Nothing Special   »   [go: up one dir, main page]

WO2019233191A1 - 一种基于三轴地磁传感器的设备姿态识别方法 - Google Patents

一种基于三轴地磁传感器的设备姿态识别方法 Download PDF

Info

Publication number
WO2019233191A1
WO2019233191A1 PCT/CN2019/082805 CN2019082805W WO2019233191A1 WO 2019233191 A1 WO2019233191 A1 WO 2019233191A1 CN 2019082805 W CN2019082805 W CN 2019082805W WO 2019233191 A1 WO2019233191 A1 WO 2019233191A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
sensor
geomagnetic sensor
component
bicycle
Prior art date
Application number
PCT/CN2019/082805
Other languages
English (en)
French (fr)
Inventor
于锋
孔繁斌
刘海涛
Original Assignee
青岛迈金智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛迈金智能科技有限公司 filed Critical 青岛迈金智能科技有限公司
Publication of WO2019233191A1 publication Critical patent/WO2019233191A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data

Definitions

  • the present invention relates to the technical field of fitness equipment, and in particular to a method for identifying posture of a device based on a three-axis geomagnetic sensor.
  • Multifunctional bicycles can monitor various physiological data of people during riding.
  • the rider can perform physiological monitoring, health guidance, vehicle adjustment, and danger warning based on knowledge of calorie consumption, muscle stress, riding exercise, and riding habits.
  • cadence sensors and speed sensors There are usually two types of existing devices for monitoring cycling data, namely cadence sensors and speed sensors. The two sensors are completely independent. Each sensor has only one function and can only measure cadence or speed. Single function.
  • the invention provides a device attitude recognition method based on a three-axis geomagnetic sensor.
  • the present invention provides the following technical solutions:
  • a device attitude recognition method based on a three-axis geomagnetic sensor includes the following steps:
  • S1 Bind the triaxial geomagnetic sensor with the cadence sensor and the speed sensor to form a cadence sensor combination and a speed sensor combination;
  • step S2 a controller and a communicator for communication connection are provided on the bicycle body, and the cadence sensor combination and the speed sensor combination collect the riding data of the bicycle, and the riding data Uploading to the controller, the controller sends the riding data to the mobile terminal via the communicator.
  • the mobile terminal is configured to receive riding data of the bicycle sent by the communicator, and display the riding data to a user riding the bicycle.
  • step S3 during the riding process, the magnetic induction lines of the three-axis geomagnetic sensor generate components on the X-axis, Y-axis, and Z-axis, where the X-axis and Y-axis are located in the sensor plane and the Z-axis is perpendicular On the sensor plane.
  • the component of the triaxial geomagnetic sensor magnetic induction line in the Z axis is zero or smaller, the component generated in the X axis exhibits a sine curve trend, and the component generated in the Y axis exhibits a cosine curve.
  • the trend defines the triaxial geomagnetic sensor to rotate around the Z axis.
  • the component of the three-axis geomagnetic sensor magnetic induction line in the speed sensor combination is zero or less in the Y axis, the component in the X axis shows a sine curve trend, and the component in the Z axis shows a cosine curve trend.
  • the three-axis geomagnetic sensor is defined to rotate around the Y-axis.
  • the component is considered to be smaller.
  • the component and curve of the magnetic axis of the three-axis geomagnetic sensor on the X-axis, Y-axis, and Z-axis determine the specific position to which the sensor is bound, and then determine the sensor type and identify the attitude to achieve a two-in-one cadence sensor and speed sensor.
  • the effect is that one device has two functions at the same time. At the same time, no additional settings are required. The function is automatically switched, the operation is simple, and the device is completely intelligent.
  • FIG. 1 is a schematic diagram of a binding position of a cadence sensor combination
  • FIG. 2 is a schematic diagram of a binding position of a speed sensor combination
  • FIG. 3 is a schematic diagram of a magnetic axis of a triaxial geomagnetic sensor in a cadence sensor combination
  • FIG. 4 is a schematic diagram of magnetic lines of a three-axis geomagnetic sensor in a speed sensor combination.
  • 1-triaxial geomagnetic sensor 2-cadence sensor, 3-pedal crank, 4-speed sensor, 5-rear wheel axle of bicycle.
  • X, Y, and Z represent X-axis, Y-axis, and Z-axis, respectively, and X1, Y1, and Z1 represent components generated by the magnetic induction lines on the X-axis, Y-axis, and Z-axis, respectively.
  • a device attitude recognition method based on a three-axis geomagnetic sensor includes the following steps:
  • a triaxial geomagnetic sensor 1 and a cadence sensor 2 are bound to form a cadence sensor combination, and the cadence sensor combination is placed on a bicycle pedal crank 3.
  • a three-axis geomagnetic sensor 1 and a speed sensor 4 are bound to form a speed sensor combination, and the speed sensor combination is placed at the rear wheel axle 5 of the bicycle.
  • the user starts to ride, and a controller and a communicator for communication connection are provided on the body of the bicycle.
  • the cadence sensor combination and speed sensor combination collect the riding data of the bicycle, and the riding data is uploaded to the control.
  • the controller sends the riding data to a mobile terminal via a communicator, and the mobile terminal is configured to receive the riding data of the bicycle sent by the communicator and display the riding data to the riding The user of the bicycle.
  • the magnetic lines of the three-axis geomagnetic sensor 1 generate components on the X-axis, Y-axis, and Z-axis, where the X-axis and Y-axis are in the sensor plane and Z The axis is perpendicular to the sensor plane.
  • the component of the triaxial geomagnetic sensor magnetic induction line on the Z axis is zero or smaller, and the component generated on the X axis exhibits a sinusoidal trend.
  • the component shows a cosine curve trend.
  • the triaxial geomagnetic sensor 1 is defined to rotate around the Z axis. Referring to FIG.
  • the component of the three-axis geomagnetic sensor magnetic induction line on the Y axis is zero or smaller, the component generated on the X axis exhibits a sine curve, and the component generated on the Z axis exhibits a cosine. Curve trend.
  • the three-axis geomagnetic sensor 1 is defined to rotate around the Y-axis. The trend of the magnetic induction component curve of the above-mentioned three-axis geomagnetic sensor is used as the basis for equipment attitude recognition.
  • the triaxial geomagnetic sensor 1 In the actual riding process, when the position of the triaxial geomagnetic sensor 1 is not clear, according to the trend of the magnetic induction component curve of the triaxial geomagnetic sensor actually collected, and according to the equipment attitude recognition basis, the triaxial geomagnetic sensor is obtained. The specific position to which the sensor 1 is bound and the attitude of the device are identified. specific,
  • the component When one of the X-axis component, the Y-axis component, and the Z-axis component is less than 20% of the maximum value among the three, the component is considered to be smaller. If the Z-axis component is 0 or smaller, the X-axis component shows a sine curve, and the Y-axis component shows a cosine curve, then the triaxial geomagnetic sensor 1 is considered to be located at the pedal crank 3 of the bicycle, and it has the function of a cadence sensor. , That is, the device posture is recognized.
  • the triaxial geomagnetic sensor 1 is considered to be located at the rear axle 5 of the bicycle, and it has the function of a speed sensor. The device posture is recognized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种基于三轴地磁传感器(1)的设备姿态识别方法,包括以下步骤:将三轴地磁传感器(1)分别与踏频传感器(2)、速度传感器(4)绑定,形成踏频传感器组合、速度传感器组合,将踏频传感器组合置于自行车的脚踏曲柄(3)处,将速度传感器组合置于自行车的后轮轮轴(5)处,采集并分析自行车的骑行数据,得出三轴地磁传感器(1)的磁感线分量曲线走势,作为设备姿态识别依据,用于判定三轴地磁传感器(1)所绑定的具体位置及类型。该方法根据三轴地磁传感器(1)的磁感线在X轴、Y轴、Z轴的分量及曲线走势对设备姿态进行识别,达到踏频传感器(2)、速度传感器(4)二合一的效果,实现一个设备同时具有两种功能,不需要其他额外设置,自动进行功能切换,操作简单,智能化水平高。

Description

一种基于三轴地磁传感器的设备姿态识别方法 技术领域
本发明涉及健身设备技术领域,具体而言涉及一种基于三轴地磁传感器的设备姿态识别方法。
背景技术
随着人们生活水平的提高,自行车不再仅是普通的运输、代步的工具,而是成为人们娱乐、休闲及锻炼的首选。多功能自行车能够监测人们骑行过程中的各项生理数据。相应地,骑行者在了解各处卡路里消耗、肌肉受力、骑行锻炼度及骑行习惯的基础上,可进行生理监控、健康指导、车辆调整及危险预警。现有的用于监测骑行数据的设备通常有两种,分别为踏频传感器和速度传感器,两种传感器是完全独立的,每种传感器只有一种功能,只能测量踏频或测量速度,功能单一。目前,市面上还有一种类型的传感器,其融合了踏频传感器、速度传感器的功能,既可以实现踏频传感的功能,又可以实现速度传感器的功能,但传感器需要通过按钮、重启等操作来配置相应的功能,操作繁琐。
发明内容
本发明提供了一种基于三轴地磁传感器的设备姿态识别方法。
为实现上述目的,本发明提供如下技术方案:
一种基于三轴地磁传感器的设备姿态识别方法,包括以下步骤:
S1:将三轴地磁传感器分别与踏频传感器、速度传感器绑定,形成踏频传感器组合、速度传感器组合;
S2:将踏频传感器组合置于自行车的脚踏曲柄处,将速度传感器组合置于自行车的后轮轮轴处,采集所述自行车的骑行数据;
S3:分析所述骑行数据,得出三轴地磁传感器的磁感线分量曲线走势,作为设备姿态识别依据;
S4:在三轴地磁传感器所处位置不明确的前提下,根据实际采集的三轴地磁传感器的磁感线分量曲线走势,并根据设备姿态识别依据,得出三轴地磁传感器所绑定的具体位置及辨识设备姿态。
进一步,所述步骤S2中,在所述自行车的车体上设置通讯连接的控制器和通讯器,所述踏频传感器组合、速度传感器组合采集所述自行车的骑行数据,所述骑行数据上传至控制器,所述控制器将骑行数据经通讯器发送给移动终端。
进一步,所述移动终端用于接收所述通信器发送的所述自行车的骑行数据,并将所述骑行数据显示给骑行所述自行车的用户。
进一步,所述步骤S3中,在骑行过程中,三轴地磁传感器的磁感线在X轴、Y轴和Z轴上产生分量,其中,X轴和Y轴位于传感器平面内,Z轴垂直于传感器平面。
进一步,所述踏频传感器组合中三轴地磁传感器磁感线在Z轴产生的分量为零或较小,其在X轴产生的分量呈现正弦曲线走势,其在Y轴产生的分量呈现余弦曲线走势,此时,定义三轴地磁传感器绕Z轴旋转。
进一步,所述速度传感器组合中三轴地磁传感器磁感线在Y轴产生的分量为零或较小,其在X轴产生的分量呈现正弦曲线走势,其在Z轴产生的分量呈现余弦曲线走势,此时,定义三轴地磁传感器绕Y轴旋转。
进一步,当X轴分量、Y轴分量和Z轴分量中其中一者小于三者中最大值的20%时,视为该分量较小。
本发明的有益效果是:
根据三轴地磁传感器磁感线在X轴、Y轴、Z轴的分量及曲线走势,判定传感器所绑定的具体位置,进而判定传感器类型并识别姿态,达到踏频传感器、速度传感器二合一的效果,实现一个设备同时具有两种功能,同时,不需要其他额外设置,自动进行功能切换,操作简单,实现完全智能化。
附图说明
图1是踏频传感器组合绑定位置示意图;
图2是速度传感器组合绑定位置示意图;
图3是踏频传感器组合中三轴地磁传感器磁感线示意图;
图4是速度传感器组合中三轴地磁传感器磁感线示意图。
附图中:1-三轴地磁传感器、2-踏频传感器、3-自行车的脚踏曲柄、4-速度传感器、5-自行车的后轮轮轴。
图3和图4中,X、Y、Z分别表示X轴、Y轴、Z轴,X1、Y1、Z1分别表示磁感线在X轴、Y轴、Z轴产生的分量。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种基于三轴地磁传感器的设备姿态识别方法,包括以下步骤:
首先,参考图1,将三轴地磁传感器1与踏频传感器2绑定,形成踏频传感器组合,将踏频传感器组合置于自行车的脚踏曲柄3处。参考图2,将三轴地磁传感器1与速度传感器4绑定,形成速度传感器组合,将速度传感器组合置于自行车的 后轮轮轴5处。用户开始骑行,在所述自行车的车体上设置通讯连接的控制器和通讯器,所述踏频传感器组合、速度传感器组合采集所述自行车的骑行数据,所述骑行数据上传至控制器,所述控制器将骑行数据经通讯器发送给移动终端,所述移动终端用于接收所述通信器发送的所述自行车的骑行数据,并将所述骑行数据显示给骑行所述自行车的用户。
在骑行过程中,控制器采集并处理骑行数据,三轴地磁传感器1的磁感线在X轴、Y轴和Z轴上产生分量,其中,X轴和Y轴位于传感器平面内,Z轴垂直于传感器平面。参考图3所示,所述踏频传感器组合中三轴地磁传感器磁感线在Z轴产生的分量为零或较小,其在X轴产生的分量呈现正弦曲线走势,其在Y轴产生的分量呈现余弦曲线走势,此时,定义三轴地磁传感器1绕Z轴旋转。参考图4,所述速度传感器组合中三轴地磁传感器磁感线在Y轴产生的分量为零或较小,其在X轴产生的分量呈现正弦曲线走势,其在Z轴产生的分量呈现余弦曲线走势,此时,定义三轴地磁传感器1绕Y轴旋转。将上述三轴地磁传感器的磁感线分量曲线走势作为设备姿态识别依据。
在实际骑行过程中,当三轴地磁传感器1所处位置不明确的前提下,根据实际采集的三轴地磁传感器的磁感线分量曲线走势,并根据设备姿态识别依据,得出三轴地磁传感器1所绑定的具体位置及辨识设备姿态。具体的,
当X轴分量、Y轴分量和Z轴分量中其中一者小于三者中最大值的20%时,视为该分量较小。若Z轴分量为0或较小,且X轴分量呈现正弦曲线走势,Y轴分量呈现余弦曲线走势,则认为三轴地磁传感器1位于自行车的脚踏曲柄3处,其具有踏频传感器的功能,即识别出设备姿态。若Y轴分量为0或较小,且X轴分量呈现正弦曲线走势,Z轴分量呈现余弦曲线走势,则认为三轴地磁传感器1位于自行车的后 轮轮轴5处,其具有速度传感器的功能,即识别出设备姿态。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (7)

  1. 一种基于三轴地磁传感器的设备姿态识别方法,其特征在于,包括以下步骤:
    S1:将三轴地磁传感器分别与踏频传感器、速度传感器绑定,形成踏频传感器组合、速度传感器组合;
    S2:将踏频传感器组合置于自行车的脚踏曲柄处,将速度传感器组合置于自行车的后轮轮轴处,采集所述自行车的骑行数据;
    S3:分析所述骑行数据,得出三轴地磁传感器的磁感线分量曲线走势,作为设备姿态识别依据;
    S4:在三轴地磁传感器所处位置不明确的前提下,根据实际采集的三轴地磁传感器的磁感线分量曲线走势,并根据设备姿态识别依据,得出三轴地磁传感器所绑定的具体位置及辨识设备姿态。
  2. 根据权利要求1所述的一种基于三轴地磁传感器的设备姿态识别方法,其特征在于,所述步骤S2中,在所述自行车的车体上设置通讯连接的控制器和通讯器,所述踏频传感器组合、速度传感器组合采集所述自行车的骑行数据,所述骑行数据上传至控制器,所述控制器将骑行数据经通讯器发送给移动终端。
  3. 根据权利要求2所述的一种基于三轴地磁传感器的设备姿态识别方法,其特征在于,所述移动终端用于接收所述通信器发送的所述自行车的骑行数据,并将所述骑行数据显示给骑行所述自行车的用户。
  4. 根据权利要求3所述的一种基于三轴地磁传感器的设备姿态识别方法,其特征在于,所述步骤S3中,在骑行过程中,三轴地磁 传感器的磁感线在X轴、Y轴和Z轴上产生分量,其中,X轴和Y轴位于传感器平面内,Z轴垂直于传感器平面。
  5. 根据权利要求4所述的一种基于三轴地磁传感器的设备姿态识别方法,其特征在于,所述踏频传感器组合中三轴地磁传感器磁感线在Z轴产生的分量为零或较小,其在X轴产生的分量呈现正弦曲线走势,其在Y轴产生的分量呈现余弦曲线走势,此时,定义三轴地磁传感器绕Z轴旋转。
  6. 根据权利要求4所述的一种基于三轴地磁传感器的设备姿态识别方法,其特征在于,所述速度传感器组合中三轴地磁传感器磁感线在Y轴产生的分量为零或较小,其在X轴产生的分量呈现正弦曲线走势,其在Z轴产生的分量呈现余弦曲线走势,此时,定义三轴地磁传感器绕Y轴旋转。
  7. 根据权利要求5或6所述的一种基于三轴地磁传感器的设备姿态识别方法,其特征在于,当X轴分量、Y轴分量和Z轴分量中其中一者小于三者中最大值的20%时,视为该分量较小。
PCT/CN2019/082805 2018-06-07 2019-04-16 一种基于三轴地磁传感器的设备姿态识别方法 WO2019233191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810580741.X 2018-06-07
CN201810580741.XA CN108682059B (zh) 2018-06-07 2018-06-07 一种基于三轴地磁传感器的设备姿态识别方法

Publications (1)

Publication Number Publication Date
WO2019233191A1 true WO2019233191A1 (zh) 2019-12-12

Family

ID=63810452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082805 WO2019233191A1 (zh) 2018-06-07 2019-04-16 一种基于三轴地磁传感器的设备姿态识别方法

Country Status (2)

Country Link
CN (1) CN108682059B (zh)
WO (1) WO2019233191A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108682059B (zh) * 2018-06-07 2020-03-03 青岛迈金智能科技有限公司 一种基于三轴地磁传感器的设备姿态识别方法
CN111273051B (zh) * 2020-03-10 2022-10-04 青岛迈金智能科技有限公司 一种在骑行台上测量踏频的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159130A (en) * 1998-05-20 2000-12-12 Polar Electro Oy Measuring method and measuring system
CN1590203A (zh) * 2003-08-22 2005-03-09 株式会社猫眼 计测装置及传感器装置
US20140173443A1 (en) * 2012-08-27 2014-06-19 Wahoo Fitness Llc Fitness computer and system
WO2017046907A1 (ja) * 2015-09-17 2017-03-23 パイオニア株式会社 情報出力装置
US20170341705A1 (en) * 2016-05-30 2017-11-30 Shimano Inc. Bicycle control device and bicycle control system
WO2018004665A1 (en) * 2016-07-01 2018-01-04 Ford Global Technologies, Llc Systems, methods, and devices for rider detection using strain gauge
CN206862370U (zh) * 2017-04-19 2018-01-09 青岛迈金智能科技有限公司 用于骑行的双模式监测装置
CN108682059A (zh) * 2018-06-07 2018-10-19 青岛迈金智能科技有限公司 一种基于三轴地磁传感器的设备姿态识别方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014089113A (ja) * 2012-10-30 2014-05-15 Yamaha Corp 姿勢推定装置及びプログラム
CN103175502A (zh) * 2013-02-07 2013-06-26 广州畅途软件有限公司 一种基于数据手套低速运动的姿态角检测方法
CN103487011B (zh) * 2013-09-06 2016-01-20 广州畅途软件有限公司 一种数据手套的姿态角检测方法
CN103933722B (zh) * 2014-02-28 2016-04-27 杭州匠物网络科技有限公司 一种健身哑铃运动检测装置及健身哑铃运动检测方法
US9593962B2 (en) * 2014-10-08 2017-03-14 Honeywell International Inc. Systems and methods for attitude fault detection based on integrated GNSS/inertial hybrid filter residuals
CN107402004B (zh) * 2017-07-28 2021-03-09 歌尔光学科技有限公司 传感器的姿态信息获取方法及装置
CN207346010U (zh) * 2017-09-30 2018-05-11 加驰(厦门)智能科技有限公司 一种自动获取踏频的智能自行车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159130A (en) * 1998-05-20 2000-12-12 Polar Electro Oy Measuring method and measuring system
CN1590203A (zh) * 2003-08-22 2005-03-09 株式会社猫眼 计测装置及传感器装置
US20140173443A1 (en) * 2012-08-27 2014-06-19 Wahoo Fitness Llc Fitness computer and system
WO2017046907A1 (ja) * 2015-09-17 2017-03-23 パイオニア株式会社 情報出力装置
US20170341705A1 (en) * 2016-05-30 2017-11-30 Shimano Inc. Bicycle control device and bicycle control system
WO2018004665A1 (en) * 2016-07-01 2018-01-04 Ford Global Technologies, Llc Systems, methods, and devices for rider detection using strain gauge
CN206862370U (zh) * 2017-04-19 2018-01-09 青岛迈金智能科技有限公司 用于骑行的双模式监测装置
CN108682059A (zh) * 2018-06-07 2018-10-19 青岛迈金智能科技有限公司 一种基于三轴地磁传感器的设备姿态识别方法

Also Published As

Publication number Publication date
CN108682059A (zh) 2018-10-19
CN108682059B (zh) 2020-03-03

Similar Documents

Publication Publication Date Title
US11513610B2 (en) Gesture recognition
US20220365600A1 (en) Motion data processing method and motion monitoring system
US8025607B2 (en) Instrumented handle and pedal systems for use in rehabilitation, exercise and training equipment
CN105561567B (zh) 一种计步及运动状态评估装置
US20190351289A1 (en) Targeted neurogenesis stimulated by aerobic exercise with virtual reality enhanced brain function specific tasks
WO2019233191A1 (zh) 一种基于三轴地磁传感器的设备姿态识别方法
CN106467152A (zh) 自行车的变档提示方法和装置
EP3063502A1 (de) Verfahren und system zur übermittlung von taktilen anweisungen an einen menschlichen körper
CN107823846A (zh) 一种带有体质检测的共享式虚拟现实健身骑行系统及方法
WO2018094978A1 (zh) 一种肢体运动姿态的判断方法及装置
CN103271735A (zh) 一种心跳心率检测系统及其应用
Ranky et al. VRACK—virtual reality augmented cycling kit: Design and validation
CN106236052A (zh) 一种自行车
CN218793768U (zh) 结合健身设备与辅助穿戴装置的健身动作侦测系统
CN113856132B (zh) 一种跳绳动作识别系统、方法及跳绳
CN205548573U (zh) 一种带码表功能的骑行运动智能穿戴设备
CN107049287A (zh) 一种用于健康自行车运动的监测系统
US20170274268A1 (en) Interactive exercise devices and systems
CN105771240A (zh) 一种仿真交互式游戏方法
CN103143142B (zh) 一种娱乐运动健身一体化跑步机及其手操作器
Salim et al. Integration of tilt sensors as a device for monitoring rehabilitation process
TWI682356B (zh) 自行車騎乘資訊的推播中繼裝置及其推播方法
TW201700132A (zh) 智慧採集裝置及智慧採集方法
CN111044072A (zh) 基于智能穿戴设备的人体运动状态判断方法和计步方法
CN205548538U (zh) 一种多功能运动健康智能监测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815409

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815409

Country of ref document: EP

Kind code of ref document: A1