電極スラリーから抽出された増粘剤の重量平均分子量を上記下限値以上とすることによって、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極を得ることが可能となる。
リチウムイオン電池用電極の剥離強度が低い場合、電極や電池の生産性が低下したり、電池を組み立てる工程において電極活物質層の粉落ちが起こり、その結果、電池の品質劣化や電池のサイクル特性等に不具合が起きたりする懸念がある。
本発明者らは上記課題を達成すべく鋭意検討を重ねた。その結果、剥離強度が低いリチウムイオン電池用電極では、電極に含まれる増粘剤の重量平均分子量が、原料として用いた、スラリーに添加する前の原料増粘剤の重量平均分子量に比べて大きく低下していることを知見した。すなわち、リチウムイオン電池用電極を作製する工程、より具体的にはリチウムイオン電池用電極スラリーを調製する工程において、増粘剤の分子鎖が分解して重量平均分子量が大きく低下した場合に、集電体層と電極活物質層との接着性が低下し、剥離強度が低いリチウムイオン電池用電極が得られることが明らかになった。
本発明者らは上記知見を基にさらに鋭意検討した。その結果、増粘剤の分解が抑制されるような条件すなわちリチウムイオン電池用電極スラリーに含まれる増粘剤の重量平均分子量が上記下限値以上になるよう条件で増粘剤を含む混合物を混練して電極スラリーを調製することによって、得られる電極スラリーやリチウムイオン電池用電極中の増粘剤の重量平均分子量を高い値に維持することができ、その結果、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極が得られることを見出した。
すなわち、本実施形態によれば、電極活物質層あるいはリチウムイオン電池用電極スラリーから抽出された増粘剤の重量平均分子量を上記下限値以上とすることによって、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極を得ることが可能となる。
ここで、電極活物質層あるいはリチウムイオン電池用電極スラリーから抽出された増粘剤の重量平均分子量を上記下限値以上とすることによって、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極を得ることができる理由は必ずしも明らかではないが、以下の理由が考えられる。
まず、増粘剤の重量平均分子量が高いリチウムイオン電池用電極スラリーほど弾性が粘性よりも相対的に高く、リチウムイオン電池用電極スラリーを構成する各材料間の相互作用による3次元的なネットワークが発達していると考えられる。リチウムイオン電池用電極スラリー中の3次元的なネットワークが発達すると、集電体層に塗布したリチウムイオン電池用電極スラリーを乾燥する際のバインダー樹脂の電極活物質層表面への移動が抑えられ、その結果、バインダー樹脂が電極活物質層の表面に偏在してしまうことを抑制できると考えられる。
そして、バインダー樹脂の電極活物質層への表面偏在が抑制された結果、集電体層と電極活物質層との界面におけるバインダー樹脂の量を増やすことができ、集電体層と電極活物質層との接着性を向上させることができると考えられる。
すなわち、本実施形態によれば、電極活物質層あるいはリチウムイオン電池用電極スラリーから抽出された増粘剤の重量平均分子量を上記下限値以上とすることによって、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極を得ることが可能である。
すなわち、本実施形態によれば、電極活物質層あるいはリチウムイオン電池用電極スラリーから抽出された増粘剤の重量平均分子量を上記下限値以上とすることによって、バインダー樹脂の電極活物質層表面への偏在を抑制でき、集電体層と電極活物質層との接着性を向上させることができる。
以上から、本実施形態によれば、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極を提供することができる。
まず、増粘剤の重量平均分子量が高いリチウムイオン電池用電極スラリーほど弾性が粘性よりも相対的に高く、リチウムイオン電池用電極スラリーを構成する各材料間の相互作用による3次元的なネットワークが発達していると考えられる。リチウムイオン電池用電極スラリー中の3次元的なネットワークが発達すると、集電体層に塗布したリチウムイオン電池用電極スラリーを乾燥する際のバインダー樹脂の電極活物質層表面への移動が抑えられ、その結果、バインダー樹脂が電極活物質層の表面に偏在してしまうことを抑制できると考えられる。
そして、バインダー樹脂の電極活物質層への表面偏在が抑制された結果、集電体層と電極活物質層との界面におけるバインダー樹脂の量を増やすことができ、集電体層と電極活物質層との接着性を向上させることができると考えられる。
すなわち、本実施形態によれば、電極活物質層あるいはリチウムイオン電池用電極スラリーから抽出された増粘剤の重量平均分子量を上記下限値以上とすることによって、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極を得ることが可能である。
すなわち、本実施形態によれば、電極活物質層あるいはリチウムイオン電池用電極スラリーから抽出された増粘剤の重量平均分子量を上記下限値以上とすることによって、バインダー樹脂の電極活物質層表面への偏在を抑制でき、集電体層と電極活物質層との接着性を向上させることができる。
以上から、本実施形態によれば、集電体層と電極活物質層との接着性に優れたリチウムイオン電池用電極を提供することができる。
また、GPC法を用いてプルラン換算で算出される、電極活物質層あるいは電極スラリーから抽出された増粘剤の重量平均分子量(Mw)の下限は2000000以上であるが、集電体層と電極活物質層との接着性をより一層良好にする観点から、2100000以上であることが好ましく、2200000以上であることがより好ましい。
また、GPC法を用いてプルラン換算で算出される、電極活物質層あるいは電極スラリーから抽出された増粘剤の重量平均分子量(Mw)の上限は特に限定されないが、5000000以下であることが好ましく、4000000以下であることがより好ましく、3000000以下であることがさらに好ましく、2800000以下であることが特に好ましい。重量平均分子量が上記上限値以下であると、増粘剤の水系媒体への溶解性が向上し、電極スラリーの固形分濃度を高めることができ、その結果、本実施形態に係る電極スラリーの貯蔵弾性率を効果的に高めることができる。これにより、バインダー樹脂の電極活物質層表面への偏在をより一層抑制できるため、集電体層と電極活物質層との接着性をより一層向上させることができる。
また、GPC法を用いてプルラン換算で算出される、電極活物質層あるいは電極スラリーから抽出された増粘剤の重量平均分子量(Mw)の上限は特に限定されないが、5000000以下であることが好ましく、4000000以下であることがより好ましく、3000000以下であることがさらに好ましく、2800000以下であることが特に好ましい。重量平均分子量が上記上限値以下であると、増粘剤の水系媒体への溶解性が向上し、電極スラリーの固形分濃度を高めることができ、その結果、本実施形態に係る電極スラリーの貯蔵弾性率を効果的に高めることができる。これにより、バインダー樹脂の電極活物質層表面への偏在をより一層抑制できるため、集電体層と電極活物質層との接着性をより一層向上させることができる。
本実施形態に係るリチウムイオン電池用電極において、GPC法を用いてプルラン換算で算出される、電極活物質層あるいは電極スラリーから抽出された増粘剤の重量平均分子量(Mw)と、数平均分子量(Mn)との比(Mw/Mn)が、集電体層と電極活物質層との接着性をより一層向上させる観点から、6.0未満であることが好ましく、5.9以下であることがより好ましく、5.8以下がさらに好ましく、そして、電極スラリーの安定性を向上させる観点から、2.0以上が好ましく、3.0以上がより好ましく、4.0以上がさらに好ましい。
本実施形態に係る電極活物質層および電極スラリーから抽出された増粘剤の重量平均分子量(Mw)やMw/Mnは、原料増粘剤の重量平均分子量、電極スラリーの調製方法等の製造条件を高度に制御することにより実現することが可能である。より具体的には、原料増粘剤として、重量平均分子量(Mw)が250万以上、好ましくは300万以上の超高分子量の増粘剤を用いることや、増粘剤の分解が抑制されるような条件すなわち増粘剤の重量平均分子量(Mw)が上記下限値以上を維持できるような緩やかな条件で電極活物質、バインダー樹脂および増粘剤を含む混合物を混練すること等が特に重要である。
本実施形態に係る電極スラリーにおいて、電極スラリーの塗工性や電極スラリーを構成する各材料の分散安定性をより良好にする点等から、B型粘度計を用いて、25℃、せん断速度3.4s-1の条件で測定される粘度が、好ましくは1000mPa・s以上20000mPa・s以下であり、より好ましくは2000mPa・s以上15000mPa・s以下、さらに好ましくは4000mPa・s以上14000mPa・s以下、特に好ましくは5000mPa・s以上13000mPa・s以下である。
本実施形態に係る電極スラリーの粘度は、例えば、電極スラリーの固形分濃度、電極スラリーを構成する各材料の配合比率、電極スラリーを構成する各材料の種類、電極スラリーを作製する際の固練り工程における固形分濃度や混合速度、混合時間等の製造条件を制御することにより調整することが可能である。
本実施形態に係る電極スラリーの粘度は、例えば、電極スラリーの固形分濃度、電極スラリーを構成する各材料の配合比率、電極スラリーを構成する各材料の種類、電極スラリーを作製する際の固練り工程における固形分濃度や混合速度、混合時間等の製造条件を制御することにより調整することが可能である。
本実施形態に係る電極スラリーの固形分濃度は、電極スラリーの塗工性や電極スラリーを構成する各材料の分散安定性をより良好にする点等から、好ましくは35質量%以上65質量%以下であり、より好ましくは40質量%以上60質量%以下、さらに好ましくは40質量%以上58質量%以下、特に好ましくは45質量%以上55質量%以下である。
本実施形態に係る電極スラリーのpHは、電極スラリーの分散安定性を良好にする観点から、例えば6.0以上8.0以下であり、好ましくは6.5以上7.5以下である。
本実施形態に係る電極スラリーのpHの調整方法はとくに限定はされないが、例えば、電極スラリーを構成する各材料の配合比率や、電極スラリーを構成する各材料の種類等を調整することによって調整することができる。
本実施形態に係る電極スラリーのpHの調整方法はとくに限定はされないが、例えば、電極スラリーを構成する各材料の配合比率や、電極スラリーを構成する各材料の種類等を調整することによって調整することができる。
<電極活物質層およびリチウムイオン電池用電極スラリーの構成材料>
次に、本実施形態に係る電極活物質層およびリチウムイオン電池用電極スラリーを構成する各材料について説明する。
本実施形態に係る電極活物質層は、正極活物質および負極活物質から選択される電極活物質と、バインダー樹脂と、増粘剤と、を含み、さらに必要に応じて導電助剤を含む。
本実施形態に係る電極スラリーは、正極活物質および負極活物質から選択される電極活物質と、バインダー樹脂と、増粘剤と、水系媒体と、を含み、さらに必要に応じて導電助剤を含む。
次に、本実施形態に係る電極活物質層およびリチウムイオン電池用電極スラリーを構成する各材料について説明する。
本実施形態に係る電極活物質層は、正極活物質および負極活物質から選択される電極活物質と、バインダー樹脂と、増粘剤と、を含み、さらに必要に応じて導電助剤を含む。
本実施形態に係る電極スラリーは、正極活物質および負極活物質から選択される電極活物質と、バインダー樹脂と、増粘剤と、水系媒体と、を含み、さらに必要に応じて導電助剤を含む。
(電極活物質)
本実施形態に係る電極活物質は用途に応じて適宜選択される。正極を作製するときは正極活物質を使用し、負極を作製するときは負極活物質を使用する。
本実施形態において、電極活物質としては負極活物質を使用したときに、本実施形態の剥離強度向上効果を特に効果的に得ることができる。
本実施形態に係る電極活物質は用途に応じて適宜選択される。正極を作製するときは正極活物質を使用し、負極を作製するときは負極活物質を使用する。
本実施形態において、電極活物質としては負極活物質を使用したときに、本実施形態の剥離強度向上効果を特に効果的に得ることができる。
正極活物質としてはリチウムイオン電池の正極に使用可能な通常の正極活物質であれば特に限定されない。例えば、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウム-マンガン-ニッケル複合酸化物等のリチウムと遷移金属との複合酸化物;TiS2、FeS、MoS2等の遷移金属硫化物;MnO、V2O5、V6O13、TiO2等の遷移金属酸化物、オリビン型リチウムリン酸化物等が挙げられる。
オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
オリビン型リチウムリン酸化物は、例えば、Mn、Cr、Co、Cu、Ni、V、Mo、Ti、Zn、Al、Ga、Mg、B、Nb、およびFeよりなる群のうちの少なくとも1種の元素と、リチウムと、リンと、酸素とを含んでいる。これらの化合物はその特性を向上させるために一部の元素を部分的に他の元素に置換したものであってもよい。
これらの中でも、オリビン型リチウム鉄リン酸化物、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウム-マンガン-ニッケル複合酸化物が好ましい。これらの正極活物質は作用電位が高いことに加えて容量も大きく、大きなエネルギー密度を有する。
正極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
正極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されない。例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素材料;リチウム金属、リチウム合金等のリチウム系金属;シリコン、スズ等の金属;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー等が挙げられる。これらの中でも炭素材料が好ましく、特に天然黒鉛や人造黒鉛等の黒鉛質材料が好ましい。
負極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
負極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
電極活物質の含有量は、電極活物質層の全体または電極スラリーの固形分の全量を100質量部としたとき、70質量部以上99.97質量部以下であることが好ましく、85質量部以上99.85質量部以下であることがより好ましい。
黒鉛質材料としては、リチウムイオン電池の負極に使用可能な通常の黒鉛質材料であれば特に限定されない。例えば、天然黒鉛、石油系および石炭系コークスを熱処理することで製造される人造黒鉛等が挙げられる。
ここで、天然黒鉛とは、鉱石として天然に産出する黒鉛のことをいう。本実施形態の核材として用いる天然黒鉛は、産地や性状、種類は特に限定されない。
また、人造黒鉛とは、人工的な手法で作られた黒鉛および黒鉛の完全結晶に近い黒鉛をいう。このような人造黒鉛は、例えば、石炭の乾留、原油の蒸留による残渣等から得られるタールやコークスを原料にして、焼成工程、黒鉛化工程を経ることにより得られる。
ここで、天然黒鉛とは、鉱石として天然に産出する黒鉛のことをいう。本実施形態の核材として用いる天然黒鉛は、産地や性状、種類は特に限定されない。
また、人造黒鉛とは、人工的な手法で作られた黒鉛および黒鉛の完全結晶に近い黒鉛をいう。このような人造黒鉛は、例えば、石炭の乾留、原油の蒸留による残渣等から得られるタールやコークスを原料にして、焼成工程、黒鉛化工程を経ることにより得られる。
また、黒鉛質材料は、黒鉛粉末を核材とし、上記黒鉛粉末の表面の少なくとも一部が上記黒鉛粉末よりも結晶性の低い炭素材料により被覆されているもの(以下、表面被覆黒鉛とも呼ぶ。)が好ましい。特に黒鉛粉末のエッジ部が上記炭素材料により被覆されていることが好ましい。黒鉛粉末のエッジ部が被覆されることにより、エッジ部と電解液との不可逆的な反応を抑制することができ、その結果、不可逆容量の増大による初期の充放電効率の低下を抑制することができる。
また、表面被覆黒鉛を用いると、黒鉛単独のときよりもバインダー樹脂との結着性を向上させることができるため、バインダー樹脂の量を減らすことができる。その結果、得られるリチウムイオン電池の電池特性を向上させることができる。
ここで、上記黒鉛粉末よりも結晶性の低い炭素材料とは、例えば、ソフトカーボン、ハードカーボン等のアモルファスカーボンである。
また、表面被覆黒鉛を用いると、黒鉛単独のときよりもバインダー樹脂との結着性を向上させることができるため、バインダー樹脂の量を減らすことができる。その結果、得られるリチウムイオン電池の電池特性を向上させることができる。
ここで、上記黒鉛粉末よりも結晶性の低い炭素材料とは、例えば、ソフトカーボン、ハードカーボン等のアモルファスカーボンである。
核材として用いる黒鉛粉末としては、例えば、天然黒鉛、石油系および石炭系コークスを熱処理することで製造される人造黒鉛等が挙げられる。本実施形態においては、これらの黒鉛粉末を一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、コストの点から、天然黒鉛が好ましい。
本実施形態に係る表面被覆黒鉛は、焼成工程により炭素化されて上記黒鉛粉末よりも結晶性の低い炭素材料となる有機化合物と、上記黒鉛粉末とを混合した後に、上記有機化合物を焼成炭素化することによって作製することができる。
上記黒鉛粉末と混合する有機化合物は、焼成することによって炭素化して、上記黒鉛粉末よりも結晶性の低い炭素材料が得られるものであれば特に限定されないが、例えば、石油系タール、石炭系タール等のタール;石油系ピッチ、石炭系ピッチ等のピッチ;ポリ塩化ビニル、ポリビニルアセテート、ポリビニルブチラール、ポリビニルアルコール、ポリ塩化ビニリデン、ポリアクリロニトリル等の熱可塑性樹脂;フェノール樹脂、フルフリルアルコール樹脂等の熱硬化性樹脂;セルロース等の天然樹脂;ナフタレン、アルキルナフタレン、アントラセン等の芳香族炭化水素等が挙げられる。
本実施形態においては、これらの有機化合物は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、これらの有機化合物は、必要に応じて、溶媒により溶解または分散させて用いてもよい。
上記有機化合物の中でも、価格の点からタールおよびピッチが好ましい。
本実施形態においては、これらの有機化合物は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、これらの有機化合物は、必要に応じて、溶媒により溶解または分散させて用いてもよい。
上記有機化合物の中でも、価格の点からタールおよびピッチが好ましい。
本実施形態に係る表面被覆黒鉛における有機化合物由来の炭素材料の割合(以下「被覆量」と呼ぶ。)は、負極活物質を100質量%としたとき、好ましくは0.7質量%以上8.0質量%以下である。
炭素材料の被覆量を上記上限値以下とすることにより、リチウムイオンを吸蔵・放出する面積が大きくなり、得られるリチウムイオン電池のレート特性を向上させることができる。
炭素材料の被覆量を上記下限値以上とすることにより、不可逆容量の増大による初期の充放電効率の低下を抑制することができる。また、炭素材料の被覆量を上記下限値以上とすることにより、得られる電極スラリーの安定性を向上させることができる。
ここで、上記被覆量は、熱重量分析により算出することができる。より具体的には、熱重量分析計(例えば、パーキンエルマ社製TGA7アナライザ)を用いて、酸素雰囲気下、昇温速度5℃/minにて負極活物質を900℃まで昇温したとき、質量減少が始まった温度から、質量減少割合が緩やかになり、その後質量減少が加速する温度までの減少質量を被覆量とすることができる。
炭素材料の被覆量を上記上限値以下とすることにより、リチウムイオンを吸蔵・放出する面積が大きくなり、得られるリチウムイオン電池のレート特性を向上させることができる。
炭素材料の被覆量を上記下限値以上とすることにより、不可逆容量の増大による初期の充放電効率の低下を抑制することができる。また、炭素材料の被覆量を上記下限値以上とすることにより、得られる電極スラリーの安定性を向上させることができる。
ここで、上記被覆量は、熱重量分析により算出することができる。より具体的には、熱重量分析計(例えば、パーキンエルマ社製TGA7アナライザ)を用いて、酸素雰囲気下、昇温速度5℃/minにて負極活物質を900℃まで昇温したとき、質量減少が始まった温度から、質量減少割合が緩やかになり、その後質量減少が加速する温度までの減少質量を被覆量とすることができる。
電極活物質の窒素吸着BET法による比表面積は、好ましくは1.0m2/g以上6.0m2/g以下であり、より好ましくは2.0m2/g以上5.0m2/g以下である。
比表面積を上記上限値以下とすることにより、不可逆容量の増大による初期の充放電効率の低下を抑制することができる。また、比表面積を上記上限値以下とすることにより、得られる電極スラリーの安定性を向上させることができる。
比表面積を上記下限値以上とすることにより、リチウムイオンを吸蔵・放出する面積が大きくなり、得られるリチウムイオン電池のレート特性を向上させることができる。
また、比表面積を上記範囲内とすることにより、バインダー樹脂の結着性を向上させることができる。
比表面積を上記上限値以下とすることにより、不可逆容量の増大による初期の充放電効率の低下を抑制することができる。また、比表面積を上記上限値以下とすることにより、得られる電極スラリーの安定性を向上させることができる。
比表面積を上記下限値以上とすることにより、リチウムイオンを吸蔵・放出する面積が大きくなり、得られるリチウムイオン電池のレート特性を向上させることができる。
また、比表面積を上記範囲内とすることにより、バインダー樹脂の結着性を向上させることができる。
電極活物質の平均粒子径は、充放電時の副反応を抑えて充放電効率の低下を抑える点から、1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましく、8μm以上が特に好ましく、入出力特性や電極作製上の観点(電極表面の平滑性等)から、50μm以下が好ましく、40μm以下がより好ましく、30μm以下が特に好ましい。ここで、平均粒径は、レーザ回折散乱法による粒度分布(体積基準)における積算値50%での粒子径(メジアン径:d50)を意味する。
(バインダー樹脂)
バインダー樹脂は、電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ゴム系バインダー樹脂やアクリル系バインダー樹脂等を用いることができる。
本実施形態に係るバインダー樹脂はラテックス粒子により形成され、水に分散させてエマルジョン水溶液として用いることが好ましい。すなわち、本実施形態に係るバインダー樹脂は、バインダー樹脂のラテックス粒子により形成され、かつ、水に分散してエマルジョン水溶液を形成できる、いわゆる水系バインダー樹脂が好ましい。これにより、電極活物質間や導電助剤間、電極活物質と導電助剤との間との接触を阻害せず、バインダー樹脂を電極活物質層中に含有させることができる。
なお、バインダー樹脂を分散させる水にはアルコール等の水と親水性の高い溶媒を混合させてもよい。
バインダー樹脂は、電極成形が可能であり、十分な電気化学的安定性を有していれば特に限定されないが、例えば、ゴム系バインダー樹脂やアクリル系バインダー樹脂等を用いることができる。
本実施形態に係るバインダー樹脂はラテックス粒子により形成され、水に分散させてエマルジョン水溶液として用いることが好ましい。すなわち、本実施形態に係るバインダー樹脂は、バインダー樹脂のラテックス粒子により形成され、かつ、水に分散してエマルジョン水溶液を形成できる、いわゆる水系バインダー樹脂が好ましい。これにより、電極活物質間や導電助剤間、電極活物質と導電助剤との間との接触を阻害せず、バインダー樹脂を電極活物質層中に含有させることができる。
なお、バインダー樹脂を分散させる水にはアルコール等の水と親水性の高い溶媒を混合させてもよい。
ゴム系バインダー樹脂としては、例えば、スチレン・ブタジエン共重合体ゴム等が挙げられる。
アクリル系バインダー樹脂としては、例えば、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリル酸塩、またはメタクリル酸塩の単位(以下「アクリル単位」という)を含む重合体(単独重合体又は共重合体)等が挙げられる。この共重合体としては、アクリル単位とスチレン単位を含む共重合体、アクリル単位とシリコン単位を含む共重合体等が挙げられる。
これらのバインダー樹脂は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、結着性、電解液との親和性、価格および電気化学安定性等に優れる点から、スチレン・ブタジエン共重合体ゴムが特に好ましい。
アクリル系バインダー樹脂としては、例えば、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリル酸塩、またはメタクリル酸塩の単位(以下「アクリル単位」という)を含む重合体(単独重合体又は共重合体)等が挙げられる。この共重合体としては、アクリル単位とスチレン単位を含む共重合体、アクリル単位とシリコン単位を含む共重合体等が挙げられる。
これらのバインダー樹脂は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中でも、結着性、電解液との親和性、価格および電気化学安定性等に優れる点から、スチレン・ブタジエン共重合体ゴムが特に好ましい。
バインダー樹脂の含有量は、電極活物質層の全体または電極スラリーの固形分の全量を100質量部としたとき、0.01質量部以上10.0質量部以下であることが好ましく、0.05質量部以上5.0質量部以下であることがより好ましい。バインダー樹脂の含有量が上記範囲内であると、電極スラリーの塗工性、バインダー樹脂の結着性および電池特性のバランスがより一層優れる。
バインダー樹脂は、例えば、水系媒体に分散させてエマルジョン水溶液として用いる。これにより、電極活物質間や導電助剤間、電極活物質と導電助剤との間との接触を阻害せず、バインダー樹脂の分散性を向上させることができる。
バインダー樹脂を分散させる水系媒体については、バインダー樹脂を分散できるものであれば特に限定されないが、蒸留水、イオン交換水、市水、工業用水等を使用できる。これらの中でも、蒸留水やイオン交換水が好ましい。また、水には、アルコール等の水と親水性の高い溶媒を混合させてもよい。
バインダー樹脂を分散させる水系媒体については、バインダー樹脂を分散できるものであれば特に限定されないが、蒸留水、イオン交換水、市水、工業用水等を使用できる。これらの中でも、蒸留水やイオン交換水が好ましい。また、水には、アルコール等の水と親水性の高い溶媒を混合させてもよい。
スチレン・ブタジエン共重合体ゴムは、スチレンと1,3-ブタジエンを主成分とする共重合体である。ここで、主成分とは、スチレン・ブタジエン共重合体ゴム中において、スチレン由来の構成単位および1,3-ブタジエン由来の構成単位の合計含有量が、スチレン・ブタジエン共重合体ゴムの全重合単位中50質量%以上の場合をいう。
スチレン由来の構成単位(以下、Stとも呼ぶ。)と1,3-ブタジエン由来の構成単位(以下、BDとも呼ぶ。)との質量比(St/BD)は、例えば、10/90~90/10である。
スチレン由来の構成単位(以下、Stとも呼ぶ。)と1,3-ブタジエン由来の構成単位(以下、BDとも呼ぶ。)との質量比(St/BD)は、例えば、10/90~90/10である。
スチレン・ブタジエン共重合体ゴムは、スチレンおよび1,3-ブタジエン以外のモノマー成分を共重合させてもよい。例えば、共役ジエン系モノマー、不飽和カルボン酸モノマー、その他共重合可能である公知のモノマー等が挙げられる。
共役ジエン系モノマーとしては、例えば、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、ピペリレン等が挙げられる。
不飽和カルボン酸モノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等が挙げられる。
共役ジエン系モノマーとしては、例えば、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、ピペリレン等が挙げられる。
不飽和カルボン酸モノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等が挙げられる。
スチレン・ブタジエン共重合体ゴムの製造方法は特に限定されないが、乳化重合法により製造することが好ましい。乳化重合法を用いると、スチレン・ブタジエン共重合体ゴムを含むラテックス粒子で得ることができる。
乳化重合としては従来既知の方法を用いることができる。例えば、スチレンと、1,3-ブタジエンと、さらには上記の各種共重合可能なモノマー成分とを、好ましくは乳化剤の存在下、重合開始剤を添加し、水中で乳化重合することにより製造することができる。
乳化重合としては従来既知の方法を用いることができる。例えば、スチレンと、1,3-ブタジエンと、さらには上記の各種共重合可能なモノマー成分とを、好ましくは乳化剤の存在下、重合開始剤を添加し、水中で乳化重合することにより製造することができる。
(増粘剤)
増粘剤としては、例えば、セルロース系水溶性高分子;ポリカルボン酸;ポリエチレンオキシド;ポリビニルピロリドン;ポリアクリル酸ナトリウム等のポリアクリル酸塩;ポリビニルアルコール;等の水溶性ポリマーが挙げられる。これらの増粘剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
これらの中でもセルロース系水溶性高分子が好ましい。
増粘剤としては、例えば、セルロース系水溶性高分子;ポリカルボン酸;ポリエチレンオキシド;ポリビニルピロリドン;ポリアクリル酸ナトリウム等のポリアクリル酸塩;ポリビニルアルコール;等の水溶性ポリマーが挙げられる。これらの増粘剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
これらの中でもセルロース系水溶性高分子が好ましい。
セルロース系水溶性高分子としては、例えば、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、メチルエチルヒドロキシセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマー、およびこれらのセルロース系ポリマーのアンモニウム塩並びにアルカリ金属塩等のセルロース系ポリマー塩等から選択される一種または二種以上を用いることができる。
これらの中でもカルボキシメチルセルロースおよびカルボキシメチルセルロース塩から選択される少なくとも一種を含むことが好ましく、カルボキシメチルセルロース、カルボキシメチルセルロースのアンモニウム塩、カルボキシメチルセルロースのナトリウム塩およびカルボキシメチルセルロースのカリウム塩から選択される一種または二種以上を含むことがより好ましい。
これらの中でもカルボキシメチルセルロースおよびカルボキシメチルセルロース塩から選択される少なくとも一種を含むことが好ましく、カルボキシメチルセルロース、カルボキシメチルセルロースのアンモニウム塩、カルボキシメチルセルロースのナトリウム塩およびカルボキシメチルセルロースのカリウム塩から選択される一種または二種以上を含むことがより好ましい。
セルロース系水溶性高分子の水系媒体への溶解性を向上させ、電極スラリーの固形分濃度を高めることができる点等から、セルロース系水溶性高分子のエーテル化度は0.50以上1.0以下であることが好ましく、0.75以上0.90以下であることがより好ましい。
ここで、エーテル化度とは、セルロース系水溶性高分子中の無水グルコース単位1個当たりの水酸基のカルボキシメチル基等への置換体への置換度のことをいう。
ここで、エーテル化度とは、セルロース系水溶性高分子中の無水グルコース単位1個当たりの水酸基のカルボキシメチル基等への置換体への置換度のことをいう。
増粘剤の含有量は、電極活物質層の全体または電極スラリーの固形分の全量を100質量部としたとき、0.01質量部以上10.0質量部以下であることが好ましく、0.05質量部以上5.0質量部以下であることがより好ましい。増粘剤の含有量が上記範囲内であると、電極スラリーの塗工性、バインダー樹脂の結着性および電池特性のバランスがより一層優れる。
(導電助剤)
本実施形態に係る電極活物質層および電極スラリーは、得られる電極の電子伝導性を向上させる観点から、導電助剤をさらに含むことが好ましい。
導電助剤は、電子伝導性を有しており、電極の導電性を向上させるものであれば特に限定されない。本実施形態に係る導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、カーボンナノファイバー、活物質として使用される黒鉛よりも粒子径の小さい黒鉛等の炭素材料が挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
本実施形態に係る電極活物質層および電極スラリーは、得られる電極の電子伝導性を向上させる観点から、導電助剤をさらに含むことが好ましい。
導電助剤は、電子伝導性を有しており、電極の導電性を向上させるものであれば特に限定されない。本実施形態に係る導電助剤としては、例えば、アセチレンブラック、ケッチェンブラック、カーボンブラック、カーボンナノファイバー、活物質として使用される黒鉛よりも粒子径の小さい黒鉛等の炭素材料が挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
導電助剤の含有量は、電極活物質層の全体または電極スラリーの固形分の全量を100質量部としたとき、0.01質量部以上10.0質量部以下であることが好ましく、0.05質量部以上5.0質量部以下であることがより好ましい。
導電助剤の含有量が上記範囲内であると、電極スラリーの塗工性およびバインダー樹脂の結着性のバランスがより一層優れる。
導電助剤の含有量が上記範囲内であると、電極スラリーの塗工性およびバインダー樹脂の結着性のバランスがより一層優れる。
導電助剤の窒素吸着BET法による比表面積は、電極スラリーの塗工性および電極の伝導性のバランスの点から、好ましくは50m2/g以上1000m2/g以下である。
(水系媒体)
本実施形態に係る水系媒体については特に限定されず、例えば、蒸留水、イオン交換水、市水、工業用水等を使用できる。これらの中でも、蒸留水やイオン交換水が好ましい。また、水には、アルコール等の水と親水性の高い溶媒を混合させてもよい。
本実施形態に係る水系媒体については特に限定されず、例えば、蒸留水、イオン交換水、市水、工業用水等を使用できる。これらの中でも、蒸留水やイオン交換水が好ましい。また、水には、アルコール等の水と親水性の高い溶媒を混合させてもよい。
本実施形態に係る電極活物質層は、電極活物質層の全体を100質量部としたとき、電極活物質の含有量は好ましくは70質量部以上99.97質量部以下であり、より好ましくは85質量部以上99.85質量部以下である。また、バインダー樹脂の含有量は好ましくは0.01質量部以上10.0質量部以下であり、より好ましくは0.05質量部以上5.0質量部以下である。また、増粘剤の含有量は好ましくは0.01質量部以上10.0質量部以下であり、より好ましくは0.05質量部以上5.0質量部以下である。また、導電助剤の含有量は好ましくは0.01質量部以上10.0質量部以下であり、より好ましくは0.05質量部以上5.0質量部以下である。
電極活物質層を構成する各成分の含有量が上記範囲内であると、リチウムイオン電池用電極の取扱い性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
電極活物質層を構成する各成分の含有量が上記範囲内であると、リチウムイオン電池用電極の取扱い性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
本実施形態に係る電極スラリーは、電極スラリーの固形分の全量を100質量部としたとき、電極活物質の含有量は好ましくは70質量部以上99.97質量部以下であり、より好ましくは85質量部以上99.85質量部以下である。また、バインダー樹脂の含有量は好ましくは0.01質量部以上10.0質量部以下であり、より好ましくは0.05質量部以上5.0質量部以下である。また、増粘剤の含有量は好ましくは0.01質量部以上10.0質量部以下であり、より好ましくは0.05質量部以上5.0質量部以下である。また、導電助剤の含有量は好ましくは0.01質量部以上10.0質量部以下であり、より好ましくは0.05質量部以上5.0質量部以下である。
電極スラリーを構成する各成分の含有量が上記範囲内であると、電極スラリーの品質安定性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
電極スラリーを構成する各成分の含有量が上記範囲内であると、電極スラリーの品質安定性と、得られるリチウムイオン電池の電池特性のバランスが特に優れる。
<リチウムイオン電池用電極スラリーおよびリチウムイオン電池用電極の製造方法>
次に、本実施形態に係るリチウムイオン電池用電極スラリーおよびリチウムイオン電池用電極の製造方法について説明する。
電極スラリーまたは電極活物質層から抽出された増粘剤の重量平均分子量(Mw)が上記範囲内であるリチウムイオン電池用電極スラリーまたはリチウムイオン電池用電極を得るためには、(1)原料増粘剤の重量平均分子量、(2)電極スラリーの調製方法等の製造条件を高度に制御することが重要である。すなわち、以下の(1)および(2)の2つの条件に係る各種因子を高度に制御する製造方法によって初めて本実施形態に係るリチウムイオン電池用電極スラリーおよびリチウムイオン電池用電極を得ることができる。
(1)原料増粘剤の重量平均分子量
(2)電極スラリーの調製方法(特に、電極スラリーを作製する際の固練り工程における固形分濃度や混合速度、混練時間等の製造条件)
次に、本実施形態に係るリチウムイオン電池用電極スラリーおよびリチウムイオン電池用電極の製造方法について説明する。
電極スラリーまたは電極活物質層から抽出された増粘剤の重量平均分子量(Mw)が上記範囲内であるリチウムイオン電池用電極スラリーまたはリチウムイオン電池用電極を得るためには、(1)原料増粘剤の重量平均分子量、(2)電極スラリーの調製方法等の製造条件を高度に制御することが重要である。すなわち、以下の(1)および(2)の2つの条件に係る各種因子を高度に制御する製造方法によって初めて本実施形態に係るリチウムイオン電池用電極スラリーおよびリチウムイオン電池用電極を得ることができる。
(1)原料増粘剤の重量平均分子量
(2)電極スラリーの調製方法(特に、電極スラリーを作製する際の固練り工程における固形分濃度や混合速度、混練時間等の製造条件)
ただし、本実施形態に係るリチウムイオン電池用電極スラリーおよびリチウムイオン電池用電極は、上記2つの条件に係る各種因子を高度に制御することを前提に、例えば、その他の具体的な製造条件は種々のものを採用することができる。言い換えれば、本実施形態に係るリチウムイオン電池用電極スラリーおよびリチウムイオン電池用電極は、上記2つの条件に係る各種因子を高度に制御すること以外の点については、公知の方法を採用して作製することが可能である。
以下、上記2つの条件に係る各種因子を高度に制御していることを前提に、本実施形態に係るリチウムイオン電池用電極スラリーおよびリチウムイオン電池用電極の製造方法の一例について説明する。
以下、上記2つの条件に係る各種因子を高度に制御していることを前提に、本実施形態に係るリチウムイオン電池用電極スラリーおよびリチウムイオン電池用電極の製造方法の一例について説明する。
本実施形態に係るリチウムイオン電池用電極100の製造方法は、以下の(1)および(2)の2つの工程を含んでいるのが好ましい。
(1)電極活物質と、バインダー樹脂と、増粘剤と、水系媒体と、必要に応じて導電助剤と、を混合することにより電極スラリーを調製する工程
(2)得られた電極スラリーを集電体層101上に塗布して乾燥し、水系媒体を除去することによって、集電体層101上に電極活物質層103を形成する工程
以下、各工程について説明する。
(1)電極活物質と、バインダー樹脂と、増粘剤と、水系媒体と、必要に応じて導電助剤と、を混合することにより電極スラリーを調製する工程
(2)得られた電極スラリーを集電体層101上に塗布して乾燥し、水系媒体を除去することによって、集電体層101上に電極活物質層103を形成する工程
以下、各工程について説明する。
まず、(1)電極活物質と、バインダー樹脂と、増粘剤と、水系媒体と、必要に応じて導電助剤と、を混合することにより電極スラリーを調製する。電極活物質、バインダー樹脂、増粘剤および導電助剤の種類や配合比率は前述したため、ここでは説明を省略する。
電極スラリーは、電極活物質と、バインダー樹脂と、増粘剤と、必要に応じて導電助剤と、を水系媒体に分散または溶解させたものである。
電極スラリーを調製する工程では、GPC法を用いてプルラン換算で算出される、増粘剤の重量平均分子量(Mw)が上記下限値以上になるような条件すなわち増粘剤の重量平均分子量(Mw)が上記下限値以上を維持できるような緩やかな条件で、電極活物質、バインダー樹脂および増粘剤を含む混合物を混練することが重要である。
電極スラリーを調製する工程では、GPC法を用いてプルラン換算で算出される、増粘剤の重量平均分子量(Mw)が上記下限値以上になるような条件すなわち増粘剤の重量平均分子量(Mw)が上記下限値以上を維持できるような緩やかな条件で、電極活物質、バインダー樹脂および増粘剤を含む混合物を混練することが重要である。
本実施形態において、電極スラリーを調製する工程は、例えば、以下のスラリー前駆体調製工程(B)および電極スラリー調製工程(C)を含み、必要に応じて乾式混合工程(A)を含む。ここで、スラリー前駆体調製工程(B)において、増粘剤の分解が特に起きやすいため、増粘剤の重量平均分子量(Mw)を上記下限値以上に維持するためには、スラリー前駆体調製工程(B)における固形分濃度や混合速度、混練時間等の製造条件を調整することが重要である。
例えば、固形分濃度が高いほどスラリー前駆体に対して大きなせん断がかかるため増粘剤の分子鎖が切断されやすくなる。したがって、スラリー前駆体の固形分濃度が相対的に高くなるほど、スラリー前駆体を混練する際の混合速度を遅くしたり、混練時間を短くしたりすることによって、増粘剤の分解を抑制でき、その結果、重量平均分子量(Mw)を高い値に維持することができる。
例えば、固形分濃度が高いほどスラリー前駆体に対して大きなせん断がかかるため増粘剤の分子鎖が切断されやすくなる。したがって、スラリー前駆体の固形分濃度が相対的に高くなるほど、スラリー前駆体を混練する際の混合速度を遅くしたり、混練時間を短くしたりすることによって、増粘剤の分解を抑制でき、その結果、重量平均分子量(Mw)を高い値に維持することができる。
乾式混合工程(A):電極活物質および増粘剤粉末を紛体状態で乾式混合することにより、電極活物質および増粘剤粉末を含む紛体混合物を調製する工程
スラリー前駆体調製工程(B):混合物あるいは電極活物質中に、水系媒体、バインダー樹脂を含むエマルジョン水溶液および増粘剤溶液から選択される一種または二種以上の液体成分を添加して湿式混合することにより、スラリー前駆体を調製する工程
電極スラリー調製工程(C):上記スラリー前駆体中に、水系媒体、バインダー樹脂を含むエマルジョン水溶液および増粘剤溶液から選択される一種または二種以上の液体成分をさらに添加して湿式混合することにより電極スラリーを調製する工程
また、原料増粘剤として増粘剤粉末ではなく、増粘剤溶液を使用してもよい。この場合、工程(A)はおこなわずに、スラリー前駆体調製工程(B)または電極スラリー調製工程(C)の段階で、増粘剤溶液を添加することができる。
スラリー前駆体調製工程(B):混合物あるいは電極活物質中に、水系媒体、バインダー樹脂を含むエマルジョン水溶液および増粘剤溶液から選択される一種または二種以上の液体成分を添加して湿式混合することにより、スラリー前駆体を調製する工程
電極スラリー調製工程(C):上記スラリー前駆体中に、水系媒体、バインダー樹脂を含むエマルジョン水溶液および増粘剤溶液から選択される一種または二種以上の液体成分をさらに添加して湿式混合することにより電極スラリーを調製する工程
また、原料増粘剤として増粘剤粉末ではなく、増粘剤溶液を使用してもよい。この場合、工程(A)はおこなわずに、スラリー前駆体調製工程(B)または電極スラリー調製工程(C)の段階で、増粘剤溶液を添加することができる。
乾式混合工程(A)では、電極活物質および増粘剤粉末を紛体状態で乾式混合することにより、電極活物質および増粘剤粉末を含む粉体混合物を調製する。このとき、導電助剤を合わせて紛体混合してもよい。また、工程(B)において、増粘剤を増粘剤溶液として添加する場合は、電極活物質と導電助剤のみで乾式混合工程(A)をおこなってもよい。
本実施形態において、乾式混合工程(A)をおこなうことにより、電極活物質および増粘剤の分散性を高めることができ、その後の工程において、増粘剤由来のゲル成分の生成をより一層抑制できる。これにより、得られる電極スラリー中の増粘剤由来のゲル成分の発生を抑制できたり、電極スラリーの貯蔵弾性率を向上できたりする。
本実施形態において、乾式混合工程(A)をおこなうことにより、電極活物質および増粘剤の分散性を高めることができ、その後の工程において、増粘剤由来のゲル成分の生成をより一層抑制できる。これにより、得られる電極スラリー中の増粘剤由来のゲル成分の発生を抑制できたり、電極スラリーの貯蔵弾性率を向上できたりする。
乾式混合をおこなう混合機としては、遊星運動型ミキサーを用いるのが好ましく、遊星運動型プラネタリーミキサーを用いることがより好ましい。このような混合機を用いることにより、電極活物質および増粘剤粉末の飛散を抑制しながら、電極活物質および増粘剤粉末を十分に混合することができる。なお、遊星運動型ミキサーは、攪拌機構として自転と公転機能を有しているミキサーのことをいう。遊星運動型プラネタリーミキサーとは、攪拌機構として自転と公転機能を有するブレードをもつミキサーをいう。
乾式混合工程(A)における上記乾式混合の自転速度は、0.05m/sec以上0.55m/sec以下の範囲内であることが好ましく、0.07m/sec以上0.52m/sec以下の範囲内であることがより好ましい。
乾式混合工程(A)における上記乾式混合の自転速度が、上記範囲内であると、電極活物質および増粘剤粉末の飛散を抑制しながら、電極活物質および増粘剤粉末を十分に混合することができる。
乾式混合工程(A)における上記乾式混合の自転速度が、上記範囲内であると、電極活物質および増粘剤粉末の飛散を抑制しながら、電極活物質および増粘剤粉末を十分に混合することができる。
また、乾式混合工程(A)における上記乾式混合の公転速度は、0.01m/sec以上0.20m/sec以下の範囲内であることが好ましく、0.02m/sec以上0.15m/sec以下の範囲内であることがより好ましい。
乾式混合工程(A)における上記乾式混合の公転速度が、上記範囲内であると、電極活物質および増粘剤粉末の飛散を抑制しながら、電極活物質および増粘剤粉末を十分に混合することができる。
乾式混合工程(A)における上記乾式混合の公転速度が、上記範囲内であると、電極活物質および増粘剤粉末の飛散を抑制しながら、電極活物質および増粘剤粉末を十分に混合することができる。
乾式混合工程(A)における上記乾式混合の混合時間は、特に限定されないが、例えば、5分以上120分以下、好ましくは10分以上60分以下である。
スラリー前駆体調製工程(B)では、工程(A)により得られた紛体混合物、あるいは工程(A)を行わない場合は電極活物質を含む紛体物中に、水系媒体、バインダー樹脂を含むエマルジョン水溶液および増粘剤溶液から選択される一種または二種以上の液体成分を添加して湿式混合することにより、スラリー前駆体を調製する。
スラリー前駆体調製工程(B)における湿式混合をおこなう混合機としては、遊星運動型ミキサーを用いるのが好ましく、遊星運動型プラネタリーミキサーを用いることがより好ましい。このような混合機を用いることにより、電極スラリーを構成する各材料の飛散を抑制しながら、各材料の分散性を高めることができる。
ここで、スラリー前駆体調製工程(B)は特に限定されないが、第1の固練り工程(B2)と、第2の固練り工程(B3)とを少なくとも含む二段階以上の工程としてもよい。さらに必要に応じて、第1の固練り工程(B2)の前に行う、なじませ工程(B1)を行ってもよい。
なじませ工程(B1)は、工程(A)により得られた紛体混合物、あるいは工程(A)を行わない場合は電極活物質を含む紛体物に、水系媒体、バインダー樹脂を含むエマルジョン水溶液および増粘剤溶液から選択される一種または二種以上の液体成分をなじませる工程である。このなじませ工程(B1)を含むことにより、紛体物が湿式混合時に混合機のふちにせり上がってくることや、紛体物の濡れが偏ってしまうこと、紛体物が混練時に飛び散ること等を一定の範囲で抑制できる。
なじませ工程(B1)における上記湿式混合の自転速度は、0.10m/sec以上2.5m/sec以下の範囲内であることが好ましく、0.15m/sec以上2.0m/sec以下の範囲内であることがより好ましい。
なじませ工程(B1)における上記湿式混合の自転速度が上記範囲内であると、紛体物が湿式混合時に混合機のふちにせり上がってくることや、紛体物の濡れが偏ってしまうこと、紛体物が混練時に飛び散ること等をより効果的に抑制しながら、紛体物に液体成分を十分になじませることができる。
なじませ工程(B1)における上記湿式混合の自転速度が上記範囲内であると、紛体物が湿式混合時に混合機のふちにせり上がってくることや、紛体物の濡れが偏ってしまうこと、紛体物が混練時に飛び散ること等をより効果的に抑制しながら、紛体物に液体成分を十分になじませることができる。
また、なじませ工程(B1)における上記湿式混合の公転速度は、0.03m/sec以上1.00m/sec以下の範囲内であることが好ましく、0.04m/sec以上0.80m/sec以下の範囲内であることがより好ましい。
なじませ工程(B1)における上記湿式混合の公転速度が上記範囲内であると、紛体物が湿式混合時に混合機のふちにせり上がってくることや、紛体物の濡れが偏ってしまうこと、紛体物が混練時に飛び散ること等をより効果的に抑制しながら、紛体物に液体成分を十分になじませることができる。
なじませ工程(B1)における上記湿式混合の公転速度が上記範囲内であると、紛体物が湿式混合時に混合機のふちにせり上がってくることや、紛体物の濡れが偏ってしまうこと、紛体物が混練時に飛び散ること等をより効果的に抑制しながら、紛体物に液体成分を十分になじませることができる。
なじませ工程(B1)における上記湿式混合の混合時間は、特に限定されないが、例えば、0.5分以上120分以下であることが好ましく、2分以上60分以下であることがより好ましい。
また、第1の固練り工程(B2)および第2の固練り工程(B3)は、紛体物と液体成分とを混練し、スラリー前駆体を得る工程である。
第1の固練り工程(B2)における上記湿式混合の混合時間は、特に限定されないが、例えば、5分以上120分以下である。
第2の固練り工程(B3)における上記湿式混合の混合時間は、特に限定されないが、例えば、5分以上120分以下である。
第1の固練り工程(B2)および第2の固練り工程(B3)において、スラリー前駆体の固形分濃度を55質量%以上77質量%以下に調整することが好ましく、58質量%以上74質量%以下に調整することがより好ましく、60質量%以上73質量%以下に調整することがさらに好ましい。
第1の固練り工程(B2)および第2の固練り工程(B3)における上記湿式混合の自転速度(遊星運動型ミキサーのブレードの線速度)は、0.10m/sec以上3.0m/sec以下の範囲内であることが好ましく、0.20m/sec以上2.5m/sec以下の範囲内であることがより好ましい。
また、第1の固練り工程(B2)および第2の固練り工程(B3)における上記湿式混合の公転速度(遊星運動型ミキサーのブレードの線速度)は、0.01m/sec以上2.0m/sec以下の範囲内であることが好ましく、0.05m/sec以上1.0m/sec以下の範囲内であることがより好ましい。
電極スラリー調製工程(C)では、スラリー前駆体調製工程(B)により得られた上記スラリー前駆体中に、水系媒体、バインダー樹脂を含むエマルジョン水溶液および増粘剤溶液から選択される一種または二種以上の液体成分をさらに添加して湿式混合することにより、上記電極スラリーを調製する。
電極スラリー調製工程(C)における湿式混合をおこなう混合機としては、遊星運動型ミキサーを用いるのが好ましく、遊星運動型プラネタリーミキサーを用いることがより好ましい。このような混合機を用いることにより、低速で攪拌しながら、十分に混合することができる。そのため、攪拌混合による増粘剤の分子鎖の切断を抑制し、かつ、バインダー樹脂同士の凝集を抑制しながら、電極スラリーを構成する各材料の分散性を高めることができる。そして、その結果として、品質安定性により一層優れた電極スラリーを得ることができる。
また、得られる電極スラリーは分散性がより一層優れるため、このような電極スラリーを用いると、より一層均一な電極活物質層を得ることができる。その結果、より一層電池特性に優れた電池を得ることができる。
また、得られる電極スラリーは分散性がより一層優れるため、このような電極スラリーを用いると、より一層均一な電極活物質層を得ることができる。その結果、より一層電池特性に優れた電池を得ることができる。
本実施形態において、電極スラリー調製工程(C)における湿式混合の自転速度(遊星運動型ミキサーのブレードの線速度)は特に限定されないが、例えば、0.10m/sec以上10.0m/sec以下の範囲内である。
また、本実施形態において、電極スラリー調製工程(C)における湿式混合の公転速度(遊星運動型ミキサーのブレードの線速度)は特に限定されないが、例えば、0.02m/sec以上3.0m/sec以下の範囲内である。
また、本実施形態において、電極スラリー調製工程(C)における湿式混合の公転速度(遊星運動型ミキサーのブレードの線速度)は特に限定されないが、例えば、0.02m/sec以上3.0m/sec以下の範囲内である。
電極スラリー調製工程(C)における上記湿式混合の混合時間は、特に限定されないが、例えば、5分以上60分以下である。
なお、電極スラリー調製工程(C)における電極スラリーの固形分濃度は、上記液体成分の濃度や添加量を調整することにより調整することができる。
本実施形態に係る電極スラリーの製造方法は、脱泡工程(D):真空脱泡する工程をさらにおこなってもよい。これにより、スラリー中に巻き込んだ気泡を取り除くことができ、スラリーの塗工性を向上させることができる。
真空脱泡は混合機の容器や軸部にシール処理を施して気泡を除去してもよいし、別の容器に移してから行ってもよい。
真空脱泡は混合機の容器や軸部にシール処理を施して気泡を除去してもよいし、別の容器に移してから行ってもよい。
次に、(2)得られた電極スラリーを集電体層101上に塗布して乾燥し、水系媒体を除去することによって、集電体層101上に電極活物質層103を形成する。これにより集電体層101と電極活物質層103との接着性に優れたリチウムイオン電池用電極100を得ることができる。
すなわち、本実施形態に係るリチウムイオン電池用電極100は、本実施形態に係る電極スラリーを正極集電体や負極集電体等の集電体層101上に塗布して乾燥し、水系媒体を除去することにより集電体層101上に電極活物質層103を形成することにより得ることができる。
本実施形態に係る電極スラリーを集電体層101上に塗布する方法は、一般的に公知の方法を用いることができる。例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法等を挙げることができる。これらの中でも、電極スラリーの粘性等の物性および乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ドクターブレード法、ナイフ法、エクストルージョン法が好ましい。
本実施形態に係る電極スラリーは、集電体層101の片面のみに塗布しても両面に塗布してもよい。集電体層101の両面に塗布する場合は、片面ずつ逐次でも、両面同時に塗布してもよい。また、集電体層101の表面に連続で、あるいは、間欠で塗布してもよい。塗布層の厚さや長さ、幅は、電池の大きさに応じて、適宜決定することができる。
本実施形態に係るリチウムイオン電池用電極100の製造に用いられる集電体層101としては、例えば、リチウムイオン電池に使用可能な通常の集電体を用いることができる。
負極集電体としては銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができ、これらの中でも銅が特に好ましい。
正極集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができ、これらの中でもアルミニウムが特に好ましい。
集電体の形状については特に限定されないが、例えば、厚さが0.001~0.5mmの範囲で箔状のものを用いることができる。
負極集電体としては銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができ、これらの中でも銅が特に好ましい。
正極集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金等を用いることができ、これらの中でもアルミニウムが特に好ましい。
集電体の形状については特に限定されないが、例えば、厚さが0.001~0.5mmの範囲で箔状のものを用いることができる。
本実施形態に係る電極活物質層103の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
塗布した電極スラリーの乾燥方法は、一般的に公知の方法を用いることができる。例えば、熱風、真空、赤外線、遠赤外線、電子線および低温風を単独あるいは組み合わせて用いることができる。乾燥温度は、例えば、30℃以上350℃以下の範囲である。
本実施形態に係るリチウムイオン電池用電極は、必要に応じてプレスしてもよい。プレスの方法としては、一般的に公知の方法を用いることができる。例えば、金型プレス法やカレンダープレス法等が挙げられる。プレス圧は特に限定されないが、例えば、0.2~3t/cm2の範囲である。
本実施形態に係るリチウムイオン電池用電極の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
<リチウムイオン電池>
つづいて、本実施形態に係るリチウムイオン電池150について説明する。図2は、本発明に係る実施形態のリチウムイオン電池150の構造の一例を示す断面図である。
本実施形態に係るリチウムイオン電池150は、本実施形態に係るリチウムイオン電池用電極を備える。より具体的には、本実施形態に係るリチウムイオン電池150は、例えば、正極120と、電解質層110と、負極130とを少なくとも備え、正極120および負極130の少なくとも一方が本実施形態に係るリチウムイオン電池用電極を含む。また、本実施形態に係るリチウムイオン電池150は、必要に応じてセパレーターを含んでもよい。
本実施形態に係るリチウムイオン電池150は、正極120および負極130の少なくとも一方が本実施形態に係るリチウムイオン電池用電極を含むため、電池を組み立てる際の電極活物質層の粉落ちが抑制されており、電池の品質や電池のサイクル特性等が良好である。
本実施形態に係るリチウムイオン電池150は公知の方法に準じて作製することができる。
電極の形態としては、例えば、積層体や捲回体等が挙げられる。外装体としては、例えば、金属外装体やアルミラミネート外装体等が挙げられる。電池の形状としては、コイン型、ボタン型、シート型、円筒型、角型、扁平型等の形状が挙げられる。
つづいて、本実施形態に係るリチウムイオン電池150について説明する。図2は、本発明に係る実施形態のリチウムイオン電池150の構造の一例を示す断面図である。
本実施形態に係るリチウムイオン電池150は、本実施形態に係るリチウムイオン電池用電極を備える。より具体的には、本実施形態に係るリチウムイオン電池150は、例えば、正極120と、電解質層110と、負極130とを少なくとも備え、正極120および負極130の少なくとも一方が本実施形態に係るリチウムイオン電池用電極を含む。また、本実施形態に係るリチウムイオン電池150は、必要に応じてセパレーターを含んでもよい。
本実施形態に係るリチウムイオン電池150は、正極120および負極130の少なくとも一方が本実施形態に係るリチウムイオン電池用電極を含むため、電池を組み立てる際の電極活物質層の粉落ちが抑制されており、電池の品質や電池のサイクル特性等が良好である。
本実施形態に係るリチウムイオン電池150は公知の方法に準じて作製することができる。
電極の形態としては、例えば、積層体や捲回体等が挙げられる。外装体としては、例えば、金属外装体やアルミラミネート外装体等が挙げられる。電池の形状としては、コイン型、ボタン型、シート型、円筒型、角型、扁平型等の形状が挙げられる。
電解質層110に使用される電解質としては、公知のリチウム塩がいずれも使用でき、活物質の種類に応じて選択すればよい。例えば、LiClO4、LiBF6、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C2H5)4、CF3SO3Li、CH3 SO3Li、LiCF3SO3、LiC4F9SO3、Li(CF3SO2)2N、低級脂肪酸カルボン酸リチウム等が挙げられる。
電解質層110に使用される電解質を溶解する溶媒としては、電解質を溶解させる液体成分として通常用いられるものであれば特に限定されるものではなく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
セパレーターとしては、例えば、多孔性セパレーターが挙げられる。セパレーターの形態は、例えば、膜、フィルム、不織布等が挙げられる。
多孔性セパレーターとしては、例えば、ポリプロピレン系、ポリエチレン系等のポリオレフィン系多孔性セパレーター;ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリル、ポリビニリデンフルオリドヘキサフルオロプロピレン共重合体等により形成された多孔性セパレーターが挙げられる。
多孔性セパレーターとしては、例えば、ポリプロピレン系、ポリエチレン系等のポリオレフィン系多孔性セパレーター;ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリル、ポリビニリデンフルオリドヘキサフルオロプロピレン共重合体等により形成された多孔性セパレーターが挙げられる。
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
(実施例1)
<電極スラリーの作製>
(A)乾式混合工程
遊星運動型プラネタリーミキサー(釜の大きさ:1600L)に、電極活物質として炭素材料1(平均粒子径d50:16μm、窒素吸着BET法による比表面積:3.4m2/g)620kgと、原料増粘剤としてカルボキシメチルセルロース粉末(日本製紙株式会社製、MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)7kgと、導電助剤として約30nmの1次粒子が連鎖状に凝集したカーボンブラック(窒素吸着BET法による比表面積:60m2/g)3kgを投入した。次いで、自転速度:0.26m/sec、公転速度:0.08m/sec、温度:20℃の条件下で20分間乾式混合をおこない、粉体混合物を得た。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
以下、平均粒子径d50はMicrotrac社製、MT3000装置により測定し、比表面積は、Quantachrome Corporation社製、Quanta Sorbを用いて、窒素吸着BET法にて求めた。
また、電極スラリーの作製に用いる前の原料増粘剤の重量平均分子量(Mw)および数平均分子量(Mn)は、以下の手順により測定した。
濃度が1.2質量%の増粘剤水溶液を測定溶媒(0.1M塩化ナトリウム水溶液)で5倍に希釈し、以下の測定条件で増粘剤の分子量分布の測定をおこない、得られた結果からプルラン換算の重量平均分子量(Mw)および数平均分子量(Mn)をそれぞれ算出した。ここで、プルラン換算の重量平均分子量とは、標準物質として単分散プルランを用いて作成した検量線を用いて算出した値である。
(測定条件)
装置:ゲル浸透クロマトグラフ GPC(東ソー株式会社製、ポンプ型式:DP-8020)
検出器:示差屈折率検出器RI(東ソー社製、RI-8020型、感度16)
カラム:TSKgel guardcolumn PWXL(1本)、TSKgel PWXL(2本)(φ6mm×4cm、φ7.8mm×30cm、東ソー株式会社製)
溶媒:0.1M塩化ナトリウム水溶液
流速:0.5mL/min
カラム温度:45℃
注入量:0.2mL
標準物質:単分散プルラン(昭和電工製)
<電極スラリーの作製>
(A)乾式混合工程
遊星運動型プラネタリーミキサー(釜の大きさ:1600L)に、電極活物質として炭素材料1(平均粒子径d50:16μm、窒素吸着BET法による比表面積:3.4m2/g)620kgと、原料増粘剤としてカルボキシメチルセルロース粉末(日本製紙株式会社製、MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)7kgと、導電助剤として約30nmの1次粒子が連鎖状に凝集したカーボンブラック(窒素吸着BET法による比表面積:60m2/g)3kgを投入した。次いで、自転速度:0.26m/sec、公転速度:0.08m/sec、温度:20℃の条件下で20分間乾式混合をおこない、粉体混合物を得た。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
以下、平均粒子径d50はMicrotrac社製、MT3000装置により測定し、比表面積は、Quantachrome Corporation社製、Quanta Sorbを用いて、窒素吸着BET法にて求めた。
また、電極スラリーの作製に用いる前の原料増粘剤の重量平均分子量(Mw)および数平均分子量(Mn)は、以下の手順により測定した。
濃度が1.2質量%の増粘剤水溶液を測定溶媒(0.1M塩化ナトリウム水溶液)で5倍に希釈し、以下の測定条件で増粘剤の分子量分布の測定をおこない、得られた結果からプルラン換算の重量平均分子量(Mw)および数平均分子量(Mn)をそれぞれ算出した。ここで、プルラン換算の重量平均分子量とは、標準物質として単分散プルランを用いて作成した検量線を用いて算出した値である。
(測定条件)
装置:ゲル浸透クロマトグラフ GPC(東ソー株式会社製、ポンプ型式:DP-8020)
検出器:示差屈折率検出器RI(東ソー社製、RI-8020型、感度16)
カラム:TSKgel guardcolumn PWXL(1本)、TSKgel PWXL(2本)(φ6mm×4cm、φ7.8mm×30cm、東ソー株式会社製)
溶媒:0.1M塩化ナトリウム水溶液
流速:0.5mL/min
カラム温度:45℃
注入量:0.2mL
標準物質:単分散プルラン(昭和電工製)
ここで、炭素材料1(表面が非晶質の炭素で被覆された黒鉛)は以下のように作製した。
平均粒子径d50が16μm、比表面積が3.4m2/gの天然黒鉛を核材として使用した。
この天然黒鉛粉末99.0質量部と、石炭系ピッチ粉末1.0質量部とを、Vブレンダーを用いた単純混合により固相で混合した。得られた混合粉末を黒鉛るつぼに入れ、窒素気流下1300℃で1時間熱処理して、表面が非晶質の炭素で被覆された黒鉛を得た。
平均粒子径d50が16μm、比表面積が3.4m2/gの天然黒鉛を核材として使用した。
この天然黒鉛粉末99.0質量部と、石炭系ピッチ粉末1.0質量部とを、Vブレンダーを用いた単純混合により固相で混合した。得られた混合粉末を黒鉛るつぼに入れ、窒素気流下1300℃で1時間熱処理して、表面が非晶質の炭素で被覆された黒鉛を得た。
(B2)第1の固練り工程
次いで、上記乾式混合工程(A)が終了した遊星運動型プラネタリーミキサーに、得られるスラリー前駆体の固形分濃度が71質量%になるように水を添加した。その後、自転速度:0.45m/sec、公転速度:0.14m/sec、温度:20℃、大気圧の条件下で15分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
次いで、上記乾式混合工程(A)が終了した遊星運動型プラネタリーミキサーに、得られるスラリー前駆体の固形分濃度が71質量%になるように水を添加した。その後、自転速度:0.45m/sec、公転速度:0.14m/sec、温度:20℃、大気圧の条件下で15分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
(B3)第2の固練り工程
次いで、上記第1の固練り工程(B2)が終了した遊星運動型プラネタリーミキサーに、得られるスラリー前駆体の固形分濃度が63質量%になるように水を添加し、自転速度、公転速度、温度は上記第1の固練り工程(B2)と同じ条件にしたまま、大気圧の条件下で30分間湿式混合をおこない、電極スラリー前駆体を得た。
次いで、上記第1の固練り工程(B2)が終了した遊星運動型プラネタリーミキサーに、得られるスラリー前駆体の固形分濃度が63質量%になるように水を添加し、自転速度、公転速度、温度は上記第1の固練り工程(B2)と同じ条件にしたまま、大気圧の条件下で30分間湿式混合をおこない、電極スラリー前駆体を得た。
(C)電極スラリー調製工程
次いで、バインダー樹脂としてスチレン・ブタジエン共重合体ゴム(SBR)を水に分散した固形分濃度40質量%のSBRエマルジョン水溶液を調製した。得られたSBRエマルジョン水溶液24kgを、固練り工程が終了した遊星運動型プラネタリーミキサーに添加した。
その後、自転速度:0.52m/sec、公転速度:0.15m/sec、温度:20℃の条件下で40分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
次いで、バインダー樹脂としてスチレン・ブタジエン共重合体ゴム(SBR)を水に分散した固形分濃度40質量%のSBRエマルジョン水溶液を調製した。得られたSBRエマルジョン水溶液24kgを、固練り工程が終了した遊星運動型プラネタリーミキサーに添加した。
その後、自転速度:0.52m/sec、公転速度:0.15m/sec、温度:20℃の条件下で40分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
(D)脱泡工程
次いで、真空脱泡を行い、電極スラリーを得た。
なお、電極スラリーの最終的な固形分濃度は、電極スラリーを調製する工程(C)において水を添加することによって51質量%に調整した。
次いで、真空脱泡を行い、電極スラリーを得た。
なお、電極スラリーの最終的な固形分濃度は、電極スラリーを調製する工程(C)において水を添加することによって51質量%に調整した。
<電極の作製>
得られた電極スラリーを集電体層である銅箔の両面にダイコータを用いて塗布し、乾燥した。次いで、得られた電極をプレスして、電極(負極)を得た。
得られた電極スラリーを集電体層である銅箔の両面にダイコータを用いて塗布し、乾燥した。次いで、得られた電極をプレスして、電極(負極)を得た。
<評価>
(1)電極スラリーの粘度測定
B型粘度計(ブルックフィールド社製、回転粘度計)を用いて、25℃、せん断速度3.4s-1の条件で電極スラリーの粘度を測定した。
(1)電極スラリーの粘度測定
B型粘度計(ブルックフィールド社製、回転粘度計)を用いて、25℃、せん断速度3.4s-1の条件で電極スラリーの粘度を測定した。
(2)剥離強度試験
以下の手順により、得られた電極の剥離強度を測定した。電極を幅20mm、長さ10cmにわたって切り取り、電極の片面を両面テープが張られた板に貼り付けた。次いで、板を固定し、電極を100mm/minの速度で90°方向に剥離した。そのときの剥離強度(mN/mm)を3回測定し、その平均値を剥離強度とした。
以下の手順により、得られた電極の剥離強度を測定した。電極を幅20mm、長さ10cmにわたって切り取り、電極の片面を両面テープが張られた板に貼り付けた。次いで、板を固定し、電極を100mm/minの速度で90°方向に剥離した。そのときの剥離強度(mN/mm)を3回測定し、その平均値を剥離強度とした。
(3)増粘剤の分子量測定
電極スラリーから抽出された増粘剤の重量平均分子量(Mw)および数平均分子量(Mn)は、以下の手順により測定した。
(3-1)電極スラリー約12.5gをメスフラスコに量りとり、蒸留水を加えて50mLとした。
(3-2)軽く振り混ぜて均一な溶液にした後(例えば目視により確認)、超遠心分離機(日立工機株式会社製、製品名:日立分離用超遠心機、型式:CP80WX、ロータ:アングルロータP70AT)を用いて、超遠心分離(30000rpm(66000G)×30分)を行った。
(3-3)(3-2)で得られた分離後の上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行った。さらに、上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行った。これらの超遠心分離操作によって、スラリー中の電極活物質、バインダー樹脂および導電助剤を除去した。
(3-4)(3-3)で得られた上澄み液を0.45μmフィルターでろ過し、得られた濾液をさらに0.20μmフィルターでろ過した。これにより、(3-3)で得られた上澄み液に残っている、電極活物質、バインダー樹脂および導電助剤を除去した。得られた濾液を測定溶媒(0.1M塩化ナトリウム水溶液)で5倍に希釈し、以下の測定条件で増粘剤の分子量分布の測定をおこない、得られた結果からプルラン換算の重量平均分子量(Mw)および数平均分子量(Mn)をそれぞれ算出した。ここで、プルラン換算の重量平均分子量とは、標準物質として単分散プルランを用いて作成した検量線を用いて算出した値である。
(測定条件)
装置:ゲル浸透クロマトグラフ GPC(東ソー株式会社製、ポンプ型式:DP-8020)
検出器:示差屈折率検出器RI(東ソー社製、RI-8020型、感度16)
カラム:TSKgel guardcolumn PWXL(1本)、TSKgel PWXL(2本)(φ6mm×4cm、φ7.8mm×30cm、東ソー株式会社製)
溶媒:0.1M塩化ナトリウム水溶液
流速:0.5mL/min
カラム温度:45℃
注入量:0.2mL
標準物質:単分散プルラン(昭和電工製)
電極スラリーから抽出された増粘剤の重量平均分子量(Mw)および数平均分子量(Mn)は、以下の手順により測定した。
(3-1)電極スラリー約12.5gをメスフラスコに量りとり、蒸留水を加えて50mLとした。
(3-2)軽く振り混ぜて均一な溶液にした後(例えば目視により確認)、超遠心分離機(日立工機株式会社製、製品名:日立分離用超遠心機、型式:CP80WX、ロータ:アングルロータP70AT)を用いて、超遠心分離(30000rpm(66000G)×30分)を行った。
(3-3)(3-2)で得られた分離後の上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行った。さらに、上澄み液を回収して、再度超遠心分離(30000rpm(66000G)×30分)を行った。これらの超遠心分離操作によって、スラリー中の電極活物質、バインダー樹脂および導電助剤を除去した。
(3-4)(3-3)で得られた上澄み液を0.45μmフィルターでろ過し、得られた濾液をさらに0.20μmフィルターでろ過した。これにより、(3-3)で得られた上澄み液に残っている、電極活物質、バインダー樹脂および導電助剤を除去した。得られた濾液を測定溶媒(0.1M塩化ナトリウム水溶液)で5倍に希釈し、以下の測定条件で増粘剤の分子量分布の測定をおこない、得られた結果からプルラン換算の重量平均分子量(Mw)および数平均分子量(Mn)をそれぞれ算出した。ここで、プルラン換算の重量平均分子量とは、標準物質として単分散プルランを用いて作成した検量線を用いて算出した値である。
(測定条件)
装置:ゲル浸透クロマトグラフ GPC(東ソー株式会社製、ポンプ型式:DP-8020)
検出器:示差屈折率検出器RI(東ソー社製、RI-8020型、感度16)
カラム:TSKgel guardcolumn PWXL(1本)、TSKgel PWXL(2本)(φ6mm×4cm、φ7.8mm×30cm、東ソー株式会社製)
溶媒:0.1M塩化ナトリウム水溶液
流速:0.5mL/min
カラム温度:45℃
注入量:0.2mL
標準物質:単分散プルラン(昭和電工製)
得られた評価結果を表1に示す。
(実施例2)
第1の固練り工程(B2)の固形分濃度および混合時間を表1に示す値にそれぞれ変化させ、電極活物質として、炭素材料1の代わりに炭素材料2(天然黒鉛、平均粒子径d50:13μm、窒素吸着BET法による比表面積:3.6m2/g)を使用し、さらに第2の固練り工程(B3)を実施しない以外は実施例1と同様に電極スラリーおよび電極を作製し、各評価をそれぞれおこなった。得られた結果を表1に示す。
第1の固練り工程(B2)の固形分濃度および混合時間を表1に示す値にそれぞれ変化させ、電極活物質として、炭素材料1の代わりに炭素材料2(天然黒鉛、平均粒子径d50:13μm、窒素吸着BET法による比表面積:3.6m2/g)を使用し、さらに第2の固練り工程(B3)を実施しない以外は実施例1と同様に電極スラリーおよび電極を作製し、各評価をそれぞれおこなった。得られた結果を表1に示す。
(実施例3)
<電極スラリーの作製>
(A)乾式混合工程
遊星運動型プラネタリーミキサー(釜の大きさ:1600L)に、電極活物質として炭素材料1(平均粒子径d50:16μm、窒素吸着BET法による比表面積:3.4m2/g)620kgと、導電助剤として約30nmの1次粒子が連鎖状に凝集したカーボンブラック(窒素吸着BET法による比表面積:60m2/g)3kgを投入した。次いで、自転速度:0.26m/sec、公転速度:0.08m/sec、温度:20℃の条件下で20分間乾式混合をおこない、粉体混合物を得た。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
以下、平均粒子径d50はMicrotrac社製、MT3000装置により測定し、比表面積は、Quantachrome Corporation社製、Quanta Sorbを用いて、窒素吸着BET法にて求めた。
<電極スラリーの作製>
(A)乾式混合工程
遊星運動型プラネタリーミキサー(釜の大きさ:1600L)に、電極活物質として炭素材料1(平均粒子径d50:16μm、窒素吸着BET法による比表面積:3.4m2/g)620kgと、導電助剤として約30nmの1次粒子が連鎖状に凝集したカーボンブラック(窒素吸着BET法による比表面積:60m2/g)3kgを投入した。次いで、自転速度:0.26m/sec、公転速度:0.08m/sec、温度:20℃の条件下で20分間乾式混合をおこない、粉体混合物を得た。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
以下、平均粒子径d50はMicrotrac社製、MT3000装置により測定し、比表面積は、Quantachrome Corporation社製、Quanta Sorbを用いて、窒素吸着BET法にて求めた。
(B1)なじませ工程
次いで、上記乾式混合工程(A)が終了した遊星運動型プラネタリーミキサーに、得られるペースト前駆体の固形分濃度が86質量%になるように、濃度が1.2質量%の増粘剤水溶液(カルボキシメチルセルロース(日本製紙株式会社製 MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)を水に溶解させたもの)101kgを添加した。その後、自転速度:1.36m/sec、公転速度:0.43m/sec、温度:20℃、大気圧の条件下で35分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
次いで、上記乾式混合工程(A)が終了した遊星運動型プラネタリーミキサーに、得られるペースト前駆体の固形分濃度が86質量%になるように、濃度が1.2質量%の増粘剤水溶液(カルボキシメチルセルロース(日本製紙株式会社製 MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)を水に溶解させたもの)101kgを添加した。その後、自転速度:1.36m/sec、公転速度:0.43m/sec、温度:20℃、大気圧の条件下で35分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
(B2)第1の固練り工程
次いで、得られるスラリー前駆体の固形分濃度が63質量%になるように濃度が1.2質量%の増粘剤水溶液(カルボキシメチルセルロース(日本製紙株式会社製 MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)を水に溶解させたもの)280kgを添加した。その後、自転速度:2.04m/sec、公転速度:0.65m/sec、温度:20℃、大気圧の条件下で50分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
次いで、得られるスラリー前駆体の固形分濃度が63質量%になるように濃度が1.2質量%の増粘剤水溶液(カルボキシメチルセルロース(日本製紙株式会社製 MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)を水に溶解させたもの)280kgを添加した。その後、自転速度:2.04m/sec、公転速度:0.65m/sec、温度:20℃、大気圧の条件下で50分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
(B3)第2の固練り工程
次いで、上記第1の固練り工程(B2)が終了した遊星運動型プラネタリーミキサーに、得られるスラリー前駆体の固形分濃度が61質量%になるように濃度が1.2質量%の増粘剤水溶液(カルボキシメチルセルロース(日本製紙株式会社製 MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)を水に溶解させたもの)21kgを添加した。その後、自転速度:2.04m/sec、公転速度:0.65m/sec、温度:20℃、大気圧の条件下で11分間湿式混合をおこない、電極スラリー前駆体を得た。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
次いで、上記第1の固練り工程(B2)が終了した遊星運動型プラネタリーミキサーに、得られるスラリー前駆体の固形分濃度が61質量%になるように濃度が1.2質量%の増粘剤水溶液(カルボキシメチルセルロース(日本製紙株式会社製 MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)を水に溶解させたもの)21kgを添加した。その後、自転速度:2.04m/sec、公転速度:0.65m/sec、温度:20℃、大気圧の条件下で11分間湿式混合をおこない、電極スラリー前駆体を得た。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
(C)電極スラリー調製工程
次いで、バインダー樹脂としてスチレン・ブタジエン共重合体ゴム(SBR)を水に分散した固形分濃度40質量%のSBRエマルジョン水溶液を調製した。得られたSBRエマルジョン水溶液24kgと、濃度が1.2質量%の増粘剤水溶液(カルボキシメチルセルロース(日本製紙株式会社製 MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)を水に溶解させたもの)131kgとを、固練り工程が終了した遊星運動型プラネタリーミキサーに添加した。
その後、自転速度:0.52m/sec、公転速度:0.15m/sec、温度:20℃の条件下で40分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
次いで、バインダー樹脂としてスチレン・ブタジエン共重合体ゴム(SBR)を水に分散した固形分濃度40質量%のSBRエマルジョン水溶液を調製した。得られたSBRエマルジョン水溶液24kgと、濃度が1.2質量%の増粘剤水溶液(カルボキシメチルセルロース(日本製紙株式会社製 MAC350HC(登録商標)、エーテル化度:0.8、重量平均分子量Mw:3230000、Mw/Mn=7.56)を水に溶解させたもの)131kgとを、固練り工程が終了した遊星運動型プラネタリーミキサーに添加した。
その後、自転速度:0.52m/sec、公転速度:0.15m/sec、温度:20℃の条件下で40分間湿式混合をおこなった。ここで、自転速度および公転速度は、遊星運動型プラネタリーミキサーのブレードの線速度である。
(D)脱泡工程
次いで、真空脱泡を行い、電極スラリーを得た。
なお、電極スラリーの最終的な固形分濃度は、電極スラリーを調製する工程(C)において水を添加することによって51質量%に調整した。
次いで、真空脱泡を行い、電極スラリーを得た。
なお、電極スラリーの最終的な固形分濃度は、電極スラリーを調製する工程(C)において水を添加することによって51質量%に調整した。
<電極の作製>
得られた電極スラリーを集電体層である銅箔の両面にダイコータを用いて塗布し、乾燥した。次いで、得られた電極をプレスして、電極(負極)を得た。
得られた電極スラリーを集電体層である銅箔の両面にダイコータを用いて塗布し、乾燥した。次いで、得られた電極をプレスして、電極(負極)を得た。
<評価>
実施例1と同様の評価をおこなった。得られた結果を表1に示す。
実施例1と同様の評価をおこなった。得られた結果を表1に示す。
(実施例4)
電極活物質として、炭素材料1の代わりに炭素材料2(天然黒鉛、平均粒子径d50:13μm、窒素吸着BET法による比表面積:3.6m2/g)を用いた以外は実施例3と同様に電極スラリーおよび電極を作製し、各評価をそれぞれおこなった。得られた結果を表1に示す。
電極活物質として、炭素材料1の代わりに炭素材料2(天然黒鉛、平均粒子径d50:13μm、窒素吸着BET法による比表面積:3.6m2/g)を用いた以外は実施例3と同様に電極スラリーおよび電極を作製し、各評価をそれぞれおこなった。得られた結果を表1に示す。
(実施例5および比較例1)
第1の固練り工程(B2)の固形分濃度および混合時間を表1に示す値にそれぞれ設定し、さらに第2の固練り工程(B3)を実施しない以外は実施例1と同様に電極スラリーおよび電極を作製し、各評価をそれぞれおこなった。得られた結果を表1に示す。
第1の固練り工程(B2)の固形分濃度および混合時間を表1に示す値にそれぞれ設定し、さらに第2の固練り工程(B3)を実施しない以外は実施例1と同様に電極スラリーおよび電極を作製し、各評価をそれぞれおこなった。得られた結果を表1に示す。
(比較例2)
第1の固練り工程(B2)の自転速度および公転速度を表1に示す値にそれぞれ変化させた以外は実施例2と同様に電極スラリーおよび電極を作製し、各評価をそれぞれおこなった。得られた結果を表1に示す。
第1の固練り工程(B2)の自転速度および公転速度を表1に示す値にそれぞれ変化させた以外は実施例2と同様に電極スラリーおよび電極を作製し、各評価をそれぞれおこなった。得られた結果を表1に示す。
この出願は、2018年6月6日に出願された日本出願特願2018-108732号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Claims (21)
- 集電体層と、
前記集電体層の少なくとも一方の面に設けられ、かつ、電極活物質、バインダー樹脂および増粘剤を含む電極活物質層と、
を備えるリチウムイオン電池用電極であって、
ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、前記電極活物質層から抽出された前記増粘剤の重量平均分子量(Mw)が2000000以上であるリチウムイオン電池用電極。 - 請求項1に記載のリチウムイオン電池用電極において、
GPC法を用いてプルラン換算で算出される、前記電極活物質層から抽出された前記増粘剤の重量平均分子量(Mw)と、数平均分子量(Mn)との比(Mw/Mn)が6.0未満であるリチウムイオン電池用電極。 - 請求項1または2に記載のリチウムイオン電池用電極において、
前記電極活物質が炭素材料を含むリチウムイオン電池用電極。 - 請求項1乃至3のいずれか一項に記載のリチウムイオン電池用電極において、
前記増粘剤がセルロース系水溶性高分子を含むリチウムイオン電池用電極。 - 請求項4に記載のリチウムイオン電池用電極において、
前記セルロース系水溶性高分子のエーテル化度が0.50以上1.0以下であるリチウムイオン電池用電極。 - 請求項1乃至5のいずれか一項に記載のリチウムイオン電池用電極において、
前記バインダー樹脂がゴム系バインダー樹脂およびアクリル系バインダー樹脂から選択される少なくとも一種の樹脂を含むリチウムイオン電池用電極。 - 請求項6に記載のリチウムイオン電池用電極において、
前記バインダー樹脂がスチレン・ブタジエン共重合体ゴムを含むリチウムイオン電池用電極。 - 請求項1乃至7のいずれか一項に記載のリチウムイオン電池用電極において、
前記電極活物質層の全体を100質量部としたとき、
前記電極活物質の含有量が70質量部以上99.97質量部以下であり、
前記増粘剤の含有量が0.01質量部以上10.0質量部以下であり、
前記バインダー樹脂の含有量が0.01質量部以上10.0質量部以下であるリチウムイオン電池用電極。 - 請求項1乃至8のいずれか一項に記載のリチウムイオン電池用電極において、
前記電極活物質層が導電助剤をさらに含むリチウムイオン電池用電極。 - 電極活物質、バインダー樹脂、増粘剤および水系媒体を含むリチウムイオン電池用電極スラリーであって、
ゲルパーミエーションクロマトグラフィー(GPC)法を用いてプルラン換算で算出される、前記リチウムイオン電池用電極スラリーから抽出された前記増粘剤の重量平均分子量(Mw)が2000000以上であるリチウムイオン電池用電極スラリー。 - 請求項10に記載のリチウムイオン電池用電極スラリーにおいて、
GPC法を用いてプルラン換算で算出される、前記リチウムイオン電池用電極スラリーから抽出された前記増粘剤の重量平均分子量(Mw)と、数平均分子量(Mn)との比(Mw/Mn)が6.0未満であるリチウムイオン電池用電極スラリー。 - 請求項10または11に記載のリチウムイオン電池用電極スラリーにおいて、
前記電極活物質が炭素材料を含むリチウムイオン電池用電極スラリー。 - 請求項10乃至12のいずれか一項に記載のリチウムイオン電池用電極スラリーにおいて、
前記増粘剤がセルロース系水溶性高分子を含むリチウムイオン電池用電極スラリー。 - 請求項13に記載のリチウムイオン電池用電極スラリーにおいて、
前記セルロース系水溶性高分子のエーテル化度が0.50以上1.0以下であるリチウムイオン電池用電極スラリー。 - 請求項10乃至14のいずれか一項に記載のリチウムイオン電池用電極スラリーにおいて、
前記バインダー樹脂がゴム系バインダー樹脂およびアクリル系バインダー樹脂から選択される少なくとも一種の樹脂を含むリチウムイオン電池用電極スラリー。 - 請求項15に記載のリチウムイオン電池用電極スラリーにおいて、
前記バインダー樹脂がスチレン・ブタジエン共重合体ゴムを含むリチウムイオン電池用電極スラリー。 - 請求項10乃至16のいずれか一項に記載のリチウムイオン電池用電極スラリーにおいて、
前記リチウムイオン電池用電極スラリーの固形分の全量を100質量部としたとき、
前記電極活物質の含有量が70質量部以上99.97質量部以下であり、
前記増粘剤の含有量が0.01質量部以上10.0質量部以下であり、
前記バインダー樹脂の含有量が0.01質量部以上10.0質量部以下であるリチウムイオン電池用電極スラリー。 - 請求項10乃至17のいずれか一項に記載のリチウムイオン電池用電極スラリーにおいて、
導電助剤をさらに含むリチウムイオン電池用電極スラリー。 - 集電体層と、
前記集電体層の少なくとも一方の面に設けられ、かつ、請求項10乃至18のいずれか一項に記載のリチウムイオン電池用電極スラリーの固形分により構成された電極活物質層と、を含むリチウムイオン電池用電極。 - 請求項19に記載のリチウムイオン電池用電極を製造するための製造方法であって、
請求項10乃至18のいずれか一項に記載のリチウムイオン電池用電極スラリーを調製する工程を含み、
前記リチウムイオン電池用電極スラリーを調製する工程は、
GPC法を用いてプルラン換算で算出される、前記増粘剤の重量平均分子量(Mw)が2000000以上になるような条件で、電極活物質、バインダー樹脂および増粘剤を含む混合物を混練する工程を含むリチウムイオン電池用電極の製造方法。 - 請求項1乃至9および19のいずれか一項に記載のリチウムイオン電池用電極を備える、リチウムイオン電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020523577A JP7130037B2 (ja) | 2018-06-06 | 2019-05-09 | リチウムイオン電池用電極、リチウムイオン電池用電極スラリー、リチウムイオン電池用電極の製造方法およびリチウムイオン電池 |
CN201980037383.0A CN112236884A (zh) | 2018-06-06 | 2019-05-09 | 锂离子电池用电极、锂离子电池用电极浆料、锂离子电池用电极的制造方法和锂离子电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-108732 | 2018-06-06 | ||
JP2018108732 | 2018-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019235128A1 true WO2019235128A1 (ja) | 2019-12-12 |
Family
ID=68769476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018580 WO2019235128A1 (ja) | 2018-06-06 | 2019-05-09 | リチウムイオン電池用電極、リチウムイオン電池用電極スラリー、リチウムイオン電池用電極の製造方法およびリチウムイオン電池 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7130037B2 (ja) |
CN (1) | CN112236884A (ja) |
WO (1) | WO2019235128A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11978889B2 (en) * | 2020-01-14 | 2024-05-07 | Toyota Jidosha Kabushiki Kaisha | Method of producing electrode mixture paste and method of producing non-aqueous secondary battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114744141A (zh) * | 2022-04-01 | 2022-07-12 | 湖北亿纬动力有限公司 | 一种极片、提升极片剥离力的方法及极片剥离力的表征方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013089422A (ja) * | 2011-10-17 | 2013-05-13 | Toyota Motor Corp | リチウム二次電池の製造方法 |
JP2013093240A (ja) * | 2011-10-26 | 2013-05-16 | Toyota Motor Corp | 二次電池用電極の製造方法 |
WO2014157417A1 (ja) * | 2013-03-26 | 2014-10-02 | 日産自動車株式会社 | 非水電解質二次電池 |
JP2014203561A (ja) * | 2013-04-02 | 2014-10-27 | トヨタ自動車株式会社 | 非水電解質二次電池の電極板の製造方法,非水電解質二次電池の電極体の製造方法,および非水電解質二次電池の製造方法 |
KR20170113332A (ko) * | 2016-03-28 | 2017-10-12 | 주식회사 엘지화학 | 전극 활물질 슬러리 및 이를 포함하는 리튬 이차전지 |
EP3276714A1 (en) * | 2015-11-11 | 2018-01-31 | LG Chem, Ltd. | Anode slurry for secondary battery for improving dispersibility and reducing resistance, and anode comprising same |
JP2018503946A (ja) * | 2015-01-13 | 2018-02-08 | エルジー・ケム・リミテッド | リチウム二次電池の正極形成用組成物の製造方法、及びこれを利用して製造した正極及びリチウム二次電池 |
EP3309879A1 (en) * | 2015-06-12 | 2018-04-18 | LG Chem, Ltd. | Positive electrode mixture and secondary battery including same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105637682A (zh) * | 2013-10-28 | 2016-06-01 | 日本瑞翁株式会社 | 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极、锂离子二次电池、以及制造方法 |
KR101753892B1 (ko) * | 2014-12-17 | 2017-07-19 | 주식회사 엘지화학 | 리튬 이차전지의 음극 형성용 조성물의 제조방법, 이를 이용하여 제조한 리튬 이차전지용 음극 및 리튬 이차전지 |
-
2019
- 2019-05-09 JP JP2020523577A patent/JP7130037B2/ja active Active
- 2019-05-09 WO PCT/JP2019/018580 patent/WO2019235128A1/ja active Application Filing
- 2019-05-09 CN CN201980037383.0A patent/CN112236884A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013089422A (ja) * | 2011-10-17 | 2013-05-13 | Toyota Motor Corp | リチウム二次電池の製造方法 |
JP2013093240A (ja) * | 2011-10-26 | 2013-05-16 | Toyota Motor Corp | 二次電池用電極の製造方法 |
WO2014157417A1 (ja) * | 2013-03-26 | 2014-10-02 | 日産自動車株式会社 | 非水電解質二次電池 |
JP2014203561A (ja) * | 2013-04-02 | 2014-10-27 | トヨタ自動車株式会社 | 非水電解質二次電池の電極板の製造方法,非水電解質二次電池の電極体の製造方法,および非水電解質二次電池の製造方法 |
JP2018503946A (ja) * | 2015-01-13 | 2018-02-08 | エルジー・ケム・リミテッド | リチウム二次電池の正極形成用組成物の製造方法、及びこれを利用して製造した正極及びリチウム二次電池 |
EP3309879A1 (en) * | 2015-06-12 | 2018-04-18 | LG Chem, Ltd. | Positive electrode mixture and secondary battery including same |
EP3276714A1 (en) * | 2015-11-11 | 2018-01-31 | LG Chem, Ltd. | Anode slurry for secondary battery for improving dispersibility and reducing resistance, and anode comprising same |
KR20170113332A (ko) * | 2016-03-28 | 2017-10-12 | 주식회사 엘지화학 | 전극 활물질 슬러리 및 이를 포함하는 리튬 이차전지 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11978889B2 (en) * | 2020-01-14 | 2024-05-07 | Toyota Jidosha Kabushiki Kaisha | Method of producing electrode mixture paste and method of producing non-aqueous secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019235128A1 (ja) | 2021-07-29 |
CN112236884A (zh) | 2021-01-15 |
JP7130037B2 (ja) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7235669B2 (ja) | 水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池およびリチウムイオン電池用電極の製造方法 | |
JP6304774B2 (ja) | 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池 | |
JP6615785B2 (ja) | 負極製造用ペーストの製造方法、リチウムイオン二次電池用負極の製造方法、リチウムイオン二次電池用負極およびリチウムイオン二次電池 | |
TWI648901B (zh) | 蓄電裝置電極用黏著劑組成物、蓄電裝置電極用漿料、蓄電裝置電極、及蓄電裝置 | |
JP5158396B2 (ja) | 電極用バインダー組成物 | |
WO2019107054A1 (ja) | 負極製造用ペーストの製造方法、電池用負極電極、電池および電池用負極電極の製造方法 | |
JP6993960B2 (ja) | リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池、リチウムイオン電池用水系電極スラリーの製造方法およびリチウムイオン電池用電極の製造方法 | |
JP2019164887A (ja) | 負極製造用ペーストの製造方法、電池用負極電極、電池および電池用負極電極の製造方法 | |
WO2019235128A1 (ja) | リチウムイオン電池用電極、リチウムイオン電池用電極スラリー、リチウムイオン電池用電極の製造方法およびリチウムイオン電池 | |
WO2018179802A1 (ja) | リチウムイオン電池用負極およびリチウムイオン電池 | |
JPWO2019155881A1 (ja) | 炭素材料、蓄電デバイス用電極、蓄電デバイス、及び非水電解質二次電池 | |
WO2016052048A1 (ja) | 正極用スラリー、蓄電デバイス正極、及び蓄電デバイス | |
TW201902823A (zh) | 含有碳材料之分散液、電極形成用漿料、及非水電解質二次電池用電極之製造方法 | |
JP2016021391A (ja) | 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極および電気化学素子 | |
JP7161478B2 (ja) | リチウムイオン電池用水系電極スラリーの製造方法、リチウムイオン電池用電極の製造方法、リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極およびリチウムイオン電池 | |
KR20210021950A (ko) | 탄소 재료, 도전 보조제, 축전 디바이스용 전극, 및 축전 디바이스 | |
JP2020145143A (ja) | 蓄電デバイス用電極、蓄電デバイス用積層電極、蓄電デバイス用正極、蓄電デバイス、及び炭素材料 | |
WO2012144439A1 (ja) | 蓄電デバイス用電極、および蓄電デバイス | |
JP6477398B2 (ja) | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 | |
JP7274265B2 (ja) | リチウムイオン二次電池用電極製造用ペーストの製造方法、リチウムイオン二次電池用電極の製造方法およびリチウムイオン二次電池の製造方法 | |
WO2025115782A1 (ja) | リチウムイオン二次電池用正極、リチウムイオン二次電池及び正極活物質スラリー | |
JP2021051882A (ja) | 炭素材料複合体、蓄電デバイス用電極材料、及び蓄電デバイス | |
CN117352653A (zh) | 一种钠离子电池负极浆料、负极极片及其制备方法 | |
WO2022044716A1 (ja) | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物、電気化学素子用電極および電気化学素子 | |
JP2017107792A (ja) | 蓄電デバイス電極用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19814796 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020523577 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19814796 Country of ref document: EP Kind code of ref document: A1 |